1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/disassembler.hpp"
  32 #include "gc/shared/collectedHeap.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interpreterRuntime.hpp"
  35 #include "interpreter/linkResolver.hpp"
  36 #include "interpreter/templateTable.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "memory/universe.hpp"
  41 #include "oops/constantPool.hpp"
  42 #include "oops/cpCache.inline.hpp"
  43 #include "oops/instanceKlass.hpp"
  44 #include "oops/methodData.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/objArrayOop.inline.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/symbol.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/atomic.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/compilationPolicy.hpp"
  54 #include "runtime/deoptimization.hpp"
  55 #include "runtime/fieldDescriptor.inline.hpp"
  56 #include "runtime/frame.inline.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/icache.hpp"
  59 #include "runtime/interfaceSupport.inline.hpp"
  60 #include "runtime/java.hpp"
  61 #include "runtime/javaCalls.hpp"
  62 #include "runtime/jfieldIDWorkaround.hpp"
  63 #include "runtime/osThread.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/synchronizer.hpp"
  67 #include "runtime/threadCritical.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/events.hpp"
  71 #ifdef COMPILER2
  72 #include "opto/runtime.hpp"
  73 #endif
  74 
  75 class UnlockFlagSaver {
  76   private:
  77     JavaThread* _thread;
  78     bool _do_not_unlock;
  79   public:
  80     UnlockFlagSaver(JavaThread* t) {
  81       _thread = t;
  82       _do_not_unlock = t->do_not_unlock_if_synchronized();
  83       t->set_do_not_unlock_if_synchronized(false);
  84     }
  85     ~UnlockFlagSaver() {
  86       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  87     }
  88 };
  89 
  90 // Helper class to access current interpreter state
  91 class LastFrameAccessor : public StackObj {
  92   frame _last_frame;
  93 public:
  94   LastFrameAccessor(JavaThread* thread) {
  95     assert(thread == Thread::current(), "sanity");
  96     _last_frame = thread->last_frame();
  97   }
  98   bool is_interpreted_frame() const              { return _last_frame.is_interpreted_frame(); }
  99   Method*   method() const                       { return _last_frame.interpreter_frame_method(); }
 100   address   bcp() const                          { return _last_frame.interpreter_frame_bcp(); }
 101   int       bci() const                          { return _last_frame.interpreter_frame_bci(); }
 102   address   mdp() const                          { return _last_frame.interpreter_frame_mdp(); }
 103 
 104   void      set_bcp(address bcp)                 { _last_frame.interpreter_frame_set_bcp(bcp); }
 105   void      set_mdp(address dp)                  { _last_frame.interpreter_frame_set_mdp(dp); }
 106 
 107   // pass method to avoid calling unsafe bcp_to_method (partial fix 4926272)
 108   Bytecodes::Code code() const                   { return Bytecodes::code_at(method(), bcp()); }
 109 
 110   Bytecode  bytecode() const                     { return Bytecode(method(), bcp()); }
 111   int get_index_u1(Bytecodes::Code bc) const     { return bytecode().get_index_u1(bc); }
 112   int get_index_u2(Bytecodes::Code bc) const     { return bytecode().get_index_u2(bc); }
 113   int get_index_u2_cpcache(Bytecodes::Code bc) const
 114                                                  { return bytecode().get_index_u2_cpcache(bc); }
 115   int get_index_u4(Bytecodes::Code bc) const     { return bytecode().get_index_u4(bc); }
 116   int number_of_dimensions() const               { return bcp()[3]; }
 117   ConstantPoolCacheEntry* cache_entry_at(int i) const
 118                                                  { return method()->constants()->cache()->entry_at(i); }
 119   ConstantPoolCacheEntry* cache_entry() const    { return cache_entry_at(Bytes::get_native_u2(bcp() + 1)); }
 120 
 121   oop callee_receiver(Symbol* signature) {
 122     return _last_frame.interpreter_callee_receiver(signature);
 123   }
 124   BasicObjectLock* monitor_begin() const {
 125     return _last_frame.interpreter_frame_monitor_begin();
 126   }
 127   BasicObjectLock* monitor_end() const {
 128     return _last_frame.interpreter_frame_monitor_end();
 129   }
 130   BasicObjectLock* next_monitor(BasicObjectLock* current) const {
 131     return _last_frame.next_monitor_in_interpreter_frame(current);
 132   }
 133 
 134   frame& get_frame()                             { return _last_frame; }
 135 };
 136 
 137 
 138 bool InterpreterRuntime::is_breakpoint(JavaThread *thread) {
 139   return Bytecodes::code_or_bp_at(LastFrameAccessor(thread).bcp()) == Bytecodes::_breakpoint;
 140 }
 141 
 142 //------------------------------------------------------------------------------------------------------------------------
 143 // State accessors
 144 
 145 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
 146   LastFrameAccessor last_frame(thread);
 147   last_frame.set_bcp(bcp);
 148   if (ProfileInterpreter) {
 149     // ProfileTraps uses MDOs independently of ProfileInterpreter.
 150     // That is why we must check both ProfileInterpreter and mdo != NULL.
 151     MethodData* mdo = last_frame.method()->method_data();
 152     if (mdo != NULL) {
 153       NEEDS_CLEANUP;
 154       last_frame.set_mdp(mdo->bci_to_dp(last_frame.bci()));
 155     }
 156   }
 157 }
 158 
 159 //------------------------------------------------------------------------------------------------------------------------
 160 // Constants
 161 
 162 
 163 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 164   // access constant pool
 165   LastFrameAccessor last_frame(thread);
 166   ConstantPool* pool = last_frame.method()->constants();
 167   int index = wide ? last_frame.get_index_u2(Bytecodes::_ldc_w) : last_frame.get_index_u1(Bytecodes::_ldc);
 168   constantTag tag = pool->tag_at(index);
 169 
 170   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 171   Klass* klass = pool->klass_at(index, CHECK);
 172     oop java_class = klass->java_mirror();
 173     thread->set_vm_result(java_class);
 174 IRT_END
 175 
 176 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 177   assert(bytecode == Bytecodes::_ldc ||
 178          bytecode == Bytecodes::_ldc_w ||
 179          bytecode == Bytecodes::_ldc2_w ||
 180          bytecode == Bytecodes::_fast_aldc ||
 181          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 182   ResourceMark rm(thread);
 183   const bool is_fast_aldc = (bytecode == Bytecodes::_fast_aldc ||
 184                              bytecode == Bytecodes::_fast_aldc_w);
 185   LastFrameAccessor last_frame(thread);
 186   methodHandle m (thread, last_frame.method());
 187   Bytecode_loadconstant ldc(m, last_frame.bci());
 188 
 189   // Double-check the size.  (Condy can have any type.)
 190   BasicType type = ldc.result_type();
 191   switch (type2size[type]) {
 192   case 2: guarantee(bytecode == Bytecodes::_ldc2_w, ""); break;
 193   case 1: guarantee(bytecode != Bytecodes::_ldc2_w, ""); break;
 194   default: ShouldNotReachHere();
 195   }
 196 
 197   // Resolve the constant.  This does not do unboxing.
 198   // But it does replace Universe::the_null_sentinel by null.
 199   oop result = ldc.resolve_constant(CHECK);
 200   assert(result != NULL || is_fast_aldc, "null result only valid for fast_aldc");
 201 
 202 #ifdef ASSERT
 203   {
 204     // The bytecode wrappers aren't GC-safe so construct a new one
 205     Bytecode_loadconstant ldc2(m, last_frame.bci());
 206     int rindex = ldc2.cache_index();
 207     if (rindex < 0)
 208       rindex = m->constants()->cp_to_object_index(ldc2.pool_index());
 209     if (rindex >= 0) {
 210       oop coop = m->constants()->resolved_references()->obj_at(rindex);
 211       oop roop = (result == NULL ? Universe::the_null_sentinel() : result);
 212       assert(oopDesc::equals(roop, coop), "expected result for assembly code");
 213     }
 214   }
 215 #endif
 216   thread->set_vm_result(result);
 217   if (!is_fast_aldc) {
 218     // Tell the interpreter how to unbox the primitive.
 219     guarantee(java_lang_boxing_object::is_instance(result, type), "");
 220     int offset = java_lang_boxing_object::value_offset_in_bytes(type);
 221     intptr_t flags = ((as_TosState(type) << ConstantPoolCacheEntry::tos_state_shift)
 222                       | (offset & ConstantPoolCacheEntry::field_index_mask));
 223     thread->set_vm_result_2((Metadata*)flags);
 224   }
 225 }
 226 IRT_END
 227 
 228 
 229 //------------------------------------------------------------------------------------------------------------------------
 230 // Allocation
 231 
 232 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
 233   Klass* k = pool->klass_at(index, CHECK);
 234   InstanceKlass* klass = InstanceKlass::cast(k);
 235 
 236   // Make sure we are not instantiating an abstract klass
 237   klass->check_valid_for_instantiation(true, CHECK);
 238 
 239   // Make sure klass is initialized
 240   klass->initialize(CHECK);
 241 
 242   // At this point the class may not be fully initialized
 243   // because of recursive initialization. If it is fully
 244   // initialized & has_finalized is not set, we rewrite
 245   // it into its fast version (Note: no locking is needed
 246   // here since this is an atomic byte write and can be
 247   // done more than once).
 248   //
 249   // Note: In case of classes with has_finalized we don't
 250   //       rewrite since that saves us an extra check in
 251   //       the fast version which then would call the
 252   //       slow version anyway (and do a call back into
 253   //       Java).
 254   //       If we have a breakpoint, then we don't rewrite
 255   //       because the _breakpoint bytecode would be lost.
 256   oop obj = klass->allocate_instance(CHECK);
 257   thread->set_vm_result(obj);
 258 IRT_END
 259 
 260 
 261 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 262   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 263   thread->set_vm_result(obj);
 264 IRT_END
 265 
 266 
 267 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
 268   Klass*    klass = pool->klass_at(index, CHECK);
 269   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 270   thread->set_vm_result(obj);
 271 IRT_END
 272 
 273 
 274 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 275   // We may want to pass in more arguments - could make this slightly faster
 276   LastFrameAccessor last_frame(thread);
 277   ConstantPool* constants = last_frame.method()->constants();
 278   int          i = last_frame.get_index_u2(Bytecodes::_multianewarray);
 279   Klass* klass   = constants->klass_at(i, CHECK);
 280   int   nof_dims = last_frame.number_of_dimensions();
 281   assert(klass->is_klass(), "not a class");
 282   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 283 
 284   // We must create an array of jints to pass to multi_allocate.
 285   ResourceMark rm(thread);
 286   const int small_dims = 10;
 287   jint dim_array[small_dims];
 288   jint *dims = &dim_array[0];
 289   if (nof_dims > small_dims) {
 290     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 291   }
 292   for (int index = 0; index < nof_dims; index++) {
 293     // offset from first_size_address is addressed as local[index]
 294     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 295     dims[index] = first_size_address[n];
 296   }
 297   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 298   thread->set_vm_result(obj);
 299 IRT_END
 300 
 301 
 302 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 303   assert(oopDesc::is_oop(obj), "must be a valid oop");
 304   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 305   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 306 IRT_END
 307 
 308 
 309 // Quicken instance-of and check-cast bytecodes
 310 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 311   // Force resolving; quicken the bytecode
 312   LastFrameAccessor last_frame(thread);
 313   int which = last_frame.get_index_u2(Bytecodes::_checkcast);
 314   ConstantPool* cpool = last_frame.method()->constants();
 315   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 316   // program we might have seen an unquick'd bytecode in the interpreter but have another
 317   // thread quicken the bytecode before we get here.
 318   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 319   Klass* klass = cpool->klass_at(which, CHECK);
 320   thread->set_vm_result_2(klass);
 321 IRT_END
 322 
 323 
 324 //------------------------------------------------------------------------------------------------------------------------
 325 // Exceptions
 326 
 327 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
 328                                          const methodHandle& trap_method, int trap_bci, TRAPS) {
 329   if (trap_method.not_null()) {
 330     MethodData* trap_mdo = trap_method->method_data();
 331     if (trap_mdo == NULL) {
 332       Method::build_interpreter_method_data(trap_method, THREAD);
 333       if (HAS_PENDING_EXCEPTION) {
 334         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
 335                "we expect only an OOM error here");
 336         CLEAR_PENDING_EXCEPTION;
 337       }
 338       trap_mdo = trap_method->method_data();
 339       // and fall through...
 340     }
 341     if (trap_mdo != NULL) {
 342       // Update per-method count of trap events.  The interpreter
 343       // is updating the MDO to simulate the effect of compiler traps.
 344       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 345     }
 346   }
 347 }
 348 
 349 // Assume the compiler is (or will be) interested in this event.
 350 // If necessary, create an MDO to hold the information, and record it.
 351 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 352   assert(ProfileTraps, "call me only if profiling");
 353   LastFrameAccessor last_frame(thread);
 354   methodHandle trap_method(thread, last_frame.method());
 355   int trap_bci = trap_method->bci_from(last_frame.bcp());
 356   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 357 }
 358 
 359 #ifdef CC_INTERP
 360 // As legacy note_trap, but we have more arguments.
 361 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
 362   methodHandle trap_method(method);
 363   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 364 IRT_END
 365 
 366 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
 367 // for each exception.
 368 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 369   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
 370 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
 371   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
 372 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 373   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
 374 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 375   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
 376 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 377   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
 378 #endif // CC_INTERP
 379 
 380 
 381 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 382   // get klass
 383   InstanceKlass* klass = InstanceKlass::cast(k);
 384   assert(klass->is_initialized(),
 385          "this klass should have been initialized during VM initialization");
 386   // create instance - do not call constructor since we may have no
 387   // (java) stack space left (should assert constructor is empty)
 388   Handle exception;
 389   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 390   exception = Handle(THREAD, exception_oop);
 391   if (StackTraceInThrowable) {
 392     java_lang_Throwable::fill_in_stack_trace(exception);
 393   }
 394   return exception;
 395 }
 396 
 397 // Special handling for stack overflow: since we don't have any (java) stack
 398 // space left we use the pre-allocated & pre-initialized StackOverflowError
 399 // klass to create an stack overflow error instance.  We do not call its
 400 // constructor for the same reason (it is empty, anyway).
 401 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 402   Handle exception = get_preinitialized_exception(
 403                                  SystemDictionary::StackOverflowError_klass(),
 404                                  CHECK);
 405   // Increment counter for hs_err file reporting
 406   Atomic::inc(&Exceptions::_stack_overflow_errors);
 407   THROW_HANDLE(exception);
 408 IRT_END
 409 
 410 IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 411   Handle exception = get_preinitialized_exception(
 412                                  SystemDictionary::StackOverflowError_klass(),
 413                                  CHECK);
 414   java_lang_Throwable::set_message(exception(),
 415           Universe::delayed_stack_overflow_error_message());
 416   // Increment counter for hs_err file reporting
 417   Atomic::inc(&Exceptions::_stack_overflow_errors);
 418   THROW_HANDLE(exception);
 419 IRT_END
 420 
 421 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 422   // lookup exception klass
 423   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 424   if (ProfileTraps) {
 425     if (s == vmSymbols::java_lang_ArithmeticException()) {
 426       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 427     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 428       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 429     }
 430   }
 431   // create exception
 432   Handle exception = Exceptions::new_exception(thread, s, message);
 433   thread->set_vm_result(exception());
 434 IRT_END
 435 
 436 
 437 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 438   // Produce the error message first because note_trap can safepoint
 439   ResourceMark rm(thread);
 440   const char* klass_name = obj->klass()->external_name();
 441   // lookup exception klass
 442   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 443   if (ProfileTraps) {
 444     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 445   }
 446   // create exception, with klass name as detail message
 447   Handle exception = Exceptions::new_exception(thread, s, klass_name);
 448   thread->set_vm_result(exception());
 449 IRT_END
 450 
 451 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, arrayOopDesc* a, jint index))
 452   // Produce the error message first because note_trap can safepoint
 453   ResourceMark rm(thread);
 454   stringStream ss;
 455   ss.print("Index %d out of bounds for length %d", index, a->length());
 456 
 457   if (ProfileTraps) {
 458     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 459   }
 460 
 461   THROW_MSG(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), ss.as_string());
 462 IRT_END
 463 
 464 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 465   JavaThread* thread, oopDesc* obj))
 466 
 467   // Produce the error message first because note_trap can safepoint
 468   ResourceMark rm(thread);
 469   char* message = SharedRuntime::generate_class_cast_message(
 470     thread, obj->klass());
 471 
 472   if (ProfileTraps) {
 473     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 474   }
 475 
 476   // create exception
 477   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 478 IRT_END
 479 
 480 // exception_handler_for_exception(...) returns the continuation address,
 481 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 482 // The exception oop is returned to make sure it is preserved over GC (it
 483 // is only on the stack if the exception was thrown explicitly via athrow).
 484 // During this operation, the expression stack contains the values for the
 485 // bci where the exception happened. If the exception was propagated back
 486 // from a call, the expression stack contains the values for the bci at the
 487 // invoke w/o arguments (i.e., as if one were inside the call).
 488 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 489 
 490   LastFrameAccessor last_frame(thread);
 491   Handle             h_exception(thread, exception);
 492   methodHandle       h_method   (thread, last_frame.method());
 493   constantPoolHandle h_constants(thread, h_method->constants());
 494   bool               should_repeat;
 495   int                handler_bci;
 496   int                current_bci = last_frame.bci();
 497 
 498   if (thread->frames_to_pop_failed_realloc() > 0) {
 499     // Allocation of scalar replaced object used in this frame
 500     // failed. Unconditionally pop the frame.
 501     thread->dec_frames_to_pop_failed_realloc();
 502     thread->set_vm_result(h_exception());
 503     // If the method is synchronized we already unlocked the monitor
 504     // during deoptimization so the interpreter needs to skip it when
 505     // the frame is popped.
 506     thread->set_do_not_unlock_if_synchronized(true);
 507 #ifdef CC_INTERP
 508     return (address) -1;
 509 #else
 510     return Interpreter::remove_activation_entry();
 511 #endif
 512   }
 513 
 514   // Need to do this check first since when _do_not_unlock_if_synchronized
 515   // is set, we don't want to trigger any classloading which may make calls
 516   // into java, or surprisingly find a matching exception handler for bci 0
 517   // since at this moment the method hasn't been "officially" entered yet.
 518   if (thread->do_not_unlock_if_synchronized()) {
 519     ResourceMark rm;
 520     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 521     thread->set_vm_result(exception);
 522 #ifdef CC_INTERP
 523     return (address) -1;
 524 #else
 525     return Interpreter::remove_activation_entry();
 526 #endif
 527   }
 528 
 529   do {
 530     should_repeat = false;
 531 
 532     // assertions
 533 #ifdef ASSERT
 534     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 535     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 536     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 537       if (ExitVMOnVerifyError) vm_exit(-1);
 538       ShouldNotReachHere();
 539     }
 540 #endif
 541 
 542     // tracing
 543     if (log_is_enabled(Info, exceptions)) {
 544       ResourceMark rm(thread);
 545       stringStream tempst;
 546       tempst.print("interpreter method <%s>\n"
 547                    " at bci %d for thread " INTPTR_FORMAT " (%s)",
 548                    h_method->print_value_string(), current_bci, p2i(thread), thread->name());
 549       Exceptions::log_exception(h_exception, tempst);
 550     }
 551 // Don't go paging in something which won't be used.
 552 //     else if (extable->length() == 0) {
 553 //       // disabled for now - interpreter is not using shortcut yet
 554 //       // (shortcut is not to call runtime if we have no exception handlers)
 555 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 556 //     }
 557     // for AbortVMOnException flag
 558     Exceptions::debug_check_abort(h_exception);
 559 
 560     // exception handler lookup
 561     Klass* klass = h_exception->klass();
 562     handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD);
 563     if (HAS_PENDING_EXCEPTION) {
 564       // We threw an exception while trying to find the exception handler.
 565       // Transfer the new exception to the exception handle which will
 566       // be set into thread local storage, and do another lookup for an
 567       // exception handler for this exception, this time starting at the
 568       // BCI of the exception handler which caused the exception to be
 569       // thrown (bug 4307310).
 570       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 571       CLEAR_PENDING_EXCEPTION;
 572       if (handler_bci >= 0) {
 573         current_bci = handler_bci;
 574         should_repeat = true;
 575       }
 576     }
 577   } while (should_repeat == true);
 578 
 579 #if INCLUDE_JVMCI
 580   if (EnableJVMCI && h_method->method_data() != NULL) {
 581     ResourceMark rm(thread);
 582     ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
 583     if (pdata != NULL && pdata->is_BitData()) {
 584       BitData* bit_data = (BitData*) pdata;
 585       bit_data->set_exception_seen();
 586     }
 587   }
 588 #endif
 589 
 590   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 591   // time throw or a stack unwinding throw and accordingly notify the debugger
 592   if (JvmtiExport::can_post_on_exceptions()) {
 593     JvmtiExport::post_exception_throw(thread, h_method(), last_frame.bcp(), h_exception());
 594   }
 595 
 596 #ifdef CC_INTERP
 597   address continuation = (address)(intptr_t) handler_bci;
 598 #else
 599   address continuation = NULL;
 600 #endif
 601   address handler_pc = NULL;
 602   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 603     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 604     // handler in this method, or (b) after a stack overflow there is not yet
 605     // enough stack space available to reprotect the stack.
 606 #ifndef CC_INTERP
 607     continuation = Interpreter::remove_activation_entry();
 608 #endif
 609 #if COMPILER2_OR_JVMCI
 610     // Count this for compilation purposes
 611     h_method->interpreter_throwout_increment(THREAD);
 612 #endif
 613   } else {
 614     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 615     handler_pc = h_method->code_base() + handler_bci;
 616 #ifndef CC_INTERP
 617     set_bcp_and_mdp(handler_pc, thread);
 618     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 619 #endif
 620   }
 621   // notify debugger of an exception catch
 622   // (this is good for exceptions caught in native methods as well)
 623   if (JvmtiExport::can_post_on_exceptions()) {
 624     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 625   }
 626 
 627   thread->set_vm_result(h_exception());
 628   return continuation;
 629 IRT_END
 630 
 631 
 632 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 633   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 634   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 635 IRT_END
 636 
 637 
 638 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 639   THROW(vmSymbols::java_lang_AbstractMethodError());
 640 IRT_END
 641 
 642 // This method is called from the "abstract_entry" of the interpreter.
 643 // At that point, the arguments have already been removed from the stack
 644 // and therefore we don't have the receiver object at our fingertips. (Though,
 645 // on some platforms the receiver still resides in a register...). Thus,
 646 // we have no choice but print an error message not containing the receiver
 647 // type.
 648 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorWithMethod(JavaThread* thread,
 649                                                                         Method* missingMethod))
 650   ResourceMark rm(thread);
 651   assert(missingMethod != NULL, "sanity");
 652   methodHandle m(thread, missingMethod);
 653   LinkResolver::throw_abstract_method_error(m, THREAD);
 654 IRT_END
 655 
 656 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorVerbose(JavaThread* thread,
 657                                                                      Klass* recvKlass,
 658                                                                      Method* missingMethod))
 659   ResourceMark rm(thread);
 660   methodHandle mh = methodHandle(thread, missingMethod);
 661   LinkResolver::throw_abstract_method_error(mh, recvKlass, THREAD);
 662 IRT_END
 663 
 664 
 665 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 666   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 667 IRT_END
 668 
 669 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(JavaThread* thread,
 670                                                                               Klass* recvKlass,
 671                                                                               Klass* interfaceKlass))
 672   ResourceMark rm(thread);
 673   char buf[1000];
 674   buf[0] = '\0';
 675   jio_snprintf(buf, sizeof(buf),
 676                "Class %s does not implement the requested interface %s",
 677                recvKlass ? recvKlass->external_name() : "NULL",
 678                interfaceKlass ? interfaceKlass->external_name() : "NULL");
 679   THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
 680 IRT_END
 681 
 682 //------------------------------------------------------------------------------------------------------------------------
 683 // Fields
 684 //
 685 
 686 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
 687   Thread* THREAD = thread;
 688   // resolve field
 689   fieldDescriptor info;
 690   LastFrameAccessor last_frame(thread);
 691   constantPoolHandle pool(thread, last_frame.method()->constants());
 692   methodHandle m(thread, last_frame.method());
 693   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 694                     bytecode == Bytecodes::_putstatic);
 695   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 696 
 697   {
 698     JvmtiHideSingleStepping jhss(thread);
 699     LinkResolver::resolve_field_access(info, pool, last_frame.get_index_u2_cpcache(bytecode),
 700                                        m, bytecode, CHECK);
 701   } // end JvmtiHideSingleStepping
 702 
 703   // check if link resolution caused cpCache to be updated
 704   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 705   if (cp_cache_entry->is_resolved(bytecode)) return;
 706 
 707   // compute auxiliary field attributes
 708   TosState state  = as_TosState(info.field_type());
 709 
 710   // Resolution of put instructions on final fields is delayed. That is required so that
 711   // exceptions are thrown at the correct place (when the instruction is actually invoked).
 712   // If we do not resolve an instruction in the current pass, leaving the put_code
 713   // set to zero will cause the next put instruction to the same field to reresolve.
 714 
 715   // Resolution of put instructions to final instance fields with invalid updates (i.e.,
 716   // to final instance fields with updates originating from a method different than <init>)
 717   // is inhibited. A putfield instruction targeting an instance final field must throw
 718   // an IllegalAccessError if the instruction is not in an instance
 719   // initializer method <init>. If resolution were not inhibited, a putfield
 720   // in an initializer method could be resolved in the initializer. Subsequent
 721   // putfield instructions to the same field would then use cached information.
 722   // As a result, those instructions would not pass through the VM. That is,
 723   // checks in resolve_field_access() would not be executed for those instructions
 724   // and the required IllegalAccessError would not be thrown.
 725   //
 726   // Also, we need to delay resolving getstatic and putstatic instructions until the
 727   // class is initialized.  This is required so that access to the static
 728   // field will call the initialization function every time until the class
 729   // is completely initialized ala. in 2.17.5 in JVM Specification.
 730   InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
 731   bool uninitialized_static = is_static && !klass->is_initialized();
 732   bool has_initialized_final_update = info.field_holder()->major_version() >= 53 &&
 733                                       info.has_initialized_final_update();
 734   assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
 735 
 736   Bytecodes::Code get_code = (Bytecodes::Code)0;
 737   Bytecodes::Code put_code = (Bytecodes::Code)0;
 738   if (!uninitialized_static) {
 739     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 740     if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
 741       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 742     }
 743   }
 744 
 745   cp_cache_entry->set_field(
 746     get_code,
 747     put_code,
 748     info.field_holder(),
 749     info.index(),
 750     info.offset(),
 751     state,
 752     info.access_flags().is_final(),
 753     info.access_flags().is_volatile(),
 754     pool->pool_holder()
 755   );
 756 }
 757 
 758 
 759 //------------------------------------------------------------------------------------------------------------------------
 760 // Synchronization
 761 //
 762 // The interpreter's synchronization code is factored out so that it can
 763 // be shared by method invocation and synchronized blocks.
 764 //%note synchronization_3
 765 
 766 //%note monitor_1
 767 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
 768 #ifdef ASSERT
 769   thread->last_frame().interpreter_frame_verify_monitor(elem);
 770 #endif
 771   if (PrintBiasedLockingStatistics) {
 772     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 773   }
 774   Handle h_obj(thread, elem->obj());
 775   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 776          "must be NULL or an object");
 777   if (UseBiasedLocking) {
 778     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 779     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 780   } else {
 781     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 782   }
 783   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
 784          "must be NULL or an object");
 785 #ifdef ASSERT
 786   thread->last_frame().interpreter_frame_verify_monitor(elem);
 787 #endif
 788 IRT_END
 789 
 790 
 791 //%note monitor_1
 792 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 793 #ifdef ASSERT
 794   thread->last_frame().interpreter_frame_verify_monitor(elem);
 795 #endif
 796   Handle h_obj(thread, elem->obj());
 797   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 798          "must be NULL or an object");
 799   if (elem == NULL || h_obj()->is_unlocked()) {
 800     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 801   }
 802   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
 803   // Free entry. This must be done here, since a pending exception might be installed on
 804   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
 805   elem->set_obj(NULL);
 806 #ifdef ASSERT
 807   thread->last_frame().interpreter_frame_verify_monitor(elem);
 808 #endif
 809 IRT_END
 810 
 811 
 812 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
 813   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 814 IRT_END
 815 
 816 
 817 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
 818   // Returns an illegal exception to install into the current thread. The
 819   // pending_exception flag is cleared so normal exception handling does not
 820   // trigger. Any current installed exception will be overwritten. This
 821   // method will be called during an exception unwind.
 822 
 823   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 824   Handle exception(thread, thread->vm_result());
 825   assert(exception() != NULL, "vm result should be set");
 826   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 827   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
 828     exception = get_preinitialized_exception(
 829                        SystemDictionary::IllegalMonitorStateException_klass(),
 830                        CATCH);
 831   }
 832   thread->set_vm_result(exception());
 833 IRT_END
 834 
 835 
 836 //------------------------------------------------------------------------------------------------------------------------
 837 // Invokes
 838 
 839 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
 840   return method->orig_bytecode_at(method->bci_from(bcp));
 841 IRT_END
 842 
 843 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
 844   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 845 IRT_END
 846 
 847 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
 848   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
 849 IRT_END
 850 
 851 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
 852   Thread* THREAD = thread;
 853   LastFrameAccessor last_frame(thread);
 854   // extract receiver from the outgoing argument list if necessary
 855   Handle receiver(thread, NULL);
 856   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
 857       bytecode == Bytecodes::_invokespecial) {
 858     ResourceMark rm(thread);
 859     methodHandle m (thread, last_frame.method());
 860     Bytecode_invoke call(m, last_frame.bci());
 861     Symbol* signature = call.signature();
 862     receiver = Handle(thread, last_frame.callee_receiver(signature));
 863 
 864     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
 865            "sanity check");
 866     assert(receiver.is_null() ||
 867            !Universe::heap()->is_in_reserved(receiver->klass()),
 868            "sanity check");
 869   }
 870 
 871   // resolve method
 872   CallInfo info;
 873   constantPoolHandle pool(thread, last_frame.method()->constants());
 874 
 875   {
 876     JvmtiHideSingleStepping jhss(thread);
 877     LinkResolver::resolve_invoke(info, receiver, pool,
 878                                  last_frame.get_index_u2_cpcache(bytecode), bytecode,
 879                                  CHECK);
 880     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 881       int retry_count = 0;
 882       while (info.resolved_method()->is_old()) {
 883         // It is very unlikely that method is redefined more than 100 times
 884         // in the middle of resolve. If it is looping here more than 100 times
 885         // means then there could be a bug here.
 886         guarantee((retry_count++ < 100),
 887                   "Could not resolve to latest version of redefined method");
 888         // method is redefined in the middle of resolve so re-try.
 889         LinkResolver::resolve_invoke(info, receiver, pool,
 890                                      last_frame.get_index_u2_cpcache(bytecode), bytecode,
 891                                      CHECK);
 892       }
 893     }
 894   } // end JvmtiHideSingleStepping
 895 
 896   // check if link resolution caused cpCache to be updated
 897   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 898   if (cp_cache_entry->is_resolved(bytecode)) return;
 899 
 900 #ifdef ASSERT
 901   if (bytecode == Bytecodes::_invokeinterface) {
 902     if (info.resolved_method()->method_holder() ==
 903                                             SystemDictionary::Object_klass()) {
 904       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 905       // (see also CallInfo::set_interface for details)
 906       assert(info.call_kind() == CallInfo::vtable_call ||
 907              info.call_kind() == CallInfo::direct_call, "");
 908       methodHandle rm = info.resolved_method();
 909       assert(rm->is_final() || info.has_vtable_index(),
 910              "should have been set already");
 911     } else if (!info.resolved_method()->has_itable_index()) {
 912       // Resolved something like CharSequence.toString.  Use vtable not itable.
 913       assert(info.call_kind() != CallInfo::itable_call, "");
 914     } else {
 915       // Setup itable entry
 916       assert(info.call_kind() == CallInfo::itable_call, "");
 917       int index = info.resolved_method()->itable_index();
 918       assert(info.itable_index() == index, "");
 919     }
 920   } else if (bytecode == Bytecodes::_invokespecial) {
 921     assert(info.call_kind() == CallInfo::direct_call, "must be direct call");
 922   } else {
 923     assert(info.call_kind() == CallInfo::direct_call ||
 924            info.call_kind() == CallInfo::vtable_call, "");
 925   }
 926 #endif
 927   // Get sender or sender's host_klass, and only set cpCache entry to resolved if
 928   // it is not an interface.  The receiver for invokespecial calls within interface
 929   // methods must be checked for every call.
 930   InstanceKlass* sender = pool->pool_holder();
 931   sender = sender->has_host_klass() ? sender->host_klass() : sender;
 932 
 933   switch (info.call_kind()) {
 934   case CallInfo::direct_call:
 935     cp_cache_entry->set_direct_call(
 936       bytecode,
 937       info.resolved_method(),
 938       sender->is_interface());
 939     break;
 940   case CallInfo::vtable_call:
 941     cp_cache_entry->set_vtable_call(
 942       bytecode,
 943       info.resolved_method(),
 944       info.vtable_index());
 945     break;
 946   case CallInfo::itable_call:
 947     cp_cache_entry->set_itable_call(
 948       bytecode,
 949       info.resolved_klass(),
 950       info.resolved_method(),
 951       info.itable_index());
 952     break;
 953   default:  ShouldNotReachHere();
 954   }
 955 }
 956 
 957 
 958 // First time execution:  Resolve symbols, create a permanent MethodType object.
 959 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
 960   Thread* THREAD = thread;
 961   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 962   LastFrameAccessor last_frame(thread);
 963 
 964   // resolve method
 965   CallInfo info;
 966   constantPoolHandle pool(thread, last_frame.method()->constants());
 967   {
 968     JvmtiHideSingleStepping jhss(thread);
 969     LinkResolver::resolve_invoke(info, Handle(), pool,
 970                                  last_frame.get_index_u2_cpcache(bytecode), bytecode,
 971                                  CHECK);
 972   } // end JvmtiHideSingleStepping
 973 
 974   ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry();
 975   cp_cache_entry->set_method_handle(pool, info);
 976 }
 977 
 978 // First time execution:  Resolve symbols, create a permanent CallSite object.
 979 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
 980   Thread* THREAD = thread;
 981   LastFrameAccessor last_frame(thread);
 982   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 983 
 984   //TO DO: consider passing BCI to Java.
 985   //  int caller_bci = last_frame.method()->bci_from(last_frame.bcp());
 986 
 987   // resolve method
 988   CallInfo info;
 989   constantPoolHandle pool(thread, last_frame.method()->constants());
 990   int index = last_frame.get_index_u4(bytecode);
 991   {
 992     JvmtiHideSingleStepping jhss(thread);
 993     LinkResolver::resolve_invoke(info, Handle(), pool,
 994                                  index, bytecode, CHECK);
 995   } // end JvmtiHideSingleStepping
 996 
 997   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
 998   cp_cache_entry->set_dynamic_call(pool, info);
 999 }
1000 
1001 // This function is the interface to the assembly code. It returns the resolved
1002 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
1003 // This function will check for redefinition!
1004 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
1005   switch (bytecode) {
1006   case Bytecodes::_getstatic:
1007   case Bytecodes::_putstatic:
1008   case Bytecodes::_getfield:
1009   case Bytecodes::_putfield:
1010     resolve_get_put(thread, bytecode);
1011     break;
1012   case Bytecodes::_invokevirtual:
1013   case Bytecodes::_invokespecial:
1014   case Bytecodes::_invokestatic:
1015   case Bytecodes::_invokeinterface:
1016     resolve_invoke(thread, bytecode);
1017     break;
1018   case Bytecodes::_invokehandle:
1019     resolve_invokehandle(thread);
1020     break;
1021   case Bytecodes::_invokedynamic:
1022     resolve_invokedynamic(thread);
1023     break;
1024   default:
1025     fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
1026     break;
1027   }
1028 }
1029 IRT_END
1030 
1031 //------------------------------------------------------------------------------------------------------------------------
1032 // Miscellaneous
1033 
1034 
1035 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
1036   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
1037   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
1038   if (branch_bcp != NULL && nm != NULL) {
1039     // This was a successful request for an OSR nmethod.  Because
1040     // frequency_counter_overflow_inner ends with a safepoint check,
1041     // nm could have been unloaded so look it up again.  It's unsafe
1042     // to examine nm directly since it might have been freed and used
1043     // for something else.
1044     LastFrameAccessor last_frame(thread);
1045     Method* method =  last_frame.method();
1046     int bci = method->bci_from(last_frame.bcp());
1047     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
1048   }
1049   if (nm != NULL && thread->is_interp_only_mode()) {
1050     // Normally we never get an nm if is_interp_only_mode() is true, because
1051     // policy()->event has a check for this and won't compile the method when
1052     // true. However, it's possible for is_interp_only_mode() to become true
1053     // during the compilation. We don't want to return the nm in that case
1054     // because we want to continue to execute interpreted.
1055     nm = NULL;
1056   }
1057 #ifndef PRODUCT
1058   if (TraceOnStackReplacement) {
1059     if (nm != NULL) {
1060       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
1061       nm->print();
1062     }
1063   }
1064 #endif
1065   return nm;
1066 }
1067 
1068 IRT_ENTRY(nmethod*,
1069           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
1070   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
1071   // flag, in case this method triggers classloading which will call into Java.
1072   UnlockFlagSaver fs(thread);
1073 
1074   LastFrameAccessor last_frame(thread);
1075   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1076   methodHandle method(thread, last_frame.method());
1077   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
1078   const int bci = branch_bcp != NULL ? method->bci_from(last_frame.bcp()) : InvocationEntryBci;
1079 
1080   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
1081   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
1082   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
1083 
1084   if (osr_nm != NULL) {
1085     // We may need to do on-stack replacement which requires that no
1086     // monitors in the activation are biased because their
1087     // BasicObjectLocks will need to migrate during OSR. Force
1088     // unbiasing of all monitors in the activation now (even though
1089     // the OSR nmethod might be invalidated) because we don't have a
1090     // safepoint opportunity later once the migration begins.
1091     if (UseBiasedLocking) {
1092       ResourceMark rm;
1093       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1094       for( BasicObjectLock *kptr = last_frame.monitor_end();
1095            kptr < last_frame.monitor_begin();
1096            kptr = last_frame.next_monitor(kptr) ) {
1097         if( kptr->obj() != NULL ) {
1098           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
1099         }
1100       }
1101       BiasedLocking::revoke(objects_to_revoke);
1102     }
1103   }
1104   return osr_nm;
1105 IRT_END
1106 
1107 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
1108   assert(ProfileInterpreter, "must be profiling interpreter");
1109   int bci = method->bci_from(cur_bcp);
1110   MethodData* mdo = method->method_data();
1111   if (mdo == NULL)  return 0;
1112   return mdo->bci_to_di(bci);
1113 IRT_END
1114 
1115 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
1116   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
1117   // flag, in case this method triggers classloading which will call into Java.
1118   UnlockFlagSaver fs(thread);
1119 
1120   assert(ProfileInterpreter, "must be profiling interpreter");
1121   LastFrameAccessor last_frame(thread);
1122   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1123   methodHandle method(thread, last_frame.method());
1124   Method::build_interpreter_method_data(method, THREAD);
1125   if (HAS_PENDING_EXCEPTION) {
1126     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1127     CLEAR_PENDING_EXCEPTION;
1128     // and fall through...
1129   }
1130 IRT_END
1131 
1132 
1133 #ifdef ASSERT
1134 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
1135   assert(ProfileInterpreter, "must be profiling interpreter");
1136 
1137   MethodData* mdo = method->method_data();
1138   assert(mdo != NULL, "must not be null");
1139 
1140   int bci = method->bci_from(bcp);
1141 
1142   address mdp2 = mdo->bci_to_dp(bci);
1143   if (mdp != mdp2) {
1144     ResourceMark rm;
1145     ResetNoHandleMark rnm; // In a LEAF entry.
1146     HandleMark hm;
1147     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
1148     int current_di = mdo->dp_to_di(mdp);
1149     int expected_di  = mdo->dp_to_di(mdp2);
1150     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
1151     int expected_approx_bci = mdo->data_at(expected_di)->bci();
1152     int approx_bci = -1;
1153     if (current_di >= 0) {
1154       approx_bci = mdo->data_at(current_di)->bci();
1155     }
1156     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
1157     mdo->print_on(tty);
1158     method->print_codes();
1159   }
1160   assert(mdp == mdp2, "wrong mdp");
1161 IRT_END
1162 #endif // ASSERT
1163 
1164 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
1165   assert(ProfileInterpreter, "must be profiling interpreter");
1166   ResourceMark rm(thread);
1167   HandleMark hm(thread);
1168   LastFrameAccessor last_frame(thread);
1169   assert(last_frame.is_interpreted_frame(), "must come from interpreter");
1170   MethodData* h_mdo = last_frame.method()->method_data();
1171 
1172   // Grab a lock to ensure atomic access to setting the return bci and
1173   // the displacement.  This can block and GC, invalidating all naked oops.
1174   MutexLocker ml(RetData_lock);
1175 
1176   // ProfileData is essentially a wrapper around a derived oop, so we
1177   // need to take the lock before making any ProfileData structures.
1178   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(last_frame.mdp()));
1179   guarantee(data != NULL, "profile data must be valid");
1180   RetData* rdata = data->as_RetData();
1181   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1182   last_frame.set_mdp(new_mdp);
1183 IRT_END
1184 
1185 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
1186   MethodCounters* mcs = Method::build_method_counters(m, thread);
1187   if (HAS_PENDING_EXCEPTION) {
1188     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1189     CLEAR_PENDING_EXCEPTION;
1190   }
1191   return mcs;
1192 IRT_END
1193 
1194 
1195 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
1196   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
1197   // stack traversal automatically takes care of preserving arguments for invoke, so
1198   // this is no longer needed.
1199 
1200   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
1201   // if this is called during a safepoint
1202 
1203   if (JvmtiExport::should_post_single_step()) {
1204     // We are called during regular safepoints and when the VM is
1205     // single stepping. If any thread is marked for single stepping,
1206     // then we may have JVMTI work to do.
1207     LastFrameAccessor last_frame(thread);
1208     JvmtiExport::at_single_stepping_point(thread, last_frame.method(), last_frame.bcp());
1209   }
1210 IRT_END
1211 
1212 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1213 ConstantPoolCacheEntry *cp_entry))
1214 
1215   // check the access_flags for the field in the klass
1216 
1217   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1218   int index = cp_entry->field_index();
1219   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1220 
1221   bool is_static = (obj == NULL);
1222   HandleMark hm(thread);
1223 
1224   Handle h_obj;
1225   if (!is_static) {
1226     // non-static field accessors have an object, but we need a handle
1227     h_obj = Handle(thread, obj);
1228   }
1229   InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass());
1230   jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static);
1231   LastFrameAccessor last_frame(thread);
1232   JvmtiExport::post_field_access(thread, last_frame.method(), last_frame.bcp(), cp_entry_f1, h_obj, fid);
1233 IRT_END
1234 
1235 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1236   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1237 
1238   Klass* k = cp_entry->f1_as_klass();
1239 
1240   // check the access_flags for the field in the klass
1241   InstanceKlass* ik = InstanceKlass::cast(k);
1242   int index = cp_entry->field_index();
1243   // bail out if field modifications are not watched
1244   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1245 
1246   char sig_type = '\0';
1247 
1248   switch(cp_entry->flag_state()) {
1249     case btos: sig_type = 'B'; break;
1250     case ztos: sig_type = 'Z'; break;
1251     case ctos: sig_type = 'C'; break;
1252     case stos: sig_type = 'S'; break;
1253     case itos: sig_type = 'I'; break;
1254     case ftos: sig_type = 'F'; break;
1255     case atos: sig_type = 'L'; break;
1256     case ltos: sig_type = 'J'; break;
1257     case dtos: sig_type = 'D'; break;
1258     default:  ShouldNotReachHere(); return;
1259   }
1260   bool is_static = (obj == NULL);
1261 
1262   HandleMark hm(thread);
1263   jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static);
1264   jvalue fvalue;
1265 #ifdef _LP64
1266   fvalue = *value;
1267 #else
1268   // Long/double values are stored unaligned and also noncontiguously with
1269   // tagged stacks.  We can't just do a simple assignment even in the non-
1270   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1271   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1272   // We assume that the two halves of longs/doubles are stored in interpreter
1273   // stack slots in platform-endian order.
1274   jlong_accessor u;
1275   jint* newval = (jint*)value;
1276   u.words[0] = newval[0];
1277   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1278   fvalue.j = u.long_value;
1279 #endif // _LP64
1280 
1281   Handle h_obj;
1282   if (!is_static) {
1283     // non-static field accessors have an object, but we need a handle
1284     h_obj = Handle(thread, obj);
1285   }
1286 
1287   LastFrameAccessor last_frame(thread);
1288   JvmtiExport::post_raw_field_modification(thread, last_frame.method(), last_frame.bcp(), ik, h_obj,
1289                                            fid, sig_type, &fvalue);
1290 IRT_END
1291 
1292 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1293   LastFrameAccessor last_frame(thread);
1294   JvmtiExport::post_method_entry(thread, last_frame.method(), last_frame.get_frame());
1295 IRT_END
1296 
1297 
1298 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1299   LastFrameAccessor last_frame(thread);
1300   JvmtiExport::post_method_exit(thread, last_frame.method(), last_frame.get_frame());
1301 IRT_END
1302 
1303 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1304 {
1305   return (Interpreter::contains(pc) ? 1 : 0);
1306 }
1307 IRT_END
1308 
1309 
1310 // Implementation of SignatureHandlerLibrary
1311 
1312 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1313 // Dummy definition (else normalization method is defined in CPU
1314 // dependant code)
1315 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1316   return fingerprint;
1317 }
1318 #endif
1319 
1320 address SignatureHandlerLibrary::set_handler_blob() {
1321   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1322   if (handler_blob == NULL) {
1323     return NULL;
1324   }
1325   address handler = handler_blob->code_begin();
1326   _handler_blob = handler_blob;
1327   _handler = handler;
1328   return handler;
1329 }
1330 
1331 void SignatureHandlerLibrary::initialize() {
1332   if (_fingerprints != NULL) {
1333     return;
1334   }
1335   if (set_handler_blob() == NULL) {
1336     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1337   }
1338 
1339   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1340                                       SignatureHandlerLibrary::buffer_size);
1341   _buffer = bb->code_begin();
1342 
1343   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1344   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1345 }
1346 
1347 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1348   address handler   = _handler;
1349   int     insts_size = buffer->pure_insts_size();
1350   if (handler + insts_size > _handler_blob->code_end()) {
1351     // get a new handler blob
1352     handler = set_handler_blob();
1353   }
1354   if (handler != NULL) {
1355     memcpy(handler, buffer->insts_begin(), insts_size);
1356     pd_set_handler(handler);
1357     ICache::invalidate_range(handler, insts_size);
1358     _handler = handler + insts_size;
1359   }
1360   return handler;
1361 }
1362 
1363 void SignatureHandlerLibrary::add(const methodHandle& method) {
1364   if (method->signature_handler() == NULL) {
1365     // use slow signature handler if we can't do better
1366     int handler_index = -1;
1367     // check if we can use customized (fast) signature handler
1368     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1369       // use customized signature handler
1370       MutexLocker mu(SignatureHandlerLibrary_lock);
1371       // make sure data structure is initialized
1372       initialize();
1373       // lookup method signature's fingerprint
1374       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1375       // allow CPU dependant code to optimize the fingerprints for the fast handler
1376       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1377       handler_index = _fingerprints->find(fingerprint);
1378       // create handler if necessary
1379       if (handler_index < 0) {
1380         ResourceMark rm;
1381         ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer;
1382         CodeBuffer buffer((address)(_buffer + align_offset),
1383                           SignatureHandlerLibrary::buffer_size - align_offset);
1384         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1385         // copy into code heap
1386         address handler = set_handler(&buffer);
1387         if (handler == NULL) {
1388           // use slow signature handler (without memorizing it in the fingerprints)
1389         } else {
1390           // debugging suppport
1391           if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1392             ttyLocker ttyl;
1393             tty->cr();
1394             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1395                           _handlers->length(),
1396                           (method->is_static() ? "static" : "receiver"),
1397                           method->name_and_sig_as_C_string(),
1398                           fingerprint,
1399                           buffer.insts_size());
1400             if (buffer.insts_size() > 0) {
1401               Disassembler::decode(handler, handler + buffer.insts_size());
1402             }
1403 #ifndef PRODUCT
1404             address rh_begin = Interpreter::result_handler(method()->result_type());
1405             if (CodeCache::contains(rh_begin)) {
1406               // else it might be special platform dependent values
1407               tty->print_cr(" --- associated result handler ---");
1408               address rh_end = rh_begin;
1409               while (*(int*)rh_end != 0) {
1410                 rh_end += sizeof(int);
1411               }
1412               Disassembler::decode(rh_begin, rh_end);
1413             } else {
1414               tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1415             }
1416 #endif
1417           }
1418           // add handler to library
1419           _fingerprints->append(fingerprint);
1420           _handlers->append(handler);
1421           // set handler index
1422           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1423           handler_index = _fingerprints->length() - 1;
1424         }
1425       }
1426       // Set handler under SignatureHandlerLibrary_lock
1427       if (handler_index < 0) {
1428         // use generic signature handler
1429         method->set_signature_handler(Interpreter::slow_signature_handler());
1430       } else {
1431         // set handler
1432         method->set_signature_handler(_handlers->at(handler_index));
1433       }
1434     } else {
1435       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1436       // use generic signature handler
1437       method->set_signature_handler(Interpreter::slow_signature_handler());
1438     }
1439   }
1440 #ifdef ASSERT
1441   int handler_index = -1;
1442   int fingerprint_index = -2;
1443   {
1444     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1445     // in any way if accessed from multiple threads. To avoid races with another
1446     // thread which may change the arrays in the above, mutex protected block, we
1447     // have to protect this read access here with the same mutex as well!
1448     MutexLocker mu(SignatureHandlerLibrary_lock);
1449     if (_handlers != NULL) {
1450       handler_index = _handlers->find(method->signature_handler());
1451       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1452       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1453       fingerprint_index = _fingerprints->find(fingerprint);
1454     }
1455   }
1456   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1457          handler_index == fingerprint_index, "sanity check");
1458 #endif // ASSERT
1459 }
1460 
1461 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1462   int handler_index = -1;
1463   // use customized signature handler
1464   MutexLocker mu(SignatureHandlerLibrary_lock);
1465   // make sure data structure is initialized
1466   initialize();
1467   fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1468   handler_index = _fingerprints->find(fingerprint);
1469   // create handler if necessary
1470   if (handler_index < 0) {
1471     if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1472       tty->cr();
1473       tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1474                     _handlers->length(),
1475                     p2i(handler),
1476                     fingerprint);
1477     }
1478     _fingerprints->append(fingerprint);
1479     _handlers->append(handler);
1480   } else {
1481     if (PrintSignatureHandlers) {
1482       tty->cr();
1483       tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1484                     _handlers->length(),
1485                     fingerprint,
1486                     p2i(_handlers->at(handler_index)),
1487                     p2i(handler));
1488     }
1489   }
1490 }
1491 
1492 
1493 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1494 address                  SignatureHandlerLibrary::_handler      = NULL;
1495 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1496 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1497 address                  SignatureHandlerLibrary::_buffer       = NULL;
1498 
1499 
1500 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1501   methodHandle m(thread, method);
1502   assert(m->is_native(), "sanity check");
1503   // lookup native function entry point if it doesn't exist
1504   bool in_base_library;
1505   if (!m->has_native_function()) {
1506     NativeLookup::lookup(m, in_base_library, CHECK);
1507   }
1508   // make sure signature handler is installed
1509   SignatureHandlerLibrary::add(m);
1510   // The interpreter entry point checks the signature handler first,
1511   // before trying to fetch the native entry point and klass mirror.
1512   // We must set the signature handler last, so that multiple processors
1513   // preparing the same method will be sure to see non-null entry & mirror.
1514 IRT_END
1515 
1516 #if defined(IA32) || defined(AMD64) || defined(ARM)
1517 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1518   if (src_address == dest_address) {
1519     return;
1520   }
1521   ResetNoHandleMark rnm; // In a LEAF entry.
1522   HandleMark hm;
1523   ResourceMark rm;
1524   LastFrameAccessor last_frame(thread);
1525   assert(last_frame.is_interpreted_frame(), "");
1526   jint bci = last_frame.bci();
1527   methodHandle mh(thread, last_frame.method());
1528   Bytecode_invoke invoke(mh, bci);
1529   ArgumentSizeComputer asc(invoke.signature());
1530   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1531   Copy::conjoint_jbytes(src_address, dest_address,
1532                        size_of_arguments * Interpreter::stackElementSize);
1533 IRT_END
1534 #endif
1535 
1536 #if INCLUDE_JVMTI
1537 // This is a support of the JVMTI PopFrame interface.
1538 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1539 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1540 // The member_name argument is a saved reference (in local#0) to the member_name.
1541 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1542 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1543 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1544                                                             Method* method, address bcp))
1545   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1546   if (code != Bytecodes::_invokestatic) {
1547     return;
1548   }
1549   ConstantPool* cpool = method->constants();
1550   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1551   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1552   Symbol* mname = cpool->name_ref_at(cp_index);
1553 
1554   if (MethodHandles::has_member_arg(cname, mname)) {
1555     oop member_name_oop = (oop) member_name;
1556     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1557       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1558       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1559     }
1560     thread->set_vm_result(member_name_oop);
1561   } else {
1562     thread->set_vm_result(NULL);
1563   }
1564 IRT_END
1565 #endif // INCLUDE_JVMTI
1566 
1567 #ifndef PRODUCT
1568 // This must be a IRT_LEAF function because the interpreter must save registers on x86 to
1569 // call this, which changes rsp and makes the interpreter's expression stack not walkable.
1570 // The generated code still uses call_VM because that will set up the frame pointer for
1571 // bcp and method.
1572 IRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1573   LastFrameAccessor last_frame(thread);
1574   assert(last_frame.is_interpreted_frame(), "must be an interpreted frame");
1575   methodHandle mh(thread, last_frame.method());
1576   BytecodeTracer::trace(mh, last_frame.bcp(), tos, tos2);
1577   return preserve_this_value;
1578 IRT_END
1579 #endif // !PRODUCT