1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/access.hpp"
  51 #include "oops/fieldStreams.hpp"
  52 #include "oops/klass.hpp"
  53 #include "oops/method.inline.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/valueKlass.hpp"
  58 #include "prims/forte.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "prims/methodHandles.hpp"
  61 #include "prims/nativeLookup.hpp"
  62 #include "runtime/arguments.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/biasedLocking.hpp"
  65 #include "runtime/compilationPolicy.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/vframe.inline.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "utilities/copy.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/hashtable.inline.hpp"
  80 #include "utilities/macros.hpp"
  81 #include "utilities/xmlstream.hpp"
  82 #ifdef COMPILER1
  83 #include "c1/c1_Runtime1.hpp"
  84 #endif
  85 
  86 // Shared stub locations
  87 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  88 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  89 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  93 
  94 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  98 
  99 #ifdef COMPILER2
 100 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 101 #endif // COMPILER2
 102 
 103 
 104 //----------------------------generate_stubs-----------------------------------
 105 void SharedRuntime::generate_stubs() {
 106   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 107   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 108   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 109   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 110   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 111   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 112 
 113 #if COMPILER2_OR_JVMCI
 114   // Vectors are generated only by C2 and JVMCI.
 115   bool support_wide = is_wide_vector(MaxVectorSize);
 116   if (support_wide) {
 117     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 118   }
 119 #endif // COMPILER2_OR_JVMCI
 120   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 121   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 122 
 123   generate_deopt_blob();
 124 
 125 #ifdef COMPILER2
 126   generate_uncommon_trap_blob();
 127 #endif // COMPILER2
 128 }
 129 
 130 #include <math.h>
 131 
 132 // Implementation of SharedRuntime
 133 
 134 #ifndef PRODUCT
 135 // For statistics
 136 int SharedRuntime::_ic_miss_ctr = 0;
 137 int SharedRuntime::_wrong_method_ctr = 0;
 138 int SharedRuntime::_resolve_static_ctr = 0;
 139 int SharedRuntime::_resolve_virtual_ctr = 0;
 140 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 141 int SharedRuntime::_implicit_null_throws = 0;
 142 int SharedRuntime::_implicit_div0_throws = 0;
 143 int SharedRuntime::_throw_null_ctr = 0;
 144 
 145 int SharedRuntime::_nof_normal_calls = 0;
 146 int SharedRuntime::_nof_optimized_calls = 0;
 147 int SharedRuntime::_nof_inlined_calls = 0;
 148 int SharedRuntime::_nof_megamorphic_calls = 0;
 149 int SharedRuntime::_nof_static_calls = 0;
 150 int SharedRuntime::_nof_inlined_static_calls = 0;
 151 int SharedRuntime::_nof_interface_calls = 0;
 152 int SharedRuntime::_nof_optimized_interface_calls = 0;
 153 int SharedRuntime::_nof_inlined_interface_calls = 0;
 154 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 155 int SharedRuntime::_nof_removable_exceptions = 0;
 156 
 157 int SharedRuntime::_new_instance_ctr=0;
 158 int SharedRuntime::_new_array_ctr=0;
 159 int SharedRuntime::_multi1_ctr=0;
 160 int SharedRuntime::_multi2_ctr=0;
 161 int SharedRuntime::_multi3_ctr=0;
 162 int SharedRuntime::_multi4_ctr=0;
 163 int SharedRuntime::_multi5_ctr=0;
 164 int SharedRuntime::_mon_enter_stub_ctr=0;
 165 int SharedRuntime::_mon_exit_stub_ctr=0;
 166 int SharedRuntime::_mon_enter_ctr=0;
 167 int SharedRuntime::_mon_exit_ctr=0;
 168 int SharedRuntime::_partial_subtype_ctr=0;
 169 int SharedRuntime::_jbyte_array_copy_ctr=0;
 170 int SharedRuntime::_jshort_array_copy_ctr=0;
 171 int SharedRuntime::_jint_array_copy_ctr=0;
 172 int SharedRuntime::_jlong_array_copy_ctr=0;
 173 int SharedRuntime::_oop_array_copy_ctr=0;
 174 int SharedRuntime::_checkcast_array_copy_ctr=0;
 175 int SharedRuntime::_unsafe_array_copy_ctr=0;
 176 int SharedRuntime::_generic_array_copy_ctr=0;
 177 int SharedRuntime::_slow_array_copy_ctr=0;
 178 int SharedRuntime::_find_handler_ctr=0;
 179 int SharedRuntime::_rethrow_ctr=0;
 180 
 181 int     SharedRuntime::_ICmiss_index                    = 0;
 182 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 184 
 185 
 186 void SharedRuntime::trace_ic_miss(address at) {
 187   for (int i = 0; i < _ICmiss_index; i++) {
 188     if (_ICmiss_at[i] == at) {
 189       _ICmiss_count[i]++;
 190       return;
 191     }
 192   }
 193   int index = _ICmiss_index++;
 194   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 195   _ICmiss_at[index] = at;
 196   _ICmiss_count[index] = 1;
 197 }
 198 
 199 void SharedRuntime::print_ic_miss_histogram() {
 200   if (ICMissHistogram) {
 201     tty->print_cr("IC Miss Histogram:");
 202     int tot_misses = 0;
 203     for (int i = 0; i < _ICmiss_index; i++) {
 204       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 205       tot_misses += _ICmiss_count[i];
 206     }
 207     tty->print_cr("Total IC misses: %7d", tot_misses);
 208   }
 209 }
 210 #endif // PRODUCT
 211 
 212 
 213 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 214   return x * y;
 215 JRT_END
 216 
 217 
 218 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 219   if (x == min_jlong && y == CONST64(-1)) {
 220     return x;
 221   } else {
 222     return x / y;
 223   }
 224 JRT_END
 225 
 226 
 227 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 228   if (x == min_jlong && y == CONST64(-1)) {
 229     return 0;
 230   } else {
 231     return x % y;
 232   }
 233 JRT_END
 234 
 235 
 236 const juint  float_sign_mask  = 0x7FFFFFFF;
 237 const juint  float_infinity   = 0x7F800000;
 238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 239 const julong double_infinity  = CONST64(0x7FF0000000000000);
 240 
 241 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 242 #ifdef _WIN64
 243   // 64-bit Windows on amd64 returns the wrong values for
 244   // infinity operands.
 245   union { jfloat f; juint i; } xbits, ybits;
 246   xbits.f = x;
 247   ybits.f = y;
 248   // x Mod Infinity == x unless x is infinity
 249   if (((xbits.i & float_sign_mask) != float_infinity) &&
 250        ((ybits.i & float_sign_mask) == float_infinity) ) {
 251     return x;
 252   }
 253   return ((jfloat)fmod_winx64((double)x, (double)y));
 254 #else
 255   return ((jfloat)fmod((double)x,(double)y));
 256 #endif
 257 JRT_END
 258 
 259 
 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 261 #ifdef _WIN64
 262   union { jdouble d; julong l; } xbits, ybits;
 263   xbits.d = x;
 264   ybits.d = y;
 265   // x Mod Infinity == x unless x is infinity
 266   if (((xbits.l & double_sign_mask) != double_infinity) &&
 267        ((ybits.l & double_sign_mask) == double_infinity) ) {
 268     return x;
 269   }
 270   return ((jdouble)fmod_winx64((double)x, (double)y));
 271 #else
 272   return ((jdouble)fmod((double)x,(double)y));
 273 #endif
 274 JRT_END
 275 
 276 #ifdef __SOFTFP__
 277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 278   return x + y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 282   return x - y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 286   return x * y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 290   return x / y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 310   return (jfloat)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 318   return (jdouble)x;
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 322   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 326   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 330   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 // Functions to return the opposite of the aeabi functions for nan.
 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 343   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 351   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 359   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 367   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 // Intrinsics make gcc generate code for these.
 371 float  SharedRuntime::fneg(float f)   {
 372   return -f;
 373 }
 374 
 375 double SharedRuntime::dneg(double f)  {
 376   return -f;
 377 }
 378 
 379 #endif // __SOFTFP__
 380 
 381 #if defined(__SOFTFP__) || defined(E500V2)
 382 // Intrinsics make gcc generate code for these.
 383 double SharedRuntime::dabs(double f)  {
 384   return (f <= (double)0.0) ? (double)0.0 - f : f;
 385 }
 386 
 387 #endif
 388 
 389 #if defined(__SOFTFP__) || defined(PPC)
 390 double SharedRuntime::dsqrt(double f) {
 391   return sqrt(f);
 392 }
 393 #endif
 394 
 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 396   if (g_isnan(x))
 397     return 0;
 398   if (x >= (jfloat) max_jint)
 399     return max_jint;
 400   if (x <= (jfloat) min_jint)
 401     return min_jint;
 402   return (jint) x;
 403 JRT_END
 404 
 405 
 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jlong)
 410     return max_jlong;
 411   if (x <= (jfloat) min_jlong)
 412     return min_jlong;
 413   return (jlong) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jdouble) max_jint)
 421     return max_jint;
 422   if (x <= (jdouble) min_jint)
 423     return min_jint;
 424   return (jint) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jlong)
 432     return max_jlong;
 433   if (x <= (jdouble) min_jlong)
 434     return min_jlong;
 435   return (jlong) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 440   return (jfloat)x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 445   return (jfloat)x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 450   return (jdouble)x;
 451 JRT_END
 452 
 453 // Exception handling across interpreter/compiler boundaries
 454 //
 455 // exception_handler_for_return_address(...) returns the continuation address.
 456 // The continuation address is the entry point of the exception handler of the
 457 // previous frame depending on the return address.
 458 
 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 460   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 461   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 462 
 463   // Reset method handle flag.
 464   thread->set_is_method_handle_return(false);
 465 
 466 #if INCLUDE_JVMCI
 467   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 468   // and other exception handler continuations do not read it
 469   thread->set_exception_pc(NULL);
 470 #endif // INCLUDE_JVMCI
 471 
 472   // The fastest case first
 473   CodeBlob* blob = CodeCache::find_blob(return_address);
 474   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 475   if (nm != NULL) {
 476     // Set flag if return address is a method handle call site.
 477     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 478     // native nmethods don't have exception handlers
 479     assert(!nm->is_native_method(), "no exception handler");
 480     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 481     if (nm->is_deopt_pc(return_address)) {
 482       // If we come here because of a stack overflow, the stack may be
 483       // unguarded. Reguard the stack otherwise if we return to the
 484       // deopt blob and the stack bang causes a stack overflow we
 485       // crash.
 486       bool guard_pages_enabled = thread->stack_guards_enabled();
 487       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 488       if (thread->reserved_stack_activation() != thread->stack_base()) {
 489         thread->set_reserved_stack_activation(thread->stack_base());
 490       }
 491       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 492       return SharedRuntime::deopt_blob()->unpack_with_exception();
 493     } else {
 494       return nm->exception_begin();
 495     }
 496   }
 497 
 498   // Entry code
 499   if (StubRoutines::returns_to_call_stub(return_address)) {
 500     return StubRoutines::catch_exception_entry();
 501   }
 502   // Interpreted code
 503   if (Interpreter::contains(return_address)) {
 504     return Interpreter::rethrow_exception_entry();
 505   }
 506 
 507   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 508   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 509 
 510 #ifndef PRODUCT
 511   { ResourceMark rm;
 512     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 513     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 514     tty->print_cr("b) other problem");
 515   }
 516 #endif // PRODUCT
 517 
 518   ShouldNotReachHere();
 519   return NULL;
 520 }
 521 
 522 
 523 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 524   return raw_exception_handler_for_return_address(thread, return_address);
 525 JRT_END
 526 
 527 
 528 address SharedRuntime::get_poll_stub(address pc) {
 529   address stub;
 530   // Look up the code blob
 531   CodeBlob *cb = CodeCache::find_blob(pc);
 532 
 533   // Should be an nmethod
 534   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 535 
 536   // Look up the relocation information
 537   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 538     "safepoint polling: type must be poll");
 539 
 540 #ifdef ASSERT
 541   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 542     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 543     Disassembler::decode(cb);
 544     fatal("Only polling locations are used for safepoint");
 545   }
 546 #endif
 547 
 548   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 549   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 550   if (at_poll_return) {
 551     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 552            "polling page return stub not created yet");
 553     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 554   } else if (has_wide_vectors) {
 555     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 556            "polling page vectors safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 558   } else {
 559     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 560            "polling page safepoint stub not created yet");
 561     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 562   }
 563   log_debug(safepoint)("... found polling page %s exception at pc = "
 564                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 565                        at_poll_return ? "return" : "loop",
 566                        (intptr_t)pc, (intptr_t)stub);
 567   return stub;
 568 }
 569 
 570 
 571 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 572   assert(caller.is_interpreted_frame(), "");
 573   int args_size = ArgumentSizeComputer(sig).size() + 1;
 574   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 575   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 576   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 577   return result;
 578 }
 579 
 580 
 581 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 582   if (JvmtiExport::can_post_on_exceptions()) {
 583     vframeStream vfst(thread, true);
 584     methodHandle method = methodHandle(thread, vfst.method());
 585     address bcp = method()->bcp_from(vfst.bci());
 586     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 587   }
 588   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 589 }
 590 
 591 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 592   Handle h_exception = Exceptions::new_exception(thread, name, message);
 593   throw_and_post_jvmti_exception(thread, h_exception);
 594 }
 595 
 596 // The interpreter code to call this tracing function is only
 597 // called/generated when UL is on for redefine, class and has the right level
 598 // and tags. Since obsolete methods are never compiled, we don't have
 599 // to modify the compilers to generate calls to this function.
 600 //
 601 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 602     JavaThread* thread, Method* method))
 603   if (method->is_obsolete()) {
 604     // We are calling an obsolete method, but this is not necessarily
 605     // an error. Our method could have been redefined just after we
 606     // fetched the Method* from the constant pool.
 607     ResourceMark rm;
 608     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 609   }
 610   return 0;
 611 JRT_END
 612 
 613 // ret_pc points into caller; we are returning caller's exception handler
 614 // for given exception
 615 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 616                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 617   assert(cm != NULL, "must exist");
 618   ResourceMark rm;
 619 
 620 #if INCLUDE_JVMCI
 621   if (cm->is_compiled_by_jvmci()) {
 622     // lookup exception handler for this pc
 623     int catch_pco = ret_pc - cm->code_begin();
 624     ExceptionHandlerTable table(cm);
 625     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 626     if (t != NULL) {
 627       return cm->code_begin() + t->pco();
 628     } else {
 629       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 630     }
 631   }
 632 #endif // INCLUDE_JVMCI
 633 
 634   nmethod* nm = cm->as_nmethod();
 635   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 636   // determine handler bci, if any
 637   EXCEPTION_MARK;
 638 
 639   int handler_bci = -1;
 640   int scope_depth = 0;
 641   if (!force_unwind) {
 642     int bci = sd->bci();
 643     bool recursive_exception = false;
 644     do {
 645       bool skip_scope_increment = false;
 646       // exception handler lookup
 647       Klass* ek = exception->klass();
 648       methodHandle mh(THREAD, sd->method());
 649       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 650       if (HAS_PENDING_EXCEPTION) {
 651         recursive_exception = true;
 652         // We threw an exception while trying to find the exception handler.
 653         // Transfer the new exception to the exception handle which will
 654         // be set into thread local storage, and do another lookup for an
 655         // exception handler for this exception, this time starting at the
 656         // BCI of the exception handler which caused the exception to be
 657         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 658         // argument to ensure that the correct exception is thrown (4870175).
 659         recursive_exception_occurred = true;
 660         exception = Handle(THREAD, PENDING_EXCEPTION);
 661         CLEAR_PENDING_EXCEPTION;
 662         if (handler_bci >= 0) {
 663           bci = handler_bci;
 664           handler_bci = -1;
 665           skip_scope_increment = true;
 666         }
 667       }
 668       else {
 669         recursive_exception = false;
 670       }
 671       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 672         sd = sd->sender();
 673         if (sd != NULL) {
 674           bci = sd->bci();
 675         }
 676         ++scope_depth;
 677       }
 678     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 679   }
 680 
 681   // found handling method => lookup exception handler
 682   int catch_pco = ret_pc - nm->code_begin();
 683 
 684   ExceptionHandlerTable table(nm);
 685   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 686   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 687     // Allow abbreviated catch tables.  The idea is to allow a method
 688     // to materialize its exceptions without committing to the exact
 689     // routing of exceptions.  In particular this is needed for adding
 690     // a synthetic handler to unlock monitors when inlining
 691     // synchronized methods since the unlock path isn't represented in
 692     // the bytecodes.
 693     t = table.entry_for(catch_pco, -1, 0);
 694   }
 695 
 696 #ifdef COMPILER1
 697   if (t == NULL && nm->is_compiled_by_c1()) {
 698     assert(nm->unwind_handler_begin() != NULL, "");
 699     return nm->unwind_handler_begin();
 700   }
 701 #endif
 702 
 703   if (t == NULL) {
 704     ttyLocker ttyl;
 705     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 706     tty->print_cr("   Exception:");
 707     exception->print();
 708     tty->cr();
 709     tty->print_cr(" Compiled exception table :");
 710     table.print();
 711     nm->print_code();
 712     guarantee(false, "missing exception handler");
 713     return NULL;
 714   }
 715 
 716   return nm->code_begin() + t->pco();
 717 }
 718 
 719 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 720   // These errors occur only at call sites
 721   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 722 JRT_END
 723 
 724 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 725   // These errors occur only at call sites
 726   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 727 JRT_END
 728 
 729 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 731 JRT_END
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 734   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 735 JRT_END
 736 
 737 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 738   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 739   // cache sites (when the callee activation is not yet set up) so we are at a call site
 740   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 741 JRT_END
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 744   throw_StackOverflowError_common(thread, false);
 745 JRT_END
 746 
 747 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 748   throw_StackOverflowError_common(thread, true);
 749 JRT_END
 750 
 751 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 752   // We avoid using the normal exception construction in this case because
 753   // it performs an upcall to Java, and we're already out of stack space.
 754   Thread* THREAD = thread;
 755   Klass* k = SystemDictionary::StackOverflowError_klass();
 756   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 757   if (delayed) {
 758     java_lang_Throwable::set_message(exception_oop,
 759                                      Universe::delayed_stack_overflow_error_message());
 760   }
 761   Handle exception (thread, exception_oop);
 762   if (StackTraceInThrowable) {
 763     java_lang_Throwable::fill_in_stack_trace(exception);
 764   }
 765   // Increment counter for hs_err file reporting
 766   Atomic::inc(&Exceptions::_stack_overflow_errors);
 767   throw_and_post_jvmti_exception(thread, exception);
 768 }
 769 
 770 #if INCLUDE_JVMCI
 771 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 772   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 773   thread->set_jvmci_implicit_exception_pc(pc);
 774   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 775   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 776 }
 777 #endif // INCLUDE_JVMCI
 778 
 779 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 780                                                            address pc,
 781                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 782 {
 783   address target_pc = NULL;
 784 
 785   if (Interpreter::contains(pc)) {
 786 #ifdef CC_INTERP
 787     // C++ interpreter doesn't throw implicit exceptions
 788     ShouldNotReachHere();
 789 #else
 790     switch (exception_kind) {
 791       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 792       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 793       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 794       default:                      ShouldNotReachHere();
 795     }
 796 #endif // !CC_INTERP
 797   } else {
 798     switch (exception_kind) {
 799       case STACK_OVERFLOW: {
 800         // Stack overflow only occurs upon frame setup; the callee is
 801         // going to be unwound. Dispatch to a shared runtime stub
 802         // which will cause the StackOverflowError to be fabricated
 803         // and processed.
 804         // Stack overflow should never occur during deoptimization:
 805         // the compiled method bangs the stack by as much as the
 806         // interpreter would need in case of a deoptimization. The
 807         // deoptimization blob and uncommon trap blob bang the stack
 808         // in a debug VM to verify the correctness of the compiled
 809         // method stack banging.
 810         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 811         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 812         return StubRoutines::throw_StackOverflowError_entry();
 813       }
 814 
 815       case IMPLICIT_NULL: {
 816         if (VtableStubs::contains(pc)) {
 817           // We haven't yet entered the callee frame. Fabricate an
 818           // exception and begin dispatching it in the caller. Since
 819           // the caller was at a call site, it's safe to destroy all
 820           // caller-saved registers, as these entry points do.
 821           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 822 
 823           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 824           if (vt_stub == NULL) return NULL;
 825 
 826           if (vt_stub->is_abstract_method_error(pc)) {
 827             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 828             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 829             // Instead of throwing the abstract method error here directly, we re-resolve
 830             // and will throw the AbstractMethodError during resolve. As a result, we'll
 831             // get a more detailed error message.
 832             return SharedRuntime::get_handle_wrong_method_stub();
 833           } else {
 834             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 835             // Assert that the signal comes from the expected location in stub code.
 836             assert(vt_stub->is_null_pointer_exception(pc),
 837                    "obtained signal from unexpected location in stub code");
 838             return StubRoutines::throw_NullPointerException_at_call_entry();
 839           }
 840         } else {
 841           CodeBlob* cb = CodeCache::find_blob(pc);
 842 
 843           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 844           if (cb == NULL) return NULL;
 845 
 846           // Exception happened in CodeCache. Must be either:
 847           // 1. Inline-cache check in C2I handler blob,
 848           // 2. Inline-cache check in nmethod, or
 849           // 3. Implicit null exception in nmethod
 850 
 851           if (!cb->is_compiled()) {
 852             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 853             if (!is_in_blob) {
 854               // Allow normal crash reporting to handle this
 855               return NULL;
 856             }
 857             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 858             // There is no handler here, so we will simply unwind.
 859             return StubRoutines::throw_NullPointerException_at_call_entry();
 860           }
 861 
 862           // Otherwise, it's a compiled method.  Consult its exception handlers.
 863           CompiledMethod* cm = (CompiledMethod*)cb;
 864           if (cm->inlinecache_check_contains(pc)) {
 865             // exception happened inside inline-cache check code
 866             // => the nmethod is not yet active (i.e., the frame
 867             // is not set up yet) => use return address pushed by
 868             // caller => don't push another return address
 869             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 870             return StubRoutines::throw_NullPointerException_at_call_entry();
 871           }
 872 
 873           if (cm->method()->is_method_handle_intrinsic()) {
 874             // exception happened inside MH dispatch code, similar to a vtable stub
 875             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 876             return StubRoutines::throw_NullPointerException_at_call_entry();
 877           }
 878 
 879 #ifndef PRODUCT
 880           _implicit_null_throws++;
 881 #endif
 882 #if INCLUDE_JVMCI
 883           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 884             // If there's no PcDesc then we'll die way down inside of
 885             // deopt instead of just getting normal error reporting,
 886             // so only go there if it will succeed.
 887             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 888           } else {
 889 #endif // INCLUDE_JVMCI
 890           assert (cm->is_nmethod(), "Expect nmethod");
 891           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 892 #if INCLUDE_JVMCI
 893           }
 894 #endif // INCLUDE_JVMCI
 895           // If there's an unexpected fault, target_pc might be NULL,
 896           // in which case we want to fall through into the normal
 897           // error handling code.
 898         }
 899 
 900         break; // fall through
 901       }
 902 
 903 
 904       case IMPLICIT_DIVIDE_BY_ZERO: {
 905         CompiledMethod* cm = CodeCache::find_compiled(pc);
 906         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 907 #ifndef PRODUCT
 908         _implicit_div0_throws++;
 909 #endif
 910 #if INCLUDE_JVMCI
 911         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 912           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 913         } else {
 914 #endif // INCLUDE_JVMCI
 915         target_pc = cm->continuation_for_implicit_exception(pc);
 916 #if INCLUDE_JVMCI
 917         }
 918 #endif // INCLUDE_JVMCI
 919         // If there's an unexpected fault, target_pc might be NULL,
 920         // in which case we want to fall through into the normal
 921         // error handling code.
 922         break; // fall through
 923       }
 924 
 925       default: ShouldNotReachHere();
 926     }
 927 
 928     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 929 
 930     if (exception_kind == IMPLICIT_NULL) {
 931 #ifndef PRODUCT
 932       // for AbortVMOnException flag
 933       Exceptions::debug_check_abort("java.lang.NullPointerException");
 934 #endif //PRODUCT
 935       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 936     } else {
 937 #ifndef PRODUCT
 938       // for AbortVMOnException flag
 939       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 940 #endif //PRODUCT
 941       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 942     }
 943     return target_pc;
 944   }
 945 
 946   ShouldNotReachHere();
 947   return NULL;
 948 }
 949 
 950 
 951 /**
 952  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 953  * installed in the native function entry of all native Java methods before
 954  * they get linked to their actual native methods.
 955  *
 956  * \note
 957  * This method actually never gets called!  The reason is because
 958  * the interpreter's native entries call NativeLookup::lookup() which
 959  * throws the exception when the lookup fails.  The exception is then
 960  * caught and forwarded on the return from NativeLookup::lookup() call
 961  * before the call to the native function.  This might change in the future.
 962  */
 963 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 964 {
 965   // We return a bad value here to make sure that the exception is
 966   // forwarded before we look at the return value.
 967   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 968 }
 969 JNI_END
 970 
 971 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 972   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 973 }
 974 
 975 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 976 #if INCLUDE_JVMCI
 977   if (!obj->klass()->has_finalizer()) {
 978     return;
 979   }
 980 #endif // INCLUDE_JVMCI
 981   assert(oopDesc::is_oop(obj), "must be a valid oop");
 982   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 983   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 984 JRT_END
 985 
 986 
 987 jlong SharedRuntime::get_java_tid(Thread* thread) {
 988   if (thread != NULL) {
 989     if (thread->is_Java_thread()) {
 990       oop obj = ((JavaThread*)thread)->threadObj();
 991       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 992     }
 993   }
 994   return 0;
 995 }
 996 
 997 /**
 998  * This function ought to be a void function, but cannot be because
 999  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1000  * 6254741.  Once that is fixed we can remove the dummy return value.
1001  */
1002 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1003   return dtrace_object_alloc_base(Thread::current(), o, size);
1004 }
1005 
1006 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1007   assert(DTraceAllocProbes, "wrong call");
1008   Klass* klass = o->klass();
1009   Symbol* name = klass->name();
1010   HOTSPOT_OBJECT_ALLOC(
1011                    get_java_tid(thread),
1012                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1013   return 0;
1014 }
1015 
1016 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1017     JavaThread* thread, Method* method))
1018   assert(DTraceMethodProbes, "wrong call");
1019   Symbol* kname = method->klass_name();
1020   Symbol* name = method->name();
1021   Symbol* sig = method->signature();
1022   HOTSPOT_METHOD_ENTRY(
1023       get_java_tid(thread),
1024       (char *) kname->bytes(), kname->utf8_length(),
1025       (char *) name->bytes(), name->utf8_length(),
1026       (char *) sig->bytes(), sig->utf8_length());
1027   return 0;
1028 JRT_END
1029 
1030 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1031     JavaThread* thread, Method* method))
1032   assert(DTraceMethodProbes, "wrong call");
1033   Symbol* kname = method->klass_name();
1034   Symbol* name = method->name();
1035   Symbol* sig = method->signature();
1036   HOTSPOT_METHOD_RETURN(
1037       get_java_tid(thread),
1038       (char *) kname->bytes(), kname->utf8_length(),
1039       (char *) name->bytes(), name->utf8_length(),
1040       (char *) sig->bytes(), sig->utf8_length());
1041   return 0;
1042 JRT_END
1043 
1044 
1045 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1046 // for a call current in progress, i.e., arguments has been pushed on stack
1047 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1048 // vtable updates, etc.  Caller frame must be compiled.
1049 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1050   ResourceMark rm(THREAD);
1051 
1052   // last java frame on stack (which includes native call frames)
1053   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1054 
1055   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1056 }
1057 
1058 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1059   CompiledMethod* caller = vfst.nm();
1060 
1061   nmethodLocker caller_lock(caller);
1062 
1063   address pc = vfst.frame_pc();
1064   { // Get call instruction under lock because another thread may be busy patching it.
1065     CompiledICLocker ic_locker(caller);
1066     return caller->attached_method_before_pc(pc);
1067   }
1068   return NULL;
1069 }
1070 
1071 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1072 // for a call current in progress, i.e., arguments has been pushed on stack
1073 // but callee has not been invoked yet.  Caller frame must be compiled.
1074 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1075                                               vframeStream& vfst,
1076                                               Bytecodes::Code& bc,
1077                                               CallInfo& callinfo, TRAPS) {
1078   Handle receiver;
1079   Handle nullHandle;  //create a handy null handle for exception returns
1080 
1081   assert(!vfst.at_end(), "Java frame must exist");
1082 
1083   // Find caller and bci from vframe
1084   methodHandle caller(THREAD, vfst.method());
1085   int          bci   = vfst.bci();
1086 
1087   Bytecode_invoke bytecode(caller, bci);
1088   int bytecode_index = bytecode.index();
1089   bc = bytecode.invoke_code();
1090 
1091   methodHandle attached_method = extract_attached_method(vfst);
1092   if (attached_method.not_null()) {
1093     methodHandle callee = bytecode.static_target(CHECK_NH);
1094     vmIntrinsics::ID id = callee->intrinsic_id();
1095     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1096     // it attaches statically resolved method to the call site.
1097     if (MethodHandles::is_signature_polymorphic(id) &&
1098         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1099       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1100 
1101       // Adjust invocation mode according to the attached method.
1102       switch (bc) {
1103         case Bytecodes::_invokevirtual:
1104           if (attached_method->method_holder()->is_interface()) {
1105             bc = Bytecodes::_invokeinterface;
1106           }
1107           break;
1108         case Bytecodes::_invokeinterface:
1109           if (!attached_method->method_holder()->is_interface()) {
1110             bc = Bytecodes::_invokevirtual;
1111           }
1112           break;
1113         case Bytecodes::_invokehandle:
1114           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1115             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1116                                               : Bytecodes::_invokevirtual;
1117           }
1118           break;
1119         default:
1120           break;
1121       }
1122     } else {
1123       assert(attached_method->has_scalarized_args(), "invalid use of attached method");
1124       if (!attached_method->method_holder()->is_value()) {
1125         // Ignore the attached method in this case to not confuse below code
1126         attached_method = NULL;
1127       }
1128     }
1129   }
1130 
1131   assert(bc != Bytecodes::_illegal, "not initialized");
1132 
1133   bool has_receiver = bc != Bytecodes::_invokestatic &&
1134                       bc != Bytecodes::_invokedynamic &&
1135                       bc != Bytecodes::_invokehandle;
1136 
1137   // Find receiver for non-static call
1138   if (has_receiver) {
1139     // This register map must be update since we need to find the receiver for
1140     // compiled frames. The receiver might be in a register.
1141     RegisterMap reg_map2(thread);
1142     frame stubFrame   = thread->last_frame();
1143     // Caller-frame is a compiled frame
1144     frame callerFrame = stubFrame.sender(&reg_map2);
1145     bool caller_is_c1 = false;
1146 
1147     if (callerFrame.is_compiled_frame() && !callerFrame.is_deoptimized_frame()) {
1148       caller_is_c1 = callerFrame.cb()->is_compiled_by_c1();
1149     }
1150 
1151     methodHandle callee = attached_method;
1152     if (callee.is_null()) {
1153       callee = bytecode.static_target(CHECK_NH);
1154       if (callee.is_null()) {
1155         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1156       }
1157     }
1158     if (!caller_is_c1 && callee->has_scalarized_args() && callee->method_holder()->is_value()) {
1159       // If the receiver is a value type that is passed as fields, no oop is available.
1160       // Resolve the call without receiver null checking.
1161       assert(!attached_method.is_null(), "must have attached method");
1162       if (bc == Bytecodes::_invokevirtual) {
1163         LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1164         LinkResolver::resolve_virtual_call(callinfo, receiver, callee->method_holder(), link_info, /*check_null_and_abstract=*/ false, CHECK_NH);
1165       } else {
1166         assert(bc == Bytecodes::_invokeinterface, "anything else?");
1167         LinkInfo link_info(constantPoolHandle(THREAD, caller->constants()), bytecode_index, CHECK_NH);
1168         LinkResolver::resolve_interface_call(callinfo, receiver, callee->method_holder(), link_info, /*check_null_and_abstract=*/ false, CHECK_NH);
1169       }
1170       return receiver; // is null
1171     } else {
1172       // Retrieve from a compiled argument list
1173       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1174 
1175       if (receiver.is_null()) {
1176         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1177       }
1178     }
1179   }
1180 
1181   // Resolve method
1182   if (attached_method.not_null()) {
1183     // Parameterized by attached method.
1184     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1185   } else {
1186     // Parameterized by bytecode.
1187     constantPoolHandle constants(THREAD, caller->constants());
1188     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1189   }
1190 
1191 #ifdef ASSERT
1192   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1193   if (has_receiver) {
1194     assert(receiver.not_null(), "should have thrown exception");
1195     Klass* receiver_klass = receiver->klass();
1196     Klass* rk = NULL;
1197     if (attached_method.not_null()) {
1198       // In case there's resolved method attached, use its holder during the check.
1199       rk = attached_method->method_holder();
1200     } else {
1201       // Klass is already loaded.
1202       constantPoolHandle constants(THREAD, caller->constants());
1203       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1204     }
1205     Klass* static_receiver_klass = rk;
1206     methodHandle callee = callinfo.selected_method();
1207     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1208            "actual receiver must be subclass of static receiver klass");
1209     if (receiver_klass->is_instance_klass()) {
1210       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1211         tty->print_cr("ERROR: Klass not yet initialized!!");
1212         receiver_klass->print();
1213       }
1214       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1215     }
1216   }
1217 #endif
1218 
1219   return receiver;
1220 }
1221 
1222 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1223   ResourceMark rm(THREAD);
1224   // We need first to check if any Java activations (compiled, interpreted)
1225   // exist on the stack since last JavaCall.  If not, we need
1226   // to get the target method from the JavaCall wrapper.
1227   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1228   methodHandle callee_method;
1229   if (vfst.at_end()) {
1230     // No Java frames were found on stack since we did the JavaCall.
1231     // Hence the stack can only contain an entry_frame.  We need to
1232     // find the target method from the stub frame.
1233     RegisterMap reg_map(thread, false);
1234     frame fr = thread->last_frame();
1235     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1236     fr = fr.sender(&reg_map);
1237     assert(fr.is_entry_frame(), "must be");
1238     // fr is now pointing to the entry frame.
1239     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1240   } else {
1241     Bytecodes::Code bc;
1242     CallInfo callinfo;
1243     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1244     callee_method = callinfo.selected_method();
1245   }
1246   assert(callee_method()->is_method(), "must be");
1247   return callee_method;
1248 }
1249 
1250 // Resolves a call.
1251 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1252                                            bool is_virtual,
1253                                            bool is_optimized,
1254                                            bool* caller_is_c1, TRAPS) {
1255   methodHandle callee_method;
1256   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, caller_is_c1, THREAD);
1257   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1258     int retry_count = 0;
1259     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1260            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1261       // If has a pending exception then there is no need to re-try to
1262       // resolve this method.
1263       // If the method has been redefined, we need to try again.
1264       // Hack: we have no way to update the vtables of arrays, so don't
1265       // require that java.lang.Object has been updated.
1266 
1267       // It is very unlikely that method is redefined more than 100 times
1268       // in the middle of resolve. If it is looping here more than 100 times
1269       // means then there could be a bug here.
1270       guarantee((retry_count++ < 100),
1271                 "Could not resolve to latest version of redefined method");
1272       // method is redefined in the middle of resolve so re-try.
1273       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, caller_is_c1, THREAD);
1274     }
1275   }
1276   return callee_method;
1277 }
1278 
1279 // This fails if resolution required refilling of IC stubs
1280 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1281                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1282                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1283   StaticCallInfo static_call_info;
1284   CompiledICInfo virtual_call_info;
1285 
1286   // Make sure the callee nmethod does not get deoptimized and removed before
1287   // we are done patching the code.
1288   CompiledMethod* callee = callee_method->code();
1289 
1290   if (callee != NULL) {
1291     assert(callee->is_compiled(), "must be nmethod for patching");
1292   }
1293 
1294   if (callee != NULL && !callee->is_in_use()) {
1295     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1296     callee = NULL;
1297   }
1298   nmethodLocker nl_callee(callee);
1299 #ifdef ASSERT
1300   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1301 #endif
1302 
1303   bool is_nmethod = caller_nm->is_nmethod();
1304   bool caller_is_c1 = caller_nm->is_compiled_by_c1();
1305 
1306   if (is_virtual) {
1307     Klass* receiver_klass = NULL;
1308     if (ValueTypePassFieldsAsArgs && !caller_is_c1 && callee_method->method_holder()->is_value()) {
1309       // If the receiver is a value type that is passed as fields, no oop is available
1310       receiver_klass = callee_method->method_holder();
1311     } else {
1312       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1313       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1314     }
1315     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1316     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1317                      is_optimized, static_bound, is_nmethod, caller_is_c1, virtual_call_info,
1318                      CHECK_false);
1319   } else {
1320     // static call
1321     CompiledStaticCall::compute_entry(callee_method, caller_nm, static_call_info);
1322   }
1323 
1324   // grab lock, check for deoptimization and potentially patch caller
1325   {
1326     CompiledICLocker ml(caller_nm);
1327 
1328     // Lock blocks for safepoint during which both nmethods can change state.
1329 
1330     // Now that we are ready to patch if the Method* was redefined then
1331     // don't update call site and let the caller retry.
1332     // Don't update call site if callee nmethod was unloaded or deoptimized.
1333     // Don't update call site if callee nmethod was replaced by an other nmethod
1334     // which may happen when multiply alive nmethod (tiered compilation)
1335     // will be supported.
1336     if (!callee_method->is_old() &&
1337         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1338 #ifdef ASSERT
1339       // We must not try to patch to jump to an already unloaded method.
1340       if (dest_entry_point != 0) {
1341         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1342         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1343                "should not call unloaded nmethod");
1344       }
1345 #endif
1346       if (is_virtual) {
1347         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1348         if (inline_cache->is_clean()) {
1349           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1350             return false;
1351           }
1352         }
1353       } else {
1354         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1355         if (ssc->is_clean()) ssc->set(static_call_info);
1356       }
1357     }
1358   } // unlock CompiledICLocker
1359   return true;
1360 }
1361 
1362 // Resolves a call.  The compilers generate code for calls that go here
1363 // and are patched with the real destination of the call.
1364 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1365                                                bool is_virtual,
1366                                                bool is_optimized,
1367                                                bool* caller_is_c1, TRAPS) {
1368 
1369   ResourceMark rm(thread);
1370   RegisterMap cbl_map(thread, false);
1371   frame caller_frame = thread->last_frame().sender(&cbl_map);
1372 
1373   CodeBlob* caller_cb = caller_frame.cb();
1374   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1375   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1376   *caller_is_c1 = caller_nm->is_compiled_by_c1();
1377 
1378   // make sure caller is not getting deoptimized
1379   // and removed before we are done with it.
1380   // CLEANUP - with lazy deopt shouldn't need this lock
1381   nmethodLocker caller_lock(caller_nm);
1382 
1383   if (!is_virtual && !is_optimized) {
1384     SimpleScopeDesc ssd(caller_nm, caller_frame.pc());
1385     Bytecode bc(ssd.method(), ssd.method()->bcp_from(ssd.bci()));
1386     // Substitutability test implementation piggy backs on static call resolution
1387     if (bc.code() == Bytecodes::_if_acmpeq || bc.code() == Bytecodes::_if_acmpne) {
1388       SystemDictionary::ValueBootstrapMethods_klass()->initialize(CHECK_NULL);
1389       return SystemDictionary::ValueBootstrapMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature());
1390     }
1391   }
1392 
1393   // determine call info & receiver
1394   // note: a) receiver is NULL for static calls
1395   //       b) an exception is thrown if receiver is NULL for non-static calls
1396   CallInfo call_info;
1397   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1398   Handle receiver = find_callee_info(thread, invoke_code,
1399                                      call_info, CHECK_(methodHandle()));
1400   methodHandle callee_method = call_info.selected_method();
1401 
1402   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1403          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1404          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1405          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1406          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1407 
1408   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1409 
1410 #ifndef PRODUCT
1411   // tracing/debugging/statistics
1412   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1413                 (is_virtual) ? (&_resolve_virtual_ctr) :
1414                                (&_resolve_static_ctr);
1415   Atomic::inc(addr);
1416 
1417   if (TraceCallFixup) {
1418     ResourceMark rm(thread);
1419     tty->print("resolving %s%s (%s) call to",
1420       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1421       Bytecodes::name(invoke_code));
1422     callee_method->print_short_name(tty);
1423     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1424                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1425   }
1426 #endif
1427 
1428   // Do not patch call site for static call when the class is not
1429   // fully initialized.
1430   if (invoke_code == Bytecodes::_invokestatic &&
1431       !callee_method->method_holder()->is_initialized()) {
1432     assert(callee_method->method_holder()->is_linked(), "must be");
1433     return callee_method;
1434   }
1435 
1436   // JSR 292 key invariant:
1437   // If the resolved method is a MethodHandle invoke target, the call
1438   // site must be a MethodHandle call site, because the lambda form might tail-call
1439   // leaving the stack in a state unknown to either caller or callee
1440   // TODO detune for now but we might need it again
1441 //  assert(!callee_method->is_compiled_lambda_form() ||
1442 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1443 
1444   // Compute entry points. This might require generation of C2I converter
1445   // frames, so we cannot be holding any locks here. Furthermore, the
1446   // computation of the entry points is independent of patching the call.  We
1447   // always return the entry-point, but we only patch the stub if the call has
1448   // not been deoptimized.  Return values: For a virtual call this is an
1449   // (cached_oop, destination address) pair. For a static call/optimized
1450   // virtual this is just a destination address.
1451 
1452   // Patching IC caches may fail if we run out if transition stubs.
1453   // We refill the ic stubs then and try again.
1454   for (;;) {
1455     ICRefillVerifier ic_refill_verifier;
1456     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1457                                                   is_virtual, is_optimized, receiver,
1458                                                   call_info, invoke_code, CHECK_(methodHandle()));
1459     if (successful) {
1460       return callee_method;
1461     } else {
1462       InlineCacheBuffer::refill_ic_stubs();
1463     }
1464   }
1465 
1466 }
1467 
1468 
1469 // Inline caches exist only in compiled code
1470 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1471 #ifdef ASSERT
1472   RegisterMap reg_map(thread, false);
1473   frame stub_frame = thread->last_frame();
1474   assert(stub_frame.is_runtime_frame(), "sanity check");
1475   frame caller_frame = stub_frame.sender(&reg_map);
1476   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1477 #endif /* ASSERT */
1478 
1479   methodHandle callee_method;
1480   bool is_optimized = false;
1481   bool caller_is_c1 = false;
1482   JRT_BLOCK
1483     callee_method = SharedRuntime::handle_ic_miss_helper(thread, is_optimized, caller_is_c1, CHECK_NULL);
1484     // Return Method* through TLS
1485     thread->set_vm_result_2(callee_method());
1486   JRT_BLOCK_END
1487   // return compiled code entry point after potential safepoints
1488   return entry_for_handle_wrong_method(callee_method, is_optimized, caller_is_c1);
1489 JRT_END
1490 
1491 
1492 // Handle call site that has been made non-entrant
1493 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1494   // 6243940 We might end up in here if the callee is deoptimized
1495   // as we race to call it.  We don't want to take a safepoint if
1496   // the caller was interpreted because the caller frame will look
1497   // interpreted to the stack walkers and arguments are now
1498   // "compiled" so it is much better to make this transition
1499   // invisible to the stack walking code. The i2c path will
1500   // place the callee method in the callee_target. It is stashed
1501   // there because if we try and find the callee by normal means a
1502   // safepoint is possible and have trouble gc'ing the compiled args.
1503   RegisterMap reg_map(thread, false);
1504   frame stub_frame = thread->last_frame();
1505   assert(stub_frame.is_runtime_frame(), "sanity check");
1506   frame caller_frame = stub_frame.sender(&reg_map);
1507 
1508   if (caller_frame.is_interpreted_frame() ||
1509       caller_frame.is_entry_frame()) {
1510     Method* callee = thread->callee_target();
1511     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1512     thread->set_vm_result_2(callee);
1513     thread->set_callee_target(NULL);
1514     return callee->get_c2i_entry();
1515   }
1516 
1517   // Must be compiled to compiled path which is safe to stackwalk
1518   methodHandle callee_method;
1519   bool is_optimized = false;
1520   bool caller_is_c1 = false;
1521   JRT_BLOCK
1522     // Force resolving of caller (if we called from compiled frame)
1523     callee_method = SharedRuntime::reresolve_call_site(thread, is_optimized, caller_is_c1, CHECK_NULL);
1524     thread->set_vm_result_2(callee_method());
1525   JRT_BLOCK_END
1526   // return compiled code entry point after potential safepoints
1527   return entry_for_handle_wrong_method(callee_method, is_optimized, caller_is_c1);
1528 JRT_END
1529 
1530 // Handle abstract method call
1531 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1532   // Verbose error message for AbstractMethodError.
1533   // Get the called method from the invoke bytecode.
1534   vframeStream vfst(thread, true);
1535   assert(!vfst.at_end(), "Java frame must exist");
1536   methodHandle caller(vfst.method());
1537   Bytecode_invoke invoke(caller, vfst.bci());
1538   DEBUG_ONLY( invoke.verify(); )
1539 
1540   // Find the compiled caller frame.
1541   RegisterMap reg_map(thread);
1542   frame stubFrame = thread->last_frame();
1543   assert(stubFrame.is_runtime_frame(), "must be");
1544   frame callerFrame = stubFrame.sender(&reg_map);
1545   assert(callerFrame.is_compiled_frame(), "must be");
1546 
1547   // Install exception and return forward entry.
1548   address res = StubRoutines::throw_AbstractMethodError_entry();
1549   JRT_BLOCK
1550     methodHandle callee = invoke.static_target(thread);
1551     if (!callee.is_null()) {
1552       oop recv = callerFrame.retrieve_receiver(&reg_map);
1553       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1554       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1555       res = StubRoutines::forward_exception_entry();
1556     }
1557   JRT_BLOCK_END
1558   return res;
1559 JRT_END
1560 
1561 
1562 // resolve a static call and patch code
1563 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1564   methodHandle callee_method;
1565   bool caller_is_c1;
1566   JRT_BLOCK
1567     callee_method = SharedRuntime::resolve_helper(thread, false, false, &caller_is_c1, CHECK_NULL);
1568     thread->set_vm_result_2(callee_method());
1569   JRT_BLOCK_END
1570   // return compiled code entry point after potential safepoints
1571   address entry = caller_is_c1 ?
1572     callee_method->verified_value_code_entry() : callee_method->verified_code_entry();
1573   assert(entry != NULL, "Jump to zero!");
1574   return entry;
1575 JRT_END
1576 
1577 
1578 // resolve virtual call and update inline cache to monomorphic
1579 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1580   methodHandle callee_method;
1581   bool caller_is_c1;
1582   JRT_BLOCK
1583     callee_method = SharedRuntime::resolve_helper(thread, true, false, &caller_is_c1, CHECK_NULL);
1584     thread->set_vm_result_2(callee_method());
1585   JRT_BLOCK_END
1586   // return compiled code entry point after potential safepoints
1587   address entry = caller_is_c1 ?
1588     callee_method->verified_value_code_entry() : callee_method->verified_value_ro_code_entry();
1589   assert(entry != NULL, "Jump to zero!");
1590   return entry;
1591 JRT_END
1592 
1593 
1594 // Resolve a virtual call that can be statically bound (e.g., always
1595 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1596 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1597   methodHandle callee_method;
1598   bool caller_is_c1;
1599   JRT_BLOCK
1600     callee_method = SharedRuntime::resolve_helper(thread, true, true, &caller_is_c1, CHECK_NULL);
1601     thread->set_vm_result_2(callee_method());
1602   JRT_BLOCK_END
1603   // return compiled code entry point after potential safepoints
1604   address entry = caller_is_c1 ?
1605     callee_method->verified_value_code_entry() : callee_method->verified_code_entry();
1606   assert(entry != NULL, "Jump to zero!");
1607   return entry;
1608 JRT_END
1609 
1610 // The handle_ic_miss_helper_internal function returns false if it failed due
1611 // to either running out of vtable stubs or ic stubs due to IC transitions
1612 // to transitional states. The needs_ic_stub_refill value will be set if
1613 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1614 // refills the IC stubs and tries again.
1615 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1616                                                    const frame& caller_frame, methodHandle callee_method,
1617                                                    Bytecodes::Code bc, CallInfo& call_info,
1618                                                    bool& needs_ic_stub_refill, bool& is_optimized, bool caller_is_c1, TRAPS) {
1619   CompiledICLocker ml(caller_nm);
1620   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1621   bool should_be_mono = false;
1622   if (inline_cache->is_optimized()) {
1623     if (TraceCallFixup) {
1624       ResourceMark rm(THREAD);
1625       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1626       callee_method->print_short_name(tty);
1627       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1628     }
1629     is_optimized = true;
1630     should_be_mono = true;
1631   } else if (inline_cache->is_icholder_call()) {
1632     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1633     if (ic_oop != NULL) {
1634       if (!ic_oop->is_loader_alive()) {
1635         // Deferred IC cleaning due to concurrent class unloading
1636         if (!inline_cache->set_to_clean()) {
1637           needs_ic_stub_refill = true;
1638           return false;
1639         }
1640       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1641         // This isn't a real miss. We must have seen that compiled code
1642         // is now available and we want the call site converted to a
1643         // monomorphic compiled call site.
1644         // We can't assert for callee_method->code() != NULL because it
1645         // could have been deoptimized in the meantime
1646         if (TraceCallFixup) {
1647           ResourceMark rm(THREAD);
1648           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1649           callee_method->print_short_name(tty);
1650           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1651         }
1652         should_be_mono = true;
1653       }
1654     }
1655   }
1656 
1657   if (should_be_mono) {
1658     // We have a path that was monomorphic but was going interpreted
1659     // and now we have (or had) a compiled entry. We correct the IC
1660     // by using a new icBuffer.
1661     CompiledICInfo info;
1662     Klass* receiver_klass = receiver()->klass();
1663     inline_cache->compute_monomorphic_entry(callee_method,
1664                                             receiver_klass,
1665                                             inline_cache->is_optimized(),
1666                                             false, caller_nm->is_nmethod(),
1667                                             caller_nm->is_compiled_by_c1(),
1668                                             info, CHECK_false);
1669     if (!inline_cache->set_to_monomorphic(info)) {
1670       needs_ic_stub_refill = true;
1671       return false;
1672     }
1673   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1674     // Potential change to megamorphic
1675 
1676     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, caller_is_c1, CHECK_false);
1677     if (needs_ic_stub_refill) {
1678       return false;
1679     }
1680     if (!successful) {
1681       if (!inline_cache->set_to_clean()) {
1682         needs_ic_stub_refill = true;
1683         return false;
1684       }
1685     }
1686   } else {
1687     // Either clean or megamorphic
1688   }
1689   return true;
1690 }
1691 
1692 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, bool& is_optimized, bool& caller_is_c1, TRAPS) {
1693   ResourceMark rm(thread);
1694   CallInfo call_info;
1695   Bytecodes::Code bc;
1696 
1697   // receiver is NULL for static calls. An exception is thrown for NULL
1698   // receivers for non-static calls
1699   Handle receiver = find_callee_info(thread, bc, call_info,
1700                                      CHECK_(methodHandle()));
1701   // Compiler1 can produce virtual call sites that can actually be statically bound
1702   // If we fell thru to below we would think that the site was going megamorphic
1703   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1704   // we'd try and do a vtable dispatch however methods that can be statically bound
1705   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1706   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1707   // plain ic_miss) and the site will be converted to an optimized virtual call site
1708   // never to miss again. I don't believe C2 will produce code like this but if it
1709   // did this would still be the correct thing to do for it too, hence no ifdef.
1710   //
1711   if (call_info.resolved_method()->can_be_statically_bound()) {
1712     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1713     if (TraceCallFixup) {
1714       RegisterMap reg_map(thread, false);
1715       frame caller_frame = thread->last_frame().sender(&reg_map);
1716       ResourceMark rm(thread);
1717       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1718       callee_method->print_short_name(tty);
1719       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1720       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1721     }
1722     return callee_method;
1723   }
1724 
1725   methodHandle callee_method = call_info.selected_method();
1726 
1727 #ifndef PRODUCT
1728   Atomic::inc(&_ic_miss_ctr);
1729 
1730   // Statistics & Tracing
1731   if (TraceCallFixup) {
1732     ResourceMark rm(thread);
1733     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1734     callee_method->print_short_name(tty);
1735     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1736   }
1737 
1738   if (ICMissHistogram) {
1739     MutexLocker m(VMStatistic_lock);
1740     RegisterMap reg_map(thread, false);
1741     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1742     // produce statistics under the lock
1743     trace_ic_miss(f.pc());
1744   }
1745 #endif
1746 
1747   // install an event collector so that when a vtable stub is created the
1748   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1749   // event can't be posted when the stub is created as locks are held
1750   // - instead the event will be deferred until the event collector goes
1751   // out of scope.
1752   JvmtiDynamicCodeEventCollector event_collector;
1753 
1754   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1755   // Transitioning IC caches may require transition stubs. If we run out
1756   // of transition stubs, we have to drop locks and perform a safepoint
1757   // that refills them.
1758   RegisterMap reg_map(thread, false);
1759   frame caller_frame = thread->last_frame().sender(&reg_map);
1760   CodeBlob* cb = caller_frame.cb();
1761   CompiledMethod* caller_nm = cb->as_compiled_method();
1762   caller_is_c1 = caller_nm->is_compiled_by_c1();
1763 
1764   for (;;) {
1765     ICRefillVerifier ic_refill_verifier;
1766     bool needs_ic_stub_refill = false;
1767     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1768                                                      bc, call_info, needs_ic_stub_refill, is_optimized, caller_is_c1, CHECK_(methodHandle()));
1769     if (successful || !needs_ic_stub_refill) {
1770       return callee_method;
1771     } else {
1772       InlineCacheBuffer::refill_ic_stubs();
1773     }
1774   }
1775 }
1776 
1777 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1778   CompiledICLocker ml(caller_nm);
1779   if (is_static_call) {
1780     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1781     if (!ssc->is_clean()) {
1782       return ssc->set_to_clean();
1783     }
1784   } else {
1785     // compiled, dispatched call (which used to call an interpreted method)
1786     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1787     if (!inline_cache->is_clean()) {
1788       return inline_cache->set_to_clean();
1789     }
1790   }
1791   return true;
1792 }
1793 
1794 //
1795 // Resets a call-site in compiled code so it will get resolved again.
1796 // This routines handles both virtual call sites, optimized virtual call
1797 // sites, and static call sites. Typically used to change a call sites
1798 // destination from compiled to interpreted.
1799 //
1800 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, bool& is_optimized, bool& caller_is_c1, TRAPS) {
1801   ResourceMark rm(thread);
1802   RegisterMap reg_map(thread, false);
1803   frame stub_frame = thread->last_frame();
1804   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1805   frame caller = stub_frame.sender(&reg_map);
1806 
1807   // Do nothing if the frame isn't a live compiled frame.
1808   // nmethod could be deoptimized by the time we get here
1809   // so no update to the caller is needed.
1810 
1811   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1812 
1813     address pc = caller.pc();
1814 
1815     // Check for static or virtual call
1816     bool is_static_call = false;
1817     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1818     caller_is_c1 = caller_nm->is_compiled_by_c1();
1819 
1820     // Default call_addr is the location of the "basic" call.
1821     // Determine the address of the call we a reresolving. With
1822     // Inline Caches we will always find a recognizable call.
1823     // With Inline Caches disabled we may or may not find a
1824     // recognizable call. We will always find a call for static
1825     // calls and for optimized virtual calls. For vanilla virtual
1826     // calls it depends on the state of the UseInlineCaches switch.
1827     //
1828     // With Inline Caches disabled we can get here for a virtual call
1829     // for two reasons:
1830     //   1 - calling an abstract method. The vtable for abstract methods
1831     //       will run us thru handle_wrong_method and we will eventually
1832     //       end up in the interpreter to throw the ame.
1833     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1834     //       call and between the time we fetch the entry address and
1835     //       we jump to it the target gets deoptimized. Similar to 1
1836     //       we will wind up in the interprter (thru a c2i with c2).
1837     //
1838     address call_addr = NULL;
1839     {
1840       // Get call instruction under lock because another thread may be
1841       // busy patching it.
1842       CompiledICLocker ml(caller_nm);
1843       // Location of call instruction
1844       call_addr = caller_nm->call_instruction_address(pc);
1845     }
1846     // Make sure nmethod doesn't get deoptimized and removed until
1847     // this is done with it.
1848     // CLEANUP - with lazy deopt shouldn't need this lock
1849     nmethodLocker nmlock(caller_nm);
1850 
1851     if (call_addr != NULL) {
1852       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1853       int ret = iter.next(); // Get item
1854       if (ret) {
1855         assert(iter.addr() == call_addr, "must find call");
1856         if (iter.type() == relocInfo::static_call_type) {
1857           is_static_call = true;
1858         } else {
1859           assert(iter.type() == relocInfo::virtual_call_type ||
1860                  iter.type() == relocInfo::opt_virtual_call_type
1861                 , "unexpected relocInfo. type");
1862           is_optimized = (iter.type() == relocInfo::opt_virtual_call_type);
1863         }
1864       } else {
1865         assert(!UseInlineCaches, "relocation info. must exist for this address");
1866       }
1867 
1868       // Cleaning the inline cache will force a new resolve. This is more robust
1869       // than directly setting it to the new destination, since resolving of calls
1870       // is always done through the same code path. (experience shows that it
1871       // leads to very hard to track down bugs, if an inline cache gets updated
1872       // to a wrong method). It should not be performance critical, since the
1873       // resolve is only done once.
1874 
1875       for (;;) {
1876         ICRefillVerifier ic_refill_verifier;
1877         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1878           InlineCacheBuffer::refill_ic_stubs();
1879         } else {
1880           break;
1881         }
1882       }
1883     }
1884   }
1885 
1886   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1887 
1888 #ifndef PRODUCT
1889   Atomic::inc(&_wrong_method_ctr);
1890 
1891   if (TraceCallFixup) {
1892     ResourceMark rm(thread);
1893     tty->print("handle_wrong_method reresolving call to");
1894     callee_method->print_short_name(tty);
1895     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1896   }
1897 #endif
1898 
1899   return callee_method;
1900 }
1901 
1902 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1903   // The faulting unsafe accesses should be changed to throw the error
1904   // synchronously instead. Meanwhile the faulting instruction will be
1905   // skipped over (effectively turning it into a no-op) and an
1906   // asynchronous exception will be raised which the thread will
1907   // handle at a later point. If the instruction is a load it will
1908   // return garbage.
1909 
1910   // Request an async exception.
1911   thread->set_pending_unsafe_access_error();
1912 
1913   // Return address of next instruction to execute.
1914   return next_pc;
1915 }
1916 
1917 #ifdef ASSERT
1918 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1919                                                                 const BasicType* sig_bt,
1920                                                                 const VMRegPair* regs) {
1921   ResourceMark rm;
1922   const int total_args_passed = method->size_of_parameters();
1923   const VMRegPair*    regs_with_member_name = regs;
1924         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1925 
1926   const int member_arg_pos = total_args_passed - 1;
1927   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1928   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1929 
1930   const bool is_outgoing = method->is_method_handle_intrinsic();
1931   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1932 
1933   for (int i = 0; i < member_arg_pos; i++) {
1934     VMReg a =    regs_with_member_name[i].first();
1935     VMReg b = regs_without_member_name[i].first();
1936     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1937   }
1938   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1939 }
1940 #endif
1941 
1942 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1943   if (destination != entry_point) {
1944     CodeBlob* callee = CodeCache::find_blob(destination);
1945     // callee == cb seems weird. It means calling interpreter thru stub.
1946     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1947       // static call or optimized virtual
1948       if (TraceCallFixup) {
1949         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1950         moop->print_short_name(tty);
1951         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1952       }
1953       return true;
1954     } else {
1955       if (TraceCallFixup) {
1956         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1957         moop->print_short_name(tty);
1958         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1959       }
1960       // assert is too strong could also be resolve destinations.
1961       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1962     }
1963   } else {
1964     if (TraceCallFixup) {
1965       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1966       moop->print_short_name(tty);
1967       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1968     }
1969   }
1970   return false;
1971 }
1972 
1973 // ---------------------------------------------------------------------------
1974 // We are calling the interpreter via a c2i. Normally this would mean that
1975 // we were called by a compiled method. However we could have lost a race
1976 // where we went int -> i2c -> c2i and so the caller could in fact be
1977 // interpreted. If the caller is compiled we attempt to patch the caller
1978 // so he no longer calls into the interpreter.
1979 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1980   Method* moop(method);
1981 
1982   address entry_point = moop->from_compiled_entry_no_trampoline();
1983 
1984   // It's possible that deoptimization can occur at a call site which hasn't
1985   // been resolved yet, in which case this function will be called from
1986   // an nmethod that has been patched for deopt and we can ignore the
1987   // request for a fixup.
1988   // Also it is possible that we lost a race in that from_compiled_entry
1989   // is now back to the i2c in that case we don't need to patch and if
1990   // we did we'd leap into space because the callsite needs to use
1991   // "to interpreter" stub in order to load up the Method*. Don't
1992   // ask me how I know this...
1993 
1994   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1995   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1996     return;
1997   }
1998 
1999   // The check above makes sure this is a nmethod.
2000   CompiledMethod* nm = cb->as_compiled_method_or_null();
2001   assert(nm, "must be");
2002 
2003   // Get the return PC for the passed caller PC.
2004   address return_pc = caller_pc + frame::pc_return_offset;
2005 
2006   // There is a benign race here. We could be attempting to patch to a compiled
2007   // entry point at the same time the callee is being deoptimized. If that is
2008   // the case then entry_point may in fact point to a c2i and we'd patch the
2009   // call site with the same old data. clear_code will set code() to NULL
2010   // at the end of it. If we happen to see that NULL then we can skip trying
2011   // to patch. If we hit the window where the callee has a c2i in the
2012   // from_compiled_entry and the NULL isn't present yet then we lose the race
2013   // and patch the code with the same old data. Asi es la vida.
2014 
2015   if (moop->code() == NULL) return;
2016 
2017   if (nm->is_in_use()) {
2018     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
2019     CompiledICLocker ic_locker(nm);
2020     if (NativeCall::is_call_before(return_pc)) {
2021       ResourceMark mark;
2022       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
2023       //
2024       // bug 6281185. We might get here after resolving a call site to a vanilla
2025       // virtual call. Because the resolvee uses the verified entry it may then
2026       // see compiled code and attempt to patch the site by calling us. This would
2027       // then incorrectly convert the call site to optimized and its downhill from
2028       // there. If you're lucky you'll get the assert in the bugid, if not you've
2029       // just made a call site that could be megamorphic into a monomorphic site
2030       // for the rest of its life! Just another racing bug in the life of
2031       // fixup_callers_callsite ...
2032       //
2033       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2034       iter.next();
2035       assert(iter.has_current(), "must have a reloc at java call site");
2036       relocInfo::relocType typ = iter.reloc()->type();
2037       if (typ != relocInfo::static_call_type &&
2038            typ != relocInfo::opt_virtual_call_type &&
2039            typ != relocInfo::static_stub_type) {
2040         return;
2041       }
2042       address destination = call->destination();
2043       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2044         call->set_destination_mt_safe(entry_point);
2045       }
2046     }
2047   }
2048 JRT_END
2049 
2050 
2051 // same as JVM_Arraycopy, but called directly from compiled code
2052 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
2053                                                 oopDesc* dest, jint dest_pos,
2054                                                 jint length,
2055                                                 JavaThread* thread)) {
2056 #ifndef PRODUCT
2057   _slow_array_copy_ctr++;
2058 #endif
2059   // Check if we have null pointers
2060   if (src == NULL || dest == NULL) {
2061     THROW(vmSymbols::java_lang_NullPointerException());
2062   }
2063   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2064   // even though the copy_array API also performs dynamic checks to ensure
2065   // that src and dest are truly arrays (and are conformable).
2066   // The copy_array mechanism is awkward and could be removed, but
2067   // the compilers don't call this function except as a last resort,
2068   // so it probably doesn't matter.
2069   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2070                                         (arrayOopDesc*)dest, dest_pos,
2071                                         length, thread);
2072 }
2073 JRT_END
2074 
2075 // The caller of generate_class_cast_message() (or one of its callers)
2076 // must use a ResourceMark in order to correctly free the result.
2077 char* SharedRuntime::generate_class_cast_message(
2078     JavaThread* thread, Klass* caster_klass) {
2079 
2080   // Get target class name from the checkcast instruction
2081   vframeStream vfst(thread, true);
2082   assert(!vfst.at_end(), "Java frame must exist");
2083   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2084   constantPoolHandle cpool(thread, vfst.method()->constants());
2085   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2086   Symbol* target_klass_name = NULL;
2087   if (target_klass == NULL) {
2088     // This klass should be resolved, but just in case, get the name in the klass slot.
2089     target_klass_name = cpool->klass_name_at(cc.index());
2090   }
2091   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2092 }
2093 
2094 
2095 // The caller of generate_class_cast_message() (or one of its callers)
2096 // must use a ResourceMark in order to correctly free the result.
2097 char* SharedRuntime::generate_class_cast_message(
2098     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2099   const char* caster_name = caster_klass->external_name();
2100 
2101   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2102   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2103                                                    target_klass->external_name();
2104 
2105   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2106 
2107   const char* caster_klass_description = "";
2108   const char* target_klass_description = "";
2109   const char* klass_separator = "";
2110   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2111     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2112   } else {
2113     caster_klass_description = caster_klass->class_in_module_of_loader();
2114     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2115     klass_separator = (target_klass != NULL) ? "; " : "";
2116   }
2117 
2118   // add 3 for parenthesis and preceeding space
2119   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2120 
2121   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2122   if (message == NULL) {
2123     // Shouldn't happen, but don't cause even more problems if it does
2124     message = const_cast<char*>(caster_klass->external_name());
2125   } else {
2126     jio_snprintf(message,
2127                  msglen,
2128                  "class %s cannot be cast to class %s (%s%s%s)",
2129                  caster_name,
2130                  target_name,
2131                  caster_klass_description,
2132                  klass_separator,
2133                  target_klass_description
2134                  );
2135   }
2136   return message;
2137 }
2138 
2139 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2140   (void) JavaThread::current()->reguard_stack();
2141 JRT_END
2142 
2143 
2144 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2145 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2146   if (!SafepointSynchronize::is_synchronizing()) {
2147     // Only try quick_enter() if we're not trying to reach a safepoint
2148     // so that the calling thread reaches the safepoint more quickly.
2149     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2150   }
2151   // NO_ASYNC required because an async exception on the state transition destructor
2152   // would leave you with the lock held and it would never be released.
2153   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2154   // and the model is that an exception implies the method failed.
2155   JRT_BLOCK_NO_ASYNC
2156   oop obj(_obj);
2157   if (PrintBiasedLockingStatistics) {
2158     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2159   }
2160   Handle h_obj(THREAD, obj);
2161   if (UseBiasedLocking) {
2162     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2163     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2164   } else {
2165     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2166   }
2167   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2168   JRT_BLOCK_END
2169 JRT_END
2170 
2171 // Handles the uncommon cases of monitor unlocking in compiled code
2172 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2173    oop obj(_obj);
2174   assert(JavaThread::current() == THREAD, "invariant");
2175   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2176   // testing was unable to ever fire the assert that guarded it so I have removed it.
2177   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2178 #undef MIGHT_HAVE_PENDING
2179 #ifdef MIGHT_HAVE_PENDING
2180   // Save and restore any pending_exception around the exception mark.
2181   // While the slow_exit must not throw an exception, we could come into
2182   // this routine with one set.
2183   oop pending_excep = NULL;
2184   const char* pending_file;
2185   int pending_line;
2186   if (HAS_PENDING_EXCEPTION) {
2187     pending_excep = PENDING_EXCEPTION;
2188     pending_file  = THREAD->exception_file();
2189     pending_line  = THREAD->exception_line();
2190     CLEAR_PENDING_EXCEPTION;
2191   }
2192 #endif /* MIGHT_HAVE_PENDING */
2193 
2194   {
2195     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2196     EXCEPTION_MARK;
2197     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2198   }
2199 
2200 #ifdef MIGHT_HAVE_PENDING
2201   if (pending_excep != NULL) {
2202     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2203   }
2204 #endif /* MIGHT_HAVE_PENDING */
2205 JRT_END
2206 
2207 #ifndef PRODUCT
2208 
2209 void SharedRuntime::print_statistics() {
2210   ttyLocker ttyl;
2211   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2212 
2213   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2214 
2215   SharedRuntime::print_ic_miss_histogram();
2216 
2217   if (CountRemovableExceptions) {
2218     if (_nof_removable_exceptions > 0) {
2219       Unimplemented(); // this counter is not yet incremented
2220       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2221     }
2222   }
2223 
2224   // Dump the JRT_ENTRY counters
2225   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2226   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2227   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2228   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2229   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2230   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2231   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2232 
2233   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2234   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2235   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2236   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2237   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2238 
2239   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2240   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2241   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2242   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2243   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2244   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2245   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2246   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2247   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2248   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2249   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2250   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2251   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2252   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2253   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2254   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2255 
2256   AdapterHandlerLibrary::print_statistics();
2257 
2258   if (xtty != NULL)  xtty->tail("statistics");
2259 }
2260 
2261 inline double percent(int x, int y) {
2262   return 100.0 * x / MAX2(y, 1);
2263 }
2264 
2265 class MethodArityHistogram {
2266  public:
2267   enum { MAX_ARITY = 256 };
2268  private:
2269   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2270   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2271   static int _max_arity;                      // max. arity seen
2272   static int _max_size;                       // max. arg size seen
2273 
2274   static void add_method_to_histogram(nmethod* nm) {
2275     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2276       Method* method = nm->method();
2277       ArgumentCount args(method->signature());
2278       int arity   = args.size() + (method->is_static() ? 0 : 1);
2279       int argsize = method->size_of_parameters();
2280       arity   = MIN2(arity, MAX_ARITY-1);
2281       argsize = MIN2(argsize, MAX_ARITY-1);
2282       int count = method->compiled_invocation_count();
2283       _arity_histogram[arity]  += count;
2284       _size_histogram[argsize] += count;
2285       _max_arity = MAX2(_max_arity, arity);
2286       _max_size  = MAX2(_max_size, argsize);
2287     }
2288   }
2289 
2290   void print_histogram_helper(int n, int* histo, const char* name) {
2291     const int N = MIN2(5, n);
2292     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2293     double sum = 0;
2294     double weighted_sum = 0;
2295     int i;
2296     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2297     double rest = sum;
2298     double percent = sum / 100;
2299     for (i = 0; i <= N; i++) {
2300       rest -= histo[i];
2301       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2302     }
2303     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2304     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2305   }
2306 
2307   void print_histogram() {
2308     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2309     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2310     tty->print_cr("\nSame for parameter size (in words):");
2311     print_histogram_helper(_max_size, _size_histogram, "size");
2312     tty->cr();
2313   }
2314 
2315  public:
2316   MethodArityHistogram() {
2317     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2318     _max_arity = _max_size = 0;
2319     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2320     CodeCache::nmethods_do(add_method_to_histogram);
2321     print_histogram();
2322   }
2323 };
2324 
2325 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2326 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2327 int MethodArityHistogram::_max_arity;
2328 int MethodArityHistogram::_max_size;
2329 
2330 void SharedRuntime::print_call_statistics(int comp_total) {
2331   tty->print_cr("Calls from compiled code:");
2332   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2333   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2334   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2335   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2336   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2337   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2338   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2339   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2340   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2341   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2342   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2343   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2344   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2345   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2346   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2347   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2348   tty->cr();
2349   tty->print_cr("Note 1: counter updates are not MT-safe.");
2350   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2351   tty->print_cr("        %% in nested categories are relative to their category");
2352   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2353   tty->cr();
2354 
2355   MethodArityHistogram h;
2356 }
2357 #endif
2358 
2359 
2360 // A simple wrapper class around the calling convention information
2361 // that allows sharing of adapters for the same calling convention.
2362 class AdapterFingerPrint : public CHeapObj<mtCode> {
2363  private:
2364   enum {
2365     _basic_type_bits = 4,
2366     _basic_type_mask = right_n_bits(_basic_type_bits),
2367     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2368     _compact_int_count = 3
2369   };
2370   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2371   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2372 
2373   union {
2374     int  _compact[_compact_int_count];
2375     int* _fingerprint;
2376   } _value;
2377   int _length; // A negative length indicates the fingerprint is in the compact form,
2378                // Otherwise _value._fingerprint is the array.
2379 
2380   // Remap BasicTypes that are handled equivalently by the adapters.
2381   // These are correct for the current system but someday it might be
2382   // necessary to make this mapping platform dependent.
2383   static int adapter_encoding(BasicType in, bool is_valuetype) {
2384     switch (in) {
2385       case T_BOOLEAN:
2386       case T_BYTE:
2387       case T_SHORT:
2388       case T_CHAR: {
2389         if (is_valuetype) {
2390           // Do not widen value type field types
2391           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2392           return in;
2393         } else {
2394           // They are all promoted to T_INT in the calling convention
2395           return T_INT;
2396         }
2397       }
2398 
2399       case T_VALUETYPE: {
2400         // If value types are passed as fields, return 'in' to differentiate
2401         // between a T_VALUETYPE and a T_OBJECT in the signature.
2402         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2403       }
2404 
2405       case T_OBJECT:
2406       case T_ARRAY:
2407         // In other words, we assume that any register good enough for
2408         // an int or long is good enough for a managed pointer.
2409 #ifdef _LP64
2410         return T_LONG;
2411 #else
2412         return T_INT;
2413 #endif
2414 
2415       case T_INT:
2416       case T_LONG:
2417       case T_FLOAT:
2418       case T_DOUBLE:
2419       case T_VOID:
2420         return in;
2421 
2422       default:
2423         ShouldNotReachHere();
2424         return T_CONFLICT;
2425     }
2426   }
2427 
2428  public:
2429   AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2430     // The fingerprint is based on the BasicType signature encoded
2431     // into an array of ints with eight entries per int.
2432     int total_args_passed = (sig != NULL) ? sig->length() : 0;
2433     int* ptr;
2434     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2435     if (len <= _compact_int_count) {
2436       assert(_compact_int_count == 3, "else change next line");
2437       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2438       // Storing the signature encoded as signed chars hits about 98%
2439       // of the time.
2440       _length = -len;
2441       ptr = _value._compact;
2442     } else {
2443       _length = len;
2444       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2445       ptr = _value._fingerprint;
2446     }
2447 
2448     // Now pack the BasicTypes with 8 per int
2449     int sig_index = 0;
2450     BasicType prev_sbt = T_ILLEGAL;
2451     int vt_count = 0;
2452     for (int index = 0; index < len; index++) {
2453       int value = 0;
2454       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2455         int bt = 0;
2456         if (sig_index < total_args_passed) {
2457           BasicType sbt = sig->at(sig_index++)._bt;
2458           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2459             // Found start of value type in signature
2460             vt_count++;
2461             if (sig_index == 1 && has_ro_adapter) {
2462               // With a ro_adapter, replace receiver value type delimiter by T_VOID to prevent matching
2463               // with other adapters that have the same value type as first argument and no receiver.
2464               sbt = T_VOID;
2465             }
2466           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2467                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2468             // Found end of value type in signature
2469             vt_count--;
2470             assert(vt_count >= 0, "invalid vt_count");
2471           }
2472           bt = adapter_encoding(sbt, vt_count > 0);
2473           prev_sbt = sbt;
2474         }
2475         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2476         value = (value << _basic_type_bits) | bt;
2477       }
2478       ptr[index] = value;
2479     }
2480     assert(vt_count == 0, "invalid vt_count");
2481   }
2482 
2483   ~AdapterFingerPrint() {
2484     if (_length > 0) {
2485       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2486     }
2487   }
2488 
2489   int value(int index) {
2490     if (_length < 0) {
2491       return _value._compact[index];
2492     }
2493     return _value._fingerprint[index];
2494   }
2495   int length() {
2496     if (_length < 0) return -_length;
2497     return _length;
2498   }
2499 
2500   bool is_compact() {
2501     return _length <= 0;
2502   }
2503 
2504   unsigned int compute_hash() {
2505     int hash = 0;
2506     for (int i = 0; i < length(); i++) {
2507       int v = value(i);
2508       hash = (hash << 8) ^ v ^ (hash >> 5);
2509     }
2510     return (unsigned int)hash;
2511   }
2512 
2513   const char* as_string() {
2514     stringStream st;
2515     st.print("0x");
2516     for (int i = 0; i < length(); i++) {
2517       st.print("%08x", value(i));
2518     }
2519     return st.as_string();
2520   }
2521 
2522   bool equals(AdapterFingerPrint* other) {
2523     if (other->_length != _length) {
2524       return false;
2525     }
2526     if (_length < 0) {
2527       assert(_compact_int_count == 3, "else change next line");
2528       return _value._compact[0] == other->_value._compact[0] &&
2529              _value._compact[1] == other->_value._compact[1] &&
2530              _value._compact[2] == other->_value._compact[2];
2531     } else {
2532       for (int i = 0; i < _length; i++) {
2533         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2534           return false;
2535         }
2536       }
2537     }
2538     return true;
2539   }
2540 };
2541 
2542 
2543 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2544 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2545   friend class AdapterHandlerTableIterator;
2546 
2547  private:
2548 
2549 #ifndef PRODUCT
2550   static int _lookups; // number of calls to lookup
2551   static int _buckets; // number of buckets checked
2552   static int _equals;  // number of buckets checked with matching hash
2553   static int _hits;    // number of successful lookups
2554   static int _compact; // number of equals calls with compact signature
2555 #endif
2556 
2557   AdapterHandlerEntry* bucket(int i) {
2558     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2559   }
2560 
2561  public:
2562   AdapterHandlerTable()
2563     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2564 
2565   // Create a new entry suitable for insertion in the table
2566   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry,
2567                                  address c2i_value_entry, address c2i_value_ro_entry,
2568                                  address c2i_unverified_entry, address c2i_unverified_value_entry) {
2569     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2570     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry,
2571                 c2i_unverified_entry, c2i_unverified_value_entry);
2572     if (DumpSharedSpaces) {
2573       ((CDSAdapterHandlerEntry*)entry)->init();
2574     }
2575     return entry;
2576   }
2577 
2578   // Insert an entry into the table
2579   void add(AdapterHandlerEntry* entry) {
2580     int index = hash_to_index(entry->hash());
2581     add_entry(index, entry);
2582   }
2583 
2584   void free_entry(AdapterHandlerEntry* entry) {
2585     entry->deallocate();
2586     BasicHashtable<mtCode>::free_entry(entry);
2587   }
2588 
2589   // Find a entry with the same fingerprint if it exists
2590   AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2591     NOT_PRODUCT(_lookups++);
2592     AdapterFingerPrint fp(sig, has_ro_adapter);
2593     unsigned int hash = fp.compute_hash();
2594     int index = hash_to_index(hash);
2595     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2596       NOT_PRODUCT(_buckets++);
2597       if (e->hash() == hash) {
2598         NOT_PRODUCT(_equals++);
2599         if (fp.equals(e->fingerprint())) {
2600 #ifndef PRODUCT
2601           if (fp.is_compact()) _compact++;
2602           _hits++;
2603 #endif
2604           return e;
2605         }
2606       }
2607     }
2608     return NULL;
2609   }
2610 
2611 #ifndef PRODUCT
2612   void print_statistics() {
2613     ResourceMark rm;
2614     int longest = 0;
2615     int empty = 0;
2616     int total = 0;
2617     int nonempty = 0;
2618     for (int index = 0; index < table_size(); index++) {
2619       int count = 0;
2620       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2621         count++;
2622       }
2623       if (count != 0) nonempty++;
2624       if (count == 0) empty++;
2625       if (count > longest) longest = count;
2626       total += count;
2627     }
2628     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2629                   empty, longest, total, total / (double)nonempty);
2630     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2631                   _lookups, _buckets, _equals, _hits, _compact);
2632   }
2633 #endif
2634 };
2635 
2636 
2637 #ifndef PRODUCT
2638 
2639 int AdapterHandlerTable::_lookups;
2640 int AdapterHandlerTable::_buckets;
2641 int AdapterHandlerTable::_equals;
2642 int AdapterHandlerTable::_hits;
2643 int AdapterHandlerTable::_compact;
2644 
2645 #endif
2646 
2647 class AdapterHandlerTableIterator : public StackObj {
2648  private:
2649   AdapterHandlerTable* _table;
2650   int _index;
2651   AdapterHandlerEntry* _current;
2652 
2653   void scan() {
2654     while (_index < _table->table_size()) {
2655       AdapterHandlerEntry* a = _table->bucket(_index);
2656       _index++;
2657       if (a != NULL) {
2658         _current = a;
2659         return;
2660       }
2661     }
2662   }
2663 
2664  public:
2665   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2666     scan();
2667   }
2668   bool has_next() {
2669     return _current != NULL;
2670   }
2671   AdapterHandlerEntry* next() {
2672     if (_current != NULL) {
2673       AdapterHandlerEntry* result = _current;
2674       _current = _current->next();
2675       if (_current == NULL) scan();
2676       return result;
2677     } else {
2678       return NULL;
2679     }
2680   }
2681 };
2682 
2683 
2684 // ---------------------------------------------------------------------------
2685 // Implementation of AdapterHandlerLibrary
2686 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2687 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2688 const int AdapterHandlerLibrary_size = 16*K;
2689 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2690 
2691 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2692   // Should be called only when AdapterHandlerLibrary_lock is active.
2693   if (_buffer == NULL) // Initialize lazily
2694       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2695   return _buffer;
2696 }
2697 
2698 extern "C" void unexpected_adapter_call() {
2699   ShouldNotCallThis();
2700 }
2701 
2702 void AdapterHandlerLibrary::initialize() {
2703   if (_adapters != NULL) return;
2704   _adapters = new AdapterHandlerTable();
2705 
2706   // Create a special handler for abstract methods.  Abstract methods
2707   // are never compiled so an i2c entry is somewhat meaningless, but
2708   // throw AbstractMethodError just in case.
2709   // Pass wrong_method_abstract for the c2i transitions to return
2710   // AbstractMethodError for invalid invocations.
2711   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2712   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2713                                                               StubRoutines::throw_AbstractMethodError_entry(),
2714                                                               wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2715                                                               wrong_method_abstract, wrong_method_abstract);
2716 }
2717 
2718 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2719                                                       address i2c_entry,
2720                                                       address c2i_entry,
2721                                                       address c2i_value_entry,
2722                                                       address c2i_value_ro_entry,
2723                                                       address c2i_unverified_entry,
2724                                                       address c2i_unverified_value_entry) {
2725   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry, c2i_unverified_entry,
2726                               c2i_unverified_value_entry);
2727 }
2728 
2729 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2730   AdapterHandlerEntry* entry = get_adapter0(method);
2731   if (method->is_shared()) {
2732     // See comments around Method::link_method()
2733     MutexLocker mu(AdapterHandlerLibrary_lock);
2734     if (method->adapter() == NULL) {
2735       method->update_adapter_trampoline(entry);
2736     }
2737     address trampoline = method->from_compiled_entry();
2738     if (*(int*)trampoline == 0) {
2739       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2740       MacroAssembler _masm(&buffer);
2741       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2742       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2743 
2744       if (PrintInterpreter) {
2745         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2746       }
2747     }
2748   }
2749 
2750   return entry;
2751 }
2752 
2753 CompiledEntrySignature::CompiledEntrySignature(Method* method) {
2754   _method = method;
2755   _num_value_args = 0;
2756   _has_value_recv = false;
2757   _has_scalarized_args = false;
2758   _c1_needs_stack_repair = false;
2759   _c2_needs_stack_repair = false;
2760   _sig = new GrowableArray<SigEntry>(method->size_of_parameters());
2761   if (!method->is_static()) {
2762     if (method->method_holder()->is_value()) {
2763       _has_value_recv = true;
2764       _num_value_args ++;
2765     }
2766     SigEntry::add_entry(_sig, T_OBJECT);
2767   }
2768   for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2769     BasicType bt = ss.type();
2770     if (bt == T_VALUETYPE) {
2771       _num_value_args ++;
2772       bt = T_OBJECT;
2773     }
2774     SigEntry::add_entry(_sig, bt);
2775   }
2776 }
2777 
2778 int CompiledEntrySignature::compute_scalarized_cc(Method* method, GrowableArray<SigEntry>*& sig_cc, VMRegPair*& regs_cc, bool scalar_receiver) {
2779   InstanceKlass* holder = method->method_holder();
2780   sig_cc = new GrowableArray<SigEntry>(method->size_of_parameters());
2781   if (!method->is_static()) {
2782     if (holder->is_value() && scalar_receiver) {
2783       sig_cc->appendAll(ValueKlass::cast(holder)->extended_sig());
2784     } else {
2785       SigEntry::add_entry(sig_cc, T_OBJECT);
2786     }
2787   }
2788   Thread* THREAD = Thread::current();
2789   for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2790     if (ss.type() == T_VALUETYPE) {
2791       Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()),
2792                              Handle(THREAD, holder->protection_domain()),
2793                              SignatureStream::ReturnNull, THREAD);
2794       assert(k != NULL && !HAS_PENDING_EXCEPTION, "value klass should have been pre-loaded");
2795       sig_cc->appendAll(ValueKlass::cast(k)->extended_sig());
2796     } else {
2797       SigEntry::add_entry(sig_cc, ss.type());
2798     }
2799   }
2800   regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc->length() + 2);
2801   return SharedRuntime::java_calling_convention(sig_cc, regs_cc);
2802 }
2803 
2804 int CompiledEntrySignature::insert_reserved_entry(GrowableArray<SigEntry>* sig_cc, VMRegPair* regs_cc, int ret_off) {
2805   // Find index in signature that belongs to return address slot
2806   BasicType bt = T_ILLEGAL;
2807   int i = 0;
2808   for (uint off = 0; i < sig_cc->length(); ++i) {
2809     if (SigEntry::skip_value_delimiters(sig_cc, i)) {
2810       VMReg first = regs_cc[off++].first();
2811       if (first->is_valid() && first->is_stack()) {
2812         // Select a type for the reserved entry that will end up on the stack
2813         bt = sig_cc->at(i)._bt;
2814         if (((int)first->reg2stack() + VMRegImpl::slots_per_word) == ret_off) {
2815           break; // Index of the return address found
2816         }
2817       }
2818     }
2819   }
2820   // Insert reserved entry and re-compute calling convention
2821   SigEntry::insert_reserved_entry(sig_cc, i, bt);
2822   return SharedRuntime::java_calling_convention(sig_cc, regs_cc);
2823 }
2824 
2825 void CompiledEntrySignature::compute_calling_conventions() {
2826   // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2827   _regs = NEW_RESOURCE_ARRAY(VMRegPair, _sig->length());
2828   _args_on_stack = SharedRuntime::java_calling_convention(_sig, _regs);
2829 
2830   // Now compute the scalarized calling convention if there are value types in the signature
2831   _sig_cc = _sig;
2832   _sig_cc_ro = _sig;
2833   _regs_cc = _regs;
2834   _regs_cc_ro = _regs;
2835   _args_on_stack_cc = _args_on_stack;
2836   _args_on_stack_cc_ro = _args_on_stack;
2837 
2838   if (ValueTypePassFieldsAsArgs && has_value_arg() && !_method->is_native()) {
2839     _args_on_stack_cc = compute_scalarized_cc(_method, _sig_cc, _regs_cc, /* scalar_receiver = */ true);
2840 
2841     _sig_cc_ro = _sig_cc;
2842     _regs_cc_ro = _regs_cc;
2843     _args_on_stack_cc_ro = _args_on_stack_cc;
2844     if (_has_value_recv || _args_on_stack_cc > _args_on_stack) {
2845       // For interface calls, we need another entry point / adapter to unpack the receiver
2846       _args_on_stack_cc_ro = compute_scalarized_cc(_method, _sig_cc_ro, _regs_cc_ro, /* scalar_receiver = */ false);
2847     }
2848 
2849     // Compute the stack extension that is required to convert between the calling conventions.
2850     // The stack slots at these offsets are occupied by the return address with the unscalarized
2851     // calling convention. Don't use them for arguments with the scalarized calling convention.
2852     int ret_off    = _args_on_stack_cc - _args_on_stack;
2853     int ret_off_ro = _args_on_stack_cc - _args_on_stack_cc_ro;
2854     assert(ret_off_ro <= 0 || ret_off > 0, "receiver unpacking requires more stack space than expected");
2855 
2856     if (ret_off > 0) {
2857       // Make sure the stack of the scalarized calling convention with the reserved
2858       // entries (2 slots each) remains 16-byte (4 slots) aligned after stack extension.
2859       int alignment = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
2860       if (ret_off_ro != ret_off && ret_off_ro >= 0) {
2861         ret_off    += 4; // Account for two reserved entries (4 slots)
2862         ret_off_ro += 4;
2863         ret_off     = align_up(ret_off, alignment);
2864         ret_off_ro  = align_up(ret_off_ro, alignment);
2865         // TODO can we avoid wasting a stack slot here?
2866         //assert(ret_off != ret_off_ro, "fail");
2867         if (ret_off > ret_off_ro) {
2868           swap(ret_off, ret_off_ro); // Sort by offset
2869         }
2870         _args_on_stack_cc = insert_reserved_entry(_sig_cc, _regs_cc, ret_off);
2871         _args_on_stack_cc = insert_reserved_entry(_sig_cc, _regs_cc, ret_off_ro);
2872       } else {
2873         ret_off += 2; // Account for one reserved entry (2 slots)
2874         ret_off = align_up(ret_off, alignment);
2875         _args_on_stack_cc = insert_reserved_entry(_sig_cc, _regs_cc, ret_off);
2876       }
2877     }
2878 
2879     // Upper bound on stack arguments to avoid hitting the argument limit and
2880     // bailing out of compilation ("unsupported incoming calling sequence").
2881     // TODO we need a reasonable limit (flag?) here
2882     if (_args_on_stack_cc > 50) {
2883       // Don't scalarize value type arguments
2884       _sig_cc = _sig;
2885       _sig_cc_ro = _sig;
2886       _regs_cc = _regs;
2887       _regs_cc_ro = _regs;
2888       _args_on_stack_cc = _args_on_stack;
2889       _args_on_stack_cc_ro = _args_on_stack;
2890     } else {
2891       _c1_needs_stack_repair = (_args_on_stack_cc < _args_on_stack) || (_args_on_stack_cc_ro < _args_on_stack);
2892       _c2_needs_stack_repair = (_args_on_stack_cc > _args_on_stack) || (_args_on_stack_cc > _args_on_stack_cc_ro);
2893       _has_scalarized_args = true;
2894     }
2895   }
2896 }
2897 
2898 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2899   // Use customized signature handler.  Need to lock around updates to
2900   // the AdapterHandlerTable (it is not safe for concurrent readers
2901   // and a single writer: this could be fixed if it becomes a
2902   // problem).
2903 
2904   ResourceMark rm;
2905 
2906   NOT_PRODUCT(int insts_size = 0);
2907   AdapterBlob* new_adapter = NULL;
2908   AdapterHandlerEntry* entry = NULL;
2909   AdapterFingerPrint* fingerprint = NULL;
2910 
2911   {
2912     MutexLocker mu(AdapterHandlerLibrary_lock);
2913     // make sure data structure is initialized
2914     initialize();
2915 
2916     CompiledEntrySignature ces(method());
2917     bool has_value_arg = ces.has_value_arg();
2918     GrowableArray<SigEntry>& sig = ces.sig();
2919 
2920     // Process abstract method if it has value type args to set has_scalarized_args accordingly
2921     if (method->is_abstract() && !(ValueTypePassFieldsAsArgs && has_value_arg)) {
2922       return _abstract_method_handler;
2923     }
2924 
2925     {
2926       MutexUnlocker mul(AdapterHandlerLibrary_lock); // <-- why is this needed?
2927       ces.compute_calling_conventions();
2928     }
2929     GrowableArray<SigEntry>& sig_cc    = ces.sig_cc();
2930     GrowableArray<SigEntry>& sig_cc_ro = ces.sig_cc_ro();
2931     VMRegPair* regs         = ces.regs();
2932     VMRegPair* regs_cc      = ces.regs_cc();
2933     VMRegPair* regs_cc_ro   = ces.regs_cc_ro();
2934     int args_on_stack       = ces.args_on_stack();
2935     int args_on_stack_cc    = ces.args_on_stack_cc();
2936     int args_on_stack_cc_ro = ces.args_on_stack_cc_ro();
2937 
2938     if (ces.has_scalarized_args()) {
2939       method->set_has_scalarized_args(true);
2940       method->set_c1_needs_stack_repair(ces.c1_needs_stack_repair());
2941       method->set_c2_needs_stack_repair(ces.c2_needs_stack_repair());
2942     }
2943 
2944     if (method->is_abstract()) {
2945       // Save a C heap allocated version of the signature for abstract methods with scalarized value type arguments
2946       assert(ValueTypePassFieldsAsArgs && has_value_arg, "must have scalarized value type args");
2947       address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2948       entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2949                                                StubRoutines::throw_AbstractMethodError_entry(),
2950                                                wrong_method_abstract, wrong_method_abstract, wrong_method_abstract,
2951                                                wrong_method_abstract, wrong_method_abstract);
2952       GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc_ro.length(), true);
2953       heap_sig->appendAll(&sig_cc_ro);
2954       entry->set_sig_cc(heap_sig);
2955       return entry;
2956     }
2957 
2958     // Lookup method signature's fingerprint
2959     entry = _adapters->lookup(&sig_cc, regs_cc != regs_cc_ro);
2960 
2961 #ifdef ASSERT
2962     AdapterHandlerEntry* shared_entry = NULL;
2963     // Start adapter sharing verification only after the VM is booted.
2964     if (VerifyAdapterSharing && (entry != NULL)) {
2965       shared_entry = entry;
2966       entry = NULL;
2967     }
2968 #endif
2969 
2970     if (entry != NULL) {
2971       return entry;
2972     }
2973 
2974     // Make a C heap allocated version of the fingerprint to store in the adapter
2975     fingerprint = new AdapterFingerPrint(&sig_cc, regs_cc != regs_cc_ro);
2976 
2977     // StubRoutines::code2() is initialized after this function can be called. As a result,
2978     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2979     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2980     // stub that ensure that an I2C stub is called from an interpreter frame.
2981     bool contains_all_checks = StubRoutines::code2() != NULL;
2982 
2983     // Create I2C & C2I handlers
2984     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2985     if (buf != NULL) {
2986       CodeBuffer buffer(buf);
2987       short buffer_locs[20];
2988       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2989                                              sizeof(buffer_locs)/sizeof(relocInfo));
2990 
2991       MacroAssembler _masm(&buffer);
2992       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2993                                                      args_on_stack,
2994                                                      &sig,
2995                                                      regs,
2996                                                      &sig_cc,
2997                                                      regs_cc,
2998                                                      &sig_cc_ro,
2999                                                      regs_cc_ro,
3000                                                      fingerprint,
3001                                                      new_adapter);
3002 
3003       if (regs != regs_cc) {
3004         // Save a C heap allocated version of the scalarized signature and store it in the adapter
3005         GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc.length(), true);
3006         heap_sig->appendAll(&sig_cc);
3007         entry->set_sig_cc(heap_sig);
3008       }
3009 
3010 #ifdef ASSERT
3011       if (VerifyAdapterSharing) {
3012         if (shared_entry != NULL) {
3013           if (!shared_entry->compare_code(buf->code_begin(), buffer.insts_size())) {
3014             method->print();
3015           }
3016           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
3017           // Release the one just created and return the original
3018           _adapters->free_entry(entry);
3019           return shared_entry;
3020         } else  {
3021           entry->save_code(buf->code_begin(), buffer.insts_size());
3022         }
3023       }
3024 #endif
3025 
3026       NOT_PRODUCT(insts_size = buffer.insts_size());
3027     }
3028     if (new_adapter == NULL) {
3029       // CodeCache is full, disable compilation
3030       // Ought to log this but compile log is only per compile thread
3031       // and we're some non descript Java thread.
3032       return NULL; // Out of CodeCache space
3033     }
3034     entry->relocate(new_adapter->content_begin());
3035 #ifndef PRODUCT
3036     // debugging suppport
3037     if (PrintAdapterHandlers || PrintStubCode) {
3038       ttyLocker ttyl;
3039       entry->print_adapter_on(tty);
3040       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
3041                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
3042                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
3043       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
3044       if (Verbose || PrintStubCode) {
3045         address first_pc = entry->base_address();
3046         if (first_pc != NULL) {
3047           Disassembler::decode(first_pc, first_pc + insts_size);
3048           tty->cr();
3049         }
3050       }
3051     }
3052 #endif
3053     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
3054     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
3055     if (contains_all_checks || !VerifyAdapterCalls) {
3056       _adapters->add(entry);
3057     }
3058   }
3059   // Outside of the lock
3060   if (new_adapter != NULL) {
3061     char blob_id[256];
3062     jio_snprintf(blob_id,
3063                  sizeof(blob_id),
3064                  "%s(%s)@" PTR_FORMAT,
3065                  new_adapter->name(),
3066                  fingerprint->as_string(),
3067                  new_adapter->content_begin());
3068     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
3069 
3070     if (JvmtiExport::should_post_dynamic_code_generated()) {
3071       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
3072     }
3073   }
3074   return entry;
3075 }
3076 
3077 address AdapterHandlerEntry::base_address() {
3078   address base = _i2c_entry;
3079   if (base == NULL)  base = _c2i_entry;
3080   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
3081   assert(base <= _c2i_value_entry || _c2i_value_entry == NULL, "");
3082   assert(base <= _c2i_value_ro_entry || _c2i_value_ro_entry == NULL, "");
3083   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
3084   assert(base <= _c2i_unverified_value_entry || _c2i_unverified_value_entry == NULL, "");
3085   return base;
3086 }
3087 
3088 void AdapterHandlerEntry::relocate(address new_base) {
3089   address old_base = base_address();
3090   assert(old_base != NULL, "");
3091   ptrdiff_t delta = new_base - old_base;
3092   if (_i2c_entry != NULL)
3093     _i2c_entry += delta;
3094   if (_c2i_entry != NULL)
3095     _c2i_entry += delta;
3096   if (_c2i_value_entry != NULL)
3097     _c2i_value_entry += delta;
3098   if (_c2i_value_ro_entry != NULL)
3099     _c2i_value_ro_entry += delta;
3100   if (_c2i_unverified_entry != NULL)
3101     _c2i_unverified_entry += delta;
3102   if (_c2i_unverified_value_entry != NULL)
3103     _c2i_unverified_value_entry += delta;
3104   assert(base_address() == new_base, "");
3105 }
3106 
3107 
3108 void AdapterHandlerEntry::deallocate() {
3109   delete _fingerprint;
3110   if (_sig_cc != NULL) {
3111     delete _sig_cc;
3112   }
3113 #ifdef ASSERT
3114   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3115 #endif
3116 }
3117 
3118 
3119 #ifdef ASSERT
3120 // Capture the code before relocation so that it can be compared
3121 // against other versions.  If the code is captured after relocation
3122 // then relative instructions won't be equivalent.
3123 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3124   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3125   _saved_code_length = length;
3126   memcpy(_saved_code, buffer, length);
3127 }
3128 
3129 
3130 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
3131   if (length != _saved_code_length) {
3132     return false;
3133   }
3134 
3135   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
3136 }
3137 #endif
3138 
3139 
3140 /**
3141  * Create a native wrapper for this native method.  The wrapper converts the
3142  * Java-compiled calling convention to the native convention, handles
3143  * arguments, and transitions to native.  On return from the native we transition
3144  * back to java blocking if a safepoint is in progress.
3145  */
3146 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3147   ResourceMark rm;
3148   nmethod* nm = NULL;
3149 
3150   assert(method->is_native(), "must be native");
3151   assert(method->is_method_handle_intrinsic() ||
3152          method->has_native_function(), "must have something valid to call!");
3153 
3154   {
3155     // Perform the work while holding the lock, but perform any printing outside the lock
3156     MutexLocker mu(AdapterHandlerLibrary_lock);
3157     // See if somebody beat us to it
3158     if (method->code() != NULL) {
3159       return;
3160     }
3161 
3162     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3163     assert(compile_id > 0, "Must generate native wrapper");
3164 
3165 
3166     ResourceMark rm;
3167     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3168     if (buf != NULL) {
3169       CodeBuffer buffer(buf);
3170       double locs_buf[20];
3171       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3172       MacroAssembler _masm(&buffer);
3173 
3174       // Fill in the signature array, for the calling-convention call.
3175       const int total_args_passed = method->size_of_parameters();
3176 
3177       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3178       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3179       int i=0;
3180       if (!method->is_static())  // Pass in receiver first
3181         sig_bt[i++] = T_OBJECT;
3182       SignatureStream ss(method->signature());
3183       for (; !ss.at_return_type(); ss.next()) {
3184         BasicType bt = ss.type();
3185         sig_bt[i++] = bt;  // Collect remaining bits of signature
3186         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
3187           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3188       }
3189       assert(i == total_args_passed, "");
3190       BasicType ret_type = ss.type();
3191 
3192       // Now get the compiled-Java layout as input (or output) arguments.
3193       // NOTE: Stubs for compiled entry points of method handle intrinsics
3194       // are just trampolines so the argument registers must be outgoing ones.
3195       const bool is_outgoing = method->is_method_handle_intrinsic();
3196       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
3197 
3198       // Generate the compiled-to-native wrapper code
3199       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3200 
3201       if (nm != NULL) {
3202         method->set_code(method, nm);
3203 
3204         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3205         if (directive->PrintAssemblyOption) {
3206           nm->print_code();
3207         }
3208         DirectivesStack::release(directive);
3209       }
3210     }
3211   } // Unlock AdapterHandlerLibrary_lock
3212 
3213 
3214   // Install the generated code.
3215   if (nm != NULL) {
3216     const char *msg = method->is_static() ? "(static)" : "";
3217     CompileTask::print_ul(nm, msg);
3218     if (PrintCompilation) {
3219       ttyLocker ttyl;
3220       CompileTask::print(tty, nm, msg);
3221     }
3222     nm->post_compiled_method_load_event();
3223   }
3224 }
3225 
3226 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3227   assert(thread == JavaThread::current(), "must be");
3228   // The code is about to enter a JNI lazy critical native method and
3229   // _needs_gc is true, so if this thread is already in a critical
3230   // section then just return, otherwise this thread should block
3231   // until needs_gc has been cleared.
3232   if (thread->in_critical()) {
3233     return;
3234   }
3235   // Lock and unlock a critical section to give the system a chance to block
3236   GCLocker::lock_critical(thread);
3237   GCLocker::unlock_critical(thread);
3238 JRT_END
3239 
3240 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
3241   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3242   assert(obj != NULL, "Should not be null");
3243   oop o(obj);
3244   o = Universe::heap()->pin_object(thread, o);
3245   assert(o != NULL, "Should not be null");
3246   return o;
3247 JRT_END
3248 
3249 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
3250   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3251   assert(obj != NULL, "Should not be null");
3252   oop o(obj);
3253   Universe::heap()->unpin_object(thread, o);
3254 JRT_END
3255 
3256 // -------------------------------------------------------------------------
3257 // Java-Java calling convention
3258 // (what you use when Java calls Java)
3259 
3260 //------------------------------name_for_receiver----------------------------------
3261 // For a given signature, return the VMReg for parameter 0.
3262 VMReg SharedRuntime::name_for_receiver() {
3263   VMRegPair regs;
3264   BasicType sig_bt = T_OBJECT;
3265   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3266   // Return argument 0 register.  In the LP64 build pointers
3267   // take 2 registers, but the VM wants only the 'main' name.
3268   return regs.first();
3269 }
3270 
3271 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3272   // This method is returning a data structure allocating as a
3273   // ResourceObject, so do not put any ResourceMarks in here.
3274   char *s = sig->as_C_string();
3275   int len = (int)strlen(s);
3276   s++; len--;                   // Skip opening paren
3277 
3278   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3279   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3280   int cnt = 0;
3281   if (has_receiver) {
3282     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3283   }
3284 
3285   while (*s != ')') {          // Find closing right paren
3286     switch (*s++) {            // Switch on signature character
3287     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3288     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3289     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3290     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3291     case 'I': sig_bt[cnt++] = T_INT;     break;
3292     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3293     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3294     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3295     case 'V': sig_bt[cnt++] = T_VOID;    break;
3296     case 'L':                   // Oop
3297       while (*s++ != ';');   // Skip signature
3298       sig_bt[cnt++] = T_OBJECT;
3299       break;
3300     case 'Q':                // Value type
3301       while (*s++ != ';');   // Skip signature
3302       sig_bt[cnt++] = T_VALUETYPE;
3303       break;
3304     case '[': {                 // Array
3305       do {                      // Skip optional size
3306         while (*s >= '0' && *s <= '9') s++;
3307       } while (*s++ == '[');   // Nested arrays?
3308       // Skip element type
3309       if (s[-1] == 'L' || s[-1] == 'Q')
3310         while (*s++ != ';'); // Skip signature
3311       sig_bt[cnt++] = T_ARRAY;
3312       break;
3313     }
3314     default : ShouldNotReachHere();
3315     }
3316   }
3317 
3318   if (has_appendix) {
3319     sig_bt[cnt++] = T_OBJECT;
3320   }
3321 
3322   assert(cnt < 256, "grow table size");
3323 
3324   int comp_args_on_stack;
3325   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3326 
3327   // the calling convention doesn't count out_preserve_stack_slots so
3328   // we must add that in to get "true" stack offsets.
3329 
3330   if (comp_args_on_stack) {
3331     for (int i = 0; i < cnt; i++) {
3332       VMReg reg1 = regs[i].first();
3333       if (reg1->is_stack()) {
3334         // Yuck
3335         reg1 = reg1->bias(out_preserve_stack_slots());
3336       }
3337       VMReg reg2 = regs[i].second();
3338       if (reg2->is_stack()) {
3339         // Yuck
3340         reg2 = reg2->bias(out_preserve_stack_slots());
3341       }
3342       regs[i].set_pair(reg2, reg1);
3343     }
3344   }
3345 
3346   // results
3347   *arg_size = cnt;
3348   return regs;
3349 }
3350 
3351 // OSR Migration Code
3352 //
3353 // This code is used convert interpreter frames into compiled frames.  It is
3354 // called from very start of a compiled OSR nmethod.  A temp array is
3355 // allocated to hold the interesting bits of the interpreter frame.  All
3356 // active locks are inflated to allow them to move.  The displaced headers and
3357 // active interpreter locals are copied into the temp buffer.  Then we return
3358 // back to the compiled code.  The compiled code then pops the current
3359 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3360 // copies the interpreter locals and displaced headers where it wants.
3361 // Finally it calls back to free the temp buffer.
3362 //
3363 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3364 
3365 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3366 
3367   //
3368   // This code is dependent on the memory layout of the interpreter local
3369   // array and the monitors. On all of our platforms the layout is identical
3370   // so this code is shared. If some platform lays the their arrays out
3371   // differently then this code could move to platform specific code or
3372   // the code here could be modified to copy items one at a time using
3373   // frame accessor methods and be platform independent.
3374 
3375   frame fr = thread->last_frame();
3376   assert(fr.is_interpreted_frame(), "");
3377   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3378 
3379   // Figure out how many monitors are active.
3380   int active_monitor_count = 0;
3381   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3382        kptr < fr.interpreter_frame_monitor_begin();
3383        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3384     if (kptr->obj() != NULL) active_monitor_count++;
3385   }
3386 
3387   // QQQ we could place number of active monitors in the array so that compiled code
3388   // could double check it.
3389 
3390   Method* moop = fr.interpreter_frame_method();
3391   int max_locals = moop->max_locals();
3392   // Allocate temp buffer, 1 word per local & 2 per active monitor
3393   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3394   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3395 
3396   // Copy the locals.  Order is preserved so that loading of longs works.
3397   // Since there's no GC I can copy the oops blindly.
3398   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3399   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3400                        (HeapWord*)&buf[0],
3401                        max_locals);
3402 
3403   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3404   int i = max_locals;
3405   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3406        kptr2 < fr.interpreter_frame_monitor_begin();
3407        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3408     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3409       BasicLock *lock = kptr2->lock();
3410       // Inflate so the displaced header becomes position-independent
3411       if (lock->displaced_header()->is_unlocked())
3412         ObjectSynchronizer::inflate_helper(kptr2->obj());
3413       // Now the displaced header is free to move
3414       buf[i++] = (intptr_t)lock->displaced_header();
3415       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3416     }
3417   }
3418   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3419 
3420   return buf;
3421 JRT_END
3422 
3423 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3424   FREE_C_HEAP_ARRAY(intptr_t, buf);
3425 JRT_END
3426 
3427 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3428   AdapterHandlerTableIterator iter(_adapters);
3429   while (iter.has_next()) {
3430     AdapterHandlerEntry* a = iter.next();
3431     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3432   }
3433   return false;
3434 }
3435 
3436 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3437   AdapterHandlerTableIterator iter(_adapters);
3438   while (iter.has_next()) {
3439     AdapterHandlerEntry* a = iter.next();
3440     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3441       st->print("Adapter for signature: ");
3442       a->print_adapter_on(tty);
3443       return;
3444     }
3445   }
3446   assert(false, "Should have found handler");
3447 }
3448 
3449 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3450   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iVE: " INTPTR_FORMAT
3451                " c2iVROE: " INTPTR_FORMAT " c2iUE: " INTPTR_FORMAT " c2iUVE: " INTPTR_FORMAT,
3452                p2i(this), fingerprint()->as_string(),
3453                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_value_entry()),
3454                p2i(get_c2i_value_ro_entry()), p2i(get_c2i_unverified_entry()), p2i(get_c2i_unverified_value_entry()));
3455 
3456 }
3457 
3458 #if INCLUDE_CDS
3459 
3460 void CDSAdapterHandlerEntry::init() {
3461   assert(DumpSharedSpaces, "used during dump time only");
3462   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3463   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3464 };
3465 
3466 #endif // INCLUDE_CDS
3467 
3468 
3469 #ifndef PRODUCT
3470 
3471 void AdapterHandlerLibrary::print_statistics() {
3472   _adapters->print_statistics();
3473 }
3474 
3475 #endif /* PRODUCT */
3476 
3477 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3478   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3479   if (thread->stack_reserved_zone_disabled()) {
3480   thread->enable_stack_reserved_zone();
3481   }
3482   thread->set_reserved_stack_activation(thread->stack_base());
3483 JRT_END
3484 
3485 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3486   ResourceMark rm(thread);
3487   frame activation;
3488   CompiledMethod* nm = NULL;
3489   int count = 1;
3490 
3491   assert(fr.is_java_frame(), "Must start on Java frame");
3492 
3493   while (true) {
3494     Method* method = NULL;
3495     bool found = false;
3496     if (fr.is_interpreted_frame()) {
3497       method = fr.interpreter_frame_method();
3498       if (method != NULL && method->has_reserved_stack_access()) {
3499         found = true;
3500       }
3501     } else {
3502       CodeBlob* cb = fr.cb();
3503       if (cb != NULL && cb->is_compiled()) {
3504         nm = cb->as_compiled_method();
3505         method = nm->method();
3506         // scope_desc_near() must be used, instead of scope_desc_at() because on
3507         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3508         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3509           method = sd->method();
3510           if (method != NULL && method->has_reserved_stack_access()) {
3511             found = true;
3512       }
3513     }
3514       }
3515     }
3516     if (found) {
3517       activation = fr;
3518       warning("Potentially dangerous stack overflow in "
3519               "ReservedStackAccess annotated method %s [%d]",
3520               method->name_and_sig_as_C_string(), count++);
3521       EventReservedStackActivation event;
3522       if (event.should_commit()) {
3523         event.set_method(method);
3524         event.commit();
3525       }
3526     }
3527     if (fr.is_first_java_frame()) {
3528       break;
3529     } else {
3530       fr = fr.java_sender();
3531     }
3532   }
3533   return activation;
3534 }
3535 
3536 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3537   // After any safepoint, just before going back to compiled code,
3538   // we inform the GC that we will be doing initializing writes to
3539   // this object in the future without emitting card-marks, so
3540   // GC may take any compensating steps.
3541 
3542   oop new_obj = thread->vm_result();
3543   if (new_obj == NULL) return;
3544 
3545   BarrierSet *bs = BarrierSet::barrier_set();
3546   bs->on_slowpath_allocation_exit(thread, new_obj);
3547 }
3548 
3549 // We are at a compiled code to interpreter call. We need backing
3550 // buffers for all value type arguments. Allocate an object array to
3551 // hold them (convenient because once we're done with it we don't have
3552 // to worry about freeing it).
3553 oop SharedRuntime::allocate_value_types_impl(JavaThread* thread, methodHandle callee, bool allocate_receiver, TRAPS) {
3554   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3555   ResourceMark rm;
3556 
3557   int nb_slots = 0;
3558   InstanceKlass* holder = callee->method_holder();
3559   allocate_receiver &= !callee->is_static() && holder->is_value();
3560   if (allocate_receiver) {
3561     nb_slots++;
3562   }
3563   Handle class_loader(THREAD, holder->class_loader());
3564   Handle protection_domain(THREAD, holder->protection_domain());
3565   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3566     if (ss.type() == T_VALUETYPE) {
3567       nb_slots++;
3568     }
3569   }
3570   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK_NULL);
3571   objArrayHandle array(THREAD, array_oop);
3572   int i = 0;
3573   if (allocate_receiver) {
3574     ValueKlass* vk = ValueKlass::cast(holder);
3575     oop res = vk->allocate_instance(CHECK_NULL);
3576     array->obj_at_put(i, res);
3577     i++;
3578   }
3579   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3580     if (ss.type() == T_VALUETYPE) {
3581       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3582       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3583       ValueKlass* vk = ValueKlass::cast(k);
3584       oop res = vk->allocate_instance(CHECK_NULL);
3585       array->obj_at_put(i, res);
3586       i++;
3587     }
3588   }
3589   return array();
3590 }
3591 
3592 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method, bool allocate_receiver))
3593   methodHandle callee(callee_method);
3594   oop array = SharedRuntime::allocate_value_types_impl(thread, callee, allocate_receiver, CHECK);
3595   thread->set_vm_result(array);
3596   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3597 JRT_END
3598 
3599 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3600 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3601 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3602 {
3603   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3604   assert(oopDesc::is_oop(array), "should be oop");
3605   for (int i = 0; i < array->length(); ++i) {
3606     instanceOop valueOop = (instanceOop)array->obj_at(i);
3607     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3608     if (vk->contains_oops()) {
3609       const address dst_oop_addr = ((address) (void*) valueOop);
3610       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3611       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3612       while (map != end) {
3613         address doop_address = dst_oop_addr + map->offset();
3614         barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())->
3615           write_ref_array((HeapWord*) doop_address, map->count());
3616         map++;
3617       }
3618     }
3619   }
3620 }
3621 JRT_END
3622 
3623 // We're returning from an interpreted method: load each field into a
3624 // register following the calling convention
3625 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3626 {
3627   assert(res->klass()->is_value(), "only value types here");
3628   ResourceMark rm;
3629   RegisterMap reg_map(thread);
3630   frame stubFrame = thread->last_frame();
3631   frame callerFrame = stubFrame.sender(&reg_map);
3632   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3633 
3634   ValueKlass* vk = ValueKlass::cast(res->klass());
3635 
3636   const Array<SigEntry>* sig_vk = vk->extended_sig();
3637   const Array<VMRegPair>* regs = vk->return_regs();
3638 
3639   if (regs == NULL) {
3640     // The fields of the value klass don't fit in registers, bail out
3641     return;
3642   }
3643 
3644   int j = 1;
3645   for (int i = 0; i < sig_vk->length(); i++) {
3646     BasicType bt = sig_vk->at(i)._bt;
3647     if (bt == T_VALUETYPE) {
3648       continue;
3649     }
3650     if (bt == T_VOID) {
3651       if (sig_vk->at(i-1)._bt == T_LONG ||
3652           sig_vk->at(i-1)._bt == T_DOUBLE) {
3653         j++;
3654       }
3655       continue;
3656     }
3657     int off = sig_vk->at(i)._offset;
3658     assert(off > 0, "offset in object should be positive");
3659     VMRegPair pair = regs->at(j);
3660     address loc = reg_map.location(pair.first());
3661     switch(bt) {
3662     case T_BOOLEAN:
3663       *(jboolean*)loc = res->bool_field(off);
3664       break;
3665     case T_CHAR:
3666       *(jchar*)loc = res->char_field(off);
3667       break;
3668     case T_BYTE:
3669       *(jbyte*)loc = res->byte_field(off);
3670       break;
3671     case T_SHORT:
3672       *(jshort*)loc = res->short_field(off);
3673       break;
3674     case T_INT: {
3675       *(jint*)loc = res->int_field(off);
3676       break;
3677     }
3678     case T_LONG:
3679 #ifdef _LP64
3680       *(intptr_t*)loc = res->long_field(off);
3681 #else
3682       Unimplemented();
3683 #endif
3684       break;
3685     case T_OBJECT:
3686     case T_ARRAY: {
3687       *(oop*)loc = res->obj_field(off);
3688       break;
3689     }
3690     case T_FLOAT:
3691       *(jfloat*)loc = res->float_field(off);
3692       break;
3693     case T_DOUBLE:
3694       *(jdouble*)loc = res->double_field(off);
3695       break;
3696     default:
3697       ShouldNotReachHere();
3698     }
3699     j++;
3700   }
3701   assert(j == regs->length(), "missed a field?");
3702 
3703 #ifdef ASSERT
3704   VMRegPair pair = regs->at(0);
3705   address loc = reg_map.location(pair.first());
3706   assert(*(oopDesc**)loc == res, "overwritten object");
3707 #endif
3708 
3709   thread->set_vm_result(res);
3710 }
3711 JRT_END
3712 
3713 // We've returned to an interpreted method, the interpreter needs a
3714 // reference to a value type instance. Allocate it and initialize it
3715 // from field's values in registers.
3716 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3717 {
3718   ResourceMark rm;
3719   RegisterMap reg_map(thread);
3720   frame stubFrame = thread->last_frame();
3721   frame callerFrame = stubFrame.sender(&reg_map);
3722 
3723 #ifdef ASSERT
3724   ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map);
3725 #endif
3726 
3727   if (!is_set_nth_bit(res, 0)) {
3728     // We're not returning with value type fields in registers (the
3729     // calling convention didn't allow it for this value klass)
3730     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3731     thread->set_vm_result((oopDesc*)res);
3732     assert(verif_vk == NULL, "broken calling convention");
3733     return;
3734   }
3735 
3736   clear_nth_bit(res, 0);
3737   ValueKlass* vk = (ValueKlass*)res;
3738   assert(verif_vk == vk, "broken calling convention");
3739   assert(Metaspace::contains((void*)res), "should be klass");
3740 
3741   // Allocate handles for every oop field so they are safe in case of
3742   // a safepoint when allocating
3743   GrowableArray<Handle> handles;
3744   vk->save_oop_fields(reg_map, handles);
3745 
3746   // It's unsafe to safepoint until we are here
3747   JRT_BLOCK;
3748   {
3749     Thread* THREAD = thread;
3750     oop vt = vk->realloc_result(reg_map, handles, CHECK);
3751     thread->set_vm_result(vt);
3752   }
3753   JRT_BLOCK_END;
3754 }
3755 JRT_END
3756