1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "ci/ciValueArrayKlass.hpp"
  38 #include "ci/ciValueKlass.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset(int max_vregs) {
  59   // Initialize array sizes
  60   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _virtual_operands.trunc_to(0);
  62   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _other_operands.trunc_to(0);
  64   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _vreg_table.trunc_to(0);
  66 }
  67 
  68 
  69 
  70 //--------------------------------------------------------------
  71 // PhiResolver
  72 
  73 // Resolves cycles:
  74 //
  75 //  r1 := r2  becomes  temp := r1
  76 //  r2 := r1           r1 := r2
  77 //                     r2 := temp
  78 // and orders moves:
  79 //
  80 //  r2 := r3  becomes  r1 := r2
  81 //  r1 := r2           r2 := r3
  82 
  83 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  84  : _gen(gen)
  85  , _state(gen->resolver_state())
  86  , _temp(LIR_OprFact::illegalOpr)
  87 {
  88   // reinitialize the shared state arrays
  89   _state.reset(max_vregs);
  90 }
  91 
  92 
  93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  94   assert(src->is_valid(), "");
  95   assert(dest->is_valid(), "");
  96   __ move(src, dest);
  97 }
  98 
  99 
 100 void PhiResolver::move_temp_to(LIR_Opr dest) {
 101   assert(_temp->is_valid(), "");
 102   emit_move(_temp, dest);
 103   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 104 }
 105 
 106 
 107 void PhiResolver::move_to_temp(LIR_Opr src) {
 108   assert(_temp->is_illegal(), "");
 109   _temp = _gen->new_register(src->type());
 110   emit_move(src, _temp);
 111 }
 112 
 113 
 114 // Traverse assignment graph in depth first order and generate moves in post order
 115 // ie. two assignments: b := c, a := b start with node c:
 116 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 117 // Generates moves in this order: move b to a and move c to b
 118 // ie. cycle a := b, b := a start with node a
 119 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 120 // Generates moves in this order: move b to temp, move a to b, move temp to a
 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 122   if (!dest->visited()) {
 123     dest->set_visited();
 124     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 125       move(dest, dest->destination_at(i));
 126     }
 127   } else if (!dest->start_node()) {
 128     // cylce in graph detected
 129     assert(_loop == NULL, "only one loop valid!");
 130     _loop = dest;
 131     move_to_temp(src->operand());
 132     return;
 133   } // else dest is a start node
 134 
 135   if (!dest->assigned()) {
 136     if (_loop == dest) {
 137       move_temp_to(dest->operand());
 138       dest->set_assigned();
 139     } else if (src != NULL) {
 140       emit_move(src->operand(), dest->operand());
 141       dest->set_assigned();
 142     }
 143   }
 144 }
 145 
 146 
 147 PhiResolver::~PhiResolver() {
 148   int i;
 149   // resolve any cycles in moves from and to virtual registers
 150   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 151     ResolveNode* node = virtual_operands().at(i);
 152     if (!node->visited()) {
 153       _loop = NULL;
 154       move(NULL, node);
 155       node->set_start_node();
 156       assert(_temp->is_illegal(), "move_temp_to() call missing");
 157     }
 158   }
 159 
 160   // generate move for move from non virtual register to abitrary destination
 161   for (i = other_operands().length() - 1; i >= 0; i --) {
 162     ResolveNode* node = other_operands().at(i);
 163     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 164       emit_move(node->operand(), node->destination_at(j)->operand());
 165     }
 166   }
 167 }
 168 
 169 
 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 171   ResolveNode* node;
 172   if (opr->is_virtual()) {
 173     int vreg_num = opr->vreg_number();
 174     node = vreg_table().at_grow(vreg_num, NULL);
 175     assert(node == NULL || node->operand() == opr, "");
 176     if (node == NULL) {
 177       node = new ResolveNode(opr);
 178       vreg_table().at_put(vreg_num, node);
 179     }
 180     // Make sure that all virtual operands show up in the list when
 181     // they are used as the source of a move.
 182     if (source && !virtual_operands().contains(node)) {
 183       virtual_operands().append(node);
 184     }
 185   } else {
 186     assert(source, "");
 187     node = new ResolveNode(opr);
 188     other_operands().append(node);
 189   }
 190   return node;
 191 }
 192 
 193 
 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 195   assert(dest->is_virtual(), "");
 196   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 197   assert(src->is_valid(), "");
 198   assert(dest->is_valid(), "");
 199   ResolveNode* source = source_node(src);
 200   source->append(destination_node(dest));
 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 213   }
 214 
 215   _result = opr;
 216 }
 217 
 218 void LIRItem::load_item() {
 219   if (result()->is_illegal()) {
 220     // update the items result
 221     _result = value()->operand();
 222   }
 223   if (!result()->is_register()) {
 224     LIR_Opr reg = _gen->new_register(value()->type());
 225     __ move(result(), reg);
 226     if (result()->is_constant()) {
 227       _result = reg;
 228     } else {
 229       set_result(reg);
 230     }
 231   }
 232 }
 233 
 234 
 235 void LIRItem::load_for_store(BasicType type) {
 236   if (_gen->can_store_as_constant(value(), type)) {
 237     _result = value()->operand();
 238     if (!_result->is_constant()) {
 239       _result = LIR_OprFact::value_type(value()->type());
 240     }
 241   } else if (type == T_BYTE || type == T_BOOLEAN) {
 242     load_byte_item();
 243   } else {
 244     load_item();
 245   }
 246 }
 247 
 248 void LIRItem::load_item_force(LIR_Opr reg) {
 249   LIR_Opr r = result();
 250   if (r != reg) {
 251 #if !defined(ARM) && !defined(E500V2)
 252     if (r->type() != reg->type()) {
 253       // moves between different types need an intervening spill slot
 254       r = _gen->force_to_spill(r, reg->type());
 255     }
 256 #endif
 257     __ move(r, reg);
 258     _result = reg;
 259   }
 260 }
 261 
 262 ciObject* LIRItem::get_jobject_constant() const {
 263   ObjectType* oc = type()->as_ObjectType();
 264   if (oc) {
 265     return oc->constant_value();
 266   }
 267   return NULL;
 268 }
 269 
 270 
 271 jint LIRItem::get_jint_constant() const {
 272   assert(is_constant() && value() != NULL, "");
 273   assert(type()->as_IntConstant() != NULL, "type check");
 274   return type()->as_IntConstant()->value();
 275 }
 276 
 277 
 278 jint LIRItem::get_address_constant() const {
 279   assert(is_constant() && value() != NULL, "");
 280   assert(type()->as_AddressConstant() != NULL, "type check");
 281   return type()->as_AddressConstant()->value();
 282 }
 283 
 284 
 285 jfloat LIRItem::get_jfloat_constant() const {
 286   assert(is_constant() && value() != NULL, "");
 287   assert(type()->as_FloatConstant() != NULL, "type check");
 288   return type()->as_FloatConstant()->value();
 289 }
 290 
 291 
 292 jdouble LIRItem::get_jdouble_constant() const {
 293   assert(is_constant() && value() != NULL, "");
 294   assert(type()->as_DoubleConstant() != NULL, "type check");
 295   return type()->as_DoubleConstant()->value();
 296 }
 297 
 298 
 299 jlong LIRItem::get_jlong_constant() const {
 300   assert(is_constant() && value() != NULL, "");
 301   assert(type()->as_LongConstant() != NULL, "type check");
 302   return type()->as_LongConstant()->value();
 303 }
 304 
 305 
 306 
 307 //--------------------------------------------------------------
 308 
 309 
 310 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 311 #ifndef PRODUCT
 312   if (PrintIRWithLIR) {
 313     block->print();
 314   }
 315 #endif
 316 
 317   // set up the list of LIR instructions
 318   assert(block->lir() == NULL, "LIR list already computed for this block");
 319   _lir = new LIR_List(compilation(), block);
 320   block->set_lir(_lir);
 321 
 322   __ branch_destination(block->label());
 323 
 324   if (LIRTraceExecution &&
 325       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 326       !block->is_set(BlockBegin::exception_entry_flag)) {
 327     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 328     trace_block_entry(block);
 329   }
 330 }
 331 
 332 
 333 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 334 #ifndef PRODUCT
 335   if (PrintIRWithLIR) {
 336     tty->cr();
 337   }
 338 #endif
 339 
 340   // LIR_Opr for unpinned constants shouldn't be referenced by other
 341   // blocks so clear them out after processing the block.
 342   for (int i = 0; i < _unpinned_constants.length(); i++) {
 343     _unpinned_constants.at(i)->clear_operand();
 344   }
 345   _unpinned_constants.trunc_to(0);
 346 
 347   // clear our any registers for other local constants
 348   _constants.trunc_to(0);
 349   _reg_for_constants.trunc_to(0);
 350 }
 351 
 352 
 353 void LIRGenerator::block_do(BlockBegin* block) {
 354   CHECK_BAILOUT();
 355 
 356   block_do_prolog(block);
 357   set_block(block);
 358 
 359   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 360     if (instr->is_pinned()) do_root(instr);
 361   }
 362 
 363   set_block(NULL);
 364   block_do_epilog(block);
 365 }
 366 
 367 
 368 //-------------------------LIRGenerator-----------------------------
 369 
 370 // This is where the tree-walk starts; instr must be root;
 371 void LIRGenerator::do_root(Value instr) {
 372   CHECK_BAILOUT();
 373 
 374   InstructionMark im(compilation(), instr);
 375 
 376   assert(instr->is_pinned(), "use only with roots");
 377   assert(instr->subst() == instr, "shouldn't have missed substitution");
 378 
 379   instr->visit(this);
 380 
 381   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 382          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 383 }
 384 
 385 
 386 // This is called for each node in tree; the walk stops if a root is reached
 387 void LIRGenerator::walk(Value instr) {
 388   InstructionMark im(compilation(), instr);
 389   //stop walk when encounter a root
 390   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 391     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 392   } else {
 393     assert(instr->subst() == instr, "shouldn't have missed substitution");
 394     instr->visit(this);
 395     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 396   }
 397 }
 398 
 399 
 400 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 401   assert(state != NULL, "state must be defined");
 402 
 403 #ifndef PRODUCT
 404   state->verify();
 405 #endif
 406 
 407   ValueStack* s = state;
 408   for_each_state(s) {
 409     if (s->kind() == ValueStack::EmptyExceptionState) {
 410       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 411       continue;
 412     }
 413 
 414     int index;
 415     Value value;
 416     for_each_stack_value(s, index, value) {
 417       assert(value->subst() == value, "missed substitution");
 418       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 419         walk(value);
 420         assert(value->operand()->is_valid(), "must be evaluated now");
 421       }
 422     }
 423 
 424     int bci = s->bci();
 425     IRScope* scope = s->scope();
 426     ciMethod* method = scope->method();
 427 
 428     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 429     if (bci == SynchronizationEntryBCI) {
 430       if (x->as_ExceptionObject() || x->as_Throw()) {
 431         // all locals are dead on exit from the synthetic unlocker
 432         liveness.clear();
 433       } else {
 434         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 435       }
 436     }
 437     if (!liveness.is_valid()) {
 438       // Degenerate or breakpointed method.
 439       bailout("Degenerate or breakpointed method");
 440     } else {
 441       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 442       for_each_local_value(s, index, value) {
 443         assert(value->subst() == value, "missed substition");
 444         if (liveness.at(index) && !value->type()->is_illegal()) {
 445           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 446             walk(value);
 447             assert(value->operand()->is_valid(), "must be evaluated now");
 448           }
 449         } else {
 450           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 451           s->invalidate_local(index);
 452         }
 453       }
 454     }
 455   }
 456 
 457   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 458 }
 459 
 460 
 461 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 462   return state_for(x, x->exception_state());
 463 }
 464 
 465 
 466 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 467   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 468    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 469    * the class. */
 470   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 471     assert(info != NULL, "info must be set if class is not loaded");
 472     __ klass2reg_patch(NULL, r, info);
 473   } else {
 474     // no patching needed
 475     __ metadata2reg(obj->constant_encoding(), r);
 476   }
 477 }
 478 
 479 
 480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 482   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 483   if (index->is_constant()) {
 484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 485                 index->as_jint(), null_check_info);
 486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 487   } else {
 488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 491   }
 492 }
 493 
 494 
 495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 496   CodeStub* stub = new RangeCheckStub(info, index);
 497   if (index->is_constant()) {
 498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 502                 java_nio_Buffer::limit_offset(), T_INT, info);
 503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 504   }
 505   __ move(index, result);
 506 }
 507 
 508 
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (TwoOperandLIRForm && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:
 530       {
 531         if (is_strictfp) {
 532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 533         } else {
 534           __ mul(left_op, right_op, result_op); break;
 535         }
 536       }
 537       break;
 538 
 539     case Bytecodes::_imul:
 540       {
 541         bool did_strength_reduce = false;
 542 
 543         if (right->is_constant()) {
 544           jint c = right->as_jint();
 545           if (c > 0 && is_power_of_2(c)) {
 546             // do not need tmp here
 547             __ shift_left(left_op, exact_log2(c), result_op);
 548             did_strength_reduce = true;
 549           } else {
 550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 551           }
 552         }
 553         // we couldn't strength reduce so just emit the multiply
 554         if (!did_strength_reduce) {
 555           __ mul(left_op, right_op, result_op);
 556         }
 557       }
 558       break;
 559 
 560     case Bytecodes::_dsub:
 561     case Bytecodes::_fsub:
 562     case Bytecodes::_lsub:
 563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 564 
 565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 566     // ldiv and lrem are implemented with a direct runtime call
 567 
 568     case Bytecodes::_ddiv:
 569       {
 570         if (is_strictfp) {
 571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 572         } else {
 573           __ div (left_op, right_op, result_op); break;
 574         }
 575       }
 576       break;
 577 
 578     case Bytecodes::_drem:
 579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 580 
 581     default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 587   arithmetic_op(code, result, left, right, false, tmp);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 593 }
 594 
 595 
 596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 598 }
 599 
 600 
 601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 602 
 603   if (TwoOperandLIRForm && value != result_op
 604       // Only 32bit right shifts require two operand form on S390.
 605       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 606     assert(count != result_op, "malformed");
 607     __ move(value, result_op);
 608     value = result_op;
 609   }
 610 
 611   assert(count->is_constant() || count->is_register(), "must be");
 612   switch(code) {
 613   case Bytecodes::_ishl:
 614   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 615   case Bytecodes::_ishr:
 616   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 617   case Bytecodes::_iushr:
 618   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 619   default: ShouldNotReachHere();
 620   }
 621 }
 622 
 623 
 624 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 625   if (TwoOperandLIRForm && left_op != result_op) {
 626     assert(right_op != result_op, "malformed");
 627     __ move(left_op, result_op);
 628     left_op = result_op;
 629   }
 630 
 631   switch(code) {
 632     case Bytecodes::_iand:
 633     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 634 
 635     case Bytecodes::_ior:
 636     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 637 
 638     case Bytecodes::_ixor:
 639     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 640 
 641     default: ShouldNotReachHere();
 642   }
 643 }
 644 
 645 
 646 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 647                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 648   if (!GenerateSynchronizationCode) return;
 649   // for slow path, use debug info for state after successful locking
 650   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 651   __ load_stack_address_monitor(monitor_no, lock);
 652   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 653   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 658   if (!GenerateSynchronizationCode) return;
 659   // setup registers
 660   LIR_Opr hdr = lock;
 661   lock = new_hdr;
 662   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 663   __ load_stack_address_monitor(monitor_no, lock);
 664   __ unlock_object(hdr, object, lock, scratch, slow_path);
 665 }
 666 
 667 #ifndef PRODUCT
 668 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 669   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 670     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 671   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 672     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 673   }
 674 }
 675 #endif
 676 
 677 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 678   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 679   // If klass is not loaded we do not know if the klass has finalizers:
 680   if (UseFastNewInstance && klass->is_loaded()
 681       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 682 
 683     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 684 
 685     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 686 
 687     assert(klass->is_loaded(), "must be loaded");
 688     // allocate space for instance
 689     assert(klass->size_helper() >= 0, "illegal instance size");
 690     const int instance_size = align_object_size(klass->size_helper());
 691     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 692                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 693   } else {
 694     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 695     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 696     __ branch_destination(slow_path->continuation());
 697   }
 698 }
 699 
 700 
 701 static bool is_constant_zero(Instruction* inst) {
 702   IntConstant* c = inst->type()->as_IntConstant();
 703   if (c) {
 704     return (c->value() == 0);
 705   }
 706   return false;
 707 }
 708 
 709 
 710 static bool positive_constant(Instruction* inst) {
 711   IntConstant* c = inst->type()->as_IntConstant();
 712   if (c) {
 713     return (c->value() >= 0);
 714   }
 715   return false;
 716 }
 717 
 718 
 719 static ciArrayKlass* as_array_klass(ciType* type) {
 720   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 721     return (ciArrayKlass*)type;
 722   } else {
 723     return NULL;
 724   }
 725 }
 726 
 727 static ciType* phi_declared_type(Phi* phi) {
 728   ciType* t = phi->operand_at(0)->declared_type();
 729   if (t == NULL) {
 730     return NULL;
 731   }
 732   for(int i = 1; i < phi->operand_count(); i++) {
 733     if (t != phi->operand_at(i)->declared_type()) {
 734       return NULL;
 735     }
 736   }
 737   return t;
 738 }
 739 
 740 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 741   Instruction* src     = x->argument_at(0);
 742   Instruction* src_pos = x->argument_at(1);
 743   Instruction* dst     = x->argument_at(2);
 744   Instruction* dst_pos = x->argument_at(3);
 745   Instruction* length  = x->argument_at(4);
 746 
 747   // first try to identify the likely type of the arrays involved
 748   ciArrayKlass* expected_type = NULL;
 749   bool is_exact = false, src_objarray = false, dst_objarray = false;
 750   {
 751     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 752     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 753     Phi* phi;
 754     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 755       src_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 758     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 759     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 760       dst_declared_type = as_array_klass(phi_declared_type(phi));
 761     }
 762 
 763     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 764       // the types exactly match so the type is fully known
 765       is_exact = true;
 766       expected_type = src_exact_type;
 767     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 768       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 769       ciArrayKlass* src_type = NULL;
 770       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 771         src_type = (ciArrayKlass*) src_exact_type;
 772       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_declared_type;
 774       }
 775       if (src_type != NULL) {
 776         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 777           is_exact = true;
 778           expected_type = dst_type;
 779         }
 780       }
 781     }
 782     // at least pass along a good guess
 783     if (expected_type == NULL) expected_type = dst_exact_type;
 784     if (expected_type == NULL) expected_type = src_declared_type;
 785     if (expected_type == NULL) expected_type = dst_declared_type;
 786 
 787     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 788     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 789   }
 790 
 791   // if a probable array type has been identified, figure out if any
 792   // of the required checks for a fast case can be elided.
 793   int flags = LIR_OpArrayCopy::all_flags;
 794 
 795   if (!src->is_loaded_flattened_array() && !dst->is_loaded_flattened_array()) {
 796     flags &= ~LIR_OpArrayCopy::always_slow_path;
 797   }
 798   if (!src->maybe_flattened_array()) {
 799     flags &= ~LIR_OpArrayCopy::src_flat_check;
 800   }
 801   if (!dst->maybe_flattened_array()) {
 802     flags &= ~LIR_OpArrayCopy::dst_flat_check;
 803   }
 804 
 805   if (!src_objarray)
 806     flags &= ~LIR_OpArrayCopy::src_objarray;
 807   if (!dst_objarray)
 808     flags &= ~LIR_OpArrayCopy::dst_objarray;
 809 
 810   if (!x->arg_needs_null_check(0))
 811     flags &= ~LIR_OpArrayCopy::src_null_check;
 812   if (!x->arg_needs_null_check(2))
 813     flags &= ~LIR_OpArrayCopy::dst_null_check;
 814 
 815 
 816   if (expected_type != NULL) {
 817     Value length_limit = NULL;
 818 
 819     IfOp* ifop = length->as_IfOp();
 820     if (ifop != NULL) {
 821       // look for expressions like min(v, a.length) which ends up as
 822       //   x > y ? y : x  or  x >= y ? y : x
 823       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 824           ifop->x() == ifop->fval() &&
 825           ifop->y() == ifop->tval()) {
 826         length_limit = ifop->y();
 827       }
 828     }
 829 
 830     // try to skip null checks and range checks
 831     NewArray* src_array = src->as_NewArray();
 832     if (src_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::src_null_check;
 834       if (length_limit != NULL &&
 835           src_array->length() == length_limit &&
 836           is_constant_zero(src_pos)) {
 837         flags &= ~LIR_OpArrayCopy::src_range_check;
 838       }
 839     }
 840 
 841     NewArray* dst_array = dst->as_NewArray();
 842     if (dst_array != NULL) {
 843       flags &= ~LIR_OpArrayCopy::dst_null_check;
 844       if (length_limit != NULL &&
 845           dst_array->length() == length_limit &&
 846           is_constant_zero(dst_pos)) {
 847         flags &= ~LIR_OpArrayCopy::dst_range_check;
 848       }
 849     }
 850 
 851     // check from incoming constant values
 852     if (positive_constant(src_pos))
 853       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 854     if (positive_constant(dst_pos))
 855       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 856     if (positive_constant(length))
 857       flags &= ~LIR_OpArrayCopy::length_positive_check;
 858 
 859     // see if the range check can be elided, which might also imply
 860     // that src or dst is non-null.
 861     ArrayLength* al = length->as_ArrayLength();
 862     if (al != NULL) {
 863       if (al->array() == src) {
 864         // it's the length of the source array
 865         flags &= ~LIR_OpArrayCopy::length_positive_check;
 866         flags &= ~LIR_OpArrayCopy::src_null_check;
 867         if (is_constant_zero(src_pos))
 868           flags &= ~LIR_OpArrayCopy::src_range_check;
 869       }
 870       if (al->array() == dst) {
 871         // it's the length of the destination array
 872         flags &= ~LIR_OpArrayCopy::length_positive_check;
 873         flags &= ~LIR_OpArrayCopy::dst_null_check;
 874         if (is_constant_zero(dst_pos))
 875           flags &= ~LIR_OpArrayCopy::dst_range_check;
 876       }
 877     }
 878     if (is_exact) {
 879       flags &= ~LIR_OpArrayCopy::type_check;
 880     }
 881   }
 882 
 883   IntConstant* src_int = src_pos->type()->as_IntConstant();
 884   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 885   if (src_int && dst_int) {
 886     int s_offs = src_int->value();
 887     int d_offs = dst_int->value();
 888     if (src_int->value() >= dst_int->value()) {
 889       flags &= ~LIR_OpArrayCopy::overlapping;
 890     }
 891     if (expected_type != NULL) {
 892       BasicType t = expected_type->element_type()->basic_type();
 893       int element_size = type2aelembytes(t);
 894       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 895           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 896         flags &= ~LIR_OpArrayCopy::unaligned;
 897       }
 898     }
 899   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 900     // src and dest positions are the same, or dst is zero so assume
 901     // nonoverlapping copy.
 902     flags &= ~LIR_OpArrayCopy::overlapping;
 903   }
 904 
 905   if (src == dst) {
 906     // moving within a single array so no type checks are needed
 907     if (flags & LIR_OpArrayCopy::type_check) {
 908       flags &= ~LIR_OpArrayCopy::type_check;
 909     }
 910   }
 911   *flagsp = flags;
 912   *expected_typep = (ciArrayKlass*)expected_type;
 913 }
 914 
 915 
 916 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 917   assert(opr->is_register(), "why spill if item is not register?");
 918 
 919   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 920     LIR_Opr result = new_register(T_FLOAT);
 921     set_vreg_flag(result, must_start_in_memory);
 922     assert(opr->is_register(), "only a register can be spilled");
 923     assert(opr->value_type()->is_float(), "rounding only for floats available");
 924     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 925     return result;
 926   }
 927   return opr;
 928 }
 929 
 930 
 931 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 932   assert(type2size[t] == type2size[value->type()],
 933          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 934   if (!value->is_register()) {
 935     // force into a register
 936     LIR_Opr r = new_register(value->type());
 937     __ move(value, r);
 938     value = r;
 939   }
 940 
 941   // create a spill location
 942   LIR_Opr tmp = new_register(t);
 943   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 944 
 945   // move from register to spill
 946   __ move(value, tmp);
 947   return tmp;
 948 }
 949 
 950 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 951   if (if_instr->should_profile()) {
 952     ciMethod* method = if_instr->profiled_method();
 953     assert(method != NULL, "method should be set if branch is profiled");
 954     ciMethodData* md = method->method_data_or_null();
 955     assert(md != NULL, "Sanity");
 956     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 957     assert(data != NULL, "must have profiling data");
 958     assert(data->is_BranchData(), "need BranchData for two-way branches");
 959     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 960     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 961     if (if_instr->is_swapped()) {
 962       int t = taken_count_offset;
 963       taken_count_offset = not_taken_count_offset;
 964       not_taken_count_offset = t;
 965     }
 966 
 967     LIR_Opr md_reg = new_register(T_METADATA);
 968     __ metadata2reg(md->constant_encoding(), md_reg);
 969 
 970     LIR_Opr data_offset_reg = new_pointer_register();
 971     __ cmove(lir_cond(cond),
 972              LIR_OprFact::intptrConst(taken_count_offset),
 973              LIR_OprFact::intptrConst(not_taken_count_offset),
 974              data_offset_reg, as_BasicType(if_instr->x()->type()));
 975 
 976     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 977     LIR_Opr data_reg = new_pointer_register();
 978     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 979     __ move(data_addr, data_reg);
 980     // Use leal instead of add to avoid destroying condition codes on x86
 981     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 982     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 983     __ move(data_reg, data_addr);
 984   }
 985 }
 986 
 987 // Phi technique:
 988 // This is about passing live values from one basic block to the other.
 989 // In code generated with Java it is rather rare that more than one
 990 // value is on the stack from one basic block to the other.
 991 // We optimize our technique for efficient passing of one value
 992 // (of type long, int, double..) but it can be extended.
 993 // When entering or leaving a basic block, all registers and all spill
 994 // slots are release and empty. We use the released registers
 995 // and spill slots to pass the live values from one block
 996 // to the other. The topmost value, i.e., the value on TOS of expression
 997 // stack is passed in registers. All other values are stored in spilling
 998 // area. Every Phi has an index which designates its spill slot
 999 // At exit of a basic block, we fill the register(s) and spill slots.
1000 // At entry of a basic block, the block_prolog sets up the content of phi nodes
1001 // and locks necessary registers and spilling slots.
1002 
1003 
1004 // move current value to referenced phi function
1005 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1006   Phi* phi = sux_val->as_Phi();
1007   // cur_val can be null without phi being null in conjunction with inlining
1008   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1009     Phi* cur_phi = cur_val->as_Phi();
1010     if (cur_phi != NULL && cur_phi->is_illegal()) {
1011       // Phi and local would need to get invalidated
1012       // (which is unexpected for Linear Scan).
1013       // But this case is very rare so we simply bail out.
1014       bailout("propagation of illegal phi");
1015       return;
1016     }
1017     LIR_Opr operand = cur_val->operand();
1018     if (operand->is_illegal()) {
1019       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1020              "these can be produced lazily");
1021       operand = operand_for_instruction(cur_val);
1022     }
1023     resolver->move(operand, operand_for_instruction(phi));
1024   }
1025 }
1026 
1027 
1028 // Moves all stack values into their PHI position
1029 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1030   BlockBegin* bb = block();
1031   if (bb->number_of_sux() == 1) {
1032     BlockBegin* sux = bb->sux_at(0);
1033     assert(sux->number_of_preds() > 0, "invalid CFG");
1034 
1035     // a block with only one predecessor never has phi functions
1036     if (sux->number_of_preds() > 1) {
1037       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1038       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1039 
1040       ValueStack* sux_state = sux->state();
1041       Value sux_value;
1042       int index;
1043 
1044       assert(cur_state->scope() == sux_state->scope(), "not matching");
1045       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1046       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1047 
1048       for_each_stack_value(sux_state, index, sux_value) {
1049         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1050       }
1051 
1052       for_each_local_value(sux_state, index, sux_value) {
1053         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1054       }
1055 
1056       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1057     }
1058   }
1059 }
1060 
1061 
1062 LIR_Opr LIRGenerator::new_register(BasicType type) {
1063   int vreg = _virtual_register_number;
1064   // add a little fudge factor for the bailout, since the bailout is
1065   // only checked periodically.  This gives a few extra registers to
1066   // hand out before we really run out, which helps us keep from
1067   // tripping over assertions.
1068   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1069     bailout("out of virtual registers");
1070     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1071       // wrap it around
1072       _virtual_register_number = LIR_OprDesc::vreg_base;
1073     }
1074   }
1075   _virtual_register_number += 1;
1076   return LIR_OprFact::virtual_register(vreg, type);
1077 }
1078 
1079 
1080 // Try to lock using register in hint
1081 LIR_Opr LIRGenerator::rlock(Value instr) {
1082   return new_register(instr->type());
1083 }
1084 
1085 
1086 // does an rlock and sets result
1087 LIR_Opr LIRGenerator::rlock_result(Value x) {
1088   LIR_Opr reg = rlock(x);
1089   set_result(x, reg);
1090   return reg;
1091 }
1092 
1093 
1094 // does an rlock and sets result
1095 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1096   LIR_Opr reg;
1097   switch (type) {
1098   case T_BYTE:
1099   case T_BOOLEAN:
1100     reg = rlock_byte(type);
1101     break;
1102   default:
1103     reg = rlock(x);
1104     break;
1105   }
1106 
1107   set_result(x, reg);
1108   return reg;
1109 }
1110 
1111 
1112 //---------------------------------------------------------------------
1113 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1114   ObjectType* oc = value->type()->as_ObjectType();
1115   if (oc) {
1116     return oc->constant_value();
1117   }
1118   return NULL;
1119 }
1120 
1121 
1122 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1123   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1124   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1125 
1126   // no moves are created for phi functions at the begin of exception
1127   // handlers, so assign operands manually here
1128   for_each_phi_fun(block(), phi,
1129                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1130 
1131   LIR_Opr thread_reg = getThreadPointer();
1132   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1133                exceptionOopOpr());
1134   __ move_wide(LIR_OprFact::oopConst(NULL),
1135                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1136   __ move_wide(LIR_OprFact::oopConst(NULL),
1137                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1138 
1139   LIR_Opr result = new_register(T_OBJECT);
1140   __ move(exceptionOopOpr(), result);
1141   set_result(x, result);
1142 }
1143 
1144 
1145 //----------------------------------------------------------------------
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 //----------------------------------------------------------------------
1149 //                        visitor functions
1150 //----------------------------------------------------------------------
1151 //----------------------------------------------------------------------
1152 //----------------------------------------------------------------------
1153 //----------------------------------------------------------------------
1154 
1155 void LIRGenerator::do_Phi(Phi* x) {
1156   // phi functions are never visited directly
1157   ShouldNotReachHere();
1158 }
1159 
1160 
1161 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1162 void LIRGenerator::do_Constant(Constant* x) {
1163   if (x->state_before() != NULL) {
1164     // Any constant with a ValueStack requires patching so emit the patch here
1165     LIR_Opr reg = rlock_result(x);
1166     CodeEmitInfo* info = state_for(x, x->state_before());
1167     __ oop2reg_patch(NULL, reg, info);
1168   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1169     if (!x->is_pinned()) {
1170       // unpinned constants are handled specially so that they can be
1171       // put into registers when they are used multiple times within a
1172       // block.  After the block completes their operand will be
1173       // cleared so that other blocks can't refer to that register.
1174       set_result(x, load_constant(x));
1175     } else {
1176       LIR_Opr res = x->operand();
1177       if (!res->is_valid()) {
1178         res = LIR_OprFact::value_type(x->type());
1179       }
1180       if (res->is_constant()) {
1181         LIR_Opr reg = rlock_result(x);
1182         __ move(res, reg);
1183       } else {
1184         set_result(x, res);
1185       }
1186     }
1187   } else {
1188     set_result(x, LIR_OprFact::value_type(x->type()));
1189   }
1190 }
1191 
1192 
1193 void LIRGenerator::do_Local(Local* x) {
1194   // operand_for_instruction has the side effect of setting the result
1195   // so there's no need to do it here.
1196   operand_for_instruction(x);
1197 }
1198 
1199 
1200 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1201   Unimplemented();
1202 }
1203 
1204 
1205 void LIRGenerator::do_Return(Return* x) {
1206   if (compilation()->env()->dtrace_method_probes()) {
1207     BasicTypeList signature;
1208     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1209     signature.append(T_METADATA); // Method*
1210     LIR_OprList* args = new LIR_OprList();
1211     args->append(getThreadPointer());
1212     LIR_Opr meth = new_register(T_METADATA);
1213     __ metadata2reg(method()->constant_encoding(), meth);
1214     args->append(meth);
1215     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1216   }
1217 
1218   if (x->type()->is_void()) {
1219     __ return_op(LIR_OprFact::illegalOpr);
1220   } else {
1221     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1222     LIRItem result(x->result(), this);
1223 
1224     result.load_item_force(reg);
1225     __ return_op(result.result());
1226   }
1227   set_no_result(x);
1228 }
1229 
1230 // Examble: ref.get()
1231 // Combination of LoadField and g1 pre-write barrier
1232 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1233 
1234   const int referent_offset = java_lang_ref_Reference::referent_offset;
1235   guarantee(referent_offset > 0, "referent offset not initialized");
1236 
1237   assert(x->number_of_arguments() == 1, "wrong type");
1238 
1239   LIRItem reference(x->argument_at(0), this);
1240   reference.load_item();
1241 
1242   // need to perform the null check on the reference objecy
1243   CodeEmitInfo* info = NULL;
1244   if (x->needs_null_check()) {
1245     info = state_for(x);
1246   }
1247 
1248   LIR_Opr result = rlock_result(x, T_OBJECT);
1249   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1250                  reference, LIR_OprFact::intConst(referent_offset), result);
1251 }
1252 
1253 // Example: clazz.isInstance(object)
1254 void LIRGenerator::do_isInstance(Intrinsic* x) {
1255   assert(x->number_of_arguments() == 2, "wrong type");
1256 
1257   // TODO could try to substitute this node with an equivalent InstanceOf
1258   // if clazz is known to be a constant Class. This will pick up newly found
1259   // constants after HIR construction. I'll leave this to a future change.
1260 
1261   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1262   // could follow the aastore example in a future change.
1263 
1264   LIRItem clazz(x->argument_at(0), this);
1265   LIRItem object(x->argument_at(1), this);
1266   clazz.load_item();
1267   object.load_item();
1268   LIR_Opr result = rlock_result(x);
1269 
1270   // need to perform null check on clazz
1271   if (x->needs_null_check()) {
1272     CodeEmitInfo* info = state_for(x);
1273     __ null_check(clazz.result(), info);
1274   }
1275 
1276   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1277                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1278                                      x->type(),
1279                                      NULL); // NULL CodeEmitInfo results in a leaf call
1280   __ move(call_result, result);
1281 }
1282 
1283 // Example: object.getClass ()
1284 void LIRGenerator::do_getClass(Intrinsic* x) {
1285   assert(x->number_of_arguments() == 1, "wrong type");
1286 
1287   LIRItem rcvr(x->argument_at(0), this);
1288   rcvr.load_item();
1289   LIR_Opr temp = new_register(T_METADATA);
1290   LIR_Opr result = rlock_result(x);
1291 
1292   // need to perform the null check on the rcvr
1293   CodeEmitInfo* info = NULL;
1294   if (x->needs_null_check()) {
1295     info = state_for(x);
1296   }
1297 
1298   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1299   // meaning of these two is mixed up (see JDK-8026837).
1300   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1301   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1302   // mirror = ((OopHandle)mirror)->resolve();
1303   access_load(IN_NATIVE, T_OBJECT,
1304               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1305 }
1306 
1307 // java.lang.Class::isPrimitive()
1308 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1309   assert(x->number_of_arguments() == 1, "wrong type");
1310 
1311   LIRItem rcvr(x->argument_at(0), this);
1312   rcvr.load_item();
1313   LIR_Opr temp = new_register(T_METADATA);
1314   LIR_Opr result = rlock_result(x);
1315 
1316   CodeEmitInfo* info = NULL;
1317   if (x->needs_null_check()) {
1318     info = state_for(x);
1319   }
1320 
1321   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1322   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1323   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1324 }
1325 
1326 
1327 // Example: Thread.currentThread()
1328 void LIRGenerator::do_currentThread(Intrinsic* x) {
1329   assert(x->number_of_arguments() == 0, "wrong type");
1330   LIR_Opr reg = rlock_result(x);
1331   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1332 }
1333 
1334 
1335 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1336   assert(x->number_of_arguments() == 1, "wrong type");
1337   LIRItem receiver(x->argument_at(0), this);
1338 
1339   receiver.load_item();
1340   BasicTypeList signature;
1341   signature.append(T_OBJECT); // receiver
1342   LIR_OprList* args = new LIR_OprList();
1343   args->append(receiver.result());
1344   CodeEmitInfo* info = state_for(x, x->state());
1345   call_runtime(&signature, args,
1346                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1347                voidType, info);
1348 
1349   set_no_result(x);
1350 }
1351 
1352 
1353 //------------------------local access--------------------------------------
1354 
1355 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1356   if (x->operand()->is_illegal()) {
1357     Constant* c = x->as_Constant();
1358     if (c != NULL) {
1359       x->set_operand(LIR_OprFact::value_type(c->type()));
1360     } else {
1361       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1362       // allocate a virtual register for this local or phi
1363       x->set_operand(rlock(x));
1364       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1365     }
1366   }
1367   return x->operand();
1368 }
1369 
1370 
1371 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1372   if (opr->is_virtual()) {
1373     return instruction_for_vreg(opr->vreg_number());
1374   }
1375   return NULL;
1376 }
1377 
1378 
1379 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1380   if (reg_num < _instruction_for_operand.length()) {
1381     return _instruction_for_operand.at(reg_num);
1382   }
1383   return NULL;
1384 }
1385 
1386 
1387 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1388   if (_vreg_flags.size_in_bits() == 0) {
1389     BitMap2D temp(100, num_vreg_flags);
1390     _vreg_flags = temp;
1391   }
1392   _vreg_flags.at_put_grow(vreg_num, f, true);
1393 }
1394 
1395 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1396   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1397     return false;
1398   }
1399   return _vreg_flags.at(vreg_num, f);
1400 }
1401 
1402 
1403 // Block local constant handling.  This code is useful for keeping
1404 // unpinned constants and constants which aren't exposed in the IR in
1405 // registers.  Unpinned Constant instructions have their operands
1406 // cleared when the block is finished so that other blocks can't end
1407 // up referring to their registers.
1408 
1409 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1410   assert(!x->is_pinned(), "only for unpinned constants");
1411   _unpinned_constants.append(x);
1412   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1413 }
1414 
1415 
1416 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1417   BasicType t = c->type();
1418   for (int i = 0; i < _constants.length(); i++) {
1419     LIR_Const* other = _constants.at(i);
1420     if (t == other->type()) {
1421       switch (t) {
1422       case T_INT:
1423       case T_FLOAT:
1424         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1425         break;
1426       case T_LONG:
1427       case T_DOUBLE:
1428         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1429         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1430         break;
1431       case T_OBJECT:
1432         if (c->as_jobject() != other->as_jobject()) continue;
1433         break;
1434       default:
1435         break;
1436       }
1437       return _reg_for_constants.at(i);
1438     }
1439   }
1440 
1441   LIR_Opr result = new_register(t);
1442   __ move((LIR_Opr)c, result);
1443   _constants.append(c);
1444   _reg_for_constants.append(result);
1445   return result;
1446 }
1447 
1448 //------------------------field access--------------------------------------
1449 
1450 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1451   assert(x->number_of_arguments() == 4, "wrong type");
1452   LIRItem obj   (x->argument_at(0), this);  // object
1453   LIRItem offset(x->argument_at(1), this);  // offset of field
1454   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1455   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1456   assert(obj.type()->tag() == objectTag, "invalid type");
1457 
1458   // In 64bit the type can be long, sparc doesn't have this assert
1459   // assert(offset.type()->tag() == intTag, "invalid type");
1460 
1461   assert(cmp.type()->tag() == type->tag(), "invalid type");
1462   assert(val.type()->tag() == type->tag(), "invalid type");
1463 
1464   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1465                                             obj, offset, cmp, val);
1466   set_result(x, result);
1467 }
1468 
1469 // Comment copied form templateTable_i486.cpp
1470 // ----------------------------------------------------------------------------
1471 // Volatile variables demand their effects be made known to all CPU's in
1472 // order.  Store buffers on most chips allow reads & writes to reorder; the
1473 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1474 // memory barrier (i.e., it's not sufficient that the interpreter does not
1475 // reorder volatile references, the hardware also must not reorder them).
1476 //
1477 // According to the new Java Memory Model (JMM):
1478 // (1) All volatiles are serialized wrt to each other.
1479 // ALSO reads & writes act as aquire & release, so:
1480 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1481 // the read float up to before the read.  It's OK for non-volatile memory refs
1482 // that happen before the volatile read to float down below it.
1483 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1484 // that happen BEFORE the write float down to after the write.  It's OK for
1485 // non-volatile memory refs that happen after the volatile write to float up
1486 // before it.
1487 //
1488 // We only put in barriers around volatile refs (they are expensive), not
1489 // _between_ memory refs (that would require us to track the flavor of the
1490 // previous memory refs).  Requirements (2) and (3) require some barriers
1491 // before volatile stores and after volatile loads.  These nearly cover
1492 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1493 // case is placed after volatile-stores although it could just as well go
1494 // before volatile-loads.
1495 
1496 
1497 void LIRGenerator::do_StoreField(StoreField* x) {
1498   bool needs_patching = x->needs_patching();
1499   bool is_volatile = x->field()->is_volatile();
1500   BasicType field_type = x->field_type();
1501 
1502   CodeEmitInfo* info = NULL;
1503   if (needs_patching) {
1504     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1505     info = state_for(x, x->state_before());
1506   } else if (x->needs_null_check()) {
1507     NullCheck* nc = x->explicit_null_check();
1508     if (nc == NULL) {
1509       info = state_for(x);
1510     } else {
1511       info = state_for(nc);
1512     }
1513   }
1514 
1515   LIRItem object(x->obj(), this);
1516   LIRItem value(x->value(),  this);
1517 
1518   object.load_item();
1519 
1520   if (is_volatile || needs_patching) {
1521     // load item if field is volatile (fewer special cases for volatiles)
1522     // load item if field not initialized
1523     // load item if field not constant
1524     // because of code patching we cannot inline constants
1525     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1526       value.load_byte_item();
1527     } else  {
1528       value.load_item();
1529     }
1530   } else {
1531     value.load_for_store(field_type);
1532   }
1533 
1534   set_no_result(x);
1535 
1536 #ifndef PRODUCT
1537   if (PrintNotLoaded && needs_patching) {
1538     tty->print_cr("   ###class not loaded at store_%s bci %d",
1539                   x->is_static() ?  "static" : "field", x->printable_bci());
1540   }
1541 #endif
1542 
1543   if (x->needs_null_check() &&
1544       (needs_patching ||
1545        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1546     if (needs_patching && x->field()->signature()->starts_with("Q", 1)) {
1547       // We are storing a field of type "QT;", but T is not yet loaded, so we don't
1548       // know whether this field is flattened or not. Let's deoptimize and recompile.
1549       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1550                                           Deoptimization::Reason_unloaded,
1551                                           Deoptimization::Action_make_not_entrant);
1552       __ branch(lir_cond_always, T_ILLEGAL, stub);
1553     } else {
1554       // Emit an explicit null check because the offset is too large.
1555       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1556       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1557       __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1558     }
1559   }
1560 
1561   DecoratorSet decorators = IN_HEAP;
1562   if (is_volatile) {
1563     decorators |= MO_SEQ_CST;
1564   }
1565   if (needs_patching) {
1566     decorators |= C1_NEEDS_PATCHING;
1567   }
1568 
1569   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1570                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1571 }
1572 
1573 // FIXME -- I can't find any other way to pass an address to access_load_at().
1574 class TempResolvedAddress: public Instruction {
1575  public:
1576   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1577     set_operand(addr);
1578   }
1579   virtual void input_values_do(ValueVisitor*) {}
1580   virtual void visit(InstructionVisitor* v)   {}
1581   virtual const char* name() const  { return "TempResolvedAddress"; }
1582 };
1583 
1584 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item) {
1585   // Find the starting address of the source (inside the array)
1586   ciType* array_type = array.value()->declared_type();
1587   ciValueArrayKlass* value_array_klass = array_type->as_value_array_klass();
1588   assert(value_array_klass->is_loaded(), "must be");
1589 
1590   ciValueKlass* elem_klass = value_array_klass->element_klass()->as_value_klass();
1591   int array_header_size = value_array_klass->array_header_in_bytes();
1592   int shift = value_array_klass->log2_element_size();
1593 
1594 #ifndef _LP64
1595   LIR_Opr index_op = new_register(T_INT);
1596   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1597   // the top (shift+1) bits of index_op must be zero, or
1598   // else throw ArrayIndexOutOfBoundsException
1599   if (index.result()->is_constant()) {
1600     jint const_index = index.result()->as_jint();
1601     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1602   } else {
1603     __ shift_left(index_op, shift, index.result());
1604   }
1605 #else
1606   LIR_Opr index_op = new_register(T_LONG);
1607   if (index.result()->is_constant()) {
1608     jint const_index = index.result()->as_jint();
1609     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1610   } else {
1611     __ convert(Bytecodes::_i2l, index.result(), index_op);
1612     // Need to shift manually, as LIR_Address can scale only up to 3.
1613     __ shift_left(index_op, shift, index_op);
1614   }
1615 #endif
1616 
1617   LIR_Opr elm_op = new_pointer_register();
1618   LIR_Address* elm_address = new LIR_Address(array.result(), index_op, array_header_size, T_ADDRESS);
1619   __ leal(LIR_OprFact::address(elm_address), elm_op);
1620 
1621   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1622     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1623     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1624     int obj_offset = inner_field->offset();
1625     int elm_offset = obj_offset - elem_klass->first_field_offset(); // object header is not stored in array.
1626 
1627     BasicType field_type = inner_field->type()->basic_type();
1628     switch (field_type) {
1629     case T_BYTE:
1630     case T_BOOLEAN:
1631     case T_SHORT:
1632     case T_CHAR:
1633      field_type = T_INT;
1634       break;
1635     default:
1636       break;
1637     }
1638 
1639     LIR_Opr temp = new_register(field_type);
1640     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1641     LIRItem elm_item(elm_resolved_addr, this);
1642 
1643     DecoratorSet decorators = IN_HEAP;
1644     if (is_load) {
1645       access_load_at(decorators, field_type,
1646                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1647                      NULL, NULL);
1648       access_store_at(decorators, field_type,
1649                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1650                       NULL, NULL);
1651     } else {
1652     access_load_at(decorators, field_type,
1653                    obj_item, LIR_OprFact::intConst(obj_offset), temp,
1654                    NULL, NULL);
1655     access_store_at(decorators, field_type,
1656                     elm_item, LIR_OprFact::intConst(elm_offset), temp,
1657                     NULL, NULL);
1658     }
1659   }
1660 }
1661 
1662 void LIRGenerator::check_flattened_array(LIRItem& array, CodeStub* slow_path) {
1663   LIR_Opr array_klass_reg = new_register(T_METADATA);
1664 
1665   __ move(new LIR_Address(array.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), array_klass_reg);
1666   LIR_Opr layout = new_register(T_INT);
1667   __ move(new LIR_Address(array_klass_reg, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1668   __ shift_right(layout, Klass::_lh_array_tag_shift, layout);
1669   __ cmp(lir_cond_equal, layout, LIR_OprFact::intConst(Klass::_lh_array_tag_vt_value));
1670   __ branch(lir_cond_equal, T_ILLEGAL, slow_path);
1671 }
1672 
1673 bool LIRGenerator::needs_flattened_array_store_check(StoreIndexed* x) {
1674   if (ValueArrayFlatten && x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
1675     ciType* type = x->value()->declared_type();
1676     if (type != NULL && type->is_klass()) {
1677       ciKlass* klass = type->as_klass();
1678       if (klass->is_loaded() &&
1679           !(klass->is_valuetype() && klass->as_value_klass()->flatten_array()) &&
1680           !klass->is_java_lang_Object() &&
1681           !klass->is_interface()) {
1682         // This is known to be a non-flattenable object. If the array is flattened,
1683         // it will be caught by the code generated by array_store_check().
1684         return false;
1685       }
1686     }
1687     // We're not 100% sure, so let's do the flattened_array_store_check.
1688     return true;
1689   }
1690   return false;
1691 }
1692 
1693 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1694   assert(x->is_pinned(),"");
1695   assert(x->elt_type() != T_ARRAY, "never used");
1696   bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array();
1697   bool needs_range_check = x->compute_needs_range_check();
1698   bool use_length = x->length() != NULL;
1699   bool obj_store = x->elt_type() == T_OBJECT;
1700   bool needs_store_check = obj_store && !is_loaded_flattened_array &&
1701                                         (x->value()->as_Constant() == NULL ||
1702                                          !get_jobject_constant(x->value())->is_null_object() ||
1703                                          x->should_profile());
1704 
1705   LIRItem array(x->array(), this);
1706   LIRItem index(x->index(), this);
1707   LIRItem value(x->value(), this);
1708   LIRItem length(this);
1709 
1710   array.load_item();
1711   index.load_nonconstant();
1712 
1713   if (use_length && needs_range_check) {
1714     length.set_instruction(x->length());
1715     length.load_item();
1716   }
1717 
1718   if (needs_store_check || x->check_boolean()
1719       || is_loaded_flattened_array || needs_flattened_array_store_check(x)) {
1720     value.load_item();
1721   } else {
1722     value.load_for_store(x->elt_type());
1723   }
1724 
1725   set_no_result(x);
1726 
1727   // the CodeEmitInfo must be duplicated for each different
1728   // LIR-instruction because spilling can occur anywhere between two
1729   // instructions and so the debug information must be different
1730   CodeEmitInfo* range_check_info = state_for(x);
1731   CodeEmitInfo* null_check_info = NULL;
1732   if (x->needs_null_check()) {
1733     null_check_info = new CodeEmitInfo(range_check_info);
1734   }
1735 
1736   if (GenerateRangeChecks && needs_range_check) {
1737     if (use_length) {
1738       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1739       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1740     } else {
1741       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1742       // range_check also does the null check
1743       null_check_info = NULL;
1744     }
1745   }
1746 
1747   if (GenerateArrayStoreCheck && needs_store_check) {
1748     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1749     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1750   }
1751 
1752   if (is_loaded_flattened_array) {
1753     if (!x->is_exact_flattened_array_store()) {
1754       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1755       ciKlass* element_klass = x->array()->declared_type()->as_value_array_klass()->element_klass();
1756       flattened_array_store_check(value.result(), element_klass, info);
1757     } else if (!x->value()->is_never_null()) {
1758       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1759     }
1760     access_flattened_array(false, array, index, value);
1761   } else {
1762     StoreFlattenedArrayStub* slow_path = NULL;
1763 
1764     if (needs_flattened_array_store_check(x)) {
1765       // Check if we indeed have a flattened array
1766       index.load_item();
1767       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x));
1768       check_flattened_array(array, slow_path);
1769     }
1770 
1771     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1772     if (x->check_boolean()) {
1773       decorators |= C1_MASK_BOOLEAN;
1774     }
1775 
1776     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1777                     NULL, null_check_info);
1778     if (slow_path != NULL) {
1779       __ branch_destination(slow_path->continuation());
1780     }
1781   }
1782 }
1783 
1784 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1785                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1786                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1787   decorators |= ACCESS_READ;
1788   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1789   if (access.is_raw()) {
1790     _barrier_set->BarrierSetC1::load_at(access, result);
1791   } else {
1792     _barrier_set->load_at(access, result);
1793   }
1794 }
1795 
1796 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1797                                LIR_Opr addr, LIR_Opr result) {
1798   decorators |= ACCESS_READ;
1799   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1800   access.set_resolved_addr(addr);
1801   if (access.is_raw()) {
1802     _barrier_set->BarrierSetC1::load(access, result);
1803   } else {
1804     _barrier_set->load(access, result);
1805   }
1806 }
1807 
1808 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1809                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1810                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1811   decorators |= ACCESS_WRITE;
1812   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1813   if (access.is_raw()) {
1814     _barrier_set->BarrierSetC1::store_at(access, value);
1815   } else {
1816     _barrier_set->store_at(access, value);
1817   }
1818 }
1819 
1820 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1821                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1822   decorators |= ACCESS_READ;
1823   decorators |= ACCESS_WRITE;
1824   // Atomic operations are SEQ_CST by default
1825   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1826   LIRAccess access(this, decorators, base, offset, type);
1827   if (access.is_raw()) {
1828     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1829   } else {
1830     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1831   }
1832 }
1833 
1834 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1835                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1836   decorators |= ACCESS_READ;
1837   decorators |= ACCESS_WRITE;
1838   // Atomic operations are SEQ_CST by default
1839   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1840   LIRAccess access(this, decorators, base, offset, type);
1841   if (access.is_raw()) {
1842     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1843   } else {
1844     return _barrier_set->atomic_xchg_at(access, value);
1845   }
1846 }
1847 
1848 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1849                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1850   decorators |= ACCESS_READ;
1851   decorators |= ACCESS_WRITE;
1852   // Atomic operations are SEQ_CST by default
1853   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1854   LIRAccess access(this, decorators, base, offset, type);
1855   if (access.is_raw()) {
1856     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1857   } else {
1858     return _barrier_set->atomic_add_at(access, value);
1859   }
1860 }
1861 
1862 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1863   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1864   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1865     decorators |= ACCESS_READ | ACCESS_WRITE;
1866   }
1867 
1868   return _barrier_set->resolve(this, decorators, obj);
1869 }
1870 
1871 void LIRGenerator::do_LoadField(LoadField* x) {
1872   bool needs_patching = x->needs_patching();
1873   bool is_volatile = x->field()->is_volatile();
1874   BasicType field_type = x->field_type();
1875 
1876   CodeEmitInfo* info = NULL;
1877   if (needs_patching) {
1878     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1879     info = state_for(x, x->state_before());
1880   } else if (x->needs_null_check()) {
1881     NullCheck* nc = x->explicit_null_check();
1882     if (nc == NULL) {
1883       info = state_for(x);
1884     } else {
1885       info = state_for(nc);
1886     }
1887   }
1888 
1889   LIRItem object(x->obj(), this);
1890 
1891   object.load_item();
1892 
1893 #ifndef PRODUCT
1894   if (PrintNotLoaded && needs_patching) {
1895     tty->print_cr("   ###class not loaded at load_%s bci %d",
1896                   x->is_static() ?  "static" : "field", x->printable_bci());
1897   }
1898 #endif
1899 
1900   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1901   if (x->needs_null_check() &&
1902       (needs_patching ||
1903        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1904        stress_deopt)) {
1905     if (needs_patching && x->field()->signature()->starts_with("Q", 1)) {
1906       // We are loading a field of type "QT;", but class T is not yet loaded. We don't know
1907       // whether this field is flattened or not. Let's deoptimize and recompile.
1908       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1909                                           Deoptimization::Reason_unloaded,
1910                                           Deoptimization::Action_make_not_entrant);
1911       __ branch(lir_cond_always, T_ILLEGAL, stub);
1912     } else {
1913       LIR_Opr obj = object.result();
1914       if (stress_deopt) {
1915         obj = new_register(T_OBJECT);
1916         __ move(LIR_OprFact::oopConst(NULL), obj);
1917       }
1918       // Emit an explicit null check because the offset is too large.
1919       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1920       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1921       __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1922     }
1923   } else if (x->value_klass() != NULL && x->default_value() == NULL) {
1924     assert(x->is_static() && !x->value_klass()->is_loaded(), "must be");
1925     assert(needs_patching, "must be");
1926     // The value klass was not loaded so we don't know what its default value should be
1927     CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1928                                         Deoptimization::Reason_unloaded,
1929                                         Deoptimization::Action_make_not_entrant);
1930     __ branch(lir_cond_always, T_ILLEGAL, stub);
1931   }
1932 
1933   DecoratorSet decorators = IN_HEAP;
1934   if (is_volatile) {
1935     decorators |= MO_SEQ_CST;
1936   }
1937   if (needs_patching) {
1938     decorators |= C1_NEEDS_PATCHING;
1939   }
1940 
1941   LIR_Opr result = rlock_result(x, field_type);
1942   access_load_at(decorators, field_type,
1943                  object, LIR_OprFact::intConst(x->offset()), result,
1944                  info ? new CodeEmitInfo(info) : NULL, info);
1945 
1946   if (x->value_klass() != NULL && x->default_value() != NULL) {
1947     LabelObj* L_end = new LabelObj();
1948     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
1949     __ branch(lir_cond_notEqual, T_OBJECT, L_end->label());
1950 
1951     LIRItem default_value(x->default_value(), this);
1952     default_value.load_item();
1953     __ move(default_value.result(), result);
1954 
1955     __ branch_destination(L_end->label());
1956   }
1957 }
1958 
1959 
1960 //------------------------java.nio.Buffer.checkIndex------------------------
1961 
1962 // int java.nio.Buffer.checkIndex(int)
1963 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1964   // NOTE: by the time we are in checkIndex() we are guaranteed that
1965   // the buffer is non-null (because checkIndex is package-private and
1966   // only called from within other methods in the buffer).
1967   assert(x->number_of_arguments() == 2, "wrong type");
1968   LIRItem buf  (x->argument_at(0), this);
1969   LIRItem index(x->argument_at(1), this);
1970   buf.load_item();
1971   index.load_item();
1972 
1973   LIR_Opr result = rlock_result(x);
1974   if (GenerateRangeChecks) {
1975     CodeEmitInfo* info = state_for(x);
1976     CodeStub* stub = new RangeCheckStub(info, index.result());
1977     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
1978     if (index.result()->is_constant()) {
1979       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1980       __ branch(lir_cond_belowEqual, T_INT, stub);
1981     } else {
1982       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
1983                   java_nio_Buffer::limit_offset(), T_INT, info);
1984       __ branch(lir_cond_aboveEqual, T_INT, stub);
1985     }
1986     __ move(index.result(), result);
1987   } else {
1988     // Just load the index into the result register
1989     __ move(index.result(), result);
1990   }
1991 }
1992 
1993 
1994 //------------------------array access--------------------------------------
1995 
1996 
1997 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1998   LIRItem array(x->array(), this);
1999   array.load_item();
2000   LIR_Opr reg = rlock_result(x);
2001 
2002   CodeEmitInfo* info = NULL;
2003   if (x->needs_null_check()) {
2004     NullCheck* nc = x->explicit_null_check();
2005     if (nc == NULL) {
2006       info = state_for(x);
2007     } else {
2008       info = state_for(nc);
2009     }
2010     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2011       LIR_Opr obj = new_register(T_OBJECT);
2012       __ move(LIR_OprFact::oopConst(NULL), obj);
2013       __ null_check(obj, new CodeEmitInfo(info));
2014     }
2015   }
2016   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2017 }
2018 
2019 
2020 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2021   bool use_length = x->length() != NULL;
2022   LIRItem array(x->array(), this);
2023   LIRItem index(x->index(), this);
2024   LIRItem length(this);
2025   bool needs_range_check = x->compute_needs_range_check();
2026 
2027   if (use_length && needs_range_check) {
2028     length.set_instruction(x->length());
2029     length.load_item();
2030   }
2031 
2032   array.load_item();
2033   if (index.is_constant() && can_inline_as_constant(x->index())) {
2034     // let it be a constant
2035     index.dont_load_item();
2036   } else {
2037     index.load_item();
2038   }
2039 
2040   CodeEmitInfo* range_check_info = state_for(x);
2041   CodeEmitInfo* null_check_info = NULL;
2042   if (x->needs_null_check()) {
2043     NullCheck* nc = x->explicit_null_check();
2044     if (nc != NULL) {
2045       null_check_info = state_for(nc);
2046     } else {
2047       null_check_info = range_check_info;
2048     }
2049     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2050       LIR_Opr obj = new_register(T_OBJECT);
2051       __ move(LIR_OprFact::oopConst(NULL), obj);
2052       __ null_check(obj, new CodeEmitInfo(null_check_info));
2053     }
2054   }
2055 
2056   if (GenerateRangeChecks && needs_range_check) {
2057     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2058       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
2059     } else if (use_length) {
2060       // TODO: use a (modified) version of array_range_check that does not require a
2061       //       constant length to be loaded to a register
2062       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2063       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
2064     } else {
2065       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2066       // The range check performs the null check, so clear it out for the load
2067       null_check_info = NULL;
2068     }
2069   }
2070 
2071   if (x->array()->is_loaded_flattened_array()) {
2072     // Find the destination address (of the NewValueTypeInstance)
2073     LIR_Opr obj = x->vt()->operand();
2074     LIRItem obj_item(x->vt(), this);
2075 
2076     access_flattened_array(true, array, index, obj_item);
2077     set_no_result(x);
2078   } else {
2079     LIR_Opr result = rlock_result(x, x->elt_type());
2080     LoadFlattenedArrayStub* slow_path = NULL;
2081 
2082     if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
2083       index.load_item();
2084       // if we are loading from flattened array, load it using a runtime call
2085       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x));
2086       check_flattened_array(array, slow_path);
2087     }
2088 
2089     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2090     access_load_at(decorators, x->elt_type(),
2091                    array, index.result(), result,
2092                    NULL, null_check_info);
2093 
2094     if (slow_path != NULL) {
2095       __ branch_destination(slow_path->continuation());
2096     }
2097   }
2098 }
2099 
2100 
2101 void LIRGenerator::do_NullCheck(NullCheck* x) {
2102   if (x->can_trap()) {
2103     LIRItem value(x->obj(), this);
2104     value.load_item();
2105     CodeEmitInfo* info = state_for(x);
2106     __ null_check(value.result(), info);
2107   }
2108 }
2109 
2110 
2111 void LIRGenerator::do_TypeCast(TypeCast* x) {
2112   LIRItem value(x->obj(), this);
2113   value.load_item();
2114   // the result is the same as from the node we are casting
2115   set_result(x, value.result());
2116 }
2117 
2118 
2119 void LIRGenerator::do_Throw(Throw* x) {
2120   LIRItem exception(x->exception(), this);
2121   exception.load_item();
2122   set_no_result(x);
2123   LIR_Opr exception_opr = exception.result();
2124   CodeEmitInfo* info = state_for(x, x->state());
2125 
2126 #ifndef PRODUCT
2127   if (PrintC1Statistics) {
2128     increment_counter(Runtime1::throw_count_address(), T_INT);
2129   }
2130 #endif
2131 
2132   // check if the instruction has an xhandler in any of the nested scopes
2133   bool unwind = false;
2134   if (info->exception_handlers()->length() == 0) {
2135     // this throw is not inside an xhandler
2136     unwind = true;
2137   } else {
2138     // get some idea of the throw type
2139     bool type_is_exact = true;
2140     ciType* throw_type = x->exception()->exact_type();
2141     if (throw_type == NULL) {
2142       type_is_exact = false;
2143       throw_type = x->exception()->declared_type();
2144     }
2145     if (throw_type != NULL && throw_type->is_instance_klass()) {
2146       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2147       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2148     }
2149   }
2150 
2151   // do null check before moving exception oop into fixed register
2152   // to avoid a fixed interval with an oop during the null check.
2153   // Use a copy of the CodeEmitInfo because debug information is
2154   // different for null_check and throw.
2155   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2156     // if the exception object wasn't created using new then it might be null.
2157     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2158   }
2159 
2160   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2161     // we need to go through the exception lookup path to get JVMTI
2162     // notification done
2163     unwind = false;
2164   }
2165 
2166   // move exception oop into fixed register
2167   __ move(exception_opr, exceptionOopOpr());
2168 
2169   if (unwind) {
2170     __ unwind_exception(exceptionOopOpr());
2171   } else {
2172     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2173   }
2174 }
2175 
2176 
2177 void LIRGenerator::do_RoundFP(RoundFP* x) {
2178   LIRItem input(x->input(), this);
2179   input.load_item();
2180   LIR_Opr input_opr = input.result();
2181   assert(input_opr->is_register(), "why round if value is not in a register?");
2182   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2183   if (input_opr->is_single_fpu()) {
2184     set_result(x, round_item(input_opr)); // This code path not currently taken
2185   } else {
2186     LIR_Opr result = new_register(T_DOUBLE);
2187     set_vreg_flag(result, must_start_in_memory);
2188     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2189     set_result(x, result);
2190   }
2191 }
2192 
2193 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2194 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2195 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2196   LIRItem base(x->base(), this);
2197   LIRItem idx(this);
2198 
2199   base.load_item();
2200   if (x->has_index()) {
2201     idx.set_instruction(x->index());
2202     idx.load_nonconstant();
2203   }
2204 
2205   LIR_Opr reg = rlock_result(x, x->basic_type());
2206 
2207   int   log2_scale = 0;
2208   if (x->has_index()) {
2209     log2_scale = x->log2_scale();
2210   }
2211 
2212   assert(!x->has_index() || idx.value() == x->index(), "should match");
2213 
2214   LIR_Opr base_op = base.result();
2215   LIR_Opr index_op = idx.result();
2216 #ifndef _LP64
2217   if (base_op->type() == T_LONG) {
2218     base_op = new_register(T_INT);
2219     __ convert(Bytecodes::_l2i, base.result(), base_op);
2220   }
2221   if (x->has_index()) {
2222     if (index_op->type() == T_LONG) {
2223       LIR_Opr long_index_op = index_op;
2224       if (index_op->is_constant()) {
2225         long_index_op = new_register(T_LONG);
2226         __ move(index_op, long_index_op);
2227       }
2228       index_op = new_register(T_INT);
2229       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2230     } else {
2231       assert(x->index()->type()->tag() == intTag, "must be");
2232     }
2233   }
2234   // At this point base and index should be all ints.
2235   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2236   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2237 #else
2238   if (x->has_index()) {
2239     if (index_op->type() == T_INT) {
2240       if (!index_op->is_constant()) {
2241         index_op = new_register(T_LONG);
2242         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2243       }
2244     } else {
2245       assert(index_op->type() == T_LONG, "must be");
2246       if (index_op->is_constant()) {
2247         index_op = new_register(T_LONG);
2248         __ move(idx.result(), index_op);
2249       }
2250     }
2251   }
2252   // At this point base is a long non-constant
2253   // Index is a long register or a int constant.
2254   // We allow the constant to stay an int because that would allow us a more compact encoding by
2255   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2256   // move it into a register first.
2257   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2258   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2259                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2260 #endif
2261 
2262   BasicType dst_type = x->basic_type();
2263 
2264   LIR_Address* addr;
2265   if (index_op->is_constant()) {
2266     assert(log2_scale == 0, "must not have a scale");
2267     assert(index_op->type() == T_INT, "only int constants supported");
2268     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2269   } else {
2270 #ifdef X86
2271     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2272 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2273     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2274 #else
2275     if (index_op->is_illegal() || log2_scale == 0) {
2276       addr = new LIR_Address(base_op, index_op, dst_type);
2277     } else {
2278       LIR_Opr tmp = new_pointer_register();
2279       __ shift_left(index_op, log2_scale, tmp);
2280       addr = new LIR_Address(base_op, tmp, dst_type);
2281     }
2282 #endif
2283   }
2284 
2285   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2286     __ unaligned_move(addr, reg);
2287   } else {
2288     if (dst_type == T_OBJECT && x->is_wide()) {
2289       __ move_wide(addr, reg);
2290     } else {
2291       __ move(addr, reg);
2292     }
2293   }
2294 }
2295 
2296 
2297 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2298   int  log2_scale = 0;
2299   BasicType type = x->basic_type();
2300 
2301   if (x->has_index()) {
2302     log2_scale = x->log2_scale();
2303   }
2304 
2305   LIRItem base(x->base(), this);
2306   LIRItem value(x->value(), this);
2307   LIRItem idx(this);
2308 
2309   base.load_item();
2310   if (x->has_index()) {
2311     idx.set_instruction(x->index());
2312     idx.load_item();
2313   }
2314 
2315   if (type == T_BYTE || type == T_BOOLEAN) {
2316     value.load_byte_item();
2317   } else {
2318     value.load_item();
2319   }
2320 
2321   set_no_result(x);
2322 
2323   LIR_Opr base_op = base.result();
2324   LIR_Opr index_op = idx.result();
2325 
2326 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2327   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2328 #else
2329 #ifndef _LP64
2330   if (base_op->type() == T_LONG) {
2331     base_op = new_register(T_INT);
2332     __ convert(Bytecodes::_l2i, base.result(), base_op);
2333   }
2334   if (x->has_index()) {
2335     if (index_op->type() == T_LONG) {
2336       index_op = new_register(T_INT);
2337       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2338     }
2339   }
2340   // At this point base and index should be all ints and not constants
2341   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2342   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2343 #else
2344   if (x->has_index()) {
2345     if (index_op->type() == T_INT) {
2346       index_op = new_register(T_LONG);
2347       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2348     }
2349   }
2350   // At this point base and index are long and non-constant
2351   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2352   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2353 #endif
2354 
2355   if (log2_scale != 0) {
2356     // temporary fix (platform dependent code without shift on Intel would be better)
2357     // TODO: ARM also allows embedded shift in the address
2358     LIR_Opr tmp = new_pointer_register();
2359     if (TwoOperandLIRForm) {
2360       __ move(index_op, tmp);
2361       index_op = tmp;
2362     }
2363     __ shift_left(index_op, log2_scale, tmp);
2364     if (!TwoOperandLIRForm) {
2365       index_op = tmp;
2366     }
2367   }
2368 
2369   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2370 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2371   __ move(value.result(), addr);
2372 }
2373 
2374 
2375 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2376   BasicType type = x->basic_type();
2377   LIRItem src(x->object(), this);
2378   LIRItem off(x->offset(), this);
2379 
2380   off.load_item();
2381   src.load_item();
2382 
2383   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2384 
2385   if (x->is_volatile()) {
2386     decorators |= MO_SEQ_CST;
2387   }
2388   if (type == T_BOOLEAN) {
2389     decorators |= C1_MASK_BOOLEAN;
2390   }
2391   if (type == T_ARRAY || type == T_OBJECT) {
2392     decorators |= ON_UNKNOWN_OOP_REF;
2393   }
2394 
2395   LIR_Opr result = rlock_result(x, type);
2396   access_load_at(decorators, type,
2397                  src, off.result(), result);
2398 }
2399 
2400 
2401 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2402   BasicType type = x->basic_type();
2403   LIRItem src(x->object(), this);
2404   LIRItem off(x->offset(), this);
2405   LIRItem data(x->value(), this);
2406 
2407   src.load_item();
2408   if (type == T_BOOLEAN || type == T_BYTE) {
2409     data.load_byte_item();
2410   } else {
2411     data.load_item();
2412   }
2413   off.load_item();
2414 
2415   set_no_result(x);
2416 
2417   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2418   if (type == T_ARRAY || type == T_OBJECT) {
2419     decorators |= ON_UNKNOWN_OOP_REF;
2420   }
2421   if (x->is_volatile()) {
2422     decorators |= MO_SEQ_CST;
2423   }
2424   access_store_at(decorators, type, src, off.result(), data.result());
2425 }
2426 
2427 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2428   BasicType type = x->basic_type();
2429   LIRItem src(x->object(), this);
2430   LIRItem off(x->offset(), this);
2431   LIRItem value(x->value(), this);
2432 
2433   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2434 
2435   if (type == T_ARRAY || type == T_OBJECT) {
2436     decorators |= ON_UNKNOWN_OOP_REF;
2437   }
2438 
2439   LIR_Opr result;
2440   if (x->is_add()) {
2441     result = access_atomic_add_at(decorators, type, src, off, value);
2442   } else {
2443     result = access_atomic_xchg_at(decorators, type, src, off, value);
2444   }
2445   set_result(x, result);
2446 }
2447 
2448 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2449   int lng = x->length();
2450 
2451   for (int i = 0; i < lng; i++) {
2452     SwitchRange* one_range = x->at(i);
2453     int low_key = one_range->low_key();
2454     int high_key = one_range->high_key();
2455     BlockBegin* dest = one_range->sux();
2456     if (low_key == high_key) {
2457       __ cmp(lir_cond_equal, value, low_key);
2458       __ branch(lir_cond_equal, T_INT, dest);
2459     } else if (high_key - low_key == 1) {
2460       __ cmp(lir_cond_equal, value, low_key);
2461       __ branch(lir_cond_equal, T_INT, dest);
2462       __ cmp(lir_cond_equal, value, high_key);
2463       __ branch(lir_cond_equal, T_INT, dest);
2464     } else {
2465       LabelObj* L = new LabelObj();
2466       __ cmp(lir_cond_less, value, low_key);
2467       __ branch(lir_cond_less, T_INT, L->label());
2468       __ cmp(lir_cond_lessEqual, value, high_key);
2469       __ branch(lir_cond_lessEqual, T_INT, dest);
2470       __ branch_destination(L->label());
2471     }
2472   }
2473   __ jump(default_sux);
2474 }
2475 
2476 
2477 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2478   SwitchRangeList* res = new SwitchRangeList();
2479   int len = x->length();
2480   if (len > 0) {
2481     BlockBegin* sux = x->sux_at(0);
2482     int key = x->lo_key();
2483     BlockBegin* default_sux = x->default_sux();
2484     SwitchRange* range = new SwitchRange(key, sux);
2485     for (int i = 0; i < len; i++, key++) {
2486       BlockBegin* new_sux = x->sux_at(i);
2487       if (sux == new_sux) {
2488         // still in same range
2489         range->set_high_key(key);
2490       } else {
2491         // skip tests which explicitly dispatch to the default
2492         if (sux != default_sux) {
2493           res->append(range);
2494         }
2495         range = new SwitchRange(key, new_sux);
2496       }
2497       sux = new_sux;
2498     }
2499     if (res->length() == 0 || res->last() != range)  res->append(range);
2500   }
2501   return res;
2502 }
2503 
2504 
2505 // we expect the keys to be sorted by increasing value
2506 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2507   SwitchRangeList* res = new SwitchRangeList();
2508   int len = x->length();
2509   if (len > 0) {
2510     BlockBegin* default_sux = x->default_sux();
2511     int key = x->key_at(0);
2512     BlockBegin* sux = x->sux_at(0);
2513     SwitchRange* range = new SwitchRange(key, sux);
2514     for (int i = 1; i < len; i++) {
2515       int new_key = x->key_at(i);
2516       BlockBegin* new_sux = x->sux_at(i);
2517       if (key+1 == new_key && sux == new_sux) {
2518         // still in same range
2519         range->set_high_key(new_key);
2520       } else {
2521         // skip tests which explicitly dispatch to the default
2522         if (range->sux() != default_sux) {
2523           res->append(range);
2524         }
2525         range = new SwitchRange(new_key, new_sux);
2526       }
2527       key = new_key;
2528       sux = new_sux;
2529     }
2530     if (res->length() == 0 || res->last() != range)  res->append(range);
2531   }
2532   return res;
2533 }
2534 
2535 
2536 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2537   LIRItem tag(x->tag(), this);
2538   tag.load_item();
2539   set_no_result(x);
2540 
2541   if (x->is_safepoint()) {
2542     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2543   }
2544 
2545   // move values into phi locations
2546   move_to_phi(x->state());
2547 
2548   int lo_key = x->lo_key();
2549   int len = x->length();
2550   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2551   LIR_Opr value = tag.result();
2552 
2553   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2554     ciMethod* method = x->state()->scope()->method();
2555     ciMethodData* md = method->method_data_or_null();
2556     assert(md != NULL, "Sanity");
2557     ciProfileData* data = md->bci_to_data(x->state()->bci());
2558     assert(data != NULL, "must have profiling data");
2559     assert(data->is_MultiBranchData(), "bad profile data?");
2560     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2561     LIR_Opr md_reg = new_register(T_METADATA);
2562     __ metadata2reg(md->constant_encoding(), md_reg);
2563     LIR_Opr data_offset_reg = new_pointer_register();
2564     LIR_Opr tmp_reg = new_pointer_register();
2565 
2566     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2567     for (int i = 0; i < len; i++) {
2568       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2569       __ cmp(lir_cond_equal, value, i + lo_key);
2570       __ move(data_offset_reg, tmp_reg);
2571       __ cmove(lir_cond_equal,
2572                LIR_OprFact::intptrConst(count_offset),
2573                tmp_reg,
2574                data_offset_reg, T_INT);
2575     }
2576 
2577     LIR_Opr data_reg = new_pointer_register();
2578     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2579     __ move(data_addr, data_reg);
2580     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2581     __ move(data_reg, data_addr);
2582   }
2583 
2584   if (UseTableRanges) {
2585     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2586   } else {
2587     for (int i = 0; i < len; i++) {
2588       __ cmp(lir_cond_equal, value, i + lo_key);
2589       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2590     }
2591     __ jump(x->default_sux());
2592   }
2593 }
2594 
2595 
2596 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2597   LIRItem tag(x->tag(), this);
2598   tag.load_item();
2599   set_no_result(x);
2600 
2601   if (x->is_safepoint()) {
2602     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2603   }
2604 
2605   // move values into phi locations
2606   move_to_phi(x->state());
2607 
2608   LIR_Opr value = tag.result();
2609   int len = x->length();
2610 
2611   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2612     ciMethod* method = x->state()->scope()->method();
2613     ciMethodData* md = method->method_data_or_null();
2614     assert(md != NULL, "Sanity");
2615     ciProfileData* data = md->bci_to_data(x->state()->bci());
2616     assert(data != NULL, "must have profiling data");
2617     assert(data->is_MultiBranchData(), "bad profile data?");
2618     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2619     LIR_Opr md_reg = new_register(T_METADATA);
2620     __ metadata2reg(md->constant_encoding(), md_reg);
2621     LIR_Opr data_offset_reg = new_pointer_register();
2622     LIR_Opr tmp_reg = new_pointer_register();
2623 
2624     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2625     for (int i = 0; i < len; i++) {
2626       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2627       __ cmp(lir_cond_equal, value, x->key_at(i));
2628       __ move(data_offset_reg, tmp_reg);
2629       __ cmove(lir_cond_equal,
2630                LIR_OprFact::intptrConst(count_offset),
2631                tmp_reg,
2632                data_offset_reg, T_INT);
2633     }
2634 
2635     LIR_Opr data_reg = new_pointer_register();
2636     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2637     __ move(data_addr, data_reg);
2638     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2639     __ move(data_reg, data_addr);
2640   }
2641 
2642   if (UseTableRanges) {
2643     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2644   } else {
2645     int len = x->length();
2646     for (int i = 0; i < len; i++) {
2647       __ cmp(lir_cond_equal, value, x->key_at(i));
2648       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2649     }
2650     __ jump(x->default_sux());
2651   }
2652 }
2653 
2654 
2655 void LIRGenerator::do_Goto(Goto* x) {
2656   set_no_result(x);
2657 
2658   if (block()->next()->as_OsrEntry()) {
2659     // need to free up storage used for OSR entry point
2660     LIR_Opr osrBuffer = block()->next()->operand();
2661     BasicTypeList signature;
2662     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2663     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2664     __ move(osrBuffer, cc->args()->at(0));
2665     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2666                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2667   }
2668 
2669   if (x->is_safepoint()) {
2670     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2671 
2672     // increment backedge counter if needed
2673     CodeEmitInfo* info = state_for(x, state);
2674     increment_backedge_counter(info, x->profiled_bci());
2675     CodeEmitInfo* safepoint_info = state_for(x, state);
2676     __ safepoint(safepoint_poll_register(), safepoint_info);
2677   }
2678 
2679   // Gotos can be folded Ifs, handle this case.
2680   if (x->should_profile()) {
2681     ciMethod* method = x->profiled_method();
2682     assert(method != NULL, "method should be set if branch is profiled");
2683     ciMethodData* md = method->method_data_or_null();
2684     assert(md != NULL, "Sanity");
2685     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2686     assert(data != NULL, "must have profiling data");
2687     int offset;
2688     if (x->direction() == Goto::taken) {
2689       assert(data->is_BranchData(), "need BranchData for two-way branches");
2690       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2691     } else if (x->direction() == Goto::not_taken) {
2692       assert(data->is_BranchData(), "need BranchData for two-way branches");
2693       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2694     } else {
2695       assert(data->is_JumpData(), "need JumpData for branches");
2696       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2697     }
2698     LIR_Opr md_reg = new_register(T_METADATA);
2699     __ metadata2reg(md->constant_encoding(), md_reg);
2700 
2701     increment_counter(new LIR_Address(md_reg, offset,
2702                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2703   }
2704 
2705   // emit phi-instruction move after safepoint since this simplifies
2706   // describing the state as the safepoint.
2707   move_to_phi(x->state());
2708 
2709   __ jump(x->default_sux());
2710 }
2711 
2712 /**
2713  * Emit profiling code if needed for arguments, parameters, return value types
2714  *
2715  * @param md                    MDO the code will update at runtime
2716  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2717  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2718  * @param profiled_k            current profile
2719  * @param obj                   IR node for the object to be profiled
2720  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2721  *                              Set once we find an update to make and use for next ones.
2722  * @param not_null              true if we know obj cannot be null
2723  * @param signature_at_call_k   signature at call for obj
2724  * @param callee_signature_k    signature of callee for obj
2725  *                              at call and callee signatures differ at method handle call
2726  * @return                      the only klass we know will ever be seen at this profile point
2727  */
2728 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2729                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2730                                     ciKlass* callee_signature_k) {
2731   ciKlass* result = NULL;
2732   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2733   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2734   // known not to be null or null bit already set and already set to
2735   // unknown: nothing we can do to improve profiling
2736   if (!do_null && !do_update) {
2737     return result;
2738   }
2739 
2740   ciKlass* exact_klass = NULL;
2741   Compilation* comp = Compilation::current();
2742   if (do_update) {
2743     // try to find exact type, using CHA if possible, so that loading
2744     // the klass from the object can be avoided
2745     ciType* type = obj->exact_type();
2746     if (type == NULL) {
2747       type = obj->declared_type();
2748       type = comp->cha_exact_type(type);
2749     }
2750     assert(type == NULL || type->is_klass(), "type should be class");
2751     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2752 
2753     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2754   }
2755 
2756   if (!do_null && !do_update) {
2757     return result;
2758   }
2759 
2760   ciKlass* exact_signature_k = NULL;
2761   if (do_update) {
2762     // Is the type from the signature exact (the only one possible)?
2763     exact_signature_k = signature_at_call_k->exact_klass();
2764     if (exact_signature_k == NULL) {
2765       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2766     } else {
2767       result = exact_signature_k;
2768       // Known statically. No need to emit any code: prevent
2769       // LIR_Assembler::emit_profile_type() from emitting useless code
2770       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2771     }
2772     // exact_klass and exact_signature_k can be both non NULL but
2773     // different if exact_klass is loaded after the ciObject for
2774     // exact_signature_k is created.
2775     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2776       // sometimes the type of the signature is better than the best type
2777       // the compiler has
2778       exact_klass = exact_signature_k;
2779     }
2780     if (callee_signature_k != NULL &&
2781         callee_signature_k != signature_at_call_k) {
2782       ciKlass* improved_klass = callee_signature_k->exact_klass();
2783       if (improved_klass == NULL) {
2784         improved_klass = comp->cha_exact_type(callee_signature_k);
2785       }
2786       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2787         exact_klass = exact_signature_k;
2788       }
2789     }
2790     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2791   }
2792 
2793   if (!do_null && !do_update) {
2794     return result;
2795   }
2796 
2797   if (mdp == LIR_OprFact::illegalOpr) {
2798     mdp = new_register(T_METADATA);
2799     __ metadata2reg(md->constant_encoding(), mdp);
2800     if (md_base_offset != 0) {
2801       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2802       mdp = new_pointer_register();
2803       __ leal(LIR_OprFact::address(base_type_address), mdp);
2804     }
2805   }
2806   LIRItem value(obj, this);
2807   value.load_item();
2808   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2809                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2810   return result;
2811 }
2812 
2813 // profile parameters on entry to the root of the compilation
2814 void LIRGenerator::profile_parameters(Base* x) {
2815   if (compilation()->profile_parameters()) {
2816     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2817     ciMethodData* md = scope()->method()->method_data_or_null();
2818     assert(md != NULL, "Sanity");
2819 
2820     if (md->parameters_type_data() != NULL) {
2821       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2822       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2823       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2824       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2825         LIR_Opr src = args->at(i);
2826         assert(!src->is_illegal(), "check");
2827         BasicType t = src->type();
2828         if (t == T_OBJECT || t == T_ARRAY) {
2829           intptr_t profiled_k = parameters->type(j);
2830           Local* local = x->state()->local_at(java_index)->as_Local();
2831           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2832                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2833                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2834           // If the profile is known statically set it once for all and do not emit any code
2835           if (exact != NULL) {
2836             md->set_parameter_type(j, exact);
2837           }
2838           j++;
2839         }
2840         java_index += type2size[t];
2841       }
2842     }
2843   }
2844 }
2845 
2846 void LIRGenerator::do_Base(Base* x) {
2847   __ std_entry(LIR_OprFact::illegalOpr);
2848   // Emit moves from physical registers / stack slots to virtual registers
2849   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2850   IRScope* irScope = compilation()->hir()->top_scope();
2851   int java_index = 0;
2852   for (int i = 0; i < args->length(); i++) {
2853     LIR_Opr src = args->at(i);
2854     assert(!src->is_illegal(), "check");
2855     BasicType t = src->type();
2856 
2857     // Types which are smaller than int are passed as int, so
2858     // correct the type which passed.
2859     switch (t) {
2860     case T_BYTE:
2861     case T_BOOLEAN:
2862     case T_SHORT:
2863     case T_CHAR:
2864       t = T_INT;
2865       break;
2866     default:
2867       break;
2868     }
2869 
2870     LIR_Opr dest = new_register(t);
2871     __ move(src, dest);
2872 
2873     // Assign new location to Local instruction for this local
2874     Local* local = x->state()->local_at(java_index)->as_Local();
2875     assert(local != NULL, "Locals for incoming arguments must have been created");
2876 #ifndef __SOFTFP__
2877     // The java calling convention passes double as long and float as int.
2878     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2879 #endif // __SOFTFP__
2880     local->set_operand(dest);
2881     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2882     java_index += type2size[t];
2883   }
2884 
2885   if (compilation()->env()->dtrace_method_probes()) {
2886     BasicTypeList signature;
2887     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2888     signature.append(T_METADATA); // Method*
2889     LIR_OprList* args = new LIR_OprList();
2890     args->append(getThreadPointer());
2891     LIR_Opr meth = new_register(T_METADATA);
2892     __ metadata2reg(method()->constant_encoding(), meth);
2893     args->append(meth);
2894     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2895   }
2896 
2897   if (method()->is_synchronized()) {
2898     LIR_Opr obj;
2899     if (method()->is_static()) {
2900       obj = new_register(T_OBJECT);
2901       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2902     } else {
2903       Local* receiver = x->state()->local_at(0)->as_Local();
2904       assert(receiver != NULL, "must already exist");
2905       obj = receiver->operand();
2906     }
2907     assert(obj->is_valid(), "must be valid");
2908 
2909     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2910       LIR_Opr lock = syncLockOpr();
2911       __ load_stack_address_monitor(0, lock);
2912 
2913       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2914       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2915 
2916       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2917       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2918     }
2919   }
2920   if (compilation()->age_code()) {
2921     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2922     decrement_age(info);
2923   }
2924   // increment invocation counters if needed
2925   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2926     profile_parameters(x);
2927     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2928     increment_invocation_counter(info);
2929   }
2930 
2931   // all blocks with a successor must end with an unconditional jump
2932   // to the successor even if they are consecutive
2933   __ jump(x->default_sux());
2934 }
2935 
2936 
2937 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2938   // construct our frame and model the production of incoming pointer
2939   // to the OSR buffer.
2940   __ osr_entry(LIR_Assembler::osrBufferPointer());
2941   LIR_Opr result = rlock_result(x);
2942   __ move(LIR_Assembler::osrBufferPointer(), result);
2943 }
2944 
2945 
2946 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2947   assert(args->length() == arg_list->length(),
2948          "args=%d, arg_list=%d", args->length(), arg_list->length());
2949   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2950     LIRItem* param = args->at(i);
2951     LIR_Opr loc = arg_list->at(i);
2952     if (loc->is_register()) {
2953       param->load_item_force(loc);
2954     } else {
2955       LIR_Address* addr = loc->as_address_ptr();
2956       param->load_for_store(addr->type());
2957       assert(addr->type() != T_VALUETYPE, "not supported yet");
2958       if (addr->type() == T_OBJECT) {
2959         __ move_wide(param->result(), addr);
2960       } else
2961         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2962           __ unaligned_move(param->result(), addr);
2963         } else {
2964           __ move(param->result(), addr);
2965         }
2966     }
2967   }
2968 
2969   if (x->has_receiver()) {
2970     LIRItem* receiver = args->at(0);
2971     LIR_Opr loc = arg_list->at(0);
2972     if (loc->is_register()) {
2973       receiver->load_item_force(loc);
2974     } else {
2975       assert(loc->is_address(), "just checking");
2976       receiver->load_for_store(T_OBJECT);
2977       __ move_wide(receiver->result(), loc->as_address_ptr());
2978     }
2979   }
2980 }
2981 
2982 
2983 // Visits all arguments, returns appropriate items without loading them
2984 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2985   LIRItemList* argument_items = new LIRItemList();
2986   if (x->has_receiver()) {
2987     LIRItem* receiver = new LIRItem(x->receiver(), this);
2988     argument_items->append(receiver);
2989   }
2990   for (int i = 0; i < x->number_of_arguments(); i++) {
2991     LIRItem* param = new LIRItem(x->argument_at(i), this);
2992     argument_items->append(param);
2993   }
2994   return argument_items;
2995 }
2996 
2997 
2998 // The invoke with receiver has following phases:
2999 //   a) traverse and load/lock receiver;
3000 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3001 //   c) push receiver on stack
3002 //   d) load each of the items and push on stack
3003 //   e) unlock receiver
3004 //   f) move receiver into receiver-register %o0
3005 //   g) lock result registers and emit call operation
3006 //
3007 // Before issuing a call, we must spill-save all values on stack
3008 // that are in caller-save register. "spill-save" moves those registers
3009 // either in a free callee-save register or spills them if no free
3010 // callee save register is available.
3011 //
3012 // The problem is where to invoke spill-save.
3013 // - if invoked between e) and f), we may lock callee save
3014 //   register in "spill-save" that destroys the receiver register
3015 //   before f) is executed
3016 // - if we rearrange f) to be earlier (by loading %o0) it
3017 //   may destroy a value on the stack that is currently in %o0
3018 //   and is waiting to be spilled
3019 // - if we keep the receiver locked while doing spill-save,
3020 //   we cannot spill it as it is spill-locked
3021 //
3022 void LIRGenerator::do_Invoke(Invoke* x) {
3023   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3024 
3025   LIR_OprList* arg_list = cc->args();
3026   LIRItemList* args = invoke_visit_arguments(x);
3027   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3028 
3029   // setup result register
3030   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3031   if (x->type() != voidType) {
3032     result_register = result_register_for(x->type());
3033   }
3034 
3035   CodeEmitInfo* info = state_for(x, x->state());
3036 
3037   invoke_load_arguments(x, args, arg_list);
3038 
3039   if (x->has_receiver()) {
3040     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3041     receiver = args->at(0)->result();
3042   }
3043 
3044   // emit invoke code
3045   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3046 
3047   // JSR 292
3048   // Preserve the SP over MethodHandle call sites, if needed.
3049   ciMethod* target = x->target();
3050   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3051                                   target->is_method_handle_intrinsic() ||
3052                                   target->is_compiled_lambda_form());
3053   if (is_method_handle_invoke) {
3054     info->set_is_method_handle_invoke(true);
3055     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3056         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3057     }
3058   }
3059 
3060   switch (x->code()) {
3061     case Bytecodes::_invokestatic:
3062       __ call_static(target, result_register,
3063                      SharedRuntime::get_resolve_static_call_stub(),
3064                      arg_list, info);
3065       break;
3066     case Bytecodes::_invokespecial:
3067     case Bytecodes::_invokevirtual:
3068     case Bytecodes::_invokeinterface:
3069       // for loaded and final (method or class) target we still produce an inline cache,
3070       // in order to be able to call mixed mode
3071       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3072         __ call_opt_virtual(target, receiver, result_register,
3073                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3074                             arg_list, info);
3075       } else if (x->vtable_index() < 0) {
3076         __ call_icvirtual(target, receiver, result_register,
3077                           SharedRuntime::get_resolve_virtual_call_stub(),
3078                           arg_list, info);
3079       } else {
3080         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3081         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3082         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3083       }
3084       break;
3085     case Bytecodes::_invokedynamic: {
3086       __ call_dynamic(target, receiver, result_register,
3087                       SharedRuntime::get_resolve_static_call_stub(),
3088                       arg_list, info);
3089       break;
3090     }
3091     default:
3092       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3093       break;
3094   }
3095 
3096   // JSR 292
3097   // Restore the SP after MethodHandle call sites, if needed.
3098   if (is_method_handle_invoke
3099       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3100     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3101   }
3102 
3103   if (x->type()->is_float() || x->type()->is_double()) {
3104     // Force rounding of results from non-strictfp when in strictfp
3105     // scope (or when we don't know the strictness of the callee, to
3106     // be safe.)
3107     if (method()->is_strict()) {
3108       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3109         result_register = round_item(result_register);
3110       }
3111     }
3112   }
3113 
3114   if (result_register->is_valid()) {
3115     LIR_Opr result = rlock_result(x);
3116     __ move(result_register, result);
3117   }
3118 }
3119 
3120 
3121 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3122   assert(x->number_of_arguments() == 1, "wrong type");
3123   LIRItem value       (x->argument_at(0), this);
3124   LIR_Opr reg = rlock_result(x);
3125   value.load_item();
3126   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3127   __ move(tmp, reg);
3128 }
3129 
3130 
3131 
3132 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3133 void LIRGenerator::do_IfOp(IfOp* x) {
3134 #ifdef ASSERT
3135   {
3136     ValueTag xtag = x->x()->type()->tag();
3137     ValueTag ttag = x->tval()->type()->tag();
3138     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3139     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3140     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3141   }
3142 #endif
3143 
3144   LIRItem left(x->x(), this);
3145   LIRItem right(x->y(), this);
3146   left.load_item();
3147   if (can_inline_as_constant(right.value())) {
3148     right.dont_load_item();
3149   } else {
3150     right.load_item();
3151   }
3152 
3153   LIRItem t_val(x->tval(), this);
3154   LIRItem f_val(x->fval(), this);
3155   t_val.dont_load_item();
3156   f_val.dont_load_item();
3157   LIR_Opr reg = rlock_result(x);
3158 
3159   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3160   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3161 }
3162 
3163 #ifdef JFR_HAVE_INTRINSICS
3164 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3165   CodeEmitInfo* info = state_for(x);
3166   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3167 
3168   assert(info != NULL, "must have info");
3169   LIRItem arg(x->argument_at(0), this);
3170 
3171   arg.load_item();
3172   LIR_Opr klass = new_register(T_METADATA);
3173   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3174   LIR_Opr id = new_register(T_LONG);
3175   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3176   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3177 
3178   __ move(trace_id_addr, id);
3179   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3180   __ store(id, trace_id_addr);
3181 
3182 #ifdef TRACE_ID_META_BITS
3183   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3184 #endif
3185 #ifdef TRACE_ID_SHIFT
3186   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3187 #endif
3188 
3189   __ move(id, rlock_result(x));
3190 }
3191 
3192 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3193   LabelObj* L_end = new LabelObj();
3194 
3195   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3196                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3197                                            T_OBJECT);
3198   LIR_Opr result = rlock_result(x);
3199   __ move_wide(jobj_addr, result);
3200   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3201   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3202 
3203   LIR_Opr jobj = new_register(T_OBJECT);
3204   __ move(result, jobj);
3205   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3206 
3207   __ branch_destination(L_end->label());
3208 }
3209 
3210 #endif
3211 
3212 
3213 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3214   assert(x->number_of_arguments() == 0, "wrong type");
3215   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3216   BasicTypeList signature;
3217   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3218   LIR_Opr reg = result_register_for(x->type());
3219   __ call_runtime_leaf(routine, getThreadTemp(),
3220                        reg, new LIR_OprList());
3221   LIR_Opr result = rlock_result(x);
3222   __ move(reg, result);
3223 }
3224 
3225 
3226 
3227 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3228   switch (x->id()) {
3229   case vmIntrinsics::_intBitsToFloat      :
3230   case vmIntrinsics::_doubleToRawLongBits :
3231   case vmIntrinsics::_longBitsToDouble    :
3232   case vmIntrinsics::_floatToRawIntBits   : {
3233     do_FPIntrinsics(x);
3234     break;
3235   }
3236 
3237 #ifdef JFR_HAVE_INTRINSICS
3238   case vmIntrinsics::_getClassId:
3239     do_ClassIDIntrinsic(x);
3240     break;
3241   case vmIntrinsics::_getEventWriter:
3242     do_getEventWriter(x);
3243     break;
3244   case vmIntrinsics::_counterTime:
3245     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3246     break;
3247 #endif
3248 
3249   case vmIntrinsics::_currentTimeMillis:
3250     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3251     break;
3252 
3253   case vmIntrinsics::_nanoTime:
3254     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3255     break;
3256 
3257   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3258   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3259   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3260   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3261   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3262 
3263   case vmIntrinsics::_dlog:           // fall through
3264   case vmIntrinsics::_dlog10:         // fall through
3265   case vmIntrinsics::_dabs:           // fall through
3266   case vmIntrinsics::_dsqrt:          // fall through
3267   case vmIntrinsics::_dtan:           // fall through
3268   case vmIntrinsics::_dsin :          // fall through
3269   case vmIntrinsics::_dcos :          // fall through
3270   case vmIntrinsics::_dexp :          // fall through
3271   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3272   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3273 
3274   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3275   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3276 
3277   // java.nio.Buffer.checkIndex
3278   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3279 
3280   case vmIntrinsics::_compareAndSetReference:
3281     do_CompareAndSwap(x, objectType);
3282     break;
3283   case vmIntrinsics::_compareAndSetInt:
3284     do_CompareAndSwap(x, intType);
3285     break;
3286   case vmIntrinsics::_compareAndSetLong:
3287     do_CompareAndSwap(x, longType);
3288     break;
3289 
3290   case vmIntrinsics::_loadFence :
3291     __ membar_acquire();
3292     break;
3293   case vmIntrinsics::_storeFence:
3294     __ membar_release();
3295     break;
3296   case vmIntrinsics::_fullFence :
3297     __ membar();
3298     break;
3299   case vmIntrinsics::_onSpinWait:
3300     __ on_spin_wait();
3301     break;
3302   case vmIntrinsics::_Reference_get:
3303     do_Reference_get(x);
3304     break;
3305 
3306   case vmIntrinsics::_updateCRC32:
3307   case vmIntrinsics::_updateBytesCRC32:
3308   case vmIntrinsics::_updateByteBufferCRC32:
3309     do_update_CRC32(x);
3310     break;
3311 
3312   case vmIntrinsics::_updateBytesCRC32C:
3313   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3314     do_update_CRC32C(x);
3315     break;
3316 
3317   case vmIntrinsics::_vectorizedMismatch:
3318     do_vectorizedMismatch(x);
3319     break;
3320 
3321   default: ShouldNotReachHere(); break;
3322   }
3323 }
3324 
3325 void LIRGenerator::profile_arguments(ProfileCall* x) {
3326   if (compilation()->profile_arguments()) {
3327     int bci = x->bci_of_invoke();
3328     ciMethodData* md = x->method()->method_data_or_null();
3329     assert(md != NULL, "Sanity");
3330     ciProfileData* data = md->bci_to_data(bci);
3331     if (data != NULL) {
3332       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3333           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3334         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3335         int base_offset = md->byte_offset_of_slot(data, extra);
3336         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3337         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3338 
3339         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3340         int start = 0;
3341         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3342         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3343           // first argument is not profiled at call (method handle invoke)
3344           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3345           start = 1;
3346         }
3347         ciSignature* callee_signature = x->callee()->signature();
3348         // method handle call to virtual method
3349         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3350         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3351 
3352         bool ignored_will_link;
3353         ciSignature* signature_at_call = NULL;
3354         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3355         ciSignatureStream signature_at_call_stream(signature_at_call);
3356 
3357         // if called through method handle invoke, some arguments may have been popped
3358         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3359           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3360           ciKlass* exact = profile_type(md, base_offset, off,
3361               args->type(i), x->profiled_arg_at(i+start), mdp,
3362               !x->arg_needs_null_check(i+start),
3363               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3364           if (exact != NULL) {
3365             md->set_argument_type(bci, i, exact);
3366           }
3367         }
3368       } else {
3369 #ifdef ASSERT
3370         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3371         int n = x->nb_profiled_args();
3372         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3373             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3374             "only at JSR292 bytecodes");
3375 #endif
3376       }
3377     }
3378   }
3379 }
3380 
3381 // profile parameters on entry to an inlined method
3382 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3383   if (compilation()->profile_parameters() && x->inlined()) {
3384     ciMethodData* md = x->callee()->method_data_or_null();
3385     if (md != NULL) {
3386       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3387       if (parameters_type_data != NULL) {
3388         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3389         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3390         bool has_receiver = !x->callee()->is_static();
3391         ciSignature* sig = x->callee()->signature();
3392         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3393         int i = 0; // to iterate on the Instructions
3394         Value arg = x->recv();
3395         bool not_null = false;
3396         int bci = x->bci_of_invoke();
3397         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3398         // The first parameter is the receiver so that's what we start
3399         // with if it exists. One exception is method handle call to
3400         // virtual method: the receiver is in the args list
3401         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3402           i = 1;
3403           arg = x->profiled_arg_at(0);
3404           not_null = !x->arg_needs_null_check(0);
3405         }
3406         int k = 0; // to iterate on the profile data
3407         for (;;) {
3408           intptr_t profiled_k = parameters->type(k);
3409           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3410                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3411                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3412           // If the profile is known statically set it once for all and do not emit any code
3413           if (exact != NULL) {
3414             md->set_parameter_type(k, exact);
3415           }
3416           k++;
3417           if (k >= parameters_type_data->number_of_parameters()) {
3418 #ifdef ASSERT
3419             int extra = 0;
3420             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3421                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3422                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3423               extra += 1;
3424             }
3425             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3426 #endif
3427             break;
3428           }
3429           arg = x->profiled_arg_at(i);
3430           not_null = !x->arg_needs_null_check(i);
3431           i++;
3432         }
3433       }
3434     }
3435   }
3436 }
3437 
3438 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3439   // Need recv in a temporary register so it interferes with the other temporaries
3440   LIR_Opr recv = LIR_OprFact::illegalOpr;
3441   LIR_Opr mdo = new_register(T_METADATA);
3442   // tmp is used to hold the counters on SPARC
3443   LIR_Opr tmp = new_pointer_register();
3444 
3445   if (x->nb_profiled_args() > 0) {
3446     profile_arguments(x);
3447   }
3448 
3449   // profile parameters on inlined method entry including receiver
3450   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3451     profile_parameters_at_call(x);
3452   }
3453 
3454   if (x->recv() != NULL) {
3455     LIRItem value(x->recv(), this);
3456     value.load_item();
3457     recv = new_register(T_OBJECT);
3458     __ move(value.result(), recv);
3459   }
3460   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3461 }
3462 
3463 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3464   int bci = x->bci_of_invoke();
3465   ciMethodData* md = x->method()->method_data_or_null();
3466   assert(md != NULL, "Sanity");
3467   ciProfileData* data = md->bci_to_data(bci);
3468   if (data != NULL) {
3469     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3470     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3471     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3472 
3473     bool ignored_will_link;
3474     ciSignature* signature_at_call = NULL;
3475     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3476 
3477     // The offset within the MDO of the entry to update may be too large
3478     // to be used in load/store instructions on some platforms. So have
3479     // profile_type() compute the address of the profile in a register.
3480     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3481         ret->type(), x->ret(), mdp,
3482         !x->needs_null_check(),
3483         signature_at_call->return_type()->as_klass(),
3484         x->callee()->signature()->return_type()->as_klass());
3485     if (exact != NULL) {
3486       md->set_return_type(bci, exact);
3487     }
3488   }
3489 }
3490 
3491 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3492   // We can safely ignore accessors here, since c2 will inline them anyway,
3493   // accessors are also always mature.
3494   if (!x->inlinee()->is_accessor()) {
3495     CodeEmitInfo* info = state_for(x, x->state(), true);
3496     // Notify the runtime very infrequently only to take care of counter overflows
3497     int freq_log = Tier23InlineeNotifyFreqLog;
3498     double scale;
3499     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3500       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3501     }
3502     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3503   }
3504 }
3505 
3506 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3507   if (compilation()->count_backedges()) {
3508     __ cmp(cond, left, right);
3509     LIR_Opr step = new_register(T_INT);
3510     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3511     LIR_Opr zero = LIR_OprFact::intConst(0);
3512     __ cmove(cond,
3513         (left_bci < bci) ? plus_one : zero,
3514         (right_bci < bci) ? plus_one : zero,
3515         step, left->type());
3516     increment_backedge_counter(info, step, bci);
3517   }
3518 }
3519 
3520 
3521 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3522   int freq_log = 0;
3523   int level = compilation()->env()->comp_level();
3524   if (level == CompLevel_limited_profile) {
3525     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3526   } else if (level == CompLevel_full_profile) {
3527     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3528   } else {
3529     ShouldNotReachHere();
3530   }
3531   // Increment the appropriate invocation/backedge counter and notify the runtime.
3532   double scale;
3533   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3534     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3535   }
3536   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3537 }
3538 
3539 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3540   ciMethod* method = info->scope()->method();
3541   MethodCounters* mc_adr = method->ensure_method_counters();
3542   if (mc_adr != NULL) {
3543     LIR_Opr mc = new_pointer_register();
3544     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3545     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3546     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3547     LIR_Opr result = new_register(T_INT);
3548     __ load(counter, result);
3549     __ sub(result, LIR_OprFact::intConst(1), result);
3550     __ store(result, counter);
3551     // DeoptimizeStub will reexecute from the current state in code info.
3552     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3553                                          Deoptimization::Action_make_not_entrant);
3554     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3555     __ branch(lir_cond_lessEqual, T_INT, deopt);
3556   }
3557 }
3558 
3559 
3560 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3561                                                 ciMethod *method, LIR_Opr step, int frequency,
3562                                                 int bci, bool backedge, bool notify) {
3563   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3564   int level = _compilation->env()->comp_level();
3565   assert(level > CompLevel_simple, "Shouldn't be here");
3566 
3567   int offset = -1;
3568   LIR_Opr counter_holder = NULL;
3569   if (level == CompLevel_limited_profile) {
3570     MethodCounters* counters_adr = method->ensure_method_counters();
3571     if (counters_adr == NULL) {
3572       bailout("method counters allocation failed");
3573       return;
3574     }
3575     counter_holder = new_pointer_register();
3576     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3577     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3578                                  MethodCounters::invocation_counter_offset());
3579   } else if (level == CompLevel_full_profile) {
3580     counter_holder = new_register(T_METADATA);
3581     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3582                                  MethodData::invocation_counter_offset());
3583     ciMethodData* md = method->method_data_or_null();
3584     assert(md != NULL, "Sanity");
3585     __ metadata2reg(md->constant_encoding(), counter_holder);
3586   } else {
3587     ShouldNotReachHere();
3588   }
3589   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3590   LIR_Opr result = new_register(T_INT);
3591   __ load(counter, result);
3592   __ add(result, step, result);
3593   __ store(result, counter);
3594   if (notify && (!backedge || UseOnStackReplacement)) {
3595     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3596     // The bci for info can point to cmp for if's we want the if bci
3597     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3598     int freq = frequency << InvocationCounter::count_shift;
3599     if (freq == 0) {
3600       if (!step->is_constant()) {
3601         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3602         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3603       } else {
3604         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3605       }
3606     } else {
3607       LIR_Opr mask = load_immediate(freq, T_INT);
3608       if (!step->is_constant()) {
3609         // If step is 0, make sure the overflow check below always fails
3610         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3611         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3612       }
3613       __ logical_and(result, mask, result);
3614       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3615       __ branch(lir_cond_equal, T_INT, overflow);
3616     }
3617     __ branch_destination(overflow->continuation());
3618   }
3619 }
3620 
3621 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3622   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3623   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3624 
3625   if (x->pass_thread()) {
3626     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3627     args->append(getThreadPointer());
3628   }
3629 
3630   for (int i = 0; i < x->number_of_arguments(); i++) {
3631     Value a = x->argument_at(i);
3632     LIRItem* item = new LIRItem(a, this);
3633     item->load_item();
3634     args->append(item->result());
3635     signature->append(as_BasicType(a->type()));
3636   }
3637 
3638   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3639   if (x->type() == voidType) {
3640     set_no_result(x);
3641   } else {
3642     __ move(result, rlock_result(x));
3643   }
3644 }
3645 
3646 #ifdef ASSERT
3647 void LIRGenerator::do_Assert(Assert *x) {
3648   ValueTag tag = x->x()->type()->tag();
3649   If::Condition cond = x->cond();
3650 
3651   LIRItem xitem(x->x(), this);
3652   LIRItem yitem(x->y(), this);
3653   LIRItem* xin = &xitem;
3654   LIRItem* yin = &yitem;
3655 
3656   assert(tag == intTag, "Only integer assertions are valid!");
3657 
3658   xin->load_item();
3659   yin->dont_load_item();
3660 
3661   set_no_result(x);
3662 
3663   LIR_Opr left = xin->result();
3664   LIR_Opr right = yin->result();
3665 
3666   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3667 }
3668 #endif
3669 
3670 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3671 
3672 
3673   Instruction *a = x->x();
3674   Instruction *b = x->y();
3675   if (!a || StressRangeCheckElimination) {
3676     assert(!b || StressRangeCheckElimination, "B must also be null");
3677 
3678     CodeEmitInfo *info = state_for(x, x->state());
3679     CodeStub* stub = new PredicateFailedStub(info);
3680 
3681     __ jump(stub);
3682   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3683     int a_int = a->type()->as_IntConstant()->value();
3684     int b_int = b->type()->as_IntConstant()->value();
3685 
3686     bool ok = false;
3687 
3688     switch(x->cond()) {
3689       case Instruction::eql: ok = (a_int == b_int); break;
3690       case Instruction::neq: ok = (a_int != b_int); break;
3691       case Instruction::lss: ok = (a_int < b_int); break;
3692       case Instruction::leq: ok = (a_int <= b_int); break;
3693       case Instruction::gtr: ok = (a_int > b_int); break;
3694       case Instruction::geq: ok = (a_int >= b_int); break;
3695       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3696       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3697       default: ShouldNotReachHere();
3698     }
3699 
3700     if (ok) {
3701 
3702       CodeEmitInfo *info = state_for(x, x->state());
3703       CodeStub* stub = new PredicateFailedStub(info);
3704 
3705       __ jump(stub);
3706     }
3707   } else {
3708 
3709     ValueTag tag = x->x()->type()->tag();
3710     If::Condition cond = x->cond();
3711     LIRItem xitem(x->x(), this);
3712     LIRItem yitem(x->y(), this);
3713     LIRItem* xin = &xitem;
3714     LIRItem* yin = &yitem;
3715 
3716     assert(tag == intTag, "Only integer deoptimizations are valid!");
3717 
3718     xin->load_item();
3719     yin->dont_load_item();
3720     set_no_result(x);
3721 
3722     LIR_Opr left = xin->result();
3723     LIR_Opr right = yin->result();
3724 
3725     CodeEmitInfo *info = state_for(x, x->state());
3726     CodeStub* stub = new PredicateFailedStub(info);
3727 
3728     __ cmp(lir_cond(cond), left, right);
3729     __ branch(lir_cond(cond), right->type(), stub);
3730   }
3731 }
3732 
3733 
3734 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3735   LIRItemList args(1);
3736   LIRItem value(arg1, this);
3737   args.append(&value);
3738   BasicTypeList signature;
3739   signature.append(as_BasicType(arg1->type()));
3740 
3741   return call_runtime(&signature, &args, entry, result_type, info);
3742 }
3743 
3744 
3745 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3746   LIRItemList args(2);
3747   LIRItem value1(arg1, this);
3748   LIRItem value2(arg2, this);
3749   args.append(&value1);
3750   args.append(&value2);
3751   BasicTypeList signature;
3752   signature.append(as_BasicType(arg1->type()));
3753   signature.append(as_BasicType(arg2->type()));
3754 
3755   return call_runtime(&signature, &args, entry, result_type, info);
3756 }
3757 
3758 
3759 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3760                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3761   // get a result register
3762   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3763   LIR_Opr result = LIR_OprFact::illegalOpr;
3764   if (result_type->tag() != voidTag) {
3765     result = new_register(result_type);
3766     phys_reg = result_register_for(result_type);
3767   }
3768 
3769   // move the arguments into the correct location
3770   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3771   assert(cc->length() == args->length(), "argument mismatch");
3772   for (int i = 0; i < args->length(); i++) {
3773     LIR_Opr arg = args->at(i);
3774     LIR_Opr loc = cc->at(i);
3775     if (loc->is_register()) {
3776       __ move(arg, loc);
3777     } else {
3778       LIR_Address* addr = loc->as_address_ptr();
3779 //           if (!can_store_as_constant(arg)) {
3780 //             LIR_Opr tmp = new_register(arg->type());
3781 //             __ move(arg, tmp);
3782 //             arg = tmp;
3783 //           }
3784       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3785         __ unaligned_move(arg, addr);
3786       } else {
3787         __ move(arg, addr);
3788       }
3789     }
3790   }
3791 
3792   if (info) {
3793     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3794   } else {
3795     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3796   }
3797   if (result->is_valid()) {
3798     __ move(phys_reg, result);
3799   }
3800   return result;
3801 }
3802 
3803 
3804 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3805                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3806   // get a result register
3807   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3808   LIR_Opr result = LIR_OprFact::illegalOpr;
3809   if (result_type->tag() != voidTag) {
3810     result = new_register(result_type);
3811     phys_reg = result_register_for(result_type);
3812   }
3813 
3814   // move the arguments into the correct location
3815   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3816 
3817   assert(cc->length() == args->length(), "argument mismatch");
3818   for (int i = 0; i < args->length(); i++) {
3819     LIRItem* arg = args->at(i);
3820     LIR_Opr loc = cc->at(i);
3821     if (loc->is_register()) {
3822       arg->load_item_force(loc);
3823     } else {
3824       LIR_Address* addr = loc->as_address_ptr();
3825       arg->load_for_store(addr->type());
3826       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3827         __ unaligned_move(arg->result(), addr);
3828       } else {
3829         __ move(arg->result(), addr);
3830       }
3831     }
3832   }
3833 
3834   if (info) {
3835     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3836   } else {
3837     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3838   }
3839   if (result->is_valid()) {
3840     __ move(phys_reg, result);
3841   }
3842   return result;
3843 }
3844 
3845 void LIRGenerator::do_MemBar(MemBar* x) {
3846   LIR_Code code = x->code();
3847   switch(code) {
3848   case lir_membar_acquire   : __ membar_acquire(); break;
3849   case lir_membar_release   : __ membar_release(); break;
3850   case lir_membar           : __ membar(); break;
3851   case lir_membar_loadload  : __ membar_loadload(); break;
3852   case lir_membar_storestore: __ membar_storestore(); break;
3853   case lir_membar_loadstore : __ membar_loadstore(); break;
3854   case lir_membar_storeload : __ membar_storeload(); break;
3855   default                   : ShouldNotReachHere(); break;
3856   }
3857 }
3858 
3859 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3860   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3861   if (TwoOperandLIRForm) {
3862     __ move(value, value_fixed);
3863     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3864   } else {
3865     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3866   }
3867   LIR_Opr klass = new_register(T_METADATA);
3868   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3869   null_check_info = NULL;
3870   LIR_Opr layout = new_register(T_INT);
3871   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3872   int diffbit = Klass::layout_helper_boolean_diffbit();
3873   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3874   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3875   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3876   value = value_fixed;
3877   return value;
3878 }
3879 
3880 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3881   if (x->check_boolean()) {
3882     value = mask_boolean(array, value, null_check_info);
3883   }
3884   return value;
3885 }