/* * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "jvm.h" #include "classfile/classFileStream.hpp" #include "classfile/classLoader.inline.hpp" #include "classfile/classLoaderData.inline.hpp" #include "classfile/classLoaderExt.hpp" #include "classfile/symbolTable.hpp" #include "classfile/systemDictionaryShared.hpp" #include "classfile/altHashing.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "logging/logMessage.hpp" #include "memory/archiveUtils.hpp" #include "memory/dynamicArchive.hpp" #include "memory/filemap.hpp" #include "memory/heapShared.inline.hpp" #include "memory/iterator.inline.hpp" #include "memory/metadataFactory.hpp" #include "memory/metaspaceClosure.hpp" #include "memory/metaspaceShared.hpp" #include "memory/oopFactory.hpp" #include "memory/universe.hpp" #include "oops/compressedOops.hpp" #include "oops/compressedOops.inline.hpp" #include "oops/objArrayOop.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "runtime/arguments.hpp" #include "runtime/java.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/os.inline.hpp" #include "runtime/vm_version.hpp" #include "services/memTracker.hpp" #include "utilities/align.hpp" #include "utilities/bitMap.inline.hpp" #include "utilities/classpathStream.hpp" #include "utilities/defaultStream.hpp" #if INCLUDE_G1GC #include "gc/g1/g1CollectedHeap.hpp" #include "gc/g1/heapRegion.hpp" #endif # include # include #ifndef O_BINARY // if defined (Win32) use binary files. #define O_BINARY 0 // otherwise do nothing. #endif // Complain and stop. All error conditions occurring during the writing of // an archive file should stop the process. Unrecoverable errors during // the reading of the archive file should stop the process. static void fail_exit(const char *msg, va_list ap) { // This occurs very early during initialization: tty is not initialized. jio_fprintf(defaultStream::error_stream(), "An error has occurred while processing the" " shared archive file.\n"); jio_vfprintf(defaultStream::error_stream(), msg, ap); jio_fprintf(defaultStream::error_stream(), "\n"); // Do not change the text of the below message because some tests check for it. vm_exit_during_initialization("Unable to use shared archive.", NULL); } void FileMapInfo::fail_stop(const char *msg, ...) { va_list ap; va_start(ap, msg); fail_exit(msg, ap); // Never returns. va_end(ap); // for completeness. } // Complain and continue. Recoverable errors during the reading of the // archive file may continue (with sharing disabled). // // If we continue, then disable shared spaces and close the file. void FileMapInfo::fail_continue(const char *msg, ...) { va_list ap; va_start(ap, msg); if (PrintSharedArchiveAndExit && _validating_shared_path_table) { // If we are doing PrintSharedArchiveAndExit and some of the classpath entries // do not validate, we can still continue "limping" to validate the remaining // entries. No need to quit. tty->print("["); tty->vprint(msg, ap); tty->print_cr("]"); } else { if (RequireSharedSpaces) { fail_exit(msg, ap); } else { if (log_is_enabled(Info, cds)) { ResourceMark rm; LogStream ls(Log(cds)::info()); ls.print("UseSharedSpaces: "); ls.vprint_cr(msg, ap); } } } va_end(ap); } // Fill in the fileMapInfo structure with data about this VM instance. // This method copies the vm version info into header_version. If the version is too // long then a truncated version, which has a hash code appended to it, is copied. // // Using a template enables this method to verify that header_version is an array of // length JVM_IDENT_MAX. This ensures that the code that writes to the CDS file and // the code that reads the CDS file will both use the same size buffer. Hence, will // use identical truncation. This is necessary for matching of truncated versions. template static void get_header_version(char (&header_version) [N]) { assert(N == JVM_IDENT_MAX, "Bad header_version size"); const char *vm_version = VM_Version::internal_vm_info_string(); const int version_len = (int)strlen(vm_version); memset(header_version, 0, JVM_IDENT_MAX); if (version_len < (JVM_IDENT_MAX-1)) { strcpy(header_version, vm_version); } else { // Get the hash value. Use a static seed because the hash needs to return the same // value over multiple jvm invocations. unsigned int hash = AltHashing::murmur3_32(8191, (const jbyte*)vm_version, version_len); // Truncate the ident, saving room for the 8 hex character hash value. strncpy(header_version, vm_version, JVM_IDENT_MAX-9); // Append the hash code as eight hex digits. sprintf(&header_version[JVM_IDENT_MAX-9], "%08x", hash); header_version[JVM_IDENT_MAX-1] = 0; // Null terminate. } assert(header_version[JVM_IDENT_MAX-1] == 0, "must be"); } FileMapInfo::FileMapInfo(bool is_static) { memset((void*)this, 0, sizeof(FileMapInfo)); _is_static = is_static; size_t header_size; if (is_static) { assert(_current_info == NULL, "must be singleton"); // not thread safe _current_info = this; header_size = sizeof(FileMapHeader); } else { assert(_dynamic_archive_info == NULL, "must be singleton"); // not thread safe _dynamic_archive_info = this; header_size = sizeof(DynamicArchiveHeader); } _header = (FileMapHeader*)os::malloc(header_size, mtInternal); memset((void*)_header, 0, header_size); _header->set_header_size(header_size); _header->set_version(INVALID_CDS_ARCHIVE_VERSION); _header->set_has_platform_or_app_classes(true); _file_offset = 0; _file_open = false; } FileMapInfo::~FileMapInfo() { if (_is_static) { assert(_current_info == this, "must be singleton"); // not thread safe _current_info = NULL; } else { assert(_dynamic_archive_info == this, "must be singleton"); // not thread safe _dynamic_archive_info = NULL; } } void FileMapInfo::populate_header(size_t alignment) { header()->populate(this, alignment); } void FileMapHeader::populate(FileMapInfo* mapinfo, size_t alignment) { if (DynamicDumpSharedSpaces) { _magic = CDS_DYNAMIC_ARCHIVE_MAGIC; } else { _magic = CDS_ARCHIVE_MAGIC; } _version = CURRENT_CDS_ARCHIVE_VERSION; _alignment = alignment; _obj_alignment = ObjectAlignmentInBytes; _compact_strings = CompactStrings; _narrow_oop_mode = CompressedOops::mode(); _narrow_oop_base = CompressedOops::base(); _narrow_oop_shift = CompressedOops::shift(); _max_heap_size = MaxHeapSize; _narrow_klass_shift = CompressedKlassPointers::shift(); if (HeapShared::is_heap_object_archiving_allowed()) { _heap_end = CompressedOops::end(); } // The following fields are for sanity checks for whether this archive // will function correctly with this JVM and the bootclasspath it's // invoked with. // JVM version string ... changes on each build. get_header_version(_jvm_ident); _app_class_paths_start_index = ClassLoaderExt::app_class_paths_start_index(); _app_module_paths_start_index = ClassLoaderExt::app_module_paths_start_index(); _num_module_paths = ClassLoader::num_module_path_entries(); _max_used_path_index = ClassLoaderExt::max_used_path_index(); _verify_local = BytecodeVerificationLocal; _verify_remote = BytecodeVerificationRemote; _has_platform_or_app_classes = ClassLoaderExt::has_platform_or_app_classes(); _requested_base_address = (char*)SharedBaseAddress; _mapped_base_address = (char*)SharedBaseAddress; _allow_archiving_with_java_agent = AllowArchivingWithJavaAgent; // the following 2 fields will be set in write_header for dynamic archive header _base_archive_name_size = 0; _base_archive_is_default = false; if (!DynamicDumpSharedSpaces) { set_shared_path_table(mapinfo->_shared_path_table); } } void SharedClassPathEntry::init_as_non_existent(const char* path, TRAPS) { _type = non_existent_entry; set_name(path, THREAD); } void SharedClassPathEntry::init(bool is_modules_image, ClassPathEntry* cpe, TRAPS) { Arguments::assert_is_dumping_archive(); _timestamp = 0; _filesize = 0; _from_class_path_attr = false; struct stat st; if (os::stat(cpe->name(), &st) == 0) { if ((st.st_mode & S_IFMT) == S_IFDIR) { _type = dir_entry; } else { // The timestamp of the modules_image is not checked at runtime. if (is_modules_image) { _type = modules_image_entry; } else { _type = jar_entry; _timestamp = st.st_mtime; _from_class_path_attr = cpe->from_class_path_attr(); } _filesize = st.st_size; } } else { // The file/dir must exist, or it would not have been added // into ClassLoader::classpath_entry(). // // If we can't access a jar file in the boot path, then we can't // make assumptions about where classes get loaded from. FileMapInfo::fail_stop("Unable to open file %s.", cpe->name()); } // No need to save the name of the module file, as it will be computed at run time // to allow relocation of the JDK directory. const char* name = is_modules_image ? "" : cpe->name(); set_name(name, THREAD); } void SharedClassPathEntry::set_name(const char* name, TRAPS) { size_t len = strlen(name) + 1; _name = MetadataFactory::new_array(ClassLoaderData::the_null_class_loader_data(), (int)len, THREAD); strcpy(_name->data(), name); } const char* SharedClassPathEntry::name() const { if (UseSharedSpaces && is_modules_image()) { // In order to validate the runtime modules image file size against the archived // size information, we need to obtain the runtime modules image path. The recorded // dump time modules image path in the archive may be different from the runtime path // if the JDK image has beed moved after generating the archive. return ClassLoader::get_jrt_entry()->name(); } else { return _name->data(); } } bool SharedClassPathEntry::validate(bool is_class_path) const { assert(UseSharedSpaces, "runtime only"); struct stat st; const char* name = this->name(); bool ok = true; log_info(class, path)("checking shared classpath entry: %s", name); if (os::stat(name, &st) != 0 && is_class_path) { // If the archived module path entry does not exist at runtime, it is not fatal // (no need to invalid the shared archive) because the shared runtime visibility check // filters out any archived module classes that do not have a matching runtime // module path location. FileMapInfo::fail_continue("Required classpath entry does not exist: %s", name); ok = false; } else if (is_dir()) { if (!os::dir_is_empty(name)) { FileMapInfo::fail_continue("directory is not empty: %s", name); ok = false; } } else if ((has_timestamp() && _timestamp != st.st_mtime) || _filesize != st.st_size) { ok = false; if (PrintSharedArchiveAndExit) { FileMapInfo::fail_continue(_timestamp != st.st_mtime ? "Timestamp mismatch" : "File size mismatch"); } else { FileMapInfo::fail_continue("A jar file is not the one used while building" " the shared archive file: %s", name); } } if (PrintSharedArchiveAndExit && !ok) { // If PrintSharedArchiveAndExit is enabled, don't report failure to the // caller. Please see above comments for more details. ok = true; MetaspaceShared::set_archive_loading_failed(); } return ok; } bool SharedClassPathEntry::check_non_existent() const { assert(_type == non_existent_entry, "must be"); log_info(class, path)("should be non-existent: %s", name()); struct stat st; if (os::stat(name(), &st) != 0) { log_info(class, path)("ok"); return true; // file doesn't exist } else { return false; } } void SharedClassPathEntry::metaspace_pointers_do(MetaspaceClosure* it) { it->push(&_name); it->push(&_manifest); } void SharedPathTable::metaspace_pointers_do(MetaspaceClosure* it) { it->push(&_table); for (int i=0; i<_size; i++) { path_at(i)->metaspace_pointers_do(it); } } void SharedPathTable::dumptime_init(ClassLoaderData* loader_data, Thread* THREAD) { size_t entry_size = sizeof(SharedClassPathEntry); int num_entries = 0; num_entries += ClassLoader::num_boot_classpath_entries(); num_entries += ClassLoader::num_app_classpath_entries(); num_entries += ClassLoader::num_module_path_entries(); num_entries += FileMapInfo::num_non_existent_class_paths(); size_t bytes = entry_size * num_entries; _table = MetadataFactory::new_array(loader_data, (int)(bytes + 7 / 8), THREAD); _size = num_entries; } void FileMapInfo::allocate_shared_path_table() { Arguments::assert_is_dumping_archive(); EXCEPTION_MARK; // The following calls should never throw, but would exit VM on error. ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data(); ClassPathEntry* jrt = ClassLoader::get_jrt_entry(); assert(jrt != NULL, "No modular java runtime image present when allocating the CDS classpath entry table"); _shared_path_table.dumptime_init(loader_data, THREAD); // 1. boot class path int i = 0; i = add_shared_classpaths(i, "boot", jrt, THREAD); i = add_shared_classpaths(i, "app", ClassLoader::app_classpath_entries(), THREAD); i = add_shared_classpaths(i, "module", ClassLoader::module_path_entries(), THREAD); for (int x = 0; x < num_non_existent_class_paths(); x++, i++) { const char* path = _non_existent_class_paths->at(x); shared_path(i)->init_as_non_existent(path, THREAD); } assert(i == _shared_path_table.size(), "number of shared path entry mismatch"); } int FileMapInfo::add_shared_classpaths(int i, const char* which, ClassPathEntry *cpe, TRAPS) { while (cpe != NULL) { bool is_jrt = (cpe == ClassLoader::get_jrt_entry()); const char* type = (is_jrt ? "jrt" : (cpe->is_jar_file() ? "jar" : "dir")); log_info(class, path)("add %s shared path (%s) %s", which, type, cpe->name()); SharedClassPathEntry* ent = shared_path(i); ent->init(is_jrt, cpe, THREAD); if (cpe->is_jar_file()) { update_jar_manifest(cpe, ent, THREAD); } if (is_jrt) { cpe = ClassLoader::get_next_boot_classpath_entry(cpe); } else { cpe = cpe->next(); } i++; } return i; } void FileMapInfo::check_nonempty_dir_in_shared_path_table() { Arguments::assert_is_dumping_archive(); bool has_nonempty_dir = false; int last = _shared_path_table.size() - 1; if (last > ClassLoaderExt::max_used_path_index()) { // no need to check any path beyond max_used_path_index last = ClassLoaderExt::max_used_path_index(); } for (int i = 0; i <= last; i++) { SharedClassPathEntry *e = shared_path(i); if (e->is_dir()) { const char* path = e->name(); if (!os::dir_is_empty(path)) { log_error(cds)("Error: non-empty directory '%s'", path); has_nonempty_dir = true; } } } if (has_nonempty_dir) { ClassLoader::exit_with_path_failure("Cannot have non-empty directory in paths", NULL); } } void FileMapInfo::record_non_existent_class_path_entry(const char* path) { Arguments::assert_is_dumping_archive(); log_info(class, path)("non-existent Class-Path entry %s", path); if (_non_existent_class_paths == NULL) { _non_existent_class_paths = new (ResourceObj::C_HEAP, mtInternal)GrowableArray(10, true); } _non_existent_class_paths->append(os::strdup(path)); } int FileMapInfo::num_non_existent_class_paths() { Arguments::assert_is_dumping_archive(); if (_non_existent_class_paths != NULL) { return _non_existent_class_paths->length(); } else { return 0; } } class ManifestStream: public ResourceObj { private: u1* _buffer_start; // Buffer bottom u1* _buffer_end; // Buffer top (one past last element) u1* _current; // Current buffer position public: // Constructor ManifestStream(u1* buffer, int length) : _buffer_start(buffer), _current(buffer) { _buffer_end = buffer + length; } static bool is_attr(u1* attr, const char* name) { return strncmp((const char*)attr, name, strlen(name)) == 0; } static char* copy_attr(u1* value, size_t len) { char* buf = NEW_RESOURCE_ARRAY(char, len + 1); strncpy(buf, (char*)value, len); buf[len] = 0; return buf; } // The return value indicates if the JAR is signed or not bool check_is_signed() { u1* attr = _current; bool isSigned = false; while (_current < _buffer_end) { if (*_current == '\n') { *_current = '\0'; u1* value = (u1*)strchr((char*)attr, ':'); if (value != NULL) { assert(*(value+1) == ' ', "Unrecognized format" ); if (strstr((char*)attr, "-Digest") != NULL) { isSigned = true; break; } } *_current = '\n'; // restore attr = _current + 1; } _current ++; } return isSigned; } }; void FileMapInfo::update_jar_manifest(ClassPathEntry *cpe, SharedClassPathEntry* ent, TRAPS) { ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data(); ResourceMark rm(THREAD); jint manifest_size; assert(cpe->is_jar_file() && ent->is_jar(), "the shared class path entry is not a JAR file"); char* manifest = ClassLoaderExt::read_manifest(cpe, &manifest_size, CHECK); if (manifest != NULL) { ManifestStream* stream = new ManifestStream((u1*)manifest, manifest_size); if (stream->check_is_signed()) { ent->set_is_signed(); } else { // Copy the manifest into the shared archive manifest = ClassLoaderExt::read_raw_manifest(cpe, &manifest_size, CHECK); Array* buf = MetadataFactory::new_array(loader_data, manifest_size, THREAD); char* p = (char*)(buf->data()); memcpy(p, manifest, manifest_size); ent->set_manifest(buf); } } } char* FileMapInfo::skip_first_path_entry(const char* path) { size_t path_sep_len = strlen(os::path_separator()); char* p = strstr((char*)path, os::path_separator()); if (p != NULL) { debug_only( { size_t image_name_len = strlen(MODULES_IMAGE_NAME); assert(strncmp(p - image_name_len, MODULES_IMAGE_NAME, image_name_len) == 0, "first entry must be the modules image"); } ); p += path_sep_len; } else { debug_only( { assert(ClassLoader::string_ends_with(path, MODULES_IMAGE_NAME), "first entry must be the modules image"); } ); } return p; } int FileMapInfo::num_paths(const char* path) { if (path == NULL) { return 0; } int npaths = 1; char* p = (char*)path; while (p != NULL) { char* prev = p; p = strstr((char*)p, os::path_separator()); if (p != NULL) { p++; // don't count empty path if ((p - prev) > 1) { npaths++; } } } return npaths; } GrowableArray* FileMapInfo::create_path_array(const char* paths) { GrowableArray* path_array = new(ResourceObj::RESOURCE_AREA, mtInternal) GrowableArray(10); ClasspathStream cp_stream(paths); while (cp_stream.has_next()) { const char* path = cp_stream.get_next(); struct stat st; if (os::stat(path, &st) == 0) { path_array->append(path); } } return path_array; } bool FileMapInfo::classpath_failure(const char* msg, const char* name) { ClassLoader::trace_class_path(msg, name); if (PrintSharedArchiveAndExit) { MetaspaceShared::set_archive_loading_failed(); } return false; } bool FileMapInfo::check_paths(int shared_path_start_idx, int num_paths, GrowableArray* rp_array) { int i = 0; int j = shared_path_start_idx; bool mismatch = false; while (i < num_paths && !mismatch) { while (shared_path(j)->from_class_path_attr()) { // shared_path(j) was expanded from the JAR file attribute "Class-Path:" // during dump time. It's not included in the -classpath VM argument. j++; } if (!os::same_files(shared_path(j)->name(), rp_array->at(i))) { mismatch = true; } i++; j++; } return mismatch; } bool FileMapInfo::validate_boot_class_paths() { // // - Archive contains boot classes only - relaxed boot path check: // Extra path elements appended to the boot path at runtime are allowed. // // - Archive contains application or platform classes - strict boot path check: // Validate the entire runtime boot path, which must be compatible // with the dump time boot path. Appending boot path at runtime is not // allowed. // // The first entry in boot path is the modules_image (guaranteed by // ClassLoader::setup_boot_search_path()). Skip the first entry. The // path of the runtime modules_image may be different from the dump // time path (e.g. the JDK image is copied to a different location // after generating the shared archive), which is acceptable. For most // common cases, the dump time boot path might contain modules_image only. char* runtime_boot_path = Arguments::get_sysclasspath(); char* rp = skip_first_path_entry(runtime_boot_path); assert(shared_path(0)->is_modules_image(), "first shared_path must be the modules image"); int dp_len = header()->app_class_paths_start_index() - 1; // ignore the first path to the module image bool mismatch = false; bool relaxed_check = !header()->has_platform_or_app_classes(); if (dp_len == 0 && rp == NULL) { return true; // ok, both runtime and dump time boot paths have modules_images only } else if (dp_len == 0 && rp != NULL) { if (relaxed_check) { return true; // ok, relaxed check, runtime has extra boot append path entries } else { mismatch = true; } } else if (dp_len > 0 && rp != NULL) { int num; ResourceMark rm; GrowableArray* rp_array = create_path_array(rp); int rp_len = rp_array->length(); if (rp_len >= dp_len) { if (relaxed_check) { // only check the leading entries in the runtime boot path, up to // the length of the dump time boot path num = dp_len; } else { // check the full runtime boot path, must match with dump time num = rp_len; } mismatch = check_paths(1, num, rp_array); } } if (mismatch) { // The paths are different return classpath_failure("[BOOT classpath mismatch, actual =", runtime_boot_path); } return true; } bool FileMapInfo::validate_app_class_paths(int shared_app_paths_len) { const char *appcp = Arguments::get_appclasspath(); assert(appcp != NULL, "NULL app classpath"); int rp_len = num_paths(appcp); bool mismatch = false; if (rp_len < shared_app_paths_len) { return classpath_failure("Run time APP classpath is shorter than the one at dump time: ", appcp); } if (shared_app_paths_len != 0 && rp_len != 0) { // Prefix is OK: E.g., dump with -cp foo.jar, but run with -cp foo.jar:bar.jar. ResourceMark rm; GrowableArray* rp_array = create_path_array(appcp); if (rp_array->length() == 0) { // None of the jar file specified in the runtime -cp exists. return classpath_failure("None of the jar file specified in the runtime -cp exists: -Djava.class.path=", appcp); } // Handling of non-existent entries in the classpath: we eliminate all the non-existent // entries from both the dump time classpath (ClassLoader::update_class_path_entry_list) // and the runtime classpath (FileMapInfo::create_path_array), and check the remaining // entries. E.g.: // // dump : -cp a.jar:NE1:NE2:b.jar -> a.jar:b.jar -> recorded in archive. // run 1: -cp NE3:a.jar:NE4:b.jar -> a.jar:b.jar -> matched // run 2: -cp x.jar:NE4:b.jar -> x.jar:b.jar -> mismatched int j = header()->app_class_paths_start_index(); mismatch = check_paths(j, shared_app_paths_len, rp_array); if (mismatch) { return classpath_failure("[APP classpath mismatch, actual: -Djava.class.path=", appcp); } } return true; } void FileMapInfo::log_paths(const char* msg, int start_idx, int end_idx) { LogTarget(Info, class, path) lt; if (lt.is_enabled()) { LogStream ls(lt); ls.print("%s", msg); const char* prefix = ""; for (int i = start_idx; i < end_idx; i++) { ls.print("%s%s", prefix, shared_path(i)->name()); prefix = os::path_separator(); } ls.cr(); } } bool FileMapInfo::validate_shared_path_table() { assert(UseSharedSpaces, "runtime only"); _validating_shared_path_table = true; // Load the shared path table info from the archive header _shared_path_table = header()->shared_path_table(); if (DynamicDumpSharedSpaces) { // Only support dynamic dumping with the usage of the default CDS archive // or a simple base archive. // If the base layer archive contains additional path component besides // the runtime image and the -cp, dynamic dumping is disabled. // // When dynamic archiving is enabled, the _shared_path_table is overwritten // to include the application path and stored in the top layer archive. assert(shared_path(0)->is_modules_image(), "first shared_path must be the modules image"); if (header()->app_class_paths_start_index() > 1) { DynamicDumpSharedSpaces = false; warning( "Dynamic archiving is disabled because base layer archive has appended boot classpath"); } if (header()->num_module_paths() > 0) { DynamicDumpSharedSpaces = false; warning( "Dynamic archiving is disabled because base layer archive has module path"); } } log_paths("Expecting BOOT path=", 0, header()->app_class_paths_start_index()); log_paths("Expecting -Djava.class.path=", header()->app_class_paths_start_index(), header()->app_module_paths_start_index()); int module_paths_start_index = header()->app_module_paths_start_index(); int shared_app_paths_len = 0; // validate the path entries up to the _max_used_path_index for (int i=0; i < header()->max_used_path_index() + 1; i++) { if (i < module_paths_start_index) { if (shared_path(i)->validate()) { // Only count the app class paths not from the "Class-path" attribute of a jar manifest. if (!shared_path(i)->from_class_path_attr() && i >= header()->app_class_paths_start_index()) { shared_app_paths_len++; } log_info(class, path)("ok"); } else { if (_dynamic_archive_info != NULL && _dynamic_archive_info->_is_static) { assert(!UseSharedSpaces, "UseSharedSpaces should be disabled"); } return false; } } else if (i >= module_paths_start_index) { if (shared_path(i)->validate(false /* not a class path entry */)) { log_info(class, path)("ok"); } else { if (_dynamic_archive_info != NULL && _dynamic_archive_info->_is_static) { assert(!UseSharedSpaces, "UseSharedSpaces should be disabled"); } return false; } } } if (header()->max_used_path_index() == 0) { // default archive only contains the module image in the bootclasspath assert(shared_path(0)->is_modules_image(), "first shared_path must be the modules image"); } else { if (!validate_boot_class_paths() || !validate_app_class_paths(shared_app_paths_len)) { fail_continue("shared class paths mismatch (hint: enable -Xlog:class+path=info to diagnose the failure)"); return false; } } validate_non_existent_class_paths(); _validating_shared_path_table = false; #if INCLUDE_JVMTI if (_classpath_entries_for_jvmti != NULL) { os::free(_classpath_entries_for_jvmti); } size_t sz = sizeof(ClassPathEntry*) * get_number_of_shared_paths(); _classpath_entries_for_jvmti = (ClassPathEntry**)os::malloc(sz, mtClass); memset((void*)_classpath_entries_for_jvmti, 0, sz); #endif return true; } void FileMapInfo::validate_non_existent_class_paths() { // All of the recorded non-existent paths came from the Class-Path: attribute from the JAR // files on the app classpath. If any of these are found to exist during runtime, // it will change how classes are loading for the app loader. For safety, disable // loading of archived platform/app classes (currently there's no way to disable just the // app classes). assert(UseSharedSpaces, "runtime only"); for (int i = header()->app_module_paths_start_index() + header()->num_module_paths(); i < get_number_of_shared_paths(); i++) { SharedClassPathEntry* ent = shared_path(i); if (!ent->check_non_existent()) { warning("Archived non-system classes are disabled because the " "file %s exists", ent->name()); header()->set_has_platform_or_app_classes(false); } } } bool FileMapInfo::check_archive(const char* archive_name, bool is_static) { int fd = os::open(archive_name, O_RDONLY | O_BINARY, 0); if (fd < 0) { // do not vm_exit_during_initialization here because Arguments::init_shared_archive_paths() // requires a shared archive name. The open_for_read() function will log a message regarding // failure in opening a shared archive. return false; } size_t sz = is_static ? sizeof(FileMapHeader) : sizeof(DynamicArchiveHeader); void* header = os::malloc(sz, mtInternal); memset(header, 0, sz); size_t n = os::read(fd, header, (unsigned int)sz); if (n != sz) { os::free(header); os::close(fd); vm_exit_during_initialization("Unable to read header from shared archive", archive_name); return false; } if (is_static) { FileMapHeader* static_header = (FileMapHeader*)header; if (static_header->magic() != CDS_ARCHIVE_MAGIC) { os::free(header); os::close(fd); vm_exit_during_initialization("Not a base shared archive", archive_name); return false; } } else { DynamicArchiveHeader* dynamic_header = (DynamicArchiveHeader*)header; if (dynamic_header->magic() != CDS_DYNAMIC_ARCHIVE_MAGIC) { os::free(header); os::close(fd); vm_exit_during_initialization("Not a top shared archive", archive_name); return false; } } os::free(header); os::close(fd); return true; } bool FileMapInfo::get_base_archive_name_from_header(const char* archive_name, int* size, char** base_archive_name) { int fd = os::open(archive_name, O_RDONLY | O_BINARY, 0); if (fd < 0) { *size = 0; return false; } // read the header as a dynamic archive header size_t sz = sizeof(DynamicArchiveHeader); DynamicArchiveHeader* dynamic_header = (DynamicArchiveHeader*)os::malloc(sz, mtInternal); size_t n = os::read(fd, dynamic_header, (unsigned int)sz); if (n != sz) { fail_continue("Unable to read the file header."); os::free(dynamic_header); os::close(fd); return false; } if (dynamic_header->magic() != CDS_DYNAMIC_ARCHIVE_MAGIC) { // Not a dynamic header, no need to proceed further. *size = 0; os::free(dynamic_header); os::close(fd); return false; } if (dynamic_header->base_archive_is_default()) { *base_archive_name = Arguments::get_default_shared_archive_path(); } else { // read the base archive name size_t name_size = dynamic_header->base_archive_name_size(); if (name_size == 0) { os::free(dynamic_header); os::close(fd); return false; } *base_archive_name = NEW_C_HEAP_ARRAY(char, name_size, mtInternal); n = os::read(fd, *base_archive_name, (unsigned int)name_size); if (n != name_size) { fail_continue("Unable to read the base archive name from the header."); FREE_C_HEAP_ARRAY(char, *base_archive_name); *base_archive_name = NULL; os::free(dynamic_header); os::close(fd); return false; } } os::free(dynamic_header); os::close(fd); return true; } void FileMapInfo::restore_shared_path_table() { _shared_path_table = _current_info->header()->shared_path_table(); } // Read the FileMapInfo information from the file. bool FileMapInfo::init_from_file(int fd) { size_t sz = is_static() ? sizeof(FileMapHeader) : sizeof(DynamicArchiveHeader); size_t n = os::read(fd, header(), (unsigned int)sz); if (n != sz) { fail_continue("Unable to read the file header."); return false; } if (!Arguments::has_jimage()) { FileMapInfo::fail_continue("The shared archive file cannot be used with an exploded module build."); return false; } unsigned int expected_magic = is_static() ? CDS_ARCHIVE_MAGIC : CDS_DYNAMIC_ARCHIVE_MAGIC; if (header()->magic() != expected_magic) { log_info(cds)("_magic expected: 0x%08x", expected_magic); log_info(cds)(" actual: 0x%08x", header()->magic()); FileMapInfo::fail_continue("The shared archive file has a bad magic number."); return false; } if (header()->version() != CURRENT_CDS_ARCHIVE_VERSION) { log_info(cds)("_version expected: %d", CURRENT_CDS_ARCHIVE_VERSION); log_info(cds)(" actual: %d", header()->version()); fail_continue("The shared archive file has the wrong version."); return false; } if (header()->header_size() != sz) { log_info(cds)("_header_size expected: " SIZE_FORMAT, sz); log_info(cds)(" actual: " SIZE_FORMAT, header()->header_size()); FileMapInfo::fail_continue("The shared archive file has an incorrect header size."); return false; } const char* actual_ident = header()->jvm_ident(); if (actual_ident[JVM_IDENT_MAX-1] != 0) { FileMapInfo::fail_continue("JVM version identifier is corrupted."); return false; } char expected_ident[JVM_IDENT_MAX]; get_header_version(expected_ident); if (strncmp(actual_ident, expected_ident, JVM_IDENT_MAX-1) != 0) { log_info(cds)("_jvm_ident expected: %s", expected_ident); log_info(cds)(" actual: %s", actual_ident); FileMapInfo::fail_continue("The shared archive file was created by a different" " version or build of HotSpot"); return false; } if (VerifySharedSpaces) { int expected_crc = header()->compute_crc(); if (expected_crc != header()->crc()) { log_info(cds)("_crc expected: %d", expected_crc); log_info(cds)(" actual: %d", header()->crc()); FileMapInfo::fail_continue("Header checksum verification failed."); return false; } } _file_offset = n + header()->base_archive_name_size(); // accounts for the size of _base_archive_name if (is_static()) { // just checking the last region is sufficient since the archive is written // in sequential order size_t len = lseek(fd, 0, SEEK_END); FileMapRegion* si = space_at(MetaspaceShared::last_valid_region); // The last space might be empty if (si->file_offset() > len || len - si->file_offset() < si->used()) { fail_continue("The shared archive file has been truncated."); return false; } } return true; } void FileMapInfo::seek_to_position(size_t pos) { if (lseek(_fd, (long)pos, SEEK_SET) < 0) { fail_stop("Unable to seek to position " SIZE_FORMAT, pos); } } // Read the FileMapInfo information from the file. bool FileMapInfo::open_for_read() { if (_file_open) { return true; } if (is_static()) { _full_path = Arguments::GetSharedArchivePath(); } else { _full_path = Arguments::GetSharedDynamicArchivePath(); } int fd = os::open(_full_path, O_RDONLY | O_BINARY, 0); if (fd < 0) { if (is_static()) { if (errno == ENOENT) { // Not locating the shared archive is ok. fail_continue("Specified shared archive not found (%s).", _full_path); } else { fail_continue("Failed to open shared archive file (%s).", os::strerror(errno)); } } else { log_warning(cds, dynamic)("specified dynamic archive doesn't exist: %s", _full_path); } return false; } _fd = fd; _file_open = true; return true; } // Write the FileMapInfo information to the file. void FileMapInfo::open_for_write(const char* path) { if (path == NULL) { _full_path = Arguments::GetSharedArchivePath(); } else { _full_path = path; } LogMessage(cds) msg; if (msg.is_info()) { msg.info("Dumping shared data to file: "); msg.info(" %s", _full_path); } #ifdef _WINDOWS // On Windows, need WRITE permission to remove the file. chmod(_full_path, _S_IREAD | _S_IWRITE); #endif // Use remove() to delete the existing file because, on Unix, this will // allow processes that have it open continued access to the file. remove(_full_path); int fd = os::open(_full_path, O_RDWR | O_CREAT | O_TRUNC | O_BINARY, 0444); if (fd < 0) { fail_stop("Unable to create shared archive file %s: (%s).", _full_path, os::strerror(errno)); } _fd = fd; _file_open = true; // Seek past the header. We will write the header after all regions are written // and their CRCs computed. size_t header_bytes = header()->header_size(); if (header()->magic() == CDS_DYNAMIC_ARCHIVE_MAGIC) { header_bytes += strlen(Arguments::GetSharedArchivePath()) + 1; } header_bytes = align_up(header_bytes, os::vm_allocation_granularity()); _file_offset = header_bytes; seek_to_position(_file_offset); } // Write the header to the file, seek to the next allocation boundary. void FileMapInfo::write_header() { _file_offset = 0; seek_to_position(_file_offset); char* base_archive_name = NULL; if (header()->magic() == CDS_DYNAMIC_ARCHIVE_MAGIC) { base_archive_name = (char*)Arguments::GetSharedArchivePath(); header()->set_base_archive_name_size(strlen(base_archive_name) + 1); header()->set_base_archive_is_default(FLAG_IS_DEFAULT(SharedArchiveFile)); } assert(is_file_position_aligned(), "must be"); write_bytes(header(), header()->header_size()); if (base_archive_name != NULL) { write_bytes(base_archive_name, header()->base_archive_name_size()); } } size_t FileMapRegion::used_aligned() const { return align_up(used(), os::vm_allocation_granularity()); } void FileMapRegion::init(bool is_heap_region, char* base, size_t size, bool read_only, bool allow_exec, int crc) { _is_heap_region = is_heap_region; _mapping_offset = 0; if (is_heap_region) { assert(!DynamicDumpSharedSpaces, "must be"); assert((base - (char*)CompressedKlassPointers::base()) % HeapWordSize == 0, "Sanity"); if (base != NULL) { _mapping_offset = (size_t)CompressedOops::encode_not_null((oop)base); assert(_mapping_offset >> 32 == 0, "must be 32-bit only"); } } else { if (base != NULL) { assert(base >= (char*)SharedBaseAddress, "must be"); _mapping_offset = base - (char*)SharedBaseAddress; } } _used = size; _read_only = read_only; _allow_exec = allow_exec; _crc = crc; _mapped_from_file = false; _mapped_base = NULL; } void FileMapInfo::write_region(int region, char* base, size_t size, bool read_only, bool allow_exec) { Arguments::assert_is_dumping_archive(); FileMapRegion* si = space_at(region); char* target_base = base; if (region == MetaspaceShared::bm) { target_base = NULL; } else if (DynamicDumpSharedSpaces) { assert(!HeapShared::is_heap_region(region), "dynamic archive doesn't support heap regions"); target_base = DynamicArchive::buffer_to_target(base); } si->set_file_offset(_file_offset); char* requested_base = (target_base == NULL) ? NULL : target_base + MetaspaceShared::final_delta(); log_info(cds)("Shared file region %d: " SIZE_FORMAT_HEX_W(08) " bytes, addr " INTPTR_FORMAT " file offset " SIZE_FORMAT_HEX_W(08), region, size, p2i(requested_base), _file_offset); int crc = ClassLoader::crc32(0, base, (jint)size); si->init(HeapShared::is_heap_region(region), target_base, size, read_only, allow_exec, crc); if (base != NULL) { write_bytes_aligned(base, size); } } void FileMapInfo::write_bitmap_region(const CHeapBitMap* ptrmap) { ResourceMark rm; size_t size_in_bits = ptrmap->size(); size_t size_in_bytes = ptrmap->size_in_bytes(); uintptr_t* buffer = (uintptr_t*)NEW_RESOURCE_ARRAY(char, size_in_bytes); ptrmap->write_to(buffer, size_in_bytes); header()->set_ptrmap_size_in_bits(size_in_bits); log_info(cds)("ptrmap = " INTPTR_FORMAT " (" SIZE_FORMAT " bytes)", p2i(buffer), size_in_bytes); write_region(MetaspaceShared::bm, (char*)buffer, size_in_bytes, /*read_only=*/true, /*allow_exec=*/false); } // Write out the given archive heap memory regions. GC code combines multiple // consecutive archive GC regions into one MemRegion whenever possible and // produces the 'heap_mem' array. // // If the archive heap memory size is smaller than a single dump time GC region // size, there is only one MemRegion in the array. // // If the archive heap memory size is bigger than one dump time GC region size, // the 'heap_mem' array may contain more than one consolidated MemRegions. When // the first/bottom archive GC region is a partial GC region (with the empty // portion at the higher address within the region), one MemRegion is used for // the bottom partial archive GC region. The rest of the consecutive archive // GC regions are combined into another MemRegion. // // Here's the mapping from (archive heap GC regions) -> (GrowableArray *regions). // + We have 1 or more archive heap regions: ah0, ah1, ah2 ..... ahn // + We have 1 or 2 consolidated heap memory regions: r0 and r1 // // If there's a single archive GC region (ah0), then r0 == ah0, and r1 is empty. // Otherwise: // // "X" represented space that's occupied by heap objects. // "_" represented unused spaced in the heap region. // // // |ah0 | ah1 | ah2| ...... | ahn| // |XXXXXX|__ |XXXXX|XXXX|XXXXXXXX|XXXX| // |<-r0->| |<- r1 ----------------->| // ^^^ // | // +-- gap size_t FileMapInfo::write_archive_heap_regions(GrowableArray *heap_mem, GrowableArray *oopmaps, int first_region_id, int max_num_regions) { assert(max_num_regions <= 2, "Only support maximum 2 memory regions"); int arr_len = heap_mem == NULL ? 0 : heap_mem->length(); if(arr_len > max_num_regions) { fail_stop("Unable to write archive heap memory regions: " "number of memory regions exceeds maximum due to fragmentation. " "Please increase java heap size " "(current MaxHeapSize is " SIZE_FORMAT ", InitialHeapSize is " SIZE_FORMAT ").", MaxHeapSize, InitialHeapSize); } size_t total_size = 0; for (int i = first_region_id, arr_idx = 0; i < first_region_id + max_num_regions; i++, arr_idx++) { char* start = NULL; size_t size = 0; if (arr_idx < arr_len) { start = (char*)heap_mem->at(arr_idx).start(); size = heap_mem->at(arr_idx).byte_size(); total_size += size; } log_info(cds)("Archive heap region %d: " INTPTR_FORMAT " - " INTPTR_FORMAT " = " SIZE_FORMAT_W(8) " bytes", i, p2i(start), p2i(start + size), size); write_region(i, start, size, false, false); if (size > 0) { address oopmap = oopmaps->at(arr_idx)._oopmap; assert(oopmap >= (address)SharedBaseAddress, "must be"); space_at(i)->init_oopmap(oopmap - (address)SharedBaseAddress, oopmaps->at(arr_idx)._oopmap_size_in_bits); } } return total_size; } // Dump bytes to file -- at the current file position. void FileMapInfo::write_bytes(const void* buffer, size_t nbytes) { assert(_file_open, "must be"); size_t n = os::write(_fd, buffer, (unsigned int)nbytes); if (n != nbytes) { // If the shared archive is corrupted, close it and remove it. close(); remove(_full_path); fail_stop("Unable to write to shared archive file."); } _file_offset += nbytes; } bool FileMapInfo::is_file_position_aligned() const { return _file_offset == align_up(_file_offset, os::vm_allocation_granularity()); } // Align file position to an allocation unit boundary. void FileMapInfo::align_file_position() { assert(_file_open, "must be"); size_t new_file_offset = align_up(_file_offset, os::vm_allocation_granularity()); if (new_file_offset != _file_offset) { _file_offset = new_file_offset; // Seek one byte back from the target and write a byte to insure // that the written file is the correct length. _file_offset -= 1; seek_to_position(_file_offset); char zero = 0; write_bytes(&zero, 1); } } // Dump bytes to file -- at the current file position. void FileMapInfo::write_bytes_aligned(const void* buffer, size_t nbytes) { align_file_position(); write_bytes(buffer, nbytes); align_file_position(); } void FileMapInfo::set_final_requested_base(char* b) { header()->set_final_requested_base(b); } // Close the shared archive file. This does NOT unmap mapped regions. void FileMapInfo::close() { if (_file_open) { if (::close(_fd) < 0) { fail_stop("Unable to close the shared archive file."); } _file_open = false; _fd = -1; } } // JVM/TI RedefineClasses() support: // Remap the shared readonly space to shared readwrite, private. bool FileMapInfo::remap_shared_readonly_as_readwrite() { int idx = MetaspaceShared::ro; FileMapRegion* si = space_at(idx); if (!si->read_only()) { // the space is already readwrite so we are done return true; } size_t used = si->used(); size_t size = align_up(used, os::vm_allocation_granularity()); if (!open_for_read()) { return false; } char *addr = region_addr(idx); char *base = os::remap_memory(_fd, _full_path, si->file_offset(), addr, size, false /* !read_only */, si->allow_exec()); close(); // These have to be errors because the shared region is now unmapped. if (base == NULL) { log_error(cds)("Unable to remap shared readonly space (errno=%d).", errno); vm_exit(1); } if (base != addr) { log_error(cds)("Unable to remap shared readonly space (errno=%d).", errno); vm_exit(1); } si->set_read_only(false); return true; } // Memory map a region in the address space. static const char* shared_region_name[] = { "MiscData", "ReadWrite", "ReadOnly", "MiscCode", "Bitmap", "String1", "String2", "OpenArchive1", "OpenArchive2" }; MapArchiveResult FileMapInfo::map_regions(int regions[], int num_regions, char* mapped_base_address, ReservedSpace rs) { FileMapRegion* last_region = NULL; intx addr_delta = mapped_base_address - header()->requested_base_address(); DEBUG_ONLY(header()->set_mapped_base_address((char*)(uintptr_t)0xdeadbeef);) for (int r = 0; r < num_regions; r++) { int idx = regions[r]; MapArchiveResult result = map_region(idx, addr_delta, mapped_base_address, rs); if (result != MAP_ARCHIVE_SUCCESS) { return result; } FileMapRegion* si = space_at(idx); if (last_region != NULL) { // Ensure that the OS won't be able to allocate new memory spaces between any mapped // regions, or else it would mess up the simple comparision in MetaspaceObj::is_shared(). assert(si->mapped_base() == last_region->mapped_end(), "must have no gaps"); } log_info(cds)("Mapped %s region #%d at base " INTPTR_FORMAT " top " INTPTR_FORMAT " (%s)", is_static() ? "static " : "dynamic", idx, p2i(si->mapped_base()), p2i(si->mapped_end()), shared_region_name[idx]); last_region = si; } DEBUG_ONLY(if (addr_delta == 0 && SharedBaseAddress == 0) { // This is for simulating mmap failures at the requested location, so we can thoroughly // test the code for failure handling (releasing all allocated resource) and retry mapping // at an alternative address picked by the OS. log_info(cds)("SharedBaseAddress == 0: always map archive(s) at an alternative address"); return MAP_ARCHIVE_MMAP_FAILURE; }); header()->set_mapped_base_address(header()->requested_base_address() + addr_delta); if (addr_delta != 0 && !relocate_pointers(addr_delta)) { return MAP_ARCHIVE_OTHER_FAILURE; } return MAP_ARCHIVE_SUCCESS; } bool FileMapInfo::read_region(int i, char* base, size_t size) { assert(MetaspaceShared::use_windows_memory_mapping(), "used by windows only"); FileMapRegion* si = space_at(i); log_info(cds)("Commit %s region #%d at base " INTPTR_FORMAT " top " INTPTR_FORMAT " (%s)%s", is_static() ? "static " : "dynamic", i, p2i(base), p2i(base + size), shared_region_name[i], si->allow_exec() ? " exec" : ""); if (!os::commit_memory(base, size, si->allow_exec())) { log_error(cds)("Failed to commit %s region #%d (%s)", is_static() ? "static " : "dynamic", i, shared_region_name[i]); return false; } if (lseek(_fd, (long)si->file_offset(), SEEK_SET) != (int)si->file_offset() || read_bytes(base, size) != size) { return false; } return true; } MapArchiveResult FileMapInfo::map_region(int i, intx addr_delta, char* mapped_base_address, ReservedSpace rs) { assert(!HeapShared::is_heap_region(i), "sanity"); FileMapRegion* si = space_at(i); size_t size = si->used_aligned(); char *requested_addr = mapped_base_address + si->mapping_offset(); assert(si->mapped_base() == NULL, "must be not mapped yet"); assert(requested_addr != NULL, "must be specified"); si->set_mapped_from_file(false); if (MetaspaceShared::use_windows_memory_mapping()) { // Windows cannot remap read-only shared memory to read-write when required for // RedefineClasses, which is also used by JFR. Always map windows regions as RW. si->set_read_only(false); } else if (JvmtiExport::can_modify_any_class() || JvmtiExport::can_walk_any_space() || Arguments::has_jfr_option()) { // If a tool agent is in use (debugging enabled), or JFR, we must map the address space RW si->set_read_only(false); } else if (addr_delta != 0) { si->set_read_only(false); // Need to patch the pointers } if (rs.is_reserved()) { assert(rs.contains(requested_addr) && rs.contains(requested_addr + size - 1), "must be"); MemTracker::record_virtual_memory_type((address)requested_addr, mtClassShared); } if (MetaspaceShared::use_windows_memory_mapping() && addr_delta != 0) { // This is the second time we try to map the archive(s). We have already created a ReservedSpace // that covers all the FileMapRegions to ensure all regions can be mapped. However, Windows // can't mmap into a ReservedSpace, so we just os::read() the data. We're going to patch all the // regions anyway, so there's no benefit for mmap anyway. if (!read_region(i, requested_addr, size)) { return MAP_ARCHIVE_OTHER_FAILURE; // oom or I/O error. } } else { char* base = os::map_memory(_fd, _full_path, si->file_offset(), requested_addr, size, si->read_only(), si->allow_exec()); if (base != requested_addr) { log_info(cds)("Unable to map %s shared space at required address.", shared_region_name[i]); _memory_mapping_failed = true; return MAP_ARCHIVE_MMAP_FAILURE; } si->set_mapped_from_file(true); } si->set_mapped_base(requested_addr); if (!rs.is_reserved()) { // When mapping on Windows with (addr_delta == 0), we don't reserve the address space for the regions // (Windows can't mmap into a ReservedSpace). In this case, NMT requires we call it after // os::map_memory has succeeded. MemTracker::record_virtual_memory_type((address)requested_addr, mtClassShared); } if (VerifySharedSpaces && !verify_region_checksum(i)) { return MAP_ARCHIVE_OTHER_FAILURE; } return MAP_ARCHIVE_SUCCESS; } char* FileMapInfo::map_relocation_bitmap(size_t& bitmap_size) { FileMapRegion* si = space_at(MetaspaceShared::bm); bitmap_size = si->used_aligned(); bool read_only = true, allow_exec = false; char* requested_addr = NULL; // allow OS to pick any location char* bitmap_base = os::map_memory(_fd, _full_path, si->file_offset(), requested_addr, bitmap_size, read_only, allow_exec); if (VerifySharedSpaces && bitmap_base != NULL && !region_crc_check(bitmap_base, bitmap_size, si->crc())) { log_error(cds)("relocation bitmap CRC error"); if (!os::unmap_memory(bitmap_base, bitmap_size)) { fatal("os::unmap_memory of relocation bitmap failed"); } return NULL; } return bitmap_base; } bool FileMapInfo::relocate_pointers(intx addr_delta) { log_debug(cds, reloc)("runtime archive relocation start"); size_t bitmap_size; char* bitmap_base = map_relocation_bitmap(bitmap_size); if (bitmap_base != NULL) { size_t ptrmap_size_in_bits = header()->ptrmap_size_in_bits(); log_debug(cds, reloc)("mapped relocation bitmap @ " INTPTR_FORMAT " (" SIZE_FORMAT " bytes = " SIZE_FORMAT " bits)", p2i(bitmap_base), bitmap_size, ptrmap_size_in_bits); BitMapView ptrmap((BitMap::bm_word_t*)bitmap_base, ptrmap_size_in_bits); // Patch all pointers in the the mapped region that are marked by ptrmap. address patch_base = (address)mapped_base(); address patch_end = (address)mapped_end(); // debug only -- the current value of the pointers to be patched must be within this // range (i.e., must be between the requesed base address, and the of the current archive). // Note: top archive may point to objects in the base archive, but not the other way around. address valid_old_base = (address)header()->requested_base_address(); address valid_old_end = valid_old_base + mapping_end_offset(); // debug only -- after patching, the pointers must point inside this range // (the requested location of the archive, as mapped at runtime). address valid_new_base = (address)header()->mapped_base_address(); address valid_new_end = (address)mapped_end(); SharedDataRelocator patcher((address*)patch_base, (address*)patch_end, valid_old_base, valid_old_end, valid_new_base, valid_new_end, addr_delta); ptrmap.iterate(&patcher); if (!os::unmap_memory(bitmap_base, bitmap_size)) { fatal("os::unmap_memory of relocation bitmap failed"); } log_debug(cds, reloc)("runtime archive relocation done"); return true; } else { log_error(cds)("failed to map relocation bitmap"); return false; } } size_t FileMapInfo::read_bytes(void* buffer, size_t count) { assert(_file_open, "Archive file is not open"); size_t n = os::read(_fd, buffer, (unsigned int)count); if (n != count) { // Close the file if there's a problem reading it. close(); return 0; } _file_offset += count; return count; } address FileMapInfo::decode_start_address(FileMapRegion* spc, bool with_current_oop_encoding_mode) { size_t offset = spc->mapping_offset(); assert((offset >> 32) == 0, "must be 32-bit only"); uint n = (uint)offset; if (with_current_oop_encoding_mode) { return (address)CompressedOops::decode_not_null(n); } else { return (address)HeapShared::decode_from_archive(n); } } static MemRegion *closed_archive_heap_ranges = NULL; static MemRegion *open_archive_heap_ranges = NULL; static int num_closed_archive_heap_ranges = 0; static int num_open_archive_heap_ranges = 0; #if INCLUDE_CDS_JAVA_HEAP bool FileMapInfo::has_heap_regions() { return (space_at(MetaspaceShared::first_closed_archive_heap_region)->used() > 0); } // Returns the address range of the archived heap regions computed using the // current oop encoding mode. This range may be different than the one seen at // dump time due to encoding mode differences. The result is used in determining // if/how these regions should be relocated at run time. MemRegion FileMapInfo::get_heap_regions_range_with_current_oop_encoding_mode() { address start = (address) max_uintx; address end = NULL; for (int i = MetaspaceShared::first_closed_archive_heap_region; i <= MetaspaceShared::last_valid_region; i++) { FileMapRegion* si = space_at(i); size_t size = si->used(); if (size > 0) { address s = start_address_as_decoded_with_current_oop_encoding_mode(si); address e = s + size; if (start > s) { start = s; } if (end < e) { end = e; } } } assert(end != NULL, "must have at least one used heap region"); return MemRegion((HeapWord*)start, (HeapWord*)end); } // // Map the closed and open archive heap objects to the runtime java heap. // // The shared objects are mapped at (or close to ) the java heap top in // closed archive regions. The mapped objects contain no out-going // references to any other java heap regions. GC does not write into the // mapped closed archive heap region. // // The open archive heap objects are mapped below the shared objects in // the runtime java heap. The mapped open archive heap data only contains // references to the shared objects and open archive objects initially. // During runtime execution, out-going references to any other java heap // regions may be added. GC may mark and update references in the mapped // open archive objects. void FileMapInfo::map_heap_regions_impl() { if (!HeapShared::is_heap_object_archiving_allowed()) { log_info(cds)("CDS heap data is being ignored. UseG1GC, " "UseCompressedOops and UseCompressedClassPointers are required."); return; } if (JvmtiExport::should_post_class_file_load_hook() && JvmtiExport::has_early_class_hook_env()) { ShouldNotReachHere(); // CDS should have been disabled. // The archived objects are mapped at JVM start-up, but we don't know if // j.l.String or j.l.Class might be replaced by the ClassFileLoadHook, // which would make the archived String or mirror objects invalid. Let's be safe and not // use the archived objects. These 2 classes are loaded during the JVMTI "early" stage. // // If JvmtiExport::has_early_class_hook_env() is false, the classes of some objects // in the archived subgraphs may be replaced by the ClassFileLoadHook. But that's OK // because we won't install an archived object subgraph if the klass of any of the // referenced objects are replaced. See HeapShared::initialize_from_archived_subgraph(). } log_info(cds)("CDS archive was created with max heap size = " SIZE_FORMAT "M, and the following configuration:", max_heap_size()/M); log_info(cds)(" narrow_klass_base = " PTR_FORMAT ", narrow_klass_shift = %d", p2i(narrow_klass_base()), narrow_klass_shift()); log_info(cds)(" narrow_oop_mode = %d, narrow_oop_base = " PTR_FORMAT ", narrow_oop_shift = %d", narrow_oop_mode(), p2i(narrow_oop_base()), narrow_oop_shift()); log_info(cds)("The current max heap size = " SIZE_FORMAT "M, HeapRegion::GrainBytes = " SIZE_FORMAT, MaxHeapSize/M, HeapRegion::GrainBytes); log_info(cds)(" narrow_klass_base = " PTR_FORMAT ", narrow_klass_shift = %d", p2i(CompressedKlassPointers::base()), CompressedKlassPointers::shift()); log_info(cds)(" narrow_oop_mode = %d, narrow_oop_base = " PTR_FORMAT ", narrow_oop_shift = %d", CompressedOops::mode(), p2i(CompressedOops::base()), CompressedOops::shift()); if (narrow_klass_base() != CompressedKlassPointers::base() || narrow_klass_shift() != CompressedKlassPointers::shift()) { log_info(cds)("CDS heap data cannot be used because the archive was created with an incompatible narrow klass encoding mode."); return; } if (narrow_oop_mode() != CompressedOops::mode() || narrow_oop_base() != CompressedOops::base() || narrow_oop_shift() != CompressedOops::shift()) { log_info(cds)("CDS heap data need to be relocated because the archive was created with an incompatible oop encoding mode."); _heap_pointers_need_patching = true; } else { MemRegion range = get_heap_regions_range_with_current_oop_encoding_mode(); if (!CompressedOops::is_in(range)) { log_info(cds)("CDS heap data need to be relocated because"); log_info(cds)("the desired range " PTR_FORMAT " - " PTR_FORMAT, p2i(range.start()), p2i(range.end())); log_info(cds)("is outside of the heap " PTR_FORMAT " - " PTR_FORMAT, p2i(CompressedOops::begin()), p2i(CompressedOops::end())); _heap_pointers_need_patching = true; } } ptrdiff_t delta = 0; if (_heap_pointers_need_patching) { // dumptime heap end ------------v // [ |archived heap regions| ] runtime heap end ------v // [ |archived heap regions| ] // |<-----delta-------------------->| // // At dump time, the archived heap regions were near the top of the heap. // At run time, they may not be inside the heap, so we move them so // that they are now near the top of the runtime time. This can be done by // the simple math of adding the delta as shown above. address dumptime_heap_end = header()->heap_end(); address runtime_heap_end = (address)CompressedOops::end(); delta = runtime_heap_end - dumptime_heap_end; } log_info(cds)("CDS heap data relocation delta = " INTX_FORMAT " bytes", delta); HeapShared::init_narrow_oop_decoding(narrow_oop_base() + delta, narrow_oop_shift()); FileMapRegion* si = space_at(MetaspaceShared::first_closed_archive_heap_region); address relocated_closed_heap_region_bottom = start_address_as_decoded_from_archive(si); if (!is_aligned(relocated_closed_heap_region_bottom, HeapRegion::GrainBytes)) { // Align the bottom of the closed archive heap regions at G1 region boundary. // This will avoid the situation where the highest open region and the lowest // closed region sharing the same G1 region. Otherwise we will fail to map the // open regions. size_t align = size_t(relocated_closed_heap_region_bottom) % HeapRegion::GrainBytes; delta -= align; log_info(cds)("CDS heap data need to be relocated lower by a further " SIZE_FORMAT " bytes to " INTX_FORMAT " to be aligned with HeapRegion::GrainBytes", align, delta); HeapShared::init_narrow_oop_decoding(narrow_oop_base() + delta, narrow_oop_shift()); _heap_pointers_need_patching = true; relocated_closed_heap_region_bottom = start_address_as_decoded_from_archive(si); } assert(is_aligned(relocated_closed_heap_region_bottom, HeapRegion::GrainBytes), "must be"); // Map the closed_archive_heap regions, GC does not write into the regions. if (map_heap_data(&closed_archive_heap_ranges, MetaspaceShared::first_closed_archive_heap_region, MetaspaceShared::max_closed_archive_heap_region, &num_closed_archive_heap_ranges)) { HeapShared::set_closed_archive_heap_region_mapped(); // Now, map open_archive heap regions, GC can write into the regions. if (map_heap_data(&open_archive_heap_ranges, MetaspaceShared::first_open_archive_heap_region, MetaspaceShared::max_open_archive_heap_region, &num_open_archive_heap_ranges, true /* open */)) { HeapShared::set_open_archive_heap_region_mapped(); } } } void FileMapInfo::map_heap_regions() { if (has_heap_regions()) { map_heap_regions_impl(); } if (!HeapShared::closed_archive_heap_region_mapped()) { assert(closed_archive_heap_ranges == NULL && num_closed_archive_heap_ranges == 0, "sanity"); } if (!HeapShared::open_archive_heap_region_mapped()) { assert(open_archive_heap_ranges == NULL && num_open_archive_heap_ranges == 0, "sanity"); } } bool FileMapInfo::map_heap_data(MemRegion **heap_mem, int first, int max, int* num, bool is_open_archive) { MemRegion * regions = new MemRegion[max]; FileMapRegion* si; int region_num = 0; for (int i = first; i < first + max; i++) { si = space_at(i); size_t size = si->used(); if (size > 0) { HeapWord* start = (HeapWord*)start_address_as_decoded_from_archive(si); regions[region_num] = MemRegion(start, size / HeapWordSize); region_num ++; log_info(cds)("Trying to map heap data: region[%d] at " INTPTR_FORMAT ", size = " SIZE_FORMAT_W(8) " bytes", i, p2i(start), size); } } if (region_num == 0) { return false; // no archived java heap data } // Check that ranges are within the java heap if (!G1CollectedHeap::heap()->check_archive_addresses(regions, region_num)) { log_info(cds)("UseSharedSpaces: Unable to allocate region, range is not within java heap."); return false; } // allocate from java heap if (!G1CollectedHeap::heap()->alloc_archive_regions( regions, region_num, is_open_archive)) { log_info(cds)("UseSharedSpaces: Unable to allocate region, java heap range is already in use."); return false; } // Map the archived heap data. No need to call MemTracker::record_virtual_memory_type() // for mapped regions as they are part of the reserved java heap, which is // already recorded. for (int i = 0; i < region_num; i++) { si = space_at(first + i); char* addr = (char*)regions[i].start(); char* base = os::map_memory(_fd, _full_path, si->file_offset(), addr, regions[i].byte_size(), si->read_only(), si->allow_exec()); if (base == NULL || base != addr) { // dealloc the regions from java heap dealloc_archive_heap_regions(regions, region_num, is_open_archive); log_info(cds)("UseSharedSpaces: Unable to map at required address in java heap. " INTPTR_FORMAT ", size = " SIZE_FORMAT " bytes", p2i(addr), regions[i].byte_size()); return false; } if (VerifySharedSpaces && !region_crc_check(addr, regions[i].byte_size(), si->crc())) { // dealloc the regions from java heap dealloc_archive_heap_regions(regions, region_num, is_open_archive); log_info(cds)("UseSharedSpaces: mapped heap regions are corrupt"); return false; } } // the shared heap data is mapped successfully *heap_mem = regions; *num = region_num; return true; } void FileMapInfo::patch_archived_heap_embedded_pointers() { if (!_heap_pointers_need_patching) { return; } patch_archived_heap_embedded_pointers(closed_archive_heap_ranges, num_closed_archive_heap_ranges, MetaspaceShared::first_closed_archive_heap_region); patch_archived_heap_embedded_pointers(open_archive_heap_ranges, num_open_archive_heap_ranges, MetaspaceShared::first_open_archive_heap_region); } void FileMapInfo::patch_archived_heap_embedded_pointers(MemRegion* ranges, int num_ranges, int first_region_idx) { for (int i=0; ioopmap_offset()), si->oopmap_size_in_bits()); } } // This internally allocates objects using SystemDictionary::Object_klass(), so it // must be called after the well-known classes are resolved. void FileMapInfo::fixup_mapped_heap_regions() { // If any closed regions were found, call the fill routine to make them parseable. // Note that closed_archive_heap_ranges may be non-NULL even if no ranges were found. if (num_closed_archive_heap_ranges != 0) { assert(closed_archive_heap_ranges != NULL, "Null closed_archive_heap_ranges array with non-zero count"); G1CollectedHeap::heap()->fill_archive_regions(closed_archive_heap_ranges, num_closed_archive_heap_ranges); } // do the same for mapped open archive heap regions if (num_open_archive_heap_ranges != 0) { assert(open_archive_heap_ranges != NULL, "NULL open_archive_heap_ranges array with non-zero count"); G1CollectedHeap::heap()->fill_archive_regions(open_archive_heap_ranges, num_open_archive_heap_ranges); } } // dealloc the archive regions from java heap void FileMapInfo::dealloc_archive_heap_regions(MemRegion* regions, int num, bool is_open) { if (num > 0) { assert(regions != NULL, "Null archive ranges array with non-zero count"); G1CollectedHeap::heap()->dealloc_archive_regions(regions, num, is_open); } } #endif // INCLUDE_CDS_JAVA_HEAP bool FileMapInfo::region_crc_check(char* buf, size_t size, int expected_crc) { int crc = ClassLoader::crc32(0, buf, (jint)size); if (crc != expected_crc) { fail_continue("Checksum verification failed."); return false; } return true; } bool FileMapInfo::verify_region_checksum(int i) { assert(VerifySharedSpaces, "sanity"); size_t sz = space_at(i)->used(); if (sz == 0) { return true; // no data } else { return region_crc_check(region_addr(i), sz, space_at(i)->crc()); } } void FileMapInfo::unmap_regions(int regions[], int num_regions) { for (int r = 0; r < num_regions; r++) { int idx = regions[r]; unmap_region(idx); } } // Unmap a memory region in the address space. void FileMapInfo::unmap_region(int i) { assert(!HeapShared::is_heap_region(i), "sanity"); FileMapRegion* si = space_at(i); char* mapped_base = si->mapped_base(); size_t used = si->used(); size_t size = align_up(used, os::vm_allocation_granularity()); if (mapped_base != NULL && size > 0 && si->mapped_from_file()) { log_info(cds)("Unmapping region #%d at base " INTPTR_FORMAT " (%s)", i, p2i(mapped_base), shared_region_name[i]); if (!os::unmap_memory(mapped_base, size)) { fatal("os::unmap_memory failed"); } si->set_mapped_base(NULL); } } void FileMapInfo::assert_mark(bool check) { if (!check) { fail_stop("Mark mismatch while restoring from shared file."); } } void FileMapInfo::metaspace_pointers_do(MetaspaceClosure* it) { _shared_path_table.metaspace_pointers_do(it); } FileMapInfo* FileMapInfo::_current_info = NULL; FileMapInfo* FileMapInfo::_dynamic_archive_info = NULL; bool FileMapInfo::_heap_pointers_need_patching = false; SharedPathTable FileMapInfo::_shared_path_table; bool FileMapInfo::_validating_shared_path_table = false; bool FileMapInfo::_memory_mapping_failed = false; GrowableArray* FileMapInfo::_non_existent_class_paths = NULL; // Open the shared archive file, read and validate the header // information (version, boot classpath, etc.). If initialization // fails, shared spaces are disabled and the file is closed. [See // fail_continue.] // // Validation of the archive is done in two steps: // // [1] validate_header() - done here. // [2] validate_shared_path_table - this is done later, because the table is in the RW // region of the archive, which is not mapped yet. bool FileMapInfo::initialize() { assert(UseSharedSpaces, "UseSharedSpaces expected."); if (JvmtiExport::should_post_class_file_load_hook() && JvmtiExport::has_early_class_hook_env()) { // CDS assumes that no classes resolved in SystemDictionary::resolve_well_known_classes // are replaced at runtime by JVMTI ClassFileLoadHook. All of those classes are resolved // during the JVMTI "early" stage, so we can still use CDS if // JvmtiExport::has_early_class_hook_env() is false. FileMapInfo::fail_continue("CDS is disabled because early JVMTI ClassFileLoadHook is in use."); return false; } if (!open_for_read()) { return false; } if (!init_from_file(_fd)) { return false; } if (!validate_header()) { return false; } return true; } char* FileMapInfo::region_addr(int idx) { FileMapRegion* si = space_at(idx); if (HeapShared::is_heap_region(idx)) { assert(DumpSharedSpaces, "The following doesn't work at runtime"); return si->used() > 0 ? (char*)start_address_as_decoded_with_current_oop_encoding_mode(si) : NULL; } else { return si->mapped_base(); } } FileMapRegion* FileMapInfo::first_core_space() const { return is_static() ? space_at(MetaspaceShared::mc) : space_at(MetaspaceShared::rw); } FileMapRegion* FileMapInfo::last_core_space() const { return is_static() ? space_at(MetaspaceShared::md) : space_at(MetaspaceShared::mc); } int FileMapHeader::compute_crc() { char* start = (char*)this; // start computing from the field after _crc char* buf = (char*)&_crc + sizeof(_crc); size_t sz = _header_size - (buf - start); int crc = ClassLoader::crc32(0, buf, (jint)sz); return crc; } // This function should only be called during run time with UseSharedSpaces enabled. bool FileMapHeader::validate() { if (_obj_alignment != ObjectAlignmentInBytes) { FileMapInfo::fail_continue("The shared archive file's ObjectAlignmentInBytes of %d" " does not equal the current ObjectAlignmentInBytes of " INTX_FORMAT ".", _obj_alignment, ObjectAlignmentInBytes); return false; } if (_compact_strings != CompactStrings) { FileMapInfo::fail_continue("The shared archive file's CompactStrings setting (%s)" " does not equal the current CompactStrings setting (%s).", _compact_strings ? "enabled" : "disabled", CompactStrings ? "enabled" : "disabled"); return false; } // This must be done after header validation because it might change the // header data const char* prop = Arguments::get_property("java.system.class.loader"); if (prop != NULL) { warning("Archived non-system classes are disabled because the " "java.system.class.loader property is specified (value = \"%s\"). " "To use archived non-system classes, this property must not be set", prop); _has_platform_or_app_classes = false; } // For backwards compatibility, we don't check the verification setting // if the archive only contains system classes. if (_has_platform_or_app_classes && ((!_verify_local && BytecodeVerificationLocal) || (!_verify_remote && BytecodeVerificationRemote))) { FileMapInfo::fail_continue("The shared archive file was created with less restrictive " "verification setting than the current setting."); return false; } // Java agents are allowed during run time. Therefore, the following condition is not // checked: (!_allow_archiving_with_java_agent && AllowArchivingWithJavaAgent) // Note: _allow_archiving_with_java_agent is set in the shared archive during dump time // while AllowArchivingWithJavaAgent is set during the current run. if (_allow_archiving_with_java_agent && !AllowArchivingWithJavaAgent) { FileMapInfo::fail_continue("The setting of the AllowArchivingWithJavaAgent is different " "from the setting in the shared archive."); return false; } if (_allow_archiving_with_java_agent) { warning("This archive was created with AllowArchivingWithJavaAgent. It should be used " "for testing purposes only and should not be used in a production environment"); } return true; } bool FileMapInfo::validate_header() { return header()->validate(); } // Check if a given address is within one of the shared regions bool FileMapInfo::is_in_shared_region(const void* p, int idx) { assert(idx == MetaspaceShared::ro || idx == MetaspaceShared::rw || idx == MetaspaceShared::mc || idx == MetaspaceShared::md, "invalid region index"); char* base = region_addr(idx); if (p >= base && p < base + space_at(idx)->used()) { return true; } return false; } // Unmap mapped regions of shared space. void FileMapInfo::stop_sharing_and_unmap(const char* msg) { MetaspaceShared::set_shared_metaspace_range(NULL, NULL, NULL); FileMapInfo *map_info = FileMapInfo::current_info(); if (map_info) { map_info->fail_continue("%s", msg); for (int i = 0; i < MetaspaceShared::num_non_heap_spaces; i++) { if (!HeapShared::is_heap_region(i)) { map_info->unmap_region(i); } } // Dealloc the archive heap regions only without unmapping. The regions are part // of the java heap. Unmapping of the heap regions are managed by GC. map_info->dealloc_archive_heap_regions(open_archive_heap_ranges, num_open_archive_heap_ranges, true); map_info->dealloc_archive_heap_regions(closed_archive_heap_ranges, num_closed_archive_heap_ranges, false); } else if (DumpSharedSpaces) { fail_stop("%s", msg); } } #if INCLUDE_JVMTI ClassPathEntry** FileMapInfo::_classpath_entries_for_jvmti = NULL; ClassPathEntry* FileMapInfo::get_classpath_entry_for_jvmti(int i, TRAPS) { ClassPathEntry* ent = _classpath_entries_for_jvmti[i]; if (ent == NULL) { if (i == 0) { ent = ClassLoader::get_jrt_entry(); assert(ent != NULL, "must be"); } else { SharedClassPathEntry* scpe = shared_path(i); assert(scpe->is_jar(), "must be"); // other types of scpe will not produce archived classes const char* path = scpe->name(); struct stat st; if (os::stat(path, &st) != 0) { char *msg = NEW_RESOURCE_ARRAY_IN_THREAD(THREAD, char, strlen(path) + 128); ; jio_snprintf(msg, strlen(path) + 127, "error in opening JAR file %s", path); THROW_MSG_(vmSymbols::java_io_IOException(), msg, NULL); } else { ent = ClassLoader::create_class_path_entry(path, &st, /*throw_exception=*/true, false, false, CHECK_NULL); } } MutexLocker mu(CDSClassFileStream_lock, THREAD); if (_classpath_entries_for_jvmti[i] == NULL) { _classpath_entries_for_jvmti[i] = ent; } else { // Another thread has beat me to creating this entry delete ent; ent = _classpath_entries_for_jvmti[i]; } } return ent; } ClassFileStream* FileMapInfo::open_stream_for_jvmti(InstanceKlass* ik, Handle class_loader, TRAPS) { int path_index = ik->shared_classpath_index(); assert(path_index >= 0, "should be called for shared built-in classes only"); assert(path_index < (int)get_number_of_shared_paths(), "sanity"); ClassPathEntry* cpe = get_classpath_entry_for_jvmti(path_index, CHECK_NULL); assert(cpe != NULL, "must be"); Symbol* name = ik->name(); const char* const class_name = name->as_C_string(); const char* const file_name = ClassLoader::file_name_for_class_name(class_name, name->utf8_length()); ClassLoaderData* loader_data = ClassLoaderData::class_loader_data(class_loader()); ClassFileStream* cfs = cpe->open_stream_for_loader(file_name, loader_data, THREAD); assert(cfs != NULL, "must be able to read the classfile data of shared classes for built-in loaders."); log_debug(cds, jvmti)("classfile data for %s [%d: %s] = %d bytes", class_name, path_index, cfs->source(), cfs->length()); return cfs; } #endif