1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "ci/ciValueArrayKlass.hpp"
  38 #include "ci/ciValueKlass.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset(int max_vregs) {
  59   // Initialize array sizes
  60   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _virtual_operands.trunc_to(0);
  62   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _other_operands.trunc_to(0);
  64   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _vreg_table.trunc_to(0);
  66 }
  67 
  68 
  69 
  70 //--------------------------------------------------------------
  71 // PhiResolver
  72 
  73 // Resolves cycles:
  74 //
  75 //  r1 := r2  becomes  temp := r1
  76 //  r2 := r1           r1 := r2
  77 //                     r2 := temp
  78 // and orders moves:
  79 //
  80 //  r2 := r3  becomes  r1 := r2
  81 //  r1 := r2           r2 := r3
  82 
  83 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  84  : _gen(gen)
  85  , _state(gen->resolver_state())
  86  , _temp(LIR_OprFact::illegalOpr)
  87 {
  88   // reinitialize the shared state arrays
  89   _state.reset(max_vregs);
  90 }
  91 
  92 
  93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  94   assert(src->is_valid(), "");
  95   assert(dest->is_valid(), "");
  96   __ move(src, dest);
  97 }
  98 
  99 
 100 void PhiResolver::move_temp_to(LIR_Opr dest) {
 101   assert(_temp->is_valid(), "");
 102   emit_move(_temp, dest);
 103   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 104 }
 105 
 106 
 107 void PhiResolver::move_to_temp(LIR_Opr src) {
 108   assert(_temp->is_illegal(), "");
 109   _temp = _gen->new_register(src->type());
 110   emit_move(src, _temp);
 111 }
 112 
 113 
 114 // Traverse assignment graph in depth first order and generate moves in post order
 115 // ie. two assignments: b := c, a := b start with node c:
 116 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 117 // Generates moves in this order: move b to a and move c to b
 118 // ie. cycle a := b, b := a start with node a
 119 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 120 // Generates moves in this order: move b to temp, move a to b, move temp to a
 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 122   if (!dest->visited()) {
 123     dest->set_visited();
 124     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 125       move(dest, dest->destination_at(i));
 126     }
 127   } else if (!dest->start_node()) {
 128     // cylce in graph detected
 129     assert(_loop == NULL, "only one loop valid!");
 130     _loop = dest;
 131     move_to_temp(src->operand());
 132     return;
 133   } // else dest is a start node
 134 
 135   if (!dest->assigned()) {
 136     if (_loop == dest) {
 137       move_temp_to(dest->operand());
 138       dest->set_assigned();
 139     } else if (src != NULL) {
 140       emit_move(src->operand(), dest->operand());
 141       dest->set_assigned();
 142     }
 143   }
 144 }
 145 
 146 
 147 PhiResolver::~PhiResolver() {
 148   int i;
 149   // resolve any cycles in moves from and to virtual registers
 150   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 151     ResolveNode* node = virtual_operands().at(i);
 152     if (!node->visited()) {
 153       _loop = NULL;
 154       move(NULL, node);
 155       node->set_start_node();
 156       assert(_temp->is_illegal(), "move_temp_to() call missing");
 157     }
 158   }
 159 
 160   // generate move for move from non virtual register to abitrary destination
 161   for (i = other_operands().length() - 1; i >= 0; i --) {
 162     ResolveNode* node = other_operands().at(i);
 163     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 164       emit_move(node->operand(), node->destination_at(j)->operand());
 165     }
 166   }
 167 }
 168 
 169 
 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 171   ResolveNode* node;
 172   if (opr->is_virtual()) {
 173     int vreg_num = opr->vreg_number();
 174     node = vreg_table().at_grow(vreg_num, NULL);
 175     assert(node == NULL || node->operand() == opr, "");
 176     if (node == NULL) {
 177       node = new ResolveNode(opr);
 178       vreg_table().at_put(vreg_num, node);
 179     }
 180     // Make sure that all virtual operands show up in the list when
 181     // they are used as the source of a move.
 182     if (source && !virtual_operands().contains(node)) {
 183       virtual_operands().append(node);
 184     }
 185   } else {
 186     assert(source, "");
 187     node = new ResolveNode(opr);
 188     other_operands().append(node);
 189   }
 190   return node;
 191 }
 192 
 193 
 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 195   assert(dest->is_virtual(), "");
 196   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 197   assert(src->is_valid(), "");
 198   assert(dest->is_valid(), "");
 199   ResolveNode* source = source_node(src);
 200   source->append(destination_node(dest));
 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 213   }
 214 
 215   _result = opr;
 216 }
 217 
 218 void LIRItem::load_item() {
 219   if (result()->is_illegal()) {
 220     // update the items result
 221     _result = value()->operand();
 222   }
 223   if (!result()->is_register()) {
 224     LIR_Opr reg = _gen->new_register(value()->type());
 225     __ move(result(), reg);
 226     if (result()->is_constant()) {
 227       _result = reg;
 228     } else {
 229       set_result(reg);
 230     }
 231   }
 232 }
 233 
 234 
 235 void LIRItem::load_for_store(BasicType type) {
 236   if (_gen->can_store_as_constant(value(), type)) {
 237     _result = value()->operand();
 238     if (!_result->is_constant()) {
 239       _result = LIR_OprFact::value_type(value()->type());
 240     }
 241   } else if (type == T_BYTE || type == T_BOOLEAN) {
 242     load_byte_item();
 243   } else {
 244     load_item();
 245   }
 246 }
 247 
 248 void LIRItem::load_item_force(LIR_Opr reg) {
 249   LIR_Opr r = result();
 250   if (r != reg) {
 251 #if !defined(ARM) && !defined(E500V2)
 252     if (r->type() != reg->type()) {
 253       // moves between different types need an intervening spill slot
 254       r = _gen->force_to_spill(r, reg->type());
 255     }
 256 #endif
 257     __ move(r, reg);
 258     _result = reg;
 259   }
 260 }
 261 
 262 ciObject* LIRItem::get_jobject_constant() const {
 263   ObjectType* oc = type()->as_ObjectType();
 264   if (oc) {
 265     return oc->constant_value();
 266   }
 267   return NULL;
 268 }
 269 
 270 
 271 jint LIRItem::get_jint_constant() const {
 272   assert(is_constant() && value() != NULL, "");
 273   assert(type()->as_IntConstant() != NULL, "type check");
 274   return type()->as_IntConstant()->value();
 275 }
 276 
 277 
 278 jint LIRItem::get_address_constant() const {
 279   assert(is_constant() && value() != NULL, "");
 280   assert(type()->as_AddressConstant() != NULL, "type check");
 281   return type()->as_AddressConstant()->value();
 282 }
 283 
 284 
 285 jfloat LIRItem::get_jfloat_constant() const {
 286   assert(is_constant() && value() != NULL, "");
 287   assert(type()->as_FloatConstant() != NULL, "type check");
 288   return type()->as_FloatConstant()->value();
 289 }
 290 
 291 
 292 jdouble LIRItem::get_jdouble_constant() const {
 293   assert(is_constant() && value() != NULL, "");
 294   assert(type()->as_DoubleConstant() != NULL, "type check");
 295   return type()->as_DoubleConstant()->value();
 296 }
 297 
 298 
 299 jlong LIRItem::get_jlong_constant() const {
 300   assert(is_constant() && value() != NULL, "");
 301   assert(type()->as_LongConstant() != NULL, "type check");
 302   return type()->as_LongConstant()->value();
 303 }
 304 
 305 
 306 
 307 //--------------------------------------------------------------
 308 
 309 
 310 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 311 #ifndef PRODUCT
 312   if (PrintIRWithLIR) {
 313     block->print();
 314   }
 315 #endif
 316 
 317   // set up the list of LIR instructions
 318   assert(block->lir() == NULL, "LIR list already computed for this block");
 319   _lir = new LIR_List(compilation(), block);
 320   block->set_lir(_lir);
 321 
 322   __ branch_destination(block->label());
 323 
 324   if (LIRTraceExecution &&
 325       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 326       !block->is_set(BlockBegin::exception_entry_flag)) {
 327     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 328     trace_block_entry(block);
 329   }
 330 }
 331 
 332 
 333 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 334 #ifndef PRODUCT
 335   if (PrintIRWithLIR) {
 336     tty->cr();
 337   }
 338 #endif
 339 
 340   // LIR_Opr for unpinned constants shouldn't be referenced by other
 341   // blocks so clear them out after processing the block.
 342   for (int i = 0; i < _unpinned_constants.length(); i++) {
 343     _unpinned_constants.at(i)->clear_operand();
 344   }
 345   _unpinned_constants.trunc_to(0);
 346 
 347   // clear our any registers for other local constants
 348   _constants.trunc_to(0);
 349   _reg_for_constants.trunc_to(0);
 350 }
 351 
 352 
 353 void LIRGenerator::block_do(BlockBegin* block) {
 354   CHECK_BAILOUT();
 355 
 356   block_do_prolog(block);
 357   set_block(block);
 358 
 359   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 360     if (instr->is_pinned()) do_root(instr);
 361   }
 362 
 363   set_block(NULL);
 364   block_do_epilog(block);
 365 }
 366 
 367 
 368 //-------------------------LIRGenerator-----------------------------
 369 
 370 // This is where the tree-walk starts; instr must be root;
 371 void LIRGenerator::do_root(Value instr) {
 372   CHECK_BAILOUT();
 373 
 374   InstructionMark im(compilation(), instr);
 375 
 376   assert(instr->is_pinned(), "use only with roots");
 377   assert(instr->subst() == instr, "shouldn't have missed substitution");
 378 
 379   instr->visit(this);
 380 
 381   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 382          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 383 }
 384 
 385 
 386 // This is called for each node in tree; the walk stops if a root is reached
 387 void LIRGenerator::walk(Value instr) {
 388   InstructionMark im(compilation(), instr);
 389   //stop walk when encounter a root
 390   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 391     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 392   } else {
 393     assert(instr->subst() == instr, "shouldn't have missed substitution");
 394     instr->visit(this);
 395     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 396   }
 397 }
 398 
 399 
 400 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 401   assert(state != NULL, "state must be defined");
 402 
 403 #ifndef PRODUCT
 404   state->verify();
 405 #endif
 406 
 407   ValueStack* s = state;
 408   for_each_state(s) {
 409     if (s->kind() == ValueStack::EmptyExceptionState) {
 410       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 411       continue;
 412     }
 413 
 414     int index;
 415     Value value;
 416     for_each_stack_value(s, index, value) {
 417       assert(value->subst() == value, "missed substitution");
 418       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 419         walk(value);
 420         assert(value->operand()->is_valid(), "must be evaluated now");
 421       }
 422     }
 423 
 424     int bci = s->bci();
 425     IRScope* scope = s->scope();
 426     ciMethod* method = scope->method();
 427 
 428     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 429     if (bci == SynchronizationEntryBCI) {
 430       if (x->as_ExceptionObject() || x->as_Throw()) {
 431         // all locals are dead on exit from the synthetic unlocker
 432         liveness.clear();
 433       } else {
 434         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 435       }
 436     }
 437     if (!liveness.is_valid()) {
 438       // Degenerate or breakpointed method.
 439       bailout("Degenerate or breakpointed method");
 440     } else {
 441       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 442       for_each_local_value(s, index, value) {
 443         assert(value->subst() == value, "missed substition");
 444         if (liveness.at(index) && !value->type()->is_illegal()) {
 445           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 446             walk(value);
 447             assert(value->operand()->is_valid(), "must be evaluated now");
 448           }
 449         } else {
 450           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 451           s->invalidate_local(index);
 452         }
 453       }
 454     }
 455   }
 456 
 457   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 458 }
 459 
 460 
 461 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 462   return state_for(x, x->exception_state());
 463 }
 464 
 465 
 466 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 467   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 468    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 469    * the class. */
 470   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 471     assert(info != NULL, "info must be set if class is not loaded");
 472     __ klass2reg_patch(NULL, r, info);
 473   } else {
 474     // no patching needed
 475     __ metadata2reg(obj->constant_encoding(), r);
 476   }
 477 }
 478 
 479 
 480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 482   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 483   if (index->is_constant()) {
 484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 485                 index->as_jint(), null_check_info);
 486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 487   } else {
 488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 491   }
 492 }
 493 
 494 
 495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 496   CodeStub* stub = new RangeCheckStub(info, index);
 497   if (index->is_constant()) {
 498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 502                 java_nio_Buffer::limit_offset(), T_INT, info);
 503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 504   }
 505   __ move(index, result);
 506 }
 507 
 508 
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (TwoOperandLIRForm && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:
 530       {
 531         if (is_strictfp) {
 532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 533         } else {
 534           __ mul(left_op, right_op, result_op); break;
 535         }
 536       }
 537       break;
 538 
 539     case Bytecodes::_imul:
 540       {
 541         bool did_strength_reduce = false;
 542 
 543         if (right->is_constant()) {
 544           jint c = right->as_jint();
 545           if (c > 0 && is_power_of_2(c)) {
 546             // do not need tmp here
 547             __ shift_left(left_op, exact_log2(c), result_op);
 548             did_strength_reduce = true;
 549           } else {
 550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 551           }
 552         }
 553         // we couldn't strength reduce so just emit the multiply
 554         if (!did_strength_reduce) {
 555           __ mul(left_op, right_op, result_op);
 556         }
 557       }
 558       break;
 559 
 560     case Bytecodes::_dsub:
 561     case Bytecodes::_fsub:
 562     case Bytecodes::_lsub:
 563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 564 
 565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 566     // ldiv and lrem are implemented with a direct runtime call
 567 
 568     case Bytecodes::_ddiv:
 569       {
 570         if (is_strictfp) {
 571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 572         } else {
 573           __ div (left_op, right_op, result_op); break;
 574         }
 575       }
 576       break;
 577 
 578     case Bytecodes::_drem:
 579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 580 
 581     default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 587   arithmetic_op(code, result, left, right, false, tmp);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 593 }
 594 
 595 
 596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 598 }
 599 
 600 
 601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 602 
 603   if (TwoOperandLIRForm && value != result_op
 604       // Only 32bit right shifts require two operand form on S390.
 605       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 606     assert(count != result_op, "malformed");
 607     __ move(value, result_op);
 608     value = result_op;
 609   }
 610 
 611   assert(count->is_constant() || count->is_register(), "must be");
 612   switch(code) {
 613   case Bytecodes::_ishl:
 614   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 615   case Bytecodes::_ishr:
 616   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 617   case Bytecodes::_iushr:
 618   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 619   default: ShouldNotReachHere();
 620   }
 621 }
 622 
 623 
 624 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 625   if (TwoOperandLIRForm && left_op != result_op) {
 626     assert(right_op != result_op, "malformed");
 627     __ move(left_op, result_op);
 628     left_op = result_op;
 629   }
 630 
 631   switch(code) {
 632     case Bytecodes::_iand:
 633     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 634 
 635     case Bytecodes::_ior:
 636     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 637 
 638     case Bytecodes::_ixor:
 639     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 640 
 641     default: ShouldNotReachHere();
 642   }
 643 }
 644 
 645 
 646 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 647                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 648   if (!GenerateSynchronizationCode) return;
 649   // for slow path, use debug info for state after successful locking
 650   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 651   __ load_stack_address_monitor(monitor_no, lock);
 652   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 653   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 658   if (!GenerateSynchronizationCode) return;
 659   // setup registers
 660   LIR_Opr hdr = lock;
 661   lock = new_hdr;
 662   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 663   __ load_stack_address_monitor(monitor_no, lock);
 664   __ unlock_object(hdr, object, lock, scratch, slow_path);
 665 }
 666 
 667 #ifndef PRODUCT
 668 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 669   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 670     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 671   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 672     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 673   }
 674 }
 675 #endif
 676 
 677 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 678   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 679   // If klass is not loaded we do not know if the klass has finalizers:
 680   if (UseFastNewInstance && klass->is_loaded()
 681       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 682 
 683     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 684 
 685     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 686 
 687     assert(klass->is_loaded(), "must be loaded");
 688     // allocate space for instance
 689     assert(klass->size_helper() >= 0, "illegal instance size");
 690     const int instance_size = align_object_size(klass->size_helper());
 691     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 692                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 693   } else {
 694     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 695     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 696     __ branch_destination(slow_path->continuation());
 697   }
 698 }
 699 
 700 
 701 static bool is_constant_zero(Instruction* inst) {
 702   IntConstant* c = inst->type()->as_IntConstant();
 703   if (c) {
 704     return (c->value() == 0);
 705   }
 706   return false;
 707 }
 708 
 709 
 710 static bool positive_constant(Instruction* inst) {
 711   IntConstant* c = inst->type()->as_IntConstant();
 712   if (c) {
 713     return (c->value() >= 0);
 714   }
 715   return false;
 716 }
 717 
 718 
 719 static ciArrayKlass* as_array_klass(ciType* type) {
 720   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 721     return (ciArrayKlass*)type;
 722   } else {
 723     return NULL;
 724   }
 725 }
 726 
 727 static ciType* phi_declared_type(Phi* phi) {
 728   ciType* t = phi->operand_at(0)->declared_type();
 729   if (t == NULL) {
 730     return NULL;
 731   }
 732   for(int i = 1; i < phi->operand_count(); i++) {
 733     if (t != phi->operand_at(i)->declared_type()) {
 734       return NULL;
 735     }
 736   }
 737   return t;
 738 }
 739 
 740 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 741   Instruction* src     = x->argument_at(0);
 742   Instruction* src_pos = x->argument_at(1);
 743   Instruction* dst     = x->argument_at(2);
 744   Instruction* dst_pos = x->argument_at(3);
 745   Instruction* length  = x->argument_at(4);
 746 
 747   // first try to identify the likely type of the arrays involved
 748   ciArrayKlass* expected_type = NULL;
 749   bool is_exact = false, src_objarray = false, dst_objarray = false;
 750   {
 751     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 752     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 753     Phi* phi;
 754     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 755       src_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 758     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 759     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 760       dst_declared_type = as_array_klass(phi_declared_type(phi));
 761     }
 762 
 763     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 764       // the types exactly match so the type is fully known
 765       is_exact = true;
 766       expected_type = src_exact_type;
 767     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 768       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 769       ciArrayKlass* src_type = NULL;
 770       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 771         src_type = (ciArrayKlass*) src_exact_type;
 772       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_declared_type;
 774       }
 775       if (src_type != NULL) {
 776         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 777           is_exact = true;
 778           expected_type = dst_type;
 779         }
 780       }
 781     }
 782     // at least pass along a good guess
 783     if (expected_type == NULL) expected_type = dst_exact_type;
 784     if (expected_type == NULL) expected_type = src_declared_type;
 785     if (expected_type == NULL) expected_type = dst_declared_type;
 786 
 787     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 788     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 789   }
 790 
 791   // if a probable array type has been identified, figure out if any
 792   // of the required checks for a fast case can be elided.
 793   int flags = LIR_OpArrayCopy::all_flags;
 794 
 795   if (!src->is_loaded_flattened_array() && !dst->is_loaded_flattened_array()) {
 796     flags &= ~LIR_OpArrayCopy::always_slow_path;
 797   }
 798   if (!src->maybe_flattened_array()) {
 799     flags &= ~LIR_OpArrayCopy::src_flat_check;
 800   }
 801   if (!dst->maybe_flattened_array()) {
 802     flags &= ~LIR_OpArrayCopy::dst_flat_check;
 803   }
 804 
 805   if (!src_objarray)
 806     flags &= ~LIR_OpArrayCopy::src_objarray;
 807   if (!dst_objarray)
 808     flags &= ~LIR_OpArrayCopy::dst_objarray;
 809 
 810   if (!x->arg_needs_null_check(0))
 811     flags &= ~LIR_OpArrayCopy::src_null_check;
 812   if (!x->arg_needs_null_check(2))
 813     flags &= ~LIR_OpArrayCopy::dst_null_check;
 814 
 815 
 816   if (expected_type != NULL) {
 817     Value length_limit = NULL;
 818 
 819     IfOp* ifop = length->as_IfOp();
 820     if (ifop != NULL) {
 821       // look for expressions like min(v, a.length) which ends up as
 822       //   x > y ? y : x  or  x >= y ? y : x
 823       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 824           ifop->x() == ifop->fval() &&
 825           ifop->y() == ifop->tval()) {
 826         length_limit = ifop->y();
 827       }
 828     }
 829 
 830     // try to skip null checks and range checks
 831     NewArray* src_array = src->as_NewArray();
 832     if (src_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::src_null_check;
 834       if (length_limit != NULL &&
 835           src_array->length() == length_limit &&
 836           is_constant_zero(src_pos)) {
 837         flags &= ~LIR_OpArrayCopy::src_range_check;
 838       }
 839     }
 840 
 841     NewArray* dst_array = dst->as_NewArray();
 842     if (dst_array != NULL) {
 843       flags &= ~LIR_OpArrayCopy::dst_null_check;
 844       if (length_limit != NULL &&
 845           dst_array->length() == length_limit &&
 846           is_constant_zero(dst_pos)) {
 847         flags &= ~LIR_OpArrayCopy::dst_range_check;
 848       }
 849     }
 850 
 851     // check from incoming constant values
 852     if (positive_constant(src_pos))
 853       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 854     if (positive_constant(dst_pos))
 855       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 856     if (positive_constant(length))
 857       flags &= ~LIR_OpArrayCopy::length_positive_check;
 858 
 859     // see if the range check can be elided, which might also imply
 860     // that src or dst is non-null.
 861     ArrayLength* al = length->as_ArrayLength();
 862     if (al != NULL) {
 863       if (al->array() == src) {
 864         // it's the length of the source array
 865         flags &= ~LIR_OpArrayCopy::length_positive_check;
 866         flags &= ~LIR_OpArrayCopy::src_null_check;
 867         if (is_constant_zero(src_pos))
 868           flags &= ~LIR_OpArrayCopy::src_range_check;
 869       }
 870       if (al->array() == dst) {
 871         // it's the length of the destination array
 872         flags &= ~LIR_OpArrayCopy::length_positive_check;
 873         flags &= ~LIR_OpArrayCopy::dst_null_check;
 874         if (is_constant_zero(dst_pos))
 875           flags &= ~LIR_OpArrayCopy::dst_range_check;
 876       }
 877     }
 878     if (is_exact) {
 879       flags &= ~LIR_OpArrayCopy::type_check;
 880     }
 881   }
 882 
 883   IntConstant* src_int = src_pos->type()->as_IntConstant();
 884   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 885   if (src_int && dst_int) {
 886     int s_offs = src_int->value();
 887     int d_offs = dst_int->value();
 888     if (src_int->value() >= dst_int->value()) {
 889       flags &= ~LIR_OpArrayCopy::overlapping;
 890     }
 891     if (expected_type != NULL) {
 892       BasicType t = expected_type->element_type()->basic_type();
 893       int element_size = type2aelembytes(t);
 894       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 895           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 896         flags &= ~LIR_OpArrayCopy::unaligned;
 897       }
 898     }
 899   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 900     // src and dest positions are the same, or dst is zero so assume
 901     // nonoverlapping copy.
 902     flags &= ~LIR_OpArrayCopy::overlapping;
 903   }
 904 
 905   if (src == dst) {
 906     // moving within a single array so no type checks are needed
 907     if (flags & LIR_OpArrayCopy::type_check) {
 908       flags &= ~LIR_OpArrayCopy::type_check;
 909     }
 910   }
 911   *flagsp = flags;
 912   *expected_typep = (ciArrayKlass*)expected_type;
 913 }
 914 
 915 
 916 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 917   assert(opr->is_register(), "why spill if item is not register?");
 918 
 919   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 920     LIR_Opr result = new_register(T_FLOAT);
 921     set_vreg_flag(result, must_start_in_memory);
 922     assert(opr->is_register(), "only a register can be spilled");
 923     assert(opr->value_type()->is_float(), "rounding only for floats available");
 924     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 925     return result;
 926   }
 927   return opr;
 928 }
 929 
 930 
 931 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 932   assert(type2size[t] == type2size[value->type()],
 933          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 934   if (!value->is_register()) {
 935     // force into a register
 936     LIR_Opr r = new_register(value->type());
 937     __ move(value, r);
 938     value = r;
 939   }
 940 
 941   // create a spill location
 942   LIR_Opr tmp = new_register(t);
 943   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 944 
 945   // move from register to spill
 946   __ move(value, tmp);
 947   return tmp;
 948 }
 949 
 950 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 951   if (if_instr->should_profile()) {
 952     ciMethod* method = if_instr->profiled_method();
 953     assert(method != NULL, "method should be set if branch is profiled");
 954     ciMethodData* md = method->method_data_or_null();
 955     assert(md != NULL, "Sanity");
 956     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 957     assert(data != NULL, "must have profiling data");
 958     assert(data->is_BranchData(), "need BranchData for two-way branches");
 959     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 960     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 961     if (if_instr->is_swapped()) {
 962       int t = taken_count_offset;
 963       taken_count_offset = not_taken_count_offset;
 964       not_taken_count_offset = t;
 965     }
 966 
 967     LIR_Opr md_reg = new_register(T_METADATA);
 968     __ metadata2reg(md->constant_encoding(), md_reg);
 969 
 970     LIR_Opr data_offset_reg = new_pointer_register();
 971     __ cmove(lir_cond(cond),
 972              LIR_OprFact::intptrConst(taken_count_offset),
 973              LIR_OprFact::intptrConst(not_taken_count_offset),
 974              data_offset_reg, as_BasicType(if_instr->x()->type()));
 975 
 976     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 977     LIR_Opr data_reg = new_pointer_register();
 978     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 979     __ move(data_addr, data_reg);
 980     // Use leal instead of add to avoid destroying condition codes on x86
 981     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 982     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 983     __ move(data_reg, data_addr);
 984   }
 985 }
 986 
 987 // Phi technique:
 988 // This is about passing live values from one basic block to the other.
 989 // In code generated with Java it is rather rare that more than one
 990 // value is on the stack from one basic block to the other.
 991 // We optimize our technique for efficient passing of one value
 992 // (of type long, int, double..) but it can be extended.
 993 // When entering or leaving a basic block, all registers and all spill
 994 // slots are release and empty. We use the released registers
 995 // and spill slots to pass the live values from one block
 996 // to the other. The topmost value, i.e., the value on TOS of expression
 997 // stack is passed in registers. All other values are stored in spilling
 998 // area. Every Phi has an index which designates its spill slot
 999 // At exit of a basic block, we fill the register(s) and spill slots.
1000 // At entry of a basic block, the block_prolog sets up the content of phi nodes
1001 // and locks necessary registers and spilling slots.
1002 
1003 
1004 // move current value to referenced phi function
1005 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1006   Phi* phi = sux_val->as_Phi();
1007   // cur_val can be null without phi being null in conjunction with inlining
1008   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1009     Phi* cur_phi = cur_val->as_Phi();
1010     if (cur_phi != NULL && cur_phi->is_illegal()) {
1011       // Phi and local would need to get invalidated
1012       // (which is unexpected for Linear Scan).
1013       // But this case is very rare so we simply bail out.
1014       bailout("propagation of illegal phi");
1015       return;
1016     }
1017     LIR_Opr operand = cur_val->operand();
1018     if (operand->is_illegal()) {
1019       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1020              "these can be produced lazily");
1021       operand = operand_for_instruction(cur_val);
1022     }
1023     resolver->move(operand, operand_for_instruction(phi));
1024   }
1025 }
1026 
1027 
1028 // Moves all stack values into their PHI position
1029 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1030   BlockBegin* bb = block();
1031   if (bb->number_of_sux() == 1) {
1032     BlockBegin* sux = bb->sux_at(0);
1033     assert(sux->number_of_preds() > 0, "invalid CFG");
1034 
1035     // a block with only one predecessor never has phi functions
1036     if (sux->number_of_preds() > 1) {
1037       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1038       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1039 
1040       ValueStack* sux_state = sux->state();
1041       Value sux_value;
1042       int index;
1043 
1044       assert(cur_state->scope() == sux_state->scope(), "not matching");
1045       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1046       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1047 
1048       for_each_stack_value(sux_state, index, sux_value) {
1049         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1050       }
1051 
1052       for_each_local_value(sux_state, index, sux_value) {
1053         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1054       }
1055 
1056       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1057     }
1058   }
1059 }
1060 
1061 
1062 LIR_Opr LIRGenerator::new_register(BasicType type) {
1063   int vreg = _virtual_register_number;
1064   // add a little fudge factor for the bailout, since the bailout is
1065   // only checked periodically.  This gives a few extra registers to
1066   // hand out before we really run out, which helps us keep from
1067   // tripping over assertions.
1068   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1069     bailout("out of virtual registers");
1070     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1071       // wrap it around
1072       _virtual_register_number = LIR_OprDesc::vreg_base;
1073     }
1074   }
1075   _virtual_register_number += 1;
1076   return LIR_OprFact::virtual_register(vreg, type);
1077 }
1078 
1079 
1080 // Try to lock using register in hint
1081 LIR_Opr LIRGenerator::rlock(Value instr) {
1082   return new_register(instr->type());
1083 }
1084 
1085 
1086 // does an rlock and sets result
1087 LIR_Opr LIRGenerator::rlock_result(Value x) {
1088   LIR_Opr reg = rlock(x);
1089   set_result(x, reg);
1090   return reg;
1091 }
1092 
1093 
1094 // does an rlock and sets result
1095 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1096   LIR_Opr reg;
1097   switch (type) {
1098   case T_BYTE:
1099   case T_BOOLEAN:
1100     reg = rlock_byte(type);
1101     break;
1102   default:
1103     reg = rlock(x);
1104     break;
1105   }
1106 
1107   set_result(x, reg);
1108   return reg;
1109 }
1110 
1111 
1112 //---------------------------------------------------------------------
1113 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1114   ObjectType* oc = value->type()->as_ObjectType();
1115   if (oc) {
1116     return oc->constant_value();
1117   }
1118   return NULL;
1119 }
1120 
1121 
1122 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1123   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1124   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1125 
1126   // no moves are created for phi functions at the begin of exception
1127   // handlers, so assign operands manually here
1128   for_each_phi_fun(block(), phi,
1129                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1130 
1131   LIR_Opr thread_reg = getThreadPointer();
1132   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1133                exceptionOopOpr());
1134   __ move_wide(LIR_OprFact::oopConst(NULL),
1135                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1136   __ move_wide(LIR_OprFact::oopConst(NULL),
1137                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1138 
1139   LIR_Opr result = new_register(T_OBJECT);
1140   __ move(exceptionOopOpr(), result);
1141   set_result(x, result);
1142 }
1143 
1144 
1145 //----------------------------------------------------------------------
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 //----------------------------------------------------------------------
1149 //                        visitor functions
1150 //----------------------------------------------------------------------
1151 //----------------------------------------------------------------------
1152 //----------------------------------------------------------------------
1153 //----------------------------------------------------------------------
1154 
1155 void LIRGenerator::do_Phi(Phi* x) {
1156   // phi functions are never visited directly
1157   ShouldNotReachHere();
1158 }
1159 
1160 
1161 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1162 void LIRGenerator::do_Constant(Constant* x) {
1163   if (x->state_before() != NULL) {
1164     // Any constant with a ValueStack requires patching so emit the patch here
1165     LIR_Opr reg = rlock_result(x);
1166     CodeEmitInfo* info = state_for(x, x->state_before());
1167     __ oop2reg_patch(NULL, reg, info);
1168   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1169     if (!x->is_pinned()) {
1170       // unpinned constants are handled specially so that they can be
1171       // put into registers when they are used multiple times within a
1172       // block.  After the block completes their operand will be
1173       // cleared so that other blocks can't refer to that register.
1174       set_result(x, load_constant(x));
1175     } else {
1176       LIR_Opr res = x->operand();
1177       if (!res->is_valid()) {
1178         res = LIR_OprFact::value_type(x->type());
1179       }
1180       if (res->is_constant()) {
1181         LIR_Opr reg = rlock_result(x);
1182         __ move(res, reg);
1183       } else {
1184         set_result(x, res);
1185       }
1186     }
1187   } else {
1188     set_result(x, LIR_OprFact::value_type(x->type()));
1189   }
1190 }
1191 
1192 
1193 void LIRGenerator::do_Local(Local* x) {
1194   // operand_for_instruction has the side effect of setting the result
1195   // so there's no need to do it here.
1196   operand_for_instruction(x);
1197 }
1198 
1199 
1200 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1201   Unimplemented();
1202 }
1203 
1204 
1205 void LIRGenerator::do_Return(Return* x) {
1206   if (compilation()->env()->dtrace_method_probes()) {
1207     BasicTypeList signature;
1208     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1209     signature.append(T_METADATA); // Method*
1210     LIR_OprList* args = new LIR_OprList();
1211     args->append(getThreadPointer());
1212     LIR_Opr meth = new_register(T_METADATA);
1213     __ metadata2reg(method()->constant_encoding(), meth);
1214     args->append(meth);
1215     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1216   }
1217 
1218   if (x->type()->is_void()) {
1219     __ return_op(LIR_OprFact::illegalOpr);
1220   } else {
1221     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1222     LIRItem result(x->result(), this);
1223 
1224     result.load_item_force(reg);
1225     __ return_op(result.result());
1226   }
1227   set_no_result(x);
1228 }
1229 
1230 // Examble: ref.get()
1231 // Combination of LoadField and g1 pre-write barrier
1232 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1233 
1234   const int referent_offset = java_lang_ref_Reference::referent_offset;
1235   guarantee(referent_offset > 0, "referent offset not initialized");
1236 
1237   assert(x->number_of_arguments() == 1, "wrong type");
1238 
1239   LIRItem reference(x->argument_at(0), this);
1240   reference.load_item();
1241 
1242   // need to perform the null check on the reference objecy
1243   CodeEmitInfo* info = NULL;
1244   if (x->needs_null_check()) {
1245     info = state_for(x);
1246   }
1247 
1248   LIR_Opr result = rlock_result(x, T_OBJECT);
1249   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1250                  reference, LIR_OprFact::intConst(referent_offset), result);
1251 }
1252 
1253 // Example: clazz.isInstance(object)
1254 void LIRGenerator::do_isInstance(Intrinsic* x) {
1255   assert(x->number_of_arguments() == 2, "wrong type");
1256 
1257   // TODO could try to substitute this node with an equivalent InstanceOf
1258   // if clazz is known to be a constant Class. This will pick up newly found
1259   // constants after HIR construction. I'll leave this to a future change.
1260 
1261   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1262   // could follow the aastore example in a future change.
1263 
1264   LIRItem clazz(x->argument_at(0), this);
1265   LIRItem object(x->argument_at(1), this);
1266   clazz.load_item();
1267   object.load_item();
1268   LIR_Opr result = rlock_result(x);
1269 
1270   // need to perform null check on clazz
1271   if (x->needs_null_check()) {
1272     CodeEmitInfo* info = state_for(x);
1273     __ null_check(clazz.result(), info);
1274   }
1275 
1276   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1277                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1278                                      x->type(),
1279                                      NULL); // NULL CodeEmitInfo results in a leaf call
1280   __ move(call_result, result);
1281 }
1282 
1283 // Example: object.getClass ()
1284 void LIRGenerator::do_getClass(Intrinsic* x) {
1285   assert(x->number_of_arguments() == 1, "wrong type");
1286 
1287   LIRItem rcvr(x->argument_at(0), this);
1288   rcvr.load_item();
1289   LIR_Opr temp = new_register(T_METADATA);
1290   LIR_Opr result = rlock_result(x);
1291 
1292   // need to perform the null check on the rcvr
1293   CodeEmitInfo* info = NULL;
1294   if (x->needs_null_check()) {
1295     info = state_for(x);
1296   }
1297 
1298   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1299   // meaning of these two is mixed up (see JDK-8026837).
1300   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1301   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1302   // mirror = ((OopHandle)mirror)->resolve();
1303   access_load(IN_NATIVE, T_OBJECT,
1304               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1305 }
1306 
1307 // java.lang.Class::isPrimitive()
1308 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1309   assert(x->number_of_arguments() == 1, "wrong type");
1310 
1311   LIRItem rcvr(x->argument_at(0), this);
1312   rcvr.load_item();
1313   LIR_Opr temp = new_register(T_METADATA);
1314   LIR_Opr result = rlock_result(x);
1315 
1316   CodeEmitInfo* info = NULL;
1317   if (x->needs_null_check()) {
1318     info = state_for(x);
1319   }
1320 
1321   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1322   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1323   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1324 }
1325 
1326 
1327 // Example: Thread.currentThread()
1328 void LIRGenerator::do_currentThread(Intrinsic* x) {
1329   assert(x->number_of_arguments() == 0, "wrong type");
1330   LIR_Opr reg = rlock_result(x);
1331   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1332 }
1333 
1334 
1335 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1336   assert(x->number_of_arguments() == 1, "wrong type");
1337   LIRItem receiver(x->argument_at(0), this);
1338 
1339   receiver.load_item();
1340   BasicTypeList signature;
1341   signature.append(T_OBJECT); // receiver
1342   LIR_OprList* args = new LIR_OprList();
1343   args->append(receiver.result());
1344   CodeEmitInfo* info = state_for(x, x->state());
1345   call_runtime(&signature, args,
1346                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1347                voidType, info);
1348 
1349   set_no_result(x);
1350 }
1351 
1352 
1353 //------------------------local access--------------------------------------
1354 
1355 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1356   if (x->operand()->is_illegal()) {
1357     Constant* c = x->as_Constant();
1358     if (c != NULL) {
1359       x->set_operand(LIR_OprFact::value_type(c->type()));
1360     } else {
1361       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1362       // allocate a virtual register for this local or phi
1363       x->set_operand(rlock(x));
1364       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1365     }
1366   }
1367   return x->operand();
1368 }
1369 
1370 
1371 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1372   if (opr->is_virtual()) {
1373     return instruction_for_vreg(opr->vreg_number());
1374   }
1375   return NULL;
1376 }
1377 
1378 
1379 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1380   if (reg_num < _instruction_for_operand.length()) {
1381     return _instruction_for_operand.at(reg_num);
1382   }
1383   return NULL;
1384 }
1385 
1386 
1387 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1388   if (_vreg_flags.size_in_bits() == 0) {
1389     BitMap2D temp(100, num_vreg_flags);
1390     _vreg_flags = temp;
1391   }
1392   _vreg_flags.at_put_grow(vreg_num, f, true);
1393 }
1394 
1395 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1396   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1397     return false;
1398   }
1399   return _vreg_flags.at(vreg_num, f);
1400 }
1401 
1402 
1403 // Block local constant handling.  This code is useful for keeping
1404 // unpinned constants and constants which aren't exposed in the IR in
1405 // registers.  Unpinned Constant instructions have their operands
1406 // cleared when the block is finished so that other blocks can't end
1407 // up referring to their registers.
1408 
1409 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1410   assert(!x->is_pinned(), "only for unpinned constants");
1411   _unpinned_constants.append(x);
1412   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1413 }
1414 
1415 
1416 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1417   BasicType t = c->type();
1418   for (int i = 0; i < _constants.length(); i++) {
1419     LIR_Const* other = _constants.at(i);
1420     if (t == other->type()) {
1421       switch (t) {
1422       case T_INT:
1423       case T_FLOAT:
1424         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1425         break;
1426       case T_LONG:
1427       case T_DOUBLE:
1428         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1429         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1430         break;
1431       case T_OBJECT:
1432         if (c->as_jobject() != other->as_jobject()) continue;
1433         break;
1434       default:
1435         break;
1436       }
1437       return _reg_for_constants.at(i);
1438     }
1439   }
1440 
1441   LIR_Opr result = new_register(t);
1442   __ move((LIR_Opr)c, result);
1443   _constants.append(c);
1444   _reg_for_constants.append(result);
1445   return result;
1446 }
1447 
1448 //------------------------field access--------------------------------------
1449 
1450 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1451   assert(x->number_of_arguments() == 4, "wrong type");
1452   LIRItem obj   (x->argument_at(0), this);  // object
1453   LIRItem offset(x->argument_at(1), this);  // offset of field
1454   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1455   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1456   assert(obj.type()->tag() == objectTag, "invalid type");
1457 
1458   // In 64bit the type can be long, sparc doesn't have this assert
1459   // assert(offset.type()->tag() == intTag, "invalid type");
1460 
1461   assert(cmp.type()->tag() == type->tag(), "invalid type");
1462   assert(val.type()->tag() == type->tag(), "invalid type");
1463 
1464   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1465                                             obj, offset, cmp, val);
1466   set_result(x, result);
1467 }
1468 
1469 // Comment copied form templateTable_i486.cpp
1470 // ----------------------------------------------------------------------------
1471 // Volatile variables demand their effects be made known to all CPU's in
1472 // order.  Store buffers on most chips allow reads & writes to reorder; the
1473 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1474 // memory barrier (i.e., it's not sufficient that the interpreter does not
1475 // reorder volatile references, the hardware also must not reorder them).
1476 //
1477 // According to the new Java Memory Model (JMM):
1478 // (1) All volatiles are serialized wrt to each other.
1479 // ALSO reads & writes act as aquire & release, so:
1480 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1481 // the read float up to before the read.  It's OK for non-volatile memory refs
1482 // that happen before the volatile read to float down below it.
1483 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1484 // that happen BEFORE the write float down to after the write.  It's OK for
1485 // non-volatile memory refs that happen after the volatile write to float up
1486 // before it.
1487 //
1488 // We only put in barriers around volatile refs (they are expensive), not
1489 // _between_ memory refs (that would require us to track the flavor of the
1490 // previous memory refs).  Requirements (2) and (3) require some barriers
1491 // before volatile stores and after volatile loads.  These nearly cover
1492 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1493 // case is placed after volatile-stores although it could just as well go
1494 // before volatile-loads.
1495 
1496 
1497 void LIRGenerator::do_StoreField(StoreField* x) {
1498   bool needs_patching = x->needs_patching();
1499   bool is_volatile = x->field()->is_volatile();
1500   BasicType field_type = x->field_type();
1501 
1502   CodeEmitInfo* info = NULL;
1503   if (needs_patching) {
1504     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1505     info = state_for(x, x->state_before());
1506   } else if (x->needs_null_check()) {
1507     NullCheck* nc = x->explicit_null_check();
1508     if (nc == NULL) {
1509       info = state_for(x);
1510     } else {
1511       info = state_for(nc);
1512     }
1513   }
1514 
1515   LIRItem object(x->obj(), this);
1516   LIRItem value(x->value(),  this);
1517 
1518   object.load_item();
1519 
1520   if (is_volatile || needs_patching) {
1521     // load item if field is volatile (fewer special cases for volatiles)
1522     // load item if field not initialized
1523     // load item if field not constant
1524     // because of code patching we cannot inline constants
1525     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1526       value.load_byte_item();
1527     } else  {
1528       value.load_item();
1529     }
1530   } else {
1531     value.load_for_store(field_type);
1532   }
1533 
1534   set_no_result(x);
1535 
1536 #ifndef PRODUCT
1537   if (PrintNotLoaded && needs_patching) {
1538     tty->print_cr("   ###class not loaded at store_%s bci %d",
1539                   x->is_static() ?  "static" : "field", x->printable_bci());
1540   }
1541 #endif
1542 
1543   if (x->needs_null_check() &&
1544       (needs_patching ||
1545        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1546     if (needs_patching && x->field()->is_never_null()) {
1547       // We are storing a field of type "QT;", but T is not yet loaded, so we don't
1548       // know whether this field is flattened or not. Let's deoptimize and recompile.
1549       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1550                                           Deoptimization::Reason_unloaded,
1551                                           Deoptimization::Action_make_not_entrant);
1552       __ branch(lir_cond_always, T_ILLEGAL, stub);
1553     } else {
1554       // Emit an explicit null check because the offset is too large.
1555       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1556       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1557       __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1558     }
1559   }
1560 
1561   DecoratorSet decorators = IN_HEAP;
1562   if (is_volatile) {
1563     decorators |= MO_SEQ_CST;
1564   }
1565   if (needs_patching) {
1566     decorators |= C1_NEEDS_PATCHING;
1567   }
1568 
1569   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1570                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1571 }
1572 
1573 // FIXME -- I can't find any other way to pass an address to access_load_at().
1574 class TempResolvedAddress: public Instruction {
1575  public:
1576   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1577     set_operand(addr);
1578   }
1579   virtual void input_values_do(ValueVisitor*) {}
1580   virtual void visit(InstructionVisitor* v)   {}
1581   virtual const char* name() const  { return "TempResolvedAddress"; }
1582 };
1583 
1584 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item) {
1585   // Find the starting address of the source (inside the array)
1586   ciType* array_type = array.value()->declared_type();
1587   ciValueArrayKlass* value_array_klass = array_type->as_value_array_klass();
1588   assert(value_array_klass->is_loaded(), "must be");
1589 
1590   ciValueKlass* elem_klass = value_array_klass->element_klass()->as_value_klass();
1591   int array_header_size = value_array_klass->array_header_in_bytes();
1592   int shift = value_array_klass->log2_element_size();
1593 
1594 #ifndef _LP64
1595   LIR_Opr index_op = new_register(T_INT);
1596   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1597   // the top (shift+1) bits of index_op must be zero, or
1598   // else throw ArrayIndexOutOfBoundsException
1599   if (index.result()->is_constant()) {
1600     jint const_index = index.result()->as_jint();
1601     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1602   } else {
1603     __ shift_left(index_op, shift, index.result());
1604   }
1605 #else
1606   LIR_Opr index_op = new_register(T_LONG);
1607   if (index.result()->is_constant()) {
1608     jint const_index = index.result()->as_jint();
1609     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1610   } else {
1611     __ convert(Bytecodes::_i2l, index.result(), index_op);
1612     // Need to shift manually, as LIR_Address can scale only up to 3.
1613     __ shift_left(index_op, shift, index_op);
1614   }
1615 #endif
1616 
1617   LIR_Opr elm_op = new_pointer_register();
1618   LIR_Address* elm_address = new LIR_Address(array.result(), index_op, array_header_size, T_ADDRESS);
1619   __ leal(LIR_OprFact::address(elm_address), elm_op);
1620 
1621   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1622     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1623     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1624     int obj_offset = inner_field->offset();
1625     int elm_offset = obj_offset - elem_klass->first_field_offset(); // object header is not stored in array.
1626 
1627     BasicType field_type = inner_field->type()->basic_type();
1628     switch (field_type) {
1629     case T_BYTE:
1630     case T_BOOLEAN:
1631     case T_SHORT:
1632     case T_CHAR:
1633      field_type = T_INT;
1634       break;
1635     default:
1636       break;
1637     }
1638 
1639     LIR_Opr temp = new_register(field_type);
1640     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1641     LIRItem elm_item(elm_resolved_addr, this);
1642 
1643     DecoratorSet decorators = IN_HEAP;
1644     if (is_load) {
1645       access_load_at(decorators, field_type,
1646                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1647                      NULL, NULL);
1648       access_store_at(decorators, field_type,
1649                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1650                       NULL, NULL);
1651     } else {
1652     access_load_at(decorators, field_type,
1653                    obj_item, LIR_OprFact::intConst(obj_offset), temp,
1654                    NULL, NULL);
1655     access_store_at(decorators, field_type,
1656                     elm_item, LIR_OprFact::intConst(elm_offset), temp,
1657                     NULL, NULL);
1658     }
1659   }
1660 }
1661 
1662 void LIRGenerator::check_flattened_array(LIRItem& array, CodeStub* slow_path) {
1663   LIR_Opr array_klass_reg = new_register(T_METADATA);
1664 
1665   __ move(new LIR_Address(array.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), array_klass_reg);
1666   LIR_Opr layout = new_register(T_INT);
1667   __ move(new LIR_Address(array_klass_reg, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1668   __ shift_right(layout, Klass::_lh_array_tag_shift, layout);
1669   __ cmp(lir_cond_equal, layout, LIR_OprFact::intConst(Klass::_lh_array_tag_vt_value));
1670   __ branch(lir_cond_equal, T_ILLEGAL, slow_path);
1671 }
1672 
1673 bool LIRGenerator::needs_flattened_array_store_check(StoreIndexed* x) {
1674   if (ValueArrayFlatten && x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
1675     ciType* type = x->value()->declared_type();
1676     if (type != NULL && type->is_klass()) {
1677       ciKlass* klass = type->as_klass();
1678       if (klass->is_loaded() &&
1679           !(klass->is_valuetype() && klass->as_value_klass()->flatten_array()) &&
1680           !klass->is_java_lang_Object() &&
1681           !klass->is_interface()) {
1682         // This is known to be a non-flattenable object. If the array is flattened,
1683         // it will be caught by the code generated by array_store_check().
1684         return false;
1685       }
1686     }
1687     // We're not 100% sure, so let's do the flattened_array_store_check.
1688     return true;
1689   }
1690   return false;
1691 }
1692 
1693 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1694   assert(x->is_pinned(),"");
1695   assert(x->elt_type() != T_ARRAY, "never used");
1696   bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array();
1697   bool needs_range_check = x->compute_needs_range_check();
1698   bool use_length = x->length() != NULL;
1699   bool obj_store = x->elt_type() == T_OBJECT;
1700   bool needs_store_check = obj_store && !is_loaded_flattened_array &&
1701                                         (x->value()->as_Constant() == NULL ||
1702                                          !get_jobject_constant(x->value())->is_null_object() ||
1703                                          x->should_profile());
1704 
1705   LIRItem array(x->array(), this);
1706   LIRItem index(x->index(), this);
1707   LIRItem value(x->value(), this);
1708   LIRItem length(this);
1709 
1710   array.load_item();
1711   index.load_nonconstant();
1712 
1713   if (use_length && needs_range_check) {
1714     length.set_instruction(x->length());
1715     length.load_item();
1716   }
1717 
1718   if (needs_store_check || x->check_boolean()
1719       || is_loaded_flattened_array || needs_flattened_array_store_check(x)) {
1720     value.load_item();
1721   } else {
1722     value.load_for_store(x->elt_type());
1723   }
1724 
1725   set_no_result(x);
1726 
1727   // the CodeEmitInfo must be duplicated for each different
1728   // LIR-instruction because spilling can occur anywhere between two
1729   // instructions and so the debug information must be different
1730   CodeEmitInfo* range_check_info = state_for(x);
1731   CodeEmitInfo* null_check_info = NULL;
1732   if (x->needs_null_check()) {
1733     null_check_info = new CodeEmitInfo(range_check_info);
1734   }
1735 
1736   if (GenerateRangeChecks && needs_range_check) {
1737     if (use_length) {
1738       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1739       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1740     } else {
1741       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1742       // range_check also does the null check
1743       null_check_info = NULL;
1744     }
1745   }
1746 
1747   if (GenerateArrayStoreCheck && needs_store_check) {
1748     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1749     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1750   }
1751 
1752   if (is_loaded_flattened_array) {
1753     if (!x->is_exact_flattened_array_store()) {
1754       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1755       ciKlass* element_klass = x->array()->declared_type()->as_value_array_klass()->element_klass();
1756       flattened_array_store_check(value.result(), element_klass, info);
1757     } else if (!x->value()->is_never_null()) {
1758       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1759     }
1760     access_flattened_array(false, array, index, value);
1761   } else {
1762     StoreFlattenedArrayStub* slow_path = NULL;
1763 
1764     if (needs_flattened_array_store_check(x)) {
1765       // Check if we indeed have a flattened array
1766       index.load_item();
1767       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x));
1768       check_flattened_array(array, slow_path);
1769     }
1770 
1771     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1772     if (x->check_boolean()) {
1773       decorators |= C1_MASK_BOOLEAN;
1774     }
1775 
1776     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1777                     NULL, null_check_info);
1778     if (slow_path != NULL) {
1779       __ branch_destination(slow_path->continuation());
1780     }
1781   }
1782 }
1783 
1784 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1785                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1786                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1787   decorators |= ACCESS_READ;
1788   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1789   if (access.is_raw()) {
1790     _barrier_set->BarrierSetC1::load_at(access, result);
1791   } else {
1792     _barrier_set->load_at(access, result);
1793   }
1794 }
1795 
1796 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1797                                LIR_Opr addr, LIR_Opr result) {
1798   decorators |= ACCESS_READ;
1799   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1800   access.set_resolved_addr(addr);
1801   if (access.is_raw()) {
1802     _barrier_set->BarrierSetC1::load(access, result);
1803   } else {
1804     _barrier_set->load(access, result);
1805   }
1806 }
1807 
1808 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1809                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1810                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1811   decorators |= ACCESS_WRITE;
1812   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1813   if (access.is_raw()) {
1814     _barrier_set->BarrierSetC1::store_at(access, value);
1815   } else {
1816     _barrier_set->store_at(access, value);
1817   }
1818 }
1819 
1820 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1821                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1822   decorators |= ACCESS_READ;
1823   decorators |= ACCESS_WRITE;
1824   // Atomic operations are SEQ_CST by default
1825   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1826   LIRAccess access(this, decorators, base, offset, type);
1827   if (access.is_raw()) {
1828     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1829   } else {
1830     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1831   }
1832 }
1833 
1834 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1835                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1836   decorators |= ACCESS_READ;
1837   decorators |= ACCESS_WRITE;
1838   // Atomic operations are SEQ_CST by default
1839   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1840   LIRAccess access(this, decorators, base, offset, type);
1841   if (access.is_raw()) {
1842     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1843   } else {
1844     return _barrier_set->atomic_xchg_at(access, value);
1845   }
1846 }
1847 
1848 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1849                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1850   decorators |= ACCESS_READ;
1851   decorators |= ACCESS_WRITE;
1852   // Atomic operations are SEQ_CST by default
1853   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1854   LIRAccess access(this, decorators, base, offset, type);
1855   if (access.is_raw()) {
1856     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1857   } else {
1858     return _barrier_set->atomic_add_at(access, value);
1859   }
1860 }
1861 
1862 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1863   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1864   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1865     decorators |= ACCESS_READ | ACCESS_WRITE;
1866   }
1867 
1868   return _barrier_set->resolve(this, decorators, obj);
1869 }
1870 
1871 Value LIRGenerator::non_nullable_load_field_prolog(LoadField* x, CodeEmitInfo* info) {
1872   ciField* field = x->field();
1873   ciInstanceKlass* holder = field->holder();
1874   Value default_value = NULL;
1875 
1876   // Unloaded "QV;" klasses are represented by a ciInstanceKlass
1877   bool field_type_unloaded = field->type()->is_instance_klass() && !field->type()->as_instance_klass()->is_loaded();
1878 
1879   // Check for edge cases (1), (2) and (3) for getstatic and getfield
1880   bool deopt = false;
1881   bool need_default = false;
1882   if (field->is_static()) {
1883       // (1) holder is unloaded -- no problem: it will be loaded by patching, and field offset will be determined.
1884 
1885     if (field_type_unloaded) {
1886       // (2) field type is unloaded -- problem: we don't know what the default value is. Let's deopt.
1887       //                               FIXME: consider getting the default value in patching code.
1888       deopt = true;
1889     } else {
1890       need_default = true;
1891     }
1892 
1893       // (3) field is not flattenable -- we don't care: static fields are never flattened.
1894   } else {
1895     if (!holder->is_loaded()) {
1896       // (1) holder is unloaded -- problem: we needed the field offset back in GraphBuilder::access_field()
1897       //                           FIXME: consider getting field offset in patching code (but only if the field
1898       //                           type was loaded at compilation time).
1899       deopt = true;
1900     } else if (field_type_unloaded) {
1901       // (2) field type is unloaded -- problem: we don't whether it's flattened or not. Let's deopt
1902       deopt = true;
1903     } else if (!field->is_flattened()) {
1904       // (3) field is not flattenable -- need default value in cases of uninitialized field
1905       need_default = true;
1906     }
1907   }
1908 
1909   assert(!(deopt && need_default), "cannot both be true");
1910 
1911   if (deopt) {
1912     assert(x->needs_patching(), "must be");
1913     assert(info != NULL, "must be");
1914     CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1915                                         Deoptimization::Reason_unloaded,
1916                                         Deoptimization::Action_make_not_entrant);
1917     __ branch(lir_cond_always, T_ILLEGAL, stub);
1918   } else if (need_default) {
1919     assert(!field_type_unloaded, "must be");
1920     assert(field->type()->is_valuetype(), "must be");
1921     ciValueKlass* value_klass = field->type()->as_value_klass();
1922     assert(value_klass->is_loaded(), "must be");
1923 
1924     if (field->is_static() && holder->is_loaded()) {
1925       ciInstance* mirror = field->holder()->java_mirror();
1926       ciObject* val = mirror->field_value(field).as_object();
1927       if (val->is_null_object()) {
1928         // This is a non-nullable static field, but it's not initialized.
1929         // We need to do a null check, and replace it with the default value.
1930       } else {
1931         // No need to perform null check on this static field
1932         need_default = false;
1933       }
1934     }
1935 
1936     if (need_default) {
1937       default_value = new Constant(new InstanceConstant(value_klass->default_value_instance()));
1938     }
1939   }
1940 
1941   return default_value;
1942 }
1943 
1944 void LIRGenerator::do_LoadField(LoadField* x) {
1945   bool needs_patching = x->needs_patching();
1946   bool is_volatile = x->field()->is_volatile();
1947   BasicType field_type = x->field_type();
1948 
1949   CodeEmitInfo* info = NULL;
1950   if (needs_patching) {
1951     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1952     info = state_for(x, x->state_before());
1953   } else if (x->needs_null_check()) {
1954     NullCheck* nc = x->explicit_null_check();
1955     if (nc == NULL) {
1956       info = state_for(x);
1957     } else {
1958       info = state_for(nc);
1959     }
1960   }
1961 
1962   LIRItem object(x->obj(), this);
1963 
1964   object.load_item();
1965 
1966 #ifndef PRODUCT
1967   if (PrintNotLoaded && needs_patching) {
1968     tty->print_cr("   ###class not loaded at load_%s bci %d",
1969                   x->is_static() ?  "static" : "field", x->printable_bci());
1970   }
1971 #endif
1972 
1973   Value default_value = NULL;
1974   if (x->field()->is_never_null()) {
1975     default_value = non_nullable_load_field_prolog(x, info);
1976   }
1977 
1978   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1979   if (x->needs_null_check() &&
1980       (needs_patching ||
1981        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1982        stress_deopt)) {
1983     LIR_Opr obj = object.result();
1984     if (stress_deopt) {
1985       obj = new_register(T_OBJECT);
1986       __ move(LIR_OprFact::oopConst(NULL), obj);
1987     }
1988     // Emit an explicit null check because the offset is too large.
1989     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1990     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1991     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1992   }
1993 
1994   DecoratorSet decorators = IN_HEAP;
1995   if (is_volatile) {
1996     decorators |= MO_SEQ_CST;
1997   }
1998   if (needs_patching) {
1999     decorators |= C1_NEEDS_PATCHING;
2000   }
2001 
2002   LIR_Opr result = rlock_result(x, field_type);
2003   access_load_at(decorators, field_type,
2004                  object, LIR_OprFact::intConst(x->offset()), result,
2005                  info ? new CodeEmitInfo(info) : NULL, info);
2006 
2007   if (default_value != NULL) {
2008     LabelObj* L_end = new LabelObj();
2009     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
2010     __ branch(lir_cond_notEqual, T_OBJECT, L_end->label());
2011 
2012     LIRItem dv(default_value, this);
2013     dv.load_item();
2014     __ move(dv.result(), result);
2015 
2016     __ branch_destination(L_end->label());
2017   }
2018 }
2019 
2020 
2021 //------------------------java.nio.Buffer.checkIndex------------------------
2022 
2023 // int java.nio.Buffer.checkIndex(int)
2024 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
2025   // NOTE: by the time we are in checkIndex() we are guaranteed that
2026   // the buffer is non-null (because checkIndex is package-private and
2027   // only called from within other methods in the buffer).
2028   assert(x->number_of_arguments() == 2, "wrong type");
2029   LIRItem buf  (x->argument_at(0), this);
2030   LIRItem index(x->argument_at(1), this);
2031   buf.load_item();
2032   index.load_item();
2033 
2034   LIR_Opr result = rlock_result(x);
2035   if (GenerateRangeChecks) {
2036     CodeEmitInfo* info = state_for(x);
2037     CodeStub* stub = new RangeCheckStub(info, index.result());
2038     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
2039     if (index.result()->is_constant()) {
2040       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
2041       __ branch(lir_cond_belowEqual, T_INT, stub);
2042     } else {
2043       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
2044                   java_nio_Buffer::limit_offset(), T_INT, info);
2045       __ branch(lir_cond_aboveEqual, T_INT, stub);
2046     }
2047     __ move(index.result(), result);
2048   } else {
2049     // Just load the index into the result register
2050     __ move(index.result(), result);
2051   }
2052 }
2053 
2054 
2055 //------------------------array access--------------------------------------
2056 
2057 
2058 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
2059   LIRItem array(x->array(), this);
2060   array.load_item();
2061   LIR_Opr reg = rlock_result(x);
2062 
2063   CodeEmitInfo* info = NULL;
2064   if (x->needs_null_check()) {
2065     NullCheck* nc = x->explicit_null_check();
2066     if (nc == NULL) {
2067       info = state_for(x);
2068     } else {
2069       info = state_for(nc);
2070     }
2071     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2072       LIR_Opr obj = new_register(T_OBJECT);
2073       __ move(LIR_OprFact::oopConst(NULL), obj);
2074       __ null_check(obj, new CodeEmitInfo(info));
2075     }
2076   }
2077   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2078 }
2079 
2080 
2081 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2082   bool use_length = x->length() != NULL;
2083   LIRItem array(x->array(), this);
2084   LIRItem index(x->index(), this);
2085   LIRItem length(this);
2086   bool needs_range_check = x->compute_needs_range_check();
2087 
2088   if (use_length && needs_range_check) {
2089     length.set_instruction(x->length());
2090     length.load_item();
2091   }
2092 
2093   array.load_item();
2094   if (index.is_constant() && can_inline_as_constant(x->index())) {
2095     // let it be a constant
2096     index.dont_load_item();
2097   } else {
2098     index.load_item();
2099   }
2100 
2101   CodeEmitInfo* range_check_info = state_for(x);
2102   CodeEmitInfo* null_check_info = NULL;
2103   if (x->needs_null_check()) {
2104     NullCheck* nc = x->explicit_null_check();
2105     if (nc != NULL) {
2106       null_check_info = state_for(nc);
2107     } else {
2108       null_check_info = range_check_info;
2109     }
2110     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2111       LIR_Opr obj = new_register(T_OBJECT);
2112       __ move(LIR_OprFact::oopConst(NULL), obj);
2113       __ null_check(obj, new CodeEmitInfo(null_check_info));
2114     }
2115   }
2116 
2117   if (GenerateRangeChecks && needs_range_check) {
2118     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2119       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
2120     } else if (use_length) {
2121       // TODO: use a (modified) version of array_range_check that does not require a
2122       //       constant length to be loaded to a register
2123       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2124       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
2125     } else {
2126       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2127       // The range check performs the null check, so clear it out for the load
2128       null_check_info = NULL;
2129     }
2130   }
2131 
2132   if (x->array()->is_loaded_flattened_array()) {
2133     // Find the destination address (of the NewValueTypeInstance)
2134     LIR_Opr obj = x->vt()->operand();
2135     LIRItem obj_item(x->vt(), this);
2136 
2137     access_flattened_array(true, array, index, obj_item);
2138     set_no_result(x);
2139   } else {
2140     LIR_Opr result = rlock_result(x, x->elt_type());
2141     LoadFlattenedArrayStub* slow_path = NULL;
2142 
2143     if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
2144       index.load_item();
2145       // if we are loading from flattened array, load it using a runtime call
2146       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x));
2147       check_flattened_array(array, slow_path);
2148     }
2149 
2150     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2151     access_load_at(decorators, x->elt_type(),
2152                    array, index.result(), result,
2153                    NULL, null_check_info);
2154 
2155     if (slow_path != NULL) {
2156       __ branch_destination(slow_path->continuation());
2157     }
2158   }
2159 }
2160 
2161 
2162 void LIRGenerator::do_NullCheck(NullCheck* x) {
2163   if (x->can_trap()) {
2164     LIRItem value(x->obj(), this);
2165     value.load_item();
2166     CodeEmitInfo* info = state_for(x);
2167     __ null_check(value.result(), info);
2168   }
2169 }
2170 
2171 
2172 void LIRGenerator::do_TypeCast(TypeCast* x) {
2173   LIRItem value(x->obj(), this);
2174   value.load_item();
2175   // the result is the same as from the node we are casting
2176   set_result(x, value.result());
2177 }
2178 
2179 
2180 void LIRGenerator::do_Throw(Throw* x) {
2181   LIRItem exception(x->exception(), this);
2182   exception.load_item();
2183   set_no_result(x);
2184   LIR_Opr exception_opr = exception.result();
2185   CodeEmitInfo* info = state_for(x, x->state());
2186 
2187 #ifndef PRODUCT
2188   if (PrintC1Statistics) {
2189     increment_counter(Runtime1::throw_count_address(), T_INT);
2190   }
2191 #endif
2192 
2193   // check if the instruction has an xhandler in any of the nested scopes
2194   bool unwind = false;
2195   if (info->exception_handlers()->length() == 0) {
2196     // this throw is not inside an xhandler
2197     unwind = true;
2198   } else {
2199     // get some idea of the throw type
2200     bool type_is_exact = true;
2201     ciType* throw_type = x->exception()->exact_type();
2202     if (throw_type == NULL) {
2203       type_is_exact = false;
2204       throw_type = x->exception()->declared_type();
2205     }
2206     if (throw_type != NULL && throw_type->is_instance_klass()) {
2207       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2208       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2209     }
2210   }
2211 
2212   // do null check before moving exception oop into fixed register
2213   // to avoid a fixed interval with an oop during the null check.
2214   // Use a copy of the CodeEmitInfo because debug information is
2215   // different for null_check and throw.
2216   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2217     // if the exception object wasn't created using new then it might be null.
2218     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2219   }
2220 
2221   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2222     // we need to go through the exception lookup path to get JVMTI
2223     // notification done
2224     unwind = false;
2225   }
2226 
2227   // move exception oop into fixed register
2228   __ move(exception_opr, exceptionOopOpr());
2229 
2230   if (unwind) {
2231     __ unwind_exception(exceptionOopOpr());
2232   } else {
2233     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2234   }
2235 }
2236 
2237 
2238 void LIRGenerator::do_RoundFP(RoundFP* x) {
2239   LIRItem input(x->input(), this);
2240   input.load_item();
2241   LIR_Opr input_opr = input.result();
2242   assert(input_opr->is_register(), "why round if value is not in a register?");
2243   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2244   if (input_opr->is_single_fpu()) {
2245     set_result(x, round_item(input_opr)); // This code path not currently taken
2246   } else {
2247     LIR_Opr result = new_register(T_DOUBLE);
2248     set_vreg_flag(result, must_start_in_memory);
2249     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2250     set_result(x, result);
2251   }
2252 }
2253 
2254 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2255 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2256 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2257   LIRItem base(x->base(), this);
2258   LIRItem idx(this);
2259 
2260   base.load_item();
2261   if (x->has_index()) {
2262     idx.set_instruction(x->index());
2263     idx.load_nonconstant();
2264   }
2265 
2266   LIR_Opr reg = rlock_result(x, x->basic_type());
2267 
2268   int   log2_scale = 0;
2269   if (x->has_index()) {
2270     log2_scale = x->log2_scale();
2271   }
2272 
2273   assert(!x->has_index() || idx.value() == x->index(), "should match");
2274 
2275   LIR_Opr base_op = base.result();
2276   LIR_Opr index_op = idx.result();
2277 #ifndef _LP64
2278   if (base_op->type() == T_LONG) {
2279     base_op = new_register(T_INT);
2280     __ convert(Bytecodes::_l2i, base.result(), base_op);
2281   }
2282   if (x->has_index()) {
2283     if (index_op->type() == T_LONG) {
2284       LIR_Opr long_index_op = index_op;
2285       if (index_op->is_constant()) {
2286         long_index_op = new_register(T_LONG);
2287         __ move(index_op, long_index_op);
2288       }
2289       index_op = new_register(T_INT);
2290       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2291     } else {
2292       assert(x->index()->type()->tag() == intTag, "must be");
2293     }
2294   }
2295   // At this point base and index should be all ints.
2296   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2297   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2298 #else
2299   if (x->has_index()) {
2300     if (index_op->type() == T_INT) {
2301       if (!index_op->is_constant()) {
2302         index_op = new_register(T_LONG);
2303         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2304       }
2305     } else {
2306       assert(index_op->type() == T_LONG, "must be");
2307       if (index_op->is_constant()) {
2308         index_op = new_register(T_LONG);
2309         __ move(idx.result(), index_op);
2310       }
2311     }
2312   }
2313   // At this point base is a long non-constant
2314   // Index is a long register or a int constant.
2315   // We allow the constant to stay an int because that would allow us a more compact encoding by
2316   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2317   // move it into a register first.
2318   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2319   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2320                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2321 #endif
2322 
2323   BasicType dst_type = x->basic_type();
2324 
2325   LIR_Address* addr;
2326   if (index_op->is_constant()) {
2327     assert(log2_scale == 0, "must not have a scale");
2328     assert(index_op->type() == T_INT, "only int constants supported");
2329     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2330   } else {
2331 #ifdef X86
2332     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2333 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2334     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2335 #else
2336     if (index_op->is_illegal() || log2_scale == 0) {
2337       addr = new LIR_Address(base_op, index_op, dst_type);
2338     } else {
2339       LIR_Opr tmp = new_pointer_register();
2340       __ shift_left(index_op, log2_scale, tmp);
2341       addr = new LIR_Address(base_op, tmp, dst_type);
2342     }
2343 #endif
2344   }
2345 
2346   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2347     __ unaligned_move(addr, reg);
2348   } else {
2349     if (dst_type == T_OBJECT && x->is_wide()) {
2350       __ move_wide(addr, reg);
2351     } else {
2352       __ move(addr, reg);
2353     }
2354   }
2355 }
2356 
2357 
2358 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2359   int  log2_scale = 0;
2360   BasicType type = x->basic_type();
2361 
2362   if (x->has_index()) {
2363     log2_scale = x->log2_scale();
2364   }
2365 
2366   LIRItem base(x->base(), this);
2367   LIRItem value(x->value(), this);
2368   LIRItem idx(this);
2369 
2370   base.load_item();
2371   if (x->has_index()) {
2372     idx.set_instruction(x->index());
2373     idx.load_item();
2374   }
2375 
2376   if (type == T_BYTE || type == T_BOOLEAN) {
2377     value.load_byte_item();
2378   } else {
2379     value.load_item();
2380   }
2381 
2382   set_no_result(x);
2383 
2384   LIR_Opr base_op = base.result();
2385   LIR_Opr index_op = idx.result();
2386 
2387 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2388   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2389 #else
2390 #ifndef _LP64
2391   if (base_op->type() == T_LONG) {
2392     base_op = new_register(T_INT);
2393     __ convert(Bytecodes::_l2i, base.result(), base_op);
2394   }
2395   if (x->has_index()) {
2396     if (index_op->type() == T_LONG) {
2397       index_op = new_register(T_INT);
2398       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2399     }
2400   }
2401   // At this point base and index should be all ints and not constants
2402   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2403   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2404 #else
2405   if (x->has_index()) {
2406     if (index_op->type() == T_INT) {
2407       index_op = new_register(T_LONG);
2408       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2409     }
2410   }
2411   // At this point base and index are long and non-constant
2412   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2413   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2414 #endif
2415 
2416   if (log2_scale != 0) {
2417     // temporary fix (platform dependent code without shift on Intel would be better)
2418     // TODO: ARM also allows embedded shift in the address
2419     LIR_Opr tmp = new_pointer_register();
2420     if (TwoOperandLIRForm) {
2421       __ move(index_op, tmp);
2422       index_op = tmp;
2423     }
2424     __ shift_left(index_op, log2_scale, tmp);
2425     if (!TwoOperandLIRForm) {
2426       index_op = tmp;
2427     }
2428   }
2429 
2430   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2431 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2432   __ move(value.result(), addr);
2433 }
2434 
2435 
2436 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2437   BasicType type = x->basic_type();
2438   LIRItem src(x->object(), this);
2439   LIRItem off(x->offset(), this);
2440 
2441   off.load_item();
2442   src.load_item();
2443 
2444   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2445 
2446   if (x->is_volatile()) {
2447     decorators |= MO_SEQ_CST;
2448   }
2449   if (type == T_BOOLEAN) {
2450     decorators |= C1_MASK_BOOLEAN;
2451   }
2452   if (type == T_ARRAY || type == T_OBJECT) {
2453     decorators |= ON_UNKNOWN_OOP_REF;
2454   }
2455 
2456   LIR_Opr result = rlock_result(x, type);
2457   access_load_at(decorators, type,
2458                  src, off.result(), result);
2459 }
2460 
2461 
2462 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2463   BasicType type = x->basic_type();
2464   LIRItem src(x->object(), this);
2465   LIRItem off(x->offset(), this);
2466   LIRItem data(x->value(), this);
2467 
2468   src.load_item();
2469   if (type == T_BOOLEAN || type == T_BYTE) {
2470     data.load_byte_item();
2471   } else {
2472     data.load_item();
2473   }
2474   off.load_item();
2475 
2476   set_no_result(x);
2477 
2478   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2479   if (type == T_ARRAY || type == T_OBJECT) {
2480     decorators |= ON_UNKNOWN_OOP_REF;
2481   }
2482   if (x->is_volatile()) {
2483     decorators |= MO_SEQ_CST;
2484   }
2485   access_store_at(decorators, type, src, off.result(), data.result());
2486 }
2487 
2488 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2489   BasicType type = x->basic_type();
2490   LIRItem src(x->object(), this);
2491   LIRItem off(x->offset(), this);
2492   LIRItem value(x->value(), this);
2493 
2494   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2495 
2496   if (type == T_ARRAY || type == T_OBJECT) {
2497     decorators |= ON_UNKNOWN_OOP_REF;
2498   }
2499 
2500   LIR_Opr result;
2501   if (x->is_add()) {
2502     result = access_atomic_add_at(decorators, type, src, off, value);
2503   } else {
2504     result = access_atomic_xchg_at(decorators, type, src, off, value);
2505   }
2506   set_result(x, result);
2507 }
2508 
2509 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2510   int lng = x->length();
2511 
2512   for (int i = 0; i < lng; i++) {
2513     SwitchRange* one_range = x->at(i);
2514     int low_key = one_range->low_key();
2515     int high_key = one_range->high_key();
2516     BlockBegin* dest = one_range->sux();
2517     if (low_key == high_key) {
2518       __ cmp(lir_cond_equal, value, low_key);
2519       __ branch(lir_cond_equal, T_INT, dest);
2520     } else if (high_key - low_key == 1) {
2521       __ cmp(lir_cond_equal, value, low_key);
2522       __ branch(lir_cond_equal, T_INT, dest);
2523       __ cmp(lir_cond_equal, value, high_key);
2524       __ branch(lir_cond_equal, T_INT, dest);
2525     } else {
2526       LabelObj* L = new LabelObj();
2527       __ cmp(lir_cond_less, value, low_key);
2528       __ branch(lir_cond_less, T_INT, L->label());
2529       __ cmp(lir_cond_lessEqual, value, high_key);
2530       __ branch(lir_cond_lessEqual, T_INT, dest);
2531       __ branch_destination(L->label());
2532     }
2533   }
2534   __ jump(default_sux);
2535 }
2536 
2537 
2538 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2539   SwitchRangeList* res = new SwitchRangeList();
2540   int len = x->length();
2541   if (len > 0) {
2542     BlockBegin* sux = x->sux_at(0);
2543     int key = x->lo_key();
2544     BlockBegin* default_sux = x->default_sux();
2545     SwitchRange* range = new SwitchRange(key, sux);
2546     for (int i = 0; i < len; i++, key++) {
2547       BlockBegin* new_sux = x->sux_at(i);
2548       if (sux == new_sux) {
2549         // still in same range
2550         range->set_high_key(key);
2551       } else {
2552         // skip tests which explicitly dispatch to the default
2553         if (sux != default_sux) {
2554           res->append(range);
2555         }
2556         range = new SwitchRange(key, new_sux);
2557       }
2558       sux = new_sux;
2559     }
2560     if (res->length() == 0 || res->last() != range)  res->append(range);
2561   }
2562   return res;
2563 }
2564 
2565 
2566 // we expect the keys to be sorted by increasing value
2567 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2568   SwitchRangeList* res = new SwitchRangeList();
2569   int len = x->length();
2570   if (len > 0) {
2571     BlockBegin* default_sux = x->default_sux();
2572     int key = x->key_at(0);
2573     BlockBegin* sux = x->sux_at(0);
2574     SwitchRange* range = new SwitchRange(key, sux);
2575     for (int i = 1; i < len; i++) {
2576       int new_key = x->key_at(i);
2577       BlockBegin* new_sux = x->sux_at(i);
2578       if (key+1 == new_key && sux == new_sux) {
2579         // still in same range
2580         range->set_high_key(new_key);
2581       } else {
2582         // skip tests which explicitly dispatch to the default
2583         if (range->sux() != default_sux) {
2584           res->append(range);
2585         }
2586         range = new SwitchRange(new_key, new_sux);
2587       }
2588       key = new_key;
2589       sux = new_sux;
2590     }
2591     if (res->length() == 0 || res->last() != range)  res->append(range);
2592   }
2593   return res;
2594 }
2595 
2596 
2597 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2598   LIRItem tag(x->tag(), this);
2599   tag.load_item();
2600   set_no_result(x);
2601 
2602   if (x->is_safepoint()) {
2603     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2604   }
2605 
2606   // move values into phi locations
2607   move_to_phi(x->state());
2608 
2609   int lo_key = x->lo_key();
2610   int len = x->length();
2611   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2612   LIR_Opr value = tag.result();
2613 
2614   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2615     ciMethod* method = x->state()->scope()->method();
2616     ciMethodData* md = method->method_data_or_null();
2617     assert(md != NULL, "Sanity");
2618     ciProfileData* data = md->bci_to_data(x->state()->bci());
2619     assert(data != NULL, "must have profiling data");
2620     assert(data->is_MultiBranchData(), "bad profile data?");
2621     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2622     LIR_Opr md_reg = new_register(T_METADATA);
2623     __ metadata2reg(md->constant_encoding(), md_reg);
2624     LIR_Opr data_offset_reg = new_pointer_register();
2625     LIR_Opr tmp_reg = new_pointer_register();
2626 
2627     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2628     for (int i = 0; i < len; i++) {
2629       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2630       __ cmp(lir_cond_equal, value, i + lo_key);
2631       __ move(data_offset_reg, tmp_reg);
2632       __ cmove(lir_cond_equal,
2633                LIR_OprFact::intptrConst(count_offset),
2634                tmp_reg,
2635                data_offset_reg, T_INT);
2636     }
2637 
2638     LIR_Opr data_reg = new_pointer_register();
2639     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2640     __ move(data_addr, data_reg);
2641     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2642     __ move(data_reg, data_addr);
2643   }
2644 
2645   if (UseTableRanges) {
2646     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2647   } else {
2648     for (int i = 0; i < len; i++) {
2649       __ cmp(lir_cond_equal, value, i + lo_key);
2650       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2651     }
2652     __ jump(x->default_sux());
2653   }
2654 }
2655 
2656 
2657 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2658   LIRItem tag(x->tag(), this);
2659   tag.load_item();
2660   set_no_result(x);
2661 
2662   if (x->is_safepoint()) {
2663     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2664   }
2665 
2666   // move values into phi locations
2667   move_to_phi(x->state());
2668 
2669   LIR_Opr value = tag.result();
2670   int len = x->length();
2671 
2672   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2673     ciMethod* method = x->state()->scope()->method();
2674     ciMethodData* md = method->method_data_or_null();
2675     assert(md != NULL, "Sanity");
2676     ciProfileData* data = md->bci_to_data(x->state()->bci());
2677     assert(data != NULL, "must have profiling data");
2678     assert(data->is_MultiBranchData(), "bad profile data?");
2679     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2680     LIR_Opr md_reg = new_register(T_METADATA);
2681     __ metadata2reg(md->constant_encoding(), md_reg);
2682     LIR_Opr data_offset_reg = new_pointer_register();
2683     LIR_Opr tmp_reg = new_pointer_register();
2684 
2685     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2686     for (int i = 0; i < len; i++) {
2687       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2688       __ cmp(lir_cond_equal, value, x->key_at(i));
2689       __ move(data_offset_reg, tmp_reg);
2690       __ cmove(lir_cond_equal,
2691                LIR_OprFact::intptrConst(count_offset),
2692                tmp_reg,
2693                data_offset_reg, T_INT);
2694     }
2695 
2696     LIR_Opr data_reg = new_pointer_register();
2697     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2698     __ move(data_addr, data_reg);
2699     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2700     __ move(data_reg, data_addr);
2701   }
2702 
2703   if (UseTableRanges) {
2704     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2705   } else {
2706     int len = x->length();
2707     for (int i = 0; i < len; i++) {
2708       __ cmp(lir_cond_equal, value, x->key_at(i));
2709       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2710     }
2711     __ jump(x->default_sux());
2712   }
2713 }
2714 
2715 
2716 void LIRGenerator::do_Goto(Goto* x) {
2717   set_no_result(x);
2718 
2719   if (block()->next()->as_OsrEntry()) {
2720     // need to free up storage used for OSR entry point
2721     LIR_Opr osrBuffer = block()->next()->operand();
2722     BasicTypeList signature;
2723     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2724     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2725     __ move(osrBuffer, cc->args()->at(0));
2726     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2727                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2728   }
2729 
2730   if (x->is_safepoint()) {
2731     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2732 
2733     // increment backedge counter if needed
2734     CodeEmitInfo* info = state_for(x, state);
2735     increment_backedge_counter(info, x->profiled_bci());
2736     CodeEmitInfo* safepoint_info = state_for(x, state);
2737     __ safepoint(safepoint_poll_register(), safepoint_info);
2738   }
2739 
2740   // Gotos can be folded Ifs, handle this case.
2741   if (x->should_profile()) {
2742     ciMethod* method = x->profiled_method();
2743     assert(method != NULL, "method should be set if branch is profiled");
2744     ciMethodData* md = method->method_data_or_null();
2745     assert(md != NULL, "Sanity");
2746     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2747     assert(data != NULL, "must have profiling data");
2748     int offset;
2749     if (x->direction() == Goto::taken) {
2750       assert(data->is_BranchData(), "need BranchData for two-way branches");
2751       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2752     } else if (x->direction() == Goto::not_taken) {
2753       assert(data->is_BranchData(), "need BranchData for two-way branches");
2754       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2755     } else {
2756       assert(data->is_JumpData(), "need JumpData for branches");
2757       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2758     }
2759     LIR_Opr md_reg = new_register(T_METADATA);
2760     __ metadata2reg(md->constant_encoding(), md_reg);
2761 
2762     increment_counter(new LIR_Address(md_reg, offset,
2763                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2764   }
2765 
2766   // emit phi-instruction move after safepoint since this simplifies
2767   // describing the state as the safepoint.
2768   move_to_phi(x->state());
2769 
2770   __ jump(x->default_sux());
2771 }
2772 
2773 /**
2774  * Emit profiling code if needed for arguments, parameters, return value types
2775  *
2776  * @param md                    MDO the code will update at runtime
2777  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2778  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2779  * @param profiled_k            current profile
2780  * @param obj                   IR node for the object to be profiled
2781  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2782  *                              Set once we find an update to make and use for next ones.
2783  * @param not_null              true if we know obj cannot be null
2784  * @param signature_at_call_k   signature at call for obj
2785  * @param callee_signature_k    signature of callee for obj
2786  *                              at call and callee signatures differ at method handle call
2787  * @return                      the only klass we know will ever be seen at this profile point
2788  */
2789 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2790                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2791                                     ciKlass* callee_signature_k) {
2792   ciKlass* result = NULL;
2793   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2794   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2795   // known not to be null or null bit already set and already set to
2796   // unknown: nothing we can do to improve profiling
2797   if (!do_null && !do_update) {
2798     return result;
2799   }
2800 
2801   ciKlass* exact_klass = NULL;
2802   Compilation* comp = Compilation::current();
2803   if (do_update) {
2804     // try to find exact type, using CHA if possible, so that loading
2805     // the klass from the object can be avoided
2806     ciType* type = obj->exact_type();
2807     if (type == NULL) {
2808       type = obj->declared_type();
2809       type = comp->cha_exact_type(type);
2810     }
2811     assert(type == NULL || type->is_klass(), "type should be class");
2812     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2813 
2814     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2815   }
2816 
2817   if (!do_null && !do_update) {
2818     return result;
2819   }
2820 
2821   ciKlass* exact_signature_k = NULL;
2822   if (do_update) {
2823     // Is the type from the signature exact (the only one possible)?
2824     exact_signature_k = signature_at_call_k->exact_klass();
2825     if (exact_signature_k == NULL) {
2826       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2827     } else {
2828       result = exact_signature_k;
2829       // Known statically. No need to emit any code: prevent
2830       // LIR_Assembler::emit_profile_type() from emitting useless code
2831       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2832     }
2833     // exact_klass and exact_signature_k can be both non NULL but
2834     // different if exact_klass is loaded after the ciObject for
2835     // exact_signature_k is created.
2836     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2837       // sometimes the type of the signature is better than the best type
2838       // the compiler has
2839       exact_klass = exact_signature_k;
2840     }
2841     if (callee_signature_k != NULL &&
2842         callee_signature_k != signature_at_call_k) {
2843       ciKlass* improved_klass = callee_signature_k->exact_klass();
2844       if (improved_klass == NULL) {
2845         improved_klass = comp->cha_exact_type(callee_signature_k);
2846       }
2847       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2848         exact_klass = exact_signature_k;
2849       }
2850     }
2851     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2852   }
2853 
2854   if (!do_null && !do_update) {
2855     return result;
2856   }
2857 
2858   if (mdp == LIR_OprFact::illegalOpr) {
2859     mdp = new_register(T_METADATA);
2860     __ metadata2reg(md->constant_encoding(), mdp);
2861     if (md_base_offset != 0) {
2862       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2863       mdp = new_pointer_register();
2864       __ leal(LIR_OprFact::address(base_type_address), mdp);
2865     }
2866   }
2867   LIRItem value(obj, this);
2868   value.load_item();
2869   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2870                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2871   return result;
2872 }
2873 
2874 // profile parameters on entry to the root of the compilation
2875 void LIRGenerator::profile_parameters(Base* x) {
2876   if (compilation()->profile_parameters()) {
2877     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2878     ciMethodData* md = scope()->method()->method_data_or_null();
2879     assert(md != NULL, "Sanity");
2880 
2881     if (md->parameters_type_data() != NULL) {
2882       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2883       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2884       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2885       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2886         LIR_Opr src = args->at(i);
2887         assert(!src->is_illegal(), "check");
2888         BasicType t = src->type();
2889         if (t == T_OBJECT || t == T_ARRAY) {
2890           intptr_t profiled_k = parameters->type(j);
2891           Local* local = x->state()->local_at(java_index)->as_Local();
2892           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2893                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2894                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2895           // If the profile is known statically set it once for all and do not emit any code
2896           if (exact != NULL) {
2897             md->set_parameter_type(j, exact);
2898           }
2899           j++;
2900         }
2901         java_index += type2size[t];
2902       }
2903     }
2904   }
2905 }
2906 
2907 void LIRGenerator::do_Base(Base* x) {
2908   __ std_entry(LIR_OprFact::illegalOpr);
2909   // Emit moves from physical registers / stack slots to virtual registers
2910   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2911   IRScope* irScope = compilation()->hir()->top_scope();
2912   int java_index = 0;
2913   for (int i = 0; i < args->length(); i++) {
2914     LIR_Opr src = args->at(i);
2915     assert(!src->is_illegal(), "check");
2916     BasicType t = src->type();
2917 
2918     // Types which are smaller than int are passed as int, so
2919     // correct the type which passed.
2920     switch (t) {
2921     case T_BYTE:
2922     case T_BOOLEAN:
2923     case T_SHORT:
2924     case T_CHAR:
2925       t = T_INT;
2926       break;
2927     default:
2928       break;
2929     }
2930 
2931     LIR_Opr dest = new_register(t);
2932     __ move(src, dest);
2933 
2934     // Assign new location to Local instruction for this local
2935     Local* local = x->state()->local_at(java_index)->as_Local();
2936     assert(local != NULL, "Locals for incoming arguments must have been created");
2937 #ifndef __SOFTFP__
2938     // The java calling convention passes double as long and float as int.
2939     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2940 #endif // __SOFTFP__
2941     local->set_operand(dest);
2942     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2943     java_index += type2size[t];
2944   }
2945 
2946   if (compilation()->env()->dtrace_method_probes()) {
2947     BasicTypeList signature;
2948     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2949     signature.append(T_METADATA); // Method*
2950     LIR_OprList* args = new LIR_OprList();
2951     args->append(getThreadPointer());
2952     LIR_Opr meth = new_register(T_METADATA);
2953     __ metadata2reg(method()->constant_encoding(), meth);
2954     args->append(meth);
2955     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2956   }
2957 
2958   if (method()->is_synchronized()) {
2959     LIR_Opr obj;
2960     if (method()->is_static()) {
2961       obj = new_register(T_OBJECT);
2962       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2963     } else {
2964       Local* receiver = x->state()->local_at(0)->as_Local();
2965       assert(receiver != NULL, "must already exist");
2966       obj = receiver->operand();
2967     }
2968     assert(obj->is_valid(), "must be valid");
2969 
2970     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2971       LIR_Opr lock = syncLockOpr();
2972       __ load_stack_address_monitor(0, lock);
2973 
2974       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2975       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2976 
2977       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2978       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2979     }
2980   }
2981   if (compilation()->age_code()) {
2982     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2983     decrement_age(info);
2984   }
2985   // increment invocation counters if needed
2986   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2987     profile_parameters(x);
2988     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2989     increment_invocation_counter(info);
2990   }
2991 
2992   // all blocks with a successor must end with an unconditional jump
2993   // to the successor even if they are consecutive
2994   __ jump(x->default_sux());
2995 }
2996 
2997 
2998 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2999   // construct our frame and model the production of incoming pointer
3000   // to the OSR buffer.
3001   __ osr_entry(LIR_Assembler::osrBufferPointer());
3002   LIR_Opr result = rlock_result(x);
3003   __ move(LIR_Assembler::osrBufferPointer(), result);
3004 }
3005 
3006 
3007 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3008   assert(args->length() == arg_list->length(),
3009          "args=%d, arg_list=%d", args->length(), arg_list->length());
3010   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3011     LIRItem* param = args->at(i);
3012     LIR_Opr loc = arg_list->at(i);
3013     if (loc->is_register()) {
3014       param->load_item_force(loc);
3015     } else {
3016       LIR_Address* addr = loc->as_address_ptr();
3017       param->load_for_store(addr->type());
3018       assert(addr->type() != T_VALUETYPE, "not supported yet");
3019       if (addr->type() == T_OBJECT) {
3020         __ move_wide(param->result(), addr);
3021       } else
3022         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3023           __ unaligned_move(param->result(), addr);
3024         } else {
3025           __ move(param->result(), addr);
3026         }
3027     }
3028   }
3029 
3030   if (x->has_receiver()) {
3031     LIRItem* receiver = args->at(0);
3032     LIR_Opr loc = arg_list->at(0);
3033     if (loc->is_register()) {
3034       receiver->load_item_force(loc);
3035     } else {
3036       assert(loc->is_address(), "just checking");
3037       receiver->load_for_store(T_OBJECT);
3038       __ move_wide(receiver->result(), loc->as_address_ptr());
3039     }
3040   }
3041 }
3042 
3043 
3044 // Visits all arguments, returns appropriate items without loading them
3045 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3046   LIRItemList* argument_items = new LIRItemList();
3047   if (x->has_receiver()) {
3048     LIRItem* receiver = new LIRItem(x->receiver(), this);
3049     argument_items->append(receiver);
3050   }
3051   for (int i = 0; i < x->number_of_arguments(); i++) {
3052     LIRItem* param = new LIRItem(x->argument_at(i), this);
3053     argument_items->append(param);
3054   }
3055   return argument_items;
3056 }
3057 
3058 
3059 // The invoke with receiver has following phases:
3060 //   a) traverse and load/lock receiver;
3061 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3062 //   c) push receiver on stack
3063 //   d) load each of the items and push on stack
3064 //   e) unlock receiver
3065 //   f) move receiver into receiver-register %o0
3066 //   g) lock result registers and emit call operation
3067 //
3068 // Before issuing a call, we must spill-save all values on stack
3069 // that are in caller-save register. "spill-save" moves those registers
3070 // either in a free callee-save register or spills them if no free
3071 // callee save register is available.
3072 //
3073 // The problem is where to invoke spill-save.
3074 // - if invoked between e) and f), we may lock callee save
3075 //   register in "spill-save" that destroys the receiver register
3076 //   before f) is executed
3077 // - if we rearrange f) to be earlier (by loading %o0) it
3078 //   may destroy a value on the stack that is currently in %o0
3079 //   and is waiting to be spilled
3080 // - if we keep the receiver locked while doing spill-save,
3081 //   we cannot spill it as it is spill-locked
3082 //
3083 void LIRGenerator::do_Invoke(Invoke* x) {
3084   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3085 
3086   LIR_OprList* arg_list = cc->args();
3087   LIRItemList* args = invoke_visit_arguments(x);
3088   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3089 
3090   // setup result register
3091   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3092   if (x->type() != voidType) {
3093     result_register = result_register_for(x->type());
3094   }
3095 
3096   CodeEmitInfo* info = state_for(x, x->state());
3097 
3098   invoke_load_arguments(x, args, arg_list);
3099 
3100   if (x->has_receiver()) {
3101     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3102     receiver = args->at(0)->result();
3103   }
3104 
3105   // emit invoke code
3106   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3107 
3108   // JSR 292
3109   // Preserve the SP over MethodHandle call sites, if needed.
3110   ciMethod* target = x->target();
3111   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3112                                   target->is_method_handle_intrinsic() ||
3113                                   target->is_compiled_lambda_form());
3114   if (is_method_handle_invoke) {
3115     info->set_is_method_handle_invoke(true);
3116     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3117         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3118     }
3119   }
3120 
3121   switch (x->code()) {
3122     case Bytecodes::_invokestatic:
3123       __ call_static(target, result_register,
3124                      SharedRuntime::get_resolve_static_call_stub(),
3125                      arg_list, info);
3126       break;
3127     case Bytecodes::_invokespecial:
3128     case Bytecodes::_invokevirtual:
3129     case Bytecodes::_invokeinterface:
3130       // for loaded and final (method or class) target we still produce an inline cache,
3131       // in order to be able to call mixed mode
3132       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3133         __ call_opt_virtual(target, receiver, result_register,
3134                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3135                             arg_list, info);
3136       } else if (x->vtable_index() < 0) {
3137         __ call_icvirtual(target, receiver, result_register,
3138                           SharedRuntime::get_resolve_virtual_call_stub(),
3139                           arg_list, info);
3140       } else {
3141         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3142         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3143         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3144       }
3145       break;
3146     case Bytecodes::_invokedynamic: {
3147       __ call_dynamic(target, receiver, result_register,
3148                       SharedRuntime::get_resolve_static_call_stub(),
3149                       arg_list, info);
3150       break;
3151     }
3152     default:
3153       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3154       break;
3155   }
3156 
3157   // JSR 292
3158   // Restore the SP after MethodHandle call sites, if needed.
3159   if (is_method_handle_invoke
3160       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3161     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3162   }
3163 
3164   if (x->type()->is_float() || x->type()->is_double()) {
3165     // Force rounding of results from non-strictfp when in strictfp
3166     // scope (or when we don't know the strictness of the callee, to
3167     // be safe.)
3168     if (method()->is_strict()) {
3169       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3170         result_register = round_item(result_register);
3171       }
3172     }
3173   }
3174 
3175   if (result_register->is_valid()) {
3176     LIR_Opr result = rlock_result(x);
3177     __ move(result_register, result);
3178   }
3179 }
3180 
3181 
3182 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3183   assert(x->number_of_arguments() == 1, "wrong type");
3184   LIRItem value       (x->argument_at(0), this);
3185   LIR_Opr reg = rlock_result(x);
3186   value.load_item();
3187   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3188   __ move(tmp, reg);
3189 }
3190 
3191 
3192 
3193 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3194 void LIRGenerator::do_IfOp(IfOp* x) {
3195 #ifdef ASSERT
3196   {
3197     ValueTag xtag = x->x()->type()->tag();
3198     ValueTag ttag = x->tval()->type()->tag();
3199     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3200     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3201     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3202   }
3203 #endif
3204 
3205   LIRItem left(x->x(), this);
3206   LIRItem right(x->y(), this);
3207   left.load_item();
3208   if (can_inline_as_constant(right.value())) {
3209     right.dont_load_item();
3210   } else {
3211     right.load_item();
3212   }
3213 
3214   LIRItem t_val(x->tval(), this);
3215   LIRItem f_val(x->fval(), this);
3216   t_val.dont_load_item();
3217   f_val.dont_load_item();
3218   LIR_Opr reg = rlock_result(x);
3219 
3220   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3221   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3222 }
3223 
3224 #ifdef JFR_HAVE_INTRINSICS
3225 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3226   CodeEmitInfo* info = state_for(x);
3227   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3228 
3229   assert(info != NULL, "must have info");
3230   LIRItem arg(x->argument_at(0), this);
3231 
3232   arg.load_item();
3233   LIR_Opr klass = new_register(T_METADATA);
3234   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3235   LIR_Opr id = new_register(T_LONG);
3236   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3237   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3238 
3239   __ move(trace_id_addr, id);
3240   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3241   __ store(id, trace_id_addr);
3242 
3243 #ifdef TRACE_ID_META_BITS
3244   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3245 #endif
3246 #ifdef TRACE_ID_SHIFT
3247   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3248 #endif
3249 
3250   __ move(id, rlock_result(x));
3251 }
3252 
3253 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3254   LabelObj* L_end = new LabelObj();
3255 
3256   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3257                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3258                                            T_OBJECT);
3259   LIR_Opr result = rlock_result(x);
3260   __ move_wide(jobj_addr, result);
3261   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3262   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3263 
3264   LIR_Opr jobj = new_register(T_OBJECT);
3265   __ move(result, jobj);
3266   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3267 
3268   __ branch_destination(L_end->label());
3269 }
3270 
3271 #endif
3272 
3273 
3274 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3275   assert(x->number_of_arguments() == 0, "wrong type");
3276   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3277   BasicTypeList signature;
3278   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3279   LIR_Opr reg = result_register_for(x->type());
3280   __ call_runtime_leaf(routine, getThreadTemp(),
3281                        reg, new LIR_OprList());
3282   LIR_Opr result = rlock_result(x);
3283   __ move(reg, result);
3284 }
3285 
3286 
3287 
3288 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3289   switch (x->id()) {
3290   case vmIntrinsics::_intBitsToFloat      :
3291   case vmIntrinsics::_doubleToRawLongBits :
3292   case vmIntrinsics::_longBitsToDouble    :
3293   case vmIntrinsics::_floatToRawIntBits   : {
3294     do_FPIntrinsics(x);
3295     break;
3296   }
3297 
3298 #ifdef JFR_HAVE_INTRINSICS
3299   case vmIntrinsics::_getClassId:
3300     do_ClassIDIntrinsic(x);
3301     break;
3302   case vmIntrinsics::_getEventWriter:
3303     do_getEventWriter(x);
3304     break;
3305   case vmIntrinsics::_counterTime:
3306     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3307     break;
3308 #endif
3309 
3310   case vmIntrinsics::_currentTimeMillis:
3311     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3312     break;
3313 
3314   case vmIntrinsics::_nanoTime:
3315     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3316     break;
3317 
3318   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3319   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3320   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3321   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3322   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3323 
3324   case vmIntrinsics::_dlog:           // fall through
3325   case vmIntrinsics::_dlog10:         // fall through
3326   case vmIntrinsics::_dabs:           // fall through
3327   case vmIntrinsics::_dsqrt:          // fall through
3328   case vmIntrinsics::_dtan:           // fall through
3329   case vmIntrinsics::_dsin :          // fall through
3330   case vmIntrinsics::_dcos :          // fall through
3331   case vmIntrinsics::_dexp :          // fall through
3332   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3333   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3334 
3335   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3336   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3337 
3338   // java.nio.Buffer.checkIndex
3339   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3340 
3341   case vmIntrinsics::_compareAndSetReference:
3342     do_CompareAndSwap(x, objectType);
3343     break;
3344   case vmIntrinsics::_compareAndSetInt:
3345     do_CompareAndSwap(x, intType);
3346     break;
3347   case vmIntrinsics::_compareAndSetLong:
3348     do_CompareAndSwap(x, longType);
3349     break;
3350 
3351   case vmIntrinsics::_loadFence :
3352     __ membar_acquire();
3353     break;
3354   case vmIntrinsics::_storeFence:
3355     __ membar_release();
3356     break;
3357   case vmIntrinsics::_fullFence :
3358     __ membar();
3359     break;
3360   case vmIntrinsics::_onSpinWait:
3361     __ on_spin_wait();
3362     break;
3363   case vmIntrinsics::_Reference_get:
3364     do_Reference_get(x);
3365     break;
3366 
3367   case vmIntrinsics::_updateCRC32:
3368   case vmIntrinsics::_updateBytesCRC32:
3369   case vmIntrinsics::_updateByteBufferCRC32:
3370     do_update_CRC32(x);
3371     break;
3372 
3373   case vmIntrinsics::_updateBytesCRC32C:
3374   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3375     do_update_CRC32C(x);
3376     break;
3377 
3378   case vmIntrinsics::_vectorizedMismatch:
3379     do_vectorizedMismatch(x);
3380     break;
3381 
3382   default: ShouldNotReachHere(); break;
3383   }
3384 }
3385 
3386 void LIRGenerator::profile_arguments(ProfileCall* x) {
3387   if (compilation()->profile_arguments()) {
3388     int bci = x->bci_of_invoke();
3389     ciMethodData* md = x->method()->method_data_or_null();
3390     assert(md != NULL, "Sanity");
3391     ciProfileData* data = md->bci_to_data(bci);
3392     if (data != NULL) {
3393       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3394           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3395         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3396         int base_offset = md->byte_offset_of_slot(data, extra);
3397         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3398         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3399 
3400         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3401         int start = 0;
3402         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3403         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3404           // first argument is not profiled at call (method handle invoke)
3405           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3406           start = 1;
3407         }
3408         ciSignature* callee_signature = x->callee()->signature();
3409         // method handle call to virtual method
3410         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3411         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3412 
3413         bool ignored_will_link;
3414         ciSignature* signature_at_call = NULL;
3415         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3416         ciSignatureStream signature_at_call_stream(signature_at_call);
3417 
3418         // if called through method handle invoke, some arguments may have been popped
3419         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3420           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3421           ciKlass* exact = profile_type(md, base_offset, off,
3422               args->type(i), x->profiled_arg_at(i+start), mdp,
3423               !x->arg_needs_null_check(i+start),
3424               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3425           if (exact != NULL) {
3426             md->set_argument_type(bci, i, exact);
3427           }
3428         }
3429       } else {
3430 #ifdef ASSERT
3431         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3432         int n = x->nb_profiled_args();
3433         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3434             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3435             "only at JSR292 bytecodes");
3436 #endif
3437       }
3438     }
3439   }
3440 }
3441 
3442 // profile parameters on entry to an inlined method
3443 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3444   if (compilation()->profile_parameters() && x->inlined()) {
3445     ciMethodData* md = x->callee()->method_data_or_null();
3446     if (md != NULL) {
3447       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3448       if (parameters_type_data != NULL) {
3449         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3450         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3451         bool has_receiver = !x->callee()->is_static();
3452         ciSignature* sig = x->callee()->signature();
3453         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3454         int i = 0; // to iterate on the Instructions
3455         Value arg = x->recv();
3456         bool not_null = false;
3457         int bci = x->bci_of_invoke();
3458         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3459         // The first parameter is the receiver so that's what we start
3460         // with if it exists. One exception is method handle call to
3461         // virtual method: the receiver is in the args list
3462         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3463           i = 1;
3464           arg = x->profiled_arg_at(0);
3465           not_null = !x->arg_needs_null_check(0);
3466         }
3467         int k = 0; // to iterate on the profile data
3468         for (;;) {
3469           intptr_t profiled_k = parameters->type(k);
3470           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3471                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3472                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3473           // If the profile is known statically set it once for all and do not emit any code
3474           if (exact != NULL) {
3475             md->set_parameter_type(k, exact);
3476           }
3477           k++;
3478           if (k >= parameters_type_data->number_of_parameters()) {
3479 #ifdef ASSERT
3480             int extra = 0;
3481             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3482                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3483                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3484               extra += 1;
3485             }
3486             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3487 #endif
3488             break;
3489           }
3490           arg = x->profiled_arg_at(i);
3491           not_null = !x->arg_needs_null_check(i);
3492           i++;
3493         }
3494       }
3495     }
3496   }
3497 }
3498 
3499 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3500   // Need recv in a temporary register so it interferes with the other temporaries
3501   LIR_Opr recv = LIR_OprFact::illegalOpr;
3502   LIR_Opr mdo = new_register(T_METADATA);
3503   // tmp is used to hold the counters on SPARC
3504   LIR_Opr tmp = new_pointer_register();
3505 
3506   if (x->nb_profiled_args() > 0) {
3507     profile_arguments(x);
3508   }
3509 
3510   // profile parameters on inlined method entry including receiver
3511   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3512     profile_parameters_at_call(x);
3513   }
3514 
3515   if (x->recv() != NULL) {
3516     LIRItem value(x->recv(), this);
3517     value.load_item();
3518     recv = new_register(T_OBJECT);
3519     __ move(value.result(), recv);
3520   }
3521   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3522 }
3523 
3524 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3525   int bci = x->bci_of_invoke();
3526   ciMethodData* md = x->method()->method_data_or_null();
3527   assert(md != NULL, "Sanity");
3528   ciProfileData* data = md->bci_to_data(bci);
3529   if (data != NULL) {
3530     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3531     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3532     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3533 
3534     bool ignored_will_link;
3535     ciSignature* signature_at_call = NULL;
3536     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3537 
3538     // The offset within the MDO of the entry to update may be too large
3539     // to be used in load/store instructions on some platforms. So have
3540     // profile_type() compute the address of the profile in a register.
3541     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3542         ret->type(), x->ret(), mdp,
3543         !x->needs_null_check(),
3544         signature_at_call->return_type()->as_klass(),
3545         x->callee()->signature()->return_type()->as_klass());
3546     if (exact != NULL) {
3547       md->set_return_type(bci, exact);
3548     }
3549   }
3550 }
3551 
3552 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3553   // We can safely ignore accessors here, since c2 will inline them anyway,
3554   // accessors are also always mature.
3555   if (!x->inlinee()->is_accessor()) {
3556     CodeEmitInfo* info = state_for(x, x->state(), true);
3557     // Notify the runtime very infrequently only to take care of counter overflows
3558     int freq_log = Tier23InlineeNotifyFreqLog;
3559     double scale;
3560     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3561       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3562     }
3563     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3564   }
3565 }
3566 
3567 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3568   if (compilation()->count_backedges()) {
3569     __ cmp(cond, left, right);
3570     LIR_Opr step = new_register(T_INT);
3571     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3572     LIR_Opr zero = LIR_OprFact::intConst(0);
3573     __ cmove(cond,
3574         (left_bci < bci) ? plus_one : zero,
3575         (right_bci < bci) ? plus_one : zero,
3576         step, left->type());
3577     increment_backedge_counter(info, step, bci);
3578   }
3579 }
3580 
3581 
3582 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3583   int freq_log = 0;
3584   int level = compilation()->env()->comp_level();
3585   if (level == CompLevel_limited_profile) {
3586     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3587   } else if (level == CompLevel_full_profile) {
3588     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3589   } else {
3590     ShouldNotReachHere();
3591   }
3592   // Increment the appropriate invocation/backedge counter and notify the runtime.
3593   double scale;
3594   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3595     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3596   }
3597   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3598 }
3599 
3600 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3601   ciMethod* method = info->scope()->method();
3602   MethodCounters* mc_adr = method->ensure_method_counters();
3603   if (mc_adr != NULL) {
3604     LIR_Opr mc = new_pointer_register();
3605     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3606     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3607     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3608     LIR_Opr result = new_register(T_INT);
3609     __ load(counter, result);
3610     __ sub(result, LIR_OprFact::intConst(1), result);
3611     __ store(result, counter);
3612     // DeoptimizeStub will reexecute from the current state in code info.
3613     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3614                                          Deoptimization::Action_make_not_entrant);
3615     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3616     __ branch(lir_cond_lessEqual, T_INT, deopt);
3617   }
3618 }
3619 
3620 
3621 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3622                                                 ciMethod *method, LIR_Opr step, int frequency,
3623                                                 int bci, bool backedge, bool notify) {
3624   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3625   int level = _compilation->env()->comp_level();
3626   assert(level > CompLevel_simple, "Shouldn't be here");
3627 
3628   int offset = -1;
3629   LIR_Opr counter_holder = NULL;
3630   if (level == CompLevel_limited_profile) {
3631     MethodCounters* counters_adr = method->ensure_method_counters();
3632     if (counters_adr == NULL) {
3633       bailout("method counters allocation failed");
3634       return;
3635     }
3636     counter_holder = new_pointer_register();
3637     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3638     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3639                                  MethodCounters::invocation_counter_offset());
3640   } else if (level == CompLevel_full_profile) {
3641     counter_holder = new_register(T_METADATA);
3642     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3643                                  MethodData::invocation_counter_offset());
3644     ciMethodData* md = method->method_data_or_null();
3645     assert(md != NULL, "Sanity");
3646     __ metadata2reg(md->constant_encoding(), counter_holder);
3647   } else {
3648     ShouldNotReachHere();
3649   }
3650   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3651   LIR_Opr result = new_register(T_INT);
3652   __ load(counter, result);
3653   __ add(result, step, result);
3654   __ store(result, counter);
3655   if (notify && (!backedge || UseOnStackReplacement)) {
3656     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3657     // The bci for info can point to cmp for if's we want the if bci
3658     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3659     int freq = frequency << InvocationCounter::count_shift;
3660     if (freq == 0) {
3661       if (!step->is_constant()) {
3662         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3663         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3664       } else {
3665         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3666       }
3667     } else {
3668       LIR_Opr mask = load_immediate(freq, T_INT);
3669       if (!step->is_constant()) {
3670         // If step is 0, make sure the overflow check below always fails
3671         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3672         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3673       }
3674       __ logical_and(result, mask, result);
3675       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3676       __ branch(lir_cond_equal, T_INT, overflow);
3677     }
3678     __ branch_destination(overflow->continuation());
3679   }
3680 }
3681 
3682 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3683   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3684   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3685 
3686   if (x->pass_thread()) {
3687     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3688     args->append(getThreadPointer());
3689   }
3690 
3691   for (int i = 0; i < x->number_of_arguments(); i++) {
3692     Value a = x->argument_at(i);
3693     LIRItem* item = new LIRItem(a, this);
3694     item->load_item();
3695     args->append(item->result());
3696     signature->append(as_BasicType(a->type()));
3697   }
3698 
3699   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3700   if (x->type() == voidType) {
3701     set_no_result(x);
3702   } else {
3703     __ move(result, rlock_result(x));
3704   }
3705 }
3706 
3707 #ifdef ASSERT
3708 void LIRGenerator::do_Assert(Assert *x) {
3709   ValueTag tag = x->x()->type()->tag();
3710   If::Condition cond = x->cond();
3711 
3712   LIRItem xitem(x->x(), this);
3713   LIRItem yitem(x->y(), this);
3714   LIRItem* xin = &xitem;
3715   LIRItem* yin = &yitem;
3716 
3717   assert(tag == intTag, "Only integer assertions are valid!");
3718 
3719   xin->load_item();
3720   yin->dont_load_item();
3721 
3722   set_no_result(x);
3723 
3724   LIR_Opr left = xin->result();
3725   LIR_Opr right = yin->result();
3726 
3727   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3728 }
3729 #endif
3730 
3731 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3732 
3733 
3734   Instruction *a = x->x();
3735   Instruction *b = x->y();
3736   if (!a || StressRangeCheckElimination) {
3737     assert(!b || StressRangeCheckElimination, "B must also be null");
3738 
3739     CodeEmitInfo *info = state_for(x, x->state());
3740     CodeStub* stub = new PredicateFailedStub(info);
3741 
3742     __ jump(stub);
3743   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3744     int a_int = a->type()->as_IntConstant()->value();
3745     int b_int = b->type()->as_IntConstant()->value();
3746 
3747     bool ok = false;
3748 
3749     switch(x->cond()) {
3750       case Instruction::eql: ok = (a_int == b_int); break;
3751       case Instruction::neq: ok = (a_int != b_int); break;
3752       case Instruction::lss: ok = (a_int < b_int); break;
3753       case Instruction::leq: ok = (a_int <= b_int); break;
3754       case Instruction::gtr: ok = (a_int > b_int); break;
3755       case Instruction::geq: ok = (a_int >= b_int); break;
3756       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3757       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3758       default: ShouldNotReachHere();
3759     }
3760 
3761     if (ok) {
3762 
3763       CodeEmitInfo *info = state_for(x, x->state());
3764       CodeStub* stub = new PredicateFailedStub(info);
3765 
3766       __ jump(stub);
3767     }
3768   } else {
3769 
3770     ValueTag tag = x->x()->type()->tag();
3771     If::Condition cond = x->cond();
3772     LIRItem xitem(x->x(), this);
3773     LIRItem yitem(x->y(), this);
3774     LIRItem* xin = &xitem;
3775     LIRItem* yin = &yitem;
3776 
3777     assert(tag == intTag, "Only integer deoptimizations are valid!");
3778 
3779     xin->load_item();
3780     yin->dont_load_item();
3781     set_no_result(x);
3782 
3783     LIR_Opr left = xin->result();
3784     LIR_Opr right = yin->result();
3785 
3786     CodeEmitInfo *info = state_for(x, x->state());
3787     CodeStub* stub = new PredicateFailedStub(info);
3788 
3789     __ cmp(lir_cond(cond), left, right);
3790     __ branch(lir_cond(cond), right->type(), stub);
3791   }
3792 }
3793 
3794 
3795 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3796   LIRItemList args(1);
3797   LIRItem value(arg1, this);
3798   args.append(&value);
3799   BasicTypeList signature;
3800   signature.append(as_BasicType(arg1->type()));
3801 
3802   return call_runtime(&signature, &args, entry, result_type, info);
3803 }
3804 
3805 
3806 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3807   LIRItemList args(2);
3808   LIRItem value1(arg1, this);
3809   LIRItem value2(arg2, this);
3810   args.append(&value1);
3811   args.append(&value2);
3812   BasicTypeList signature;
3813   signature.append(as_BasicType(arg1->type()));
3814   signature.append(as_BasicType(arg2->type()));
3815 
3816   return call_runtime(&signature, &args, entry, result_type, info);
3817 }
3818 
3819 
3820 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3821                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3822   // get a result register
3823   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3824   LIR_Opr result = LIR_OprFact::illegalOpr;
3825   if (result_type->tag() != voidTag) {
3826     result = new_register(result_type);
3827     phys_reg = result_register_for(result_type);
3828   }
3829 
3830   // move the arguments into the correct location
3831   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3832   assert(cc->length() == args->length(), "argument mismatch");
3833   for (int i = 0; i < args->length(); i++) {
3834     LIR_Opr arg = args->at(i);
3835     LIR_Opr loc = cc->at(i);
3836     if (loc->is_register()) {
3837       __ move(arg, loc);
3838     } else {
3839       LIR_Address* addr = loc->as_address_ptr();
3840 //           if (!can_store_as_constant(arg)) {
3841 //             LIR_Opr tmp = new_register(arg->type());
3842 //             __ move(arg, tmp);
3843 //             arg = tmp;
3844 //           }
3845       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3846         __ unaligned_move(arg, addr);
3847       } else {
3848         __ move(arg, addr);
3849       }
3850     }
3851   }
3852 
3853   if (info) {
3854     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3855   } else {
3856     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3857   }
3858   if (result->is_valid()) {
3859     __ move(phys_reg, result);
3860   }
3861   return result;
3862 }
3863 
3864 
3865 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3866                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3867   // get a result register
3868   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3869   LIR_Opr result = LIR_OprFact::illegalOpr;
3870   if (result_type->tag() != voidTag) {
3871     result = new_register(result_type);
3872     phys_reg = result_register_for(result_type);
3873   }
3874 
3875   // move the arguments into the correct location
3876   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3877 
3878   assert(cc->length() == args->length(), "argument mismatch");
3879   for (int i = 0; i < args->length(); i++) {
3880     LIRItem* arg = args->at(i);
3881     LIR_Opr loc = cc->at(i);
3882     if (loc->is_register()) {
3883       arg->load_item_force(loc);
3884     } else {
3885       LIR_Address* addr = loc->as_address_ptr();
3886       arg->load_for_store(addr->type());
3887       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3888         __ unaligned_move(arg->result(), addr);
3889       } else {
3890         __ move(arg->result(), addr);
3891       }
3892     }
3893   }
3894 
3895   if (info) {
3896     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3897   } else {
3898     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3899   }
3900   if (result->is_valid()) {
3901     __ move(phys_reg, result);
3902   }
3903   return result;
3904 }
3905 
3906 void LIRGenerator::do_MemBar(MemBar* x) {
3907   LIR_Code code = x->code();
3908   switch(code) {
3909   case lir_membar_acquire   : __ membar_acquire(); break;
3910   case lir_membar_release   : __ membar_release(); break;
3911   case lir_membar           : __ membar(); break;
3912   case lir_membar_loadload  : __ membar_loadload(); break;
3913   case lir_membar_storestore: __ membar_storestore(); break;
3914   case lir_membar_loadstore : __ membar_loadstore(); break;
3915   case lir_membar_storeload : __ membar_storeload(); break;
3916   default                   : ShouldNotReachHere(); break;
3917   }
3918 }
3919 
3920 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3921   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3922   if (TwoOperandLIRForm) {
3923     __ move(value, value_fixed);
3924     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3925   } else {
3926     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3927   }
3928   LIR_Opr klass = new_register(T_METADATA);
3929   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3930   null_check_info = NULL;
3931   LIR_Opr layout = new_register(T_INT);
3932   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3933   int diffbit = Klass::layout_helper_boolean_diffbit();
3934   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3935   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3936   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3937   value = value_fixed;
3938   return value;
3939 }
3940 
3941 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3942   if (x->check_boolean()) {
3943     value = mask_boolean(array, value, null_check_info);
3944   }
3945   return value;
3946 }