1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_CODE_DEPENDENCIES_HPP
  26 #define SHARE_VM_CODE_DEPENDENCIES_HPP
  27 
  28 #include "ci/ciCallSite.hpp"
  29 #include "ci/ciKlass.hpp"
  30 #include "ci/ciMethodHandle.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "code/compressedStream.hpp"
  33 #include "code/nmethod.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "runtime/safepointVerifiers.hpp"
  36 #include "utilities/growableArray.hpp"
  37 #include "utilities/hashtable.hpp"
  38 
  39 //** Dependencies represent assertions (approximate invariants) within
  40 // the runtime system, e.g. class hierarchy changes.  An example is an
  41 // assertion that a given method is not overridden; another example is
  42 // that a type has only one concrete subtype.  Compiled code which
  43 // relies on such assertions must be discarded if they are overturned
  44 // by changes in the runtime system.  We can think of these assertions
  45 // as approximate invariants, because we expect them to be overturned
  46 // very infrequently.  We are willing to perform expensive recovery
  47 // operations when they are overturned.  The benefit, of course, is
  48 // performing optimistic optimizations (!) on the object code.
  49 //
  50 // Changes in the class hierarchy due to dynamic linking or
  51 // class evolution can violate dependencies.  There is enough
  52 // indexing between classes and nmethods to make dependency
  53 // checking reasonably efficient.
  54 
  55 class ciEnv;
  56 class nmethod;
  57 class OopRecorder;
  58 class xmlStream;
  59 class CompileLog;
  60 class DepChange;
  61 class   KlassDepChange;
  62 class   CallSiteDepChange;
  63 class NoSafepointVerifier;
  64 
  65 class Dependencies: public ResourceObj {
  66  public:
  67   // Note: In the comments on dependency types, most uses of the terms
  68   // subtype and supertype are used in a "non-strict" or "inclusive"
  69   // sense, and are starred to remind the reader of this fact.
  70   // Strict uses of the terms use the word "proper".
  71   //
  72   // Specifically, every class is its own subtype* and supertype*.
  73   // (This trick is easier than continually saying things like "Y is a
  74   // subtype of X or X itself".)
  75   //
  76   // Sometimes we write X > Y to mean X is a proper supertype of Y.
  77   // The notation X > {Y, Z} means X has proper subtypes Y, Z.
  78   // The notation X.m > Y means that Y inherits m from X, while
  79   // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
  80   // as *I > A, meaning (abstract) interface I is a super type of A,
  81   // or A.*m > B.m, meaning B.m implements abstract method A.m.
  82   //
  83   // In this module, the terms "subtype" and "supertype" refer to
  84   // Java-level reference type conversions, as detected by
  85   // "instanceof" and performed by "checkcast" operations.  The method
  86   // Klass::is_subtype_of tests these relations.  Note that "subtype"
  87   // is richer than "subclass" (as tested by Klass::is_subclass_of),
  88   // since it takes account of relations involving interface and array
  89   // types.
  90   //
  91   // To avoid needless complexity, dependencies involving array types
  92   // are not accepted.  If you need to make an assertion about an
  93   // array type, make the assertion about its corresponding element
  94   // types.  Any assertion that might change about an array type can
  95   // be converted to an assertion about its element type.
  96   //
  97   // Most dependencies are evaluated over a "context type" CX, which
  98   // stands for the set Subtypes(CX) of every Java type that is a subtype*
  99   // of CX.  When the system loads a new class or interface N, it is
 100   // responsible for re-evaluating changed dependencies whose context
 101   // type now includes N, that is, all super types of N.
 102   //
 103   enum DepType {
 104     end_marker = 0,
 105 
 106     // An 'evol' dependency simply notes that the contents of the
 107     // method were used.  If it evolves (is replaced), the nmethod
 108     // must be recompiled.  No other dependencies are implied.
 109     evol_method,
 110     FIRST_TYPE = evol_method,
 111 
 112     // A context type CX is a leaf it if has no proper subtype.
 113     leaf_type,
 114 
 115     // An abstract class CX has exactly one concrete subtype CC.
 116     abstract_with_unique_concrete_subtype,
 117 
 118     // The type CX is purely abstract, with no concrete subtype* at all.
 119     abstract_with_no_concrete_subtype,
 120 
 121     // The concrete CX is free of concrete proper subtypes.
 122     concrete_with_no_concrete_subtype,
 123 
 124     // Given a method M1 and a context class CX, the set MM(CX, M1) of
 125     // "concrete matching methods" in CX of M1 is the set of every
 126     // concrete M2 for which it is possible to create an invokevirtual
 127     // or invokeinterface call site that can reach either M1 or M2.
 128     // That is, M1 and M2 share a name, signature, and vtable index.
 129     // We wish to notice when the set MM(CX, M1) is just {M1}, or
 130     // perhaps a set of two {M1,M2}, and issue dependencies on this.
 131 
 132     // The set MM(CX, M1) can be computed by starting with any matching
 133     // concrete M2 that is inherited into CX, and then walking the
 134     // subtypes* of CX looking for concrete definitions.
 135 
 136     // The parameters to this dependency are the method M1 and the
 137     // context class CX.  M1 must be either inherited in CX or defined
 138     // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
 139     // than {M1}.
 140     unique_concrete_method,       // one unique concrete method under CX
 141 
 142     // An "exclusive" assertion concerns two methods or subtypes, and
 143     // declares that there are at most two (or perhaps later N>2)
 144     // specific items that jointly satisfy the restriction.
 145     // We list all items explicitly rather than just giving their
 146     // count, for robustness in the face of complex schema changes.
 147 
 148     // A context class CX (which may be either abstract or concrete)
 149     // has two exclusive concrete subtypes* C1, C2 if every concrete
 150     // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
 151     // are equal to CX, then CX itself must be abstract.  But it is
 152     // also possible (for example) that C1 is CX (a concrete class)
 153     // and C2 is a proper subtype of C1.
 154     abstract_with_exclusive_concrete_subtypes_2,
 155 
 156     // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
 157     exclusive_concrete_methods_2,
 158 
 159     // This dependency asserts that no instances of class or it's
 160     // subclasses require finalization registration.
 161     no_finalizable_subclasses,
 162 
 163     // This dependency asserts when the CallSite.target value changed.
 164     call_site_target_value,
 165 
 166     TYPE_LIMIT
 167   };
 168   enum {
 169     LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
 170 
 171     // handy categorizations of dependency types:
 172     all_types           = ((1 << TYPE_LIMIT) - 1) & ((~0u) << FIRST_TYPE),
 173 
 174     non_klass_types     = (1 << call_site_target_value),
 175     klass_types         = all_types & ~non_klass_types,
 176 
 177     non_ctxk_types      = (1 << evol_method) | (1 << call_site_target_value),
 178     implicit_ctxk_types = 0,
 179     explicit_ctxk_types = all_types & ~(non_ctxk_types | implicit_ctxk_types),
 180 
 181     max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)
 182 
 183     // A "context type" is a class or interface that
 184     // provides context for evaluating a dependency.
 185     // When present, it is one of the arguments (dep_context_arg).
 186     //
 187     // If a dependency does not have a context type, there is a
 188     // default context, depending on the type of the dependency.
 189     // This bit signals that a default context has been compressed away.
 190     default_context_type_bit = (1<<LG2_TYPE_LIMIT)
 191   };
 192 
 193   static const char* dep_name(DepType dept);
 194   static int         dep_args(DepType dept);
 195 
 196   static bool is_klass_type(           DepType dept) { return dept_in_mask(dept, klass_types        ); }
 197 
 198   static bool has_explicit_context_arg(DepType dept) { return dept_in_mask(dept, explicit_ctxk_types); }
 199   static bool has_implicit_context_arg(DepType dept) { return dept_in_mask(dept, implicit_ctxk_types); }
 200 
 201   static int           dep_context_arg(DepType dept) { return has_explicit_context_arg(dept) ? 0 : -1; }
 202   static int  dep_implicit_context_arg(DepType dept) { return has_implicit_context_arg(dept) ? 0 : -1; }
 203 
 204   static void check_valid_dependency_type(DepType dept);
 205 
 206 #if INCLUDE_JVMCI
 207   // A Metadata* or object value recorded in an OopRecorder
 208   class DepValue {
 209    private:
 210     // Unique identifier of the value within the associated OopRecorder that
 211     // encodes both the category of the value (0: invalid, positive: metadata, negative: object)
 212     // and the index within a category specific array (metadata: index + 1, object: -(index + 1))
 213     int _id;
 214 
 215    public:
 216     DepValue() : _id(0) {}
 217     DepValue(OopRecorder* rec, Metadata* metadata, DepValue* candidate = NULL) {
 218       assert(candidate == NULL || candidate->is_metadata(), "oops");
 219       if (candidate != NULL && candidate->as_metadata(rec) == metadata) {
 220         _id = candidate->_id;
 221       } else {
 222         _id = rec->find_index(metadata) + 1;
 223       }
 224     }
 225     DepValue(OopRecorder* rec, jobject obj, DepValue* candidate = NULL) {
 226       assert(candidate == NULL || candidate->is_object(), "oops");
 227       if (candidate != NULL && candidate->as_object(rec) == obj) {
 228         _id = candidate->_id;
 229       } else {
 230         _id = -(rec->find_index(obj) + 1);
 231       }
 232     }
 233 
 234     // Used to sort values in ascending order of index() with metadata values preceding object values
 235     int sort_key() const { return -_id; }
 236 
 237     bool operator == (const DepValue& other) const   { return other._id == _id; }
 238 
 239     bool is_valid() const             { return _id != 0; }
 240     int  index() const                { assert(is_valid(), "oops"); return _id < 0 ? -(_id + 1) : _id - 1; }
 241     bool is_metadata() const          { assert(is_valid(), "oops"); return _id > 0; }
 242     bool is_object() const            { assert(is_valid(), "oops"); return _id < 0; }
 243 
 244     Metadata*  as_metadata(OopRecorder* rec) const    { assert(is_metadata(), "oops"); return rec->metadata_at(index()); }
 245     Klass*     as_klass(OopRecorder* rec) const {
 246       Metadata* m = as_metadata(rec);
 247       assert(m != NULL, "as_metadata returned NULL");
 248       assert(m->is_klass(), "oops");
 249       return (Klass*) m;
 250     }
 251     Method*    as_method(OopRecorder* rec) const {
 252       Metadata* m = as_metadata(rec);
 253       assert(m != NULL, "as_metadata returned NULL");
 254       assert(m->is_method(), "oops");
 255       return (Method*) m;
 256     }
 257     jobject    as_object(OopRecorder* rec) const      { assert(is_object(), "oops"); return rec->oop_at(index()); }
 258   };
 259 #endif // INCLUDE_JVMCI
 260 
 261  private:
 262   // State for writing a new set of dependencies:
 263   GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
 264   GrowableArray<ciBaseObject*>*  _deps[TYPE_LIMIT];
 265 #if INCLUDE_JVMCI
 266   bool _using_dep_values;
 267   GrowableArray<DepValue>*  _dep_values[TYPE_LIMIT];
 268 #endif
 269 
 270   static const char* _dep_name[TYPE_LIMIT];
 271   static int         _dep_args[TYPE_LIMIT];
 272 
 273   static bool dept_in_mask(DepType dept, int mask) {
 274     return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
 275   }
 276 
 277   bool note_dep_seen(int dept, ciBaseObject* x) {
 278     assert(dept < BitsPerInt, "oob");
 279     int x_id = x->ident();
 280     assert(_dep_seen != NULL, "deps must be writable");
 281     int seen = _dep_seen->at_grow(x_id, 0);
 282     _dep_seen->at_put(x_id, seen | (1<<dept));
 283     // return true if we've already seen dept/x
 284     return (seen & (1<<dept)) != 0;
 285   }
 286 
 287 #if INCLUDE_JVMCI
 288   bool note_dep_seen(int dept, DepValue x) {
 289     assert(dept < BitsPerInt, "oops");
 290     // place metadata deps at even indexes, object deps at odd indexes
 291     int x_id = x.is_metadata() ? x.index() * 2 : (x.index() * 2) + 1;
 292     assert(_dep_seen != NULL, "deps must be writable");
 293     int seen = _dep_seen->at_grow(x_id, 0);
 294     _dep_seen->at_put(x_id, seen | (1<<dept));
 295     // return true if we've already seen dept/x
 296     return (seen & (1<<dept)) != 0;
 297   }
 298 #endif
 299 
 300   bool maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
 301                         int ctxk_i, ciKlass* ctxk);
 302 #if INCLUDE_JVMCI
 303   bool maybe_merge_ctxk(GrowableArray<DepValue>* deps,
 304                         int ctxk_i, DepValue ctxk);
 305 #endif
 306 
 307   void sort_all_deps();
 308   size_t estimate_size_in_bytes();
 309 
 310   // Initialize _deps, etc.
 311   void initialize(ciEnv* env);
 312 
 313   // State for making a new set of dependencies:
 314   OopRecorder* _oop_recorder;
 315 
 316   // Logging support
 317   CompileLog* _log;
 318 
 319   address  _content_bytes;  // everything but the oop references, encoded
 320   size_t   _size_in_bytes;
 321 
 322  public:
 323   // Make a new empty dependencies set.
 324   Dependencies(ciEnv* env) {
 325     initialize(env);
 326   }
 327 #if INCLUDE_JVMCI
 328   Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log);
 329 #endif
 330 
 331  private:
 332   // Check for a valid context type.
 333   // Enforce the restriction against array types.
 334   static void check_ctxk(ciKlass* ctxk) {
 335     assert(ctxk->is_instance_klass(), "java types only");
 336   }
 337   static void check_ctxk_concrete(ciKlass* ctxk) {
 338     assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
 339   }
 340   static void check_ctxk_abstract(ciKlass* ctxk) {
 341     check_ctxk(ctxk);
 342     assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
 343   }
 344 
 345   void assert_common_1(DepType dept, ciBaseObject* x);
 346   void assert_common_2(DepType dept, ciBaseObject* x0, ciBaseObject* x1);
 347   void assert_common_3(DepType dept, ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2);
 348 
 349  public:
 350   // Adding assertions to a new dependency set at compile time:
 351   void assert_evol_method(ciMethod* m);
 352   void assert_leaf_type(ciKlass* ctxk);
 353   void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
 354   void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
 355   void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
 356   void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
 357   void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
 358   void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
 359   void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
 360   void assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle);
 361 
 362 #if INCLUDE_JVMCI
 363  private:
 364   static void check_ctxk(Klass* ctxk) {
 365     assert(ctxk->is_instance_klass(), "java types only");
 366   }
 367   static void check_ctxk_abstract(Klass* ctxk) {
 368     check_ctxk(ctxk);
 369     assert(ctxk->is_abstract(), "must be abstract");
 370   }
 371   void assert_common_1(DepType dept, DepValue x);
 372   void assert_common_2(DepType dept, DepValue x0, DepValue x1);
 373 
 374  public:
 375   void assert_evol_method(Method* m);
 376   void assert_has_no_finalizable_subclasses(Klass* ctxk);
 377   void assert_leaf_type(Klass* ctxk);
 378   void assert_unique_concrete_method(Klass* ctxk, Method* uniqm);
 379   void assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck);
 380   void assert_call_site_target_value(oop callSite, oop methodHandle);
 381 #endif // INCLUDE_JVMCI
 382 
 383   // Define whether a given method or type is concrete.
 384   // These methods define the term "concrete" as used in this module.
 385   // For this module, an "abstract" class is one which is non-concrete.
 386   //
 387   // Future optimizations may allow some classes to remain
 388   // non-concrete until their first instantiation, and allow some
 389   // methods to remain non-concrete until their first invocation.
 390   // In that case, there would be a middle ground between concrete
 391   // and abstract (as defined by the Java language and VM).
 392   static bool is_concrete_klass(Klass* k);    // k is instantiable
 393   static bool is_concrete_method(Method* m, Klass* k);  // m is invocable
 394   static Klass* find_finalizable_subclass(Klass* k);
 395 
 396   // These versions of the concreteness queries work through the CI.
 397   // The CI versions are allowed to skew sometimes from the VM
 398   // (oop-based) versions.  The cost of such a difference is a
 399   // (safely) aborted compilation, or a deoptimization, or a missed
 400   // optimization opportunity.
 401   //
 402   // In order to prevent spurious assertions, query results must
 403   // remain stable within any single ciEnv instance.  (I.e., they must
 404   // not go back into the VM to get their value; they must cache the
 405   // bit in the CI, either eagerly or lazily.)
 406   static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
 407   static bool has_finalizable_subclass(ciInstanceKlass* k);
 408 
 409   // As a general rule, it is OK to compile under the assumption that
 410   // a given type or method is concrete, even if it at some future
 411   // point becomes abstract.  So dependency checking is one-sided, in
 412   // that it permits supposedly concrete classes or methods to turn up
 413   // as really abstract.  (This shouldn't happen, except during class
 414   // evolution, but that's the logic of the checking.)  However, if a
 415   // supposedly abstract class or method suddenly becomes concrete, a
 416   // dependency on it must fail.
 417 
 418   // Checking old assertions at run-time (in the VM only):
 419   static Klass* check_evol_method(Method* m);
 420   static Klass* check_leaf_type(Klass* ctxk);
 421   static Klass* check_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck,
 422                                                               KlassDepChange* changes = NULL);
 423   static Klass* check_abstract_with_no_concrete_subtype(Klass* ctxk,
 424                                                           KlassDepChange* changes = NULL);
 425   static Klass* check_concrete_with_no_concrete_subtype(Klass* ctxk,
 426                                                           KlassDepChange* changes = NULL);
 427   static Klass* check_unique_concrete_method(Klass* ctxk, Method* uniqm,
 428                                                KlassDepChange* changes = NULL);
 429   static Klass* check_abstract_with_exclusive_concrete_subtypes(Klass* ctxk, Klass* k1, Klass* k2,
 430                                                                   KlassDepChange* changes = NULL);
 431   static Klass* check_exclusive_concrete_methods(Klass* ctxk, Method* m1, Method* m2,
 432                                                    KlassDepChange* changes = NULL);
 433   static Klass* check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes = NULL);
 434   static Klass* check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes = NULL);
 435   // A returned Klass* is NULL if the dependency assertion is still
 436   // valid.  A non-NULL Klass* is a 'witness' to the assertion
 437   // failure, a point in the class hierarchy where the assertion has
 438   // been proven false.  For example, if check_leaf_type returns
 439   // non-NULL, the value is a subtype of the supposed leaf type.  This
 440   // witness value may be useful for logging the dependency failure.
 441   // Note that, when a dependency fails, there may be several possible
 442   // witnesses to the failure.  The value returned from the check_foo
 443   // method is chosen arbitrarily.
 444 
 445   // The 'changes' value, if non-null, requests a limited spot-check
 446   // near the indicated recent changes in the class hierarchy.
 447   // It is used by DepStream::spot_check_dependency_at.
 448 
 449   // Detecting possible new assertions:
 450   static Klass*    find_unique_concrete_subtype(Klass* ctxk);
 451   static Method*   find_unique_concrete_method(Klass* ctxk, Method* m);
 452   static int       find_exclusive_concrete_subtypes(Klass* ctxk, int klen, Klass* k[]);
 453 
 454   // Create the encoding which will be stored in an nmethod.
 455   void encode_content_bytes();
 456 
 457   address content_bytes() {
 458     assert(_content_bytes != NULL, "encode it first");
 459     return _content_bytes;
 460   }
 461   size_t size_in_bytes() {
 462     assert(_content_bytes != NULL, "encode it first");
 463     return _size_in_bytes;
 464   }
 465 
 466   OopRecorder* oop_recorder() { return _oop_recorder; }
 467   CompileLog*  log()          { return _log; }
 468 
 469   void copy_to(nmethod* nm);
 470 
 471   DepType validate_dependencies(CompileTask* task, bool counter_changed, char** failure_detail = NULL);
 472 
 473   void log_all_dependencies();
 474 
 475   void log_dependency(DepType dept, GrowableArray<ciBaseObject*>* args) {
 476     ResourceMark rm;
 477     int argslen = args->length();
 478     write_dependency_to(log(), dept, args);
 479     guarantee(argslen == args->length(),
 480               "args array cannot grow inside nested ResoureMark scope");
 481   }
 482 
 483   void log_dependency(DepType dept,
 484                       ciBaseObject* x0,
 485                       ciBaseObject* x1 = NULL,
 486                       ciBaseObject* x2 = NULL) {
 487     if (log() == NULL) {
 488       return;
 489     }
 490     ResourceMark rm;
 491     GrowableArray<ciBaseObject*>* ciargs =
 492                 new GrowableArray<ciBaseObject*>(dep_args(dept));
 493     assert (x0 != NULL, "no log x0");
 494     ciargs->push(x0);
 495 
 496     if (x1 != NULL) {
 497       ciargs->push(x1);
 498     }
 499     if (x2 != NULL) {
 500       ciargs->push(x2);
 501     }
 502     assert(ciargs->length() == dep_args(dept), "");
 503     log_dependency(dept, ciargs);
 504   }
 505 
 506   class DepArgument : public ResourceObj {
 507    private:
 508     bool  _is_oop;
 509     bool  _valid;
 510     void* _value;
 511    public:
 512     DepArgument() : _is_oop(false), _value(NULL), _valid(false) {}
 513     DepArgument(oop v): _is_oop(true), _value(v), _valid(true) {}
 514     DepArgument(Metadata* v): _is_oop(false), _value(v), _valid(true) {}
 515 
 516     bool is_null() const               { return _value == NULL; }
 517     bool is_oop() const                { return _is_oop; }
 518     bool is_metadata() const           { return !_is_oop; }
 519     bool is_klass() const              { return is_metadata() && metadata_value()->is_klass(); }
 520     bool is_method() const              { return is_metadata() && metadata_value()->is_method(); }
 521 
 522     oop oop_value() const              { assert(_is_oop && _valid, "must be"); return (oop) _value; }
 523     Metadata* metadata_value() const { assert(!_is_oop && _valid, "must be"); return (Metadata*) _value; }
 524   };
 525 
 526   static void print_dependency(DepType dept,
 527                                GrowableArray<DepArgument>* args,
 528                                Klass* witness = NULL, outputStream* st = tty);
 529 
 530  private:
 531   // helper for encoding common context types as zero:
 532   static ciKlass* ctxk_encoded_as_null(DepType dept, ciBaseObject* x);
 533 
 534   static Klass* ctxk_encoded_as_null(DepType dept, Metadata* x);
 535 
 536   static void write_dependency_to(CompileLog* log,
 537                                   DepType dept,
 538                                   GrowableArray<ciBaseObject*>* args,
 539                                   Klass* witness = NULL);
 540   static void write_dependency_to(CompileLog* log,
 541                                   DepType dept,
 542                                   GrowableArray<DepArgument>* args,
 543                                   Klass* witness = NULL);
 544   static void write_dependency_to(xmlStream* xtty,
 545                                   DepType dept,
 546                                   GrowableArray<DepArgument>* args,
 547                                   Klass* witness = NULL);
 548  public:
 549   // Use this to iterate over an nmethod's dependency set.
 550   // Works on new and old dependency sets.
 551   // Usage:
 552   //
 553   // ;
 554   // Dependencies::DepType dept;
 555   // for (Dependencies::DepStream deps(nm); deps.next(); ) {
 556   //   ...
 557   // }
 558   //
 559   // The caller must be in the VM, since oops are not wrapped in handles.
 560   class DepStream {
 561   private:
 562     nmethod*              _code;   // null if in a compiler thread
 563     Dependencies*         _deps;   // null if not in a compiler thread
 564     CompressedReadStream  _bytes;
 565 #ifdef ASSERT
 566     size_t                _byte_limit;
 567 #endif
 568 
 569     // iteration variables:
 570     DepType               _type;
 571     int                   _xi[max_arg_count+1];
 572 
 573     void initial_asserts(size_t byte_limit) NOT_DEBUG({});
 574 
 575     inline Metadata* recorded_metadata_at(int i);
 576     inline oop recorded_oop_at(int i);
 577 
 578     Klass* check_klass_dependency(KlassDepChange* changes);
 579     Klass* check_call_site_dependency(CallSiteDepChange* changes);
 580 
 581     void trace_and_log_witness(Klass* witness);
 582 
 583   public:
 584     DepStream(Dependencies* deps)
 585       : _deps(deps),
 586         _code(NULL),
 587         _bytes(deps->content_bytes())
 588     {
 589       initial_asserts(deps->size_in_bytes());
 590     }
 591     DepStream(nmethod* code)
 592       : _deps(NULL),
 593         _code(code),
 594         _bytes(code->dependencies_begin())
 595     {
 596       initial_asserts(code->dependencies_size());
 597     }
 598 
 599     bool next();
 600 
 601     DepType type()               { return _type; }
 602     bool is_oop_argument(int i)  { return type() == call_site_target_value; }
 603     uintptr_t get_identifier(int i);
 604 
 605     int argument_count()         { return dep_args(type()); }
 606     int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
 607                                    return _xi[i]; }
 608     Metadata* argument(int i);     // => recorded_oop_at(argument_index(i))
 609     oop argument_oop(int i);         // => recorded_oop_at(argument_index(i))
 610     Klass* context_type();
 611 
 612     bool is_klass_type()         { return Dependencies::is_klass_type(type()); }
 613 
 614     Method* method_argument(int i) {
 615       Metadata* x = argument(i);
 616       assert(x->is_method(), "type");
 617       return (Method*) x;
 618     }
 619     Klass* type_argument(int i) {
 620       Metadata* x = argument(i);
 621       assert(x->is_klass(), "type");
 622       return (Klass*) x;
 623     }
 624 
 625     // The point of the whole exercise:  Is this dep still OK?
 626     Klass* check_dependency() {
 627       Klass* result = check_klass_dependency(NULL);
 628       if (result != NULL)  return result;
 629       return check_call_site_dependency(NULL);
 630     }
 631 
 632     // A lighter version:  Checks only around recent changes in a class
 633     // hierarchy.  (See Universe::flush_dependents_on.)
 634     Klass* spot_check_dependency_at(DepChange& changes);
 635 
 636     // Log the current dependency to xtty or compilation log.
 637     void log_dependency(Klass* witness = NULL);
 638 
 639     // Print the current dependency to tty.
 640     void print_dependency(Klass* witness = NULL, bool verbose = false, outputStream* st = tty);
 641   };
 642   friend class Dependencies::DepStream;
 643 
 644   static void print_statistics() PRODUCT_RETURN;
 645 };
 646 
 647 
 648 class DependencySignature : public ResourceObj {
 649  private:
 650   int                   _args_count;
 651   uintptr_t             _argument_hash[Dependencies::max_arg_count];
 652   Dependencies::DepType _type;
 653 
 654  public:
 655   DependencySignature(Dependencies::DepStream& dep) {
 656     _args_count = dep.argument_count();
 657     _type = dep.type();
 658     for (int i = 0; i < _args_count; i++) {
 659       _argument_hash[i] = dep.get_identifier(i);
 660     }
 661   }
 662 
 663   static bool     equals(DependencySignature const& s1, DependencySignature const& s2);
 664   static unsigned hash  (DependencySignature const& s1) { return s1.arg(0) >> 2; }
 665 
 666   int args_count()             const { return _args_count; }
 667   uintptr_t arg(int idx)       const { return _argument_hash[idx]; }
 668   Dependencies::DepType type() const { return _type; }
 669 
 670 };
 671 
 672 
 673 // Every particular DepChange is a sub-class of this class.
 674 class DepChange : public StackObj {
 675  public:
 676   // What kind of DepChange is this?
 677   virtual bool is_klass_change()     const { return false; }
 678   virtual bool is_call_site_change() const { return false; }
 679 
 680   virtual void mark_for_deoptimization(nmethod* nm) = 0;
 681 
 682   // Subclass casting with assertions.
 683   KlassDepChange*    as_klass_change() {
 684     assert(is_klass_change(), "bad cast");
 685     return (KlassDepChange*) this;
 686   }
 687   CallSiteDepChange* as_call_site_change() {
 688     assert(is_call_site_change(), "bad cast");
 689     return (CallSiteDepChange*) this;
 690   }
 691 
 692   void print();
 693 
 694  public:
 695   enum ChangeType {
 696     NO_CHANGE = 0,              // an uninvolved klass
 697     Change_new_type,            // a newly loaded type
 698     Change_new_sub,             // a super with a new subtype
 699     Change_new_impl,            // an interface with a new implementation
 700     CHANGE_LIMIT,
 701     Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
 702   };
 703 
 704   // Usage:
 705   // for (DepChange::ContextStream str(changes); str.next(); ) {
 706   //   Klass* k = str.klass();
 707   //   switch (str.change_type()) {
 708   //     ...
 709   //   }
 710   // }
 711   class ContextStream : public StackObj {
 712    private:
 713     DepChange&  _changes;
 714     friend class DepChange;
 715 
 716     // iteration variables:
 717     ChangeType  _change_type;
 718     Klass*      _klass;
 719     Array<Klass*>* _ti_base;    // i.e., transitive_interfaces
 720     int         _ti_index;
 721     int         _ti_limit;
 722 
 723     // start at the beginning:
 724     void start();
 725 
 726    public:
 727     ContextStream(DepChange& changes)
 728       : _changes(changes)
 729     { start(); }
 730 
 731     ContextStream(DepChange& changes, NoSafepointVerifier& nsv)
 732       : _changes(changes)
 733       // the nsv argument makes it safe to hold oops like _klass
 734     { start(); }
 735 
 736     bool next();
 737 
 738     ChangeType change_type()     { return _change_type; }
 739     Klass*     klass()           { return _klass; }
 740   };
 741   friend class DepChange::ContextStream;
 742 };
 743 
 744 
 745 // A class hierarchy change coming through the VM (under the Compile_lock).
 746 // The change is structured as a single new type with any number of supers
 747 // and implemented interface types.  Other than the new type, any of the
 748 // super types can be context types for a relevant dependency, which the
 749 // new type could invalidate.
 750 class KlassDepChange : public DepChange {
 751  private:
 752   // each change set is rooted in exactly one new type (at present):
 753   Klass* _new_type;
 754 
 755   void initialize();
 756 
 757  public:
 758   // notes the new type, marks it and all its super-types
 759   KlassDepChange(Klass* new_type)
 760     : _new_type(new_type)
 761   {
 762     initialize();
 763   }
 764 
 765   // cleans up the marks
 766   ~KlassDepChange();
 767 
 768   // What kind of DepChange is this?
 769   virtual bool is_klass_change() const { return true; }
 770 
 771   virtual void mark_for_deoptimization(nmethod* nm) {
 772     nm->mark_for_deoptimization(/*inc_recompile_counts=*/true);
 773   }
 774 
 775   Klass* new_type() { return _new_type; }
 776 
 777   // involves_context(k) is true if k is new_type or any of the super types
 778   bool involves_context(Klass* k);
 779 };
 780 
 781 
 782 // A CallSite has changed its target.
 783 class CallSiteDepChange : public DepChange {
 784  private:
 785   Handle _call_site;
 786   Handle _method_handle;
 787 
 788  public:
 789   CallSiteDepChange(Handle call_site, Handle method_handle);
 790 
 791   // What kind of DepChange is this?
 792   virtual bool is_call_site_change() const { return true; }
 793 
 794   virtual void mark_for_deoptimization(nmethod* nm) {
 795     nm->mark_for_deoptimization(/*inc_recompile_counts=*/false);
 796   }
 797 
 798   oop call_site()     const { return _call_site();     }
 799   oop method_handle() const { return _method_handle(); }
 800 };
 801 
 802 #endif // SHARE_VM_CODE_DEPENDENCIES_HPP