The Javee Virtual
Machine Specification
Java SE 10 Edition

Tim Lindholm
Frank Yellin
Gilad Bracha
Alex Buckley

2018-01-30

Specification: JSR-383 Javas SE 10 (18.3) (" Specification")
Version: 10

Status: Proposed Final Draft

Release: February 2018

Copyright © 1997, 2018, Oracle America, Inc.
500 Oracle Parkway, Redwood City, California 94065, U.S.A.

All rights reserved.

The Specification provided herein is provided to you only under the Limited License Grant
included herein as Appendix A. Please see Appendix A, Limited License Grant.

Table of Contents

1 Introduction 1

11
12
13
14
15

A Bit of History 1

The JavaVirtual Machine 2
Organization of the Specification 3
Notation 4

Feedback 4

2 The Structure of the Java Virtual Machine 5

21
22
23

24
25

2.6

2.7
2.8

2.9

2.10

Thecl ass FileFormat 5

DataTypes 6

Primitive Typesand Values 6

231 Integra Typesand Values 7

2.3.2 Floating-Point Types, Vaue Sets, and Values 8

233 ThereturnAddress Typeand Vaues 10

234 Thebool ean Type 10

Reference Typesand Values 11

Run-Time Data Areas 11

251 Thepc Register 12

252 JavaVirtua Machine Stacks 12

253 Heap 13

254 Method Area 13

255 Run-Time Constant Pool 14

256 Native Method Stacks 14

Frames 15

26.1 Locd Variables 16

26.2 Operand Stacks 17

2.6.3 Dynamic Linking 18

264 Norma Method Invocation Completion 18

26.5 Abrupt Method Invocation Completion 18

Representation of Objects 19

Floating-Point Arithmetic 19

28.1 JavaVirtua Machine Floating-Point Arithmetic and |EEE
754 19

2.8.2 Floating-Point Modes 20

28.3 Value Set Conversion 20

Special Methods 22

29.1 Instance Initialization Methods 22

29.2 Classlnitiaization Methods 22

29.3 Signature Polymorphic Methods 23

Exceptions 23

The Javae Virtual Machine Specification

211 Instruction Set Summary 26
2111 Typesand the JavaVirtua Machine 26
2112 Load and Store Instructions 29
2.11.3 Arithmetic Instructions 30
2114 Type Conversion Instructions 32
2115 Object Creation and Manipulation 34
2.11.6 Operand Stack Management Instructions 34
2.11.7 Control Transfer Instructions 34
2.11.8 Method Invocation and Return Instructions 35
2119 Throwing Exceptions 36
2.11.10 Synchronization 36

212 ClassLibraries 37

2.13 Public Design, Private Implementation 37

3 Compiling for the Java Virtual Machine 39

3.1 Format of Examples 39

3.2 Useof Congtants, Local Variables, and Control Constructs 40
3.3 Arithmetic 45

34 Accessing the Run-Time Constant Pool 46
3.5 MoreControl Examples 47

3.6 Receving Arguments 50

3.7 Invoking Methods 51

3.8 Working with Class Instances 53

3.9 Arrays 55

3.10 Compiling Switches 57

3.11 Operations on the Operand Stack 59

3.12 Throwing and Handling Exceptions 60
3.13 Compilingfinally 63

3.14 Synchronization 66

3.15 Annotations 67

3.16 Modules 68

4 Theclass FileFormat 71

4.1 Thed assFil e Structure 72
4.2 Names 77
421 Binary Classand Interface Names 77
4.2.2 Unquaified Names 78
4.2.3 Module and Package Names 78
4.3 Descriptors 79
431 Grammar Notation 79
4.3.2 Field Descriptors 79
4.3.3 Method Descriptors 81
44 The Constant Pool 82
441 TheCONSTANT O ass_i nf o Structure 83
442 The CONSTANT Fi el dref _i nf o, CONSTANT_Met hodr ef _i nf 0, and
CONSTANT _I nt er f aceMet hodr ef _i nf o Structures 84
443 TheCONSTANT String_i nf o Structure 85

45
4.6
47

4.8
4.9

444

445

4.4.6
4.4.7
4.4.8
449
4.4.10
4411
4.4.12

The Javae Virtual Machine Specification

The CONSTANT _I nt eger _i nf o and CONSTANT_Fl oat _i nfo
Structures 86

The CONSTANT _Long_i nf o and CONSTANT _Doubl e_i nf o
Structures 87

The CONSTANT_NaneAndType_i nf o Structure 89

The CONSTANT _Ut f 8_i nf o Structure 89

The CONSTANT_Met hodHandl e_i nf o Structure 91

The CONSTANT_Met hodType_i nf o Structure 93

The CONSTANT _I nvokeDynani c_i nf o Structure 93
The CONSTANT _Mbdul e_i nf o Structure 94

The CONSTANT_Package_i nf o Structure 94

Fields 95
Methods 97
Attributes 100

4.7.1
4.7.2
4.7.3
4.7.4
4.75
4.7.6
4.7.7
4.7.8
4.7.9

4.7.10
4.7.11
4.7.12
4.7.13
4.7.14
4.7.15
4.7.16

4.7.17
4.7.18
4.7.19
4.7.20

4.7.21
4.7.22
4.7.23
4.7.24
4.7.25
4.7.26
4.7.27

Defining and Naming New Attributes 107

The Const ant Val ue Attribute 107

The Code Attribute 108

The St ackMapTabl e Attribute 112

The Except i ons Attribute 119

Thel nner d asses Attribute 120

TheEncl osi ngMet hod Attribute 123

The Synt het i ¢ Attribute 124

The si gnat ur e Attribute 125

4.79.1 Signatures 126

The Sour ceFi | e Attribute 130

The Sour ceDebugExt ensi on Attribute 130

TheLi neNurber Tabl e Attribute 131

The Local Vari abl eTabl e Attribute 132

TheLocal Vari abl eTypeTabl e Attribute 134

The Depr ecat ed Attribute 136

TheRunt i meVi si bl eAnnot at i ons Attribute 137
47.16.1 Theel enment _val ue structure 139
TheRunti nel nvi si bl eAnnot at i ons Attribute 142
The Runt i meVi si bl ePar amet er Annot at i ons Attribute 143
The Runt i el nvi si bl ePar amet er Annot at i ons Attribute 144
TheRunt i meVi si bl eTypeAnnot at i ons Attribute 146
47.20.1 Thetarget_infounion 152

4,7.20.2 Thetype_pat h structure 156

TheRunti nel nvi si bl eTypeAnnot at i ons Attribute 160
The Annot at i onDef aul t Attribute 161

The Boot st rapMet hods Attribute 162

The Met hodPar aret er s Attribute 164

The Modul e Attribute 166

The Mvdul ePackages Attribute 173

The Mbdul eMai nd ass Attribute 174

Format Checking 175
Constraints on Java Virtual Machine Code 176

491

Static Constraints 176

The Javae Virtual Machine Specification

4.10

4.9.2

Structural Constraints 180

Verification of cl ass Files 183

4.10.1

4.10.2

Verification by Type Checking 185

4.10.1.1 Accessorsfor Java Virtual Machine Artifacts 187

4.10.1.2 Veification Type System 191

4.10.1.3 Instruction Representation 195

4.10.1.4 Stack Map Frames and Type Transitions 196

4.10.1.5 Type Checking Abstract and Native Methods 201

4.10.1.6 Type Checking Methods with Code 204

4.10.1.7 Type Checking Load and Store Instructions 213

4.10.1.8 Type Checking for pr ot ect ed Members 215

4.10.1.9 Type Checking Instructions 218

Verification by Type Inference 336

4.10.2.1 TheProcess of Verification by Type Inference 336

4.10.2.2 TheBytecode Verifier 336

4.10.2.3 Vauesof Typesl ong and doubl e 340

4.10.2.4 Instance Initialization Methods and Newly Created
Objects 340

4.10.25 Exceptionsandfinally 342

4.11 Limitations of the JavaVirtual Machine 344

5 Loading, Linking, and Initializing 347

The Run-Time Constant Pool 347
Java Virtua Machine Startup 350
Creation and Loading 350

51
52
5.3

54

55
56
5.7

Vi

531
532
533
534
5.35
5.3.6
Linking
541
5.4.2
54.3

544
545

Loading Using the Bootstrap Class Loader 352
Loading Using a User-defined Class Loader 353
Creating Array Classes 354

Loading Constraints 354

Deriving aClass from acl ass File Representation 356
Modulesand Layers 357

359

Verification 360

Preparation 360

Resolution 361

5431 Classand Interface Resolution 363

54.32 Field Resolution 363

54.3.3 Method Resolution 364

5434 Interface Method Resolution 366

54.35 Method Type and Method Handle Resolution 368
54.36 Call Site Specifier Resolution 372

Access Control 373

Overriding 374

Initialization 374
Binding Native Method Implementations 377
JavaVirtua Machine Exit 377

The Javae Virtual Machine Specification

6 TheJava Virtual MachineInstruction Set 379

6.1
6.2
6.3
6.4

6.5

mnemonic 382

Instructions 384

aaload 385
aastore 386
aconst_null 388
aload 389
aload <n> 390
anewarray 391
areturn 392
arraylength 393
astore 394
astore <n> 395
athrow 396
baload 398
bastore 399
bipush 400
caload 401
castore 402
checkcast 403
d2f 405

d2i 406

d2l 407

dadd 408
daload 410
dastore 411
dcmp<op> 412
dconst_<d> 414
ddiv 415

dload 417
dload <n> 418
dmul 419

dneg 421

drem 422
dreturn 424
dstore 425
dstore <n> 426
dsub 427

dup 428
dup x1 429
dup x2 430
dup2 431

dup2 x1 432
dup2 x2 433

Assumptions: The Meaning of "Must" 379
Reserved Opcodes 380
Virtual Machine Errors 380

Format of Instruction Descriptions 381

Vii

viii

The Javae Virtual Machine Specification

fad 435

f2i 436

f2l 437

fadd 438

faload 440
fastore 441
fcmp<op> 442
feconst <f> 444
fdiv 445

fload 447
fload_ <n> 448
fmul 449

fneg 451

frem 452

freturn 454
fstore 455
fstore <n> 456
fsub 457

getfield 458
getstatic 459
goto 461

goto_w 462

i2b 463

i2c 464

i2d 465

i2f 466

i2l 467

i2s 468

iadd 469

iaload 470

iand 471

iastore 472
iconst_<i> 473
idiv 474
if_acmp<cond> 475
if icmp<cond> 476
if<cond> 478
ifnonnull 480
ifnull 481

iinc 482

iload 483
iload <n> 484
imul 485

ineg 486
instanceof 487
invokedynamic 489
invokeinterface 494
invokespecial 498

invokestatic 502
invokevirtual 505
ior 512

irem 513
ireturn 514

ishl 516

ishr 517

istore 518
istore <n> 519
isub 520

iushr 521

ixor 522

jsr 523

jsr_w 524

12d 525

12f 526

12i 527

ladd 528
laload 529
land 530
lastore 531
lcmp 532
Iconst_<I> 533
ldc 534

Idc w 536
Idc2 w 538
Idiv 539

lload 540
lload_<n> 541
Imul 542

Ineg 543
lookupswitch 544
lor 546

Irem 547
Ireturn 548

Ishl 549

Ishr 550

Istore 551
Istore <n> 552
Isub 553

lushr 554

Ixor 555
monitorenter 556
monitorexit 558
multianewarray 560
new 562
newarray 564
nop 566

The Javae Virtual Machine Specification

The Javae Virtual Machine Specification

pop 567
pop2 568
putfield 569
putstatic 571
ret 573
return 574
saload 575
sastore 576
sipush 577
swap 578
tableswitch 579
wide 581

7 Opcode Mnemonics by Opcode 583

A Limited License Grant 587

CHAPTER 1

| ntroduction

1.1 A Bit of History

The Javaer programming language isageneral -purpose, concurrent, object-oriented
language. Its syntax is similar to C and C++, but it omits many of the features that
make C and C++ complex, confusing, and unsafe. The Java platform was initially
developed to address the problems of building software for networked consumer
devices. It was designed to support multiple host architectures and to allow secure
delivery of software components. To meet these requirements, compiled code had
to survive transport across networks, operate on any client, and assure the client
that it was safe to run.

The popularization of the World Wide Web made these attributes much more
interesting. Web browsers enabled millions of people to surf the Net and access
media-rich content in simple ways. At last there was a medium where what you
saw and heard was essentially the same regardless of the machine you were using
and whether it was connected to afast network or a slow modem.

Web enthusiasts soon discovered that the content supported by the Web's HTML
document format was too limited. HTML extensions, such as forms, only
highlighted those limitations, while making it clear that no browser could include
al the features users wanted. Extensibility was the answer.

The HotJava browser first showcased the interesting properties of the Java
programming language and platform by making it possible to embed programs
inside HTML pages. Programs are transparently downloaded into the browser
aong with the HTML pages in which they appear. Before being accepted by the
browser, programs are carefully checked to make sure they are safe. Like HTML
pages, compiled programs are network- and host-independent. The programs
behave the same way regardless of where they come from or what kind of machine
they are being loaded into and run on.

1.2

The Java Virtual Machine INTRODUCTION

A Web browser incorporating the Java platform is no longer limited to a
predetermined set of capabilities. Visitors to Web pages incorporating dynamic
content can be assured that their machines cannot be damaged by that content.
Programmers can write a program once, and it will run on any machine supplying
aJava run-time environment.

1.2 TheJava Virtual Machine

The Java Virtual Machine is the cornerstone of the Java platform. It is the
component of the technology responsible for its hardware- and operating system-
independence, the small size of its compiled code, and its ability to protect users
from malicious programs.

The JavaVirtual Machineis an abstract computing machine. Likeareal computing
machine, it hasan instruction set and mani pul ates variousmemory areasat runtime.
It is reasonably common to implement a programming language using a virtua
machine; the best-known virtual machine may be the P-Code machine of UCSD
Pascal.

The first prototype implementation of the Java Virtual Machine, done at Sun
Microsystems, Inc., emulated the Java Virtual Machine instruction set in software
hosted by a handheld device that resembled a contemporary Personal Digital
Assistant (PDA). Oracle's current implementations emulate the Java Virtua
Machine on mobile, desktop and server devices, but the Java Virtual Machine
does not assume any particular implementation technology, host hardware, or
host operating system. It is not inherently interpreted, but can just as well be
implemented by compiling its instruction set to that of asilicon CPU. It may also
be implemented in microcode or directly in silicon.

The Java Virtual Machine knows nothing of the Java programming language, only
of a particular binary format, the cl ass file format. A cl ass file contains Java
Virtual Machine instructions (or bytecodes) and a symbol table, as well as other
ancillary information.

For the sake of security, the Java Virtual Machine imposes strong syntactic and
structural constraints on the code in a cl ass file. However, any language with
functionality that can be expressed in terms of avalid cl ass file can be hosted by
the Java Virtual Machine. Attracted by a generally available, machine-independent
platform, implementors of other languages can turn to the Java Virtual Machine as
adelivery vehicle for their languages.

INTRODUCTION Organization of the Specification

The Java Virtual Machine specified here is compatible with the Java SE 10
platform, and supports the Java programming language specified in The Java
Language Specification, Java SE 10 Edition.

1.3 Organization of the Specification

Chapter 2 gives an overview of the Java Virtual Machine architecture.

Chapter 3 introduces compilation of code written in the Java programming
language into the instruction set of the Java Virtual Machine.

Chapter 4 specifies the cl ass file format, the hardware- and operating system-
independent binary format used to represent compiled classes and interfaces.

Chapter 5 gpecifies the start-up of the Java Virtual Machine and the loading,
linking, and initialization of classes and interfaces.

Chapter 6 specifies the instruction set of the Java Virtual Machine, presenting the
instructions in alphabetical order of opcode mnemonics.

Chapter 7 gives a table of Java Virtual Machine opcode mnemonics indexed by
opcode value.

In the Second Edition of The Java® Virtual Machine Specification, Chapter 2
gave an overview of the Java programming language that was intended to support
the specification of the Java Virtual Machine but was not itself a part of the
specification. In The Java Virtual Machine Specification, Java SE 10 Edition, the
reader is referred to The Java Language Specification, Java SE 10 Edition for
information about the Java programming language. References of the form: (JLS
8x.y) indicate where this is necessary.

In the Second Edition of The Javae Virtual Machine Specification, Chapter 8
detailed thelow-level actionsthat explained theinteraction of JavaVirtual Machine
threads with a shared main memory. In The Java Virtual Machine Specification,
Java SE 10 Edition, the reader is referred to Chapter 17 of The Java Language
Soecification, Java SE 10 Edition for information about threads and |ocks. Chapter
17 reflects The Java Memory Model and Thread Specification produced by the JISR
133 Expert Group.

13

14

Notation INTRODUCTION

1.4 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE Platform API. Whenever we refer to a class or interface (other than those
declared in an example) using asingle identifier N, the intended reference isto the
class or interface named N in the package j ava. | ang. We use the fully qualified
name for classes or interfaces from packages other than j ava. | ang.

Whenever we refer to a class or interface that is declared in the package j ava or
any of its subpackages, the intended reference isto that class or interface asloaded
by the bootstrap class loader (85.3.1).

Whenever we refer to a subpackage of a package named j ava, the intended
referenceis to that subpackage as determined by the bootstrap class loader.

The use of fontsin this specification is as follows:

* Afixed width fontisused for Java Virtual Machine data types, exceptions,
errors, cl ass file structures, Prolog code, and Java code fragments.

« Italic is used for Java Virtual Machine "assembly language”, its opcodes and
operands, as well asitems in the Java Virtua Machine's run-time data areas. It
is also used to introduce new terms and simply for emphasis.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

Thisis non-normative information. It provides intuition, rationale, advice, examples, etc.

1.5 Feedback

Readers are invited to report technical errors and ambiguitiesin The Javae Virtual
Machine Specificationtoj I s-j vis- spec- comrent s@penj dk. j ava. net .

Questions concerning the generation and manipulation of ¢l ass filesby j avac (the
reference compiler for the Java programming language) may be sent to conpi | er -
dev@penj dk. j ava. net .

CHAPTER2

The Structure of the Java
Virtual Machine

T HIS document specifies an abstract machine. It does not describe any particular
implementation of the Java Virtual Machine.

To implement the Java Virtual Machine correctly, you need only be able to
read the cl ass file format and correctly perform the operations specified therein.
Implementation detailsthat are not part of the Java Virtual Machine's specification
would unnecessarily constrain the creativity of implementors. For example, the
memory layout of run-time data areas, the garbage-collection algorithm used, and
any internal optimization of the Java Virtual Machine instructions (for example,
trangdlating them into machine code) are | eft to the discretion of the implementor.

All references to Unicode in this specification are given with respect to The
Unicode Sandard, Version 8.0.0, available at ht t p: / / www. uni code. or g/ .

2.1 Thecl ass File Format

Compiled code to be executed by the Java Virtual Machine is represented using
a hardware- and operating system-independent binary format, typically (but not
necessarily) stored in afile, known asthecl ass fileformat. Thecl ass file format
precisely defines the representation of a class or interface, including details such
as byte ordering that might be taken for granted in a platform-specific object file
format.

Chapter 4, "Thecl ass File Format", coversthecl ass file format in detail.

22

Data Types THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.2 DataTypes

Like the Java programming language, the Java Virtual Machine operates on two
kinds of types: primitivetypes and referencetypes. Thereare, correspondingly, two
kinds of values that can be stored in variables, passed as arguments, returned by
methods, and operated upon: primitive values and reference values.

The Java Virtual Machine expects that nearly al type checking is done prior
to run time, typically by a compiler, and does not have to be done by the Java
Virtual Machine itself. Values of primitive types need not be tagged or otherwise
be inspectable to determine their types at run time, or to be distinguished from
values of reference types. Instead, the instruction set of the Java Virtual Machine
distinguishes its operand types using instructions intended to operate on values of
specific types. For instance, iadd, ladd, fadd, and dadd are all JavaVirtual Machine
instructions that add two numeric values and produce numeric results, but each is
specidized for itsoperand type: i nt , | ong, f | oat , and doubl e, respectively. For a
summary of type support in the Java Virtual Machine instruction set, see 82.11.1.

The Java Virtual Machine contains explicit support for objects. An object is
either adynamically allocated class instance or an array. A reference to an object
is considered to have Java Virtual Machine type reference. Vaues of type
r ef er ence can be thought of as pointers to objects. More than one reference to an
object may exist. Objects are always operated on, passed, and tested via values of
typer ef er ence.

2.3 Primitive Typesand Values

The primitive data types supported by the Java Virtual Machine are the numeric
types, the bool ean type (§2.3.4), and ther et ur nAddr ess type (82.3.3).

The numeric types consist of theintegral types (82.3.1) and the floating-point types
(82.3.2).

Theintegral types are:

* byte, whose values are 8-bit signed two's-complement integers, and whose
default valueis zero

* short, whose values are 16-hit signed two's-complement integers, and whose
default valueis zero

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Primitive Types and Values

* int, whose values are 32-bit signed two's-complement integers, and whose
default value is zero

* | ong, whose values are 64-bit signed two's-complement integers, and whose
default valueis zero

» char, whose values are 16-hit unsigned integers representing Unicode code
pointsin the Basic Multilingual Plane, encoded with UTF-16, and whose default
valueisthe null code point (' \ u0000')

The floating-point types are:

* float, whose values are el ements of the float value set or, where supported, the
float-extended-exponent value set, and whose default value is positive zero

* doubl e, whose values are elements of the double value set or, where supported,
the doubl e-extended-exponent val ue set, and whose default value is positive zero

The values of the bool ean type encode the truth valuest r ue and f al se, and the
default valueisf al se.

The First Edition of The Java® Virtual Machine Specification did not consider bool ean
to be a Java Virtual Machine type. However, bool ean values do have limited support in
the Java Virtual Machine. The Second Edition of The Javae Virtual Machine Specification
clarified the issue by treating bool ean asatype.

The values of ther et ur nAddr ess type are pointers to the opcodes of Java Virtua
Machine instructions. Of the primitive types, only ther et ur nAddr ess type is not
directly associated with a Java programming language type.

231 Integral Typesand Values

The values of theintegral types of the Java Virtual Machine are:

* For byt e, from-128 to 127 (-27 to 2’ - 1), inclusive

* For short, from -32768 to 32767 (-215 to 21°- 1), inclusive

« Fori nt, from -2147483648 to 2147483647 (-2** to 2*! - 1), inclusive

« For | ong, from -9223372036854775808 to 9223372036854775807 (-2% to 2%
- 1), inclusive

e For char, from 0 to 65535 inclusive

2.3

2.3

Primitive Types and Values THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.3.2 Floating-Point Types, Value Sets, and Values

The floating-point typesaref | oat and doubl e, which are conceptually associated
with the 32-bit single-precision and 64-bit double-precision format |IEEE 754
values and operations as specified in IEEE Sandard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std. 754-1985, New Y ork).

The IEEE 754 standard includes not only positive and negative sign-magnitude
numbers, but also positive and negative zeros, positive and negative infinities, and
a specia Not-a-Number value (hereafter abbreviated as "NaN"). The NaN value
is used to represent the result of certain invalid operations such as dividing zero
by zero.

Every implementation of the Java Virtual Machine is required to support two
standard sets of floating-point values, called the float val ue set and the double value
set. In addition, an implementation of the Java Virtual Machine may, at its option,
support either or both of two extended-exponent floating-point value sets, called
the fl oat-extended-exponent val ue set and the doubl e-extended-exponent val ue set.
These extended-exponent value sets may, under certain circumstances, be used
instead of the standard value setsto represent the values of typef 1 oat or doubl e.

The finite nonzero values of any floating-point value set can all be expressed in
the form s Om [(2©®"N* Y where sis +1 or -1, mis a positive integer less than
2N and eis an integer between Epip = -(2-2) and Epux = 2€°-1, inclusive, and
where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a
value v in a value set might be represented in this form using certain values for
s, m, and e, then if it happened that m were even and e were less than 2%, one
could halve mand increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m > 2V otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such away that m= 2"V, then the valueis said to be adenormalized
value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Ein
and Engy) for the two required and two optiona floating-point value sets are
summarized in Table 2.3.2-A.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Primitive Types and Values

Table 2.3.2-A. Floating-point value set parameters

Par ameter float float-extended- double double-extended-
exponent exponent
24 24 53 53
8 >11 1 215
Emax +127 > +1023 +1023 > +16383
Enmin -126 <-1022 -1022 <-16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 2.3.2-A; thisvalue K in turn dictates the values for Eqin and Epax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also the five values positive zero, negative zero, positive
infinity, negative infinity, and NaN.

Note that the constraintsin Table 2.3.2-A are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has alarger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be represented
using the single floating-point format defined in the IEEE 754 standard, except
that there is only one NaN value (IEEE 754 specifies 2242 distinct NaN values).
The elements of the double value set are exactly the values that can be represented
using the double floating-point format defined in the IEEE 754 standard, except
that there is only one NaN value (IEEE 754 specifies 2°3-2 distinct NaN values).
Note, however, that the elements of the float-extended-exponent and double-
extended-exponent value sets defined here do not correspond to the values that
can be represented using | EEE 754 single extended and double extended formats,
respectively. This specification does not mandate a specific representation for the
values of the floating-point value sets except where floating-point values must be
represented in the cl ass fileformat (84.4.4, 84.4.5).

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java Virtua

2.3

2.3

10

Primitive Types and Values THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Machineto use an element of the float value set to represent avalue of typef oat ;
however, it may be permissible in certain contexts for an implementation to use
an element of the float-extended-exponent value set instead. Similarly, itisaways
correct for an implementation to use an element of the double value set to represent
a value of type doubl e; however, it may be permissible in certain contexts for
an implementation to use an element of the double-extended-exponent value set
instead.

Except for NaNs, values of the floating-point value sets are ordered. When
arranged from smallest to largest, they are negative infinity, negative finite values,
positive and negative zero, positive finite values, and positive infinity.

Floating-point positive zero and floating-point negative zero compare as equal, but
there are other operations that can distinguish them; for example, dividing 1. 0 by
0. 0 produces positiveinfinity, but dividing 1. 0 by - 0. 0 produces negativeinfinity.

NaNs are unordered, so numerical comparisons and tests for numerical egquality
have the value f al se if either or both of their operands are NaN. In particular, a
test for numerical equality of avalue against itself hasthe valuef al se if and only
if the value is NaN. A test for numerical inequality has the value t r ue if either
operand is NaN.

2.3.3 ThereturnAddress Typeand Values

Ther et ur nAddr ess type is used by the Java Virtual Maching'sjsr, ret, and jsr_w
instructions (§jsr, 8ret, §jsr_w). Thevaluesof ther et ur nAddr ess typearepointers
to the opcodes of Java Virtual Machine instructions. Unlike the numeric primitive
types, the ret urnAddr ess type does not correspond to any Java programming
language type and cannot be modified by the running program.

234 Thebool ean Type

Although the Java Virtual Machine defines a bool ean type, it only provides
very limited support for it. There are no Java Virtual Machine instructions solely
dedicated to operations on bool ean values. Instead, expressions in the Java
programming language that operate on bool ean values are compiled to use values
of the Java Virtual Machinei nt datatype.

The Java Virtual Machine does directly support bool ean arrays. Its newarray
instruction (8newarray) enables creation of bool ean arrays. Arrays of type
bool ean are accessed and modified using the byt e array instructions baload and
bastore (8baload, 8bastore).

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Reference Types and Values

In Oracle's Java Virtual Machine implementation, bool ean arrays in the Java
programming language are encoded as Java Virtual Machine byt e arrays, using 8 bits per
bool ean element.

The JavaVirtual Machine encodesbool ean array componentsusing 1 to represent
t rue and 0 to represent f al se. Where Javaprogramming language bool ean values
are mapped by compilersto values of JavaVirtual Machinetypei nt , the compilers
must use the same encoding.

2.4 Reference Typesand Values

There are three kinds of r ef er ence types: class types, array types, and interface
types. Their values are referencesto dynamically created classinstances, arrays, or
classinstances or arrays that implement interfaces, respectively.

An array type consists of a component type with asingle dimension (whose length
isnot given by thetype). The component type of an array type may itself bean array
type. If, starting from any array type, one considers its component type, and then
(if that isalso an array type) the component type of that type, and so on, eventually
one must reach acomponent typethat isnot an array type; thisis called the element
type of the array type. The element type of an array type is necessarily either a
primitive type, or aclasstype, or an interface type.

A ref erence value may also bethe special null reference, areferenceto no object,
which will be denoted here by nul I . Thenul I reference initially has no run-time
type, but may be cast to any type. The default value of ar ef er ence typeisnul | .

This specification does not mandate a concrete value encoding nul | .

2.5 Run-Time Data Areas

The JavaVirtual Machine defines various run-time data areas that are used during
execution of a program. Some of these data areas are created on Java Virtua
Machine start-up and are destroyed only when the Java Virtual Machine exits.
Other data areas are per thread. Per-thread data areas are created when athread is
created and destroyed when the thread exits.

24

11

25

12

Run-Time Data Areas THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

251 Thepc Register

The Java Virtual Machine can support many threads of execution at once (JLS
817). Each Java Virtual Machine thread hasits own pc (program counter) register.
At any point, each Java Virtual Machine thread is executing the code of a single
method, namely the current method (82.6) for that thread. If that method is not
nati ve, the pc register containsthe address of the Java Virtual Machineinstruction
currently being executed. If the method currently being executed by the thread is
nati ve, the value of the Java Virtual Machine's pc register is undefined. The Java
Virtual Machine's pc register iswide enough to hold ar et ur nAddr ess or anative
pointer on the specific platform.

2.5.2 JavaVirtual Machine Stacks

Each JavaVirtual Machinethread hasaprivate Java Virtual Machine stack, created
at the same time as the thread. A Java Virtual Machine stack stores frames (82.6).
A JavaVirtual Machine stack is analogous to the stack of a conventional language
such as C: it holds local variables and partial results, and plays a part in method
invocation and return. Becausethe JavaVirtual Machine stack isnever manipul ated
directly except to push and pop frames, frames may be heap allocated. The memory
for aJava Virtua Machine stack does not need to be contiguous.

In the First Edition of The Javae Virtual Machine Specification, the Java Virtua Machine
stack was known as the Java stack.

This specification permits Java Virtual Machine stacks either to be of afixed size
or to dynamically expand and contract as required by the computation. If the Java
Virtual Machine stacks are of afixed size, the size of each Java Virtual Machine
stack may be chosen independently when that stack is created.

A Java Virtua Machine implementation may provide the programmer or the user control
over the initial size of Java Virtual Machine stacks, as well as, in the case of dynamically
expanding or contracting Java Virtua Machine stacks, control over the maximum and
minimum sizes.

The following exceptional conditions are associated with Java Virtua Machine
stacks:

« |If the computation in athread requires alarger Java Virtual Machine stack than
is permitted, the Java Virtual Machine throws a St ackOver f | owEr r or .

* If Java Virtual Machine stacks can be dynamically expanded, and expansion is
attempted but insufficient memory can be made available to effect the expansion,
or if insufficient memory can be made available to create the initia Java

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Run-Time Data Areas

Virtua Machine stack for a new thread, the Java Virtual Machine throws an
Qut OF Menor yError .

253 Heap

TheJavaVirtual Machine has aheap that is shared among all JavaVirtual Machine
threads. The heap is the run-time data area from which memory for all class
instances and arraysis allocated.

The heap is created on virtual machine start-up. Heap storage for objects is
reclaimed by an automatic storage management system (known as a garbage
collector); objects are never explicitly deallocated. The Java Virtua Machine
assumes no particular type of automatic storage management system, and the
storage management technique may be chosen according to the implementor's
system requirements. The heap may be of a fixed size or may be expanded as
required by the computation and may be contracted if a larger heap becomes
unnecessary. The memory for the heap does not need to be contiguous.

A Java Virtua Machine implementation may provide the programmer or the user control
over the initial size of the heap, as well as, if the heap can be dynamically expanded or
contracted, control over the maximum and minimum heap size.

The following exceptional condition is associated with the heap:

* If a computation requires more heap than can be made available by the
automatic storage management system, the Java Virtual Machine throws an
Qut O Menor yError .

254 Method Area

The Java Virtual Machine has a method area that is shared among all Java
Virtual Machine threads. The method area is analogous to the storage area for
compiled code of a conventional language or analogous to the "text" segment in
an operating system process. It stores per-class structures such as the run-time
constant pool, field and method data, and the code for methods and constructors,
including the special methods used in class and interface initialization and in
instance initialization (82.9).

The method areais created on virtual machine start-up. Although the method area
is logically part of the heap, simple implementations may choose not to either
garbage collect or compact it. This specification does not mandate the location of
the method area or the policies used to manage compiled code. The method area
may be of afixed size or may be expanded as required by the computation and may

25

13

25

14

Run-Time Data Areas THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

be contracted if a larger method area becomes unnecessary. The memory for the
method area does not need to be contiguous.

A Java Virtua Machine implementation may provide the programmer or the user control
over theinitial size of themethod area, aswell as, in the case of avarying-size method area,
control over the maximum and minimum method area size.

The following exceptional condition is associated with the method area:

* If memory in the method area cannot be made available to satisfy an allocation
reguest, the Java Virtual Machine throws an Qut O Menor yEr r or .

255 Run-Time Constant Pool

A run-time constant pool is a per-class or per-interface run-time representation
of the constant _pool table in acl ass file (84.4). It contains severa kinds of
constants, ranging from numeric literalsknown at compile-timeto method and field
references that must be resolved at run-time. The run-time constant pool serves a
function similar to that of asymbol tablefor aconventional programming language,
although it contains awider range of data than atypical symbol table.

Each run-time constant pool is allocated from the Java Virtual Machine's method
area (82.5.4). The run-time constant pool for a class or interface is constructed
when the class or interface is created (85.3) by the Java Virtual Machine.

Thefollowing exceptional condition is associated with the construction of the run-
time constant pool for a class or interface:

» When creating a class or interface, if the construction of the run-time constant
pool requires more memory than can be made available in the method area of the
Java Virtual Machine, the Java Virtua Machine throws an cut Of Menor yEr r or .

See 85 (Loading, Linking, and Initializing) for information about the construction of the
run-time constant pool.

25.6 Native Method Stacks

An implementation of the Java Virtual Machine may use conventional stacks,
colloquially called "C stacks,” to support nat i ve methods (methods written in a
language other than the Java programming language). Native method stacks may
also be used by the implementation of an interpreter for the Java Virtual Machine's
instruction set in a language such as C. Java Virtua Machine implementations
that cannot load nat i ve methods and that do not themselves rely on conventional

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Frames

stacks need not supply native method stacks. If supplied, native method stacks are
typically allocated per thread when each thread is created.

This specification permits native method stacks either to be of a fixed size or to
dynamically expand and contract as required by the computation. If the native
method stacks are of a fixed size, the size of each native method stack may be
chosen independently when that stack is created.

A Java Virtua Machine implementation may provide the programmer or the user control
over theinitial size of the native method stacks, aswell as, in the case of varying-size native
method stacks, control over the maximum and minimum method stack sizes.

The following exceptional conditions are associated with native method stacks:

* If the computation in a thread requires a larger native method stack than is
permitted, the Java Virtual Machine throws a St ackOver f 1 owEr r or .

« If native method stacks can be dynamically expanded and native method stack
expansion is attempted but insufficient memory can be made available, or if
insufficient memory can be made available to create the initial native method
stack for anew thread, the Java Virtual Machine throws an cut & Menor yErr or .

2.6 Frames

A frame is used to store data and partial results, as well as to perform dynamic
linking, return values for methods, and dispatch exceptions.

A new frameis created each time a method isinvoked. A frameis destroyed when
its method invocation completes, whether that completion is normal or abrupt (it
throwsan uncaught exception). Framesare allocated fromthe JavaVirtual Machine
stack (82.5.2) of the thread creating the frame. Each frame has its own array of
local variables (82.6.1), its own operand stack (82.6.2), and areference to the run-
time constant pool (82.5.5) of the class of the current method.

A frame may be extended with additional implementation-specific information, such as
debugging information.

The sizes of the local variable array and the operand stack are determined at
compile-time and are supplied along with the code for the method associated with
the frame (84.7.3). Thus the size of the frame data structure depends only on the
implementation of the Java Virtual Machine, and the memory for these structures
can be alocated simultaneously on method invocation.

2.6

15

2.6

16

Frames THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Only oneframe, theframefor the executing method, isactive at any pointinagiven
thread of control. Thisframeisreferred to as the current frame, and its method is
known as the current method. The class in which the current method is defined is
the current class. Operations on local variables and the operand stack are typically
with reference to the current frame.

A frame ceases to be current if its method invokes another method or if its method
completes. When amethod isinvoked, anew frameis created and becomes current
when control transfers to the new method. On method return, the current frame
passes back the result of its method invocation, if any, to the previous frame. The
current frame is then discarded as the previous frame becomes the current one.

Notethat aframe created by athread islocal to that thread and cannot be referenced
by any other thread.

2.6.1 Local Variables

Each frame (82.6) contains an array of variables known asitslocal variables. The
length of the local variable array of a frame is determined at compile-time and
supplied in the binary representation of aclass or interface along with the code for
the method associated with the frame (84.7.3).

A singlelocal variable can hold avalue of type bool ean, byt e, char, short,int,
float, reference, Of ret urnAddress. A pair of local variables can hold avalue
of typel ong or doubl e.

Local variables are addressed by indexing. The index of the first local variableis
zero. Aninteger isconsidered to be anindex into thelocal variablearray if and only
if that integer is between zero and one less than the size of the local variable array.

A value of type | ong or type doubl e occupies two consecutive local variables.
Such avaue may only be addressed using the lesser index. For example, avalue of
typedoubl e stored in the local variable array at index n actually occupiesthelocal
variables with indices n and n+1; however, the local variable at index n+1 cannot
be loaded from. It can be stored into. However, doing so invalidates the contents
of local variablen.

The Java Virtual Machine does not require n to be even. In intuitive terms, values
of types| ong and doubl e need not be 64-bit aligned in the local variables array.
Implementors are free to decide the appropriate way to represent such values using
the two local variables reserved for the value.

The Java Virtua Machine uses local variables to pass parameters on method
invocation. On class method invocation, any parameters are passed in consecutive

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Frames

local variables starting from local variable 0. On instance method invocation,
local variable 0 is always used to pass a reference to the object on which the
instance method is being invoked (t hi s in the Java programming language). Any
parameters are subsequently passed in consecutive local variables starting from
local variable 1.

2.6.2 Operand Stacks

Each frame (82.6) contains a last-in-first-out (LIFO) stack known as its operand
stack. The maximum depth of the operand stack of a frame is determined at
compile-time and is supplied along with the code for the method associated with
the frame (84.7.3).

Where it is clear by context, we will sometimes refer to the operand stack of the
current frame as simply the operand stack.

The operand stack is empty when the frame that contains it is created. The
Java Virtual Machine supplies instructions to load constants or values from local
variables or fields onto the operand stack. Other Java Virtual Machine instructions
take operands from the operand stack, operate on them, and push the result back
onto the operand stack. The operand stack is aso used to prepare parametersto be
passed to methods and to receive method results.

For example, theiadd instruction (Siadd) addstwo i nt valuestogether. It requires
that thei nt valuesto be added be the top two values of the operand stack, pushed
there by previousinstructions. Both of thei nt values are popped from the operand
stack. They are added, and their sum is pushed back onto the operand stack.
Subcomputations may be nested on the operand stack, resulting in values that can
be used by the encompassing computation.

Each entry on the operand stack can hold avalue of any JavaVirtual Machinetype,
including avalue of type|l ong or type doubl e.

Values from the operand stack must be operated upon in ways appropriate to their
types. It isnot possible, for example, to pushtwoi nt valuesand subsequently treat
them as al ong or to push two f | oat values and subseguently add them with an
iadd instruction. A small number of Java Virtual Machine instructions (the dup
instructions (8dup) and swap (8swap)) operate on run-time dataareas asraw values
without regard to their specific types; these instructions are defined in such away
that they cannot be used to modify or break up individual values. Theserestrictions
on operand stack manipulation are enforced through cl ass fileverification (84.10).

2.6

17

2.6

18

Frames THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

At any point in time, an operand stack has an associated depth, where a value of
type | ong or doubl e contributes two units to the depth and a value of any other
type contributes one unit.

2.6.3 DynamicLinking

Each frame (82.6) contains a reference to the run-time constant pool (82.5.5) for
the type of the current method to support dynamic linking of the method code.
The cl ass file code for a method refers to methods to be invoked and variables
to be accessed via symboalic references. Dynamic linking translates these symbolic
method references into concrete method references, loading classes as necessary to
resolve as-yet-undefined symbols, and trandl ates variabl e accessesinto appropriate
offsetsin storage structures associated with the run-time |l ocation of these variabl es.

Thislate binding of the methods and variables makes changesin other classes that
amethod uses less likely to break this code.

2.6.4 Normal Method Invocation Completion

A method invocation completes normally if that invocation does not cause an
exception (8§2.10) to bethrown, either directly from the Java Virtual Machine or as
aresult of executing an explicit t hr ow statement. If the invocation of the current
method completes normally, then avalue may be returned to the invoking method.
This occurs when the invoked method executes one of the return instructions
(82.11.8), the choice of which must be appropriate for the type of the value being
returned (if any).

The current frame (82.6) is used in this case to restore the state of the invoker,
including its local variables and operand stack, with the program counter of the
invoker appropriately incremented to skip past the method invocation instruction.
Execution then continues normally in the invoking method's frame with the
returned value (if any) pushed onto the operand stack of that frame.

2.6.5 Abrupt Method Invocation Completion

A method invocation completes abruptly if execution of a Java Virtua Machine
instruction within the method causes the Java Virtual Machine to throw an
exception (82.10), and that exception is not handled within the method. Execution
of an athrow instruction (8athrow) also causes an exception to be explicitly thrown
and, if the exception is not caught by the current method, results in abrupt method

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Representation of Objects

invocation completion. A method invocation that completes abruptly never returns
avaueto itsinvoker.

2.7 Representation of Objects

The Java Virtual Machine does not mandate any particular internal structure for
objects.

In some of Oracle's implementations of the Java Virtual Machine, a reference to a class
instance is a pointer to a handle that isitself a pair of pointers: one to a table containing
the methods of the object and a pointer to the O ass object that represents the type of the
object, and the other to the memory allocated from the heap for the object data.

2.8 Floating-Point Arithmetic

The Java Virtual Machine incorporates a subset of the floating-point arithmetic
specified in IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std.
754-1985, New Y ork).

2.8.1 JavaVirtual Machine Floating-Point Arithmetic and | EEE 754

The key differences between the floating-point arithmetic supported by the Java
Virtua Machine and the |EEE 754 standard are:

The floating-point operations of the Java Virtual Machine do not throw
exceptions, trap, or otherwise signal the IEEE 754 exceptional conditions of
invalid operation, division by zero, overflow, underflow, or inexact. The Java
Virtual Machine has no signaling NaN value.

The Java Virtual Machine does not support |IEEE 754 signaling floating-point
comparisons.

Therounding operations of the JavaVirtual Machine always use | EEE 754 round
to nearest mode. Inexact results are rounded to the nearest representable value,
with ties going to the value with a zero least-significant bit. This is the IEEE
754 default mode. But Java Virtual Machine instructions that convert values
of floating-point types to values of integral types round toward zero. The Java
Virtual Machine does not give any means to change the floating-point rounding
mode.

2.7

19

2.8

20

Floating-Point Arithmetic THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

» The JavaVirtua Machine does not support either the |EEE 754 single extended
or double extended format, except insofar as the double and double-extended-
exponent value sets may be said to support the single extended format. The
float-extended-exponent and double-extended-exponent value sets, which may
optionally be supported, do not correspond to the values of the IEEE 754
extended formats: the IEEE 754 extended formats require extended precision as
well as extended exponent range.

2.8.2 Floating-Point Modes

Every method has a floating-point mode, which is either FP-strict or not FP-
strict. The floating-point mode of a method is determined by the setting of the
ACC_STRI CT flag of the access_f 1 ags item of the met hod_i nf o structure (84.6)
defining the method. A method for which thisflag is set is FP-strict; otherwise, the
method is not FP-strict.

Note that this mapping of the ACC_STRI CT flag implies that methods in classes compiled
by a compiler in IDK release 1.1 or earlier are effectively not FP-strict.

We will refer to an operand stack as having a given floating-point mode when the
method whose invocation created the frame containing the operand stack has that
floating-point mode. Similarly, we will refer to aJava Virtual Machine instruction
as having a given floating-point mode when the method containing that instruction
has that floating-point mode.

If afloat-extended-exponent value set is supported (8§2.3.2), values of typef | oat
on an operand stack that is not FP-strict may range over that value set except
where prohibited by value set conversion (82.8.3). If a double-extended-exponent
value set is supported (82.3.2), values of type doubl e on an operand stack that is
not FP-strict may range over that value set except where prohibited by value set
conversion.

In all other contexts, whether on the operand stack or elsewhere, and regardless
of floating-point mode, floating-point values of typef | oat and doubl e may only
range over the float value set and double value set, respectively. In particular, class
and instance fields, array elements, local variables, and method parameters may
only contain values drawn from the standard value sets.

2.8.3 Value Set Conversion

Animplementation of the JavaVirtual Machine that supports an extended floating-
point value set is permitted or required, under specified circumstances, to map a

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Floating-Point Arithmetic

value of the associated floating-point type between the extended and the standard
value sets. Such a value set conversion is not a type conversion, but a mapping
between the value sets associated with the same type.

Wherevalue set conversion isindicated, an implementation is permitted to perform
one of the following operations on avalue:

 If thevalueisof typef! oat and isnot an element of the float value set, it maps
the value to the nearest element of the float value set.

* If the valueis of type doubl e and is not an element of the double value set, it
maps the value to the nearest element of the double value set.

Inaddition, where value set conversionisindicated, certain operationsare required:

» Suppose execution of a Java Virtua Machine instruction that is not FP-strict
causes avalue of typef | oat to be pushed onto an operand stack that is FP-strict,
passed as a parameter, or stored into alocal variable, afield, or an element of an
array. If the value is not an element of the float value set, it maps the value to
the nearest element of the float value set.

» Suppose execution of a Java Virtua Machine instruction that is not FP-strict
causes a value of type doubl e to be pushed onto an operand stack that is FP-
strict, passed as a parameter, or stored into alocal variable, afield, or an element
of an array. If the value is not an element of the double value set, it maps the
value to the nearest el ement of the double value set.

Such required value set conversions may occur as a result of passing a parameter
of a floating-point type during method invocation, including native method
invocation; returning avalue of afloating-point type from amethod that is not FP-
strict to amethod that is FP-strict; or storing a value of afloating-point typeinto a
local variable, afield, or an array in a method that is not FP-strict.

Not al values from an extended-exponent value set can be mapped exactly to a
valuein the corresponding standard value set. If avalue being mapped istoo large
to berepresented exactly (itsexponent isgreater than that permitted by the standard
value set), it is converted to a (positive or negative) infinity of the corresponding
type. If avalue being mapped istoo small to be represented exactly (its exponent
issmaller than that permitted by the standard value set), it is rounded to the nearest
of arepresentable denormalized value or zero of the same sign.

Value set conversion preserves infinities and NaNs and cannot change the sign of
the value being converted. Value set conversion has no effect on avalue that is not
of afloating-point type.

2.8

21

29

22

Special Methods THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.9 Special Methods

2.9.1 InstanceInitialization M ethods

A class has zero or more instance initialization methods, each typicaly
corresponding to a constructor written in the Java programming language.

A method is an instance initiaization method if al of the following are true:

* Itisdefined in aclass (not an interface).

* It hasthe special name<i ni t >.

* Itisvoid (84.3.3).

In a class, any non-voi d method named <i ni t > is not an instance initialization
method. In an interface, any method named <i ni t > isnot an instanceinitialization
method. Such methods cannot be invoked by any Java Virtual Machine instruction
(84.4.2, 84.9.2) and are rejected by format checking (84.6, §4.8).

The declaration and use of an instance initialization method is constrained by
the Java Virtual Machine. For the declaration, the method's access_fl ags item
and code array are constrained (84.6, 84.9.2). For a use, an instance initialization
method may be invoked only by the invokespecial instruction on an uninitialized
classinstance (84.10.1.9).

Because the name <i ni t > is not avalid identifier in the Java programming language, it
cannot be used directly in a program written in the Java programming language.

2.9.2 ClassInitialization Methods

A class or interface has at most one class or interface initialization method and is
initialized by the Java Virtua Machine invoking that method (85.5).

A methodisaclassor interfaceinitialization method if all of thefollowing aretrue:
* It hasthe special name <cl i ni t >.
* Itisvoid (84.3.3).

* In aclass file whose version number is 51.0 or above, the method has its
ACC_STATI C flag set and takes no arguments (84.6).

The requirement for ACC_STATI C was introduced in Java SE 7, and for taking no
argumentsin Java SE 9. In aclass file whose version number is 50.0 or bel ow, a method
named <cl i ni t > that isvoi d is considered the class or interface initialization method
regardless of the setting of its ACC_STATI Cflag or whether it takes arguments.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Exceptions

Other methods named <clinit> in a class file are not class or interface
initialization methods. They are never invoked by the Java Virtual Machine itself,
cannot be invoked by any Java Virtual Machine instruction (84.9.1), and are
rejected by format checking (84.6, §4.8).

Because the name <cl i ni t > isnot avalid identifier in the Java programming language, it
cannot be used directly in a program written in the Java programming language.

2.9.3 Signature Polymorphic M ethods

A method is signature polymorphic if all of the following are true:

e It is declared in the java.lang.invoke. MethodHandle class or the
j ava. |l ang. i nvoke. Var Handl e class.

* It hasasingle formal parameter of type j ect[] .
* It hasthe ACC_VARARGS and ACC_NATI VE flags set.

The Java Virtual Machine gives special treatment to signature polymorphic
methods in the invokevirtual instruction (8invokevirtual), in order to effect
invocation of a method handle or to effect access to a variable referenced by an
instance of j ava. | ang. i nvoke. Var Handl e.

A method handle is a dynamically strongly typed and directly executable
referenceto an underlying method, constructor, field, or similar low-level operation
(85.4.3.5), with optional transformations of argumentsor return values. Aninstance
of j ava. | ang. i nvoke. Var Handl e is a dynamically strongly typed reference to a
variable or family of variables, including st ati ¢ fields, non-st at i ¢ fields, array
elements, or components of an off-heap data structure. Seethej ava. | ang. i nvoke
package in the Java SE Platform API for more information.

2.10 Exceptions

An exception in the Java Virtual Machineisrepresented by an instance of the class
Thr owabl e or one of its subclasses. Throwing an exception resultsin an immediate
nonlocal transfer of control from the point where the exception was thrown.

M ost exceptions occur synchronously asaresult of an action by thethread inwhich
they occur. An asynchronous exception, by contrast, can potentially occur at any
point in the execution of aprogram. The JavaVirtua Machine throws an exception
for one of three reasons:

2.10

23

2.10 Exceptions THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

« An athrow instruction (8athrow) was executed.

* An abnormal execution condition was synchronously detected by the Java
Virtual Machine. These exceptions are not thrown at an arbitrary point in the
program, but only synchronously after execution of an instruction that either:

— Specifies the exception as a possible result, such as:

> When the instruction embodies an operation that violates the semantics of
the Java programming language, for example indexing outside the bounds
of an array.

> When an error occursin loading or linking part of the program.

— Causes some limit on aresource to be exceeded, for example when too much
memory is used.

» An asynchronous exception occurred because:
— The st op method of class Thr ead or Thr eadG oup Was invoked, or
— Aninternal error occurred in the Java Virtual Machine implementation.

The st op methods may be invoked by one thread to affect another thread or al
the threadsin aspecified thread group. They are asynchronous because they may
occur at any point in the execution of the other thread or threads. An internal
error is considered asynchronous (86.3).

A Java Virtual Machine may permit a small but bounded amount of execution to
occur before an asynchronous exception isthrown. Thisdelay is permitted to alow
optimized code to detect and throw these exceptions at points where it is practical
to handle them while obeying the semantics of the Java programming language.

A simple implementation might poll for asynchronous exceptions at the point of each
control transfer instruction. Since a program has a finite size, this provides a bound
on the total delay in detecting an asynchronous exception. Since no asynchronous
exception will occur between control transfers, the code generator has some flexibility
to reorder computation between control transfers for greater performance. The paper
Polling Efficiently on Stock Hardware by Marc Feeley, Proc. 1993 Conference on
Functional Programming and Computer Architecture, Copenhagen, Denmark, pp. 179—
187, isrecommended as further reading.

Exceptions thrown by the Java Virtual Machine are precise: when the transfer of
control takes place, al effects of the instructions executed before the point from
which the exception isthrown must appear to have taken place. No instructionsthat
occur after the point from which the exception is thrown may appear to have been
evaluated. If optimized code has speculatively executed some of the instructions

24

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Exceptions

which follow the point at which the exception occurs, such code must be prepared
to hide this specul ative execution from the user-visible state of the program.

Each method in the Java Virtual Machine may be associated with zero or more
exception handlers. An exception handler specifiesthe range of offsetsinto the Java
Virtual Machine code implementing the method for which the exception handler
is active, describes the type of exception that the exception handler is able to
handle, and specifies the location of the code that is to handle that exception. An
exception matches an exception handler if the offset of the instruction that caused
the exception isin the range of offsets of the exception handler and the exception
type is the same class as or a subclass of the class of exception that the exception
handler handles. When an exception is thrown, the Java Virtual Machine searches
for a matching exception handler in the current method. If a matching exception
handler is found, the system branches to the exception handling code specified by
the matched handler.

If no such exception handler is found in the current method, the current method
invocation completes abruptly (82.6.5). On abrupt completion, the operand stack
and local variables of the current method invocation are discarded, and its frame
is popped, reinstating the frame of the invoking method. The exception is then
rethrown in the context of the invoker's frame and so on, continuing up the method
invocation chain. If no suitable exception handler is found before the top of the
method invocation chain is reached, the execution of the thread in which the
exception was thrown is terminated.

The order in which the exception handlers of a method are searched for amatchis
important. Withinacl ass file, the exception handlersfor each method are stored in
atable(84.7.3). At runtime, when an exception isthrown, the Java Virtual Machine
searches the exception handlers of the current method in the order that they appear
in the corresponding exception handler table in the cl ass file, starting from the
beginning of that table.

Note that the Java Virtua Machine does not enforce nesting of or any ordering
of the exception table entries of a method. The exception handling semantics of
the Java programming language are implemented only through cooperation with
the compiler (83.12). When cl ass files are generated by some other means, the
defined search procedure ensures that al Java Virtual Machine implementations
will behave consistently.

2.10

25

211

26

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.11 Instruction Set Summary

A Java Virtual Machine instruction consists of a one-byte opcode specifying
the operation to be performed, followed by zero or more operands supplying
arguments or data that are used by the operation. Many instructions have no
operands and consist only of an opcode.

Ignoring exceptions, the inner loop of a Java Virtual Machine interpreter is
effectively

do {
atom cal ly calculate pc and fetch opcode at pc;
if (operands) fetch operands;
execute the action for the opcode;

} while (there is nore to do);

The number and size of the operands are determined by the opcode. If an operand
ismorethan one byte in size, then it is stored in big-endian order - high-order byte
first. For example, an unsigned 16-bit index into the local variablesis stored astwo
unsigned bytes, bytel and byte2, such that its valueis (bytel << 8) | byte2.

The bytecode instruction stream is only single-byte aligned. The two exceptions
are the lookupswitch and tableswitch instructions (8lookupswitch, Stableswitch),
which are padded to force internal alignment of some of their operands on 4-byte
boundaries.

Thedecisionto limit the JavaVirtual Machine opcode to abyte and to forgo data alignment
within compiled code reflects aconscious biasin favor of compactness, possibly at the cost
of some performance in naive implementations. A one-byte opcode a so limits the size of
the instruction set. Not assuming data alignment means that immediate data larger than a
byte must be constructed from bytes at run time on many machines.

2111 Typesand the Java Virtual Machine

Most of the instructions in the Java Virtual Machine instruction set encode type
information about the operations they perform. For instance, the iload instruction
(Siload) loads the contents of a local variable, which must be an i nt, onto the
operand stack. Thefload instruction (§fload) doesthe samewith af | oat value. The
two instructions may have identical implementations, but have distinct opcodes.

For the majority of typed instructions, theinstruction type is represented explicitly
in the opcode mnemonic by aletter: i for ani nt operation, | for | ong, sfor short,
b for byte, c for char, f for fl oat, d for doubl e, and a for r ef erence. Some
instructions for which the type is unambiguous do not have a type letter in their
mnemonic. For instance, arraylength always operates on an object that isan array.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

Some instructions, such as goto, an unconditional control transfer, do not operate
on typed operands.

Given the Java Virtua Machine's one-byte opcode size, encoding types into
opcodes places pressure onthe design of itsinstruction set. If each typed instruction
supported al of the Java Virtual Machin€e's run-time data types, there would be
more instructions than could be represented in a byte. Instead, the instruction set
of the Java Virtual Machine provides a reduced level of type support for certain
operations. In other words, the instruction set is intentionally not orthogonal.
Separate instructions can be used to convert between unsupported and supported
data types as necessary.

Table 2.11.1-A summarizes the type support in the instruction set of the Java
Virtual Machine. A specificinstruction, with typeinformation, isbuilt by replacing
the T in the instruction template in the opcode column by the letter in the type
column. If the type column for some instruction template and type is blank, then
no instruction exists supporting that type of operation. For instance, thereisaload
instruction for typei nt , iload, but there is no load instruction for type byt e.

Note that most instructions in Table 2.11.1-A do not have forms for the integral
types byt e, char, and shor t . None have forms for the bool ean type. A compiler
encodes|oads of literal values of typesbyt e andshor t using JavaVirtual Machine
instructions that sign-extend those values to values of typeint at compile-time
or run-time. Loads of literal values of types bool ean and char are encoded using
instructions that zero-extend the literal to a value of typei nt at compile-time or
run-time. Likewise, loads from arrays of values of typebool ean, byt e, short , and
char areencoded using Java Virtual Machineinstructionsthat sign-extend or zero-
extend the values to values of typei nt . Thus, most operations on values of actual
types bool ean, byt e, char, and short are correctly performed by instructions
operating on values of computational typei nt .

211

27

211

28

Instruction Set Summary

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Table2.11.1-A. Type support in the Java Virtual Machineinstruction set

opcode byte |short |int long |float |doubl elchar ref erence
Tipush bipush |sipush

Tconst iconst Iconst |fconst |dconst aconst
Tload iload lload |fload dload aload
Tstore istore Istore |fstore |dstore astore
Tinc iinc

Taload baload |saload |iaload laload |(faload |daload |caload |aaload
Tastore bastore |sastore |iastore lastore |fastore |dastore |castore |aastore
Tadd iadd ladd fadd dadd

Tsub isub Isub fsub dsub

Tmul imul Imul frnul dmul

Tdiv idiv Idiv fdiv ddiv

Trem irem Irem frem drem

Tneg ineg Ineg fneg dneg

Tshl ishl Ishl

Tshr ishr Ishr

Tushr iushr lushr

Tand iand land

Tor ior lor

Txor ixor Ixor

i2T i2b i2s i2 i2f i2d

12T 12i 12f 12d

f2T f2i f2l fad

a2t dzi a2l d2f

Temp lcmp

Templ fcmpl dempl

Tempg fcmpg |dempg

if_TcmpOP if_icmpOP if_acmpOP
Treturn ireturn Ireturn |(freturn |dreturn areturn

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

The mapping between JavaVirtual Machine actual typesand Java Virtual Machine
computational typesis summarized by Table 2.11.1-B.

Certain Java Virtua Machine instructions such as pop and swap operate on the
operand stack without regard to type; however, such instructions are constrained
to use only on values of certain categories of computational types, also given in
Table2.11.1-B.

Table 2.11.1-B. Actual and Computational typesin the Java Virtual Machine

Actual type Computational type Category
bool ean i nt 1
byt e i nt 1
char i nt 1
short i nt 1
i nt i nt 1
fl oat fl oat 1
reference reference 1
ret ur nAddr ess ret ur nAddr ess 1
| ong | ong 2
doubl e doubl e 2

2.11.2 Load and Storelnstructions

Theload and store instructions transfer values between the local variables (82.6.1)
and the operand stack (8§2.6.2) of aJava Virtual Machine frame (82.6):

* Load a loca variable onto the operand stack: iload, iload <n>, lload,
lload <n>, fload, fload <n>, dload, dload_<n>, aload, aload <n>.

 Store a value from the operand stack into a local variable: istore, istore <n>,
Istore, Istore_<n>, fstore, fstore_<n>, dstore, dstore_<n>, astore, astore <n>.

» Load a constant on to the operand stack: bipush, sipush, Idc, Idc_w, 1dc2_w,
aconst_null, iconst_ml, iconst_<i>, lconst_<I>, fconst_<f>, dconst_<d>.

» Gain accessto morelocal variablesusing awider index, or to alarger immediate
operand: wide.

Instructions that access fields of objects and elements of arrays (§2.11.5) aso
transfer data to and from the operand stack.

211

29

211

30

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Instruction mnemonics shown above with trailing letters between angle brackets
(for instance, iload_<n>) denote families of instructions (with membersiload_0,
iload 1, iload 2, and iload_3 in the case of iload <n>). Such families of
instructionsare specializations of an additional genericinstruction (iload) that takes
one operand. For the specialized instructions, the operand isimplicit and does not
need to be stored or fetched. The semantics are otherwise the same (iload_0 means
the same thing as iload with the operand 0). The letter between the angle brackets
specifies the type of the implicit operand for that family of instructions: for <n>,
anonnegative integer; for <i>, anint ; for <I>, al ong; for <f>, afl oat ; and for
<d>, adoubl e. Formsfor typei nt are used in many cases to perform operations
on values of typebyt e, char, and short (8§2.11.1).

This notation for instruction families is used throughout this specification.

2.11.3 ArithmeticInstructions

The arithmetic instructions compute a result that is typically a function of two
values on the operand stack, pushing the result back on the operand stack. There
aretwo main kinds of arithmetic instructions: those operating on integer values and
those operating on floating-point values. Within each of these kinds, the arithmetic
instructions are specialized to Java Virtua Machine numeric types. There is no
direct support for integer arithmetic on values of the byt e, short, and char types
(82.11.1), or for values of the bool ean type; those operations are handled by
instructions operating on type i nt. Integer and floating-point instructions also
differ intheir behavior on overflow and divide-by-zero. The arithmetic instructions
areasfollows:

+ Add: iadd, ladd, fadd, dadd.

* Subtract: isub, Isub, fsub, dsub.

o Multiply: imul, Imul, fmul, dmul.

» Divide: idiv, Idiv, fdiv, ddiv.

¢ Remainder: irem, Irem, frem, drem.

* Negate: ineg, Ineg, fneg, dneg.

e Shift: ishl, ishr, iushr, Ishl, Ishr, lushr.
» BitwiseOR:ior, lor.

» Bitwise AND: iand, land.

» Bitwise exclusive OR: ixor, Ixor.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

* Local variableincrement: iinc.
» Comparison: dcmpg, dcmpl, fcmpg, fempl, lemp.

The semantics of the Java programming language operators on integer and floating-
point values (JLS 84.2.2, JLS §4.2.4) are directly supported by the semantics of
the Java Virtual Machine instruction set.

The Java Virtual Machine does not indicate overflow during operations on integer
datatypes. The only integer operations that can throw an exception are the integer
divide instructions (idiv and Idiv) and the integer remainder instructions (iremand
Irem), which throw an Ari t hnet i cExcept i on if the divisor is zero.

JavaVirtual Machine operations on floating-point numbers behave as specified in
IEEE 754. In particular, the Java Virtual Machine requires full support of IEEE
754 denormalized floating-point numbers and gradual underflow, which make it
easier to prove desirable properties of particular numerical algorithms.

The Java Virtual Machine requiresthat floating-point arithmetic behave asif every
floating-point operator rounded its floating-point result to the result precision.
Inexact results must be rounded to the representable value nearest to the infinitely
precise result; if the two nearest representable values are equally near, the one
having a least significant bit of zero is chosen. This is the IEEE 754 standard's
default rounding mode, known as round to nearest mode.

The Java Virtual Machine uses the |IEEE 754 round towards zero mode when
converting a floating-point value to an integer. This results in the number being
truncated; any bits of the significand that represent thefractional part of the operand
value are discarded. Round towards zero mode chooses asitsresult the type'svalue
closest to, but no greater in magnitude than, the infinitely precise result.

The Java Virtua Machine's floating-point operators do not throw run-time
exceptions (not to be confused with IEEE 754 floating-point exceptions). An
operation that overflows produces a signed infinity, an operation that underflows
produces a denormalized value or a signed zero, and an operation that has no
mathematically definite result produces NaN. All numeric operations with NaN as
an operand produce NaN as aresult.

Comparisons on values of type Iong (Icmp) perform a signed comparison.
Comparisons on values of floating-point types (dcmpg, dempl, fempg, fempl) are
performed using | EEE 754 nonsignaling comparisons.

211

31

211

32

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.11.4 TypeConversion Instructions

The type conversion instructions allow conversion between Java Virtual Machine
numeric types. These may be used to implement explicit conversionsin user code
or to mitigate the lack of orthogonality in the instruction set of the Java Virtual
Machine.

The Java Virtual Machine directly supports the following widening numeric
CONVersions:

* int tolong, fl oat, Or doubl e
* longtofl oat Or doubl e
e f| oat tOdoubl e

Thewidening numeric conversion instructionsarei2l, i2f, i2d, 12f, 12d, and f2d. The
mnemonics for these opcodes are straightforward given the naming conventions
for typed instructions and the punning use of 2 to mean "to." For instance, thei2d
instruction convertsani nt valueto adoubl e.

Most widening numeric conversions do not lose information about the overal
magnitude of anumeric value. Indeed, conversionswidening fromi nt tol ong and
i nt to doubl e do not lose any information at all; the numeric value is preserved
exactly. Conversions widening from f1 oat to doubl e that are FP-strict (82.8.2)
also preserve the numeric value exactly; only such conversions that are not FP-
strict may lose information about the overall magnitude of the converted value.

Conversionsfromint tofl oat, or from! ong tofl oat, or from | ong to doubl e,
may lose precision, that is, may lose some of the least significant bits of the value;
theresulting floating-point valueisacorrectly rounded version of theinteger value,
using |EEE 754 round to nearest mode.

Degspite the fact that loss of precision may occur, widening numeric conversions
never cause the Java Virtua Machine to throw a run-time exception (not to be
confused with an |EEE 754 floating-point exception).

A widening numeric conversion of ani nt toal ong simply sign-extendsthe two's-
complement representation of thei nt value to fill the wider format. A widening
numeric conversion of achar to an integral type zero-extends the representation
of the char vaueto fill the wider format.

Note that widening numeric conversions do not exist from integral types byt e,
char, and short totypeint. Asnotedin §2.11.1, values of type byt e, char, and
short areinternally widened to typei nt , making these conversionsimplicit.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

The Java Virtual Machine also directly supports the following narrowing numeric
CONversions:

* int tobyte, short, Or char

* longtoint

e float tOoint Orlong

e doubl e toint, | ong, Of f1 oat

The narrowing numeric conversion instructions are i2b, i2¢, i2s, 12i, f2i, f2l, d2i,
d2l, and d2f. A narrowing numeric conversion can result in a value of different
sign, adifferent order of magnitude, or both; it may thereby lose precision.

A narrowing numeric conversion of anint or | ong to an integral type T ssimply
discards all but the n lowest-order bits, where n is the number of bits used to
represent type T. This may cause the resulting value not to have the same sign as
the input value.

In a narrowing numeric conversion of afloating-point value to an integral type T,
where T iseitherint or I ong, the floating-point value is converted as follows:

* If thefloating-point valueisNaN, theresult of theconversionisani nt orl ong 0.

» Otherwise, if the floating-point value is not an infinity, the floating-point value
isrounded to aninteger value V using | EEE 754 round towards zero mode. There
are two cases:

— If Tisl ong and thisinteger value can be represented as al ong, then the result
isthel ong value V.

— If Tisof typeint and this integer value can be represented as an i nt , then
theresult isthei nt value V.

» Otherwise:

— Either the value must be too small (a negative value of large magnitude or
negative infinity), and the result isthe smallest representabl e value of typei nt
or | ong.

— Or the value must be too large (a positive value of large magnitude or positive
infinity), and the result is the largest representable value of typei nt or | ong.

A narrowing numeric conversion from doubl e to f1 oat behaves in accordance
with IEEE 754. The result is correctly rounded using |EEE 754 round to nearest
mode. A value too small to be represented as afl oat is converted to a positive
or negative zero of type f1 oat ; a value too large to be represented as afl oat is

211

33

211

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

converted to a positive or negative infinity. A doubl e NaN is aways converted to
afl oat NaN.

Despitethefact that overflow, underflow, or [oss of precision may occur, narrowing
conversions among humeric types never cause the Java Virtual Machineto throw a
run-time exception (not to be confused with an | EEE 754 floating-point exception).

2115 Object Creation and Manipulation

Although both class instances and arrays are objects, the Java Virtual Machine
creates and manipulates class instances and arrays using distinct sets of
instructions:

» Create anew classinstance: new.
» Create anew array: newarray, anewarray, multianewarray.

» Access fields of classes (static fields, known as class variables) and fields
of class instances (non-st ati ¢ fields, known as instance variables): getstatic,
putstatic, getfield, putfield.

 Load an array component onto the operand stack: baload, caload, saload, iaload,
|aload, faload, daload, aaload.

» Store a value from the operand stack as an array component: bastore, castore,
sastore, iastore, lastore, fastore, dastore, aastore.

» Get the length of array: arraylength.

» Check properties of class instances or arrays: instanceof, checkcast.

2.11.6 Operand Stack Management I nstructions

A number of instructions are provided for the direct manipulation of the operand
stack: pop, pop2, dup, dup2, dup X1, dup2_x1, dup_x2, dup2 x2, swap.

2.11.7 Control Transfer Instructions

The contral transfer instructions conditionally or unconditionally cause the Java
Virtual Machine to continue execution with an instruction other than the one
following the control transfer instruction. They are:

» Conditional branch: ifeq, ifne, iflt, ifle, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if_icmpne, if_icmplt, if_icmple, if_icmpgt if_icmpge, if_acmpeq, if_acmpne.

» Compound conditional branch: tableswitch, lookupswitch.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

» Unconditional branch: goto, goto_w, jsr, jsr_w, ret.

The Java Virtual Machine has distinct sets of instructions that conditionally
branch on comparison with data of i nt and r ef er ence types. It also has distinct
conditional branch instructions that test for the null reference and thus it is not
required to specify aconcrete value for nul | (82.4).

Conditional branches on comparisons between data of types bool ean, byte,
char, and short are performed using i nt comparison instructions (§2.11.1). A
conditional branch on a comparison between data of types| ong, f I oat , Or doubl e
is initiated using an instruction that compares the data and produces an i nt
result of the comparison (82.11.3). A subsequent i nt comparison instruction tests
this result and effects the conditional branch. Because of its emphasis on i nt
comparisons, the Java Virtual Machine provides arich complement of conditional
branch instructions for typei nt .

All'i nt conditional control transfer instructions perform signed comparisons.

2.11.8 Method Invocation and Return Instructions

The following five instructions invoke methods:

* invokevirtual invokes an instance method of an object, dispatching on the
(virtual) type of the object. This is the norma method dispatch in the Java
programming language.

 invokeinterface invokes an interfface method, searching the methods
implemented by the particular run-time object to find the appropriate method.

* invokespecial invokes an instance method requiring special handling, whether
an instance initialization method (82.9.1), a pri vat e method, or a superclass
method.

* invokestatic invokes aclass (st at i ¢) method in a named class.

* invokedynamic invokes the method which is the target of the call site object
bound to the invokedynamic instruction. The call site object was bound to a
specific lexical occurrence of the invokedynamic instruction by the Java Virtua
Machine as aresult of running a bootstrap method before the first execution of
the instruction. Therefore, each occurrence of an invokedynamic instruction has
aunique linkage state, unlike the other instructions which invoke methods.

The method return instructions, which are distinguished by return type, areireturn
(used toreturn values of typebool ean, byt e, char, short, ori nt), lreturn, freturn,
dreturn, and areturn. In addition, the return instruction is used to return from

211

35

211

36

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

methods declared to be void, instance initialization methods, and class or interface
initialization methods.

2119 Throwing Exceptions

An exception isthrown programmatically using the athrow instruction. Exceptions
can also be thrown by various Java Virtual Machine instructions if they detect an
abnormal condition.

2.11.10 Synchronization

The JavaVirtual Machine supports synchronization of both methods and sequences
of instructions within amethod by a single synchronization construct: the monitor.

Method-level synchronizationisperformedimplicitly, aspart of method invocation
and return (82.11.8). A synchroni zed method is distinguished in the run-time
constant pool's net hod_i nf o structure (84.6) by the ACC_SYNCHRONI ZED flag,
which is checked by the method invocation instructions. When invoking a method
for which ACC_SYNCHRONI ZED i S Set, the executing thread enters amonitor, invokes
the method itself, and exits the monitor whether the method invocation completes
normally or abruptly. During the time the executing thread owns the monitor,
no other thread may enter it. If an exception is thrown during invocation of
the synchroni zed method and the synchr oni zed method does not handle the
exception, the monitor for the method is automatically exited before the exception
isrethrown out of the synchr oni zed method.

Synchronization of sequences of instructions is typically used to encode the
synchr oni zed block of the Javaprogramming language. The JavaVirtual Machine
supplies the monitorenter and monitorexit instructions to support such language
constructs. Proper implementation of synchr oni zed blocks requires cooperation
from a compiler targeting the Java Virtual Machine (83.14).

Structured locking is the situation when, during a method invocation, every exit
on a given monitor matches a preceding entry on that monitor. Since there is
no assurance that all code submitted to the Java Virtual Machine will perform
structured locking, implementations of the Java Virtual Machine are permitted but
not required to enforce both of the following two rules guaranteeing structured
locking. Let T be athread and M be amonitor. Then:

1. The number of monitor entries performed by T on M during a method
invocation must equal the number of monitor exits performed by T on M during
the method invocation whether the method invocation completes normally or
abruptly.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Class Libraries

2. At no point during a method invocation may the number of monitor exits
performed by T on M since the method invocation exceed the number of
monitor entries performed by T on M since the method invocation.

Note that the monitor entry and exit automatically performed by the Java Virtua
Machine when invoking a synchr oni zed method are considered to occur during
the calling method's invocation.

2.12 ClassLibraries

The Java Virtual Machine must provide sufficient support for the implementation
of the classlibraries of the Java SE Platform. Some of the classes in these libraries
cannot be implemented without the cooperation of the Java Virtual Machine.

Classes that might require specia support from the Java Virtual Machine include
those that support:

» Reflection, such asthe classesin the packagej ava. | ang. ref | ect and the class
Cl ass.

» Loading and creation of a class or interface. The most obvious example is the
classd assLoader .

* Linking andinitialization of aclassor interface. The example classes cited above
fall into this category as well.

 Security, such as the classes in the package j ava. security and other classes
such as Securi t yManager .

» Multithreading, such asthe class Thr ead.
» Wesk references, such as the classesin the packagej ava. | ang. ref .

Thelist above is meant to beillustrative rather than comprehensive. An exhaustive
list of these classes or of the functionality they provide is beyond the scope of
this specification. See the specifications of the Java SE Platform class libraries for
details.

2.13 Public Design, Private Implementation

Thus far this specification has sketched the public view of the Java Virtua
Machine: thecl ass fileformat and the instruction set. These components are vita

212

37

2.13

38

Public Design, Private Implementation THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

to the hardware-, operating system-, and implementati on-independence of the Java
Virtual Machine. The implementor may prefer to think of them as a means to
securely communicate fragments of programs between hosts each implementing
the Java SE Platform, rather than as a blueprint to be followed exactly.

It is important to understand where the line between the public design and the
private implementation lies. A Java Virtual Machine implementation must be
able to read cl ass files and must exactly implement the semantics of the Java
Virtual Machine code therein. One way of doing this is to take this document
as a gpecification and to implement that specification literally. But it is aso
perfectly feasible and desirable for the implementor to modify or optimize the
implementation within the constraints of thisspecification. Solong asthecl ass file
format can be read and the semantics of its code are maintained, the implementor
may implement these semantics in any way. What is "under the hood" is the
implementor's business, as long as the correct externa interface is carefully
maintained.

There are some exceptions: debuggers, profilers, and just-in-time code generators can each
reguire access to elements of the Java Virtual Machine that are normally considered to
be “under the hood.” Where appropriate, Oracle works with other Java Virtual Machine
implementors and with tool vendors to develop common interfaces to the Java Virtual
Machine for use by such tools, and to promote those interfaces across the industry.

The implementor can use this flexibility to tailor Java Virtua Machine
implementations for high performance, low memory use, or portability. What
makes sense in a given implementation depends on the goals of that
implementation. The range of implementation options includes the following:

» Trandating Java Virtual Machine code at |oad-time or during execution into the
instruction set of another virtual machine.

» Trandating Java Virtual Machine code at load-time or during execution into the
native instruction set of the host CPU (sometimes referred to as just-in-time, or
JIT, code generation).

Theexistence of aprecisely defined virtual machine and object file format need not
significantly restrict the creativity of theimplementor. The JavaVirtual Machineis
designed to support many different implementations, providing new andinteresting
solutions while retaining compatibility between implementations.

CHAPTER3

Compiling for the Java
Virtual Machine

T HE JavaVirtual Machine machineisdesigned to support the Java programming
language. Oracle's JDK software contains a compiler from source code written
in the Java programming language to the instruction set of the Java Virtua
Machine, and a run-time system that implements the Java Virtual Machine itself.
Understanding how one compiler utilizes the Java Virtual Machine is useful to the
prospective compiler writer, aswell asto one trying to understand the Java Virtual
Machine itself. The numbered sections in this chapter are not normative.

Notethat theterm "compiler” is sometimes used when referring to atranslator from
the instruction set of a Java Virtual Machine to the instruction set of a specific
CPU. Oneexample of such atrand ator isajust-in-time (JIT) code generator, which
generates platform-specific instructions only after Java Virtual Machine code has
been loaded. This chapter does not address i ssues associated with code generation,
only those associated with compiling source code written in the Java programming
language to Java Virtual Machine instructions.

3.1 Format of Examples

This chapter consists mainly of examples of source code together with annotated
listings of the Java Virtual Machine code that the j avac compiler in Oracle’ s IDK
release 1.0.2 generates for the examples. The Java Virtual Machine codeiswritten
in the informal “virtual machine assembly language” output by Oracl€e's j avap
utility, distributed with the JDK release. Y ou can usej avap to generate additional
examples of compiled methods.

39

3.2

40

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

The format of the examples should be familiar to anyone who has read assembly
code. Each instruction takes the form:

<i ndex> <opcode> [<operandl> [<operand2>...]] [<conment >]

The <i ndex> istheindex of the opcode of the instruction in the array that contains
the bytes of Java Virtual Machine code for this method. Alternatively, the <i ndex>
may be thought of as abyte offset from the beginning of the method. The <opcode>
is the mnemonic for the instruction's opcode, and the zero or more <oper andN>
are the operands of the instruction. The optional <conment > isgiven in end-of-line
comment syntax:

8 bi push 100 /1 Push int constant 100

Some of the material in the commentsis emitted by j avap; the rest is supplied by
the authors. The <i ndex> prefacing each instruction may be used as the target of
a control transfer instruction. For instance, agot o 8 instruction transfers control
to theinstruction at index 8. Note that the actual operands of Java Virtual Machine
control transfer instructions are offsets from the addresses of the opcodes of those
instructions; these operands are displayed by j avap (and are shown in this chapter)
as more easily read offsetsinto their methods.

We preface an operand representing a run-time constant pool index with a hash
sign and follow theinstruction by acomment identifying the run-time constant pool
item referenced, asin:

10 Ildc #1 /1 Push float constant 100.0
or:
9 i nvokevirtual #4 /1 Method Exanpl e.addTwo(I1)]I

For the purposes of this chapter, we do not worry about specifying details such as
operand sizes.

3.2 Useof Constants, Local Variables, and Control Constructs

JavaVirtual Machine code exhibits a set of general characteristicsimposed by the
JavaVirtual Machine's design and use of types. In the first example we encounter
many of these, and we consider them in some detail.

The spi n method simply spins around an empty for loop 100 times:

void spin() {

COMPILING FOR THE JAVA VIRTUAL MACHINE Use of Constants, Local Variables, and
Control Constructs

int i;
for (i =0; i < 100; i++) {
; /1 Loop body is enpty
}
}

A compiler might compile spi n to:

0 iconst_0O /1 Push int constant 0O

1 istore_1 /1 Store into local variable 1 (i=0)

2 goto 8 /1 First tinme through don't increnent

5 iinc 11 /1 Increnent local variable 1 by 1 (i++)
8 iload_1 /] Push |ocal variable 1 (i)

9 bi push 100 /1 Push int constant 100

11 if_icmplt 5 /1l Conpare and loop if less than (i < 100)
14 return /] Return void when done

The Java Virtual Machine is stack-oriented, with most operations taking one or
more operands from the operand stack of the Java Virtual Machine's current frame
or pushing results back onto the operand stack. A new frame is created each time
a method is invoked, and with it is created a new operand stack and set of local
variables for use by that method (82.6). At any one point of the computation, there
are thus likely to be many frames and equally many operand stacks per thread of
control, corresponding to many nested method invocations. Only the operand stack
in the current frame is active.

The instruction set of the Java Virtual Machine distinguishes operand types by
using distinct bytecodes for operations on its various data types. The method
spi n operates only on values of type i nt. The instructions in its compiled code
chosen to operate on typed data (iconst_0, istore 1, iinc, iload_1, if_icmplt) areall
specialized for typei nt .

The two constants in spi n, 0 and 100, are pushed onto the operand stack using
two different instructions. The o is pushed using an iconst_0 instruction, one of the
family of iconst_<i> instructions. The 100 is pushed using a bipush instruction,
which fetches the value it pushes as an immediate operand.

The Java Virtual Machine frequently takes advantage of the likelihood of certain
operands (i nt constants -1, 0, 1, 2, 3, 4 and 5 in the case of the iconst_<i>
instructions) by making those operands implicit in the opcode. Because the
iconst_0 instruction knows it is going to push ani nt 0, iconst_0 does not need to
store an operand to tell it what value to push, nor doesit need to fetch or decode an
operand. Compiling the push of 0 as bipush 0 would have been correct, but would
have made the compiled code for spi n one byte longer. A ssimple virtual machine
would have also spent additional time fetching and decoding the explicit operand

3.2

41

3.2

42

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

each time around the loop. Use of implicit operands makes compiled code more
compact and efficient.

Theint i inspinisstored asJavaVirtua Machinelocal variable 1. Because most
JavaVirtua Machineinstructions operate on values popped from the operand stack
rather than directly on local variables, instructions that transfer values between
local variables and the operand stack are common in code compiled for the Java
Virtual Machine. These operations also have special support in the instruction
set. In spi n, values are transferred to and from local variables using the istore 1
and iload_1 instructions, each of which implicitly operates on local variable 1.
Theistore_1 instruction pops ani nt from the operand stack and storesit in local
variable 1. Theiload 1 instruction pushes the value in local variable 1 on to the
operand stack.

The use (and reuse) of local variablesis the responsihility of the compiler writer.
The specialized load and store instructions should encourage the compiler writer
to reuse local variables as much as is feasible. The resulting code is faster, more
compact, and uses less space in the frame.

Certain very frequent operations on local variables are catered to specialy by
the Java Virtua Machine. The iinc instruction increments the contents of a local
variable by a one-byte signed value. The iinc instruction in spi n increments the
first local variable (itsfirst operand) by 1 (its second operand). Theiinc instruction
is very handy when implementing looping constructs.

Thef or loop of spi n isaccomplished mainly by these instructions:

5 iinc 11 /1 Increnent local variable 1 by 1 (i++)
8 iload_1 /] Push local variable 1 (i)

9 bi push 100 /1 Push int constant 100

11 if_icmplt 5 /1 Conpare and loop if less than (i < 100)

The bipush instruction pushes the value 100 onto the operand stack as an i nt,
then the if_icmplt instruction pops that value off the operand stack and compares
it against i. If the comparison succeeds (the variable i is less than 100), control
is transferred to index 5 and the next iteration of the f or loop begins. Otherwise,
control passes to the instruction following the if_icmplt.

If the spi n example had used a data type other than i nt for the loop counter,
the compiled code would necessarily change to reflect the different data type. For
instance, if instead of ani nt the spi n example uses adoubl e, as shown:

voi d dspin() {
doubl e i;
for (i =0.0; i <100.0; i++) {
; /1 Loop body is enpty

COMPILING FOR THE JAVA VIRTUAL MACHINE Use of Constants, Local Variables, and 32
Control Constructs

}
the compiled codeis:

Met hod voi d dspin()

0 dconst _0 /1 Push doubl e constant 0.0

1 dstore_1 /1l Store into local variables 1 and 2

2 goto 9 /1 First tine through don't increnent

5 dl oad_1 /1 Push local variables 1 and 2

6 dconst _1 /1 Push double constant 1.0

7 dadd /'l Add; there is no dinc instruction

8 dstore_1 /1 Store result in local variables 1 and 2
9 dl oad_1 /1 Push |l ocal variables 1 and 2

10 ldc2_w #4 /1 Push doubl e constant 100.0

13 dcnpg /] There is no if_dcnplt instruction

14 iflt 5 /| Conpare and loop if less than (i < 100.0)
17 return /] Return void when done

The instructions that operate on typed data are now specialized for type doubl e.
(Theldc2_w instruction will be discussed later in this chapter.)

Recall that doubl e values occupy two local variables, although they are only
accessed using the lesser index of the two local variables. Thisis also the case for
values of typel ong. Again for example,

doubl e doubl eLocal s(doubl e d1, double d2) {
return dl + d2;

}

becomes
Met hod doubl e doubl eLocal s(doubl e, doubl €)
0 dl oad_1 /1 First argument in local variables 1 and 2
1 dl oad_3 /1 Second argunent in local variables 3 and 4
2 dadd
3 dreturn

Note that local variables of the local variable pairs used to store doubl e valuesin
doubl eLocal s must never be manipulated individually.

The JavaVirtual Machine's opcode size of 1 byteresultsin its compiled code being
very compact. However, 1-byte opcodes al'so mean that the Java Virtual Machine
instruction set must stay small. As a compromise, the Java Virtua Machine does
not provide equal support for al data types: it is not completely orthogonal
(Table 2.11.1-A).

For example, the comparison of values of typei nt inthef or statement of example
spi n can be implemented using a single if_icmplt instruction; however, there is

43

3.2

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

no single instruction in the Java Virtua Machine instruction set that performs a
conditional branch on values of type doubl e. Thus, dspi n must implement its
comparison of values of type doubl e using a dcmpg instruction followed by an iflt
instruction.

The Java Virtual Machine provides the most direct support for data of typeint.
This is partly in anticipation of efficient implementations of the Java Virtua
Machine's operand stacks and local variable arrays. It is aso motivated by the
frequency of i nt datain typical programs. Other integral types have less direct
support. There are no byt e, char, or short versions of the store, load, or add
instructions, for instance. Here is the spi n example written using ashort :

void sspin() {
short i;
for (i =0; i < 100; i++) {
; /1 Loop body is enpty
}

}

It must be compiled for the Java Virtual Machine, as follows, using instructions
operating on another type, most likely i nt, converting between short and i nt
valuesasnecessary to ensurethat theresults of operationsonshor t datastay within
the appropriate range:

Met hod voi d sspin()
0 iconst_0O

1 istore_1

2 goto 10

5 iload_1 /1 The short is treated as though an int
6 iconst_1

7 i add

8 i2s /] Truncate int to short

9 istore_1

10 iload_1

11 bipush 100

13 if_icnplt 5

16 return

The lack of direct support for byt e, char, and short types in the Java Virtua
Machine is not particularly painful, because values of those types are internally
promotedtoi nt (byte andshort aresign-extendedtoi nt,char iszero-extended).
Operationson byt e, char, and shor t data can thusbe doneusingi nt instructions.
The only additional cost isthat of truncating the values of i nt operationsto valid
ranges.

COMPILING FOR THE JAVA VIRTUAL MACHINE Arithmetic

Thel ong and floating-point types have an intermediate level of support in the Java
Virtual Machine, lacking only the full complement of conditional control transfer
instructions.

3.3 Arithmetic

The Java Virtual Machine generally does arithmetic on its operand stack. (The
exception is the iinc instruction, which directly increments the value of a local
variable.) For instance, the al i gn2gr ai n method aligns an i nt value to a given
power of 2:

int align2grain(int i, int grain) {
return ((i + grain-1) & ~(grain-1));
}

Operands for arithmetic operations are popped from the operand stack, and
the results of operations are pushed back onto the operand stack. Results of
arithmetic subcomputati ons can thus be made availabl e as operands of their nesting
computation. For instance, the calculation of ~(grain-1) is handled by these
instructions:

5 iload_2 /1 Push grain

6 iconst_1 /1 Push int constant 1
7 i sub /1 Subtract; push result
8 iconst_ml /1 Push int constant -1
9 i xor /1 Do XOR;, push result

First gr ai n- 1 is calculated using the contents of local variable 2 and an immediate
i nt value1. These operandsare popped from the operand stack and their difference
pushed back onto the operand stack. The difference is thusimmediately available
for use as one operand of theixor instruction. (Recall that ~x == - 12x.) Similarly,
the result of the ixor instruction becomes an operand for the subsequent iand
instruction.

The code for the entire method follows:

Met hod int align2grain(int,int)
iload 1

iload_2

i add

iconst 1

i sub

iload_2

iconst 1

i sub

~NOoO O WNEFLO

3.3

45

3.4

46

Accessing the Run-Time Constant Pool COMPILING FOR THE JAVA VIRTUAL MACHINE

8 iconst_ml
9 i xor

10 iand

11 ireturn

3.4 Accessing the Run-Time Constant Pool

Many numeric constants, as well as objects, fields, and methods, are accessed
via the run-time constant pool of the current class. Object access is considered
later (83.8). Data of typesint, | ong, fl oat, and doubl e, as well as references
to instances of class string, are managed using the Idc, Idc_w, and ldc2_w
instructions.

The Idc and Idc_w instructions are used to access values in the run-time constant
pool (including instances of class St ri ng) of types other than doubl e and | ong.
Theldc_w instruction is used in place of Idc only when thereis alarge number of
run-time constant pool items and a larger index is needed to access an item. The
Idc2_w instruction is used to access all values of types doubl e and | ong; thereis
no non-wide variant.

Integral constants of types byte, char, or short, as well as smal i nt values,
may be compiled using the bipush, sipush, or iconst_<i> instructions (83.2).
Certain small floating-point constants may be compiled using the fconst_<f> and
dconst_<d> instructions.

Inall of these cases, compilation is straightforward. For instance, the constantsfor:

voi d useManyNureric() {
int i = 100;
int j = 1000000;
long I'1 1;
long |2 Oxffffffff;
double d = 2. 2;
...do sone cal cul ations..

}
are set up asfollows:

Met hod voi d useManyNuneric()

0 bi push 100 /1 Push small int constant with bipush

2 istore_1

3 I dc #1 /1 Push large int constant (1000000) with |dc
5 istore_2

6 I const _1 /1l Atiny long value uses small fast lconst_1
7 | store_3

8

I dc2_w #6 /1 Push long Oxffffffff (that is, an int -1)

COMPILING FOR THE JAVA VIRTUAL MACHINE More Control Examples

/1 Any | ong constant value can be pushed with |dc2_w
11 Istore 5
13 ldc2_w #8 /1 Push doubl e constant 2.200000

/1 Uncommon doubl e val ues are al so pushed with |dc2_w
16 dstore 7
...do those cal cul ations. .

3.5 MoreControl Examples

Compilation of f or statements was shown in an earlier section (83.2). Most of the
Java programming language's other control constructs (i f - t hen- el se, do, whi | e,
br eak, and cont i nue) are al'so compiled in the obvious ways. The compilation of
swi t ch statementsis handled in a separate section (83.10), as are the compilation
of exceptions (83.12) and the compilation of fi nal | y clauses (83.13).

As afurther example, awhi | e loop is compiled in an obvious way, although the
specific control transfer instructions made available by the Java Virtual Machine
vary by datatype. Asusual, thereis more support for dataof typei nt , for example:

void whilelnt() {
int i =o0;
while (i < 100) {
i ++;
}

}
is compiled to:

Met hod void whilelnt()
iconst_0O
istore_1
goto 8
iinc 11
iload_1
bi push 100
1 if_icnplt 5
4 return

PP OOUOINEFLO

Note that the test of the while statement (implemented using the if icmplt
instruction) is at the bottom of the Java Virtual Machine code for the loop. (This
was also the case in the spi n examples earlier.) The test being at the bottom of the
loop forcesthe use of agoto instruction to get to thetest prior to thefirst iteration of
the loop. If that test fails, and the loop body is never entered, this extrainstruction
is wasted. However, whi | e loops are typically used when their body is expected
to be run, often for many iterations. For subsequent iterations, putting the test at

35

47

3.5

48

More Control Examples COMPILING FOR THE JAVA VIRTUAL MACHINE

the bottom of the loop saves a Java Virtual Machine instruction each time around
the loop: if the test were at the top of the loop, the loop body would need atrailing
goto instruction to get back to the top.

Control constructs involving other data types are compiled in similar ways, but
must use the instructions available for those data types. This leads to somewhat
|ess efficient code because more Java Virtual Machine instructions are needed, for
example:

voi d whil eDoubl e() {
double i = 0.0;
while (i < 100.1) {
i ++;
}

}

is compiled to:
Met hod voi d whi | eDoubl e()
0 dconst _0
1 dstore_1
2 goto 9
5 dl oad_1
6 dconst _1
7 dadd
8 dstore_1
9 dl oad_1
10 ldc2_w #4 /1l Push doubl e constant 100.1
13 dcnpg /1 To conpare and branch we have to use..
14 iflt 5 /1 ...two instructions

17 return

Each floating-point type has two comparison instructions: fcmpl and fcmpg for type
fl oat, and dcmpl and dempg for type doubl e. The variants differ only in their
treatment of NaN. NaN is unordered (8§2.3.2), so al floating-point comparisons
fail if either of their operands is NaN. The compiler chooses the variant of the
comparison instruction for the appropriate type that produces the same result
whether the comparison fails on non-NaN values or encounters a NaN. For
instance:

int | essThan100(double d) {
if (d < 100.0) {
return 1;
} else {
return -1;
}

}

compilesto:

COMPILING FOR THE JAVA VIRTUAL MACHINE More Control Examples

Met hod int | essThanl100(doubl e)

0 dl oad_1

1 ldc2_w #4 /] Push doubl e constant 100.0

4 dcnpg // Push 1 if dis NaN or d > 100.0;
/'l push 0 if d == 100.0

5 ifge 10 /1 Branch on 0 or 1

8 iconst 1

9 ireturn

10 iconst_ml
11 ireturn

If d isnot NaN and islessthan 100. 0, the decmpg instruction pushesani nt -1 onto
the operand stack, and the ifge instruction does not branch. Whether d is greater
than 100. 0 or is NaN, the dcmpg instruction pushes an i nt 1 onto the operand
stack, and the ifge branches. If d is equal to 100. 0, the dcmpg instruction pushes
anint 0 onto the operand stack, and the ifge branches.

The dempl instruction achieves the same effect if the comparison is reversed:

int greaterThanl100(double d) {
if (d > 100.0) {

return 1;
} else {
return -1,
}
}
becomes:
Met hod i nt greater Than100(doubl e)
0 dl oad_1
1 ldc2_w #4 /1 Push doubl e constant 100.0
4 dcnpl // Push -1 if dis NaN or d < 100.0;
/1 push 0 if d == 100.0
5 ifle 10 /1 Branch on 0 or -1
8 iconst_1
9 ireturn

10 iconst_nl
11 ireturn

Once again, whether the comparison fails on a non-NaN value or because it is
passed a NaN, the dempl instruction pushes an i nt value onto the operand stack
that causes the ifle to branch. If both of the dcmp instructions did not exist, one of
the example methods would have had to do more work to detect NaN.

35

49

3.6

50

Receiving Arguments COMPILING FOR THE JAVA VIRTUAL MACHINE

3.6 Receiving Arguments

If n arguments are passed to an instance method, they are received, by convention,
inthelocal variablesnumbered 1 through n of the frame created for the new method
invocation. Theargumentsarereceived in the order they were passed. For example:

int addTwo(int i, int j) {
return i + j;
}
compilesto:
Met hod int addTwo(int,int)
0 iload_1 /] Push value of local variable 1 (i)
1 iload_2 /1 Push value of |ocal variable 2 (j)
2 i add /1 Add; leave int result on operand stack
3 ireturn /] Return int result

By convention, an instance method is passed ar ef er ence to itsinstance in local
variable 0. In the Java programming language the instance is accessible via the
t hi s keyword.

Class (stati ¢) methods do not have an instance, so for them this use of local
variable 0 isunnecessary. A class method starts using local variables at index O. If
theaddTwo method were aclass method, its argumentswould be passed in asimilar
way to thefirst version:

static int addTwoStatic(int i, int j) {
return i + j;
}

compilesto:

Met hod int addTwoStatic(int,int)
0 iload_O

1 iload 1
2 i add

3 ireturn

The only difference is that the method arguments appear starting in local variable
O rather than 1.

COMPILING FOR THE JAVA VIRTUAL MACHINE Invoking Methods

3.7 Invoking Methods

The normal method invocation for a instance method dispatches on the run-
time type of the object. (They are virtual, in C++ terms.) Such an invocation is
implemented using the invokevirtual instruction, which takes as its argument an
index to arun-time constant pool entry giving the internal form of the binary name
of the classtype of the object, the name of the method to invoke, and that method's
descriptor (84.3.3). To invoke the addTwo method, defined earlier as an instance
method, we might write:

int add12and13() {
return addTwo(12, 13);
}
This compilesto:

Met hod int addl2and13()

0 al oad_0 /1 Push local variable 0 (this)

1 bi push 12 /1 Push int constant 12

3 bi push 13 /1 Push int constant 13

5 i nvokevirtual #4 /1 Method Exanpl e.addtwo(I11)]I

8 ireturn /1 Return int on top of operand stack

/1 it is the int result of addTwo()

Theinvocation is set up by first pushing ar ef er ence to the current instance, t hi s,
on to the operand stack. The method invocation's arguments, i nt values12 and 13,
are then pushed. When the frame for the addTwo method is created, the arguments
passed to the method become the initial values of the new frame's local variables.
That is, ther ef er ence for t hi s and the two arguments, pushed onto the operand
stack by the invoker, will become the initial values of local variables O, 1, and 2
of the invoked method.

Finally, addTwo is invoked. When it returns, itsi nt return value is pushed onto
the operand stack of the frame of the invoker, the add12and13 method. The return
valueisthus put in place to beimmediately returned to the invoker of add12and13.

The return from add12and13 is handled by the ireturn instruction of add12and13.
The ireturn instruction takes the i nt value returned by addTwo, on the operand
stack of the current frame, and pushes it onto the operand stack of the frame of
the invoker. It then returns control to the invoker, making the invoker's frame
current. The Java Virtual Machine provides distinct return instructions for many of
its numeric and r ef er ence datatypes, aswell as areturn instruction for methods
with no return value. The same set of return instructions is used for all varieties
of method invocations.

3.7

51

3.7

52

Invoking Methods COMPILING FOR THE JAVA VIRTUAL MACHINE

The operand of the invokevirtual instruction (in the example, the run-time constant
pool index #4) is not the offset of the method in the class instance. The compiler
does not know the internal layout of aclassinstance. Instead, it generates symbolic
references to the methods of an instance, which are stored in the run-time constant
pool. Those run-time constant pool items are resolved at run-time to determine
the actual method location. The same is true for al other Java Virtual Machine
instructions that access class instances.

Invoking addTwoSt at i ¢, aclass (st ati ¢) variant of addTwo, is similar, as shown:

int add12and13() {
return addTwoStatic(12, 13);
}

although a different Java Virtual Machine method invocation instruction is used:

Met hod int addl12and13()

0 bi push 12

2 bi push 13

4 i nvokestatic #3 /1 Method Exanpl e. addTwoStatic(l1)]
7 ireturn

Compiling an invocation of aclass (st at i ¢) method is very much like compiling
an invocation of an instance method, except thisis not passed by the invoker. The
method argumentswill thus be received beginning with local variable 0 (83.6). The
invokestatic instruction is always used to invoke class methods.

The invokespecial instruction must be used to invoke instance initialization
methods (83.8). It is also used when invoking methods in the superclass (super)
and when invoking pri vat e methods. For instance, given classes Near and Far
declared as:

cl ass Near {
int it;
public int getltNear() {
return getlt();
}

private int getlt() {
return it;
}

}
cl ass Far extends Near {

int getltFar() {
return super.getltNear();
}

}

the method Near . get | t Near (which invokesapri vat e method) becomes:

COMPILING FOR THE JAVA VIRTUAL MACHINE Working with Class Instances

Met hod int getltNear()

0 al oad_0
1 i nvokespeci al #5 /1 Method Near.getlt()I
4 ireturn

The method Far . get I t Far (which invokes a superclass method) becomes:

Met hod int getltFar()

0 al oad_0
1 i nvokespeci al #4 /1 Method Near.getltNear()I
4 ireturn

Note that methods called using the invokespecial instruction always passt hi s to
theinvoked method asitsfirst argument. Asusual, itisreceived inlocal variableO.

Toinvokethetarget of amethod handle, acompiler must form amethod descriptor
that records the actual argument and return types. A compiler may not perform
method invocation conversions on the arguments; instead, it must push them on
the stack according to their own unconverted types. The compiler arranges for
areference to the method handle object to be pushed on the stack before the
arguments, asusual. The compiler emitsan invokevirtual instruction that references
adescriptor which describesthe argument and return types. By special arrangement
with method resolution (85.4.3.3), an invokevirtual instruction which invokes
the i nvokeExact Or i nvoke methods of j ava. | ang. i nvoke. Met hodHandl e will
always link, provided the method descriptor is syntactically well-formed and the
types named in the descriptor can be resolved.

3.8 Working with Class I nstances

JavaVirtual Machine class instances are created using the Java Virtual Machine's
new instruction. Recall that at the level of the Java Virtual Machine, a constructor
appears as a method with the compiler-supplied name <i ni t>. This specially
named method is known as the instance initialization method (82.9). Multiple
instance initialization methods, corresponding to multiple constructors, may exist
for agiven class. Oncethe classinstance has been created and itsinstance variables,
including those of the class and all of its superclasses, have been initialized to
their default values, an instance initialization method of the new class instance is
invoked. For example:

oj ect create() {
return new Qoject();
}

3.8

53

3.8

Working with Class Instances COMPILING FOR THE JAVA VIRTUAL MACHINE

compilesto:

Met hod j ava. |l ang. Obj ect create()
new #1 /1 dass java.l ang. Obj ect
dup

~Nbh WO

i nvokespeci al #4 /1 Method java.lang. Gbject.<init>()V
areturn

Class instances are passed and returned (as ref er ence types) very much like
numeric values, although typer ef er ence hasits own complement of instructions,
for example:

int

i; /!l An instance variable

M Qoj exanpl e() {
My Cbj

Gj o = new MyQoj ();
return silly(o);

}
MQj silly(MGbj o) {

}

if (o!=null) {
return o;

} else {
return o;

}

becomes:

Met hod MyQbj exanpl e()

PPRPOONPWO

w o

new #2 /1 dass MyObj

dup

i nvokespeci al #5 /1 Method MyQbj . <init>()V

astore_1

al oad_0

al oad_1

i nvokevirtual #4 /1 Method Exanple.silly(LMQoj;)LMWOj;
areturn

Met hod MyQoj silly(MQbj)

~No o~ O

al oad_1
ifnull 6
al oad_1
areturn
al oad_1
areturn

The fields of a class instance (instance variables) are accessed using the getfield
and putfield instructions. If i isaninstance variableof typei nt , themethodsset I t
and get I t , defined as:

void setlt(int value) {

i = val ue;

COMPILING FOR THE JAVA VIRTUAL MACHINE

}
int getlt() {

return i;
}
become:
Met hod void setlt(int)
0 al oad_0
1 iload_1
2 putfield #4 /1 Field Exanple.i |
5 return
Met hod int getlt()
0 al oad_0
1 getfield #4 /'l Field Exanple.i |
4 ireturn

Arrays

Aswith the operands of method invocation instructions, the operands of the putfield
and getfield instructions (the run-time constant pool index #4) are not the offsets
of the fields in the class instance. The compiler generates symbolic references to
the fields of an instance, which are stored in the run-time constant pool. Those run-
time constant pool items are resolved at run-time to determine the location of the

field within the referenced object.

3.9 Arrays

Java Virtual Machine arrays are also objects. Arrays are created and manipulated
using a distinct set of instructions. The newarray instruction is used to create an

array of anumeric type. The code:

void createBuffer() {
int buffer[];
int bufsz = 100;
int value = 12;
buffer = new int[bufsz];
buffer[10] = val ue;
val ue = buffer[11];

}
might be compiled to:

Met hod void createBuffer()

0 bi push 100 /1 Push int constant 100 (bufsz)

2 istore_2 /] Store bufsz in local variable 2
3 bi push 12 /1 Push int constant 12 (val ue)

5 istore_3 /1 Store value in local variable 3

3.9

55

3.9

56

Arrays COMPILING FOR THE JAVA VIRTUAL MACHINE
6 iload 2 /1 Push bufsz...
7 newarray int /1 ...and create newint array of that length
9 astore_1 /] Store new array in buffer
10 aload_1 /'l Push buffer
11 bipush 10 /1 Push int constant 10
13 iload_3 /] Push val ue
14 jastore /1 Store value at buffer[10]
15 aload_1 /1l Push buffer
16 bipush 11 /1 Push int constant 11
18 ial oad /1 Push value at buffer[11]...
19 istore_3 /1 ...and store it in value
20 return

The anewarray instruction is used to create a one-dimensional array of object
references, for example:

voi d createThreadArray() {
Thread threads[];
int count = 10;
t hreads = new Thread[count];
t hreads[0] = new Thread();

}
becomes:
Met hod voi d createThreadArray()
0 bi push 10 /1 Push int constant 10
2 istore_2 /1 Initialize count to that
3 iload_2 /'l Push count, used by anewarray
4 anewarray class #1 // Create new array of class Thread
7 astore_1 /1 Store new array in threads
8 al oad_1 /1 Push val ue of threads
9 iconst_0 /'l Push int constant O
10 new #1 /1 Create instance of class Thread
13 dup /1 Make duplicate reference...
14 invokespecial #5 /1 ...for Thread' s constructor
/1 Method java.lang. Thread.<init>()V
17 aastore /! Store new Thread in array at 0
18 return

The anewarray instruction can also be used to create the first dimension of a
multidimensional array. Alternatively, the multianewarray instruction can be used
to create several dimensions at once. For example, the three-dimensional array:

int[][][] create3DArray() {
int grid[][][];
grid = new int[10][5][];
return grid;

}
is created by:

COMPILING FOR THE JAVA VIRTUAL MACHINE Compiling Switches

Met hod int create3DArray()[][]11[]

0 bi push 10 /1 Push int 10 (di nension one)

2 iconst_5 /1 Push int 5 (di mension two)

3 multianewarray #1 dim#2 // Cass [[[I, a three-dinmensional
/1 int array; only create the
/1 first two di mensions

7 astore_1 /1 Store new array. ..
8 al oad_1 /[l ...then prepare to return it
9 areturn

The first operand of the multianewarray instruction is the run-time constant pool
index to the array classtypeto be created. The second isthe number of dimensions
of that array typeto actually create. The multianewarray instruction can be used to
create al the dimensions of the type, as the code for cr eat e3DAr r ay shows. Note
that the multidimensional array is just an object and so is loaded and returned by
anaload_1 and areturninstruction, respectively. For information about array class
names, see 84.4.1.

All arrays have associated lengths, which are accessed via the arraylength
instruction.

3.10 Compiling Switches

Compilation of switch statements uses the tableswitch and lookupswitch
instructions. The tableswitch instruction is used when the cases of the swi t ch can
be efficiently represented as indices into a table of target offsets. The def aul t
target of theswi t ch isusedif the value of the expression of theswi t ch fallsoutside
the range of valid indices. For instance:

int chooseNear(int i) {
switch (i) {

case 0: return

case 1: return

case 2: return ;

default: return -1;

)

1

NP

}
}
compilesto:

Met hod i nt chooseNear (i nt)
0 iload_1 /'l Push local variable 1 (argunent i)
1 tableswitch O to 2: // Valid indices are 0 through 2

0: 28 // 1f i is O, continue at 28

1: 30 /1 1f i is 1, continue at 30

2: 32 /1 1f i is 2, continue at 32

3.10

57

3.10

58

Compiling Switches COMPILING FOR THE JAVA VIRTUAL MACHINE

defaul t: 34 // Otherw se, continue at 34

28 iconst_0 /1 i was 0; push int constant O..
29 ireturn /[l ...and return it

30 iconst_1 /1 i was 1; push int constant 1...
31 ireturn /[l ...and return it

32 iconst_2 /1 i was 2; push int constant 2..
33 ireturn // ...and return it

34 iconst_ml /1 otherw se push int constant -1..
35 ireturn /[l ...and return it

The JavaVirtual Machine'stableswitch and lookupswitch instructions operate only
on i nt data. Because operations on byt e, char, or short vaues are internally
promoted to i nt, aswi tch whose expression evaluates to one of those types is
compiled as though it evaluated to typei nt . If the chooseNear method had been
written using type shor t , the same Java Virtual Machine instructions would have
been generated as when using typei nt . Other numeric types must be narrowed to
typeint foruseinaswitch.

Wherethe casesof theswi t ch are sparse, thetabl e representation of thetableswitch
instruction becomesinefficient intermsof space. Thelookupswitch instruction may
be used instead. Thelookupswitchinstruction pairsi nt keys(thevaluesof thecase
labels) with target offsets in atable. When alookupswitch instruction is executed,
the value of the expression of theswi t ch iscompared against the keysin the table.
If one of the keys matches the value of the expression, execution continues at the
associated target offset. If no key matches, execution continues at the def aul t

target. For instance, the compiled code for:

int chooseFar(int i) {

switch (i) {
case -100: return -1
case 0: return O;
case 100: return 1;
defaul t: return -1
}

}
looks just like the code for chooseNear , except for the lookupswitch instruction:

Met hod int chooseFar (int)

0 iload 1
1 | ookupswi tch 3:
-100: 36
0: 38
100: 40
defaul t: 42

36 iconst_m
37 ireturn
38 iconst_0
39 ireturn

COMPILING FOR THE JAVA VIRTUAL MACHINE Operations on the Operand Stack

40 iconst_1
41 ireturn
42 iconst_nl
43 ireturn

The Java Virtual Machine specifies that the table of the lookupswitch instruction
must be sorted by key so that implementati ons may use searches more efficient than
alinear scan. Even so, the lookupswitch instruction must search itskeysfor amatch
rather than ssimply perform a bounds check and index into atable like tableswitch.
Thus, a tableswitch instruction is probably more efficient than a lookupswitch
where space considerations permit a choice.

3.11 Operationson the Operand Stack

The Java Virtual Machine has a large complement of instructions that manipulate
the contents of the operand stack as untyped values. These are useful because of
the Java Virtual Machine's reliance on deft manipulation of its operand stack. For
instance:

public | ong nextlndex() {
return i ndex++;

}
private long index = O;
is compiled to:
Met hod | ong next | ndex()
0 al oad_0 /1 Push this
1 dup /1 Make a copy of it

2 getfield #4 /1 One of the copies of this is consuned
/'l pushing long field index,
/| above the original this

5 dup2_x1 /1 The long on top of the operand stack is
/] inserted into the operand stack bel ow the
/1 original this

6 I const _1 /1 Push long constant 1

7 | add /1 The index value is incremented...

8 putfield #4 /1 ...and the result stored in the field
11 Ireturn /1 The original value of index is on top of

/'l the operand stack, ready to be returned

Note that the Java Virtual Machine never allows its operand stack manipulation
instructions to modify or break up individual values on the operand stack.

311

59

3.12

60

Throwing and Handling Exceptions COMPILING FOR THE JAVA VIRTUAL MACHINE

3.12 Throwing and Handling Exceptions

Exceptions are thrown from programs using the t hr ow keyword. Its compilation
issimple:
voi d cantBeZero(int i) throws TestExc {

if (i ==0)
t hrow new Test Exc();

}
}
becomes:
Met hod voi d cant BeZero(i nt)
0 iload_1 /1 Push argunment 1 (i)
1 ifne 12 // 1f i==0, allocate instance and throw
4 new #1 /1 Create instance of TestExc
7 dup /1 One reference goes to its constructor
8 i nvokespeci al #7 /1 Method TestExc.<init>()V
11 athrow /1 Second reference is thrown
12 return /1 Never get here if we threw Test Exc

Compilation of t ry-cat ch constructsis straightforward. For example:

voi d catchOne() {
try {
tryltQut();
} catch (TestExc e) {
handl eExc(e);

}
}
iscompiled as:
Met hod voi d cat chOne()
0 al oad_0 /1 Beginning of try bl ock
1 i nvokevi rtual #6 /1 Method Exanple.tryltQut()V
4 return /1 End of try block; normal return
5 astore_1 /1 Store thrown value in local var 1
6 al oad_0 /1 Push this
7 al oad_1 /1 Push thrown val ue
8 i nvokevi rtual #5 /1 I nvoke handl er net hod:
/| Exanpl e. handl eExc(LTest Exc;)V
11 return /1l Return after handling TestExc
Exception table:
From To Tar get Type
0 4 5 Cl ass Test Exc

Looking moreclosely, thet ry block iscompiled just asit would beif thet ry were
not present:

COMPILING FOR THE JAVA VIRTUAL MACHINE Throwing and Handling Exceptions 3.12

Met hod voi d cat chOne()

0 al oad_0 /1 Beginning of try block
1 i nvokevi rtual #6 /1 Method Exanple.tryltQut()V
4 return /1 End of try block; normal return

If no exceptionisthrown during the execution of thet r y block, it behavesasthough
thetry werenot there: tryl t Qut isinvoked and cat chne returns.

Following the t ry block is the Java Virtual Machine code that implements the
singlecat ch clause:

5 astore_1 /'l Store thrown value in local var 1
6 al oad_0 /1 Push this
7 al oad_1 /1 Push thrown val ue
8 i nvokevi rtual #5 /'l 1 nvoke handl er method:
/| Exanpl e. handl eExc(LTest Exc;)V
11 return /! Return after handling TestExc
Exception table:
From To Tar get Type
0 4 5 Cl ass Test Exc

The invocation of handl eExc, the contents of the cat ch clause, is also compiled
like anormal method invocation. However, the presence of acat ch clause causes
the compiler to generate an exception table entry (82.10, 84.7.3). The exception
tablefor thecat chone method has one entry corresponding to the one argument (an
instance of class Test Exc) that the cat ch clause of cat chone can handle. If some
value that is an instance of Test Exc isthrown during execution of the instructions
between indices 0 and 4 in cat chne, control is transferred to the Java Virtual
Machine code at index 5, which implements the block of the cat ch clause. If the
value that is thrown is not an instance of Test Exc, the cat ch clause of cat chone
cannot handle it. Instead, the value is rethrown to the invoker of cat chOne.

A try may have multiple cat ch clauses:

voi d catchTwo() {

try {
tryltQut();

} catch (TestExcl e) {
handl eExc(e);

} catch (TestExc2 e) {
handl eExc(e);

}

}

Multiplecat ch clausesof agivent ry statement are compiled by simply appending
the JavaVirtual Machine code for each cat ch clause one after the other and adding
entries to the exception table, as shown:

Met hod void cat chTwo()

61

3.12 Throwing and Handling Exceptions COMPILING FOR THE JAVA VIRTUAL MACHINE

0 al oad_0 /1 Begin try bl ock

1 i nvokevi rtual #5 /1 Method Exanple.tryltQut()V

4 return /1 End of try block; normal return

5 astore_1 /1 Beginning of handler for TestExcl
/1 Store thrown value in local var 1

6 al oad_0 /1 Push this

7 al oad_1 /1l Push thrown val ue

8 i nvokevi rtual #7 /'l 1 nvoke handl er method
/| Exanpl e. handl eExc(LTest Excl;)V

11 return /1 Return after handling TestExcl

12 astore_1 /1 Beginning of handler for TestExc2
/1 Store thrown value in local var 1

13 aload O /1 Push this

14 aload_1 /1 Push thrown val ue

15 invokevirtual #7 /'l 1 nvoke handl er method
/| Exanpl e. handl eExc(LTest Exc2;)V

18 return /1 Return after handling TestExc2

Exception table:

From To Tar get Type

0 4 5 Cl ass TestExcl

0 4 12 Cl ass Test Exc2

If during the execution of thet r y clause (betweenindices0 and 4) avalueisthrown
that matches the parameter of one or more of the cat ch clauses (the value is an
instance of one or more of the parameters), the first (innermost) such cat ch clause
isselected. Control istransferred to the Java Virtual Machine code for the block of
that cat ch clause. If the value thrown does not match the parameter of any of the
cat ch clauses of cat chTwo, the Java Virtual Machine rethrows the value without
invoking code in any cat ch clause of cat chTwo.

Nested t ry-cat ch statements are compiled very much like atry statement with
multiple cat ch clauses:

voi d nestedCatch() {
try {
try {
tryltQut();
} catch (TestExcl e) {
handl eExc1(e);

}
} catch (TestExc2 e) {
handl eExc2(e);

}
}
becomes:
Met hod voi d nestedCatch()
0 al oad_0 /1 Begin try bl ock
1 i nvokevi rtual #8 /1 Method Exanple.tryltQut()V
4 return /1 End of try block; normal return

62

COMPILING FOR THE JAVA VIRTUAL MACHINE Compiling final I'y

5 astore_1 /1 Beginning of handler for TestExcl;
/1 Store thrown value in local var 1
6 al oad_0 /1 Push this
7 al oad_1 /1l Push thrown val ue
8 i nvokevi rtual #7 /'l 1 nvoke handl er method:
/| Exanpl e. handl eExc1(LTest Excl;)V
11 return /1 Return after handling TestExcl
12 astore_1 /1 Beginning of handler for TestExc2;
/1 Store thrown value in local var 1
13 aload O /1 Push this
14 aload_1 /1 Push thrown val ue
15 invokevirtual #6 /'l 1 nvoke handl er method:
/1 Exanpl e. handl eExc2(LTest Exc2;)V
18 return /1 Return after handling TestExc2
Exception table:
From To Tar get Type
0 4 5 Cl ass TestExcl
0 12 12 Cl ass Test Exc2

The nesting of cat ch clauses is represented only in the exception table. The Java
Virtual Machine does not enforce nesting of or any ordering of the exception table
entries (82.10). However, becauset r y-cat ch constructs are structured, a compiler
can alwaysorder the entries of the exception handler table such that, for any thrown
exception and any program counter valuein that method, thefirst exception handler
that matches the thrown exception corresponds to the innermost matching cat ch
clause.

For instance, if the invocation of tryltcut (at index 1) threw an instance of
Test Exc1, it would be handled by the cat ch clause that invokeshandl eExc1. This
is so even though the exception occurs within the bounds of the outer cat ch clause
(catching Test Exc2) and even though that outer cat ch clause might otherwise have
been able to handle the thrown value.

As asubtle point, note that the range of acat ch clause isinclusive on the "from"
end and exclusive on the "to" end (84.7.3). Thus, the exception table entry for the
cat ch clause catching Test Exc1 does not cover the return instruction at offset 4.
However, the exception table entry for the cat ch clause catching Test Exc2 does
cover the return instruction at offset 11. Return instructions within nested cat ch
clauses are included in the range of instructions covered by nesting cat ch clauses.

3.13 Compilingfinally

(This section assumes a compiler generates cl ass files with version number 50.0
or below, so that the jsr instruction may be used. See also §4.10.2.5.)

3.13

63

3.13

Compiling final Iy COMPILING FOR THE JAVA VIRTUAL MACHINE

Compilation of atry-final |y statement is similar to that of t ry-cat ch. Prior to
transferring control outside the t ry statement, whether that transfer is normal or
abrupt, because an exception has been thrown, the fi nal Iy clause must first be
executed. For this simple example:

void tryFinally() {

try {
tryltQut();

} finally {
wraplt Up() ;
}
the compiled codeis:

Met hod void tryFinally()

0 al oad_0 /1 Beginning of try block

1 i nvokevi rtual #6 /1 Method Exanple.tryltQut()V

4 jsr 14 /1 Call finally bl ock

7 return /1 End of try bl ock

8 astore_1 /1 Begi nning of handler for any throw
9 jsr 14 /1 Call finally bl ock

12 aload_ 1 /1 Push thrown val ue

13 athrow /1 ...and rethrow value to the invoker
14 astore_2 /1 Beginning of finally bl ock

15 aload 0 /1 Push this

16 invokevirtual #5 /1l Method Exanpl e.wapltUp()V

19 ret 2 /1 Return fromfinally bl ock
Exception table:

From To Tar get Type

0 4 8 any

There are four ways for control to pass outside of the t ry statement: by falling
through the bottom of that block, by returning, by executing abr eak or cont i nue
statement, or by raising an exception. If tryltcut returns without raising an
exception, control is transferred to thefi nal | y block using ajsr instruction. The
jsr 14 instruction at index 4 makes a"subroutine call" to the code for thefinal I'y
block at index 14 (the final Iy block is compiled as an embedded subroutine).
When the final Iy block completes, the ret 2 instruction returns control to the
instruction following the jsr instruction at index 4.

In more detail, the subroutine call works as follows: The jsr instruction pushes
the address of the following instruction (return at index 7) onto the operand stack
before jumping. The astore_2 instruction that is the jump target stores the address
on the operand stack into local variable 2. The code for the final I'y block (in
thiscasetheaload_0 and invokevirtual instructions) is run. Assuming execution of
that code completes normally, the ret instruction retrieves the address from local

COMPILING FOR THE JAVA VIRTUAL MACHINE Compiling final I'y

variable 2 and resumes execution at that address. Thereturninstruction isexecuted,
and tryFi nal |y returns normally.

A try statement with afinal 'y clause is compiled to have a special exception
handler, one that can handle any exception thrown within the t ry statement. If
tryltQut throws an exception, the exception tablefor t ryFi nal | y is searched for
an appropriate exception handler. The special handler is found, causing execution
to continue at index 8. The astore 1 instruction at index 8 stores the thrown value
into local variable 1. The following jsr instruction does a subroutine call to the
code for the final Iy block. Assuming that code returns normally, the aload 1
instruction at index 12 pushes the thrown value back onto the operand stack, and
the following athrow instruction rethrows the value.

Compiling at ry statement with both acat ch clauseand afi nal | y clauseis more
complex:

void tryCatchFinally() {
try {
tryltQut();
} catch (TestExc e) {
handl eExc(e);

} finally {
wrapl t Up();
}
}
becomes:

Met hod void tryCatchFinally()

0 al oad_0 /1 Beginning of try block

1 i nvokevirtual #4 /1 Method Exanple.tryltQut()V

4 goto 16 /1 Jump to finally block

7 astore_3 /1 Beginning of handler for TestExc;
/1 Store thrown value in |ocal var 3

8 al oad_0 /1l Push this

9 al oad_3 /1 Push thrown val ue

10 invokevirtual #6 /1 I nvoke handl er net hod:
/| Exanpl e. handl eExc(LTest Exc;)V

13 goto 16 /1 This goto is unnecessary, but was
/1 generated by javac in JDK 1.0.2

16 jsr 26 /1 Call finally bl ock

19 return /1 Return after handling TestExc

20 astore_1 /1 Begi nning of handl er for exceptions
/1 other than TestExc, or exceptions
/1 thrown while handling Test Exc

21 jsr 26 /1 Call finally bl ock

24 aload_ 1 /1l Push thrown val ue. ..

25 athrow /1 ...and rethrow value to the invoker

26 astore_2 /1 Beginning of finally block

27 aload 0 /1 Push this

3.13

65

314

66

Synchronization COMPILING FOR THE JAVA VIRTUAL MACHINE

28 invokevirtual #5 /1 Method Exanpl e.wapltUp()V

31 ret 2 /1 Return fromfinally block
Exception table:

From To Tar get Type

0 4 7 Cl ass Test Exc

0 16 20 any

If the try statement completes normally, the goto instruction at index 4 jumps
to the subroutine call for the final I y block at index 16. The final |y block at
index 26 is executed, control returns to the return instruction at index 19, and
t ryCat chFi nal I y returns normally.

If tryltout throws an instance of Test Exc, the first (innermost) applicable
exception handler in the exception table is chosen to handle the exception. The
code for that exception handler, beginning at index 7, passes the thrown value to
handl eExc and on its return makes the same subroutine call to thefi nal | y block
at index 26 as in the normal case. If an exception is not thrown by handl eExc,
t ryCat chFi nal I y returns normally.

Iftrylt aut throwsavaluethat isnot aninstance of Test Exc or if handl eExc itself
throws an exception, the condition is handled by the second entry in the exception
table, which handles any value thrown between indices 0 and 16. That exception
handler transfers control to index 20, where the thrown valueisfirst stored in local
variable 1. Thecodefor thefi nal | y block at index 26 iscalled asasubroutine. If it
returns, the thrown value isretrieved from local variable 1 and rethrown using the
athrowinstruction. If anew valueisthrown during execution of thef i nal | y clause,
thefinal Iy clause aborts, and t r yCat chFi nal | y returns abruptly, throwing the
new vaue to itsinvoker.

3.14 Synchronization

Synchronization in the Java Virtual Machineisimplemented by monitor entry and
exit, either explicitly (by use of the monitorenter and monitorexit instructions) or
implicitly (by the method invocation and return instructions).

For code written in the Java programming language, perhaps the most common
form of synchronization isthesynchr oni zed method. A synchr oni zed method is
not normally implemented using monitorenter and monitorexit. Rather, it issimply
distinguished in the run-time constant pool by the ACC_SYNCHRONI ZED flag, which
is checked by the method invocation instructions (82.11.10).

The monitorenter and monitorexit instructions enable the compilation of
synchr oni zed statements. For example:

COMPILING FOR THE JAVA VIRTUAL MACHINE Annotations

void onl yMe(Foo f) {
synchroni zed(f) {
doSonet hi ng() ;

}
}
is compiled to:
Met hod voi d onl yMe(Foo)
0 al oad_1 /1 Push f
1 dup /1 Duplicate it on the stack
2 astore_2 /! Store duplicate in local variable 2
3 noni t orent er /1 Enter the nonitor associated with f
4 al oad_0 /1 Holding the nonitor, pass this and...
5 i nvokevi rtual #5 /1 ...call Exanple.doSonething()V
8 al oad_2 /1 Push local variable 2 (f)
9 moni t orexit /'l Exit the nonitor associated with f
10 goto 18 /1 Conmplete the nethod normally
13 astore_3 /1 In case of any throw, end up here
14 al oad_2 /1 Push local variable 2 (f)
15 nonitorexit /! Be sure to exit the nonitor!
16 aload_3 /1 Push thrown val ue. ..
17 athrow /1l ...and rethrow value to the invoker
18 return /! Return in the normal case
Exception table:
From To Tar get Type
4 10 13 any
13 16 13 any

The compiler ensures that at any method invocation completion, a monitorexit
instruction will have been executed for each monitorenter instruction executed
since the method invocation. This is the case whether the method invocation
completes normally (82.6.4) or abruptly (82.6.5). To enforce proper pairing
of monitorenter and monitorexit instructions on abrupt method invocation
completion, the compiler generates exception handlers (82.10) that will match
any exception and whose associated code executes the necessary monitorexit
instructions.

3.15 Annotations

The representation of annotations in cl ass files is described in 84.7.16-84.7.22.
These sections make it clear how to represent annotations on declarations of
classes, interfaces, fields, methods, method parameters, and type parameters, as
well as annotations on types used in those declarations. Annotations on package
declarations require additional rules, given here.

3.15

67

3.16

68

Modules COMPILING FOR THE JAVA VIRTUAL MACHINE

When the compiler encounters an annotated package declaration that must be made
available a run time, it emitsacl ass file with the following properties:

* The class file represents an interface, that is, the ACC | NTERFACE and
ACC_ABSTRACT flags of the O assFi | e structure are set (84.1).

* If thecl ass fileversion number islessthan 50.0, thenthe AcC_SYNTHETI Cflagis
unset; if thecl ass file version number is50.0 or above, then the ACC_SYNTHETI C
flag is set.

» Theinterface has package access (JLS §6.6.1).

» The interface's name is the internal form (84.2.1) of package- nane. package-
i nfo.

» Theinterface has no superinterfaces.

* The interface's only members are those implied by The Java Language
Soecification, Java SE 10 Edition (JLS §9.2).

» The annotations on the package declaration are stored as
Runt i meVi si bl eAnnot ati ons and Runti el nvi si bl eAnnot at i ons attributes
intheat tri but es table of thed assFi | e structure.

3.16 Modules

A compilation unit that contains a module declaration (JLS 8§7.7) is compiled to a
cl ass filethat contains a Modul e attribute.

By convention, the name of a compilation unit that contains a module
declarationisnodul e-i nf 0. j ava, echoingthepackage- i nf o. j ava conventionfor
a compilation unit that contains solely a package declaration. Consequently, by
convention, the name for the compiled form of a module declaration is modul e-
i nfo.class.

A flag in the access_flags item of the dassFile structure, ACC_MODULE
(0Ox8000), indicates that this cl ass file declares a module. ACC_MODULE plays a
similar role to ACC_ANNOTATI ON (0x2000) and AcC_ENUM (0x4000) in flagging this
cl ass file as"not an ordinary class’. AcC_MODULE does not describe accessibility
of aclassor interface.

The mdul e attribute is explicit about the module's dependences; there are no
implicit r equi r es directives at the d assFi | e level. If therequi res_count item
is zero, then the Java SE Platform does not infer the existence of ar equi r es table

COMPILING FOR THE JAVA VIRTUAL MACHINE Modules

nor any particular entry therein. j ava. base is the only module in which a zero
requi res_count is legal, because it is the primordial module. For every other
module, the Mdul e attribute must have ar equi res table of at least length one,
because every other module dependsonj ava. base. If acompilation unit contains
a module declaration (except j ava. base) that does not state its dependence on
j ava. base explicitly, then a compiler must emit an entry for j ava. base in the
requi res table and flag it as ACC_MANDATED to denote that it was implicitly
declared.

For encapsulation, the Mbdul e attributeisexplicit about the packages exported and
opened by anormal module; therearenoimplicit expor t s or opens directivesat the
d assFi | e level for anormal module. If theexports_count item or opens_count

item is zero, then the Java SE Platform does not infer the existence of an export s
table or opens table, nor any particular entry therein. On the other hand, for an open
module, the Modul e attributeisimplicit about the packages opened by the module.
All packages of an open module are opened to all other modules, even though the
opens_count itemiszero.

The Mdul e attribute is explicit about the module's consumption and provision of
services; thereare no implicit uses or provi des directivesat the d assFi | e level.

3.16

69

CHAPTER |

Thecl ass File Format

THIS chapter describes the cl ass file format of the Java Virtual Machine. Each
cl ass file contains the definition of asingle class, interface, or module. Although
a class, interface, or module need not have an external representation literally
contained in afile (for instance, because the class is generated by a class loader),
wewill colloquialy refer to any valid representation of aclass, interface, or module
asbeinginthecl ass file format.

A class file consists of a stream of 8-bit bytes. 16-bit and 32-bit quantities
are constructed by reading in two and four consecutive 8-bit bytes, respectively.
Multibyte data items are always stored in big-endian order, where the high bytes
come first. This chapter defines the data types u1, u2, and u4 to represent an
unsigned one-, two-, or four-byte quantity, respectively.

In the Java SE Platform API, the class file format is supported by
interfaces java.io.Datalnput and java.io.DataCQutput and classes such as
java.io.Datal nput Streamand j ava. i o. Dat aCut put St r eam For example, values
of the types ul, u2, and u4 may be read by methods such as r eadUnsi gnedByt e,
r eadUnsi gnedShort, andr eadl nt of theinterfacej ava. i 0. Dat al nput .

This chapter presents the cl ass file format using pseudostructures written in a
C-like structure notation. To avoid confusion with the fields of classes and class
instances, etc., the contents of the structures describing the cl ass file format are
referred to as items. Successive items are stored in the cl ass file sequentialy,
without padding or alignment.

Tables, consisting of zero or more variable-sized items, are used in severa cl ass
file structures. Although we use C-like array syntax to refer to table items, the fact
that tables are streams of varying-sized structures means that it is not possible to
tranglate atable index directly to a byte offset into the table.

Wherewerefer to adatastructureasan array, it consists of zero or more contiguous
fixed-sized items and can be indexed like an array.

71

The d assFi | e Sructure THE cLAss FILE FORMAT

Reference to an ASCII character in this chapter should be interpreted to mean the
Unicode code point corresponding to the ASCII character.

4.1 Thed assFil e Structure

A cl ass file consists of asingle d assFi | e structure:

ClassFile {
ud magi c;
u2 m nor _ver si on;
u2 maj or _ver si on;
u2 const ant _pool _count;
cp_info const ant _pool [const ant _pool _count-1];
u2 access_fl ags;
u2 this_cl ass;
u2 super _cl ass;
u2 i nterfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 met hods_count ;
nmet hod_i nf o met hods[met hods_count] ;
u2 attri butes_count;

attribute_info attributes[attributes_count];

}

Theitemsinthe d assFi | e structure are as follows:

magi ¢
The magi ¢ item supplies the magic number identifying the cl ass file format;
it has the value 0x CAFEBABE.

m nor _versi on, maj or_version
Thevaluesof theni nor _ver si on and maj or _ver si on itemsare the minor and
major version numbersof thiscl ass file. Together, amajor and aminor version
number determinetheversion of thecl ass fileformat. If acl ass filehasmajor
version number M and minor version number m, we denote the version of its

cl ass file format as M.m. Thus, cl ass file format versions may be ordered
lexicographically, for example, 1.5<2.0< 2.1.

A Java Virtual Machine implementation can support a cl ass file format of
version v if and only if v lies in some contiguous range Mi.0 < v < Mj.m.
The range is based on the version of the Java SE Platform to which the
implementation conforms. An implementation which conformsto agiven Java
SE Platform version must support the range specified in Table 4.1-A for that

THE cLAss FILE FORMAT The d assFi | e Sructure 4.1

version, and no other range. (For historical cases, the JDK version is shown
instead of the Java SE Platform version.)

Table4.1-A. cl ass fileformat version ranges (by Java SE Platform)

Java SE cl ass fileformat version range
102 450=sv<453

11 45.0 < v < 45.65535
12 45.0=sv<46.0

13 45.0=sv<47.0

14 45.0=sv<480

5.0 45.0=sv<49.0

6 450<v<50.0

7 450<v<51.0

8 450<v<520

9 450<v<530

10 450=<v<54.0

const ant _pool _count
Thevaue of theconst ant _pool _count itemisequal to the number of entries
in the const ant _pool table plus one. A const ant _pool index is considered
valid if it is greater than zero and less than const ant _pool _count , with the
exception for constants of typel ong and doubl e noted in §4.4.5.

constant _pool []

The const ant _pool isatable of structures (84.4) representing various string
constants, class and interface names, field names, and other constants that are
referred to withinthe d assFi | e structure and its substructures. The format of
each const ant _pool table entry isindicated by itsfirst "tag" byte.

Theconst ant _pool tableisindexed from 1to const ant _pool _count - 1.
access_fl ags

The value of the access_f 1 ags item isamask of flags used to denote access
permissions to and properties of this class or interface. The interpretation of
each flag, when set, is specified in Table 4.1-B.

73

41

74

The d assFi | e Sructure THE cLAss FILE FORMAT

Table 4.1-B. Class access and property modifiers

Flag Name Value Interpretation

ACC _PUBLI C 0x0001 Declared publ i c; may be accessed from outside its
package.

ACC_FI NAL 0x0010 Declared f i nal ; no subclasses allowed.

ACC_SUPER 0x0020 Treat superclass methods specially when invoked by
the invokespecial instruction.

ACC_| NTERFACE 0x0200 Isaninterface, not aclass.

ACC_ABSTRACT 0x0400 Declared abst r act ; must not be instantiated.

ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.

ACC_ANNCOTATI ON 0x2000 Declared as an annotation type.

ACC_ENUM 0x4000 Declared as an enumtype.

ACC_MODULE 0x8000 Isamodule, not aclass or interface.

TheAacc MoDULE flag indicatesthat thiscl ass file definesamodule, not aclass
or interface. If the Acc_MODULE flag is set, then special rulesapply tothecl ass
filewhich are given at the end of this section. If the AcCc_MODULE flag isnot set,
then therulesimmediately below the current paragraph apply to thecl ass file.

An interface is distinguished by the ACC | NTERFACE flag being set. If the
ACC_| NTERFACE flag is not set, thiscl ass file defines a class, not an interface
or module.

If the ACC_| NTERFACE flag is set, the ACC_ABSTRACT flag must also be set, and
the ACC_FI NAL, ACC_SUPER, ACC_ENUM and ACC_MODULE flags set must not be
Set.

If the ACC_| NTERFACE flag is not set, any of the other flagsin Table 4.1-B may
be set except ACC_ANNOTATI ON and ACC_MODULE. However, such acl ass file
must not have both its ACC_FI NAL and ACC_ABSTRACT flags set (JLS §8.1.1.2).

The Acc_sUPER flag indicates which of two alternative semantics is to be
expressed by the invokespecial instruction (8invokespecial) if it appears in
this class or interface. Compilers to the instruction set of the Java Virtual
Machine should set the AcC_SUPER flag. In Java SE 8 and above, the Java
Virtual Machine considers the ACC_SUPER flag to be set in every cl ass filg,
regardless of the actual value of the flag in the cl ass file and the version of
thecl ass file.

THE cLAss FILE FORMAT The d assFi | e Sructure

The ACC_SUPER flag exists for backward compatibility with code compiled by older
compilers for the Java programming language. In JDK releases prior to 1.0.2, the compiler
generated access_f | ags inwhich the flag now representing ACC_SUPER had no assigned
meaning, and Oracle's Java Virtual Machine implementation ignored the flag if it was set.

The Acc_sYNTHETI Cflag indicatesthat this class or interface was generated by
acompiler and does not appear in source code.

An annotation type (JLS §9.6) must have its ACC_ANNOTATI ON flag set. If the
ACC_ANNOTATI ONflag is set, the ACC_| NTERFACE flag must also be set.

The Acc_ENuMTlag indicates that this class or its superclass is declared as an
enumerated type (JLS 8§8.9).

All bitsof theaccess_f | ags item not assigned in Table 4.1-B arereserved for
future use. They should be set to zero in generated cl ass files and should be
ignored by Java Virtual Machine implementations.

this_cl ass

The value of the this class item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_d ass_i nf o structure (84.4.1) representing the class or interface
defined by thiscl ass file.

super _cl ass

For a class, the value of the super class item either must be zero or
must be a valid index into the constant _pool table. If the value of the
super _cl ass item is nonzero, the const ant _pool entry at that index must
be a CONSTANT_d ass_i nf o structure representing the direct superclass of the
class defined by this cl ass file. Neither the direct superclass nor any of its
superclasses may have the ACC_FI NAL flag setintheaccess_f 1 ags item of its
d assFi | e structure.

If thevalue of thesuper _cl ass itemiszero, thenthiscl ass filemust represent
the class bj ect , the only class or interface without a direct superclass.

For an interface, the value of the super _cl ass item must always be a valid
index into the const ant _pool table. The const ant _pool entry at that index
must be a CONSTANT_dl ass_i nf o structure representing the class vj ect .

i nterfaces_count

The value of the interfaces_count item gives the number of direct
superinterfaces of this class or interface type.

41

76

The d assFi | e Sructure THE cLAss FILE FORMAT

interfaces[]

Each value in the interfaces array must be a valid index into
the constant_pool table. The constant_pool entry a each vaue
of interfaces[i], where O < i < interfaces_count, must be a
CONSTANT_d ass_i nfo structure representing an interface that is a direct
superinterface of this class or interface type, in the left-to-right order given in
the source for the type.

fiel ds_count

The value of the fiel ds_count item gives the number of field_info
structuresin thefi el ds table. Thefi el d_i nf o structures represent all fields,
both class variables and instance variables, declared by this class or interface

type.
fields[]

Each valueinthefi el ds table must be afi el d_i nf o structure (84.5) giving
a complete description of afield in this class or interface. The fi el ds table
includes only those fields that are declared by this class or interface. It does
not include items representing fields that are inherited from superclasses or
superinterfaces.

met hods_count

The value of the met hods_count item gives the number of net hod_i nfo
structuresin the net hods table.

met hods[]

Each valueinthenet hods table must beanet hod_i nf o structure (84.6) giving
a complete description of a method in this class or interface. If neither of the
ACC_NATI VE and ACC_ABSTRACT flags are set in the access_f I ags item of a
net hod_i nf o structure, the Java Virtual Machine instructions implementing
the method are also supplied.

The net hod_i nfo structures represent all methods declared by this class
or interface type, including instance methods, class methods, instance
initialization methods (82.9.1), and any class or interface initialization method
(82.9.2). The net hods table does not include items representing methods that
are inherited from superclasses or superinterfaces.

attributes_count

Thevalueof theatt ri but es_count item givesthe number of attributesin the
attribut es table of thisclass.

THE cLASS FILE FORMAT Names

attributes[]

Each value of the attri but es table must be an attri bute_i nf o structure
(84.7).

The attributes defined by this specification as appearing in the attri butes
table of ad assFi | e structure are listed in Table 4.7-C.

The rules concerning attributes defined to appear intheat t ri but es table of a
C assFi | e structure are givenin 84.7.

The rules concerning non-predefined attributes in the at t ri but es table of a
C assFi | e structure are givenin 84.7.1.

If the AcC_MODULE flag is set in the access_f | ags item, then no other flag in the
access_fl ags item may be set, and the following rules apply to the rest of the
d assFi | e structure:

* maj or _version, m nor _version: = 53.0 (i.e. Java SE 9 and above)
* this_class:nodul e-info
* super_class,interfaces_count,fiel ds_count, net hods_count : Zzero

e attributes: One Mdule attribute must be present. Except
for Modul e, Modul ePackages, Modul eMai nCl ass, I nner Cl asses,
SourceFil e, SourceDebugExtension, RuntineVisibl eAnnotations, and
Runt i mel nvi si bl eAnnot at i ons, none of the pre-defined attributes (84.7) may

appear.

4.2 Names

4.2.1 Binary Classand Interface Names

Class and interface names that appear in cl ass file structures are aways
represented in a fully quaified form known as binary names (JLS §13.1).
Such names are always represented as CONSTANT_Ut f 8_i nf o structures (84.4.7)
and thus may be drawn, where not further constrained, from the entire
Unicode codespace. Class and interface names are referenced from those
CONSTANT_NameAndType_i nf o structures (84.4.6) which have such names as part
of their descriptor (84.3), and from all CONSTANT_dl ass_i nf o structures (84.4.1).

For historical reasons, the syntax of binary names that appear in class file
structures differsfrom the syntax of binary names documented in LS 813.1. Inthis
internal form, the ASCII periods (.) that normally separate the identifiers which

4.2

77

4.2

78

Names THE cLASS FILE FORMAT

make up the binary name arereplaced by ASCII forward slashes(/). Theidentifiers
themselves must be unqualified names (84.2.2).

For example, the normal binary name of class Thread is j ava. | ang. Thread. In the
internal form used in descriptorsin thecl ass file format, areference to the name of class
Thr ead is implemented using a CONSTANT_Ut f 8_i nf o structure representing the string
javal/ |l ang/ Thr ead.

4.2.2 Unqualified Names

Names of methods, fields, local variables, and formal parameters are stored as
unqualified names. An unqualified name must contain at least one Unicode code
point and must not contain any of the ASCII characters. ; [/ (that is, period or
semicolon or left square bracket or forward slash).

Method names are further constrained so that, with the exception of the special
method names <i ni t> and <clinit> (82.9), they must not contain the ASCII
characters < or > (that is, left angle bracket or right angle bracket).

Note that a field name or interface method name may be <i nit> or <clinit>, but
no method invocation instruction may reference <cl i ni t > and only the invokespecial
instruction (8invokespecial) may reference <i ni t >.

4.2.3 Moduleand Package Names

Module names referenced from the Mdule attribute are stored in
CONSTANT_Mbdul e_i nfo structures in the constant pool (84.4.11). A
CONSTANT_Mbdul e_i nf o structure wraps a CONSTANT_Ut f 8_i nf o structure that
denotes the module name. Module names are not encoded in "internal form" like
classand interface names, that is, the ASCII periods(.) that separate theidentifiers
in amodule name are not replaced by ASCII forward slashes (/).

Module names may be drawn from the entire Unicode codespace, subject to the
following constraints:

» A module name must not contain any code point intherange\ u0000'to "\ u001F'
inclusive.

» The ASCII backslash (\) is reserved for use as an escape character in module
names. It must not appear in a module name unless it is followed by an ASCII
backslash, an ASCII colon (:), or an ASCII at-sign (@. The ASCII character
sequence\\ may be used to encode a backslash in a module name.

» The ASCII colon (:) and at-sign (@ are reserved for future use in module names.
They must not appear in module names unless they are escaped. The ASCII

THE cLAss FILE FORMAT Descriptors

character sequences\ : and\ @may be used to encode a colon and an at-signin
amodule name.

Package names referenced from the Mdule attribute are stored in
CONSTANT_Package_i nfo structures in the constant pool (84.4.12). A
CONSTANT_Package_i nf o structure wraps a CONSTANT_Ut f 8_i nf o structure that
represents a package name encoded in internal form.

4.3 Descriptors

A descriptor isastring representing the type of afield or method. Descriptors are
representedinthecl ass fileformat using modified UTF-8 strings (84.4.7) and thus
may be drawn, where not further constrained, from the entire Unicode codespace.

4.3.1 Grammar Notation

Descriptorsare specified using agrammar. Thegrammar isaset of productionsthat
describe how sequences of characters can form syntactically correct descriptors of
various kinds. Terminal symbols of the grammar are shown infi xed wi dt h font.
Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined, followed by acolon. One
or more alternative definitionsfor the nonterminal then follow on succeeding lines.

The syntax {x} on the right-hand side of a production denotes zero or more
occurrences of x.

The phrase (one of) on the right-hand side of a production signifiesthat each of the
terminal symbols on the following line or lines is an alternative definition.

4.3.2 Field Descriptors

A field descriptor represents the type of a class, instance, or local variable.

FieldDescriptor:
FieldType

FieldType:
BaseType
ObjectType
ArrayType

4.3

79

4.3 Descriptors

BaseType:
(one of)
BCDFI JSzZ

ObjectType:
L ClassName;

ArrayType:
[ComponentType

ComponentType:
FieldType

THE cLAss FILE FORMAT

The characters of BaseType, the L and ; of ObjectType, and the [of ArrayType
are all ASCII characters.

ClassName represents a binary class or interface name encoded in internal form
(84.2.2).

The interpretation of field descriptors as typesis shown in Table 4.3-A.

A field descriptor representing an array type is valid only if it represents a type
with 255 or fewer dimensions.

Table4.3-A. Interpretation of field descriptors

FieldTypeterm Type I nterpretation
B byte signed byte
C char Unicode character code point in the Basic
Multilingual Plane, encoded with UTF-16
D doubl e double-precision floating-point value
fl oat single-precision floating-point value
I i nt integer
J | ong long integer
L ClassName ; ref erence an instance of class ClassName
S short signed short
z bool ean trueorfal se
[ref erence one array dimension

The field descriptor of an instance variable of typei nt issimply I .

80

THE cLAss FILE FORMAT Descriptors

Thefield descriptor of aninstancevariable of type Obj ect iSLj ava/ | ang/ Qbj ect ; . Note
that the internal form of the binary name for class Obj ect isused.

The field descriptor of an instance variable of the multidimensiona array type doubl e[]
(107 is[[[D.

4.3.3 Method Descriptors

A method descriptor contains zero or more parameter descriptors, representing the
types of parametersthat the method takes, and areturn descriptor, representing the
type of the value (if any) that the method returns.

MethodDescriptor:
({ParameterDescriptor}) ReturnDescriptor

Parameter Descriptor:
FieldType

ReturnDescriptor:
FieldType
VoidDescriptor

VoidDescriptor:
Y

The character v indicates that the method returns no value (its result isvoi d).
The method descriptor for the method:

Object n(int i, double d, Thread t) {...}

(1 DLj ava/ | ang/ Thread;) Lj ava/ | ang/ Obj ect ;

Note that the internal forms of the binary names of Thr ead and Obj ect are used.

A method descriptor is valid only if it represents method parameters with a total
length of 255 or less, where that length includes the contribution for t hi s in the
case of instance or interface method invocations. The total length is calculated by
summing the contributions of the individual parameters, where a parameter of type
| ong Or doubl e contributes two units to the length and a parameter of any other
type contributes one unit.

4.3

81

4.4

82

The Constant Pool THE cLAss FILE FORMAT

A method descriptor is the same whether the method it describesis a class method
or an instance method. Although an instance method is passed t hi s, a reference
to the object on which the method is being invoked, in addition to its intended
arguments, that fact isnot reflected in the method descriptor. Thereferencetot hi s
ispassed implicitly by the Java Virtual Machineinstructionswhich invokeinstance
methods (82.6.1, §4.11).

4.4 The Constant Pool

Java Virtual Machine instructions do not rely on the run-time layout of classes,
interfaces, class instances, or arrays. Instead, instructions refer to symbolic
information in the const ant _pool table.

All const ant _pool table entries have the following general format:

cp_info {
ul tag;
ul info[];

Each entry inthe const ant _pool table must begin with a 1-byte tag indicating the
type of constant denoted by the entry. The constant types and their corresponding
tag values arelisted in Table 4.4-A. Each constant type is accompanied by the first
version of the cl ass file format in which it was defined, and the corresponding
version of the Java SE Platform. (For old cI ass file versions, the JDK release is
used instead of the Java SE Platform version.)

Each tag byte must be followed by two or more bytes giving information about the
specific constant. The format of the additional information depends on thetag byte,
that is, the content of thei nf o array varies with the value of t ag.

THE cLAss FILE FORMAT The Constant Pool

Table 4.4-A. Constant pool tags

Constant Type Value cl ass file JavaSE
CONSTANT_Cl ass 7 45.3 1.0.2
CONSTANT_Fi el dr ef 9 45.3 102
CONSTANT_Met hodr ef 10 45.3 1.0.2
CONSTANT_I nt er f aceMet hodr ef 11 45.3 1.0.2
CONSTANT_Stri ng 8 453 1.0.2
CONSTANT_I nt eger 3 45.3 102
CONSTANT_FI oat 4 45.3 102
CONSTANT_Long 5 45.3 102
CONSTANT_Doubl e 6 45.3 102
CONSTANT_NameAndType 12 45.3 1.0.2
CONSTANT_Ut f 8 1 453 1.0.2
CONSTANT_Met hodHandl e 15 51.0 7
CONSTANT_Met hodType 16 51.0 7
CONSTANT_I nvokeDynami ¢ 18 51.0 7
CONSTANT_Modul e 19 53.0 9
CONSTANT_Package 20 53.0 9

4.4.1 The CONSTANT d ass_i nfo Structure
The CONSTANT_d ass_i nf o structure is used to represent a class or an interface:

CONSTANT_d ass_info {
ul tag;
u2 nane_i ndex;

}

The items of the CONSTANT_d ass_i nf o structure are as follows:

tag
Thet ag item has the value CONSTANT_d ass (7).
nane_i ndex

The vaue of the nane_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a

4.4

83

4.4

The Constant Pool THE cLAss FILE FORMAT

CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a valid binary class or
interface name encoded in internal form (84.2.1).

Because arrays are objects, the opcodes anewarray and multianewarray - but
not the opcode new - can reference array "classes' via CONSTANT_d ass_i nfo
structuresintheconst ant _pool table. For such array classes, the name of the class
is the descriptor of the array type (84.3.2).

For example, the class name representing the two-dimensional array typeint []1[] is[[!,
while the class name representing the type Thr ead[] is[Lj ava/ | ang/ Thr ead; .

An array type descriptor isvalid only if it represents 255 or fewer dimensions.

4.4.2 The CONSTANT_Fi el dref _i nf o, CONSTANT_Met hodr ef _i nf o, and
CONSTANT I nt er f aceMet hodr ef _i nf o Structures

Fields, methods, and interface methods are represented by similar structures:

CONSTANT_Fi el dref _info {
ul tag;
u2 cl ass_i ndex;
u2 name_and_t ype_i ndex;

}
CONSTANT_Met hodref _info {
ul tag;
u2 cl ass_i ndex;
u2 name_and_t ype_i ndex;
}
CONSTANT_I nt erfaceMet hodref _i nfo {
ul tag;
u2 cl ass_i ndex;
u2 name_and_t ype_i ndex;
}

The items of these structures are as follows:

tag
The tag item of a CONSTANT Fieldref_info structure has the vaue
CONSTANT_Fi el dref (9).

The tag item of a CONSTANT Met hodref info structure has the value
CONSTANT_Met hodr ef (10).

The tag item of a CONSTANT I nt er f aceMet hodr ef _i nf o structure has the
value CONSTANT_I nt er f aceMet hodr ef (11).

THE cLAss FILE FORMAT The Constant Pool

cl ass_i ndex

The value of the class_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_d ass_i nf o structure (84.4.1) representing aclass or interface type
that has the field or method as a member.

The cl ass_i ndex item of a CONSTANT Met hodr ef _i nf o Structure must be a
class type, not an interface type.

Thecl ass_i ndex item of a CONSTANT I nt er f aceMet hodr ef _i nf o Structure
must be an interface type.

Thecl ass_i ndex item of aCONSTANT_Fi el dr ef _i nf o structure may be either
aclasstype or an interface type.

name_and_t ype_i ndex

The value of the name_and_type_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_NanmeAndType_i nf o structure (84.4.6). This const ant _pool entry
indicates the name and descriptor of the field or method.

In a CONSTANT_Fi el dref _i nfo, the indicated descriptor must be a field
descriptor (84.3.2). Otherwise, the indicated descriptor must be a method
descriptor (84.3.3).

If the name of the method of a CONSTANT_Met hodr ef _i nf o structure begins
with a '<' (\u003c"), then the name must be the specia name <init >,
representing an instanceinitialization method (82.9.1). The return type of such
amethod must be voi d.

443 The CONSTANT String_i nfo Structure

The CONSTANT_St ri ng_i nf o structure is used to represent constant objects of the
typestring:

CONSTANT_String_info {
ul tag;
u2 string_i ndex;

}

The items of the CONSTANT_St ri ng_i nf o structure are as follows:

tag

Thet ag item hasthe value CONSTANT_St ri ng (8).

4.4

85

4.4

86

The Constant Pool THE cLAss FILE FORMAT

string_i ndex

The value of the string_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the sequence of Unicode
code pointsto which the st ri ng object isto beinitialized.

444 The CONSTANT | nt eger _i nf o and CONSTANT_Fl oat _i nf o Structures

The CONSTANT_I nt eger _i nf o and CONSTANT_Fl oat _i nf o Structures represent 4-
byte numeric (i nt and f | oat) constants:

CONSTANT_I nt eger _i nfo {
ul tag;
u4 bytes;

}

CONSTANT_Fl oat _i nfo {
ul tag;
ud bytes;

}

The items of these structures are as follows:

tag

The tag item of the CONSTANT Integer info Structure has the vaue
CONSTANT_I nt eger (3).

The tag item of the CONSTANT Float _info structure has the vaue
CONSTANT_Fl oat (4).

byt es

Thebyt es item of the CONSTANT I nt eger _i nf o structure representsthe value
of thei nt constant. The bytes of the value are stored in big-endian (high byte
first) order.

The byt es item of the CONSTANT_Fl oat _i nf o structure represents the value
of the f1 oat constant in IEEE 754 floating-point single format (82.3.2). The
bytes of the single format representation are stored in big-endian (high byte
first) order.

The value represented by the CONSTANT_FI oat _i nf o structure is determined
asfollows. The bytes of the value are first converted into ani nt constant bits.
Then:

* If bitsisox7f 800000, thefl oat valuewill be positive infinity.

THE cLAss FILE FORMAT The Constant Pool

* |f bitsisoxf f 800000, thef | oat value will be negative infinity.

* If bits is in the range 0x7f 800001 through ox7fffffff or in the range
oxf f 800001 through oxffffffff,thefl oat valuewill be NaN.

* Inall other cases, let s, e, and mbe three values that might be computed from

bits:
int s = ((bits > 31) ==0) ?1: -1;
int e = ((bits >> 23) & Oxff);
int m= (e ==0) ?

(bits & Ox7fffff) << 1 :
(bits & Ox7fffff) | 0x800000;

Thenthefl oat vaue equals the result of the mathematical expressions - m
oe- 150.

445 The CONSTANT_Long_i nf o and CONSTANT Doubl e_i nf o Structures

The CONSTANT_Long_i nf o and CONSTANT_Doubl e_i nf o represent 8-byte numeric
(1 ong and doubl e) constants:

CONSTANT_Long_i nfo {
ul tag;
u4 hi gh_bytes;
ud | ow_bytes;

}

CONSTANT_Doubl e_i nfo {
ul tag;
u4 hi gh_bytes;
ud | ow_bytes;

}

All 8-byte constants take up two entriesin the const ant _pool table of thecl ass
file. If @ CONSTANT Long_i nfo Or CONSTANT Doubl e_i nf o structure is the item
in the const ant _pool table at index n, then the next usable item in the pooal is
located at index n+2. Theconst ant _pool index n+1 must bevalid but isconsidered
unusable.

In retrospect, making 8-byte constants take two constant pool entries was a poor choice.
The items of these structures are as follows:

t ag

The tag item of the CONSTANT Long_ info structure has the vaue
CONSTANT_Long (5).

4.4

87

4.4 The Constant Pool THE cLAss FILE FORMAT

The tag item of the CONSTANT Double_ info structure has the vaue
CONSTANT_Doubl e (6).

hi gh_bytes, |ow bytes

The unsigned hi gh_byt es and | ow_byt es items of the CONSTANT _Long_i nf o
structure together represent the value of thel ong constant

((long) high_bytes << 32) + |ow_bytes

wherethe bytes of each of hi gh_byt es and| ow_byt es are stored in big-endian
(high byte first) order.

The high_bytes and | ow bytes items of the CONSTANT Doubl e info
structure together represent the doubl e value in IEEE 754 floating-point
double format (82.3.2). The bytes of each item are stored in big-endian (high
byte first) order.

The value represented by the CONSTANT _Doubl e_i nf o structure is determined
asfollows. Thehi gh_byt es and | ow_byt es items are converted into thel ong
constant bits, which isequal to

((long) high_bytes << 32) + |ow bytes
Then:
* If bitsis0x7f f 0000000000000L, the doubl e value will be positive infinity.
* If bitsisoxf f f 0000000000000L, the doubl e value will be negative infinity.

* If bitsisintherangeox7f f 0000000000001L throughOx7f ffffffffffffffL
or in the range oxf f f 0000000000001L through oxffffffffffffffffL, the
double value will be NaN.

 Inall other cases, let s, e, and mbe three values that might be computed from
bits:

int s ((bits >>63) ==0) ? 1: -1;
int e = (int)((bits >> 52) & Ox7ffL);
long m= (e == 0) ?
(bits & OxfffffffffffffL) << 1 :
(bits & OxfffffffffffffL) | 0Ox10000000000000L;

Then the floating-point value equals the doubl e value of the mathematical
expressions - m . 281075,

88

THE cLAss FILE FORMAT The Constant Pool

446 The CONSTANT_NanmeAndType_i nf o Structure

The CONSTANT_NaneAndType_i nf o structureisused to represent afield or method,
without indicating which class or interface type it belongs to:

CONSTANT_NarmeAndType_i nfo {
ul tag;
u2 nane_i ndex;
u2 descri ptor_index;

}

The items of the CONSTANT_NarmeAndType_i nf o structure are as follows:

t ag
Thet ag item has the value CONSTANT_NaneAndType (12).

name_i ndex
The vaue of the nane_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing either avalid unqualified
name denoting afield or method (84.2.2), or the special method name <i ni t >
(82.9.2).

descri pt or _i ndex

The value of the descriptor_i ndex item must be a valid index into the
constant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a valid field descriptor
or method descriptor (84.3.2, §4.3.3).

4.4.7 The CONSTANT Ut f8_ i nfo Structure
The CONSTANT_Ut f 8_i nf o structure is used to represent constant string values:
CONSTANT _Utf8_ info {
ul tag;

u2 | ength;
ul bytes[length];

The items of the CONSTANT _Ut f 8_i nf o structure are as follows:

tag
Thet ag item has the value CONSTANT_Ut f 8 (1).

4.4

89

4.4

90

The Constant Pool THE cLAss FILE FORMAT

I ength

Thevaueof thel engt h item givesthe number of bytesin thebyt es array (not
the length of the resulting string).

byt es[]
The byt es array contains the bytes of the string.
No byte may have the value (byt e) 0.
No byte may liein the range (byt e) 0xf 0 to (byt e) Oxf f .

String content is encoded in modified UTF-8. Modified UTF-8 strings are encoded
so that code point sequences that contain only non-null ASCII characters can be
represented using only 1 byte per code point, but al code points in the Unicode
codespace can berepresented. Modified UTF-8 strings are not null-terminated. The
encoding is asfollows:

» Code pointsin the range '\ u0001' to "\ u007F" are represented by a single byte:

0 bits 6-0

The 7 bits of datain the byte give the value of the code point represented.

e The null code point (\ u0000") and code points in the range "\ u0080' t0 \ uO7FF'
are represented by a pair of bytesx andy :

X. 1 1 0 bits 10-6

y: 1 0 bits 5-0

The two bytes represent the code point with the value:

((x & Ox1f) << 6) + (y & Ox3f)

» Code points in the range "\ u0800' to "\ uFFFF' are represented by 3 bytes x, vy,
andz :

X: 1 1 1 0 bits 15-12
y: 1 0 bits 11-6
Z. 1 0 bits 5-0

The three bytes represent the code point with the value:

((x & Oxf) << 12) + ((y & Ox3f) << 6) + (z & Ox3f)

THE cLAss FILE FORMAT The Constant Pool 4.4

* Characters with code points above U+FFFF (so-caled supplementary
characters) are represented by separately encoding the two surrogate code units
of their UTF-16 representation. Each of the surrogate code unitsisrepresented by
three bytes. This means supplementary characters are represented by six bytes,
u,v,w,x,y,andz :

u: 1 1 1 0 1 1 0 1
V: 1 0 1 0 (bits 20-16)-1

W. 1 0 bits 15-10

X: 1 1 1 0 1 1 0 1
y: 1 0 1 1 bits 9-6

z: 1 0 bits 5-0

The six bytes represent the code point with the value:

0x10000 + ((v & OxOf) << 16) + ((w & Ox3f) << 10) +

((y & Ox0f) << 6) + (z & Ox3f)
The bytes of multibyte characters are stored in the ¢l ass file in big-endian (high
byte first) order.

There are two differences between this format and the "standard" UTF-8 format.
First, the null character (char) 0 isencoded using the 2-byte format rather than the
1-byteformat, so that modified UTF-8 strings never have embedded nulls. Second,
only the 1-byte, 2-byte, and 3-byte formats of standard UTF-8 are used. The Java
Virtual Machine does not recognize the four-byte format of standard UTF-8; it uses
its own two-times-three-byte format instead.

For more information regarding the standard UTF-8 format, see Section 3.9 Unicode
Encoding Forms of The Unicode Sandard, Version 8.0.0.

4.4.8 The CONSTANT_Met hodHandl e_i nf o Structure

The CONSTANT_Met hodHandl e_i nf o structureisused to represent amethod handle:

CONSTANT_Met hodHandl e_i nfo {
ul tag;
ul reference_kind;
u2 reference_index;

91

4.4

92

The Constant Pool THE cLAss FILE FORMAT

The items of the CONSTANT_Met hodHandl e_i nf o structure are the following:

t ag

Thet ag item has the value CONSTANT_Met hodHandl e (15).

ref erence_ki nd
The value of the reference_ki nd item must be in the range 1 to 9. The

value denotes the kind of this method handle, which characterizesits bytecode
behavior (85.4.3.5).

ref erence_i ndex

The value of the reference_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be as
follows:

If the value of the reference_kind item is 1 (REF _getField), 2
(REF_get Static), 3 (REF_putField), or 4 (REF_put Static), then the
const ant _pool entry at that index must be a CONSTANT_Fi el dref _i nfo
(84.4.2) structure representing a field for which a method handle is to be
created.

If the value of the ref erence_ki nd item is 5 (REF_i nvokeVi rtual) or 8
(REF_newl nvokeSpeci al), thentheconst ant _pool entry at that index must
be a CONSTANT_Met hodr ef _i nf o structure (84.4.2) representing a class's
method or constructor (82.9.1) for which a method handle is to be created.

If the value of the reference_kind item is 6 (REF_invokeStatic)
or 7 (REF_invokeSpecial), then if the class file verson number
is less than 52.0, the constant _pool entry at that index must be
a CONSTANT_Met hodref _i nfo structure representing a classs method
for which a method handle is to be created; if the class file
version number is 52.0 or above, the constant _pool entry at that
index must be either a CONSTANT Met hodref info structure or a
CONSTANT_| nt er f aceMet hodref _i nfo structure (84.4.2) representing a
class's or interface's method for which a method handle is to be created.

If the value of the reference_kind item is 9 (REF_i nvokel nterf ace),
then the constant_pool entry a that index must be a
CONSTANT _| nt er f aceMet hodr ef _i nf o structure representing an interface's
method for which a method handle is to be created.

If the value of the reference_kind item is 5 (REF_i nvokeVirtual), 6
(REF_i nvokeSt ati c), 7 (REF_i nvokeSpeci al), or 9 (REF_i nvokel nt er f ace),
the name of the method represented by a CONSTANT_Met hodr ef _i nf o structure

THE cLAss FILE FORMAT The Constant Pool

Or a CONSTANT I nt er f aceMet hodr ef _i nf o Structure must not be <i ni t > or
<clinit>.

If thevalueis8 (REF_new nvokeSpeci al), the name of the method represented
by a CONSTANT_Met hodr ef _i nf o structure must be <i ni t >.

4.4.9 The CONSTANT_Met hodType_i nf o Structure
The CONSTANT_Met hodType_i nf o structure is used to represent a method type:

CONSTANT_Met hodType_i nfo {
ul tag;
u2 descriptor_index;

}

The items of the CONSTANT _Met hodType_i nf o structure are as follows:

t ag
Thet ag item has the value CONSTANT_Met hodType (16).

descri pt or _i ndex

The value of the descriptor_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f8_i nfo structure (84.4.7) representing a method descriptor
(84.3.3).

4410 The CONSTANT | nvokeDynani c_i nf o Structure

The CONSTANT_I nvokeDynami c_i nfo structure is used by an invokedynamic
instruction (8invokedynamic) to specify a bootstrap method, the dynamic
invocation name, the argument and return types of the call, and optionaly, a
sequence of additional constants called static arguments to the bootstrap method.

CONSTANT_I nvokeDynami c_i nfo {
ul tag;
u2 boot strap_nethod_attr_i ndex;
u2 name_and_t ype_i ndex;

}

The items of the CONSTANT | nvokeDynani c_i nf o structure are as follows:

tag
Thet ag item has the value CONSTANT_I nvokeDynani ¢ (18).

4.4

93

4.4

94

The Constant Pool THE cLAss FILE FORMAT

boot strap_net hod_attr_i ndex
The value of the boot st rap_net hod_at t r _i ndex item must be a valid index

into the boot st r ap_net hods array of the bootstrap method table (84.7.23) of
thiscl ass file.

nane_and_t ype_i ndex
The value of the name_and_type_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_NameAndType_i nf o structure (84.4.6) representing a method name
and method descriptor (84.3.3).

4411 The CONSTANT Mvdul e_i nf o Structure
The CONSTANT_Modul e_i nf o structure is used to represent amodule:

CONSTANT_Mbdul e_i nfo {
ul tag;
u2 nane_i ndex;

}

The items of the CONSTANT _Modul e_i nf o structure are as follows:

t ag
Thet ag item has the value CONSTANT_Modul e (19).

name_i ndex

The value of the nane_index item must be a vaid index into the
constant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure representing a valid module name (84.2.3).

A CONSTANT_Mbdul e_i nf o structure is permitted only in the constant pool of
a cl ass file that declares a module, that is, a d assFi | e structure where the
access_flags item has the AcC_MODULE flag set. In al other cl ass files, a
CONSTANT_Mbdul e_i nf o structureisillegal.

4412 The CONSTANT Package_i nf o Structure

The CONSTANT_Package_i nf o structure is used to represent a package exported or
opened by amodule:

CONSTANT_Package_i nfo {
ul tag;
u2 nane_i ndex;

THE cLAss FILE FORMAT Fields 4.5

The items of the CONSTANT _Package_i nf o structure are as follows:

tag
Thet ag item has the value CONSTANT_Package (20).
nanme_i ndex

The vaue of the nane_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure representing avalid package name encoded in
internal form (84.2.3).

A CONSTANT_Package_i nf o structure is permitted only in the constant pool of
a cl ass file that declares a module, that is, a C assFi | e structure where the
access_flags item has the Acc_ MoDULE flag set. In al other cl ass files, a
CONSTANT_Package_i nf o structureisillegal.

4.5 Fields

Each field is described by afi el d_i nf o structure.
No two fieldsin onecl ass file may have the same name and descriptor (84.3.2).

The structure has the following format:

field_info {
u2 access_fl ags;
u2 nanme_i ndex;
u2 descri pt or _i ndex;
u2 attributes_count;

attribute_info attributes[attributes_count];

}

Theitemsof thefi el d_i nf o structure are as follows:

access_fl ags

The value of the access_f 1 ags item isamask of flags used to denote access
permission to and properties of thisfield. Theinterpretation of each flag, when
set, is specified in Table 4.5-A.

95

4.5 Fields THE cLAss FILE FORMAT

Table 4.5-A. Field access and property flags

Flag Name Value Interpretation

ACC _PUBLI C 0x0001 Declared publ i c; may be accessed from outside its
package.

ACC_PRI VATE 0x0002 Declared pri vat e; usable only within the defining
class.

ACC_PROTECTED 0x0004 Declared protected; may be accessed within
subclasses.

ACC_STATIC 0x0008 Declared st ati c.

ACC_FI NAL 0x0010 Declared fi nal ; never directly assigned to after
object construction (JLS §17.5).

ACC VOLATI LE 0x0040 Declared vol at i | e; cannot be cached.

ACC_TRANSI ENT 0x0080 Declared transi ent; not written or read by a
persistent object manager.

ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.

ACC_ENUM 0x4000 Declared as an element of anenum

Fields of classes may set any of the flags in Table 4.5-A. However, each
field of a class may have at most one of its ACC_PUBLI C, ACC_PRI VATE, and
ACC_PROTECTED flags set (JLS 8§8.3.1), and must not have both its ACC_FI NAL
and ACC_VOLATI LE flags set (JLS §8.3.1.4).

Fields of interfaces must have their ACC_PUBLI C, ACC_STATI C, and ACC_FI NAL
flags set; they may have their ACC_SYNTHETI C flag set and must not have any
of the other flagsin Table 4.5-A set (JLS §9.3).

The AcC_SYNTHETI C flag indicates that this field was generated by a compiler
and does not appear in source code.

The acc_ENuM flag indicates that this field is used to hold an element of an
enumerated type.

All bitsof theaccess_f | ags item not assigned in Table 4.5-A are reserved for
future use. They should be set to zero in generated cl ass files and should be
ignored by Java Virtua Machine implementations.

nanme_i ndex

The value of the nane_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a

96

THE cLASS FILE FORMAT Methods

CONSTANT_Ut f 8_i nf o structure (84.4.7) which represents a valid unqualified
name denoting afield (84.2.2).

descri pt or _i ndex

The value of the descriptor_i ndex item must be a valid index into the
constant _pool table. The constant _pool entry at that index must be
a CONSTANT_Ut f8_i nfo structure (84.4.7) which represents a valid field
descriptor (84.3.2).

attributes_count

The value of the at t ri but es_count item indicates the number of additiona
attributes of thisfield.

attributes[]

Each value of the attri but es table must be an attri bute_i nfo Structure
(84.7).

A field can have any number of optional attributes associated with it.

The attributes defined by this specification as appearing in the attri but es
tableof afi el d_i nf o structure arelisted in Table 4.7-C.

The rules concerning attributes defined to appear inthe at t ri but es table of a
fiel d_i nf o structure are givenin 84.7.

The rules concerning non-predefined attributes in the at t ri but es table of a
fiel d_i nf o structure are given in 84.7.1.

4.6 Methods

Each method, including each instance initialization method (82.9.1) and the class
or interfaceinitialization method (82.9.2), isdescribed by anet hod_i nf o structure.

No two methodsin onecl ass filemay have the same name and descriptor (84.3.3).
The structure has the following format:

net hod_i nfo {

u2 access_fl ags;

u2 nanme_i ndex;

u2 descri pt or _i ndex;
u2 attributes_count;

attribute_info attributes[attributes_count];

}

The items of the net hod_i nf o structure are as follows:

4.6

97

4.6

98

Methods THE cLASS FILE FORMAT

access_fl ags

The value of the access_f 1 ags item isamask of flags used to denote access
permission to and properties of this method. The interpretation of each flag,
when set, is specified in Table 4.6-A.

Table 4.6-A. Method access and property flags

Flag Name Value Interpretation

ACC_PUBLI C 0x0001 Declared publ i c; may be accessed from outside its
package.

ACC_PRI VATE 0x0002 Declared private; accessible only within the
defining class.

ACC_PROTECTED 0x0004 Declared prot ect ed; may be accessed within
subclasses.

ACC_STATI C 0x0008 Declared st at i c.

ACC_FI NAL 0x0010 Declared f i nal ; must not be overridden (85.4.5).

ACC_SYNCHRONI ZED 0x0020 Declared synchr oni zed; invocation is wrapped
by amonitor use.

ACC_BRI DGE 0x0040 A bridge method, generated by the compiler.

ACC_VARARGS 0x0080 Declared with variable number of arguments.

ACC_NATI VE 0x0100 Declared nat i ve; implemented in alanguage other
than the Java programming language.

ACC_ABSTRACT 0x0400 Declared abstract; no implementation is
provided.

ACC_STRI CT 0x0800 Declared stri ctfp; floating-point mode is FP-
strict.

ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.

Methods of classes may have any of the flags in Table 4.6-A set. However,
each method of aclass may have at most one of itSACC_PUBLI C, ACC_PRI VATE,
and Acc_PROTECTED flags set (JLS §8.4.3).

Methods of interfaces may have any of the flags in Table 4.6-A set except
ACC_PROTECTED, ACC_FI NAL, ACC_SYNCHRONI ZED, and ACC_NATI VE (JLS §89.4).
In acl ass file whose version number is less than 52.0, each method of an
interface must have its ACC_PUBLI C and ACC_ABSTRACT flags set; in acl ass
file whose version number is 52.0 or above, each method of an interface must
have exactly one of its ACC_PUBLI C and ACC_PRI VATE flags set.

THE cLASS FILE FORMAT Methods

If a method of a class or interface has its ACC_ABSTRACT flag set, it must not
have any of its ACC_PRI VATE, ACC_STATI C, ACC_FI NAL, ACC_SYNCHRONI ZED,
ACC_NATI VE, Or ACC_STRI CT flags set.

An instance initialization method (82.9.1) may have at most one of its
ACC_PUBLI C, ACC_PRI VATE, and ACC_PROTECTED flags set, and may also have
itSACC_VARARGS, ACC_STRI CT, and ACC_SYNTHETI Cflags set, but must not have
any of the other flagsin Table 4.6-A set.

Inacl ass filewhose version number is 51.0 or above, a method whose name
is<clinit>must haveits ACC_STATI Cflag set.

A class or interface initialization method (82.9.2) is called implicitly by the
Java Virtual Machine. The value of itsaccess_f 1 ags item isignored except
for the setting of the ACC_STATI C and ACC_STRI CT flags, and the method is
exempt from the preceding rules about legal combinations of flags.

The Acc BRI DGE flag is used to indicate a bridge method generated by a
compiler for the Java programming language.

The ACC_VARARGS flag indicates that this method takes a variable number of
arguments at the source code level. A method declared to take a variable
number of arguments must be compiled with the ACC_VARARGS flag set to 1.
All other methods must be compiled with the ACC_VARARGS flag set to 0.

The acc_sYNTHETI C flag indicates that this method was generated by a
compiler and does not appear in source code, unless it is one of the methods
named in 84.7.8.

All bitsof theaccess_f | ags item not assigned in Table 4.6-A arereserved for
future use. They should be set to zero in generated cl ass files and should be
ignored by Java Virtual Machine implementations.

name_i ndex

The value of the nane_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing either avalid unqualified
name denoting a method (84.2.2), or (if this method isin a class rather than
an interface) the special method name <i ni t >, or the special method name
<clinit>.

descri pt or _i ndex

The value of the descri ptor_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be

4.7

100

Attributes THE cLAss FILE FORMAT

a CONSTANT Ut f8_info structure representing a valid method descriptor
(84.3.3). Furthermore:

* If this method is in a class rather than an interface, and the name of the
method is <i ni t >, then the descriptor must denote avoi d method.

« If the name of the method is <cl i ni t >, then the descriptor must denote a
voi d method, and, in acl ass file whose version number is 51.0 or above,
amethod that takes no arguments.

A future edition of this specification may require that the last parameter descriptor of the
method descriptor is an array type if the ACC_VARARGS flag is set in the access_f | ags
item.

attributes_count

The value of the at tri but es_count item indicates the number of additional
attributes of this method.

attributes[]

Each value of the attri but es table must be an attri bute_i nf o structure
(84.7).

A method can have any number of optional attributes associated with it.

The attributes defined by this specification as appearing in the attri but es
table of amet hod_i nf o Structure are listed in Table 4.7-C.

The rules concerning attributes defined to appear intheat t ri but es table of a
met hod_i nf o Structure are givenin 84.7.

The rules concerning non-predefined attributes in the at t ri but es table of a
met hod_i nf o structure are givenin 84.7.1.

4.7 Attributes

Attributes are used in the dassFile, field info, method info, and
Code_at t ri but e structures of thecl ass file format (84.1, 84.5, 84.6, 84.7.3).

All attributes have the following general format:

attribute_info {
u2 attribute_name_i ndex;
ud attribute_l ength;
ul info[attribute_|l ength];

THE cLAss FILE FORMAT Attributes

For all attributes, the attribut e_name_i ndex item must be a valid unsigned
16-bit index into the constant pool of the class. The constant _pool entry
at attribute_name_i ndex must be a CONSTANT_Ut f 8_i nfo structure (84.4.7)
representing the name of the attribute. The value of the attri but e_Il engt h item
indicates the length of the subsequent information in bytes. The length does
not include the initial six bytes that contain the attri but e_name_i ndex and
attribute_ | ength items.

26 attributes are predefined by this specification. They are listed three times, for
ease of navigation:

» Table 4.7-A is ordered by the attributes' section numbers in this chapter. Each
attribute is accompanied by the first version of thecl ass file format in which it
was defined, and the corresponding version of the Java SE Platform which first
supported that version of the cl ass file format (84.1). (For historical cases, the
JDK version is shown instead of the Java SE Platform version.)

» Table4.7-B isordered by thefirst version of thecl ass file format in which each
attribute was defined.

e Table 4.7-C is ordered by the location in a cl ass file where each attribute is
defined to appear.

Within the context of their useinthisspecification, that is, intheat t ri but es tables
of the cl ass file structures in which they appear, the names of these predefined
attributes are reserved.

Any conditions on the presence of a predefined attribute in an at t ri but es table
are specified explicitly in the section which describesthe attribute. If no conditions
are specified, then the attribute may appear any number of timesinanattri but es
table.

The predefined attributes are categorized into three groups according to their
purpose:;

1. Four attributesare critical to correct interpretation of thecl ass file by the Java
Virtual Machine:

¢ Const ant Val ue

* Code

e StackMapTabl e

* Boot strapMet hods

In a class file of version v, each of these attributes must be recognized
and correctly read by an implementation of the Java Virtual Machine if the

4.7

101

4.7

102

Attributes THE cLAss FILE FORMAT

implementation recognizescl ass filesof version v, and visat least theversion
where the attribute was first defined, and the attribute appears in a location
whereit is defined to appear.

Nine attributes are not critical to correct interpretation of the cl ass file by
the Java Virtual Machine, but are either critical to correct interpretation of the
cl ass file by the classlibraries of the Java SE Platform, or are useful for tools
(inwhich case the section that specifies an attribute describesit as"optional"):

* Exceptions

* | nnerd asses

* Encl osi ngMet hod

* Synthetic

* Signhature

* SourceFile

* Li neNunber Tabl e

* Local Vari abl eTabl e

* Local Vari abl eTypeTabl e

In a class file of version v, each of these attributes must be recognized
and correctly read by an implementation of the Java Virtual Machine if the
implementation recognizescl ass filesof version v, and visat least theversion
where the attribute was first defined, and the attribute appears in a location
whereit is defined to appear.

Thirteen attributes are not critical to correct interpretation of the cl ass file
by the Java Virtual Machine, but contain metadata about the cl ass filethat is
either exposed by the classlibraries of the Java SE Platform, or made available
by tools (in which case the section that specifies an attribute describes it as
"optiona"):

* Sour ceDebugExt ensi on

* Deprecated

* Runti meVi si bl eAnnot ati ons

* Runti el nvi si bl eAnnot ati ons

* Runti meVi si bl ePar anet er Annot ati ons

* Runti nel nvi si bl ePar anet er Annot ati ons

THE cLAss FILE FORMAT Attributes

Runt i meVi si bl eTypeAnnot ati ons
Runt i mel nvi si bl eTypeAnnot ati ons
Annot at i onDef aul t

Met hodPar anet er s

Modul e

Modul ePackages

Modul eMai nCl ass

An implementation of the Java Virtual Machine may use the information that
these attributes contain, or otherwise must silently ignore these attributes.

4.7

103

4.7

104

Attributes

THE cLASs FILE FORMAT

Table4.7-A. Predefined cl ass file attributes (by section)

Attribute Section cl ass file Java SE
Const ant Val ue 84.7.2 453 1.0.2
Code §4.7.3 453 102
St ackMapTabl e 84.7.4 50.0 6
Excepti ons 84.75 45.3 1.0.2
I nner d asses §4.7.6 45.3 11
Encl osi nghet hod 84.7.7 49.0 5.0
Synt heti c 8§4.7.8 45.3 11
Si gnat ure 84.7.9 49.0 5.0
Sour ceFil e §4.7.10 453 1.02
Sour ceDebugExt ensi on 84.7.11 49.0 5.0
Li neNunber Tabl e 84.7.12 453 1.0.2
Local Vari abl eTabl e 84.7.13 453 1.0.2
Local Vari abl eTypeTabl e 84.7.14 49.0 5.0
Depr ecat ed 84.7.15 45.3 11
Runt i neVi si bl eAnnot ati ons 84.7.16 49.0 5.0
Runti mel nvi si bl eAnnot ati ons 8§4.7.17 49.0 5.0
Runt i meVi si bl ePar anmet er Annot at i ons §4.7.18 49.0 5.0
Runt i mel nvi si bl ePar anet er Annot ati ons §4.7.19 49.0 5.0
Runt i meVi si bl eTypeAnnot ati ons §4.7.20 52.0 8
Runt i el nvi si bl eTypeAnnot ati ons §4.7.21 52.0 8
Annot at i onDef aul t 84.7.22 49.0 5.0
Boot st r apMet hods 84.7.23 51.0 7
Met hodPar anet er s 84.7.24 52.0 8
Modul e 8§4.7.25 53.0 9
Mbdul ePackages 84.7.26 53.0 9
Modul eMai nCl ass 8§4.7.27 53.0 9

THE cLAss FILE FORMAT Attributes
Table4.7-B. Predefined cl ass file attributes (by cl ass file version)
Attribute cl ass file JavaSE Section
Const ant Val ue 453 102 §4.7.2
Code 45.3 102 84.7.3
Excepti ons 45.3 1.0.2 84.75
Sour ceFil e 453 1.0.2 §4.7.10
Li neNunber Tabl e 45.3 1.0.2 §4.7.12
Local Vari abl eTabl e 453 1.02 §4.7.13
I nner d asses 45.3 11 84.7.6
Synt heti c 45.3 11 §4.7.8
Depr ecat ed 45.3 11 §4.7.15
Encl osi ngMet hod 49.0 5.0 84.7.7
Si gnat ure 49.0 5.0 84.7.9
Sour ceDebugExt ensi on 49.0 5.0 §4.7.11
Local Vari abl eTypeTabl e 49.0 5.0 8§4.7.14
Runt i neVi si bl eAnnot at i ons 49.0 5.0 §4.7.16
Runt i mel nvi si bl eAnnot at i ons 49.0 5.0 8§4.7.17
Runt i meVi si bl ePar anmet er Annot at i ons 49.0 5.0 §4.7.18
Runt i mel nvi si bl ePar anet er Annot ati ons 49.0 5.0 84.7.19
Annot at i onDef aul t 49.0 5.0 §4.7.22
St ackMapTabl e 50.0 6 84.74
Boot st r apMet hods 51.0 7 §4.7.23
Runt i meVi si bl eTypeAnnot ati ons 52.0 8 §4.7.20
Runt i el nvi si bl eTypeAnnot ati ons 52.0 8 §4.7.21
Met hodPar anet er s 52.0 8 §4.7.24
Modul e 53.0 9 84.7.25
Mbdul ePackages 53.0 9 §4.7.26
Modul eMai nCl ass 53.0 9 84.7.27

4.7

105

4.7

106

Attributes

THE cLASs FILE FORMAT

Table4.7-C. Predefined cl ass file attributes (by location)

Runt i el nvi si bl eTypeAnnot ati ons

field_info,

met hod_i nf o, Code

Attribute L ocation cl ass file
SourceFil e ClassFile 45.3
I nner Cl asses ClassFile 453
Encl osi ngMet hod ClassFile 49.0
Sour ceDebugExt ensi on ClassFile 49.0
Boot st rapMet hods ClassFile 51.0
Modul e, Modul ePackages, Modul eMai nCl ass C assFil e 53.0
Const ant Val ue field info 45.3
Code met hod_i nfo 45.3
Excepti ons met hod_i nfo 453
Runt i neVi si bl ePar anet er Annot at i ons, met hod_i nfo 49.0
Runt i el nvi si bl ePar anet er Annot ati ons
Annot at i onDef aul t met hod_i nfo 49.0
Met hodPar anet er s met hod_i nfo 52.0
Synt hetic Cl assFil e, 453

field_info,

met hod_i nfo
Depr ecat ed Cl assFil e, 45.3

field_info,

nmet hod_i nfo
Si gnature Cl assFi |l e, 49.0

field_info,

met hod_i nfo
Runt i meVi si bl eAnnot ati ons, Cl assFi l e, 49.0
Runt i el nvi si bl eAnnot ati ons field_info,

met hod_i nfo
Li neNunber Tabl e Code 45.3
Local Vari abl eTabl e Code 45.3
Local Vari abl eTypeTabl e Code 49.0
St ackMapTabl e Code 50.0
Runt i meVi si bl eTypeAnnot at i ons, Cl assFi |l e, 52.0

THE cLAss FILE FORMAT Attributes

4.7.1 Defining and Naming New Attributes

Compilers are permitted to define and emit cl ass files containing new attributes
in the attributes tables of class file structures, field_ info Structures,
met hod_i nfo structures, and Code attributes (84.7.3). Java Virtua Machine
implementations are permitted to recognize and use new attributes found in
these attributes tables. However, any attribute not defined as part of this
specification must not affect the semantics of thecl ass file. JavaVirtual Machine
implementations are required to silently ignore attributes they do not recognize.

For instance, defining a new attribute to support vendor-specific debugging is
permitted. Because Java Virtual Machine implementations are required to ignore
attributesthey do not recognize, cl ass filesintended for that particular JavaVirtual
Machine implementation will be usable by other implementations even if those
implementations cannot make use of the additional debugging information that the
cl ass files contain.

JavaVirtual Machineimplementationsare specifically prohibited from throwing an
exception or otherwiserefusingto usecl ass filessimply because of the presence of
some new attribute. Of course, tools operating oncl ass filesmay not run correctly
if given cl ass filesthat do not contain all the attributes they require.

Two attributes that are intended to be distinct, but that happen to use the same
attribute name and are of the same length, will conflict on implementations that
recognize either attribute. Attributes defined other than in this specification should
have names chosen according to the package naming convention described in The
Java Language Specification, Java SE 10 Edition (JL S 86.1).

Future versions of this specification may define additional attributes.

47.2 The Const ant Val ue Attribute

The Const ant Val ue attributeis afixed-length attributeinthe at t ri but es table of
afiel d_i nf o structure (84.5). A Const ant Val ue attribute represents the value of
aconstant expression (JLS §15.28), and is used as follows:

 If theAcC STATI Cflagintheaccess_f 1 ags item of thefi el d_i nf o Structureis
set, then the field represented by thef i el d_i nf o structure is assigned the value
represented by its Const ant Val ue attribute as part of the initialization of the
class or interface declaring the field (85.5). This occurs prior to the invocation
of the class or interface initialization method of that class or interface (82.9.2).

» Otherwise, the Java Virtual Machine must silently ignore the attribute.

4.7

107

4.7 Attributes THE cLASs FILE FORMAT

There may be at most one Const ant Val ue attribute in the at t ri but es table of a
fiel d_i nf o Structure.

The Const ant Val ue attribute has the following format:

Const ant Val ue_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 constantval ue_i ndex;

}

The items of the Const ant Val ue_at t ri but e structure are as follows:

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f 8_i nfo structure (84.4.7) representing the string
"Const ant Val ue".

attribute_l ength
The value of the attribute | ength item of a Constant Val ue_attri bute
structure must be two.

const ant val ue_i ndex

The value of the constantval ue_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index gives the
constant value represented by this attribute. Theconst ant _pool entry must be
of atype appropriate to the field, as specified in Table 4.7.2-A.

Table4.7.2-A. Constant value attribute types

Field Type Entry Type

| ong CONSTANT_Long

fl oat CONSTANT_FI oat
doubl e CONSTANT_Doubl e
i nt,short,char,byte, bool ean CONSTANT _I nt eger
String CONSTANT_String

4.7.3 TheCode Attribute

The code attribute is a variable-length attribute in the attributes table of
a nethod_i nfo structure (84.6). A Code attribute contains the Java Virtual

108

THE cLAss FILE FORMAT Attributes

Machineinstructions and auxiliary information for amethod, including an instance
initialization method and aclass or interface initialization method (82.9.1, §82.9.2).

If the method is either native or abstract, and is not a class or interface
initialization method, thenitsnet hod_i nf o structure must not have aCode attribute
initsattribut es table. Otherwise, its met hod_i nf o structure must have exactly
one Code attributeinitsattri but es table.

The Code attribute has the following format:

Code_attribute {
u2 attribute_name_i ndex;
ud attribute_| ength;
u2 max_stack;
u2 max_| ocal s;
u4 code_| engt h;
ul code[code_Il ength];
u2 exception_table_| ength;
{ u2 start_pc;
u2 end_pc;
u2 handl er_pc;
u2 catch_type;
} exception_tabl e[exception_table_|ength];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

The items of the Code_at t ri but e Structure are as follows:

attribute_name_i ndex

The value of the attribute_nane_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string "Code".

attribute_l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.
max_st ack
The value of the max_st ack item gives the maximum depth of the operand
stack of this method (82.6.2) at any point during execution of the method.
max_| ocal s

The value of the max_I ocal s item gives the number of local variables in
the local variable array allocated upon invocation of this method (82.6.1),
including the local variables used to pass parameters to the method on its
invocation.

4.7

109

4.7

110

Attributes THE cLAss FILE FORMAT

The greatest local variable index for a value of type | ong or doubl e is
max_l ocal s - 2. The greatest local variable index for a value of any other
typeismax_l ocal s - 1.

code_l ength

Thevalueof thecode_I engt h item givesthe number of bytesinthecode array
for this method.

The value of code_I engt h must be greater than zero (as the code array must
not be empty) and less than 65536.

code[]

The code array gives the actual bytes of Java Virtual Machine code that
implement the method.

When the code array is read into memory on a byte-addressable machine, if
the first byte of the array is aigned on a 4-byte boundary, the tableswitch and
lookupswitch 32-bit offsets will be 4-byte aligned. (Refer to the descriptions
of those instructions for more information on the consequences of code array
alignment.)

The detailed constraints on the contents of the code array are extensive and are
given in a separate section (84.9).

exception_table_l ength

The value of the excepti on_t abl e_| engt h item gives the number of entries
intheexcepti on_t abl e table.

exception_tabl e[]

Each entry in the excepti on_t abl e array describes one exception handler in
the code array. The order of the handlers in the excepti on_t abl e array is
significant (82.10).

Each except i on_t abl e entry contains the following four items:

start_pc, end_pc

Thevaluesof thetwoitemsst art _pc andend_pc indicatetherangesinthe
code array at which the exception handler isactive. Thevalueof start _pc
must be avalid index into the code array of the opcode of an instruction.
Thevalue of end_pc either must be avalid index into the code array of the
opcode of aninstruction or must be equal tocode_I engt h, thelength of the
code array. Thevalueof st art _pc must be less than the value of end_pc.

THE cLASS FILE FORMAT Attributes 4.7

Thestart _pc isinclusive and end_pc is exclusive; that is, the exception
handler must be active while the program counter is within the interval
[start_pc, end_pc).

The fact that end_pc is exclusive is a historical mistake in the design of the Java
Virtual Machine: if the Java Virtual Machine code for amethod is exactly 65535 bytes
long and ends with an instruction that is 1 byte long, then that instruction cannot be
protected by an exception handler. A compiler writer can work around this bug by
limiting the maximum size of the generated JavaVirtual Machine codefor any method,
instanceinitialization method, or static initializer (the size of any code array) to 65534
bytes.

handl er _pc

The value of the handl er _pc item indicates the start of the exception
handler. The value of the item must be a valid index into the code array
and must be the index of the opcode of an instruction.

catch_type

If the value of the cat ch_t ype item is nonzero, it must be a valid index
into the const ant _pool table. The const ant _pool entry at that index
must be aCONSTANT_d ass_i nf o structure (84.4.1) representing a class of
exceptionsthat thisexception handler isdesignated to catch. The exception
handler will be called only if the thrown exception is an instance of the
given class or one of its subclasses.

The verifier checksthat the classis Thr owabl e or asubclass of Thr owabl e (84.9.2).

If thevalue of thecat ch_t ype itemiszero, thisexception handler iscalled
for al exceptions.

Thisisused to implement fi nal | y (83.13).

attributes_count

Thevalueof theattri butes_count itemindicatesthe number of attributes of
the Code attribute.

attributes[]

Each value of the attri but es table must be an attri bute_i nfo structure
(84.7).

A Code attribute can have any number of optional attributes associated with it.

The attributes defined by this specification as appearing in the attri but es
table of acode attribute arelisted in Table 4.7-C.

111

4.7

112

Attributes THE cLAss FILE FORMAT

The rules concerning attributes defined to appear in the at tri but es table of
aCode attribute are givenin 84.7.

The rules concerning non-predefined attributes in the at t ri but es table of a
Code attribute are givenin 84.7.1.

474 ThestackMapTabl e Attribute

The st ackMapTabl e attributeisavariable-length attributeintheat t ri but es table
of acCode attribute (84.7.3). A St ackMapTabl e attribute is used during the process
of verification by type checking (84.10.1).

There may be at most one St ackMapTabl e attribute in the at t ri but es table of a
Code attribute.

Inacl ass filewhose version number is50.0 or above, if amethod's Code attribute
does not have a st ackMapTabl e attribute, it has an implicit stack map attribute
(84.10.1). This implicit stack map attribute is equivalent to a St ackMapTabl e
attribute with nunber _of _ent ri es equal to zero.

The st ackMapTabl e attribute has the following format:

St ackMapTabl e_attribute {

u2 attribute_nane_i ndex;
ué attribute_l ength;
u2 nurmber _of _entri es;

stack_map_frame entries[nunber_of _entries];

}

Theitems of the St ackMapTabl e_at t ri but e structure are as follows:

attri bute_nane_i ndex

The value of the attribute name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"St ackMapTabl e".

attribute_l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.

nunber _of _entries

The value of the nunber_of _entries item gives the number of
stack_map_frane entriesintheentri es table.

THE cLAss FILE FORMAT Attributes

entries[]

Each entry intheent ri es table describes one stack map frame of the method.
The order of the stack map framesintheent ri es tableis significant.

A stack map frame specifies (either explicitly or implicitly) the bytecode offset at
which it applies, and the verification types of local variables and operand stack
entries for that offset.

Each stack map frame described in theent ri es table relies on the previous frame
for some of its semantics. The first stack map frame of a method is implicit,
and computed from the method descriptor by the type checker (84.10.1.6). The
stack_nap_frame structure at entri es[0] therefore describes the second stack
map frame of the method.

The bytecode offset at which a stack map frame appliesis calculated by taking the
value of f set _del t a specified in the frame (either explicitly or implicitly), and
adding of fset _delta + 1 to the bytecode offset of the previous frame, unless
the previous frame is the initial frame of the method. In that case, the bytecode
offset at which the stack map frame applies is the value of f set _del t a specified
in the frame.

By using an offset delta rather than storing the actual bytecode offset, we ensure, by
definition, that stack map frames are in the correctly sorted order. Furthermore, by
consistently using the formulaof f set _del ta + 1 for al explicit frames (as opposed to
theimplicit first frame), we guarantee the absence of duplicates.

We say that an instruction in the bytecode has a corresponding stack map frame if
the instruction starts at offset i in the code array of a Code attribute, and the Code
attribute hasa st ackMapTabl e attributewhoseent ri es array contains astack map
frame that applies at bytecode offset i.

A verification type specifiesthetype of either oneor two locations, wherealocation
iseither asingle local variable or asingle operand stack entry. A verification type
is represented by a discriminated union, veri fi cati on_type_i nf o, that consists
of aone-byte tag, indicating which item of the union isin use, followed by zero or
more bytes, giving more information about the tag.

4.7

113

4.7

114

Attributes THE cLAss FILE FORMAT

union verification_type_info {
Top_vari abl e_i nf o;
I nteger _vari abl e_i nfo;
Fl oat vari abl e_i nf o;
Long_vari abl e_i nf o;
Doubl e_vari abl e_i nf o;
Nul | _variabl e_i nfo;
UninitializedThis_variabl e_info;
oj ect _vari abl e_info;
Uninitialized variable_ info;

}

A verification type that specifies one location in the local variable array
or in the operand stack is represented by the following items of the
verification_type_info union:

The Top_variable_info item indicates that the local variable has the
verification typet op.

Top_variable_info {
ul tag = ITEM Top; /* 0 */
}
Thel nteger _vari abl e_i nf o itemindicatesthat thelocation hastheverification
typeint.
Integer_variable_info {
ul tag = ITEM Integer; /* 1 */
}
TheFl oat _vari abl e_i nf o item indicates that the location has the verification
typefl oat.
Fl oat _variable_info {
ul tag = ITEMFloat; /* 2 */
}
The Nul | _vari abl e_i nf o type indicates that the location has the verification
typenul I .
Nul | _variable_info {
ul tag = ITEMNull; /* 5 */
}
The uninitial i zedThi s_vari abl e_i nf o item indicates that the location has
the verification type uni ni ti al i zedThi s.

UninitializedThis_variable_info {
ul tag = ITEM UninitializedThis; /* 6 */
}

THE cLASS FILE FORMAT Attributes 4.7

* Thej ect _vari abl e_i nf o item indicates that the location hasthe verification
type which is the class represented by the CONSTANT_Cl ass_i nfo structure
(84.4.1) found in the const ant _pool table at the index given by cpool _i ndex.

Chj ect _variable_info {
ul tag = ITEM Qoject; /* 7 */
u2 cpool _i ndex;

}

e The Uninitialized variable_info item indicates that the location has the
verificationtypeuni nitial i zed(Of fset) . TheO f set itemindicatesthe offset,
inthecode array of the Code attributethat containsthis st ackMapTabl e attribute,
of the new instruction (8new) that created the object being stored in the location.

Uninitialized_variable_info {
ul tag = ITEM Uninitialized; /* 8 */
u2 of fset;

}

A verification type that specifies two locations in the local variable array

or in the operand stack is represented by the following items of the

verification_type_info union:

* The Long_vari abl e_i nf o item indicates that the first of two locations has the
verification typel ong.

Long_variable_info {
ul tag = ITEM Long; /* 4 */
}
» TheDoubl e_vari abl e_i nf o item indicatesthat thefirst of two locations hasthe
verification type doubl e.
Doubl e_variable_info {
ul tag = | TEM Doubl e; /* 3 */
}
* The Long_variable_info and Doubl e variabl e_info items indicate the
verification type of the second of two locations as follows:
— |If thefirst of the two locationsis alocal variable, then:
> It must not be the local variable with the highest index.
> The next higher numbered local variable has the verification typet op.
— If thefirst of the two locations is an operand stack entry, then:

> It must not be the topmost location of the operand stack.

115

4.7

116

Attributes THE cLAss FILE FORMAT

> The next location closer to the top of the operand stack has the verification
typet op.

A stack map frame is represented by a discriminated union, st ack_map_f r ame,
which consists of a one-byte tag, indicating which item of the union is in use,
followed by zero or more bytes, giving more information about the tag.

union stack_map_frame {
same_franeg;
same_l ocal s_1 stack_itemfrane;
same_l ocal s_1 _stack_item franme_extended;
chop_frane;
sanme_frane_ext ended;
append_frane;
full _frarme;

}

The tag indicates the frame type of the stack map frame:

» Theframetypesane_f r ame isrepresented by tagsin therange[0-63]. Thisframe
typeindicates that the frame has exactly the same local variables asthe previous
frame and that the operand stack isempty. Theof f set _del t a valuefor theframe
isthe value of the tag item, f r ame_t ype.

sane_frane {
ul frane_type = SAME; /* 0-63 */
}

» The frame type sanme_| ocal s_1_st ack_i tem frame is represented by tagsin

therange[64, 127]. Thisframe typeindicates that the frame has exactly the same
local variables as the previous frame and that the operand stack has one entry.
The of f set _del t a value for the frame is given by the formulafranme_type -
64. The verification type of the one stack entry appears after the frame type.

sane_locals_1 stack_itemframe {
ul frane_type = SAME_LOCALS 1 STACK I TEM /* 64-127 */
verification_type_info stack[1];

}

» Tagsintherange [128-246] are reserved for future use.

» The frame type sane_l ocal s_1_st ack_i t em frame_ext ended is represented

by the tag 247. This frame type indicates that the frame has exactly the same
local variables as the previous frame and that the operand stack has one entry.
The of f set _del t a value for the frame is given explicitly, unlike in the frame
typesane_l ocal s_1_stack_i t em fr ane. The verification type of the one stack
entry appears after of f set _del t a.

THE cLASS FILE FORMAT Attributes 4.7

sane_l| ocal s_1 stack_item frame_extended {
ul frame_type = SAME_LOCALS 1_STACK_| TEM EXTENDED;, /* 247 */
u2 of fset_delta;
verification_type_info stack[1];

}

* Theframe type chop_f r ane isrepresented by tags in the range [248-250]. This
frame type indicates that the frame has the same local variables as the previous
frame except that the last k local variables are absent, and that the operand stack
is empty. The value of k is given by the formula 251 - frame_type. The
of f set _del t a value for the frameis given explicitly.

chop_frane {
ul frane_type = CHOP; /* 248-250 */
u2 offset delta;

}

Assume the verification types of local variables in the previous frame are
given by Iocal s, an array structured as in the ful | _frame frame type. If
I ocal s[M 1] in the previous frame represented local variable X and | ocal s[M
represented local variable Y, then the effect of removing one local variable is
that | ocal s[M 1] in the new frame represents local variable X and | ocal s[M
is undefined.

It is an error if Kk is larger than the number of local variablesin | ocal s for the
previous frame, that is, if the number of local variablesin the new frame would
be less than zero.

» Theframetypesane_f r ame_ext ended isrepresented by thetag 251. Thisframe
typeindicates that the frame has exactly the same local variables as the previous
frameand that the operand stack isempty. Theof f set _del t a valuefor theframe
isgiven explicitly, unlike in the frame type sane_f r ane.

sane_frane_ext ended {
ul frane_type = SAME_FRAME_EXTENDED; /* 251 */
u2 offset delta;

}

» Theframetypeappend_f r ane isrepresented by tagsin therange[252-254]. This
frame type indicates that the frame has the same locals as the previous frame
except that k additional locals are defined, and that the operand stack is empty.
The value of kisgiven by the formulaframe_type - 251. Theoffset_delta
value for the frameis given explicitly.

117

4.7

118

Attributes THE cLAss FILE FORMAT

append_frame {
ul frane_type = APPEND; /* 252-254 */
u2 of fset_delta;
verification_type_info |ocal s[frane_type - 251];

}

The Oth entry in 1 ocal s represents the verification type of the first additional
local variable. If 1 ocal s[M representslocal variable N, then:

—local s M+1] represents local variable N+1 if locals[M is one
of Top_variable_ info, Integer_variable_info, Fl oat_variabl e_i nfo,
Nul | _vari abl e_i nfo, UninitializedThis_variable_info,
bj ect _variable_ info,0rUninitialized variable_ info;and

— local s M+1] represents local variable N+2 if locals[M is either
Long_vari abl e_i nf o Or Doubl e_vari abl e_i nf o.

It is an error if, for any index i, | ocal s[i] represents alocal variable whose
index is greater than the maximum number of local variables for the method.

The frame type ful | _f rame is represented by the tag 255. The of f set _del ta
value for the frame is given explicitly.

full _frame {
ul frane_type = FULL_FRAME; /* 255 */
u2 of fset_delta;
u2 nunber _of _| ocal s;
verification_type_info |ocal s[number_of | ocal s];
u2 nunber _of stack_itens;
verification_type_info stack[nunber_of_stack_itens];

}

The Oth entry in | ocal s represents the verification type of local variable O. If
I ocal s[M representslocal variable N, then:

— local s M+1] represents local variable N+1 if locals[M is one
of Top_variable_ info, Integer_variabl e_info, Fl oat_variabl e_i nfo,
Nul | _vari abl e_i nf o, UninitializedThis_vari abl e_i nfo,
hj ect _variable_info,0rUninitialized variable_info;and

—local s M+1] represents local variable N+2 if locals[M is either
Long_vari abl e_i nf o OF Doubl e_vari abl e_i nf o.

It is an error if, for any index i, | ocal s[i] represents alocal variable whose
index is greater than the maximum number of local variables for the method.

The Oth entry in st ack represents the verification type of the bottom of the
operand stack, and subsequent entriesin st ack represent the verification types

THE cLASS FILE FORMAT Attributes 4.7

of stack entries closer to the top of the operand stack. We refer to the bottom of
the operand stack as stack entry 0, and to subsequent entries of the operand stack
asstack entry 1, 2, etc. If st ack[M represents stack entry N, then:

— stack[Mr1] represents stack entry N+1 if stack[M is one of
Top_variable_info, Integer_variable_info, Float_variable_info,
Nul | _vari abl e_i nf o, UninitializedThis variable_info,
bj ect _variable_info,0r Uninitialized variable_ info;and

— stack[Mr1] represents stack entry N2 if stack[M is either
Long_vari abl e_i nf o Or Doubl e_vari abl e_i nf o.

Itisan error if, for any index i, stack[i] represents a stack entry whose index
is greater than the maximum operand stack size for the method.

475 TheExceptions Attribute

TheExcept i ons attributeisavariable-length attributeintheat t ri but es tableof a
met hod_i nf o structure (84.6). The Except i ons attribute indicates which checked
exceptions a method may throw.

There may be at most one Excepti ons attribute in the attri butes table of a
met hod_i nf o structure.

The Except i ons attribute has the following format:

Exceptions_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 nunber _of _excepti ons;
u2 exception_index_t abl e[nunber _of _exceptions];

}

Theitems of the Excepti ons_att ri but e structure are as follows:

attribute_nane_i ndex

Thevalue of the attri but e_name_i ndex item must be a valid index into the

const ant _pool table. The constant _pool entry at that index must be the

CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string "Except i ons".
attribute_l ength

The vaue of the attribute_l ength item indicates the attribute length,
excluding the initial six bytes.

119

4.7 Attributes THE cLASs FILE FORMAT

nunber _of _excepti ons
Thevalue of thenunber _of _except i ons item indicates the number of entries
intheexcepti on_i ndex_t abl e.

exception_i ndex_tabl e[]
Each value in the except i on_i ndex_t abl e array must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_d ass_i nf o structure (84.4.1) representing a class type that this
method is declared to throw.

A method should throw an exception only if at least one of the following three criteriais
met:

* Theexception isan instance of Runt i meExcept i on or one of its subclasses.
¢ Theexception isan instance of Er r or or one of its subclasses.

e The exception is an instance of one of the exception classes specified in the
except i on_i ndex_t abl e just described, or one of their subclasses.

These requirements are not enforced in the Java Virtual Machine; they are enforced only
at compiletime.

4.7.6 Thelnnerd asses Attribute

Thel nner d asses attribute is avariable-length attribute in the at t ri but es table
of ad assFi | e structure (84.1).

If the constant pool of a class or interface C contains at least one
CONSTANT_Cl ass_i nf o entry (84.4.1) which represents a class or interface that is
not amember of a package, then there must be exactly onel nner C asses éttribute
intheattri but es table of the d assFi | e structure for C.

Thel nner d asses attribute has the following format:

I nnerCl asses_attribute {

u2 attribute_name_i ndex;

u4 attribute_l ength;

u2 nunber _of _cl asses;

{ u2 inner_class_info_index;
u2 outer_class_info_index;
u2 inner_nane_i ndex;
u2 inner_class_access_fl ags;

} classes[nunber_of _cl asses];

}

Theitems of thel nner d asses_att ri but e structure are as follows:

120

THE cLAss FILE FORMAT Attributes

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f 8_i nfo structure (84.4.7) representing the string
"I nner d asses".

attribute_l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

nunber _of cl asses

The value of the number _of _cl asses item indicates the number of entriesin
thecl asses array.

cl asses|[]

Every CONSTANT_Cl ass_info entry in the constant_pool table which
representsaclassor interface Cthat isnot apackage member must have exactly
one corresponding entry in the cl asses array.

If aclass or interface has members that are classes or interfaces, itsconst ant _pool table
(and henceits| nner O asses attribute) must refer to each such member (JLS 813.1), even
if that member is not otherwise mentioned by the class.

In addition, the const ant _pool table of every nested class and nested interface must
refer to its enclosing class, so altogether, every nested class and nested interface will have
I nner C asses information for each enclosing class and for each of its own nested classes
and interfaces.

Each entry inthe cl asses array contains the following four items:

i nner_cl ass_i nfo_i ndex
Thevalueof thei nner _cl ass_i nf o_i ndex item must beavalidindex into
theconst ant _pool table. Theconst ant _pool entry at that index must be
aCONSTANT_Cl ass_i nf o structure representing C.

out er _cl ass_i nfo_i ndex

If cisnot amember of aclass or an interface - that is, if Cis atop-level
classor interface (JLS §7.6) or alocal class (JLS §14.3) or an anonymous
class (JLS 8§15.9.5) - thenthe value of the out er _cl ass_i nf o_i ndex item
must be zero.

Otherwise, thevalueof theout er _cl ass_i nf o_i ndex itemmust beavalid
index into the const ant _pool table, and the entry at that index must be
a CONSTANT_d ass_i nf o structure representing the class or interface of

4.7

121

4.7 Attributes

THE cLASs FILE FORMAT

which ¢ is a member. The value of the outer _cl ass_i nfo_i ndex item
must not equal the the value of thei nner _cl ass_i nf o_i ndex item.

i nner _name_i ndex

If cisanonymous (JLS §815.9.5), thevalue of thei nner _nane_i ndex item

must be zero.

Otherwise, the value of thei nner _nane_i ndex item must be avalid index
into the const ant _pool table, and the entry at that index must be a
CONSTANT_Ut f 8_i nf o structurethat representsthe original simple name of
C, as given in the source code from which thiscl ass file was compiled.

i nner_cl ass_access_f I ags

Thevaueof thei nner _cl ass_access_f 1 ags itemisamask of flags used
to denote access permissions to and properties of class or interface C as
declared in the source code from which thiscl ass file was compiled. Itis
used by a compiler to recover the original information when source code
isnot available. The flags are specified in Table 4.7.6-A.

Table4.7.6-A. Nested class access and property flags

Flag Name Value Interpretation

ACC _PUBLI C 0x0001 Marked or implicitly publ i ¢ in source.
ACC_PRI VATE 0x0002 Marked pri vat e in source.
ACC_PROTECTED 0x0004 Marked pr ot ect ed in source.
ACC_STATI C 0x0008 Marked or implicitly st at i ¢ in source.
ACC_FI NAL 0x0010 Marked or implicitly f i nal in source.
ACC_| NTERFACE 0x0200 Wasani nt er f ace in source.
ACC_ABSTRACT 0x0400 Marked or implicitly abst r act in source.
ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.
ACC_ANNOTATI ON 0x2000 Declared as an annotation type.
ACC_ENUM 0x4000 Declared as an enumtype.

All bits of the inner_class_access_flags item not assigned in
Table 4.7.6-A are reserved for future use. They should be set to zero in
generated cl ass files and should be ignored by Java Virtua Machine

implementations.

If a class file has a verson number that is 51.0 or above, and
has an Innerd asses attribute in its attributes table, then for all

122

THE cLAss FILE FORMAT Attributes

entries in the classes array of the Innerd asses attribute, the value
of the outer_class_i nfo_i ndex item must be zero if the value of the
i nner _nane_i ndex itemiszero.

Oracle's Java Virtual Machine implementation does not check the consistency of an
I nner Cl asses attribute against acl ass file representing a class or interface referenced
by the attribute.

477 ThekEncl osi ngMet hod Attribute

The Encl osi ngMet hod attribute is afixed-length attributein theat t ri but es table
of ad assFi | e structure (84.1). A class must have an Encl osi ngMet hod attribute
if and only if it represents a local class or an anonymous class (JLS 814.3, JLS
§15.9.5).

There may be at most one Encl osi ngMet hod attributeinthe at t ri but es table of
ad assFi | e structure.

The Encl osi ngMet hod attribute has the following format:

Encl osi ngMet hod_attri bute {
u2 attribute_name_i ndex;
ud attribute_l ength;
u2 cl ass_i ndex;
u2 met hod_i ndex;

}

Theitems of the Encl osi ngMet hod_at t ri but e structure are as follows:

attribute_nane_i ndex
The value of the attribute name_index item must be a valid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f 8_i nfo structure (84.4.7) representing the string
"Encl osi ngMet hod".

attribute_l ength
Thevaueof theattribute_I engt h item must be four.

cl ass_i ndex

The value of the class_index item must be a vaid index into the
constant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ol ass_i nf o structure (84.4.1) representing the innermost class that
encloses the declaration of the current class.

4.7

123

4.7

124

Attributes THE cLAss FILE FORMAT

met hod_i ndex

If the current class is not immediately enclosed by a method or constructor,
then the value of the met hod_i ndex item must be zero.

In particular, met hod_i ndex must be zero if the current class was immediately enclosed
in source code by an instance initializer, static initializer, instance variable initiaizer, or
classvariableinitializer. (Thefirst two concern both local classes and anonymous classes,
while the last two concern anonymous classes declared on the right hand side of a field
assignment.)

Otherwise, the value of the net hod_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_NameAndType_i nf o structure (84.4.6) representing the name and
type of amethod in the class referenced by the cl ass_i ndex attribute above.

It is the responsibility of a Java compiler to ensure that the method identified via the
met hod_i ndex isindeed the closest lexically enclosing method of the class that contains
thisEncl osi nghet hod attribute.

4.7.8 Thesynthetic Attribute

The synt hetic atribute is a fixed-length attribute in the attributes table
of a dassFile, field_info, Of method_i nfo structure (84.1, 84.5, §4.6). A
class member that does not appear in the source code must be marked using a
Synt heti ¢ attribute, or else it must have its ACC_SYNTHETI C flag set. The only
exceptions to this requirement are compiler-generated methods which are not
considered implementation artifacts, namely the instance initialization method
representing a default constructor of the Java programming language (82.9.1),
the class or interface initialization method (82.9.2), and the Enum val ues() and
Enum val ue () methods.

The Synt heti ¢ attribute was introduced in JDK 1.1 to support nested classes and
interfaces.

The Synt het i ¢ attribute has the following format:

Synthetic_attribute {
u2 attribute_name_i ndex;
ud attribute_l ength;

}

Theitemsof the Synt heti ¢c_at t ri but e structure are as follows:

THE cLAss FILE FORMAT Attributes

attribute_name_i ndex

The value of the attribute_nane_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string "Synt het i c".

attribute_|l ength
Thevaueof theattri bute_| engt h item must be zero.

479 Thesignature Attribute

The signature attribute is a fixed-length attribute in the attributes table
of a dassFile, field_info, Of method_i nfo structure (84.1, 84.5, §4.6). A
Si gnat ur e attributerecordsasignature (84.7.9.1) for aclass, interface, constructor,
method, or field whose declaration in the Java programming language uses type
variables or parameterized types. See The Java Language Specification, Java SE
10 Edition for details about these constructs.

There may be at most one Si gnat ure attribute in the attributes table of a
Cl assFile,field_info,Or met hod_i nf o Structure.

The Si gnat ur e attribute has the following format:

Signature_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 signature_index;

}

Theitems of the Si gnat ure_at t ri but e structure are as follows:

attri bute_nane_i ndex
The value of the attribute_nane_i ndex item must be a valid index into

the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string "Si gnat ur e”.

attribute_|l ength
Thevaueof theattribute_| engt hitemof aSi gnature_attri but e Structure
must be two.

si gnat ure_i ndex

The value of the signature_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a class signature if this
Si gnature attribute is an attribute of a d assFile structure; a method

4.7

125

4.7

126

Attributes THE cLAss FILE FORMAT

signatureif thissi gnat ur e attributeisan attribute of anet hod_i nf o structure;
or afield signature otherwise.

Oracle's Java Virtua Machine implementation does not check the well-formedness
of Signature attributes during class loading or linking. Instead, Signature
attributes are checked by methods of the Java SE Platform class libraries which
expose generic signatures of classes, interfaces, constructors, methods, and fields.
Examples include get Generi cSuperclass in Cass and toGenericString in
java.l ang.refl ect. Execut abl e.

4.79.1 Sgnatures

Sgnatures encode declarations written in the Java programming language that use
types outside the type system of the Java Virtual Machine. They support reflection
and debugging, as well as compilation when only cl ass filesare available.

A Javacompiler must emit asignature for any class, interface, constructor, method,
or field whose declaration uses type variables or parameterized types. Specificaly,
a Java compiler must emit:

» A class signature for any class or interface declaration which is either generic,
or has a parameterized type as a superclass or superinterface, or both.

» A method signature for any method or constructor declaration which is either
generic, or hasatype variable or parameterized type asthereturn type or aformal
parameter type, or has a type variable in at hr ows clause, or any combination
thereof.

If thet hr ows clause of amethod or constructor declaration does not involvetype
variables, then a compiler may treat the declaration as having no t hr ows clause
for the purpose of emitting a method signature.

» A field signature for any field, formal parameter, or local variable declaration
whose type uses atype variable or a parameterized type.

Signatures are specified using a grammar which follows the notation of 84.3.1. In
addition to that notation:

» The syntax [X] on the right-hand side of a production denotes zero or one
occurrencesof x. That is, xisan optional symbol. The alternative which contains
the optional symbol actually definestwo aternatives: onethat omits the optional
symbol and one that includesiit.

* A very long right-hand side may be continued on a second line by clearly
indenting the second line.

THE cLAss FILE FORMAT Attributes

The grammar includes the terminal symbol Identifier to denote the name of atype,
field, method, formal parameter, local variable, or type variable, as generated by
a Java compiler. Such a name must not contain any of the ASCII characters .

;[1 <>: (that is, the characters forbidden in method names (84.2.2) and also
colon) but may contain characters that must not appear in an identifier in the Java
programming language (JLS §3.8).

Signatures rely on a hierarchy of nonterminals known as type signatures:

* A Java type signature represents either a reference type or a primitive type of
the Java programming language.

JavaTypeSignature:
ReferenceTypeSgnature
BaseType

The following production from 84.3.2 is repeated here for convenience:

BaseType:
(one of)
BCDFI JSZ

A reference type signature represents a reference type of the Java programming
language, that is, aclass or interface type, atype variable, or an array type.

A class type signature represents a (possibly parameterized) class or interface
type. A class type signature must be formulated such that it can be reliably
mapped to the binary name of the classit denotes by erasing any type arguments
and converting each . character to a$ character.

A type variable signature represents a type variable.

An array type signature represents one dimension of an array type.

ReferenceTypeSgnature:
ClassTypeSgnature
TypeVariableSgnature
ArrayTypeSgnature

ClassTypeSgnature:
L [PackageSpecifier]
SmpleClassTypeSgnature { ClassTypeS gnatureSuffix} ;

PackageSpecifier:
Identifier / {PackageSpecifier}

4.7

127

4.7

128

Attributes THE cLAss FILE FORMAT

SmpleClassTypeSgnature:
Identifier [TypeArguments]

TypeArguments:
< TypeArgument { TypeArgument} >

TypeArgument:
[Wildcardindicator] ReferenceTypeSgnature

Wildcardindicator:
+

ClassTypeSgnatureQuffix:
. SmpleClassTypeSgnature

TypeVariableSgnature:
T ldentifier ;

ArrayTypeSgnature;
[JavaTypeSignature

A class signature encodes type information about a (possibly generic) class
declaration. It describes any type parameters of the class, and lists its (possibly
parameterized) direct superclass and direct superinterfaces, if any. A type
parameter is described by its name, followed by any class bound and interface
bounds.

ClassSgnature:
[TypeParameters] SuperclassSgnature { SuperinterfaceSgnature}

TypeParameters:
< TypeParameter {TypeParameter} >

TypeParameter:
Identifier ClassBound {InterfaceBound}

ClassBound:
. [ReferenceTypeSgnature]

THE cLASS FILE FORMAT Attributes 4.7

InterfaceBound:
. ReferenceTypeSgnature

SuperclassSgnature:
ClassTypeSgnature

SuperinterfaceSgnature:
ClassTypeSgnature

A method signature encodes type information about a (possibly generic) method
declaration. It describes any type parameters of the method; the (possibly
parameterized) types of any formal parameters; the (possibly parameterized) return
type, if any; and thetypes of any exceptionsdeclared in the method'st hr ows clause.

MethodSgnature:
[TypeParameters] ({JavaTypeSgnature}) Result {ThrowsSgnature}

Resuilt:
JavaTypeSgnature
VoidDescriptor

ThrowsSgnature:
~ ClassTypeSgnature
~ TypeVariableSgnature

The following production from 84.3.3 is repeated here for convenience:

VoidDescriptor:
\%

A method signature encoded by the Si gnat ur e attribute may not correspond exactly to
the method descriptor in the net hod_i nf o structure (84.3.3). In particular, there is no
assurance that the number of formal parameter types in the method signature is the same
as the number of parameter descriptors in the method descriptor. The numbers are the
same for most methods, but certain constructors in the Java programming language have
an implicitly declared parameter which a compiler represents with a parameter descriptor
but may omit from the method signature. See the note in §4.7.18 for a similar situation
involving parameter annotations.

A field signature encodes the (possibly parameterized) type of a field, formal
parameter, or local variable declaration.

FiddSgnature:
ReferenceTypeSgnature

129

4.7

130

Attributes THE cLAss FILE FORMAT

4710 TheSourceFil e Attribute

The Sour ceFi | e attribute is an optional fixed-length attribute in the at t ri but es
table of ad assFi | e structure (84.1).

There may be at most one Sour ceFi | e attribute in the attri butes table of a
d assFi | e structure.

The Sour ceFi | e attribute has the following format:

SourceFile_attribute {
u2 attribute_name_i ndex;
ud attribute_l ength;
u2 sourcefile_index;

}

The items of the Sour ceFi |l e_attri but e structure are as follows;

attribute_name_i ndex
The value of the attribute_nanme_i ndex item must be a valid index into

the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string "Sour ceFi | e".

attribute_|l ength
The value of the attribute | ength item of a SourceFile attribute
structure must be two.

sourcefil e_i ndex

The value of the sourcefile_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure representing a string.

The string referenced by thesour cef i | e_i ndex itemwill beinterpreted asindicating the
name of the source file from which thiscl ass file was compiled. It will not be interpreted
asindicating the name of adirectory containing thefile or an absol ute path namefor thefile;
such platform-specific additional information must be supplied by the run-time interpreter
or development tool at the time the file name is actually used.

4.7.11 The Sour ceDebugExt ensi on Attribute

The Sour ceDebugExt ensi on attribute is an optional attribute in the attri but es
table of ad assFi | e structure (84.1).

There may be at most one Sour ceDebugExt ensi on altribute in the attri but es
table of ad assFi | e structure.

The Sour ceDebugExt ensi on attribute has the following format:

THE cLASS FILE FORMAT Attributes 4.7

Sour ceDebugExt ensi on_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
ul debug_extension[attribute_|l ength];

}

The items of the Sour ceDebugExt ensi on_at t ri but e structure are as follows:

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Sour ceDebugExt ensi on".

attribute_l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

debug_ext ensi on[]

Thedebug_ext ensi on array holds extended debugging information which has
no semantic effect on the JavaVirtual Machine. Theinformationisrepresented
using amodified UTF-8 string (84.4.7) with no terminating zero byte.

Note that the debug_ext ensi on array may denote a string longer than that which can be
represented with an instance of class St ri ng.

47.12 ThelLi neNunber Tabl e Attribute

The Li neNunber Tabl e attribute is an optional variable-length attribute in the
attributes table of a Code attribute (84.7.3). It may be used by debuggers to
determine which part of the code array corresponds to a given line number in the
original sourcefile.

If multiple Li neNurber Tabl e attributes are present inthe at t ri but es table of a
Code attribute, then they may appear in any order.

There may be more than one Li neNurber Tabl e attribute per line of a source file
inthe attri but es table of a Code attribute. That is, Li neNunber Tabl e attributes
may together represent a given line of a source file, and need not be one-to-one
with source lines.

The Li neNunber Tabl e attribute has the following format:

131

4.7

132

Attributes THE cLAss FILE FORMAT

Li neNunber Tabl e_attri bute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 |ine_nunber_table_| ength;
{ u2 start_pc;
u2 |ine_nunber;
} line_nunber_table[line_nunber_table_length];

}

The items of the Li neNurber Tabl e_at t ri but e structure are as follows:

attribute_name_i ndex
The value of the attribute _name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Li neNunber Tabl e".

attribute_|l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

I'i ne_nunber _table_|l ength
The value of the | i ne_nunber _tabl e_| engt h item indicates the number of
entriesinthel i ne_nunber _t abl e array.

I'i ne_nunber _tabl e[]

Each entry in the I'i ne_nunber _t abl e array indicates that the line number
in the original source file changes at a given point in the code array. Each
I'i ne_number _t abl e entry must contain the following two items:

start_pc

Thevaue of the st art _pc item must be avalid index into the code array
of this code attribute. The item indicates the index into the code array at
which the code for anew line in the original source file begins.

l'i ne_nunber

The value of thel i ne_nunber item gives the corresponding line number
in the original sourcefile.

4.7.13 ThelLocal Vari abl eTabl e Attribute

The Local Vari abl eTabl e attribute is an optional variable-length attribute in the
attributes table of a Code attribute (84.7.3). It may be used by debuggers to
determine the value of agiven local variable during the execution of a method.

THE cLAss FILE FORMAT Attributes

If multiple Local Vari abl eTabl e attributes are present intheat t ri but es table of
aCode attribute, then they may appear in any order.

There may be no more than one Local Vari abl eTabl e attribute per local variable
intheattri but es table of aCode attribute.

The Local Vvari abl eTabl e attribute has the following format:

Local Vari abl eTabl e_attribute {
u2 attribute_nane_index;
ud attribute_l ength;
u2 | ocal _vari abl e_t abl e_| engt h;
{ u2 start_pc;
u2 | ength;
u2 nane_i ndex;
u2 descri ptor_index;
u2 index;
} local _variable_table[local _variable_table_|ength];

}

Theitemsof the Local Vari abl eTabl e_att ri but e structure are as follows:

attri bute_nane_i ndex

The value of the attribute name_index item must be a valid index
into the constant _pool table. The constant_pool entry at that index
must be a CONSTANT_Ut f 8_i nfo structure (84.4.7) representing the string
"Local Vari abl eTabl e".

attribute_length
Thevaueof theattri but e_I engt h item indicates the length of the attribute,
excluding the initial six bytes.

| ocal _variabl e_tabl e_|l ength
The value of the | ocal _vari abl e_t abl e_| engt h item indicates the number
of entriesinthel ocal _vari abl e_t abl e array.

| ocal _vari abl e_tabl e[]

Eachentryinthel ocal _vari abl e_t abl e array indicatesarange of code array
offsets within which alocal variable has a value, and indicates the index into
the local variable array of the current frame at which that local variable can be
found. Each entry must contain the following five items:

start_pc, length

Thevaue of the st art _pc item must be avalid index into the code array
of this code attribute and must be the index of the opcode of an instruction.

4.7

133

4.7

134

Attributes THE cLAss FILE FORMAT

Thevaueofstart _pc + | engt h must either beavalidindex intothecode
array of thisCcode attribute and be theindex of the opcode of an instruction,
or it must be the first index beyond the end of that code array.

Thestart_pc and | engt h items indicate that the given local variable has
avalue at indicesinto the code array intheinterval [start _pc, start _pc
+ length), that is, betweenstart _pc inclusiveandstart_pc + | ength
exclusive.

name_i ndex

The value of the name_i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must contain
a CONSTANT_Ut f 8_i nf o structure representing a valid unqualified name
denoting alocal variable (84.2.2).

descri pt or _i ndex

The value of the descri pt or _i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must contain
a CONSTANT_Ut f 8_i nf o structure representing a field descriptor which
encodes the type of alocal variable in the source program (84.3.2).

i ndex

The value of thei ndex item must be avalid index into the local variable
array of the current frame. The given local variableisat i ndex inthelocal
variable array of the current frame.

If thegivenlocal variableisof typedoubl e or | ong, it occupiesbothi ndex
andindex + 1.

4.7.14 ThelLocal Vari abl eTypeTabl e Attribute

The Local Vvari abl eTypeTabl e attributeis an optional variable-length attribute in
theat tri but es table of a Code attribute (84.7.3). It may be used by debuggers to
determine the value of agiven local variable during the execution of a method.

If multiple Local Vari abl eTypeTabl e attributes are present in the attri but es
table of agiven code attribute, then they may appear in any order.

There may be no more than one Local Vari abl eTypeTabl e attribute per local
variableintheat t ri but es table of aCode attribute.

The Local Vari abl eTypeTabl e attribute differs from the Local Vari abl eTabl e
attribute (84.7.13) in that it provides signature information rather than descriptor
information. Thisdifferenceisonly significant for variableswhosetype usesatypevariable

THE cLAss FILE FORMAT Attributes

or parameterized type. Such variables will appear in both tables, while variables of other
types will appear only in Local Vari abl eTabl e.

The Local Vvari abl eTypeTabl e attribute has the following format:

Local Vari abl eTypeTabl e_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 | ocal _variabl e_type_tabl e_| ength;
{ u2 start_pc;
u2 | ength;
u2 name_i ndex;
u2 signature_index;
u2 i ndex;

} local _variable_type_table[local _variable_type_ table_|length];

}

Theitems of the Local Vari abl eTypeTabl e_att ri but e structure are as follows:

attribute_name_i ndex

The value of the attribute _name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Local Vari abl eTypeTabl e".

attribute_l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

| ocal _variable_type_table_|l ength
The value of the | ocal _variable_type table | ength item indicates the
number of entriesinthel ocal _vari abl e_t ype_t abl e array.

| ocal _variabl e_type_tabl e[]

Eachentryinthel ocal _vari abl e_t ype_t abl e array indicatesarange of code
array offsets within which alocal variable has avalue, and indicates the index
into the local variable array of the current frame at which that local variable
can be found. Each entry must contain the following five items:

start_pc, length
The vaue of the st art _pc item must be avalid index into the code array
of this Code attribute and must be the index of the opcode of an instruction.

Thevalueof start _pc + | engt h must either beavalidindex intothecode
array of thisCode attribute and be the index of the opcode of an instruction,
or it must be the first index beyond the end of that code array.

4.7

135

4.7

136

Attributes THE cLAss FILE FORMAT

Thestart_pc and | engt h items indicate that the given local variable has
avalue at indicesinto the code array intheinterval [start _pc, start _pc
+ | ength), that is, between start _pc inclusiveandstart_pc + | ength
exclusive.

nanme_i ndex

The value of the nanme_i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must contain
a CONSTANT_Ut f 8_i nf o structure representing a valid unqualified name
denoting alocal variable (84.2.2).

si gnat ur e_i ndex

The value of the si gnat ure_i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must contain
a CONSTANT_Ut f8_i nfo structure representing a field signature which
encodes the type of alocal variable in the source program (84.7.9.1).

i ndex

The value of thei ndex item must be avalid index into the local variable
array of the current frame. The given local variableisat i ndex inthelocal
variable array of the current frame.

If thegivenlocal variableisof typedoubl e or | ong, it occupiesbothi ndex
andindex + 1.

4.7.15 TheDeprecated Attribute

The Depr ecat ed attribute is an optional fixed-length attribute in the at t ri but es
tableof ad assFil e, fiel d_i nfo, Or met hod_i nf o Structure (84.1, 84.5, 84.6). A
class, interface, method, or field may be marked using a Depr ecat ed attribute to
indicate that the class, interface, method, or field has been superseded.

A run-time interpreter or tool that reads the cl ass file format, such as a compiler,
can use this marking to advise the user that a superseded class, interface, method,
or field is being referred to. The presence of aDepr ecat ed attribute does not alter
the semantics of aclass or interface.

The Depr ecat ed attribute has the following format:
Deprecated_attribute {

u2 attribute_nane_i ndex;
u4 attribute_l ength;

}

Theitems of the Depr ecat ed_at t ri but e structure are as follows:

THE cLAss FILE FORMAT Attributes

attribute_name_i ndex

The value of the attribute_nane_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string "Depr ecat ed".

attribute_|l ength
Thevaueof theattri bute_| engt h item must be zero.

47.16 TheRuntineVisi bl eAnnot ati ons Attribute

The Runt i meVi si bl eAnnot at i ons attribute is a variable-length attribute in the
attributes table of ad assFile, fiel d_info, Of met hod_i nf o structure (84.1,
84.5, 84.6). The Runti neVi si bl eAnnot at i ons attribute records run-time visible
annotations on the declaration of the corresponding class, field, or method.

There may be at most one RuntimeVisibl eAnnot ations attribute in the
attributes tableof ad assFil e, fiel d_ info, Or net hod_i nf o Structure.

TheRunt i meVi si bl eAnnot at i ons attribute has the following format:

Runti meVi si bl eAnnot ations_attribute {

u2 attribute_nane_i ndex;
ud attribute_| ength;
u2 num annot at i ons;

annot ati on annot ati ons[num annot ati ons] ;

}

The items of the RuntimeVisibleAnnotations_attribute Structure are as
follows:

attribute_nane_i ndex

The value of the attribute_name_index item must be a valid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Runt i meVi si bl eAnnot ati ons".

attribute_|l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

num annot ati ons

The value of the num annot at i ons item gives the number of run-time visible
annotations represented by the structure.

4.7

137

4.7 Attributes THE cLASs FILE FORMAT

annot ati onsJ[]

Each entry in the annot ati ons table represents a single run-time visible
annotation on a declaration. The annot ati on structure has the following
format:

annotation {
u2 type_i ndex;
u2 num el enment _val ue_pairs;
{ u2 el ement _name_i ndex;
el enent _val ue val ue;
} el enent _val ue_pairs[num el enment _val ue_pairs];

}

The items of the annot at i on structure are as follows:

t ype_i ndex
The value of the type_index item must be a valid index into the
const ant _pool table. The const ant _pool entry at that index must be
a CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a field descriptor

(84.3.2). Thefield descriptor denotesthetype of the annotation represented
by thisannot at i on structure.

num el enent _val ue_pairs
The value of the num el enent _val ue_pai rs item gives the number of

element-value pairs of the annotation represented by this annot ati on
structure.

el ement _val ue_pairsJ[]
Eachvalueof theel ement _val ue_pai r s tablerepresentsasingle element-

value pair inthe annotation represented by thisannot at i on structure. Each
el ement _val ue_pai r s entry contains the following two items:

el ement _name_i ndex
Thevalue of theel enent _nane_i ndex item must be avalid index into
theconst ant _pool table. Theconst ant _pool entry at that index must
be a CONSTANT Ut f8_i nfo structure (84.4.7). The const ant _pool
entry denotes the name of the element of the element-value pair
represented by thisel enent _val ue_pai rs entry.

In other words, the entry denotes an element of the annotation type specified by
type_i ndex.

val ue

The value of the val ue item represents the value of the element-value
pair represented by thisel ement _val ue_pai rs entry.

138

THE cLAss FILE FORMAT Attributes

47.16.1 Theel enent _val ue structure

Theel errent _val ue structure isadiscriminated union representing the value of an
element-value pair. It has the following format:

el ement _val ue {
ul tag;
uni on {
u2 const_val ue_i ndex;

{ u2 type_nane_i ndex;
u2 const_nane_i ndex;
} enum const _val ue;

u2 class_info_index;
annot ati on annot ati on_val ue;

{ u2 num val ues;
el ement _val ue val ues[num val ues];
} array_val ue;
} val ue;

}

The t ag item uses a single ASCII character to indicate the type of the value of
the element-value pair. This determines which item of the val ue unionisin use.
Table4.7.16.1-A showsthe valid charactersfor thet ag item, the typeindicated by
each character, and theitem used in theval ue union for each character. Thetable's
fourth column is used in the description below of one item of the val ue union.

4.7

139

4.7

140

Attributes THE cLAss FILE FORMAT

Table4.7.16.1-A. Interpretation of t ag values astypes

tag Item Type val ue Item Constant Type

B byte const _val ue_i ndex CONSTANT _I nt eger
C char const _val ue_i ndex CONSTANT_I nt eger
D doubl e const _val ue_i ndex CONSTANT_Doubl e
F fl oat const _val ue_i ndex CONSTANT_FI oat

I i nt const _val ue_i ndex CONSTANT_I nt eger
J | ong const _val ue_i ndex CONSTANT_Long

S short const _val ue_i ndex CONSTANT_I nt eger
Z bool ean const _val ue_i ndex CONSTANT_I nt eger
s String const _val ue_i ndex CONSTANT_Ut f 8

e Enum type enum const _val ue Not applicable

c Cl ass cl ass_i nfo_i ndex Not applicable

@ Annotation type annot ati on_val ue Not applicable

[Array type array_val ue Not applicable

Theval ue item represents the value of an element-value pair. Theitem isaunion,
whose own items are as follows:

const _val ue_i ndex

The const _val ue_i ndex item denotes either a primitive constant value or a
String literal asthe value of this element-value pair.

The value of the const _val ue_i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must be of atype
appropriatetothet ag item, as specified inthe fourth column of Table4.7.16.1-
A.

enum const _val ue

The enum const _val ue item denotes an enum constant as the value of this
element-value pair.

Theenum const _val ue item consists of the following two items:

t ype_name_i ndex

The value of the t ype_name_i ndex item must be a valid index into the
const ant _pool table. The const ant _pool entry at that index must be
a CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a field descriptor

THE cLASS FILE FORMAT Attributes 4.7

(84.3.2). The const ant _pool entry gives the internal form of the binary
name of the type of the enum constant represented by thisel ement _val ue
structure (84.2.1).

const _nane_i ndex

The value of the const _name_i ndex item must be a valid index into the
const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7). The const ant _pool entry gives
the simple name of the enum constant represented by thisel ement _val ue
structure.

cl ass_info_index

Thecl ass_i nf o_i ndex item denotesaclassliteral asthevalue of thiselement-
value pair.

The cl ass_i nfo_i ndex item must be a valid index into the const ant _pool

table. Theconst ant _pool entry at that index must be a CONSTANT_Ut £ 8_i nf o
structure (84.4.7) representing a return descriptor (84.3.3). The return
descriptor gives the type corresponding to the class litera represented by this
el enent _val ue structure. Types correspond to class literals as follows:

» For a class literal C. cl ass, where C is the name of a class, interface,
or array type, the corresponding type is C. The return descriptor in the
const ant _pool will be an ObjectType or an ArrayType.

» For aclass literal p. cl ass, where p is the name of a primitive type, the
corresponding typeisp. The return descriptor in the const ant _pool will be
a BaseType character.

» For aclassliteral voi d. cl ass, the corresponding type is voi d. The return
descriptor in the const ant _pool will be V.

For example, the class litera Qbj ect . cl ass corresponds to the type Qbj ect, so the
const ant _pool entry isLjava/l ang/ Qbj ect ; , whereas the class literal i nt . cl ass
corresponds to the typei nt , so the const ant _pool entryisl .

The class literal voi d. cl ass corresponds to voi d, so the constant _pool entry
is V, whereas the class litera Voi d. cl ass corresponds to the type Voi d, so the
const ant _pool entryisLj ava/l ang/ Voi d; .

annot ati on_val ue

Theannot at i on_val ue item denotesa"nested" annotation asthe value of this
element-value pair.

Thevalueof theannot at i on_val ue itemisanannot at i on structure (84.7.16)
that gives the annotation represented by thisel enent _val ue structure.

141

4.7 Attributes THE cLASs FILE FORMAT

array_val ue
Thear ray_val ue item denotesan array asthe value of thiselement-value pair.

Thear ray_val ue item consists of the following two items:

num val ues

The value of the num val ues item gives the number of elements in the
array represented by thisel ement _val ue structure.

val ues|[]

Eachvalueintheval ues tablegivesthe corresponding element of thearray
represented by thisel enent _val ue structure.

47.17 TheRunti nel nvi si bl eAnnot ati ons Attribute

The Runti nel nvi si bl eAnnot ati ons attribute is a variable-length attribute in
the attributes table of a d assFile, field_info, or met hod_i nfo structure
(84.1, 84.5, 84.6). TheRunt i nel nvi si bl eAnnot at i ons attribute records run-time
invisibleannotations on the decl aration of the corresponding class, method, or field.

There may be at most one Runti mel nvi si bl eAnnot ati ons attribute in the
attributes tableof ad assFile,field_ info,or method_i nfo structure.

The Runt i mel nvi si bl eAnnot at i ons attribute is similar to the
Runt i meVi si bl eAnnot ati ons attribute (84.7.16), except that the annotations
represented by aRunt i nel nvi si bl eAnnot at i ons attribute must not be made available
for return by reflective APIs, unless the Java Virtual Machine has been instructed to retain
these annotations via some implementation-specific mechanism such as a command line
flag. In the absence of such instructions, the Java Virtual Machine ignores this attribute.

The Runt i el nvi si bl eAnnot at i ons attribute has the following format:

Runti nel nvi si bl eAnnot ations_attribute {

u2 attribute_nane_i ndex;
u4 attribute_| ength;
u2 num annot at i ons;
annot ati on annot ati ons[num annot ati ons] ;
}
The items of the Runti nel nvi si bl eAnnot ations_attribute Structure are as
follows:

attribute_nane_i ndex

The value of the attribute nanme_index item must be a valid index
into the constant _pool table. The constant _pool entry at that index

142

THE cLAss FILE FORMAT Attributes

must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Runt i mel nvi si bl eAnnot ati ons".

attribute_l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.

num annot ati ons

Thevalue of thenum annot at i ons item givesthe number of run-timeinvisible
annotations represented by the structure.

annot at i ons|[]

Each entry in the annot ati ons table represents a single run-time invisible
annotation on adeclaration. The annot at i on structure is specified in 84.7.16.

4718 TheRuntineVi si bl ePar anet er Annot at i ons Attribute

The RuntimeVisi bl eParanet er Annot ati ons attribute is a variable-length
attribute in the attributes table of the nethod_info structure (84.6).
The Runt i meVi si bl ePar anet er Annot at i ons attribute records run-time visible
annotations on the declarations of formal parameters of the corresponding method.

There may be at most one Runt i meVi si bl ePar anet er Annot at i ons attribute in
theattri but es table of anet hod_i nf o Structure.

The Runt i meVi si bl ePar anet er Annot at i ons attribute has the following format:

Runt i meVi si bl ePar anet er Annot ati ons_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
ul num paraneters;
{ u2 num annot at i ons;
annot ati on annot ati ons[num annot ati ons] ;
} paraneter_annot ati ons[num par anet ers];

The items of the Runti neVi si bl ePar arret er Annot ati ons_at tri but e structure
are asfollows:

attri bute_nane_i ndex
The value of the attribute name_index item must be a valid index
into the constant _pool table. The constant_pool entry at that index
must be a CONSTANT_Ut f 8_i nfo structure (84.4.7) representing the string
"Runt i meVi si bl ePar anet er Annot at i ons".

4.7

143

4.7

144

Attributes THE cLAss FILE FORMAT

attribute_|l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

num paraneters

The value of the num par amet er s item gives the number of run-time visible
parameter annotations represented by this structure.

Thereis no assurance that this number is the same as the number of parameter descriptors
in the method descriptor.

par anet er _annot ati ons[]

Each entry in the par anet er _annot ati ons table represents all of the run-
time visible annotations on the declaration of a single formal parameter. Each
par amet er _annot at i ons entry contains the following two items:

num annot ati ons

The value of the num annot ati ons item indicates the number of run-
time visible annotations on the declaration of the formal parameter
corresponding to the par anet er _annot at i ons entry.

annot ati onsf[]

Each entry in the annot at i ons table represents a single run-time visible
annotation on the declaration of the formal parameter corresponding to the
par amet er _annot at i ons entry. The annot at i on structure is specified in
84.7.16.

Thei'thentry inthepar anet er _annot at i ons table may, but isnot required to,
correspond to the i'th parameter descriptor in the method descriptor (84.3.3).

For example, a compiler may choose to create entries in the table corresponding only to
those parameter descriptors which represent explicitly declared parametersin source code.
In the Java programming language, a constructor of an inner class is specified to have
an implicitly declared parameter before its explicitly declared parameters (JLS §8.8.1), so
the corresponding <i ni t > method in acl ass file has a parameter descriptor representing
the implicitly declared parameter before any parameter descriptors representing explicitly
declared parameters. If the first explicitly declared parameter is annotated in source
code, then a compiler may create par amet er _annot ati ons[0] to store annotations
corresponding to the second parameter descriptor.

4719 TheRuntinel nvisi bl ePar anet er Annot at i ons Attribute

The Runti el nvi si bl ePar anet er Annot at i ons attribute is a variable-length
attribute in the attributes table of a nethod_info structure (84.6). The

THE cLAss FILE FORMAT Attributes

Runt i nel nvi si bl ePar amet er Annot at i ons attribute records run-time invisible
annotations on the declarations of formal parameters of the corresponding method.

There may be at most one Runt i nel nvi si bl ePar amet er Annot at i ons attributein
theattri but es table of anet hod_i nf o Structure.

The Runtinel nvisi bl eParanet er Annot ati ons attribute is similar to the
Runt i meVi si bl ePar anet er Annot ati ons attribute (84.7.18), except that the
annotations represented by a Runti mel nvi si bl ePar amet er Annot ati ons attribute
must not be made available for return by reflective APIs, unless the Java Virtua Machine
has specifically been instructed to retain these annotations via some implementation-
specific mechanism such as a command line flag. In the absence of such instructions, the
Java Virtual Machine ignores this attribute.

The Runti mel nvi si bl ePar amet er Annot ati ons attribute has the following
format:

Runt i mel nvi si bl ePar amet er Annot ati ons_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
ul num paraneters;
{ u2 num annot at i ons;
annot ati on annot ati ons[num annot ati ons] ;
} paraneter_annot ati ons[num par anet ers];

Theitemsof theRunt i nel nvi si bl ePar anet er Annot ati ons_at t ri but e structure
are asfollows:

attri bute_nane_i ndex
The value of the attribute name_index item must be a valid index
into the constant _pool table. The constant_pool entry at that index
must be a CONSTANT_Ut f 8_i nfo structure (84.4.7) representing the string
"Runt i mel nvi si bl ePar anet er Annot ati ons".

attribute_length
Thevaueof theat tri but e_I engt h item indicates the length of the attribute,
excluding the initial six bytes.

num par anet ers

Thevalue of the num par anet er s item givesthe number of run-timeinvisible
parameter annotations represented by this structure.

Thereis no assurance that this number is the same as the number of parameter descriptors
in the method descriptor.

4.7

145

4.7

146

Attributes THE cLAss FILE FORMAT

par anmet er _annot ati ons[]

Each entry in the par anet er _annot at i ons tablerepresentsal of the run-time
invisible annotations on the declaration of a single forma parameter. Each
par amet er _annot at i ons entry contains the following two items:

num annot ati ons

The value of the num annot ati ons item indicates the number of run-
time invisible annotations on the declaration of the formal parameter
corresponding to the par anet er _annot at i ons entry.

annot ati onsJ[]

Each entry intheannot at i ons table representsasinglerun-timeinvisible
annotation on the declaration of the formal parameter corresponding to the
par amet er _annot at i ons entry. The annot at i on structure is specified in
84.7.16.

Thei'thentry inthepar anet er _annot at i ons table may, but isnot required to,
correspond to the i'th parameter descriptor in the method descriptor (84.3.3).

See the note in 8§4.7.18 for an example of when par anet er _annot at i ons[0] does not
correspond to the first parameter descriptor in the method descriptor.

4.7.20 TheRuntimeVisi bl eTypeAnnot at i ons Attribute

TheRunti meVi si bl eTypeAnnot at i ons attribute is an variable-length attribute in
theattributes tableof ad assFile, field_info, or nethod_i nf o structure, or
Code attribute (84.1, 84.5, 84.6, 84.7.3). The Runt i neVi si bl eTypeAnnot at i ons
attribute records run-time visible annotations on types used in the declaration of
the corresponding class, field, or method, or in an expression in the corresponding
method body. The Runt i neVi si bl eTypeAnnot at i ons attribute also records run-
time visible annotations on type parameter declarations of generic classes,
interfaces, methods, and constructors.

There may be at most one Runti meVi si bl eTypeAnnot ati ons attribute in the
attributes tableof ad assFil e,fiel d_i nfo,Or met hod_i nf o structure, or Code
attribute.

Anattribut es tablecontainsaRunt i neVi si bl eTypeAnnot at i ons attribute only
if types are annotated in kinds of declaration or expression that correspond to the
parent structure or attribute of theat t ri but es table.

For example, al annotations on typesin thei npl ement s clause of aclass declaration are
recorded in the Runt i meVi si bl eTypeAnnot at i ons attribute of the class's Cl assFi |l e

THE cLAss FILE FORMAT Attributes

structure. Meanwhile, all annotations on the type in afield declaration are recorded in the
Runt i meVi si bl eTypeAnnot at i ons attribute of thefield'sfi el d_i nf o structure.

TheRunt i meVi si bl eTypeAnnot at i ons attribute has the following format:

Runti meVi si bl eTypeAnnot ati ons_attribute {

u2 attribute_nane_i ndex;
ud attribute_Il ength;
u2 num annot ati ons;

t ype_annot ati on annotati ons[num annot ati ons];

The items of the Runt i neVi si bl eTypeAnnot ati ons_attri but e structure are as
follows:

attribute_name_i ndex

The value of the attribute name_index item must be a vadid
index into the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Ut f8_i nfo structure representing the string
"Runt i meVi si bl eTypeAnnot ati ons".

attribute_l ength
Thevaueof theattri but e_I engt h item indicates the length of the attribute,
excluding the initial six bytes.

num annot ati ons
The value of the num annot at i ons item gives the number of run-time visible
type annotations represented by the structure.

annot ati onsf[]

Each entry in the annot ati ons table represents a single run-time visible
annotation on atype used in adeclaration or expression. Thet ype_annot at i on
structure has the following format:

4.7

147

4.7

148

Attributes THE cLAss FILE FORMAT

type_annot ati on {

ul target_type;

uni on {
type_paranet er _target;
supertype_target;
t ype_par anet er _bound_t ar get ;
enpty_target;
formal _paraneter _target;
t hrows_t arget;
| ocal var _target;
catch_target;
of fset _target;
t ype_ar gunent _t arget;

} target _info;

type_path target_path;

u2 t ype_i ndex;
u2 num el enent _val ue_pairs;
{ u2 el ement _nane_i ndex;

el enent _val ue val ue;
} el enent _val ue_pairs[num el enent _val ue_pairs];

}

The first three items - target _type, target _info, and target _path -
specify the precise location of the annotated type. The last three items
- type_i ndex, num el enent _val ue_pairs, and el ement _val ue_pairs[] -
specify the annotation’'s own type and element-value pairs.

Theitemsof thetype_annot at i on Structure are as follows:

target _type
The value of the t ar get _t ype item denotes the kind of target on which
the annotation appears. The various kinds of target correspond to the

type contexts of the Java programming language where types are used in
declarations and expressions (JLS 84.11).

The legal values of target _type are specified in Table 4.7.20-A and
Table 4.7.20-B. Each value is a one-byte tag indicating which item of
the target _i nfo union follows the target _type item to give more
information about the target.

The kinds of target in Table 4.7.20-A and Table 4.7.20-B correspond to the type
contexts in JLS 84.11. Namely, t ar get _t ype values 0x10-0x17 and 0x40-0x42
correspond to type contexts 1-10, whilet ar get _t ype values 0x43-0x4B correspond
to type contexts 11-16.

The value of the target _type item determines
whether the type_annotation structure appears in a
Runt i meVi si bl eTypeAnnot ati ons attribute in a d assFil e structure,

THE cLASS FILE FORMAT Attributes 4.7

a field.info structure, a nethod info Structure, or a
Code attribute. Table 4.7.20-C gives the location of the
Runti neVi si bl eTypeAnnot ati ons attribute for a type_annotation
structure with each legal t ar get _t ype value.

target _info
The value of the target _i nfo item denotes precisely which type in a
declaration or expression is annotated.
Theitemsof thet ar get _i nf o union are specified in 84.7.20.1.

target_path

The value of the t ar get _pat h item denotes precisely which part of the
typeindicated by t ar get _i nf o is annotated.

The format of thet ype_pat h structureis specified in §4.7.20.2.

type_i ndex, num el enent_val ue_pairs, el enent_val ue_pairs[]

The meaning of theseitemsinthet ype_annot at i on structure isthe same
astheir meaning in the annot at i on structure (84.7.16).

149

4.7 Attributes THE cLASs FILE FORMAT

Table4.7.20-A. Interpretation of t ar get _t ype values (Part 1)

Value Kind of target target _infoitem

0x00 type parameter declaration of generic class t ype_par anet er _t ar get
or interface

0x01 type parameter declaration of generic t ype_par aneter _t ar get

method or constructor

0x10 typein ext ends ori nmpl enent s clause supertype_t ar get
of class declaration (including the direct
superclass or direct superinterface of
an anonymous class declaration), or in
ext ends clause of interface declaration

Ox11 typein bound of type parameter declaration t ype_par anet er _bound_t ar get
of generic class or interface

0x12 typein bound of type parameter declaration t ype_par anet er _bound_t ar get
of generic method or constructor

0x13 typein field declaration enpty_target

0x14 return type of method, or type of newly enpty_t ar get
constructed object

0x15 receiver type of method or constructor enpty_target

0x16 type in formal parameter declaration of f or mal _par anet er _t ar get
method, constructor, or lambda expression

0x17 type in throws clause of method or t hr ows_t ar get
constructor

150

THE cLASS FILE FORMAT Attributes 4.7

Table4.7.20-B. Interpretation of t ar get _t ype values (Part 2)

Value Kind of target target _infoitem

0x40 typeinloca variable declaration | ocal var _t ar get

O0x41 typein resource variable declaration | ocal var _t ar get

0x42 type in exception parameter declaration catch_target

0x43 type in instanceof expression of fset _target

0x44 type in new expression of fset _target

0x45 typein method referenceexpressionusing : : new of f set _t ar get

0x46 type in method reference expression using of f set _t ar get
¢ ldentifier

0x47 typein cast expression type_argunent _t ar get

0x48 type argument for generic constructor in new t ype_ar gunment _t ar get
expression or explicit constructor invocation
Statement

0x49 type argument for generic method in method t ype_ar gurment _t ar get
invocation expression

Ox4A type argument for generic constructor in method t ype_ar gurrent _t ar get
reference expression using : : new

0x4B type argument for generic method in method t ype_ar gunent _t ar get
reference expression using : : ldentifier

151

4.7

152

Attributes THE cLAss FILE FORMAT

Table4.7.20-C. Location of enclosing attributefor t ar get _t ype values

Value Kind of target L ocation

0x00 type parameter declaration of generic class or interface ClassFile
0x01 type parameter declaration of generic method or constructor net hod_i nf o
0x10 type in ext ends clause of class or interface declaration, or Cl assFi | e

ini mpl enent s clause of interface declaration

Ox11 type in bound of type parameter declaration of generic class Gl assFi | e
or interface

0x12 typein bound of type parameter declaration of generic method net hod_i nf o
or constructor

0x13 typein field declaration field_info

0x14 return type of method or constructor met hod_i nfo

0x15 receiver type of method or constructor nmet hod_i nfo

0x16 type in formal parameter declaration of method, constructor, met hod_i nf o

or lambda expression

0x17 typeint hr ows clause of method or constructor nmet hod_i nfo

0x40-0x4B types in loca variable declarations, resource variable Code
declarations, exception parameter declarations, expressions

4.7.20.1 Thetarget i nfo union

Theitems of thet ar get _i nf o union (except for the first) specify precisely which
typein adeclaration or expression is annotated. The first item specifies not which
type, but rather which declaration of atype parameter is annotated. The items are
asfollows:

» Thetype_paramet er _target item indicates that an annotation appears on the
declaration of thei'th type parameter of ageneric class, generic interface, generic
method, or generic constructor.

type_paraneter_target {
ul type_paraneter_index;

The value of the t ype_par anet er _i ndex item specifies which type parameter
declaration isannotated. A t ype_par anet er _i ndex value of 0 specifiesthefirst
type parameter declaration.

THE cLASS FILE FORMAT Attributes 4.7

» The supertype_target item indicates that an annotation appears on atypein
the ext ends or i npl enent s clause of aclass or interface declaration.

supertype_target {
u2 supertype_index;
}

A supert ype_i ndex value of 65535 specifiesthat the annotation appears on the
superclassin an ext ends clause of a class declaration.

Any other supertype_i ndex value is an index into the i nterfaces array of
the enclosing d assFi | e structure, and specifies that the annotation appears on
that superinterface in either thei npl enent s clause of a class declaration or the
ext ends clause of an interface declaration.

» Thetype_paranet er _bound_t ar get item indicates that an annotation appears
on the i'th bound of the j'th type parameter declaration of a generic class,
interface, method, or constructor.

type_paranet er _bound_t arget {
ul type_paraneter_index;
ul bound_i ndex;

}

Thevalueof theof t ype_par anet er _i ndex item specifieswhich type parameter
declaration has an annotated bound. A type paraneter_i ndex value of 0
specifiesthefirst type parameter declaration.

Thevalue of the bound_i ndex item specifies which bound of the type parameter
declaration indicated by t ype_par anet er _i ndex is annotated. A bound_i ndex
value of 0 specifiesthe first bound of atype parameter declaration.

Thet ype_par amet er _bound_t ar get itemrecordsthat abound isannotated, but does
not record the type which constitutes the bound. The type may be found by inspecting
the class signature or method signature stored in the appropriate Si gnat ur e attribute.

» Theenpty_target item indicates that an annotation appears on either the type
inafield declaration, the return type of amethod, the type of anewly constructed
object, or the receiver type of amethod or constructor.

enpty_target {
}

Only one type appears in each of these locations, so there is no per-type information to
represent inthet ar get _i nf o union.

153

4.7

154

Attributes THE cLAss FILE FORMAT

* The formal _paraneter_target item indicates that an annotation appears on

the type in aformal parameter declaration of a method, constructor, or lambda
expression.

formal _paraneter_target {
ul fornmal _paraneter_index;
}

The value of the formal _paraneter_i ndex item specifies which formal
parameter declaration has an annotated type. A f or mal _par anet er _i ndex value
of i may, but is not required to, correspond to the i'th parameter descriptor in the
method descriptor (84.3.3).

The formal _parameter_target item records that a forma parameter's type is
annotated, but does not record the type itself. The type may be found by inspecting the
method descriptor, although af or mal _par anet er _i ndex value of 0 does not always
indicate the first parameter descriptor in the method descriptor; see the notein 84.7.18
for asimilar situation involving the par anet er _annot at i ons table.

Thet hrows_t ar get item indicates that an annotation appears on thei'th typein
thet hr ows clause of amethod or constructor declaration.

throws_target {
u2 throws_type_i ndex;
}

The value of the throws_type_index item is an index into the
exception_i ndex_t abl e array of the Except i ons attribute of themet hod_i nf o
structure enclosing the Runt i meVi si bl eTypeAnnot at i ons attribute.

Thel ocal var _t ar get item indicates that an annotation appears on the typein
alocal variable declaration, including avariable declared asaresourceinatry-
with-resources statement.

| ocal var _target {
u2 tabl e_l ength;
{ u2 start_pc;
u2 | ength;
u2 index;
} table[table_|l ength];

The value of thet abl e_I engt h item gives the number of entriesin thet abl e
array. Each entry indicates a range of code array offsets within which a local
variable has a value. It also indicates the index into the local variable array of
the current frame at which that local variable can be found. Each entry contains
the following three items:

THE cLASS FILE FORMAT Attributes 4.7

start_pc, length

The given local variable has a value at indices into the code array in
the interval [start_pc, start_pc + |ength), that is, between start_pc
inclusiveand start _pc + | engt h exclusive.

i ndex

The given local variable must be at i ndex in the local variable array of the
current frame.

If the local variable at i ndex is of type doubl e or | ong, it occupies both
i ndex andi ndex + 1.

A table is needed to fully specify the local variable whose type is annotated, because
a single local variable may be represented with different local variable indices over
multiple live ranges. The start_pc, I engt h, and i ndex items in each table entry
specify the sameinformation asalLocal Vari abl eTabl e attribute.

The | ocal var_t arget item records that a local variable's type is annotated, but
does not record the type itself. The type may be found by inspecting the appropriate
Local Vari abl eTabl e attribute.

» Thecatch_target item indicates that an annotation appears on thei'th typein
an exception parameter declaration.

catch_target {
u2 exception_tabl e_i ndex;
}

The value of the exception_table_index item is an index into
the exception_table array of the Code attribute enclosing the
Runt i meVi si bl eTypeAnnot at i ons attribute.

The possibility of more than one type in an exception parameter declaration arises from
the multi-cat ch clause of thet r y statement, where the type of the exception parameter
isaunion of types (JLS §14.20). A compiler usually creates one excepti on_t abl e
entry for each type in the union, which alows the cat ch_t ar get item to distinguish
them. This preserves the correspondence between a type and its annotations.
* Theoffset_target itemindicatesthat an annotation appears on either the type
in an instanceof expression or a new expression, or the type before the:: ina
method reference expression.

of fset _target {
u2 of fset;
}

155

4.7

156

Attributes THE cLAss FILE FORMAT

Thevaueof theof f set item specifiesthecode array offset of either the bytecode
instruction corresponding to the instanceof expression, the new bytecode
instruction corresponding to the new expression, or the bytecode instruction
corresponding to the method reference expression.

Thetype_ar gument _t ar get item indicates that an annotation appears either on
thei'th typein acast expression, or on thei'th type argument in the explicit type
argument list for any of the following: a new expression, an explicit constructor
invocation statement, a method invocation expression, or a method reference
expression.

type_argunent _target {
u2 of fset;
ul type_argunent _i ndex;

}

The value of the of fset item specifies the code array offset of either the
bytecode instruction corresponding to the cast expression, the new bytecode
instruction corresponding to the new expression, the bytecode instruction
corresponding to the explicit constructor invocation statement, the bytecode
instruction corresponding to the method invocation expression, or the bytecode
instruction corresponding to the method reference expression.

For a cast expression, the value of the t ype_ar gunent _i ndex item specifies
which type in the cast operator is annotated. A t ype_ar gunent _i ndex value of
0 specifiesthefirst (or only) type in the cast operator.

The possibility of more than one type in a cast expression arises from a cast to an
intersection type.

For an explicit type argument list, the value of thet ype_ar gunent _i ndex item
specifies which type argument is annotated. A t ype_ar gurment _i ndex value of
0 specifiesthe first type argument.

4.7.20.2 Thetype_pat h structure

Wherever atype is used in a declaration or expression, the t ype_pat h structure
identifies which part of the type is annotated. An annotation may appear on the
type itself, but if the type is a reference type, then there are additional locations
where an annotation may appear:

» If an array type T[] is used in a declaration or expression, then an annotation

may appear on any component type of the array type, including the element type.

THE cLASS FILE FORMAT

Attributes 47

 If anested type T1. T2 isused in a declaration or expression, then an annotation

may appear on the name of the top level type or any member type.

* If aparameterized type T<A> or T<? extends A> Or T<? super A>isusedina
declaration or expression, then an annotation may appear on any type argument

or on the bound of any wildcard type argument.
For example, consider the different partsof Stri ng[][] that are annotated in:

@oo0 String[][] /1 Annotates the class type String
String @oo [][] // Annotates the array type String[][]
String[] @oo [] // Annotates the array type String[]

or the different parts of the nested type Qut er . M ddl e. | nner that are annotated in:

@o00 CQuter.Mddle.Ilnner
Quter. @oo Mddle.Inner
Quter. M ddl e. @oo0 | nner

or the different parts of the parameterized types Map<St ri ng, Obj ect > and Li st <. ..

that are annotated in:

@00 Map<String, oj ect >
Map<@oo String, Obj ect >
Map<Stri ng, @oo Object>

Li st<@oo ? extends String>
Li st<? extends @oo String>

Thetype_pat h structure has the following format:

type_path {
ul pat h_l ength;
{ ul type_pat h_kind;
ul type_argunent _i ndex;
} path[path_length];

>

The value of the pat h_I engt h item gives the number of entriesin the pat h array:

If thevalue of pat h_I engt h is0, then the annotation appears directly on thetype

itself.

If the value of pat h_l engt h is non-zero, then each entry in the path array
represents an iterative, left-to-right step towards the precise location of the

annotation in an array type, nested type, or parameterized type. (In
type, the iteration visits the array type itself, then its component type,

an array
then the

component type of that component type, and so on, until the element type is

reached.) Each entry contains the following two items:

157

4.7 Attributes

type_pat h_ki nd
Thelegal valuesfor thet ype_pat h_ki nd itemarelistedin Table 4.7.20.2-A.

THE cLASs FILE FORMAT

Table 4.7.20.2-A. Interpretation of t ype_pat h_ki nd values

Value I nter pretation

0 Annotation is deeper in an array type

1 Annotation is deeper in a nested type

2 Annotation ison the bound of awildcard type argument of aparameterized type
3 Annotation is on atype argument of a parameterized type

type_ar gunent _i ndex

If the value of thetype_pat h_ki nd itemiso, 1, or 2, then the value of the
type_argument _i ndex itemiso.

If the value of the type path_kind item is 3, then the value of
the type_argument _i ndex item specifies which type argument of a
parameterized type is annotated, where 0 indicates the first type argument
of a parameterized type.

Table 4.7.20.2-B. t ype_pat h structures for @ Map<@ ? extends @ String, @ List<@

oj ect >>

Annotation path_| ength pat h

@ 0 [1

@B 1 [{type_path_kind: 3; type_argument _index: 0}]

@ 2 [{type_path_kind: 3; type_argunent_index: 0},
{type_path_ki nd: 2; type_argunent_index: 0}]

@ 1 [{type_path_kind: 3; type_argument _index: 1}]

@ 2 [{type_path_kind: 3; type_argunent_index: 1},
{type_path_ki nd: 3; type_argunent_index: 0}]

158

THE cLAss FILE FORMAT Attributes

Table4.7.20.2-C. type_pat h structuresfor @ String @ [] @[] @[]

Annotation pat h_I| ength pat h

o 0 [1

as 1 [{type_path_kind: O; type_argunent _index: O0}]

@A 2 [{type_path_kind: 0; type_argunent_index: 0},
{type_path_kind: 0; type_argunent_index: 0}]

@ 3 [{type_path_kind: 0; type_argunent_index: 0},
{type_pat h_ki nd: 0; type_ar gunent _i ndex: 0},
{type_path_kind: 0; type_argunent_index: O0}]

Table 4.7.20.2-D. t ype_pat h structuresfor @\ Li st <@ Conpar abl e<@ bject @ [] @ []

@ []>>

Annotation path_I engt h path

@ 0 [l

@ 1 [{type_path_kind: 3; type_argument _index: 0}]

@ 2 [{type_path_kind: 3; type_argunent_index: 0},
{type_pat h_ki nd: 3; type_argumnent_index: 0}]

@ 3 [{type_path_kind: 3; type_argunent_index: 0},
{type_pat h_ki nd: 3; type_ar gunment _i ndex: 0},
{type_pat h_ki nd: 0; type_argunent_index: 0}]

@ 4 [{type_path_kind: 3; type_argunent_index: 0},
{type_pat h_ki nd: 3; type_ar gunent _i ndex: 0},
{type_pat h_ki nd: 0; type_ar gunent _i ndex: 0},
{type_path_kind: 0; type_argunent_index: O0}]

o 5 [{type_path_kind: 3; type_argunent_index: 0},
{type_pat h_ki nd: 3; t ype_ar gunment _i ndex: 0},
{type_pat h_ki nd: 0; type_ar gunment _i ndex: 0},
{type_pat h_ki nd: 0; type_ar gunment _i ndex: 0},

{type_path_kind: 0; t

ype_ar gunent _i ndex:

0}]

4.7

159

4.7

160

Attributes THE cLAss FILE FORMAT

Table4.7.20.2-E. t ype_pat h structuresfor @ Quter . @ Mddle . @\ Inner

Annotation pat h_I| ength pat h

OA 2 [{type_pat h_ki nd: 1; type_argunent _i ndex: 0},
{type_path_kind: 1; type_argunent_index: O0}]

@ 1 [{type_path_kind: 1; type_argunent_index: 0}]

@ 0 [1

Table 4.7.20.2-F. t ype_pat h structuresfor cuter . M ddle<@ Foo . @ Bar> . |nner<@B
String @\ []1>

Annotation pat h_| engt h path

@\ 3 [{type_path_kind: 1; type_argunent_index: 0},
{type_pat h_ki nd: 1; type_ar gunment _i ndex: 0},
{type_pat h_ki nd: 3; type_argument_index: 0}]

@ 4 [{type_pat h_ki nd: 1, type_argunent _i ndex: 0},
{type_pat h_ki nd: 1; type_ar gunent _i ndex: 0},
{type_pat h_ki nd: 3; t ype_ar gunment _i ndex: 0},
{type_path_ki nd: 0; type_argunent_index: 0}]

@ 3 [{type_pat h_ki nd: 1; type_argunent _i ndex: 0},
{type_pat h_ki nd: 3; type_ar gunent _i ndex: 0},
{type_path_kind: 1; type_argunent_index: O0}]

@ 2 [{type_pat h_ki nd: 1, type_argunent_index: 0},
{type_path_kind: 3; type_argunent_index: O0}]

4.7.21 TheRuntimel nvisi bl eTypeAnnot ati ons Attribute

The Runt i nel nvi si bl eTypeAnnot at i ons attribute is an variable-length attribute
intheattribut es tableof ad assFil e, fi el d_i nf o, 0r net hod_i nf o structure, or
Code attribute (84.1, 84.5, 84.6, 84.7.3). TheRunt i nel nvi si bl eTypeAnnot at i ons
attribute records run-time invisible annotations on types used in the corresponding
declaration of a class, field, or method, or in an expression in the corresponding
method body. The Runti nel nvi si bl eTypeAnnot ati ons attribute also records
annotations on type parameter declarations of generic classes, interfaces, methods,
and constructors.

There may be at most one Runt i mel nvi si bl eTypeAnnot at i ons attribute in the
attributestableof ad assFil e, fiel d_i nfo,Or met hod_i nf o structure, or Code
atribute.

THE cLAss FILE FORMAT Attributes

An attribut es table contains a Runt i el nvi si bl eTypeAnnot at i ons attribute
only if types are annotated in kinds of declaration or expression that correspond to
the parent structure or attribute of the at t ri but es table.

TheRunt i mel nvi si bl eTypeAnnot at i ons attribute has the following format:

Runt i mel nvi si bl eTypeAnnot ations_attribute {

u2 attribute_nane_i ndex;
ud attribute_|l ength;
u2 num annot at i ons;

t ype_annot ati on annot ati ons[num annot ati ons] ;

}

The items of the Runti nel nvi si bl eTypeAnnot ati ons_at tri but e Structure are
asfollows:

attribute_name_i ndex

The value of the attribute name_index item must be a vdid
index into the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Utf8_info structure representing the string
"Runt i mel nvi si bl eTypeAnnot at i ons".

attribute_|l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

num annot at i ons
Thevalue of thenum annot at i ons item givesthe number of run-timeinvisible
type annotations represented by the structure.

annot ati onsJ[]

Each entry in the annot ati ons table represents a single run-time invisible
annotation on atype used in adeclaration or expression. Thet ype_annot at i on
structure is specified in §4.7.20.

4.7.22 TheAnnot ati onDef aul t Attribute

The Annot at i onDef aul t attributeisavariable-length attributeintheat t ri but es
table of certain met hod_i nf o structures (84.6), namely those representing elements
of annotation types (JLS §9.6.1). The Annot ati onDef aul t attribute records the
default value (LS §9.6.2) for the element represented by the net hod_info
structure.

There may be at most one Annot at i onDef aul t attribute inthe att ri but es table
of anet hod_i nf o structure which represents an element of an annotation type.

4.7

161

4.7

162

Attributes THE cLAss FILE FORMAT

The Annot at i onDef aul t attribute has the following format:

Annot ati onDefault_attribute {
u2 attribute_nane_i ndex;
u4 attribute_| ength;
el ement _val ue defaul t _val ue;

}

The items of the Annot ati onDef aul t _at t ri but e structure are as follows:

attribute_nane_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Annot at i onDef aul t ".

attribute_|l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

def aul t _val ue

The defaul t _val ue item represents the default value of the annotation
type element represented by the nethod_info structure enclosing this
Annot at i onDef aul t attribute.

4.7.23 TheBoot st rapMet hods Attribute

The Boot st r apMet hods attribute is a variable-length attribute in the at t ri but es
table of a CassFile structure (84.1). The Boot strapMet hods attribute
records bootstrap method specifiers referenced by invokedynamic instructions
(8invokedynamic).

There must be exactly one Boot st r apMet hods attributeintheatt ri but es table of
ad assFi | e structureif the const ant _pool table of the d assFi | e structure has
at least one CONSTANT_| nvokeDynani c_i nf o entry (84.4.10).

There may be at most one Boot st r apMet hods attributeintheat t ri but es table of
ad assFi | e structure.

The Boot st rapMet hods attribute has the following format:

THE cLAss FILE FORMAT Attributes

Boot st rapMet hods_attri bute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 num boot strap_net hods;
{ u2 bootstrap_nethod_ref;
u2 num boot strap_argunents;
u2 boot strap_argunent s[num boot strap_ar gunent s] ;
} boot strap_net hods[num boot strap_net hods] ;

}
The items of the Boot st rapMet hods_at t ri but e structure are as follows:

attri bute_nane_i ndex

The value of the attribute name_index item must be a valid index
into the constant _pool table. The constant_pool entry at that index
must be a CONSTANT_Ut f 8_i nfo structure (84.4.7) representing the string
"Boot st rapMet hods".

attribute_length

Thevaueof theattri but e_I engt h item indicates the length of the attribute,
excluding theinitial six bytes.

The value of the attribute_length item is thus dependent on the number of
invokedynamic instructionsin this G assFi | e structure.

num boot strap_net hods

The value of the num boot strap_ret hods item determines the number of
bootstrap method specifiersin the boot st r ap_net hods array.

boot st rap_net hods[]

Each entry in the bootstrap_methods table contains an index to a
CONSTANT_Met hodHandl e_i nf o structure which specifies a bootstrap method,
and asequence (perhaps empty) of indexesto static argumentsfor the bootstrap
method.

Each boot st rap_net hods entry must contain the following three items:

boot st rap_met hod_r ef

The value of the boot st rap_net hod_r ef item must be avalid index into
theconst ant _pool table. Theconst ant _pool entry at that index must be
a CONSTANT_Met hodHandl e_i nf o structure (84.4.8).

The form of the method handle is driven by the continuing resolution of
the cal site specifier in 8invokedynamic, where execution of the invoke
method of java.lang.invoke. Met hodHandl e requires that the bootstrap
method handle be adjustable to the actual arguments being passed, as if
by invocation of the asType method of java.lang.invoke. Met hodHandl e.

4.7

163

4.7 Attributes THE cLASs FILE FORMAT

Accordingly, the r ef er ence_ki nd item of the CONSTANT_Met hodHandl! e_i nf o
structure should have the value 6 or 8 (85.4.3.5), and the ref erence_i ndex
item should specify a dtatic method or constructor that takes three
arguments of type j ava. | ang. i nvoke. Met hodHandl es. Lookup, Stri ng, and
j ava. | ang. i nvoke. Met hodType, in that order. Otherwise, invocation of the
bootstrap method handle during call site specifier resolution will complete abruptly.

num boot st rap_ar gunent s

The value of the num boot strap_ar gument s item gives the number of
itemsin the boot st r ap_ar gunent s array.

boot st rap_ar gument s[]

Each entry in the bootstrap_arguments array must be a valid
index into the constant_pool table. The constant_pool entry at
that index must be a CONSTANT _String_i nf o, CONSTANT O ass_i nf o,
CONSTANT _I nt eger _i nfo, CONSTANT_Long_i nfo,
CONSTANT_Fl oat _i nf o, CONSTANT_Doubl e_i nf o,
CONSTANT_Met hodHandl e_i nf o, or CONSTANT_Met hodType_i nfo
structure (84.4.3, 84.4.1, 84.4.4, 84.4.5, 84.4.8, §4.4.9).

47.24 The Met hodPar anet er s Attribute

The Met hodPar anet er s attribute is a variable-length attribute in the at t ri but es
table of a met hod_i nf o structure (84.6). A Met hodPar anet er s attribute records
information about the formal parameters of a method, such as their names.

There may be at most one Met hodPar anet er s attributeintheat t ri but es table of
amet hod_i nf o Structure.

The Met hodPar anet er s attribute has the following format:

Met hodPar aneters_attribute {
u2 attribute_name_i ndex;
u4 attribute_l ength;
ul paraneters_count;
{ u2 name_i ndex;
u2 access_fl ags;
} paraneters[paraneters_count];

The items of the Met hodPar anet ers_at t ri but e structure are as follows:

attribute_nane_i ndex

The value of the attri bute _nane_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure representing the string "Met hodPar amet er s".

164

THE cLASS FILE FORMAT Attributes 4.7

attribute_|l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

par anmet er s_count

The vaue of the parameters_count item indicates the number of
parameter descriptors in the method descriptor (84.3.3) referenced by the
descri pt or _i ndex of the attribute's enclosing net hod_i nf o structure.

Thisisnot aconstraint which a Java Virtual Machine implementation must enforce during
format checking (84.8). Thetask of matching parameter descriptorsin amethod descriptor
against the itemsin the par anet er s array below is done by the reflection libraries of the
Java SE Platform.

par anet er s[]

Each entry in the par anet er s array contains the following pair of items:
name_i ndex
Thevalue of thenare_i ndex item must either be zero or avalid index into
theconst ant _pool table.

If the value of the nane_i ndex itemiszero, then thispar anet er s element
indicates aformal parameter with no name.

If the value of the narme_i ndex item is nonzero, the const ant _pool entry
at that index must be aCONSTANT_Ut f 8_i nf o Structure representing avalid
unqualified name denoting aformal parameter (84.2.2).

access_fl ags
Thevalue of theaccess_fl ags itemisasfollows:
0x0010 (ACC_FI NAL)
Indicates that the formal parameter was declared f i nal .
0x1000 (ACC_SYNTHETI C)

Indicates that the formal parameter was not explicitly or implicitly
declared in source code, according to the specification of the language
in which the source code was written (JLS §13.1). (The formal
parameter is an implementation artifact of the compiler which
produced thiscl ass file.)

0x8000 (ACC_MANDATED)

Indicates that the formal parameter was implicitly declared in source
code, according to the specification of thelanguagein which the source

165

4.7

166

Attributes THE cLAss FILE FORMAT

codewaswritten (JLS 813.1). (Theformal parameter is mandated by a
language specification, so all compilersfor the language must emit it.)

The i'th entry in the par anet er s array corresponds to the i'th parameter descriptor in
the enclosing method's descriptor. (The par anet er s_count item is one byte because a
method descriptor is limited to 255 parameters.) Effectively, this means the par anet er s
array stores information for all the parameters of the method. One could imagine other
schemes, where entries in the par anet er s array specify their corresponding parameter
descriptors, but it would unduly complicate the Met hodPar amet er s attribute.

The i'th entry in the par anet er s array may or may not correspond to the i'th type in
the enclosing method's Si gnat ur e attribute (if present), or to the i'th annotation in the
enclosing method's parameter annotations.

47.25 TheMdul e Attribute

The Modul e attribute is a variable-length attribute in the att ri but es table of a
C assFi | e structure. The Mdul e attribute indicates the modules required by a
modul e; the packages exported and opened by amodule; and the services used and
provided by a module.

There may be at most one Modul e attributeintheatt ri but es tableof ad assFil e
structure.

The Modul e attribute has the following format:

THE cLASS FILE FORMAT Attributes 4.7

Modul e_attri bute {
u2 attribute_nane_i ndex;
u4 attribute_l ength;

u2 nodul e_nane_i ndex
u2 modul e_fl ags;
u2 nodul e_versi on_i ndex;

u2 requires_count;
{ u2 requires_index;

u2 requires_fl ags;

u2 requires_version_index;
} requires[requires_count];

u2 exports_count;
{ u2 exports_index;

u2 exports_fl ags;

u2 exports_to_count;

u2 exports_to_index[exports_to_count];
} exports[exports_count];

u2 opens_count;
{ u2 opens_i ndex

u2 opens_fl ags;

u2 opens_to_count;

u2 opens_to_i ndex[opens_to_count];
} opens[opens_count];

u2 uses_count;
u2 uses_i ndex[uses_count];

u2 provi des_count;
{ u2 provi des_i ndex;

u2 provides_with_count;

u2 provides_with_index|[provides_wth _count];
} provides[provides_count];

}

Theitems of the Mbdul e_at t ri but e structure are as follows:

attri bute_nane_i ndex
The value of the attribute_nane_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure representing the string "Module".
attribute_l ength

The value of the attribute_l ength item is the length of the attribute
excluding theinitial six bytes.

167

4.7 Attributes THE cLASs FILE FORMAT

nmodul e_name_i ndex

The value of the nodul e_nare_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Mbdul e_i nf o structure denoting the current module.

modul e_f | ags
Thevalue of the nodul e_f 1 ags itemisasfollows:
0x0020 (ACC_OPEN)
Indicates that this moduleis open.
0x1000 (ACC_SYNTHETI C)
Indicates that this module was not explicitly or implicitly declared.
0x8000 (ACC_MANDATED)
Indicates that this module was implicitly declared.
nodul e_ver si on_i ndex

The value of the nodul e_ver si on_i ndex item must be either zero or avalid
index into the const ant _pool table. If the value of the item is zero, then
no version information about the current module is present. If the value of
the item is nonzero, then the const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure representing the version of the current module.

requi res_count
The value of ther equi res_count item indicates the number of entriesin the
requi res table.
If the current moduleisj ava. base, thenr equi res_count must be zero.

If the current moduleisnot j ava. base, thenr equi res_count must be at |east
one.

requires]
Each entry inther equi r es table specifies adependence of the current module.
The itemsin each entry are asfollows:
requi res_i ndex

The value of the requires_i ndex item must be a valid index into the
const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Mbdul e_i nf o structure denoting amodule on which the current
modul e depends.

At most one entry in ther equi r es table may specify amodule of agiven
name with itsr equi res_i ndex item.

168

THE cLAss FILE FORMAT Attributes

requires_fl ags
Thevaueof therequires_fl ags itemisasfollows:

0x0020 (ACC_TRANSI Tl VE)

Indicates that any module which depends on the current module,
implicitly declares adependence on the moduleindicated by thisentry.

0x0040 (ACC_STATI C_PHASE)

Indicates that this dependence is mandatory in the static phase, i.e., at
compiletime, but is optional in the dynamic phase, i.e., a run time.

0x1000 (ACC_SYNTHETI C)

Indicatesthat this dependence was not explicitly or implicitly declared
in the source of the module declaration.

0x8000 (ACC_MANDATED)

Indicates that this dependence was implicitly declared in the source of
the modul e declaration.

If the current moduleisnotj ava. base, and thecl ass file version number
is 54.0 or above, then neither ACC_TRANSI TI VE nor ACC_STATI C_PHASE
may besetinrequires_fl ags.

requires_version_i ndex

The value of therequi res_versi on_i ndex item must be either zero or a
valid index into the const ant _pool table. If the value of the item is zero,
then no version information about the dependence is present. If the value
of theitemisnonzero, thenthe const ant _pool entry at that index must be
a CONSTANT_Ut f 8_i nf o structure representing the version of the module
specified by requi res_i ndex.

Unless the current module is j ava. base, exactly one entry in the requi res
table must have both ar equi res_i ndex item which indicatesj ava. base and
arequires_flags item which hasthe ACC_SYNTHETI C flag not set.

exports_count
The value of the exports_count item indicates the number of entries in the
exports table.

exports[]

Each entry in the export s table specifies a package exported by the current
module, such that public and protected types in the package, and their
publ i ¢ and pr ot ect ed members, may be accessed from outside the current
module, possibly from alimited set of "friend" modules.

4.7

169

4.7

170

Attributes THE cLAss FILE FORMAT

Theitemsin each entry are asfollows:

exports_i ndex

The value of the exports_i ndex item must be a valid index into the
const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Package_i nf o structure representing apackage exported by the
current module.

At most one entry in the expor t s table may specify a package of a given
name with itsSexport s_i ndex item.

exports_flags

Thevalue of theexports_flags itemisasfollows:

0x1000 (ACC_SYNTHETI C)

Indicates that this export was not explicitly or implicitly declared in
the source of the module declaration.

0x8000 (ACC_MANDATED)

Indicates that this export was implicitly declared in the source of the
module declaration.

exports_to_count

Thevalue of theexports_to_count indicatesthe number of entriesin the
exports_to_i ndex table.

If exports_to_count iszero, then this packageis exported by the current
module in an unqualified fashion; code in any other module may access
the types and members in the package.

If exports_to_count iS nhonzero, then this package is exported by the
current module in a qualified fashion; only code in the modules listed in
the exports_to_i ndex table may access the types and members in the
package.

exports_to_index[]

The value of each entry in the exports_t o_i ndex table must be a valid
index into the const ant _pool table. The constant _pool entry at that
index must be a CONSTANT_Mbdul e_i nf o structure denoting a module
whose code can access the types and membersin this exported package.

For each entry in the exports table, a most one entry in its
exports_to_i ndex table may specify a module of agiven name.

THE cLASS FILE FORMAT Attributes 4.7

opens_count
Thevaueof theopens_count itemindicatesthe number of entriesintheopens
table.

opens_count must be zero if the current module is open.
opens|]

Each entry intheopens table specifiesapackage opened by the current module,
such that al typesin the package, and all their members, may be accessed from
outside the current modul e via the reflection libraries of the Java SE Platform,
possibly from alimited set of "friend" modules.

Theitemsin each entry are asfollows:

opens_i ndex

The value of the opens_i ndex item must be a valid index into the
const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Package_i nf o structure representing a package opened by the
current module.

At most one entry in the opens table may specify a package of a given
name with itsopens_i ndex item.
opens_fl ags

Thevalue of theopens_f 1 ags item isasfollows:

0x1000 (ACC_SYNTHETI C)
Indicates that this opening was not explicitly or implicitly declared in
the source of the module declaration.

0x8000 (ACC_MANDATED)

Indicates that this opening was implicitly declared in the source of the
module declaration.

opens_t o_count

The value of the opens_to_count indicates the number of entries in the
opens_t o_i ndex table.

If opens_to_count is zero, then this package is opened by the current
module in an unqualified fashion; code in any other module may
reflectively access the types and membersin the package.

If opens_t o_count isnonzero, then this package is opened by the current
module in a qualified fashion; only code in the modules listed in the
exports_to_i ndex table may reflectively access the types and members
in the package.

171

4.7

172

Attributes THE cLAss FILE FORMAT

opens_t o_i ndex[]
Thevalue of each entry intheopens_t o_i ndex table must beavalid index
intotheconst ant _pool table. Theconst ant _pool entry at that index must
be a CONSTANT_Mvdul e_i nf o structure denoting a module whose code can
access the types and members in this opened package.

For each entry inthe opens table, at most oneentry initsopens_t o_i ndex
table may specify amodule of agiven name.
uses_count

The value of the uses _count item indicates the number of entries in the
uses_i ndex table.

uses_i ndex|]

The value of each entry in the uses_i ndex table must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be
a CONSTANT_d ass_i nf o structure representing a service interface which the
current module may discover viaj ava. util . Servi ceLoader.

At most one entry in the uses_i ndex table may specify a service interface of
agiven name.

provi des_count
The value of the provi des_count item indicates the number of entriesin the
provi des table.

provi des|[]
Each entry in the provi des table represents a service implementation for a
given service interface.
Theitemsin each entry are asfollows:

provi des_i ndex

The value of the provi des_i ndex item must be a valid index into the
const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_d ass_i nf o structure representing aserviceinterfacefor which
the current modul e provides a service implementation.

At most one entry inthe pr ovi des table may specify a service interface of
agiven name with itspr ovi des_i ndex item.

provi des_wi t h_count

Thevalue of theprovi des_wi t h_count indicatesthe number of entriesin
the provi des_wi t h_i ndex table.

provi des_wi t h_count must be nonzero.

THE cLASS FILE FORMAT Attributes 4.7

provi des_with_i ndex][]
Thevaue of each entry inthepr ovi des_wi t h_i ndex tablemust beavalid
index into the const ant _pool table. The constant _pool entry at that
index must be a CONSTANT_d ass_i nf o structure representing a service
implementation for the service interface specified by pr ovi des_i ndex.

For each entry in the provides table, at most one entry in its
provi des_wi t h_i ndex table may specify a service implementation of a
given name.

4.7.26 TheMdul ePackages Attribute

The Mdul ePackages attribute is a variable-length attribute in the attri butes
table of a d assFi | e structure. The Modul ePackages attribute indicates al the
packages of a module that are exported or opened by the Modul e attribute, as well
asall the packages of the service implementations recorded in the Modul e attribute.
The Mvdul ePackages attribute may also indicate packages in the module that are
neither exported nor opened nor contain service implementations.

There may be at most one Mbdul ePackages attribute in the at t ri but es table of
ad assFi | e structure.

The Modul ePackages éttribute has the following format:

Modul ePackages_attribute {
u2 attribute_nane_i ndex;
u4 attribute_l ength;

u2 package_count;
u2 package_i ndex[package_count];

}

The items of the Mbdul ePackages_at t ri but e structure are as follows:

attribute_nane_i ndex

The value of the attribute _nane_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure representing the string "M odul ePackages’.

attribute_length

The value of the attribute_length item is the length of the attribute
excluding theinitial six bytes.

173

4.7

174

Attributes THE cLAss FILE FORMAT

package_count
The value of the package_count item indicates the number of entries in the
package_i ndex table.

package_i ndex[]

The value of each entry in the package_i ndex table must be a valid index
into the const ant _pool table. The const ant _pool entry at that index must
be a CONSTANT_Package_i nf o structure representing a package in the current
module.

At most one entry in the package_i ndex table may specify a package of a
given name.

4.7.27 TheMdul eMai nd ass Attribute

The Mdul eMai nd ass attribute isafixed-length attributeinthe at t ri but es table
of ad assFi | e structure. The Mbdul eMai nd ass attribute indicates the main class
of amodule.

There may be at most one Mbdul eMai ndl ass attributein the at t ri but es table of
ad assFi | e structure.

The Mbdul eMai nd ass attribute has the following format:

Modul eMai nCl ass_attribute {
u2 attribute_nane_index;
ud attribute_l ength;

u2 mai n_cl ass_i ndex;

}

The items of the Modul eMai nCl ass_attri but e structure are as follows:

attribute_name_i ndex
The value of the attribute_nanme_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure representing the string "ModuleMainClass".
attribute_l ength
The vaue of the attribute_l ength item is the length of the attribute
excluding the initial six bytes.
mai n_cl ass_i ndex

The value of the mai n_cl ass_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a

THE cLAss FILE FORMAT Format Checking

CONSTANT_d ass_i nf o structure representing the binary name of the main
class of the current module.

4.8 Format Checking

When a prospective cl ass file is loaded by the Java Virtual Machine (85.3), the
JavaVirtual Machinefirst ensuresthat the file has the basic format of acl ass file
(84.1). This processis known as format checking. The checks are as follows:

e Thefirst four bytes must contain the right magic number.

o All predefined attributes (84.7) must be of the proper
length, except for StackMapTable, RuntineVisibl eAnnotations,
Runt i nel nvi si bl eAnnot ati ons, Runt i meVi si bl ePar anet er Annot ati ons,
Runt i mel nvi si bl ePar anet er Annot ati ons,

Runti meVi si bl eTypeAnnot ati ons, Runti nel nvi si bl eTypeAnnot ati ons, and
Annot ati onDef aul t.

» Thecl ass file must not be truncated or have extra bytes at the end.

» The constant pool must satisfy the constraints documented throughout §4.4.

For example, each CONSTANT_Cl ass_i nf o structure in the constant pool must contain
in its name_i ndex item a valid constant pool index for a CONSTANT_Utf8_i nfo
structure.

 All field references and method references in the constant pool must have valid
names, valid classes, and valid descriptors (84.3).

Format checking does not ensure that the given field or method actually exists
in the given class, nor that the descriptors given refer to rea classes. Format
checking ensures only that these items are well formed. More detailed checking
is performed when the bytecodes themselves are verified, and during resol ution.

These checks for basic ¢l ass file integrity are necessary for any interpretation of
the cl ass file contents. Format checking is distinct from bytecode verification,
although historically they have been confused because both are aform of integrity
check.

4.8

175

4.9

176

Constraints on Java Virtual Machine Code THE cLAss FILE FORMAT

49 Constraintson Java Virtual Machine Code

The code for amethod, instance initialization method (82.9.1), or class or interface
initialization method (82.9.2) is stored in the code array of the Code attribute
of amet hod_i nf o structure of a cl ass file (84.7.3). This section describes the
constraints associated with the contents of the Code_at t ri but e structure.

49.1 Static Constraints

The static constraintson acl ass file are those defining the well-formedness of the
file. These constraints have been given in the previous sections, except for static
constraints on the code in the cl ass file. The static constraints on the code in a
cl ass file specify how Java Virtua Machine instructions must be laid out in the
code array and what the operands of individual instructions must be.

The static constraints on the instructionsin the code array are asfollows:

 Only instances of the instructions documented in 86.5 may appear in the code
array. Instances of instructions using the reserved opcodes (86.2) or any opcodes
not documented in this specification must not appear in the code array.

If thecl ass file version number is 51.0 or above, then neither the jsr opcode or
the jsr_w opcode may appear in the code array.

» The opcode of the first instruction in the code array begins at index o.

 For each instruction in the code array except the last, the index of the opcode of
the next instruction equal s the index of the opcode of the current instruction plus
the length of that instruction, including al its operands.

The wide instruction is treated like any other instruction for these purposes; the
opcode specifying the operation that awide instruction isto modify istreated as
one of the operands of that wide instruction. That opcode must never be directly
reachable by the computation.

» The last byte of the last instruction in the code array must be the byte at index
code_length - 1.

The static constraints on the operands of instructions in the code array are as
follows:

» The target of each jump and branch instruction (jsr, jsr_w, goto, goto w,
ifeq, ifne, ifle, iflt, ifge, ifgt, ifnull, ifnonnull, if_icmpeq, if_icmpne, if_icmple,
if icmplt, if_icmpge, if_icmpgt, if_acmpeq, if acmpne) must be the opcode of an
instruction within this method.

THE cLAss FILE FORMAT Constraints on Java Virtual Machine Code 49

The target of a jump or branch instruction must never be the opcode used to
specify the operation to be modified by a wide instruction; a jump or branch
target may be the wide instruction itself.

» Each target, including the default, of each tableswitch instruction must be the
opcode of an instruction within this method.

Each tableswitch instruction must have a number of entriesin its jump table that
is consistent with the value of its low and high jump table operands, and its low
value must be less than or equal to its high value.

No target of a tableswitch instruction may be the opcode used to specify the
operation to be modified by a wide instruction; a tableswitch target may be a
wide instruction itself.

» Each target, including the default, of each lookupswitch instruction must be the
opcode of an instruction within this method.

Each lookupswitch instruction must have a number of match-offset pairs that is
consistent with the value of its npairs operand. The match-offset pairs must be
sorted in increasing numerical order by signed match value.

No target of alookupswitch instruction may be the opcode used to specify the
operation to be modified by awide instruction; a lookupswitch target may be a
wide instruction itself.

» The operand of each Idc instruction and each Idc_w instruction must be avalid
index into the const ant _pool table. The constant pool entry referenced by that
index must be of type:

— CONSTANT _| nt eger , CONSTANT_Fl oat , Or CONSTANT _Stri ng if thecl ass file
version number is less than 49.0.

— CONSTANT_I nt eger, CONSTANT_Fl oat , CONSTANT_St ri ng, or
CONSTANT_d ass if thecl ass file version number is 49.0 or 50.0.

— CONSTANT_I nt eger , CONSTANT_FI oat , CONSTANT_St ri ng, CONSTANT_dl ass,
CONSTANT_Met hodType, OF CONSTANT_Met hodHandl e if thecl ass fileversion
number is51.0 or above.

» The operands of each Idc2_w instruction must represent a valid index into the
const ant _pool table. The constant pool entry referenced by that index must be
of type CONSTANT_Long Or CONSTANT_Doubl e.

The subsequent constant pool index must also be avalid index into the constant
pool, and the constant pool entry at that index must not be used.

177

4.9

178

Constraints on Java Virtual Machine Code THE cLAss FILE FORMAT

The operands of each getfield, putfield, getstatic, and putstatic instruction must
represent a valid index into the const ant _pool table. The constant pool entry
referenced by that index must be of type CONSTANT_Fi el dr ef .

The indexbyte operands of each invokevirtual instruction must represent avalid
index into the const ant _pool table. The constant pool entry referenced by that
index must be of type CONSTANT_Met hodr ef .

The indexbyte operands of each invokespecial and invokestatic instruction must
represent a valid index into the const ant _pool table. If the cl ass file version
number is less than 52.0, the constant pool entry referenced by that index
must be of type CONSTANT_Met hodr ef ; if the cl ass file version number is 52.0
or above, the constant pool entry referenced by that index must be of type
CONSTANT _Met hodr ef OF CONSTANT _| nt er f aceMet hodr ef .

The indexbyte operands of each invokeinterface instruction must represent a
validindex into theconst ant _pool table. The constant pool entry referenced by
that index must be of type CONSTANT_I nt er f aceMet hodr ef .

The vaue of the count operand of each invokeinterface instruction
must reflect the number of local variables necessary to store the
arguments to be passed to the interface method, as implied by the
descriptor of the CONSTANT NarmeAndType_i nfo structure referenced by the
CONSTANT_I nt er f aceMet hodr ef constant pool entry.

The fourth operand byte of each invokeinterface instruction must have the value
zero.

Theindexbyte operands of each invokedynamic instruction must represent avalid
index into the const ant _pool table. The constant pool entry referenced by that
index must be of type CONSTANT _I nvokeDynani c.

Thethird and fourth operand bytes of each invokedynamic instruction must have
the value zero.

Only the invokespecial instruction is allowed to invoke an instance initialization
method (82.9.1).

No other method whose name begins with the character '<' (\ u003c") may be
called by the method invocation instructions. In particular, the class or interface
initialization method specially named <cl i ni t > is never called explicitly from
Java Virtua Machine instructions, but only implicitly by the Java Virtua
Machine itself.

The operands of each instanceof, checkcast, new, and anewarray instruction,
and the indexbyte operands of each multianewarray instruction, must represent

THE cLAss FILE FORMAT Constraints on Java Virtual Machine Code 49

avalid index into the const ant _pool table. The constant pool entry referenced
by that index must be of type CONSTANT_d ass.

» No new instruction may reference a constant pool entry of type CONSTANT_d ass
that represents an array type (84.3.2). The new instruction cannot be used to
Create an array.

* No anewarray instruction may be used to create an array of more than 255
dimensions.

* A multianewarray instruction must be used only to create an array of atype that
has at |east as many dimensions as the value of its dimensions operand. That is,
while amultianewarray instruction is not required to create all of the dimensions
of the array type referenced by its indexbyte operands, it must not attempt to
create more dimensions than are in the array type.

The dimensions operand of each multianewarray instruction must not be zero.

* The atype operand of each newarray instruction must take one of the values
T_BOOLEAN (4), T_CHAR(5), T_FLQAT (6), T_DOUBLE (7), T_BYTE (8), T_SHORT (9),
T_INT (20), or T_LONG (11).

» Theindex operand of each iload, fload, aload, istore, fstore, astore, iinc, and ret
instruction must be a non-negative integer no greater than max_| ocal s - 1.

The implicit index of each iload <n>, fload <n>, aload_<n>, istore <n>,
fstore_<n>, and astore_<n> instruction must be no greater than nax_I ocal s
- 1.

» The index operand of each lload, dload, Istore, and dstore instruction must be
no greater than max_| ocal s - 2.

Theimplicitindex of eachlload_<n>,dload <n>,Istore <n>,anddstore <n>
instruction must be no greater than nax_I ocal s - 2.

* The indexbyte operands of each wide instruction modifying an iload, fload,
aload, istore, fstore, astore, iinc, or ret instruction must represent anon-negative
integer no greater than max_I ocal s - 1.

The indexbyte operands of each wide instruction modifying an lload, dload,
Istore, or dstoreinstruction must represent anon-negativeinteger no greater than
mex_| ocals - 2.

179

4.9

180

Constraints on Java Virtual Machine Code THE cLAss FILE FORMAT

49.2 Structural Constraints

The structural constraints on the code array specify constraints on relationships
between Java Virtua Machine instructions. The structural constraints are as
follows;

Each instruction must only be executed with the appropriate type and number
of arguments in the operand stack and local variable array, regardless of the
execution path that leads to itsinvocation.

An instruction operating on values of typei nt is aso permitted to operate on
values of typebool ean, byt e, char, and short .

Asnoted in §2.3.4 and §2.11.1, the Java Virtual Machine internally converts values of
typesbool ean, byt e, short, and char totypeint.)

If an instruction can be executed along several different execution paths, the
operand stack must have the same depth (82.6.2) prior to the execution of the
instruction, regardless of the path taken.

At no point during execution can the operand stack grow to a depth greater than
that implied by the max_st ack item.

At no point during execution can more val ues be popped from the operand stack
than it contains.

At no point during execution can the order of the local variable pair holding a
value of typel ong or doubl e be reversed or the pair split up. At no point can the
local variables of such apair be operated on individually.

No local variable (or local variable pair, in the case of a value of typel ong or
doubl e) can be accessed before it is assigned a value.

Each invokespecial instruction must name one of the following:

— aninstance initialization method (8§2.9.1)

— amethod in the current class or interface

— amethod in a superclass of the current class

— amethod in a direct superinterface of the current class or interface
— amethod in bj ect

If an invokespecial instruction names an instance initialization method, then the
target reference on the operand stack must be an uninitialized class instance.
An instance initialization method must never be invoked on an initialized class
instance. In addition:

THE cLAss FILE FORMAT Constraints on Java Virtual Machine Code 49

— If the target reference on the operand stack is an uninitialized class instance
for the current class, then invokespecial must name an instance initialization
method from the current class or its direct superclass.

— If aninvokespecial instruction names an instance initialization method and the
target reference on the operand stack is a class instance created by an earlier
new instruction, then invokespecial must name an instance initialization
method from the class of that class instance.

If an invokespecial instruction names a method which is not an instance
initialization method, then the target reference on the operand stack must be a
class instance whose type is assignment compatible with the current class (JLS
§85.2).

The general rule for invokespecial is that the class or interface named by invokespecial
must be be "above" the caller class or interface, while the receiver object targeted by
invokespecial must be "at" or "below" the caller class or interface. The latter clause is
especialy important: a class or interface can only perform invokespecial on its own
objects. See 8invokespecial for an explanation of how the latter clause is implemented
in Prolog.

» Eachinstanceinitialization method, except for the instance initialization method
derived from the constructor of class tbj ect, must call either another instance
initialization method of t hi s or an instance initialization method of its direct
superclass super beforeitsinstance members are accessed.

However, instance fields of t hi s that are declared in the current class may be
assigned by putfield before calling any instance initialization method.

» When any instance method isinvoked or when any instance variable is accessed,
the class instance that contains the instance method or instance variable must
aready beinitiaized.

« If thereisanuninitialized classinstancein alocal variablein code protected by an
exception handler, then i) if the handler isinside an <i ni t > method, the handler
must throw an exception or loop forever, and ii) if the handler is not inside an
<i ni t > method, the uninitialized class instance must remain uninitiaized.

» There must never be an uninitialized class instance on the operand stack or in a
local variable when ajsr or jsr_w instruction is executed.

* The type of every class instance that is the target of a method invocation
instruction (that is, the type of the target reference on the operand stack) must
be assignment compatible with the class or interface type specified in the
instruction.

181

4.9

182

Constraints on Java Virtual Machine Code THE cLAss FILE FORMAT

* The types of the arguments to each method invocation must be method

invocation compatible with the method descriptor (JLS 85.3, §84.3.3).
Each return instruction must match its method's return type:

— If the method returns abool ean, byt e, char, short, orint, only theireturn
instruction may be used.

— If the method returns af 1l oat , | ong, Or doubl e, only an freturn, Ireturn, or
dreturn instruction, respectively, may be used.

— If the method returns ar ef er ence type, only an areturn instruction may be
used, and the type of the returned value must be assignment compatible with
the return descriptor of the method (84.3.3).

— All instance initidization methods, class or interface initialization methods,
and methods declared to return voi d must use only the return instruction.

Thetype of every classinstance accessed by agetfield instruction or modified by
aputfieldinstruction (that is, the type of thetarget reference on the operand stack)
must be assignment compatible with the class type specified in the instruction.

The type of every value stored by a putfield or putstatic instruction must be
compatible with the descriptor of the field (84.3.2) of the class instance or class
being stored into:

— If the descriptor type is bool ean, byt e, char, short, or i nt, then the value
must beani nt .

— If thedescriptor typeisf | oat , | ong, Or doubl e, thenthevaluemust beaf | oat ,
| ong, Or doubl e, respectively.

— |f the descriptor typeisar ef er ence type, then the value must be of atypethat
is assignment compatible with the descriptor type.

The type of every value stored into an array by an aastore instruction must be
ar ef er ence type.

The component type of the array being stored into by the aastore instruction
must also be ar ef er ence type.

Each athrow instruction must throw only values that are instances of class
Thr owabl e or of subclasses of Thr owabl e.

Each class mentioned in a cat ch_t ype item of the excepti on_t abl e array of
the method's Code_at t ri but e structure must be Throwabl e or a subclass of
Thr owabl e.

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

* If getfield or putfield is used to accessapr ot ect ed field declared in asuperclass
that isamember of a different run-time package than the current class, then the
type of the classinstance being accessed (that is, the type of the target reference
on the operand stack) must be assignment compatible with the current class.

If invokevirtual or invokespecial is used to access apr ot ect ed method declared
in asuperclass that isamember of adifferent run-time package than the current
class, then the type of the class instance being accessed (that is, the type of the
target reference on the operand stack) must be assignment compatible with the
current class.

» Execution never fals off the bottom of the code array.

» No return address (a value of typer et ur nAddr ess) may be loaded from alocal
variable.

» Theinstruction following each jsr or jsr_w instruction may be returned to only
by asingle ret instruction.

* No jsr or jsr_w instruction that is returned to may be used to recursively call
a subroutine if that subroutine is aready present in the subroutine call chain.
(Subroutines can be nested when using t ry-fi nal | y constructs from within a
finally clause)

» Each instance of typer et ur nAddr ess can be returned to at most once.

If aret instruction returns to a point in the subroutine call chain above the ret
instruction corresponding to a given instance of typer et ur nAddr ess, then that
instance can never be used as areturn address.

4,10 Verification of cl ass Files

Even though a compiler for the Java programming language must only produce
cl ass files that satisfy all the static and structural constraints in the previous
sections, the Java Virtual Machine has no guarantee that any fileit is asked to load
was generated by that compiler or is properly formed. Applications such as web
browsersdo not download source code, which they then compile; these applications
download already-compiled cl ass files. The browser needs to determine whether
the cl ass file was produced by a trustworthy compiler or by an adversary
attempting to exploit the Java Virtual Machine.

An additional problem with compile-time checking is version skew. A user may
have successfully compiled a class, say Pur chaseSt ockOpt i ons, to be a subclass of
Tr adi ngd ass. But the definition of Tr adi ngC ass might have changed since the time

183

4.10

184

Verification of cl ass Files THE cLAsS FILE FORMAT

the class was compiled in away that is not compatible with pre-existing binaries. Methods
might have been deleted or had their return types or modifiers changed. Fields might have
changed types or changed from instance variables to class variables. The access modifiers
of amethod or variable may have changed from publ i ¢ to pri vat e. For adiscussion of
these issues, see Chapter 13, "Binary Compatibility," in The Java Language Specification,
Java SE 10 Edition.

Because of these potential problems, the Java Virtua Machine needs to verify
for itself that the desired constraints are satisfied by the cl ass filesit attempts to
incorporate. A Java Virtual Machine implementation verifies that each cl ass file
satisfies the necessary constraints at linking time (85.4).

Link-time verification enhances the performance of the run-time interpreter.
Expensive checks that would otherwise have to be performed to verify constraints
at run time for each interpreted instruction can be eliminated. The Java Virtual
M achine can assume that these checks have already been performed. For example,
the Java Virtual Machine will aready know the following:

* There are no operand stack overflows or underflows.
 All local variable uses and stores are valid.
» The argumentsto all the Java Virtual Machine instructions are of valid types.

There are two strategies that Java Virtual Machine implementations may use for

verification:

* Verification by type checking must be used to verify cl ass files whose version
number is greater than or equal to 50.0.

» Verification by type inference must be supported by all Java Virtual Machine
implementations, except those conforming to the Java ME CLDC and Java Card
profiles, in order to verify cl ass fileswhose version number isless than 50.0.

Verification on Java Virtual Machine implementations supporting the Java ME
CLDC and Java Card profilesis governed by their respective specifications.

In both strategies, verification is mainly concerned with enforcing the static and
structural constraints from 84.9 on the code array of the Code attribute (84.7.3).
However, there are three additional checks outside the Code attribute which must
be performed during verification:

» Ensuring that fi nal classes are not subclassed.
» Ensuring that fi nal methods are not overridden (85.4.5).

» Checking that every class (except j ect) has adirect superclass.

THE cLAss FILE FORMAT Verification of cl ass Files

4.10.1 Verification by Type Checking

A cl ass file whose version number is 50.0 or above (84.1) must be verified using
the type checking rules given in this section.

If, and only if, acl ass file's version number equals 50.0, then if the type checking
fails, a Java Virtual Machine implementation may choose to attempt to perform
verification by type inference (84.10.2).

This is a pragmatic adjustment, designed to ease the transition to the new verification
discipline. Many tools that manipulate cl ass files may alter the bytecodes of a method
in amanner that requires adjustment of the method's stack map frames. If atool does not
make the necessary adjustments to the stack map frames, type checking may fail even
though the bytecode isin principle valid (and would consequently verify under the old type
inference scheme). To allow implementors time to adapt their tools, Java Virtual Machine
implementations may fall back to the older verification discipline, but only for a limited
time.

In cases where type checking fails but type inference is invoked and succeeds, a certain
performance penalty is expected. Such a penalty is unavoidable. It also should serve as a
signal to tool vendors that their output needs to be adjusted, and provides vendors with
additional incentive to make these adjustments.

In summary, failover to verification by type inference supports both the gradual addition of
stack map frames to the Java SE Platform (if they are not present in aversion 50.0 cl ass
file, failover is allowed) and the gradual removal of thejsr and jsr_w instructions from the
Java SE Platform (if they are present in aversion 50.0 ¢l ass file, failover is allowed).

If a Java Virtual Machine implementation ever attempts to perform verification
by type inference on version 50.0 class files, it must do so in all cases where
verification by type checking fails.

This means that a Java Virtual Machine implementation cannot choose to resort to type
inferencein once case and not in another. It must either reject ¢l ass filesthat do not verify
via type checking, or else consistently failover to the type inferencing verifier whenever
type checking fails.

Thetype checker enforces type rulesthat are specified by means of Prolog clauses.
English language text is used to describe the type rulesin an informal way, while
the Prolog clauses provide aformal specification.

The type checker requires a list of stack map frames for each method with a
Code attribute (84.7.3). A list of stack map framesis given by the St ackMapTabl e
attribute (84.7.4) of a Code attribute. The intent is that a stack map frame must
appear at the beginning of each basic block in a method. The stack map frame
specifiesthe verification type of each operand stack entry and of each local variable
at the start of each basic block. The type checker reads the stack map frames for

4.10

185

4.10

186

Verification of cl ass Files THE cLAsS FILE FORMAT

each method with a Code attribute and uses these maps to generate a proof of the
type safety of the instructions in the Code attribute.

A classistype safeif al its methods are type safe, and it does not subclass af i nal
class.

cl assl sTypeSaf e(Cd ass) : -
cl assC assNanme(d ass, Nane),
cl assDef i ni ngLoader (O ass, L),
super cl assChai n(Nanme, L, Chain),
Chain \=[],
cl assSuper G assNane(C ass, Supercl assNane),
| oadedC ass(Supercl assNane, L, Superclass),
cl assl sNot Fi nal (Supercl ass),
cl assMet hods(d ass, Methods),
checkl i st (nmet hodl sTypeSaf e(d ass), Methods).

cl assl sTypeSaf e(C ass) : -
cl assC assNane(C ass, 'javal/lang/ Ooject'),
cl assDefi ni ngLoader (Q ass, L),
i sBoot st rapLoader (L),
cl assMet hods(Cd ass, Methods),
checkl i st (et hodl sTypeSaf e(d ass), Methods).

The Prolog predicate cl assl sTypeSaf e assumes that d ass is a Prolog term
representing a binary class that has been successfully parsed and loaded. This
specification does not mandate the precise structure of this term, but does require
that certain predicates be defined upon it.

For example, we assume a predicate cl assMet hods(C ass, Met hods) that, given a
term representing aclass as described above asitsfirst argument, bindsits second argument
to alist comprising all the methods of the class, represented in a convenient form described
later.

Iff the predicate cl assl sTypeSaf e is not true, the type checker must throw the
exception Ver i f yEr r or toindicatethat thecl ass fileismalformed. Otherwise, the
cl ass file has type checked successfully and bytecode verification has completed
successfully.

The rest of this section explains the process of type checking in detail:

* First, we give Prolog predicates for core Java Virtual Machine artifacts like
classes and methods (84.10.1.1).

» Second, we specify the type system known to the type checker (84.10.1.2).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

 Third, we specify the Prolog representation of instructions and stack map frames
(84.10.1.3, 84.10.1.4).

Fourth, we specify how a method is type checked, for methods without code
(84.10.1.5) and methods with code (84.10.1.6).

Fifth, we discuss type checking issues common to all load and store instructions
(84.10.1.7), and also issues of accessto pr ot ect ed members (84.10.1.8).

Finally, we specify the rules to type check each instruction (84.10.1.9).

4.10.1.1 Accessors for Java Virtual Machine Artifacts

We dtipulate the existence of 28 Prolog predicates ("accessors') that have certain
expected behavior but whose formal definitions are not given in this specification.

cl assC assNane(d ass, O assNane)

Extracts the name, d assNane, of theclass d ass.
cl asslslnterface(C ass)

Trueiff theclass, d ass, isan interface.
cl assl sNot Fi nal (C ass)

Trueiff the class, d ass, isnot afi nal class.
cl assSuper C assNane(d ass, Super C assNane)

Extracts the name, Super d assNane, of the superclass of classd ass.
classlinterfaces(d ass, Interfaces)

Extractsalist, I nt er f aces, of the direct superinterfaces of the classd ass.
cl assMet hods(d ass, Met hods)

Extractsalist, Met hods, of the methods declared in the classd ass.
classAttributes(C ass, Attributes)

Extractsalist, At t ri but es, of the attributes of the class d ass.

Each attribute is represented as a functor application of the form
attribute(AttributeName, AttributeContents), where Attribut eName
isthe name of the attribute. The format of the attribute's contentsis unspecified.

cl assDef i ni ngLoader (O ass, Loader)
Extracts the defining class |oader, Loader , of theclassd ass.

i sBoot st rapLoader (Loader)
Trueiff the class loader Loader isthe bootstrap class loader.

187

4.10

188

Verification of cl ass Files THE cLAsS FILE FORMAT

| oadedC ass(Name, InitiatingLoader, C assDefinition)
True iff there exists a class named Nane whose representation (in accordance
with this specification) when loaded by the class|oader | ni ti ati ngLoader is
Cl assDefinition.

met hodName(Met hod, Nane)
Extracts the name, Nane, of the method Met hod.

net hodAccessFl ags(Met hod, AccessFl ags)

Extracts the access flags, AccessFl ags, of the method Met hod.
nmet hodDescri pt or (Met hod, Descri ptor)

Extracts the descriptor, Descri pt or, of the method Met hod.
met hodAt tri but es(Met hod, Attri butes)

Extractsalist, Att ri but es, of the attributes of the method Met hod.
i sl nit(Method)

Trueiff Met hod (regardless of class) is<i ni t>.
i sNot I ni t (Met hod)

Trueiff Met hod (regardless of class) ishot <i ni t >.
i sNot Fi nal (Met hod, d ass)

Trueiff Met hod inclassd ass isnotfi nal .

isStatic(Method, C ass)
Trueiff Met hod inclassd ass iSstati c.

i sNot Static(Method, C ass)

Trueiff Met hod inclassd ass isnot st ati c.
i sPrivate(Method, C ass)

Trueiff Met hod inclassd ass iSpri vate.

i sNot Pri vat e(Met hod, Cl ass)
Trueiff Met hod inclassd ass ishot pri vat e.

i sProtected(MenberC ass, Menber Name, Menber Descri ptor)
True iff there is a member named MenberName with descriptor
Menber Descri pt or inthe class Menber d ass and it isprot ect ed.

i sNot Prot ect ed(Menber Cl ass, Menber Nanme, Menber Descri ptor)

True iff there is a member named MenberName with descriptor
Merber Descri pt or intheclass Menber d ass and it is not pr ot ect ed.

THE cLAss FILE FORMAT Verification of cl ass Files

par seFi el dDescri pt or (Descri ptor, Type)
Converts a field descriptor, Descri pt or, into the corresponding verification
type Type (84.10.1.2).

par seMet hodDescri ptor (Descri ptor, ArgTypeList, ReturnType)

Converts a method descriptor, Descri pt or, into alist of verification types,
Ar gTypelLi st , corresponding to the method argument types, and a verification
type, Ret ur nType, corresponding to the return type.

parseCodeAttri bute(d ass, Method, FranmeSize, MaxStack, ParsedCode,
Handl ers, StackMap)

Extracts the instruction stream, Par sedCode, of the method Met hod in d ass,
as well as the maximum operand stack size, Max St ack, the maximal number
of local variables, Fr anesi ze, the exception handlers, Handl er s, and the stack
map St ackMap.

The representation of theinstruction stream and stack map attribute must be as
specified in §4.10.1.3 and §4.10.1.4.

samePackageName(C ass1, C ass2)
True iff the package names of C ass1 and d ass2 are the same.

di f f er ent PackageNane(Cl assl, C ass?2)
True iff the package names of d ass1 and C ass2 are different.

When type checking a method's body, it is convenient to access information about
the method. For this purpose, we define an environment, a six-tuple consisting of:
» aclass

» amethod

the declared return type of the method

the instructions in amethod

the maximal size of the operand stack
* alist of exception handlers

We specify accessors to extract information from the environment.

4.10

189

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

al I I nstructions(Environnent, Instructions) :-
Envi ronnent = environnent (_C ass, _Method, _ReturnType,
Instructions, _, _).

excepti onHandl er s(Envi ronnment, Handlers) : -
Envi ronnent = environnent (_C ass, _Method, _ReturnType,
_Instructions, _, Handlers).

maxQOper andSt ackLengt h(Envi ronnent, MaxSt ack) : -
Envi ronnent = environnent (_C ass, _Method, _ReturnType,
_Instructions, MaxStack, _Handlers).

t hi sd ass(Environment, class(C assNanme, L)) :-
Envi ronnent = environnent (Cd ass, _Method, _ReturnType,
_Instructions, _,),
cl assDef i ni ngLoader (O ass, L),
cl assCl assNane(d ass, C assNane).

t hi sMet hodRet ur nType(Envi ronnent, ReturnType) : -
Envi ronnent = environnent (_Cl ass, _Method, ReturnType,
_Instructions, _,).

We specify additional predicates to extract higher-level information from the
environment.

of f set St ackFrame(Envi ronnment, O fset, StackFrane) : -
al |l I nstructi ons(Environment, Instructions),
menber (st ackMap(Of fset, StackFranme), Instructions).

current C assLoader (Envi ronnment, Loader) :-
t hi sd ass(Environnent, class(_, Loader)).

Finally, we specify a general predicate used throughout the type rules:

not Menber (_, []).
not Menber (X, [A | Mre]) :- X \= A notMnber (X, Mre).

The principle guiding the determination as to which accessors are stipulated and which are
fully specified is that we do not want to over-specify the representation of thecl ass file.
Providing specific accessors to the d ass or Met hod term would force us to completely
specify the format for a Prolog term representing the cl ass file.

190

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

4.10.1.2 Verification Type System

The type checker enforces a type system based upon a hierarchy of verification
types, illustrated below.

Verification type hierarchy:

top
/\
/ \
/ \
oneWr d t woWor d
/ | \ / \
/ | \ / \
int float reference | ong doubl e
/ \
/ \
/ \
/ \
uninitialized Fomm e e e +
/ \ | Java reference
/ \ | type hierarchy
uninitializedThis wuninitialized(Offset) Heeeeeeeeeeeeeaaaan +

Most verification types have a direct correspondence with the primitive and
reference types represented by field descriptorsin Table 4.3-A:

» The primitive types doubl e, fl oat, i nt, and | ong (field descriptors D, F, 1, J)
each correspond to the verification type of the same name.

» Theprimitivetypesbyt e, char, short, and bool ean (field descriptorsB, C, S, 2)
all correspond to the verification typei nt .

» Class and interface types (field descriptors beginning L) correspond to
verification types that use the functor cl ass. The verification typecl ass(N, L)
represents the class whose binary name is N as loaded by the loader L. Note that
L isaninitiating loader (85.3) of the classrepresented by cl ass(N, L) and may,
or may not, be the class's defining loader.

For example, the class type Obj ect would be represented as cl ass(' j ava/ | ang/
bj ect', BL),whereBL isthe bootstrap |oader.

191

4.10

192

Verification of cl ass Files THE cLAsS FILE FORMAT

» Array types (field descriptors beginning [) correspond to verification types that
use the functor ar r ayof . Note that the primitive types byt e, char, short, and
bool ean do not correspond to verification types, but an array typewhose element
typeis byt e, char, short, oOr bool ean does correspond to a verification type;
such verification types support the baload, bastore, caload, castore, saload,
sastore, and newarray instructions.

— TheverificationtypearrayO (T) representsthe array type whose component
type isthe verification type T.

— TheverificationtypearrayOf (byt e) representsthe array type whose element
typeisbyte.

— Theverificationtypearray (char) representsthe array type whose element
typeischar.

— The verification type arrayOf (short) represents the array type whose
element typeisshort .

— The verification type arrayO (bool ean) represents the array type whose
element type isbool ean.

For example, the array types int[] and QObject[] would be represented by
the verification typesarrayOf (int) and arrayOf (cl ass(' j aval/l ang/ Obj ect’,
BL)) respectively. The array types byt e[] and bool ean[][] would be represented
by the verification types arrayOf (byte) and arrayCf (arrayOf (bool ean))
respectively.

The remaining verification types are described as follows:

» The verification typest op, oneWr d, t wowr d, and r ef er ence are represented
in Prolog as atoms whose nhame denotes the verification type in question.

» The verification type uninitial i zed(Of f set) is represented by applying the
functor uni ni ti al i zed to an argument representing the numerical value of the
O fset.

The subtyping rules for verification types are as follows.
Subtyping is reflexive.

i sAssi gnabl e(X, X).

The verification types which are not reference types in the Java programming
language have subtype rules of the form:

i sAssignabl e(v, X) :- isAssignable(the_direct_supertype_of_v, X).

Thatis, v isasubtypeof Xif thedirect supertypeof v isasubtype of X. Therulesare:

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

i sAssi gnabl e(oneWrd, top).
i sAssi gnabl e(twoWrd, top).

i sAssi gnabl e(int, X) :- 1 sAssignabl e(oneWrd, X).

i sAssignabl e(float, X) :- isAssignable(oneWrd, X).

i sAssi gnabl e(1 ong, X) :- 1 sAssignabl e(twoWrd, X).

i sAssi gnabl e(doubl e, X) :- isAssignable(twoWrd, X).

i sAssi gnabl e(ref erence, X) :- 1 sAssignabl e(oneWrd, X).

i sAssignabl e(class(_, _), X) :- isAssignable(reference, X).

i sAssignabl e(arrayO>f(_), X) :- isAssignable(reference, X).

i sAssi gnabl e(uninitialized, X) :- 1sAssignabl e(reference, X).

i sAssignabl e(uninitializedThis, X) :- isAssignable(uninitialized, X).
i sAssignabl e(uninitialized(_), X) :- isAssignable(uninitialized, X).
i sAssignabl e(null, class(_, _)).

i sAssignabl e(null, arrayOor(_)).

i sAssignabl e(null, X) :- isAssignable(class('javal/lang/ Object', BL), X),

i sBoot st rapLoader (BL).

These subtype rules are not necessarily the most obvious formulation of subtyping. Thereis
aclear split between subtyping rulesfor reference typesin the Java programming language,
and rulesfor the remaining verification types. The split allows usto state general subtyping
rel ations between Java programming language reference types and other verification types.
Theserelations hold independently of a Javareference type's position in the type hierarchy,
and help to prevent excessive class loading by aJava Virtual Machine implementation. For
example, we do not want to start climbing the Java superclass hierarchy in response to a
query of theformcl ass(foo, L) < twoWrd.

We aso have arule that says subtyping is reflexive, so together these rules cover most
verification types that are not reference types in the Java programming language.

Subtype rules for the reference types in the Java programming language are
specified recursively with i sJavaAssi gnabl e.

i sAssi gnabl e(cl ass(X, Lx), class(Y, Ly)) :-
i sJavaAssi gnabl e(cl ass(X, Lx), class(Y, Ly)).

i sAssi gnabl e(arrayOr (X), class(Y, L)) :-
i sJavaAssi gnabl e(arrayOr (X), class(Y, L)).

i sAssi gnabl e(arrayCf (X), arraycf(Y)) :-
i sJavaAssi gnabl e(arraydf (X), arrayd(V)).

For assignments, interfaces are treated like bj ect .

193

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

i sJavaAssi gnabl e(class(_, _), class(To, L)) :-
| oadedd ass(To, L, Tod ass),
cl assl sl nterface(Tod ass).

i sJavaAssi gnabl e(From To) : -
i sJavaSubcl assOf (From To).

Array types are subtypes of (bj ect . Theintent isalso that array types are subtypes
of O oneabl e andj ava. i 0. Seri al i zabl e.

i sJavaAssi gnabl e(arrayOdf (_), class('javal/lang/ Qoject', BL)) :-
i sBoot st raplLoader (BL).

i sJavaAssi gnabl e(arrayor(_), X) :-
i sArrayl nterface(X).

i sArrayl nterface(class('javal/lang/ doneable', BL)) :-
i sBoot st raplLoader (BL).

isArrayl nterface(class('javal/iol/Serializable', BL)) :-
i sBoot st raplLoader (BL).

Subtyping between arrays of primitive type is the identity relation.

i sJavaAssi gnabl e(arrayOf (X), arraydf(yY)) :-
aton(X),

atom(Y),
X =Y.

Subtyping between arrays of reference typeis covariant.

i sJavaAssi gnabl e(arrayOr (X), arrayor(Y)) :-
conmpound(X), conpound(Y), isJavaAssignable(X, Y).

Subclassing is reflexive.

i sJavaSubcl assOf (cl ass(Subcl assNanme, L), class(SubclassNane, L)).

194

THE cLAss FILE FORMAT Verification of cl ass Files

i sJavaSubcl assOf (cl ass(Subcl assNanme, LSub), class(SuperclassNane, LSuper)) :

super cl assChai n(Subcl assNanme, LSub, Chain),
menber (cl ass(Supercl assNane, L), Chain),

| oadedCl ass(Supercl assNane, L, Sup),

| oadedCl ass(Supercl assNane, LSuper, Sup).

super cl assChai n(C assNanme, L, [class(SuperclassName, Ls) | Rest]) :-
| oadedC ass(Cl assNanme, L, O ass),
cl assSuper C assNane(d ass, Supercl assNane),
cl assDef i ni ngLoader (d ass, Ls),
super cl assChai n(Super cl assNane, Ls, Rest).

supercl assChai n('javal/l ang/ Gbject', L, []) :-
| oadedC ass('javal/l ang/ Object', L, dass),
cl assDef i ni ngLoader (d ass, BL),
i sBoot st rapLoader (BL) .

4.10.1.3 Instruction Representation

Individual bytecode instructions are represented in Prolog as terms whose functor
is the name of the instruction and whose arguments are its parsed operands.

For example, an aload instruction isrepresented astheterm al oad(N) , which includesthe
index Nthat is the operand of the instruction.

The instructions as a whole are represented as a list of terms of the form:

instruction(Offset, Anlnstruction)

For example, i nstruction(21, al oad(1)).

The order of instructionsin this list must bethe same asin thecl ass file.

A few instructions have operands that are constant pool entries representing
fields, methods, and dynamic call sites. In the constant pool, a field is
represented by a CONSTANT_Fi el dr ef _i nf o structure, a method is represented by
a CONSTANT _I nt er f aceMet hodr ef _i nf o structure (for an interface's method) or a
CONSTANT_Met hodr ef _i nf o structure (for aclass'smethod), and adynamic call site
is represented by a CONSTANT I nvokeDynani c_i nf o structure (84.4.2, 84.4.10).
Such structures are represented as functor applications of the form:

e fiel d(Fiel dd assNane, Fi el dNane, Fi el dDescriptor) for a field,
where Fiel dC assNane is the name of the class referenced by the
cl ass_i ndex item in the CONSTANT _Fi el dref _i nf o structure, and Fi el dNane

4.10

195

4.10

196

Verification of cl ass Files THE cLAsS FILE FORMAT

and Fi el dDescr i pt or correspond to the name and field descriptor referenced
by the name_and_t ype_i ndex item of the CONSTANT_Fi el dr ef _i nf o structure.

e i met hod(Met hodl nt f Nane, Met hodNane, Met hodDescriptor) for
an interffaces method, where MethodintfNamre is the name of
the interface referenced by the «class_index item of the
CONSTANT I nt erfaceMet hodref info structure, and MethodNanme and
Met hodDescr i pt or correspond to the name and method descriptor referenced by
the nane_and_t ype_i ndex item of the CONSTANT | nt er f aceMet hodr ef _i nfo
structure;

* net hod(Met hodd assNane, Met hodName, MethodDescriptor) for a classs
method, where Met hodd assNane is the name of the class referenced
by the class_index item of the CONSTANT Methodref info structure,
and MethodName and Met hodDescriptor correspond to the name and
method descriptor referenced by the name_and_type_i ndex item of the
CONSTANT_Met hodr ef _i nf o Structure; and

e dmet hod(Cal | Si t eNane, Met hodDescri ptor) for a dynamic cal site,
where Cal | SiteName and Met hodDescri ptor correspond to the name and
method descriptor referenced by the nane_and_type_i ndex item of the
CONSTANT _I nvokeDynani c_i nf o structure.

For clarity, we assume that field and method descriptors (84.3.2, 84.3.3) are
mapped into more readable names: the leading L and trailing ; are dropped from
class names, and the BaseType characters used for primitive types are mapped to
the names of those types.

For example, a getfield instruction whose operand was an index into the constant
pool that refers to a field foo of type F in class Bar would be represented as
getfield(field('Bar', 'foo', "F)).

Constant pool entries that refer to constant values, such as CONSTANT_Stri ng,
CONSTANT _I nt eger, CONSTANT_FI oat, CONSTANT Long, CONSTANT Doubl e, and
CONSTANT_Cl ass, are encoded via the functors whose names are string, int,
float, | ong, doubl e, and cl assConst ant respectively.

For example, an Idc instruction for loading the integer 91 would be encoded as
I de(int(91)).

4.10.1.4 Sack Map Frames and Type Transitions
Stack map frames are represented in Prolog as alist of terms of the form:

stackMap(O fset, TypeState)

THE cLAss FILE FORMAT Verification of cl ass Files

where:

* O fset isaninteger indicating the bytecode offset at which the stack map frame
applies (84.7.4).

The order of bytecode offsetsin thislist must be the ssme asin thecl ass file.
* TypeSt at e iSthe expected incoming type state for the instruction at O f set .

A type state is a mapping from locations in the operand stack and local variables
of amethod to verification types. It has the form:

frame(Local s, OperandStack, Flags)

where:

* Local s isalist of verification types, such that the i'th element of the list (with
O-based indexing) represents the type of local variablei.

Types of size 2 (1 ong and doubl e) are represented by two local variables
(82.6.1), with the first local variable being the type itself and the second local
variable being t op (84.10.1.7).

* OperandSt ack isalist of verification types, such that the first element of the list
represents the type of the top of the operand stack, and the types of stack entries
below the top follow in the list in the appropriate order.

Typesof size2 (I ong and doubl e) are represented by two stack entries, with the
first entry being t op and the second entry being the type itself.

For example, astack withadoubl e value, ani nt value, andal ong valueisrepresented
in a type state as a stack with five entries: t op and doubl e entries for the doubl e
value, anint entry for theint value, and t op and | ong entries for the | ong value.
Accordingly, Oper andSt ack isthelist[top, double, int, top, |ong].

* Flags is a list which may either be empty or have the single element
flagThisUninit.

If any local variablein Local s hasthetypeuni ni ti al i zedThi s, thenFl ags has
the single element f | agThi sUni ni t, otherwise FI ags isan empty list.

f1 agThi sUni ni t isusedin constructorsto mark typestateswhereinitializationof t hi s
has not yet been completed. In such type states, it isillegal to return from the method.

Subtyping of verification types is extended pointwise to type states. The
local variable array of a method has a fixed length by construction (see
met hodl ni ti al St ackFr ame in 84.10.1.6), but the operand stack growsand shrinks,
so we require an explicit check on the length of the operand stacks whose
assignability is desired for subtyping.

4.10

197

4.10

198

Verification of cl ass Files THE cLAsS FILE FORMAT

framel sAssi gnabl e(frane(Local s1, StackMapl, Flagsl),
frame(Local s2, StackMwap2, Flags2)) :-
| engt h(St ackMapl, StackMaplLength),
| engt h(St ackMap2, StackMaplLength),
mapl i st (i sAssi gnabl e, Local s1, Local s2),
mapl i st (i sAssi gnabl e, StackMapl, StackMap2),
subset (Fl ags1, Fl ags2).

Most of the type rules for individual instructions (84.10.1.9) depend on the notion
of avalid typetransition. A typetransitionisvalid if one can pop alist of expected
types off theincoming type state's operand stack and replace them with an expected
result type, resulting in anew type state where the length of the operand stack does
not exceed its declared maximum size.

val i dTypeTransi ti on(Envi ronnent, ExpectedTypesOnStack, ResultType,
frame(Local s, |nputOperandStack, Flags),
frame(Local s, NextOperandStack, Flags)) :-
popMat chi ngLi st (| nput Oper andSt ack, Expect edTypesOnSt ack,
I nt eri nOper andSt ack) ,
pushOper andSt ack(| nt eri nOper andSt ack, Resul t Type, Next Qper andSt ack),
oper andSt ackHasLegal Lengt h(Envi ronnent, Next Oper andSt ack) .

Pop alist of types off the stack.

popMat chi ngLi st (Oper andSt ack, [], OperandStack).

popMat chi ngLi st (OperandStack, [P | Rest], NewOperandStack) :-
popMat chi ngType(Oper andSt ack, P, TenpOperandStack, _Actual Type),
popMat chi ngLi st (TenpOper andSt ack, Rest, NewOper andSt ack) .

Pop an individual type off the stack. The exact behavior depends on the stack
contents. If the logical top of the stack is some subtype of the specified type, Type,
then pop it. If atype occupies two stack entries, then the logical top of the stack is
really the type just below the top, and the top of the stack isthe unusable typet op.

THE cLAss FILE FORMAT Verification of cl ass Files

popMat chi ngType([Act ual Type | OperandSt ack],
Type, OperandStack, Actual Type) : -
sizeOf (Type, 1),
i sAssi gnabl e(Act ual Type, Type).

popMat chi ngType([top, Actual Type | OperandStack],
Type, OperandStack, Actual Type) : -
sizeOf (Type, 2),
i sAssi gnabl e(Act ual Type, Type).

sizeOF (X, 2) :- isAssignable(X twoWrd).
sizeOF (X, 1) :- isAssignable(X, oneWrd).
sizeO (top, 1).

Push alogical type onto the stack. The exact behavior varies with the size of the
type. If the pushed type is of size 1, we just push it onto the stack. If the pushed
typeis of size 2, we push it, and then push t op.

pushOper andSt ack(Oper andSt ack, 'void', OperandStack).

pushOper andSt ack(Oper andSt ack, Type, [Type | OperandStack]) :-
sizeOf (Type, 1).

pushOper andSt ack(Oper andSt ack, Type, [top, Type | OperandStack]) :-
sizeOf (Type, 2).

The length of the operand stack must not exceed the declared maximum size.

oper andSt ackHasLegal Lengt h(Envi ronnment, OperandStack) : -
| engt h(Oper andSt ack, Length),
maxOper andSt ackLengt h(Envi ronment, MaxSt ack),
Lengt h =< MaxSt ack.

The dup instructions pop expected types off the incoming type state's operand
stack and replace them with predefined result types, resulting in a new type state.
However, these instructions are not defined in terms of type transitions because
there is no need to match types by means of the subtyping relation. Instead, the
dup instructions manipulate the operand stack entirely in terms of the category of
types on the stack (§2.11.1).

Category 1 types occupy a single stack entry. Popping a logical type of category
1, Type, off the stack is possibleif the top of the stack is Type and Type isnot t op
(otherwise it could denote the upper half of a category 2 type). The result is the
incoming stack, with the top entry popped off.

4.10

199

4.10

200

Verification of cl ass Files THE cLAsS FILE FORMAT

popCat egory1l([Type | Rest], Type, Rest) :-
Type \ = top,
sizeOf (Type, 1).

Category 2 types occupy two stack entries. Popping a logical type of category 2,
Type, Off the stack is possible if the top of the stack is type t op, and the entry
directly below it is Type. The result is the incoming stack, with the top two entries
popped off.

popCat egory2([top, Type | Rest], Type, Rest) :-
sizeOf (Type, 2).

The dup instructions push alist of types onto the stack in essentially the same way
aswhen atypeis pushed for avalid type transition.

canSaf el yPush(Envi ronnent, | nput OperandStack, Type, Qutput OperandSt ack)
pushOper andSt ack(| nput Oper andSt ack, Type, CQutput Qper andSt ack),
oper andSt ackHasLegal Lengt h(Envi ronnent, CQut put Oper andSt ack) .

canSaf el yPushLi st (Envi ronment, | nput Oper andSt ack, Types,
Qut put Oper andSt ack) : -
canPushlLi st (| nput Oper andSt ack, Types, Qut put OperandSt ack),
oper andSt ackHasLegal Lengt h(Envi ronnent, CQut put Oper andSt ack) .

canPushlLi st (| nput Oper andSt ack, [], |nputQperandStack).

canPushlLi st (| nput Oper andSt ack, [Type | Rest], CQutputQperandStack) : -
pushOper andSt ack(| nput Oper andSt ack, Type, |nterinmOperandStack),
canPushLi st (I nteri mOper andSt ack, Rest, Qutput QperandSt ack).

Many of thetyperulesfor individua instructions use the following clauseto easily
pop alist of types off the stack.

canPop(frane(Local s, OperandStack, Flags), Types,
frame(Local s, PoppedOperandStack, Flags)) :-
popMat chi ngLi st (Oper andSt ack, Types, PoppedOperandSt ack).

Finally, certain array instructions (8aaload, 8arraylength, 8baload, §bastore) peek
at types on the operand stack in order to check they are array types. The following
clause accesses the i'th element of the operand stack from atype state.

nt h1Oper andSt ackl s(i, frame(_Locals, OperandStack, _Flags), Elenent) :-
nthl(i, OperandStack, Elenent).

THE cLAss FILE FORMAT Verification of cl ass Files

4.10.1.5 Type Checking Abstract and Native Methods

abst ract methods and nat i ve methods are considered to be type safe if they do
not override afi nal method.

nmet hodl sTypeSaf e(d ass, Method) :-
doesNot Overri deFi nal Met hod(d ass, Method),
nmet hodAccessFl ags(Met hod, AccessFl ags),
menber (abstract, AccessFl ags).

nmet hodl sTypeSaf e(d ass, Method) :-
doesNot Overri deFi nal Met hod(d ass, Method),
nmet hodAccessFl ags(Met hod, AccessFl ags),
menber (nati ve, AccessFl ags).

pri vat e methodsandst at i ¢ methodsare orthogonal to dynamic method dispatch,
so they never override other methods (85.4.5).

doesNot Over ri deFi nal Met hod(cl ass('java/l ang/ Qbject', L), Method) :-
i sBoot st rapLoader (L) .

doesNot Over ri deFi nal Met hod(d ass, Method) :-
i sPrivate(Method, d ass).

doesNot Over ri deFi nal Met hod(d ass, Method) :-
isStatic(Method, d ass).

doesNot Over ri deFi nal Met hod(d ass, Method) :-
i sNot Privat e(Met hod, d ass),
i sNot Stati c(Method, O ass),
doesNot Over ri deFi nal Met hodOf Super cl ass(Cd ass, Met hod).

doesNot Over ri deFi nal Met hodOf Super cl ass(Cd ass, Method) : -
cl assSuper G assNanme(C ass, Supercl assNane),
cl assDef i ni ngLoader (O ass, L),
| oadedC ass(Supercl assNane, L, Superclass),
cl assMet hods(Super cl ass, Super Met hodLi st),
final Met hodNot Overri dden(Met hod, Supercl ass, Super Met hodLi st).

4.10

201

4.10

202

Verification of cl ass Files THE cLAsS FILE FORMAT

final methodsthat areprivat e and/or st ati ¢ are unusual, as pri vat e methods
and st at i ¢ methods cannot be overridden per se. Therefore, if afinal private
method or afinal static method is found, it was logically not overridden by
another method.

final Met hodNot Overri dden(Met hod, Supercl ass, SuperMet hodList) : -
met hodNare(Met hod, Nane),
met hodDescri pt or (Met hod, Descriptor),
menber (et hod(_, Name, Descriptor), SuperMethodList),
i sFi nal (Met hod, Supercl ass),
i sPrivate(Method, Superclass).

final Met hodNot Overri dden(Met hod, Supercl ass, SuperMet hodList) : -
met hodNare(Met hod, Nane),
met hodDescri pt or (Met hod, Descriptor),
menber (et hod(_, Name, Descriptor), SuperMethodList),
i sFi nal (Met hod, Supercl ass),
i sStatic(Method, Superclass).

If anon-final private method or anon-final stati ¢ methodisfound, skip over
it because it is orthogonal to overriding.

final Met hodNot Overri dden(Met hod, Supercl ass, SuperMethodList) :-
met hodNanme(Met hod, Nane),
met hodDescri pt or (Met hod, Descriptor),
menber (et hod(_, Name, Descriptor), SuperMethodList),
i sNot Fi nal (Met hod, Supercl ass),
i sPrivate(Method, Superclass),
doesNot Over ri deFi nal Met hodOFf Super cl ass(Super cl ass, Met hod).

final Met hodNot Overri dden(Met hod, Supercl ass, SuperMethodList) :-
met hodNane(Met hod, Nane),
met hodDescri pt or (Met hod, Descriptor),
menber (et hod(_, Name, Descriptor), SuperMethodList),
i sNot Fi nal (Met hod, Supercl ass),
i sStatic(Mthod, Superclass),
doesNot Over ri deFi nal Met hodOFf Super cl ass(Super cl ass, Met hod).

THE cLAss FILE FORMAT Verification of cl ass Files

If anon-final, non-privat e, non-st at i ¢ method is found, then indeed afi nal
method was not overridden. Otherwise, recurse upwards.

final Met hodNot Overri dden(Met hod, Supercl ass, Super Met hodList) :-
nmet hodNane(Met hod, Nane),
nmet hodDescri pt or (Met hod, Descri ptor),
menber (et hod(_, Nanme, Descriptor), SuperMethodList),
i sNot Fi nal (Met hod, Supercl ass),
i sNot St ati c(Met hod, Supercl ass),
i sNot Pri vat e(Met hod, Supercl ass).

final Met hodNot Overri dden(Met hod, Supercl ass, Super Met hodList) :-
nmet hodNane(Met hod, Nane),
nmet hodDescri pt or (Met hod, Descri ptor),
not Menber (et hod(_, Nane, Descriptor), SuperMethodList),
doesNot Overri deFi nal Met hodOf Super cl ass(Super cl ass, Method).

4.10

203

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

4.10.1.6 Type Checking Methods with Code

Non-abst r act, non-nat i ve methods are type correct if they have code and the
code is type correct.

nmet hodl sTypeSaf e(d ass, Method) :-
doesNot Overri deFi nal Met hod(d ass, Method),
nmet hodAccessFl ags(Met hod, AccessFl ags),
nmet hodAttri but es(Met hod, Attributes),
not Menber (nati ve, AccessFl ags),
not Menber (abstract, AccessFl ags),
menber (attribute(' Code', _), Attributes),
nmet hodW t hCodel sTypeSaf e(Cl ass, Met hod).

A method with codeistypesafeif it ispossibleto merge the code and the stack map
framesinto asingle stream such that each stack map frame precedes the instruction
it corresponds to, and the merged stream is type correct. The method's exception
handlers, if any, must also be legal.

met hodW t hCodel sTypeSaf e(Cl ass, Method) : -
parseCodeAttribute(C ass, Method, FraneSize, MaxStack,
Par sedCode, Handl ers, StackMap),
mer geSt ackMapAndCode(St ackMap, ParsedCode, Mer gedCode),
met hodl ni ti al St ackFrame(d ass, Method, FraneSize, StackFrame, ReturnType),
Envi ronnent = environnent (d ass, Method, ReturnType, MergedCode,
MaxSt ack, Handl ers),
handl er sAreLegal (Envi ronnent),
mer gedCodel sTypeSaf e(Envi ronment, MergedCode, StackFrane).

204

THE cLAss FILE FORMAT Verification of cl ass Files

Let us consider exception handlersfirst.
An exception handler is represented by afunctor application of the form:

handl er(Start, End, Target, C assNane)

whose arguments are, respectively, the start and end of the range of instructions
covered by the handler, the first instruction of the handler code, and the name of
the exception class that this handler is designed to handle.

An exception handler is legal if its start (St art) is less than its end (End), there
exists an instruction whose offset is equal to St art, there exists an instruction
whose offset equals End, and the handler's exception classis assignable to the class
Thr owabl e. The exception class of a handler is Thr owabl e if the handler's class
entry is 0, otherwise it is the class named in the handler.

An additional requirement exists for a handler inside an <i ni t > method if one of
the instructions covered by the handler is invokespecial of an <i ni t > method. In
this case, the fact that a handler is running means the object under construction is
likely broken, soit isimportant that the handler does not swallow the exception and
allow the enclosing <i ni t > method to return normally to the caller. Accordingly,
the handler isrequired to either complete abruptly by throwing an exception to the
caler of the enclosing <i ni t > method, or to loop forever.

4.10

205

4.10

206

Verification of cl ass Files THE cLAsS FILE FORMAT

handl er sAreLegal (Envi ronnent) : -
excepti onHandl er s(Envi ronnment, Handl ers),
checkl i st (handl erl sLegal (Envi ronment), Handl ers).

handl er | sLegal (Envi ronment, Handler) : -
Handl er = handl er(Start, End, Target, _),
Start < End,
al I I nstructions(Environnent, Instructions),
menber (i nstruction(Start, _), Instructions),
of f set St ackFr ame(Envi ronnment, Target, _),
i nstructionslncl udeEnd(I nstructions, End),
current d assLoader (Envi ronment, CurrentLoader),
handl er Excepti ond ass(Handl er, ExceptionC ass, CurrentlLoader),
i sBoot st rapLoader (BL),
i sAssi gnabl e(Excepti ond ass, class('javal/lang/ Throwable', BL)),
i ni t Handl er | sLegal (Envi ronment, Handler).

i nstructionslncl udeEnd(I nstructions, End) :-
menber (i nstruction(End, _), Instructions).

i nstructionsl ncl udeEnd(I nstructions, End) :-
menber (endOf Code(End), Instructions).

handl er Excepti ond ass(handler(_, _, _, 0),

class('javal/lang/ Throwabl e', BL), _) :-
i sBoot st rapLoader (BL).

handl er Excepti ond ass(handler(_, _, _, Nanme),

class(Nane, L), L) :-
Nane \= 0.

THE cLASS FILE FORMAT Verification of cl ass Files
i ni t Handl er |l sLegal (Envi ronment, Handler) :-
not I ni t Handl er (Envi ronnment, Handl er).
not I ni t Handl er (Envi ronment, Handl er) : -
Envi ronnent = environnment(_Cl ass, Method, _, Instructions, _, _),

i sNot I nit(Method).

not I ni t Handl er (Envi ronment, Handl er) : -

Envi ronnent = environnent(_Cl ass, Method, _, Instructions, _, _),
i sl nit(Method),
menber (i nstruction(_, invokespecial (CP)), Instructions),

CP = net hod(Met hodd assNane, Met hodNane, Descriptor),
Met hodNane \= ' <init>".

i ni t Handl er | sLegal (Envi ronnent, Handler) :-
i sl nitHandl er (Environnment, Handl er),
subli st (i sApplicablelnstruction(Target), Instructions,
Handl er I nstructi ons),
noAt t enpt ToRet ur nNor mal | y(Handl er | nstructi ons).

i sl ni tHandl er (Envi ronnent, Handler) :-

Envi ronnent = environnment(_Cl ass, Method, _, Instructions, _,),
i sl nit(Method).
menber (i nstruction(_, invokespecial (CP)), Instructions),

CP = met hod(Met hodd assName, '<init>', Descriptor).

i sAppl i cabl el nstruction(Handl erStart, instruction(COffset, _)) :-
Of fset >= HandlerStart.

noAt t enpt ToRet urnNor nal | y(I nstructions) :-
not Menber (i nstruction(_, return), Instructions).

noAt t enpt ToRet urnNor nal | y(I nstructions) :-
menber (i nstruction(_, athrow), Instructions).

4.10

207

4.10

208

Verification of cl ass Files THE cLAsS FILE FORMAT

Let us now turn to the stream of instructions and stack map frames.
Merging instructions and stack map framesinto asingle stream involvesfour cases:

» Merging an empty St ackMap and alist of instructions yields the original list of
instructions.

mer geSt ackMapAndCode([], CodelList, CodelList).

» Given alist of stack map frames beginning with the type state for the instruction
at O fset, and alist of instructions beginning at o f set , the merged list is the
head of the stack map frame list, followed by the head of the instruction list,
followed by the merge of the tails of the two lists.

mer geSt ackMapAndCode([st ackMap(Of f set, Map) | Rest Map],
[instruction(Oifset, Parse) | RestCode],
[stackMap(Of fset, Map),
instruction(Offset, Parse) | RestMerge]) :-
mer geSt ackMapAndCode(Rest Map, Rest Code, Rest Merge).

» Otherwise, given alist of stack map frames beginning with the type state for the
instruction at o f set M and a list of instructions beginning at o f set P, then, if
OfsetP < O fset M the merged list consists of the head of the instruction list,
followed by the merge of the stack map frame list and the tail of the instruction
list.

mer geSt ackMapAndCode([st ackMap(Of fsetM Map) | Rest Map],
[instruction(OfsetP, Parse) | RestCode],
[instruction(OfsetP, Parse) | RestMerge]) :-
OffsetP < OffsetM
mer geSt ackMapAndCode([st ackMap(Of fsetM Map) | Rest Map],
Rest Code, Rest Merge).

» Otherwise, the merge of the two listsis undefined. Since the instruction list has
monotonically increasing offsets, the merge of the two listsis not defined unless
every stack map frame offset has a corresponding instruction offset and the stack
map frames are in monotonically increasing order.

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

To determine if the merged stream for a method is type correct, we first infer the
method's initial type state.

The initia type state of a method consists of an empty operand stack and local
variable types derived from the type of t hi s and the arguments, as well as the
appropriate flag, depending on whether thisis an <i ni t > method.

met hodl ni ti al St ackFranme(d ass, Method, FraneSize, franme(Locals, [], Flags),

Ret ur nType) : -

met hodDescri pt or (Met hod, Descriptor),

par seMet hodDescri pt or (Descri ptor, RawArgs, ReturnType),

expandTypelLi st (RawAr gs, Args),

met hodl ni ti al Thi sType(d ass, Method, ThisList),

flags(ThisList, Flags),

append(Thi sLi st, Args, ThisArgs),

expandToLengt h(Thi sArgs, FraneSi ze, top, Locals).

Given alist of types, the following clause produces a list where every type of size
2 has been substituted by two entries. one for itself, and onet op entry. The result
then corresponds to the representation of thelist as 32-bit wordsin the Java Virtua
Machine.

expandTypeList([], []).

expandTypeList([lItem | List], [Item]| Result]) :-
sizeO(Item 1),
expandTypeli st (Li st, Result).

expandTypeList([Item | List], [Item top | Result]) :-
sizeO(Item 2),
expandTypelLi st (Li st, Result).

flags([uninitializedThis], [flagThisUninit]).
flags(X, []) :- X \= [uninitializedThis].

expandToLength(List, Size, _Filler, List) :-
| ength(List, Size).

expandToLength(List, Size, Filler, Result) :-
I ength(List, ListLength),
Li stLength < Size,
Delta is Size - ListLength,
| ength(Extra, Delta),
checklist(=(Filler), Extra),
append(List, Extra, Result).

209

4.10

210

Verification of cl ass Files THE cLAsS FILE FORMAT

For the initial type state of an instance method, we compute the type of t hi s and
put it in alist. The type of t hi s in the <i ni t > method of bj ect is Gbj ect ; in
other <i ni t > methods, thetypeof t hi s isuni ni ti al i zedThi s; otherwise, thetype
of thi s in an instance method iscl ass(N, L) where N is the name of the class
containing the method and L isits defining class loader.

For theinitial type state of a static method, t hi s isirrelevant, so the list is empty.

met hodl ni ti al Thi sType(_d ass, Method, []) :-
met hodAccessFl ags(Met hod, AccessFl ags),
menber (static, AccessFl ags),
met hodNarme(Met hod, Met hodNane),
Met hodNanme \= '<init>".

nmet hodl ni ti al Thi sType(d ass, Method, [This]) :-
nmet hodAccessFl ags(Met hod, AccessFl ags),
not Menber (static, AccessFl ags),
i nst anceMet hodl ni ti al Thi sType(Cl ass, Method, This).

i nst anceMet hodl ni ti al Thi sType(Cl ass, Method, class('javal/lang/ Object', L))
met hodName(Met hod, '<init>"),
cl assDef i ni ngLoader (O ass, L),
i sBoot st rapLoader (L),
cl assC assNanme(d ass, 'javal/lang/ Qbject').

i nstanceMet hodl ni ti al Thi sType(d ass, Method, uninitializedThis) :-
met hodName(Met hod, '<init>'),
cl assC assNane(d ass, O assNane),
cl assDef i ni ngLoader (O ass, CurrentLoader),
super cl assChai n(d assNane, CurrentLoader, Chain),
Chain \= [].

i nstanceMet hodl ni ti al Thi sType(d ass, Method, class(C assNane, L)) :-
met hodNarme(Met hod, Met hodNane),
Met hodNanme \= '<init>",
cl assDef i ni ngLoader (d ass, L),
cl assC assNane(d ass, O assNane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

We now compute whether the merged stream for a method is type correct, using
the method'sinitial type state:

If we have a stack map frame and an incoming type state, the type state must be
assignableto the onein the stack map frame. We may then proceed to type check
the rest of the stream with the type state given in the stack map frame.

mer gedCodel sTypeSaf e(Envi ronment, [stackMap(Offset, MapFrame) | MreCode],
frame(Local s, OperandStack, Flags)) :-
framel sAssi gnabl e(frane(Local s, OperandStack, Flags), MapFrane),
mer gedCodel sTypeSaf e(Envi ronment, MoreCode, MapFrane).

A merged code stream istype safe relative to an incoming type state T if it begins
with aninstruction | that is type safe relativeto T, and | satisfies its exception
handlers (see below), and the tail of the stream is type safe given the type state
following that execution of 1 .

Next St ackFr ame indicates what falls through to the following instruction. For
an unconditional branch instruction, it will have the special value aft er Got o.
Except i onSt ackFr ane indicates what is passed to exception handlers.

ner gedCodel sTypeSaf e(Envi ronnent, [instruction(O fset, Parse) | MreCode],
frame(Local s, OperandStack, Flags)) :-
i nstructionl sTypeSaf e(Parse, Environnent, Ofset,
frame(Local s, OperandStack, Flags),
Next St ackFrane, ExceptionStackFrane),
instructionSatisfiesHandl ers(Environnent, O fset, ExceptionStackFrane),
ner gedCodel sTypeSaf e(Envi ronnent, MreCode, Next StackFrane).

After an unconditional branch (indicated by an incoming type state of
af t er Got 0), if we have astack map frame giving the type state for the following
instructions, we can proceed and type check them using the type state provided
by the stack map frame.

ner gedCodel sTypeSaf e(Envi ronnent, [stackMap(Offset, MapFrane) | MoreCode],
afterGoto) :-
ner gedCodel sTypeSaf e(Envi ronnent, MreCode, MapFrane).

Itisillegal to have code after an unconditional branch without a stack map frame
being provided for it.

ner gedCodel sTypeSaf e(_Envi ronnent, [instruction(_, _) | _MreCode],
afterCGoto) :-
wite In('"No stack frame after unconditional branch'),
fail.

If we have an unconditional branch at the end of the code, stop.

211

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

mer gedCodel sTypeSaf e(_Envi ronnment, [endOf Code(Offset)],
af ter Got 0) .

Branching to atarget istype safeif the target has an associated stack frame, Fr ane,
and the current stack frame, St ackFr ane, is assignable to Fr ane.

target| sTypeSaf e(Envi ronnent, StackFrane, Target) :-
of f set St ackFr ame(Envi ronnment, Target, Frame),
franel sAssi gnabl e(St ackFrane, Frane).

Aninstruction satisfiesits exception handlersif it satisfies every exception handler
that is applicable to the instruction.

instructionSati sfiesHandl ers(Envi ronnent, O fset, ExceptionStackFrane) :-
excepti onHandl er s(Envi ronnment, Handl ers),
subl i st (i sAppl i cabl eHandl er (Of fset), Handl ers, Applicabl eHandl ers),
checklist(instructionSatisfiesHandl er (Environment, ExceptionStackFrane),
Appl i cabl eHandl ers) .

An exception handler is applicable to an instruction if the offset of the instruction
is greater or equal to the start of the handler's range and less than the end of the
handler's range.

i sAppl i cabl eHandl er (O fset, handler(Start, End, _Target, _C assNane)) :-
O fset >= Start,
O fset < End.

Aninstruction satisfies an exception handler if theinstructions's outgoing type state
iS ExcSt ackFr ane, and the handler's target (the initial instruction of the handler
code) is type safe assuming an incoming type state T. The type state T is derived
from ExcSt ackFrame by replacing the operand stack with a stack whose sole
element is the handler's exception class.

instructionSatisfiesHandl er (Environment, ExcStackFrame, Handler) :-
Handl er = handler(_, _, Target, _),
current d assLoader (Envi ronment, CurrentLoader),
handl er Excepti ond ass(Handl er, ExceptionC ass, CurrentlLoader),
/* The stack consists of just the exception. */
ExcSt ackFrame = frane(Locals, _, Flags),
TrueExcSt ackFrane = frame(Locals, [ExceptionCass], Flags),
oper andSt ackHasLegal Lengt h(Envi ronnent, TrueExcSt ackFrane),
target| sTypeSaf e(Environment, TrueExcStackFrane, Target).

212

THE cLAss FILE FORMAT Verification of cl ass Files

4.10.1.7 Type Checking Load and Store Instructions

All load instructions are variations on a common pattern, varying the type of the
value that the instruction loads.

Loading a value of type Type from local variable | ndex is type safe, if the
type of that local variable is Act ual Type, Act ual Type is assignable to Type, and
pushing Act ual Type onto the incoming operand stack is a valid type transition
(84.10.1.4) that yields a new type state Next St ackFr ame. After execution of the
load instruction, the type state will be Next St ackFr ane.

| oadl sTypeSaf e(Envi ronnment, |ndex, Type, StackFrane, NextStackFranme) : -
St ackFrame = frane(Locals, _QperandStack, _Flags),
nt hO(1 ndex, Locals, Actual Type),
i sAssi gnabl e(Act ual Type, Type),
val i dTypeTransiti on(Environnent, [], Actual Type, StackFraneg,
Next St ackFr ane) .

All store instructions are variations on a common pattern, varying the type of the
value that the instruction stores.

In general, a store instruction is type safe if the local variable it referencesis of a
type that is a supertype of Type, and the top of the operand stack is of a subtype of
Type, where Type isthe type the instruction is designed to store.

More precisely, the store is type safe if one can pop a type Act ual Type that
"matches" Type (that is, is a subtype of Type) off the operand stack (84.10.1.4),
and then legally assign that type the local variable L ngex-

storel sTypeSaf e(_Envi ronment, |ndex, Type,
frame(Local s, OperandStack, Flags),
frame(Next Local s, Next OperandStack, Flags)) :-
popMat chi ngType(Oper andSt ack, Type, Next QperandStack, Actual Type),
nmodi f yLocal Vari abl e(1 ndex, Actual Type, Locals, NextLocals).

Given local variables Local s, modifying | ndex to have type Type results in the
local variable list NewLocal s. The modifications are somewhat involved, because
some values (and their corresponding types) occupy two local variables. Hence,
modifying Ly may require modifying L., (because the type will occupy both the
Nand N+1 dots) or Ly 1 (because local N used to be the upper half of the two word
valueltype starting at local N- 1, and so local N- 1 must be invalidated), or both. This
is described further below. We start at Lo and count up.

nmodi f yLocal Vari abl e(1 ndex, Type, Locals, NewLocals) :-
nmodi f yLocal Vari abl e(0, |ndex, Type, Locals, NewLocals).

4.10

213

4.10

214

Verification of cl ass Files THE cLAsS FILE FORMAT

GivenLocal sRest , thesuffix of thelocal variablelist starting at index 1 , modifying
local variable | ndex to have type Type results in the local variable list suffix
Next Local sRest .

If I < Index-1, just copy the input to the output and recurse forward. If I =
I ndex- 1, the type of local I may change. This can occur if L, has atype of size 2.
Once we set L, 41 to the new type (and the corresponding value), the type/value of
L, will beinvalidated, asits upper half will be trashed. Then we recurse forward.

nodi fyLocal Vari abl e(1, |ndex, Type,
[Local s1 | Local sRest],
[Local s1 | NextLocal sRest]) :-
| < Index - 1,
I11is | + 1,
nodi fyLocal Vari abl e(11, Index, Type, Local sRest, NextLocal sRest).

nodi fyLocal Vari abl e(1, |ndex, Type,
[Local s1 | Local sRest],
[Next Local s1 | NextLocal sRest]) :-
| == Index - 1,
nmodi f yPrel ndexVari abl e(Local s1, NextLocal s1),
nodi fyLocal Vari abl e(1 ndex, |ndex, Type, Local sRest, NextLocal sRest).

When we find the variable, and it only occupies one word, we change it to Type
and we're done. When we find the variable, and it occupies two words, we change
itstype to Type and the next word to t op.

nmodi f yLocal Vari abl e(1 ndex, |ndex, Type,
[_ | LocalsRest], [Type | Local sRest]) :-
sizeOf (Type, 1).

nmodi f yLocal Vari abl e(1 ndex, |ndex, Type,
[_, _ | LocalsRest], [Type, top | Local sRest]) :-
sizeOf (Type, 2).

We refer to alocal whose index immediately precedes a local whaose type will be
modified as a pre-index variable. The future type of a pre-index variable of type
I nput Type iSResul t . If thetype, Type, of the pre-index local isof size 1, it doesn't
change. If the type of the pre-index local, Type, is 2, we need to mark the lower
half of its two word value as unusable, by setting itstypetot op.

nmodi f yPrel ndexVari abl e(Type, Type) :- sizeO(Type, 1).
nmodi f yPrel ndexVari abl e(Type, top) :- sizeO (Type, 2).

THE cLAss FILE FORMAT Verification of cl ass Files

4.10.1.8 Type Checking for pr ot ect ed Members

All instructions that access members must contend with the rules concerning
pr ot ect ed members. This section describesthepr ot ect ed check that corresponds
to LS 86.6.2.1.

The prot ect ed check applies only to pr ot ect ed members of superclasses of the
current class. prot ect ed members in other classes will be caught by the access
checking done at resolution (85.4.4). There are four cases:

« |f the name of aclassis not the name of any superclass, it cannot be a superclass,
and so it can safely be ignored.

passesProt ect edCheck(Envi ronnent, Menber C assNane, Menber Nane,
Menber Descri ptor, StackFrame) :-
t hi sA ass(Environnment, class(CurrentC assNane, CurrentLoader)),
super cl assChai n(Current Cl assNanme, CurrentLoader, Chain),
not Menber (cl ass(Menber G assNane, _), Chain).

 If the Menber d assNane is the same as the name of a superclass, the class
being resolved may indeed be a superclass. In this case, if no superclass named
Menber Ol assNarre in a different run-time package has a pr ot ect ed member
named Menber Nanme with descriptor Mermber Descri pt or, the prot ect ed check
does not apply.

Thisis because the actual class being resolved will either be one of these superclasses,
in which case we know that it is either in the same run-time package, and the access is
legal; or the member in question is not pr ot ect ed and the check does not apply; or it
will be a subclass, in which case the check would succeed anyway; or it will be some
other classin the same run-time package, in which case the accessislegal and the check
need not take place; or the verifier need not flag this as aproblem, sinceit will be caught
anyway because resolution will per force fail.

passesProt ect edCheck(Envi ronment, Menber G assNane, Menber Nane,
Menber Descri ptor, StackFrame) : -
t hi s ass(Environment, class(CurrentC assName, CurrentlLoader)),
super cl assChai n(Current C assNane, CurrentLoader, Chain),
menber (cl ass(Menber G assNanme, _), Chain),
cl assesl nQ her PkgW t hPr ot ect edMenber (
cl ass(Current d assNanme, CurrentLoader),
Menber Nanme, Menber Descri ptor, Menberd assNanme, Chain, []).

 If there does exist a protected superclass member in a different run-time
package, then load Menber d assName; if the member in question is not
pr ot ect ed, the check does not apply. (Using a superclass member that is not
prot ect ed istrivialy correct.)

4.10

215

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

passesProt ect edCheck(Envi ronnment, Menber G assNanme, Menber Nane,
Menber Descri pt or,
frame(_Locals, [Target | Rest], _Flags)) :-
t hi s ass(Environment, class(CurrentC assNanme, CurrentlLoader)),
super cl assChai n(Current C assNane, CurrentLoader, Chain),
menber (cl ass(Menber G assNanme, _), Chain),
cl assesl nQ her PkgW t hPr ot ect edMenber (
cl ass(Current d assNanme, CurrentLoader),
Menber Nanme, Menber Descri ptor, Menberd assNane, Chain, List),
List \=1[],
| oadedC ass(Menber d assNane, CurrentLoader, Referencedd ass),
i sNot Pr ot ect ed(Ref er encedd ass, Menber Nanme, MenberDescriptor).

» Otherwise, use of amember of an object of type Tar get requiresthat Tar get be
assignable to the type of the current class.

passesProt ect edCheck(Envi ronnent, Menber C assNane, Menber Nane,
Menber Descri pt or,
frame(_Locals, [Target | Rest], _Flags)) :-
t hi sA ass(Environment, class(Currentd assNane, CurrentLoader)),
super cl assChai n(Current Cl assNanme, CurrentLoader, Chain),
nenber (cl ass(Menber G assNane, _), Chain),
cl assesl nO her PkgW t hPr ot ect edMenber (
cl ass(Current Cl assNane, CurrentlLoader),
Menber Nane, Menber Descri ptor, Menberd assNane, Chain, List),
List \=[],
| oadedd ass(Menber G assNane, CurrentLoader, Referencedd ass),
i sProt ect ed(Ref erencedC ass, Menber Nane, Menber Descri ptor),
i sAssi gnabl e(Target, class(CurrentC assNane, CurrentlLoader)).

The predicate cl assesl nQt her PkgW t hPr ot ect edMenber (C ass, Menber Nane,
Menber Descri ptor, Member O assNane, Chain, List) istrueif Li st istheset
of classes in Chai n with name Menber d assNane that are in a different run-time

package than d ass which have a pr ot ect ed member named Menber Namre with
descriptor Menber Descri pt or.

216

THE cLAss FILE FORMAT Verification of cl ass Files

cl assesl nC her PkgW t hProt ect edMenber (_, _, _, _, [1., [1)-
cl assesl nQ her PkgW t hPr ot ect edMenber (Cl ass, Menber Nane,
Menmber Descri ptor, Menber d assNane,
[cl ass(Menber Gl assNane, L) | Tail],
[cl ass(Menmber Cl assName, L) | T]) :-
di f ferent Runti mePackage(Cl ass, class(MenberC assNanme, L)),
| oadedC ass(Menber G assName, L, Super),
i sProtected(Super, Menber Name, MenberDescriptor),
cl assesl nQ her PkgW t hPr ot ect edMenber (
Cl ass, Menber Name, Menber Descriptor, Menberd assNane, Tail, T).

cl assesl nQ her PkgW t hPr ot ect edMenber (Cl ass, Menber Nane,

Menmber Descri ptor, Menber d assNane,
[cl ass(Menber Gl assNane, L) | Tail],
T -

di f ferent Runti mePackage(Cl ass, class(MenberC assNanme, L)),

| oadedCl ass(Menber G assNanme, L, Super),

i sNot Pr ot ect ed(Super, Menber Nane, Menber Descriptor),

cl assesl nQ her PkgW t hPr ot ect edMenber (

Cl ass, Menber Name, Menber Descriptor, Menberd assNane, Tail, T).

cl assesl nQ her PkgW t hPr ot ect edMenber (Cl ass, Menber Nane,
Menmber Descri ptor, Menber d assNane,
[cl ass(Menber Gl assNane, L) | Tail],
T -
saneRunt i nePackage(d ass, cl ass(MenberC assNane, L)),
cl assesl nQ her PkgW t hPr ot ect edMenber (
Cl ass, Menber Name, Menber Descriptor, Menberd assNane, Tail, T).

saneRunt i nePackage(d assl, d ass2) :-
cl assDef i ni ngLoader (d ass1, L),
cl assDef i ni ngLoader (d ass2, L),
sanePackageName(d assl, C ass2).

di f ferent Runti nePackage(C assl, O ass2) :-
cl assDef i ni ngLoader (d ass1, L1),
cl assDef i ni ngLoader (O ass2, L2),
L1 \= L2.

di f ferent Runti nePackage(C assl, O ass2) :-
di f f erent PackageNane(d assl, C ass2).

4.10

217

4.10

218

Verification of cl ass Files THE cLAsS FILE FORMAT

4.10.1.9 Type Checking Instructions

In generd, the type rule for an instruction is given relative to an environment
Envi ronnent that defines the class and method in which the instruction occurs
(84.10.1.1), and the offset o fset within the method at which the instruction
occurs. The rule states that if the incoming type state st ackFr ane fulfills certain
reguirements, then:

» Theinstruction istype safe.

* |t is provable that the type state after the instruction completes normally has
a particular form given by Next St ackFr anme, and that the type state after the
instruction completes abruptly is given by Except i onSt ackFr ane.

Thetype state after aninstruction completes abruptly isthe same astheincoming
type state, except that the operand stack is empty.

excepti onSt ackFrame(St ackFrane, ExceptionStackFrane) : -
StackFranme = frane(Local s, _OperandStack, Flags),
ExceptionStackFrane = frane(Locals, [], Flags).

Many instructions have type rules that are completely isomorphic to the rules for
other instructions. If an instruction b1 isisomorphic to another instruction b2, then
the typerule for b1 isthe same asthe type rule for b2.

instructionl sTypeSafe(lnstruction, Environnent, O fset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
i nstructi onHasEqui val ent TypeRul e(l nstruction, |sonorphiclnstruction),
i nstructionl sTypeSaf e(| sonor phi cl nstructi on, Environment, Ofset,
St ackFranme, Next St ackFrane,
Excepti onSt ackFr ane) .

The English language description of each rule is intended to be readable,
intuitive, and concise. As such, the description avoids repeating all the contextual
assumptions given above. In particular:

» The description does not explicitly mention the environment.

* When the description speaks of the operand stack or local variables in the
following, it is referring to the operand stack and local variable components of
atype state: either the incoming type state or the outgoing one.

» Thetype state after the instruction compl etes abruptly isamost aways identical
to theincoming type state. The description only discusses the type state after the
instruction completes abruptly when that is not the case.

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

 Thedescription speaks of popping and pushing types onto the operand stack, and
doesnot explicitly discussissuesof stack underflow or overflow. Thedescription
assumes these operations can be completed successfully, but the Prolog clauses
for operand stack manipulation ensure that the necessary checks are made.

» The description discusses only the manipulation of logical types. In practice,
some types take more than one word. The description abstracts from these
representation details, but the Prolog clauses that manipul ate data do not.

Any ambiguities can be resolved by referring to the formal Prolog clauses.

219

4.10

220

Verification of cl ass Files THE cLAsS FILE FORMAT

aaload aaload

An aaload instruction is type safe iff one can validly replace types matching i nt
and an array type with component type Conponent Type where Conponent Type iS
asubtype of j ect , with Conponent Type Yyielding the outgoing type state.

instructionl sTypeSaf e(aal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
nt h1Oper andSt ackl s(2, StackFrane, ArrayType),
arrayConponent Type(ArrayType, Conponent Type),
i sBoot st rapLoader (BL),
val i dTypeTransi ti on(Envi ronnent,
[int, arrayOf(class('javal/lang/ Gbject', BL))],
Conmponent Type, StackFrane, Next StackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The component type of an array of X is X. We define the component type of nul |
tobenul I .

arrayConponent Type(arraydf (X), X).
arrayConponent Type(null, null).

THE cLAss FILE FORMAT Verification of cl ass Files

aastore aastore

An aastore instruction istype safe iff one can validly pop types matching oj ect ,
i nt, and an array of aj ect off the incoming operand stack yielding the outgoing
type state.

instructionl sTypeSaf e(aastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
i sBoot st rapLoader (BL),
canPop(St ackFr ane,
[class('javal/lang/ Object', BL),
int,
arrayOf (class('javal/lang/ Goject', BL))],
Next St ackFr ane) ,
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

221

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

aconst_null aconst_null

An aconst_null instruction is type safe if one can validly push the type nul I onto
the incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(aconst_null, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [], null, StackFrame, NextStackFrane),

excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

222

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

aload, aload_<n> aload, aload <n>

An aload instruction with operand | ndex is type safe and yields an outgoing
type state Next St ackFr ane, if a load instruction with operand | ndex and type
ref er ence istype safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSaf e(al oad(| ndex), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
| oadl sTypeSaf e(Envi ronnment, |ndex, reference, StackFrame, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The ingtructions aload_<n>, for 0 < n < 3, are type safe iff the equivaent aload
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(al oad_0, al oad(0)).
i nstructi onHasEqui val ent TypeRul e(al oad_1, aload(1)).
i nstructi onHasEqui val ent TypeRul e(al oad_2, al oad(2)).
i nstructi onHasEqui val ent TypeRul e(al oad_3, al oad(3)).

223

4.10

224

Verification of cl ass Files THE cLAsS FILE FORMAT

anewarray anewarray

An anewarray instruction with operand CP is type safe iff CP refers to a constant
pool entry denoting a class, interface, or array type, and one can legally replace a
type matching i nt on the incoming operand stack with an array with component
type cp yielding the outgoing type state.

instructionl sTypeSaf e(anewarray(CP), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
(CP =class(_, _) ; CP=arrayo(.)),
val i dTypeTransi tion(Environnent, [int], arrayCf (CP),
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

areturn areturn

An areturn instruction is type safe iff the enclosing method has a declared return
type, ReturnType, that is a reference type, and one can validly pop a type
matching Ret ur nType oOff the incoming operand stack.

instructionl sTypeSafe(areturn, Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnment, ReturnType),
i sAssi gnabl e(ReturnType, reference),
canPop(St ackFrane, [ReturnType], _PoppedStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

225

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
arraylength arraylength

An arraylength instruction is type safe iff one can validly replace an array type on
the incoming operand stack with the typei nt yielding the outgoing type state.

instructionl sTypeSafe(arrayl ength, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
nt h1Oper andSt ackl s(1, StackFrane, ArrayType),
arrayConponent Type(ArrayType, _),
val i dTypeTransi ti on(Environnent, [top], int, StackFrane, Next StackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

226

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

astore, astore_<n> astore, astore_<n>

An astore instruction with operand | ndex is type safe and yields an outgoing
type state Next St ackFr ane, if a store instruction with operand | ndex and type
ref er ence istype safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSaf e(astore(lndex), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
storel sTypeSaf e(Envi ronnent, Index, reference, StackFrane, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Theinstructions astore_ <n>, for 0 < n < 3, are type safe iff the equivalent astore
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(astore_0, astore(0)).
i nstructi onHasEqui val ent TypeRul e(astore_1, astore(1l)).
i nstructi onHasEqui val ent TypeRul e(astore_2, astore(2)).
i nstructi onHasEqui val ent TypeRul e(astore_3, astore(3)).

227

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

athrow athrow

An athrow instruction is type safe iff the top of the operand stack matches
Thr owabl e.

instructionl sTypeSafe(athrow, _Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
i sBoot st rapLoader (BL),
canPop(St ackFrane, [class('javal/lang/ Throwable', BL)], _PoppedStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

228

THE cLAss FILE FORMAT Verification of cl ass Files

baload baload

A baload instruction istype safeiff one can validly replace types matchingi nt and
asmall array type on the incoming operand stack with i nt yielding the outgoing
type state.

i nstructionl sTypeSaf e(bal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, Excepti onStackFrane)
nt h1Oper andSt ackl s(2, StackFrane, ArrayType),
isSmal | Array(ArrayType),
val i dTypeTransi ti on(Environnent, [int, top], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

An array typeisasmall array typeif it isan array of byt e, an array of bool ean,
or a subtype thereof (nul I).

isSmal | Array(arrayOr (byte)).
i sSmal | Array(arrayO (bool ean)).
isSmal | Array(null).

4.10

229

4.10

230

Verification of cl ass Files THE cLAsS FILE FORMAT

bastore bastore

A bastore instruction is type safe iff one can validly pop types matching i nt , i nt
and a small array type off the incoming operand stack yielding the outgoing type
state.

instructionl sTypeSaf e(bastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
nt h1Oper andSt ackl s(3, StackFrane, ArrayType),
isSmal | Array(ArrayType),
canPop(StackFrane, [int, int, top], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10
bipush bipush

A bipush instruction is type safe iff the equivalent sipush instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(bi push(Val ue), sipush(Value)).

231

4.10

232

Verification of cl ass Files THE cLAsS FILE FORMAT

caload caload

A caload instruction is type safe iff one can validly replace types matching i nt
and array of char on the incoming operand stack with i nt yielding the outgoing
type state.

instructionl sTypeSaf e(cal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [int, arrayCf(char)], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

castore castore

A castore instruction is type safe iff one can validly pop types matching i nt , i nt
and array of char off the incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(castore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [int, int, arrayOf(char)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

233

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

checkcast checkcast

A checkcast instruction with operand cP is type safe iff cp refers to a constant
pool entry denoting either a class or an array, and one can validly replace the type
Obj ect on top of the incoming operand stack with the type denoted by cp yielding
the outgoing type state.

instructionl sTypeSaf e(checkcast (CP), Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
(CP =class(_, _) ; CP=arrayo(.)),
i sBoot st raplLoader (BL),
val i dTypeTransi ti on(Envi ronnent, [class('javal/lang/ Gbject', BL)], CP,
St ackFrame, Next St ackFrane),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

234

THE cLAss FILE FORMAT Verification of cl ass Files

d2f, d2i, d2| d2f, d2i, d2|

A d2f instruction is type safe if one can validly pop doubl e off the incoming
operand stack and replace it with f | oat , yielding the outgoing type state.

instructionl sTypeSafe(d2f, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [double], float,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

A d2i instruction is type safe if one can validly pop doubl e off the incoming
operand stack and replace it with i nt , yielding the outgoing type state.

instructionl sTypeSafe(d2i, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [double], int,
St ackFrame, Next St ackFrane),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

A d2l instruction is type safe if one can validly pop doubl e off the incoming
operand stack and replace it with I ong, yielding the outgoing type state.

instructionl sTypeSafe(d2l, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) :-
val i dTypeTransi ti on(Environnent, [double], Iong,
St ackFrame, Next St ackFrane),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

4.10

235

4.10

236

Verification of cl ass Files THE cLAsS FILE FORMAT

dadd dadd

A dadd instruction is type safe iff one can validly replace types matching doubl e
and doubl e on theincoming operand stack with doubl e yielding the outgoing type
state.

instructionl sTypeSaf e(dadd, Environnment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [doubl e, double], double,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

daload daload

A daloadinstruction istype safeiff one can validly replace types matchingi nt and
array of doubl e on theincoming operand stack with doubl e yielding the outgoing
type state.

i nstructionl sTypeSaf e(dal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [int, arrayOf (double)], double,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

237

4.10

238

Verification of cl ass Files THE cLAsS FILE FORMAT

dastore dastore

A dastore instruction is type safe iff one can validly pop types matching doubl e,
i nt and array of doubl e off theincoming operand stack yielding the outgoing type
state.

instructionl sTypeSaf e(dastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(St ackFrane, [double, int, arrayO (double)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files 4.10
dcmp<op> dcmp<op>

A dcmpg instruction istype safeiff one can validly replace types matching doubl e
and doubl e on the incoming operand stack with i nt yielding the outgoing type
state.

i nstructionl sTypeSaf e(dcnpg, Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [doubl e, double], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

A dcmpl instruction istype safe iff the equivalent dempg instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(dcnpl, dcnpg).

239

4.10

240

Verification of cl ass Files THE cLAsS FILE FORMAT

dconst_<d> dconst_<d>

A dconst_0 instruction is type safe if one can validly push the type doubl e onto
the incoming operand stack yielding the outgoing type state.

instructionl sTypeSaf e(dconst _0, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [], double, StackFrane, Next StackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

A dconst_1 instruction is type safe iff the equivalent dconst_0 instruction is type
safe.

i nstructi onHasEqui val ent TypeRul e(dconst _1, dconst_0).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

ddiv ddiv

A ddiv instruction is type safe iff the equivalent dadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(ddi v, dadd).

241

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

dload, dload_<n> dload, dload <n>

A dload instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ane, if aload instruction with operand | ndex and type doubl e
istype safe and yields an outgoing type state Next St ackFr arre.

i nstructionl sTypeSaf e(dl oad(| ndex), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
| oadl sTypeSaf e(Envi ronment, | ndex, double, StackFrane, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The instructions dload_<n>, for 0 < n < 3, are typesafe iff the equivaent dload
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(dl oad_0, dl oad(0)).
i nstructi onHasEqui val ent TypeRul e(dl oad_1, dload(1)).
i nstructi onHasEqui val ent TypeRul e(dl oad_2, dload(2)).
i nstructi onHasEqui val ent TypeRul e(dl oad_3, dload(3)).

242

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

dmul dmul

A dmul instruction is type safe iff the equivalent dadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(dmul, dadd).

243

4.10

244

Verification of cl ass Files THE cLAsS FILE FORMAT
dneg dneg

A dneg instruction istype safe iff there isatype matching doubl e on theincoming
operand stack. The dneg instruction does not alter the type state.

instructionl sTypeSaf e(dneg, Environnment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [doubl e], double,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

drem drem

A dreminstruction is type safe iff the equivalent dadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(drem dadd).

245

4.10

246

Verification of cl ass Files THE cLAsS FILE FORMAT

dreturn dreturn

A dreturn instruction is type safe if the enclosing method has a declared return
type of doubl e, and one can validly pop atype matching doubl e off theincoming
operand stack.

instructionl sTypeSafe(dreturn, Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnment, doubl e),
canPop(St ackFrane, [double], _PoppedStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

dstore, dstore <n> dstore, dstore <n>

A dstore instruction with operand I ndex is type safe and yields an outgoing type
state Next St ackFr ane, if a store instruction with operand | ndex and type doubl e
istype safe and yields an outgoing type state Next St ackFr arre.

instructionl sTypeSaf e(dstore(lndex), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
storel sTypeSaf e(Envi ronnent, |ndex, double, StackFrame, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Theinstructions dstore_ <n>, for 0 < n < 3, are type safe iff the equivalent dstore
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(dstore_0, dstore(0)).
i nstructi onHasEqui val ent TypeRul e(dstore_1, dstore(1l)).
i nstructi onHasEqui val ent TypeRul e(dstore_2, dstore(2)).
i nstructi onHasEqui val ent TypeRul e(dstore_3, dstore(3)).

4.10

247

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

dsub dsub

A dsub instruction istype safe iff the equivalent dadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(dsub, dadd).

248

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10
dup dup

A dup instruction is type safe iff one can validly replace a category 1 type, Type,
with the types Type, Type, yielding the outgoing type state.

i nstructionl sTypeSaf e(dup, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
St ackFrame = frane(Local s, |nputOperandStack, Flags),
popCat egor y1(| nput Oper andSt ack, Type, _),
canSaf el yPush(Envi ronnent, | nput OperandStack, Type, CQutput QperandStack),
Next St ackFrane = frane(Local s, CQutput OperandStack, Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

249

4.10

250

Verification of cl ass Files THE cLAsS FILE FORMAT

dup_x1 dup_x1

A dup_x1 instruction is type safe iff one can validly replace two category 1 types,
Typel, and Type2, on the incoming operand stack with the types Typel, Type2,
Typel, Yielding the outgoing type state.

instructionl sTypeSaf e(dup_x1, Environnent, _Ofset, StackFrane,

Next St ackFrane, ExceptionStackFrane) : -

St ackFrame = frane(Local s, |nput OperandStack, Flags),

popCat egor y1(| nput Oper andSt ack, Typel, Stackl),

popCat egory1(Stackl, Type2, Rest),

canSaf el yPushLi st (Envi ronment, Rest, [Typel, Type2, Typel],
Qut put Oper andSt ack) ,

Next St ackFrane = frane(Local s, CQutput OperandStack, Fl ags),

excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

dup_x2 dup_x2

A dup_x2instruction istype safeiff it is atype safe form of the dup_x2 instruction.

instructionl sTypeSaf e(dup_x2, Environment, _Ofset, StackFrane,
Next St ackFr ane, ExceptionStackFrane) : -
St ackFranme = franme(Local s, |nputOperandStack, Flags),
dup_x2For m sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack),
Next St ackFranme = frane(Local s, Qutput OperandSt ack, Fl ags),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

A dup_x2 instruction is a type safe form of the dup_x2 instruction iff it is a type
safe form 1 dup_x2 instruction or atype safe form 2 dup_x2 instruction.

dup_x2For m sTypeSaf e(Envi ronnent, | nput Oper andSt ack, CQut put Oper andSt ack) : -
dup_x2For nll sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) .

dup_x2For m sTypeSaf e(Envi ronnent, | nput Oper andSt ack, CQut put Oper andSt ack) : -
dup_x2For n2l sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) .

A dup_x2 instruction is a type safe form 1 dup_x2 instruction iff one can validly
replacethree category 1types, Typel, Type2, Type3 on theincoming operand stack
with the types Typel, Type2, Type3, Typel, yielding the outgoing type state.

dup_x2For mlLl sTypeSaf e(Envi ronnment, | nput OperandSt ack, Qut put OperandStack) : -
popCat egor y1(| nput Oper andSt ack, Typel, Stackl),
popCat egory1(Stackl, Type2, Stack2),
popCat egory1(Stack2, Type3, Rest),
canSaf el yPushLi st (Envi ronment, Rest, [Typel, Type3, Type2, Typel],
Qut put Oper andSt ack) .

A dup_x2 instruction is a type safe form 2 dup_x2 instruction iff one can validly
replace a category 1 type, Typel, and a category 2 type, Type2, on the incoming
operand stack with thetypes Type1, Type2, Type1l, yielding the outgoing type state.

dup_x2For n2l sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) : -
popCat egor y1(| nput Oper andSt ack, Typel, Stackl),
popCat egory2(St ackl, Type2, Rest),
canSaf el yPushLi st (Envi ronment, Rest, [Typel, Type2, Typel],
Qut put Oper andSt ack) .

251

4.10

252

Verification of cl ass Files THE cLAsS FILE FORMAT
dup2 dup2

A dup2 instruction is type safe iff it is atype safe form of the dup2 instruction.

instructionl sTypeSaf e(dup2, Environment, _Ofset, StackFrane,
Next St ackFr ane, ExceptionStackFrane) : -
St ackFranme = franme(Local s, |nputOperandStack, Flags),
dup2For m sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack),
Next St ackFranme = frane(Local s, Qutput OperandSt ack, Fl ags),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

A dup2 instruction is a type safe form of the dup2 instruction iff it is a type safe
form 1 dup2 instruction or atype safe form 2 dup2 instruction.

dup2For m sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack) : -
dup2For mLl sTypeSaf e(Envi ronnment , | nput Oper andSt ack, Qut put Oper andSt ack) .

dup2For m sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack) : -
dup2For n2l sTypeSaf e(Envi ronnment , | nput Oper andSt ack, Qut put Oper andSt ack) .

A dup2instruction is atype safe form 1 dup2 instruction iff one can validly replace
two category 1 types, Typel and Type2 on the incoming operand stack with the
types Typel, Type2, Typel, Type2, Yielding the outgoing type state.

dup2For mLl sTypeSaf e(Envi ronnment, | nput Qper andSt ack, Qut put Oper andSt ack): -
popCat egor y1(| nput Oper andSt ack, Typel, TenpStack),
popCat egoryl(TenpSt ack, Type2,),
canSaf el yPushLi st (Envi ronnment, | nput OperandStack, [Type2, Typel],
Qut put Oper andSt ack) .

A dup2 instruction is atype safe form 2 dup2 instruction iff one can validly replace
acategory 2 type, Type on the incoming operand stack with the types Type, Type,
yielding the outgoing type state.

dup2For n2l sTypeSaf e(Envi ronnent, | nput Oper andSt ack, CQut put Oper andSt ack): -
popCat egor y2(| nput Oper andSt ack, Type, _),
canSaf el yPush(Envi ronnent, | nput OperandStack, Type, CQutput QperandStack).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10
dup2 x1 dup2 x1

A dup2_x1 instruction is type safe iff it is a type safe form of the dup2_x1
instruction.

i nstructionl sTypeSaf e(dup2_x1, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
St ackFrame = frane(Local s, |nputOperandStack, Flags),
dup2_x1For m sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack),
Next St ackFrane = frane(Local s, CQutput OperandStack, Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

A dup2_x1 instruction is a type safe form of the dup2_x1 instruction iff it isatype
safe form 1 dup2_x1 instruction or atype safe form 2 dup_x2 instruction.

dup2_x1For m sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) : -
dup2_x1For mil sTypeSaf e(Envi ronment, | nput OperandSt ack, Qut put Oper andSt ack).

dup2_x1For m sTypeSaf e(Envi ronment, | nput OperandSt ack, Qut put OperandStack) : -
dup2_x1For n2l sTypeSaf e(Envi ronment, | nput OperandSt ack, Qut put Oper andSt ack).

A dup2_x1instruction isatype safe form 1 dup2_x1 instruction iff one can validly
replacethree category 1types, Typel, Type2, Type3, ontheincoming operand stack
withthetypesTypel, Type2, Type3, Typel, Type2, yielding the outgoing type state.

dup2_x1For mll sTypeSaf e(Envi ronnment, | nput Oper andSt ack, Qut put OperandStack) : -
popCat egor y1(| nput Oper andSt ack, Typel, Stackl),
popCat egory1(Stackl, Type2, Stack2),
popCat egory1(St ack2, Type3, Rest),
canSaf el yPushLi st (Envi ronment, Rest, [Type2, Typel, Type3, Type2, Typel],
Qut put Oper andSt ack) .

A dup2_x1 instruction is atype safe form 2 dup2_x1 instruction iff one can validly
replace a category 2 type, Typel, and a category 1 type, Type2, on the incoming
operand stack with thetypes Type1, Type2, Type1, yielding the outgoing type state.

dup2_x1For n2l sTypeSaf e(Envi ronnment, | nput OperandSt ack, Qut put OperandStack) : -
popCat egor y2(| nput Oper andSt ack, Typel, Stackl),
popCat egoryl(Stackl, Type2, Rest),
canSaf el yPushLi st (Envi ronment, Rest, [Typel, Type2, Typel],
Qut put Oper andSt ack) .

253

4.10

254

Verification of cl ass Files THE cLAsS FILE FORMAT
dup2_x2 dup2_x2

A dup2_x2 instruction is type safe iff it is a type safe form of the dup2_x2
instruction.

i nstructionl sTypeSaf e(dup2_x2, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
St ackFrame = frane(Local s, |nputOperandStack, Flags),

dup2_x2For m sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack),

Next St ackFrane = frane(Local s, CQutput OperandStack, Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

A dup2_x2 instruction is a type safe form of the dup2_x2 instruction iff one of the
following holds:

* itisatype safeform 1 dup2 x2 instruction.
* itisatype safe form 2 dup2_x2 instruction.
* itisatype safe form 3 dup2_x2 instruction.
* itisatype safe form 4 dup2_x2 instruction.

dup2_x2For m sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) : -

dup2_x2For nil sTypeSaf e(Envi ronnment, | nput Oper andSt ack, Qut put Oper andSt ack) .

dup2_x2For m sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) : -

dup2_x2For n2l sTypeSaf e(Envi ronnment, | nput Oper andSt ack, Qut put Oper andSt ack) .

dup2_x2For m sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) : -

dup2_x2For nBl sTypeSaf e(Envi ronnment, | nput Oper andSt ack, Qut put Oper andSt ack) .

dup2_x2For m sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) : -

dup2_x2For m4l sTypeSaf e(Envi ronnment, | nput Oper andSt ack, Qut put Oper andSt ack) .

A dup2_x2 instruction is atype safe form 1 dup2_x2 instruction iff one can validly
replace four category 1 types, Typel, Type2, Type3, Type4, on the incoming
operand stack with the types Type1, Type2, Type3, Type4, Typel, Type2, yielding
the outgoing type state.

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

dup2_x2For nil sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack) : -
popCat egor y1(| nput Oper andSt ack, Typel, Stackl),
popCat egory1(Stackl, Type2, Stack2),
popCat egory1(Stack2, Type3, Stack3),
popCat egory1(St ack3, Type4, Rest),
canSaf el yPushLi st (Envi ronnment, Rest,
[Type2, Typel, Type4, Type3, Type2, Typel],
Qut put Oper andSt ack) .

A dup2_x2instruction is atype safe form 2 dup2_x2 instruction iff one can validly
replace a category 2 type, Typel, and two category 1 types, Type2, Type3, on the
incoming operand stack with the types Type1, Type2, Type3, Typel, yielding the
outgoing type state.

dup2_x2For n2l sTypeSaf e(Envi ronnment, | nput Oper andSt ack, Qut put OperandSt ack) : -
popCat egor y2(| nput Oper andSt ack, Typel, Stackl),
popCat egory1(Stackl, Type2, Stack2),
popCat egory1(St ack2, Type3, Rest),
canSaf el yPushLi st (Envi ronment, Rest,
[Typel, Type3, Type2, Typel],
Qut put Oper andSt ack) .

A dup2_x2 instruction is atype safe form 3 dup2_x2 instruction iff one can validly
replace two category 1 types, Typel, Type2, and a category 2 type, Type3, on
the incoming operand stack with the types Typel, Type2, Type3, Typel, Type2,
yielding the outgoing type state.

dup2_x2For nBl sTypeSaf e(Envi ronnment, | nput OperandSt ack, Qut put OperandStack) : -
popCat egor y1(| nput Oper andSt ack, Typel, Stackl),
popCat egoryl(Stackl, Type2, Stack2),
popCat egory2(St ack2, Type3, Rest),
canSaf el yPushLi st (Envi ronment, Rest,
[Type2, Typel, Type3, Type2, Typel],
Qut put Oper andSt ack) .

A dup2_x2 instruction is atype safe form 4 dup2_x2 instruction iff one can validly
replace two category 2 types, Typel, Type2, on the incoming operand stack with
the types Typel, Type2, Typel, Yielding the outgoing type state.

dup2_x2For m4l sTypeSaf e(Envi ronnment, | nput Oper andSt ack, Qut put Oper andSt ack) : -
popCat egor y2(| nput Oper andSt ack, Typel, Stackl),
popCat egory2(St ackl, Type2, Rest),
canSaf el yPushLi st (Envi ronment, Rest, [Typel, Type2, Typel],
Qut put Oper andSt ack) .

255

4.10

256

Verification of cl ass Files THE cLAsS FILE FORMAT

f2d, f2i, f2l f2d, f2i, f2l

An f2d instruction is type safe if one can validly pop float off the incoming
operand stack and replace it with doubl e, yielding the outgoing type state.

instructionl sTypeSafe(f2d, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [float], doubl e,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Anf2i instructionistypesafeif onecanvalidly popf 1 oat off theincoming operand
stack and replace it withii nt , yielding the outgoing type state.

instructionlsTypeSafe(f2i, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi tion(Environnent, [float], int,
St ackFrame, Next St ackFrane),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

Anf2l instructionistypesafeif onecanvalidly popf 1 oat off theincoming operand
stack and replace it with | ong, yielding the outgoing type state.

instructionlsTypeSafe(f2l, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) :-
val i dTypeTransi ti on(Environnent, [float], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

fadd fadd

An fadd instruction is type safe iff one can validly replace types matching f | oat
and f 1 oat on the incoming operand stack with f1 oat yielding the outgoing type
state.

instructionl sTypeSaf e(fadd, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [float, float], float,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

257

4.10

258

Verification of cl ass Files THE cLAsS FILE FORMAT

faload faload

An faload instruction is type safe iff one can validly replace types matching i nt
and array of f | oat ontheincoming operand stack withf 1 oat yielding the outgoing
type state.

instructionl sTypeSaf e(fal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [int, arrayOf(float)], float,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

fastore fastore

An fastore instruction is type safe iff one can validly pop types matching f | oat ,
i nt and array of f1 oat off theincoming operand stack yielding the outgoing type
state.

instructionl sTypeSafe(fastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [float, int, arrayOf(float)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

259

4.10

260

Verification of cl ass Files THE cLAsS FILE FORMAT
fcmp<op> fcmp<op>

An fcmpg instruction istype safe iff one can validly replace types matching f | oat
andf 1 oat ontheincoming operand stack withi nt yielding the outgoing type state.

i nstructionl sTypeSafe(fcnpg, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [float, float], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

An fcmpl instruction istype safe iff the equivalent fcmpg instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fcnpl, fcnpg).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

fconst_<f> fconst <f>

Anfconst_0Oinstructionistype safeif one can validly pushthetypef | oat ontothe
incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(fconst_0, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [], float, StackFrane, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The rules for the other variants of fconst are equivalent.

i nstructi onHasEqui val ent TypeRul e(fconst _1, fconst_0).
i nstructi onHasEqui val ent TypeRul e(fconst _2, fconst_0).

261

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

fdiv fdiv

An fdivinstruction is type safe iff the equivalent fadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fdi v, fadd).

262

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

fload, fload <n> fload, fload <n>

An fload instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ame, if aload instruction with operand | ndex and typef | oat is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSaf e(fl oad(| ndex), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
| oadl sTypeSaf e(Envi ronnment, |ndex, float, StackFrane, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The instructions fload_<n>, for 0 < n < 3, are typesafe iff the equivalent fload
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fl oad_0, fload(0)).
i nstructi onHasEqui val ent TypeRul e(fl oad_1, fload(1)).
i nstructi onHasEqui val ent TypeRul e(fl oad_2, fload(2)).
i nstructi onHasEqui val ent TypeRul e(fl oad_3, fload(3)).

263

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

fmul fmul

An fmul instruction is type safe iff the equivalent fadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fmul, fadd).

264

THE cLAss FILE FORMAT Verification of cl ass Files
fneg fneg

An fneg instruction istype safe iff thereisatype matching f | oat on the incoming
operand stack. The fneg instruction does not ater the type state.

instructionl sTypeSaf e(fneg, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [float], float,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

265

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

frem frem

An freminstruction is type safe iff the equivalent fadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(frem fadd).

266

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

freturn freturn

An freturn instruction is type safe if the enclosing method has a declared return
type of f 1 oat, and one can validly pop a type matching f 1 oat off the incoming
operand stack.

instructionl sTypeSafe(freturn, Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnent, float),
canPop(St ackFrane, [float], _PoppedStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

267

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

fstore, fstore <n> fstore, fstore <n>

An fstore instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ame, if astoreinstruction with operand | ndex and typef | oat is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSafe(fstore(lndex), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
storel sTypeSaf e(Envi ronnent, Index, float, StackFranme, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The instructions fstore_ <n>, for 0 < n < 3, are typesafe iff the equivalent fstore
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fstore_0, fstore(0)).
i nstructi onHasEqui val ent TypeRul e(fstore_1, fstore(1l)).
i nstructi onHasEqui val ent TypeRul e(fstore_2, fstore(2)).
i nstructi onHasEqui val ent TypeRul e(fstore_3, fstore(3)).

268

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

fsub fsub

An fsub instruction is type safe iff the equivalent fadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fsub, fadd).

269

410 Verification of cl ass Files THE cLASS FILE FORMAT
getfield getfield

A getfield instruction with operand CpP is type safe iff CP refers to a constant
pool entry denoting a field whose declared type isFi el dType, declared in aclass
Fi el dd assName, and one can validly replace a type matching Fi el dC assName
with type Fi el dType on the incoming operand stack yielding the outgoing type
state. Fi el dC assNarmre must not be an array type. pr ot ect ed fields are subject to
additional checks (84.10.1.8).

instructionlsTypeSafe(getfield(CP), Environment, _Ofset, StackFrane,
Next St ackFr ane, ExceptionStackFrane) :-
CP = field(FieldC assNane, FieldNanme, FieldDescriptor),
par seFi el dDescri ptor (Fi el dDescri ptor, FieldType),
passesProt ect edCheck(Envi ronnment, Fi el dCl assNane, Fi el dNane,
Fi el dDescri ptor, StackFrane),
current d assLoader (Envi ronnment, CurrentLoader),
val i dTypeTransi ti on(Envi ronnent,
[cl ass(Fi el dO assNane, CurrentlLoader)], FieldType,
St ackFrame, Next St ackFrane),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

270

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

getstatic getstatic

A getstatic instruction with operand cp istype safe iff cP refersto a constant pool
entry denoting afield whose declared typeisFi el dType, and one can validly push
Fi el dType on theincoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(getstatic(CP), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
CP = field(_Fi el dd assNane, _Fi el dNane, Fi el dDescriptor),
par seFi el dDescri ptor (Fi el dDescriptor, Fiel dType),
val i dTypeTransiti on(Environnent, [], FieldType,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

271

4.10

272

Verification of cl ass Files THE cLAsS FILE FORMAT
goto, goto w goto, goto_ w

A goto instruction istype safe iff its target operand isavalid branch target.

instructionl sTypeSaf e(goto(Target), Environment, _Ofset, StackFrane,
afterGoto, ExceptionStackFrane) :-
target| sTypeSaf e(Envi ronnent, StackFrane, Target),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

A goto_w instruction is type safe iff the equivalent goto instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(goto_w(Target), goto(Target)).

THE cLAsS FILE FORMAT Verification of cl ass Files
12b, 12¢, 12d, 12f, i2l, i2s 12b, 12¢, 12d, 12f, 12l, i2s

Ani2b instruction istype safe iff the equivalent ineg instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i 2b, ineg).

Ani2cingtruction istype safe iff the equivalent ineg instruction istype safe.

i nstructi onHasEqui val ent TypeRul e(i 2c, ineg).

Ani2dinstruction istype safeif one can validly popi nt off theincoming operand
stack and replace it with doubl e, yielding the outgoing type state.

instructionlsTypeSafe(i2d, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi tion(Environnent, [int], double,
St ackFrame, Next St ackFrane),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

Ani2finstruction istype safeif one can validly popi nt off theincoming operand
stack and replace it with f | oat , yielding the outgoing type state.

instructionlsTypeSafe(i2f, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) :-
val i dTypeTransi ti on(Environnent, [int], float,
St ackFrame, Next St ackFrane),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

Ani2l instruction istype safeif one can validly popi nt off theincoming operand
stack and replace it with 1 ong, yielding the outgoing type state.

instructionl sTypeSafe(i2l, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [int], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionSt ackFrane).

Ani2sinstruction istype safe iff the equivalent ineg instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i 2s, ineg).

4.10

273

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

ladd ladd

Aniadd instruction is type safe iff one can validly replace types matchingi nt and
i nt on the incoming operand stack withi nt yielding the outgoing type state.

instructionl sTypeSaf e(i add, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [int, int], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

274

THE cLAss FILE FORMAT Verification of cl ass Files

iaload iaload

An iaload instruction is type safe iff one can validly replace types matching i nt
and array of i nt on the incoming operand stack with i nt yielding the outgoing
type state.

instructionl sTypeSaf e(i al oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [int, arrayOf(int)], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

275

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

land land

Aniand instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i and, i add).

276

THE cLAss FILE FORMAT Verification of cl ass Files

lastore lastore

Aniastoreinstruction is type safe iff one can validly pop types matchingi nt , i nt
and array of i nt off the incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(iastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [int, int, arrayOf(int)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

277

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
iconst_<i> iconst_<i>

Aniconst_ml instruction istype safe if one can validly push thetypei nt onto the
incoming operand stack yielding the outgoing type state.

instructionl sTypeSaf e(iconst_ml, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [], int, StackFrame, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The rulesfor the other variants of iconst are equivalent.

nstructi onHasEqui val ent TypeRul e(i const _0, iconst_ntl).
nstructi onHasEqui val ent TypeRul e(i const _1, iconst_ntl).
nstructi onHasEqui val ent TypeRul e(i const _2, iconst_ntl).
nstructi onHasEqui val ent TypeRul e(i const _3, iconst_ntl).
nstructi onHasEqui val ent TypeRul e(i const _4, iconst_ntl).
nstructi onHasEqui val ent TypeRul e(i const _5, iconst_ntl).

278

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

idiv idiv

Anidivinstruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i di v, iadd).

279

4.10

280

Verification of cl ass Files THE cLAsS FILE FORMAT
If _acmp<cond> if _acmp<cond>

An if_acmpeq instruction is type safe iff one can validly pop types matching
ref erence and r ef er ence on the incoming operand stack yielding the outgoing
type state Next St ackFr ame, and the operand of the instruction, Tar get , isavalid
branch target assuming an incoming type state of Next St ackFr ane.

instructionl sTypeSafe(if_acnpeq(Target), Environnment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(St ackFrane, [reference, reference], NextStackFrane),
target| sTypeSaf e(Envi ronment, Next StackFrame, Target),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Therulefor if_ acmpneisidentical.

i nstructi onHasEqui val ent TypeRul e(i f _acnpne(Target), if_acnpeq(Target)).

THE cLAss FILE FORMAT Verification of cl ass Files 4.10
If_icmp<cond> If_icmp<cond>

An if_icmpeq instruction is type safe iff one can validly pop types matching
int and i nt on the incoming operand stack yielding the outgoing type state
Next St ackFr ame, and the operand of the instruction, Tar get, is a valid branch
target assuming an incoming type state of Next St ackFr ane.

instructionlsTypeSafe(if_icnpeq(Target), Environnment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [int, int], NextStackFrane),
target| sTypeSaf e(Envi ronment, Next StackFrame, Target),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Therulesfor al other variants of theif icmp<cond> instruction are identical.

i nstructi onHasEqui val ent TypeRul e(i f _i cnpge(Target), if_icnpeq(Target)).
i nstructi onHasEqui val ent TypeRul e(i f_i cnpgt (Target), if_icnpeq(Target)).
i nstructi onHasEqui val ent TypeRul e(if_icnpl e(Target), if_icnpeq(Target)).
i nstructi onHasEqui val ent TypeRul e(if_icnplt(Target), if_icnpeq(Target)).
i nstructi onHasEqui val ent TypeRul e(i f_i cnpne(Target), if_icnpeq(Target)).

281

4.10

282

Verification of cl ass Files THE cLAsS FILE FORMAT

if<cond> iIf<cond>

Anifeqinstruction istype safe iff one can validly pop atype matchingi nt off the
incoming operand stack yielding the outgoing type state Next St ackFr ane, and the
operand of the instruction, Tar get , isavalid branch target assuming an incoming
type state of Next St ackFr ane.

instructionl sTypeSafe(ifeq(Target), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [int], NextStackFrane),
target| sTypeSaf e(Envi ronment, Next StackFrame, Target),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The rulesfor al other variations of the if<cond> instruction are identical.

i nstructi onHasEqui val ent TypeRul e(i fge(Target), ifeq(Target)).
i nstructi onHasEqui val ent TypeRul e(ifgt(Target), ifeq(Target)).
i nstructi onHasEqui val ent TypeRul e(ifl e(Target), ifeq(Target)).
i nstructi onHasEqui val ent TypeRul e(iflt(Target), ifeq(Target)).
i nstructi onHasEqui val ent TypeRul e(i fne(Target), ifeq(Target)).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

ifnonnull, ifnull ifnonnull, ifnull

An ifnonnull instruction is type safe iff one can validly pop a type matching
reference Off the incoming operand stack yielding the outgoing type state
Next St ackFr ame, and the operand of the instruction, Tar get, is a valid branch
target assuming an incoming type state of Next St ackFr ane.

instructionl sTypeSafe(ifnonnull (Target), Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(St ackFrane, [reference], NextStackFrane),
target| sTypeSaf e(Envi ronment, Next StackFrame, Target),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Anifnull instruction istype safe iff the equivalent ifnonnull instruction istype safe.

i nstructi onHasEqui val ent TypeRul e(ifnull (Target), ifnonnull (Target)).

283

4.10

284

Verification of cl ass Files THE cLAsS FILE FORMAT
linc linc

Aniincinstruction with first operand | ndex istype safeiff L, ,gex hastypei nt . The
iinc instruction does not change the type state.

instructionl sTypeSafe(iinc(lndex, _Value), _Environment, _Ofset,
St ackFrame, StackFranme, ExceptionStackFranme) :-
St ackFrame = frane(Local s, _QOperandStack, _Fl ags),
nt hO(I ndex, Locals, int),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files
iload, iload <n> iload, iload_<n>

Aniload instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ame, if aload instruction with operand | ndex and typeint is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSafe(il oad(lndex), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
| oadl sTypeSaf e(Envi ronment, |ndex, int, StackFrame, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The instructions iload_<n>, for 0 < n < 3, are typesafe iff the equivalent iload
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(il oad_0, iload(0)).
i nstructi onHasEqui val ent TypeRul e(iload_1, iload(1)).
i nstructi onHasEqui val ent TypeRul e(il oad_2, iload(2)).
i nstructi onHasEqui val ent TypeRul e(il oad_3, iload(3)).

4.10

285

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

imul imul

Animul instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i mul, iadd).

286

THE cLAss FILE FORMAT Verification of cl ass Files
ineg ineg

An ineg instruction is type safe iff there is a type matching i nt on the incoming
operand stack. The ineg instruction does not ater the type state.

instructionl sTypeSaf e(i neg, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -

4.10

val i dTypeTransiti on(Environnent, [int], int, StackFrane, NextStackFrane),

excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

287

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

instanceof Instanceof

An instanceof instruction with operand cP is type safe iff cP refers to a constant
pool entry denoting either a class or an array, and one can validly replace the type
Obj ect on top of the incoming operand stack with typei nt yielding the outgoing
type state.

instructionl sTypeSaf e(i nstanceof (CP), Environnment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
(CP =class(_, _) ; CP=arrayo(.)),
i sBoot st raplLoader (BL),
val i dTypeTransi ti on(Environnent, [class('javal/lang/ Cbject', BL)], int,
St ackFrame, Next St ackFrane),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

288

THE cLAss FILE FORMAT Verification of cl ass Files

Invokedynamic Invokedynamic

An invokedynamic instruction istype safe iff all of the following are true:

* Itsfirst operand, cp, refersto a constant pool entry denoting an dynamic call site
with name Cal | Si t eName with descriptor Descri pt or .

e Call SiteNane isnot<init>.
e Call SiteNane isnot <clinit>.

* Onecanvalidly replace types matching the argument typesgivenin Descri pt or
on the incoming operand stack with the return type given in Descri ptor,
yielding the outgoing type state.

i nstructionl sTypeSaf e(i nvokedynani c(CP, 0, 0), Environment, _Ofset,
St ackFrame, Next St ackFrane, ExceptionStackFrane)
CP = dmet hod(Cal | SiteNane, Descriptor),
Call SiteName \= '<init>",
Call SiteName \= '<clinit>",
par seMet hodDescri pt or (Descri ptor, OperandArgList, ReturnType),
rever se(Oper andAr gLi st, StackArglList),
val i dTypeTransi ti on(Envi ronnent, StackArgList, ReturnType,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

289

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

invoke nterface invokeinterface

An invokeinterface instruction is type safe iff all of the following are true:

* Itsfirst operand, cp, refersto a constant pool entry denoting an interface method
named Met hodNarre with descriptor Descri pt or that isamember of an interface
Met hodl nt f Nane.

e Met hodNane iSNot <i ni t >.
* Met hodNane ishot <cl i nit>.
* Its second operand, Count , isavalid count operand (see below).

* One can vaidly replace types matching the type Met hodl nt f Name and the
argument types given in Descri pt or 0on the incoming operand stack with the
return type given in Descri pt or, yielding the outgoing type state.

instructionl sTypeSaf e(i nvokei nterface(CP, Count, 0), Environment, _Ofset,
St ackFrame, Next St ackFrane, ExceptionStackFranme) : -
CP = i nmet hod(Met hodl nt f Nane, Met hodNane, Descriptor),
Met hodNane \= '<init>",
Met hodNane \= '<clinit>",
par seMet hodDescri pt or (Descri ptor, OperandArgList, ReturnType),
current C assLoader (Envi ronment, CurrentLoader),
reverse([cl ass(Met hodl ntf Name, CurrentlLoader) | OperandArglList],
St ackAr gLi st),
canPop(St ackFrane, StackArgList, TenpFrane),
val i dTypeTransi ti on(Environnent, [], ReturnType,
TenpFrame, Next StackFrane),
count | sVal i d(Count, StackFrane, TenpFrane),
excepti onSt ackFrame(St ackFrane, ExceptionSt ackFrane).

The count operand of an invokeinterfaceinstructionisvalid if it equals the size of
the arguments to the instruction. This is equal to the difference between the size
of 1 nput Fr ame and Qut put Fr ane.

count | sVal i d(Count, I|nputFrane, CQutputFrane) :-
I nput Frame = franme(_Local s1, OperandStackl, _Flagsl),
Qut put Frame = frane(_Local s2, OperandStack2, _Fl ags2),
| engt h(Oper andSt ackl, Lengthl),
| engt h(Oper andSt ack2, Length2),
Count =:= Lengthl - Length2.

290

THE cLAsS FILE FORMAT Verification of cl ass Files
invokespecial invokespecial

An invokespecial instruction istype safe iff all of the following are true:

* Its first operand, cpP, refers to a constant pool entry denoting a method
named Met hodName with descriptor Descri pt or that is a member of a class
Met hodCl assNare.

 Either:
— Met hodNane iSNOt <i ni t >.
— Met hodNane iSnot <cl i ni t >.

— One can validly replace types matching the current class and the argument
typesgiveninDescri pt or ontheincoming operand stack with the return type
givenin Descri pt or, yielding the outgoing type state.

— One can validly replace types matching the class Met hodd assNane and the
argument types given in Descri pt or on the incoming operand stack with the
return type givenin Descri pt or .

instructionl sTypeSaf e(i nvokespeci al (CP), Environment, _Ofset, StackFrane,

Next St ackFr ane, ExceptionStackFrane) :-
CP = net hod(Met hodCl assNane, Met hodNane, Descri ptor),
Met hodNane \= '<init>',
Met hodName \= '<clinit>",
par seMet hodDescri pt or (Descri ptor, OperandArgList, ReturnType),
thi sd ass(Environment, class(Currentd assName, CurrentlLoader)),
i sAssi gnabl e(cl ass(Current Gl assNanme, CurrentLoader),
cl ass(Met hodd assNanme, CurrentlLoader)),
reverse([class(Currentd assNane, CurrentlLoader) | OperandArgList],
St ackAr gLi st),
val i dTypeTransi ti on(Envi ronnent, StackArgList, ReturnType,
St ackFrame, Next St ackFrane),
reverse([class(Methodd assNanme, CurrentlLoader) | OperandArgList],
St ackAr gLi st 2),
val i dTypeTransi ti on(Envi ronnent, StackArgList2, ReturnType,
St ackFrame, _Result StackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Thei sAssi gnabl e clause enforces the structural constraint that invokespecial, for other
than an instance initialization method, must name a method in the current class/interface
or a superclass/superinterface.

4.10

291

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

The first validTypeTransition clause enforces the structural constraint that
invokespecial, for other than an instance initialization method, targets a receiver object of
the current class or deeper. To see why, consider that St ackAr gLi st simulates the list
of types on the operand stack expected by the method, starting with the current class (the
class performing invokespecial). The actual types onthe operand stack arein St ackFr ane.
The effect of val i dTypeTransiti on isto pop the first type from the operand stack in
St ackFr ame and check it is a subtype of the first term of St ackAr gLi st, hamely the
current class. Thus, the actual receiver type is compatible with the current class.

A sharp-eyed reader might notice that enforcing this structural constraint supercedes
the structural constraint pertaining to invokespecial of a protected method. Thus,
the Prolog code above makes no reference to passesPr ot ect edCheck (84.10.1.8),
whereas the Prolog code for invokespecial of an instance initialization method uses
passesPr ot ect edCheck to ensure the actual receiver type is compatible with the current
class when certain pr ot ect ed instance initialization methods are named.

The second val i dTypeTransi ti on clause enforces the structural constraint that any
method invocation instruction must target a receiver object whose type is compatible with
the type named by the instruction. To see why, consider that St ackAr gLi st 2 simulates
thelist of types on the operand stack expected by the method, starting with the type named
by the instruction. Again, the actual types on the operand stack are in St ackFr ame, and
the effect of val i dTypeTr ansi ti on isto check the actual receiver typein St ackFr ame
is compatible with the type named by the instruction in St ackAr gLi st 2.

* Or:
— MethodName is <i ni t >.
— Descri pt or specifiesavoi d return type.

— One can validly pop types matching the argument types givenin Descri pt or
and anuninitialized type, Uni ni ti al i zedAr g, off theincoming operand stack,
yielding per andSt ack.

— The outgoing type state is derived from the incoming type state by first
replacing the incoming operand stack with Oper andsSt ack and then replacing
all instances of Uni ni ti al i zedAr g with the type of instance being initialized.

— If the instruction calls an instance initialization method on a class instance
created by an earlier new instruction, and the method is prot ect ed, the
usage conforms to the special rules governing access to pr ot ect ed members
(84.10.1.8).

292

THE cLAss FILE FORMAT Verification of cl ass Files 4.10

instructionl sTypeSaf e(i nvokespeci al (CP), Environnment, _COffset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
CP = met hod(Met hodCl assName, '<init>', Descriptor),
par seMet hodDescri pt or (Descri ptor, OperandArgList, void),
rever se(Oper andArgLi st, StackArglList),
canPop(St ackFrane, StackArgList, TenpFrane),
TenpFrame = frane(Locals, [uninitializedThis | OperandStack], Flags),
current d assLoader (Envi ronment, CurrentLoader),
rewittenUninitializedType(uninitializedThis, Environnent,
cl ass(Met hodd assNanme, CurrentLoader), This),
rewittenlnitializationFlags(uninitializedThis, Flags, NextFlags),
substitute(uninitializedThis, This, OperandStack, NextOperandStack),
substitute(uninitializedThis, This, Locals, NextLocals),
Next St ackFrane = frane(Next Local s, Next OperandStack, NextFl ags),
ExceptionSt ackFrame = frane(Locals, [], Flags).

instructionl sTypeSaf e(i nvokespeci al (CP), Environnment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
CP = met hod(Met hodCl assName, '<init>', Descriptor),
par seMet hodDescri pt or (Descri ptor, OperandArgList, void),
rever se(Oper andArgLi st, StackArglList),
canPop(St ackFrane, StackArgList, TenpFrane),
TenpFranme = frane(Locals, [uninitialized(Address) | OperandStack], Flags),
current d assLoader (Envi ronment, CurrentLoader),
rewittenUninitializedType(uninitialized(Address), Environnent,
cl ass(Met hodC assNanme, CurrentLoader), This),
rewittenlnitializationFlags(uninitialized(Address), Flags, NextFlags),
substitute(uninitialized(Address), This, OperandStack, NextQperandStack),
substitute(uninitialized(Address), This, Locals, NextLocals),
Next St ackFrane = frane(Next Local s, Next OperandStack, NextFl ags),
ExceptionSt ackFrame = frane(Locals, [], Flags),
passesPr ot ect edCheck(Envi ronnent, Methodd assName, '<init>",
Descri ptor, NextStackFrane).

To compute what type the uninitialized argument's type needs to be rewritten to,
there are two cases:

« If we are initializing an object within its constructor, its type is initialy
uni ni tiali zedThi s. This type will be rewritten to the type of the class of the
<i ni t > method.

293

4.10

294

Verification of cl ass Files THE cLAsS FILE FORMAT

» The second case arises from initialization of an object created by new. The

uninitialized arg typeisrewritten to Met hodd ass, the type of the method holder
of <i ni t >. We check whether there really is a new instruction at Addr ess.

rewittenUninitializedType(uninitializedThis, Environmnent,
Met hodd ass, Met hodd ass) : -
Met hodd ass = cl ass(Met hodd assNane, Current Loader),
t hi sA ass(Envi ronment, Methodd ass).

rewittenUninitializedType(uninitializedThis, Environnent,
Met hodd ass, Met hodd ass) : -
Met hodd ass = cl ass(Met hodd assNane, CurrentLoader),
thi sA ass(Environment, class(thisC assNane, thisLoader)),
super cl assChai n(t hi sCl assNane, thisLoader, [MethodC ass | Rest]).

rewittenUninitializedType(uninitialized(Address), Environment,
Met hodd ass, Met hodd ass) : -
al I I nstructions(Environnent, Instructions),
menber (i nstructi on(Address, new(Met hodCl ass)), Instructions).

rewittenlnitializationFlags(uninitializedThis, _Flags, []).
rewittenlnitializationFlags(uninitialized(_), Flags, Flags).

substitute(_Od, _New, [], []).

substitute(Od, New, [Od | FronRest], [New | ToRest]) :-
substitute(d d, New, FronmRest, ToRest).

substitute(d d, New, [Froml | FromRest], [Froml | ToRest]) :-
Fronl \= A d,
substitute(d d, New, FronmRest, ToRest).

The rule for invokespecial of an <i ni t > method is the sole motivation for passing back
adistinct exception stack frame. The concern is that when initializing an object within its
constructor, invokespecial can cause a superclass <i ni t > method to be invoked, and that
invocation could fail, leaving t hi s uninitialized. This situation cannot be created using
source code in the Java programming language, but can be created by programming in
bytecode directly.

In this situation, the original frame holds an uninitialized object in local variable 0 and has
flag f 1 agThi sUni ni t. Normal termination of invokespecial initializes the uninitialized
object and turns off thef | agThi suni ni t flag. Butif theinvocation of an <i ni t > method
throws an exception, the uninitialized object might be left in a partidly initialized state,
and needs to be made permanently unusable. This is represented by an exception frame
containing the broken object (the new value of the local) and the f1 agThi sUni ni t
flag (the old flag). There is no way to get from an apparently-initialized object bearing
the f 1 agThi sUni ni t flag to a properly initialized object, so the object is permanently
unusable.

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

If not for this situation, the flags of the exception stack frame would always be the same
as the flags of the input stack frame.

295

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

invokestatic invokestatic

An invokestatic instruction istype safe iff all of the following are true:

* Itsfirst operand, cp, refers to a constant pool entry denoting a method named
Met hodName With descriptor Descri pt or .

e Met hodNane iSnot <i ni t >.
* Met hodNane isnot <cl i ni t>.

* Onecanvalidly replace types matching the argument typesgivenin Descri pt or
on the incoming operand stack with the return type given in Descri ptor,
yielding the outgoing type state.

i nstructionl sTypeSaf e(i nvokestatic(CP), Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
CP = net hod(_Met hodCl assNanme, Met hodNanme, Descriptor),
Met hodNane \= '<init>',
Met hodNanme \= '<clinit>",
par seMet hodDescri pt or (Descri ptor, OperandArgList, ReturnType),
rever se(Oper andAr gLi st, StackArglList),
val i dTypeTransi ti on(Envi ronnent, StackArgList, ReturnType,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

296

THE cLAss FILE FORMAT Verification of cl ass Files

invokevirtual invokevirtual

An invokevirtual instruction is type safeiff all of the following are true:

* Its first operand, cpP, refers to a constant pool entry denoting a method
named Met hodName with descriptor Descri pt or that is a member of a class
Met hodCl assNare.

* Met hodNane iSnot <i nit >.
e Met hodNane isnot <cl i nit>.

* One can vdidly replace types matching the class Met hodd assNane and the
argument types given in Descri pt or on the incoming operand stack with the
return type given in Descri pt or, yielding the outgoing type state.

« If the method is pr ot ect ed, the usage conforms to the special rules governing
access to pr ot ect ed members (84.10.1.8).

instructionl sTypeSaf e(i nvokevirtual (CP), Environnment, _Ofset, StackFrane,

Next St ackFrane, ExceptionStackFrane) : -
CP = net hod(Met hodd assNane, Met hodNane, Descriptor),
Met hodNane \= '<init>",
Met hodNane \= '<clinit>",
par seMet hodDescri pt or (Descri ptor, OperandArgList, ReturnType),
rever se(Oper andAr gLi st, ArgList),
current C assLoader (Envi ronment, CurrentLoader),
reverse([cl ass(Methodd assName, CurrentlLoader) | OperandArgList],

St ackAr gLi st),
val i dTypeTransi ti on(Envi ronnent, StackArgList, ReturnType,
St ackFrame, Next St ackFrane),
canPop(St ackFrane, ArgList, PoppedFrane),
passesPr ot ect edCheck(Envi ronment, Met hodCl assNanme, Met hodNane,
Descri ptor, PoppedFrane),

excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

297

4.10

298

Verification of cl ass Files THE cLASS FILE FORMAT
lor, irem lor, irem

Anior instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i or, iadd).

Anireminstruction istype safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i rem i add).

THE cLAss FILE FORMAT Verification of cl ass Files

ireturn ireturn

An ireturn instruction is type safe if the enclosing method has a declared return
typeof i nt , and one can validly pop atype matchingi nt off theincoming operand
stack.

instructionl sTypeSafe(ireturn, Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnent, int),
canPop(StackFrane, [int], _PoppedStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

299

410 Verification of ol ass Files THE CLASS FILE FORMAT
ishl, ishr, iushr ishl, ishr, iushr

Anishl instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i shl, iadd).

Anishr instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i shr, iadd).

Aniushr instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i ushr, iadd).

300

THE cLAsS FILE FORMAT Verification of cl ass Files
Istore, istore_<n> Istore, istore_<n>

Anistoreinstruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ane, if a store instruction with operand | ndex and typei nt is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSafe(istore(lndex), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
storel sTypeSaf e(Envi ronnent, Index, int, StackFrane, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The ingtructions istore <n>, for 0 < n < 3, are type safe iff the equivalent istore
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i store_0, istore(0)).
i nstructi onHasEqui val ent TypeRul e(istore_1, istore(1l)).
i nstructi onHasEqui val ent TypeRul e(istore_2, istore(2)).
i nstructi onHasEqui val ent TypeRul e(i store_3, istore(3)).

4.10

301

4.10

302

Verification of cl ass Files THE cLAsS FILE FORMAT
Isub, ixor Isub, ixor

Anisub instruction istype safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i sub, iadd).

Anixor instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i xor, iadd).

THE cLAss FILE FORMAT Verification of cl ass Files

12d, 12f, 12i 12d, 12f, 12i

Anl2dinstructionistype safeif onecanvalidly pop1 ong off theincoming operand
stack and replace it with doubl e, yielding the outgoing type state.

instructionl sTypeSafe(l2d, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [l ong], doubl e,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Anl2finstruction istype safeif one canvalidly pop | ong off theincoming operand
stack and replace it with f | oat , yielding the outgoing type state.

instructionlsTypeSafe(l2f, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi tion(Environnent, [long], float,
St ackFrame, Next St ackFrane),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

An|2i instruction istype safeif one can validly pop | ong off theincoming operand
stack and replace it withi nt , yielding the outgoing type state.

instructionlsTypeSafe(l2i, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) :-
val i dTypeTransi ti on(Environnent, [long], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

4.10

303

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

ladd ladd

Anladdinstructionistype safeiff one can validly replace types matching | ong and
I ong on the incoming operand stack with | ong yielding the outgoing type state.

instructionl sTypeSafe(l add, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [long, long], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

304

THE cLAss FILE FORMAT Verification of cl ass Files

laload laload

An laload instruction is type safe iff one can validly replace types matching i nt
and array of | ong on the incoming operand stack with I ong yielding the outgoing
type state.

instructionl sTypeSaf e(l al oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [int, arrayOf(long)], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

305

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

land land

Anland instruction is type safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l and, | add).

306

THE cLAss FILE FORMAT Verification of cl ass Files

lastore lastore

Anlastoreinstructionistype safeiff one can validly pop typesmatching ! ong, i nt
and array of | ong off the incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(lastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [long, int, arrayOf(long)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

307

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

lcmp lcmp

A lcmpingtruction istype safe iff one can validly replace types matching | ong and
I ong on the incoming operand stack withi nt yielding the outgoing type state.

instructionl sTypeSafe(lcnp, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [long, long], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

308

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

lconst_<I> lconst_<I>

Anlconst_0instruction is type safe if one can validly push the typel ong onto the
incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(lconst_0, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [], |ong, StackFranme, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

An Iconst_1 instruction is type safe iff the equivalent Iconst_0 instruction is type
safe.

i nstructi onHasEqui val ent TypeRul e(l const _1, |const_0).

309

4.10

310

Verification of cl ass Files THE cLAsS FILE FORMAT

Idc, Idc_w, Idc2_w Idc, Idc_w, Idc2 w

Anldcinstruction with operand cp istype safeiff cP refersto a constant pool entry
denoting an entity of type Type, where Type iseitherint, float, String, d ass,
j ava. | ang. i nvoke. Met hodType, Or j ava. | ang. i nvoke. Met hodHandl e, and one
can validly push Type onto the incoming operand stack yielding the outgoing type
state.

instructionl sTypeSafe(ldc(CP), Environnent, _Ofset, StackFraneg,
Next St ackFrane, ExceptionStackFrane) : -

functor(CP, Tag, _),
i sBoot st raplLoader (BL),
menber ([Tag, Type], [

[int, int],

[float, float],

[string, class('javal/lang/String', BL)],

[cl assConst, class('javal/lang/Cass', BL)],

[met hodTypeConst, class('javal/l ang/i nvoke/ Met hodType', BL)],

[met hodHandl eConst, cl ass('javal/l ang/invoke/ Met hodHandl e', BL)],
DY
val i dTypeTransiti on(Environnent, [], Type, StackFranme, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Anldc_w instruction istype safe iff the equivalent Idc instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(1 dc_wWCP), 1dc(CP))

Anldc2_w instruction with operand cp istype safe iff cP refersto a constant pool
entry denoting an entity of type Tag, where Tag is either | ong or doubl e, and one
can validly push Tag onto the incoming operand stack yielding the outgoing type
state.

instructionl sTypeSafe(ldc2_wW CP), Environment, _COffset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
functor(CP, Tag, _),
menber (Tag, [l ong, double]),
val i dTypeTransiti on(Environnent, [], Tag, StackFrame, NextStackFrane),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

Idiv Idiv

Anldivinstruction is type safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(1di v, |add).

311

4.10

312

Verification of cl ass Files THE cLAsS FILE FORMAT

lload, lload <n> lload, lload_<n>

An lload instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ane, if aload instruction with operand | ndex and typel ong is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSafe(lload(lndex), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
| oadl sTypeSaf e(Envi ronment, |ndex, |ong, StackFranme, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The instructions lload_<n>, for 0 < n < 3, are type safe iff the equivaent lload
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(11 oad_0, |load(0)).
i nstructi onHasEqui val ent TypeRul e(l 1 oad_1, |load(1)).
i nstructi onHasEqui val ent TypeRul e(l 1 oad_2, |load(2)).
i nstructi onHasEqui val ent TypeRul e(l 1 oad_3, |load(3)).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

[mul [mul

AnImul instruction is type safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(| mul, | add).

313

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
Ineg Ineg

An Ineg instruction is type safe iff there is a type matching | ong on the incoming
operand stack. The Ineg instruction does not ater the type state.

instructionl sTypeSafe(l neg, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [long], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

314

THE cLAss FILE FORMAT Verification of cl ass Files 4.10
lookupswitch lookupswitch
A lookupswitchinstructionistypesafeif itskeysare sorted, onecanvalidly popi nt
off the incoming operand stack yielding a new type state Br anchst ackFr ame, and
all of theinstruction'stargets are valid branch targets assuming Br anchSt ackFr ane
astheir incoming type state.
instructionl sTypeSaf e(l ookupswi tch(Targets, Keys), Environment, _, StackFrane,

afterCoto, ExceptionStackFrane) :-
sort (Keys, Keys),
canPop(StackFrane, [int], BranchStackFrane),
checkl i st (targetlsTypeSafe(Environnent, BranchStackFrane), Targets),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

315

4.10

316

Verification of cl ass Files THE cLAsS FILE FORMAT

lor, Irem lor, Irem

A lor instruction is type safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l or, |add).

Anlreminstruction istype safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l rem | add).

THE cLAss FILE FORMAT Verification of cl ass Files

Ireturn Ireturn

Anlreturninstructionistype safeif the enclosing method hasadeclared returntype
of I ong, and one can validly pop atype matching | ong off the incoming operand
stack.

instructionl sTypeSafe(lreturn, Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnment, |ong),
canPop(St ackFrane, [long], _PoppedStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

317

4.10

318

Verification of cl ass Files THE cLAsS FILE FORMAT

Ishl, Ishr, lushr Ishl, Ishr, lushr

Anlshl instructionistype safeif one can validly replacethetypesi nt and i ong on
the incoming operand stack with the type ong yielding the outgoing type state.

instructionl sTypeSafe(lshl, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [int, long], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Anlshr instruction is type safe iff the equivalent Ishl instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l shr, 1shl).

An lushr ingtruction is type safe iff the equivalent Ishl instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l ushr, 1|shl).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

Istore, Istore <n> Istore, Istore <n>

An Istore instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ane, if a store instruction with operand | ndex and typel ong is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSafe(lstore(lndex), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
storel sTypeSaf e(Envi ronnent, Index, |ong, StackFranme, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The ingtructions Istore <n>, for 0 < n < 3, are type safe iff the equivalent Istore
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l store_0, |store(0)).
i nstructi onHasEqui val ent TypeRul e(l store_1, Istore(1l)).
i nstructi onHasEqui val ent TypeRul e(l store_2, Istore(2)).
i nstructi onHasEqui val ent TypeRul e(l store_3, Istore(3)).

319

4.10

320

Verification of cl ass Files THE cLAsS FILE FORMAT

Isub, Ixor Isub, Ixor

Anlsub instruction istype safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(| sub, | add).

An Ixor instruction is type safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l xor, |add).

THE cLAss FILE FORMAT Verification of cl ass Files

monitorenter, monitorexit monitorenter, monitorexit

A monitorenter instruction is type safe iff one can validly pop a type matching
r ef er ence Off the incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(nmonitorenter, _Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(St ackFrane, [reference], Next StackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

A monitorexit instruction is type safe iff the equivalent monitorenter instruction
istype safe.

i nstructi onHasEqui val ent TypeRul e(nonitorexit, nonitorenter).

4.10

321

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

multianewarray multianewarray

A multianewarray instruction with operands cP and Di mistype safeiff Cp refersto
a constant pool entry denoting an array type whose dimension is greater or equal
to Di m Di mis strictly positive, and one can validly replace bi mi nt types on the
incoming operand stack with the type denoted by cp yielding the outgoing type
state.

instructionl sTypeSafe(nultianewarray(CP, Dinm), Environment, _Offset,
St ackFranme, Next St ackFrane, ExceptionStackFrane) : -
CP = arrayOof (),
cl assDi mensi on(CP, D nension),
Di mension >= Dim
Dim> 0,
/* Make a list of DDmints */
findall (int, between(l, Dm _), IntList),
val i dTypeTransi ti on(Environnent, IntList, CP,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The dimension of an array type whose component typeis also an array typeisone
more than the dimension of its component type.

cl assDi nmensi on(arrayOX (X), Dinension) :-
cl assDi nensi on(X, Dimensionl),
Di mension is Dinmensionl + 1.

cl assDi nmension(_, Dinension) :-
Di mension = 0.

322

THE cLAss FILE FORMAT Verification of cl ass Files

new new

A new instruction with operand cP at offset Oifset is type safe iff cP
refers to a constant pool entry denoting a class or interface type, the type
uni nitialized(Ofset) doesnot appear in the incoming operand stack, and one
can validly push uninitialized(O fset) onto the incoming operand stack and
replaceuni ni ti al i zed(O f set) witht op intheincoming local variablesyielding
the outgoing type state.

instructionl sTypeSaf e(new(CP), Environnment, Ofset, StackFrane,
Next St ackFr ane, ExceptionStackFrane) :-

St ackFranme = franme(Local s, OperandStack, Flags),

CP =class(_,),

New tem = uninitialized(Ofset),

not Menber (Newl t em Oper andSt ack) ,

substitute(New tem top, Locals, Newl,ocals),

val i dTypeTransi ti on(Environnent, [], Newltem
frame(NewLocal s, OperandStack, Flags),
Next St ackFr ane) ,

excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

Thesubst i t ut e predicate is defined in the rule for invokespecial (8invokespecial).

4.10

323

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

newarray newarray

A newarray instruction with operand TypeCode is type safe iff TypeCode
corresponds to the primitive type El enent Type, and one can validly replace the
type i nt on the incoming operand stack with the type 'array of El enent Type',
yielding the outgoing type state.

i nstructionl sTypeSaf e(newarray(TypeCode), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
primtiveArrayl nfo(TypeCode, _TypeChar, El enentType, _VerifierType),
val i dTypeTransi tion(Environnent, [int], arrayCf (El enent Type),
St ackFrame, Next St ackFrane),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

The correspondence between type codes and primitive types is specified by the
following predicate:

primtiveArraylnfo(4, 0'Z, boolean, int).
primtiveArraylnfo(5 0'C, char, int).
primtiveArraylnfo(6, O0'F, float, float).
primtiveArraylnfo(7, 0'D, double, double).
primtiveArraylnfo(8, 0'B, byte, int).
primtiveArraylnfo(9, 0'S, short, int).
primtiveArraylnfo(10, 0'l, int, int).
primtiveArraylnfo(11, 0'J, |ong, I ong) .

324

THE cLAss FILE FORMAT Verification of cl ass Files

nop nop

A nop instruction is always type safe. The nop instruction does not affect the type
state.

instructionl sTypeSaf e(nop, _Environnment, _Ofset, StackFrane,
St ackFrame, ExceptionStackFranme) :-
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

325

4.10

326

Verification of cl ass Files THE cLAsS FILE FORMAT
pop, pop2 pop, pop2

A pop instruction is type safe iff one can validly pop a category 1 type off the
incoming operand stack yielding the outgoing type state.

instructionl sTypeSaf e(pop, _Environnment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
StackFrame = franme(Locals, [Type | Rest], Flags),
popCat egoryl1([Type | Rest], Type, Rest),
Next St ackFrane = frane(Local s, Rest, Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

A pop2 instruction is type safeiff it is atype safe form of the pop2 instruction.

i nstructionl sTypeSaf e(pop2, _Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
St ackFrame = frane(Local s, |nput OperandStack, Flags),
pop2SoneFor M sTypeSaf e(| nput Oper andSt ack, CQut put Oper andSt ack) ,
Next St ackFrane = frane(Local s, CQutput OperandStack, Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

A pop2 instruction is a type safe form of the pop2 instruction iff it is a type safe
form 1 pop2 instruction or atype safe form 2 pop2 instruction.

pop2SoneFor m sTypeSaf e(| nput Oper andSt ack, Qut put Oper andSt ack) : -
pop2For mLl sTypeSaf e(| nput Oper andSt ack, Qut put Oper andSt ack) .

pop2SoneFor m sTypeSaf e(| nput Oper andSt ack, CQut put Oper andSt ack) : -
pop2For n2l sTypeSaf e(| nput Oper andSt ack, Qut put Oper andSt ack) .

A pop2 instruction is a type safe form 1 pop2 instruction iff one can validly pop
two types of size 1 off theincoming operand stack yiel ding the outgoing type state.

pop2For nll sTypeSaf e([Typel, Type2 | Rest], Rest) :-
popCat egoryl1([Typel | Rest], Typel, Rest),
popCat egoryl1([Type2 | Rest], Type2, Rest).

A pop2 instruction is a type safe form 2 pop2 instruction iff one can validly pop a
type of size 2 off the incoming operand stack yielding the outgoing type state.

pop2For n2l sTypeSaf e([top, Type | Rest], Rest) :-
popCat egory2([top, Type | Rest], Type, Rest).

THE cLAss FILE FORMAT Verification of cl ass Files

putfield putfield

A puitfield instruction with operand cp is type safe iff all of the following are true:

» Its first operand, cp, refers to a constant pool entry denoting a field
whose declared type is Fiel dType, declared in a class Fi el dd assNane.
Fi el dd assName must not be an array type.

 Either:

— One can validly pop types matching Fi el dType and Fi el dd assNane off the
incoming operand stack yielding the outgoing type state.

— prot ect ed fields are subject to additional checks (84.10.1.8).

instructionl sTypeSafe(putfield(CP), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
CP = field(Fiel dd assNane, Fiel dName, Fiel dDescriptor),
par seFi el dDescri ptor (Fi el dDescriptor, Fiel dType),
canPop(St ackFrane, [Fiel dType], PoppedFrane),
passesPr ot ect edCheck(Envi ronment, Fi el dCl assNane, Fi el dNane,
Fi el dDescri ptor, PoppedFrane),
current C assLoader (Envi ronment, CurrentLoader),

canPop(St ackFrane, [Fiel dType, class(Fieldd assNane, CurrentLoader)],

Next St ackFr ane) ,
excepti onSt ackFr ame(St ackFrane, ExceptionSt ackFrane).

e Or:

— If the instruction occurs in an instance initialization method of the class
Fi el dd assNane, then one can validly pop types matching Fi el dType and
uni ni tializedThi s off the incoming operand stack yielding the outgoing
type state. This alows instance fields of t hi s that are declared in the current
classto be assigned prior to completeinitialization of t hi s.

instructionl sTypeSafe(putfiel d(CP), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
CP = field(Fieldd assNane, _Fi el dName, Fiel dDescriptor),
par seFi el dDescri ptor (Fi el dDescriptor, Fiel dType),
Envi ronnent = environment (Currentd ass, CurrentMethod, _, _, _, _),
Current C ass = cl ass(Fi el dCl assNane, _),
i sl nit(CurrentMethod),
canPop(St ackFrane, [Fiel dType, uninitializedThis], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

327

4.10

328

Verification of cl ass Files THE cLAsS FILE FORMAT

putstatic putstatic

A putstatic instruction with operand cp is type safe iff cP refers to a constant pool
entry denoting afield whose declared typeisFi el dType, and one can validly pop
atype matching Fi el dType off the incoming operand stack yielding the outgoing
type state.

instructionl sTypeSafe(putstatic(CP), _Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
CP = field(_Fiel dd assNane, _Fiel dNane, Fi el dDescriptor),
par seFi el dDescri ptor (Fi el dDescriptor, Fiel dType),
canPop(St ackFrane, [Fiel dType], Next StackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

return return

A return instruction is type safe if the enclosing method declares a voi d return
type, and either:

* The enclosing method is not an <i ni t > method, or

* thi s has already been completely initialized at the point where the instruction
occurs.

instructionlsTypeSafe(return, Environnent, _Ofset, StackFraneg,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnent, void),
StackFrame = frane(_Locals, _OperandStack, Flags),
not Menber (fl agThi sUninit, Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

329

4.10

330

Verification of cl ass Files THE cLAsS FILE FORMAT

saload saload

An saload instruction is type safe iff one can validly replace types matching i nt
and array of short on the incoming operand stack with i nt yielding the outgoing
type state.

instructionl sTypeSaf e(sal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [int, arrayOf (short)], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

sastore sastore

An sastoreinstruction istype safe iff one can validly pop types matchingi nt , i nt,
and array of short off theincoming operand stack yielding the outgoing type state.

instructionl sTypeSaf e(sastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [int, int, arrayOf(short)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

331

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
Sipush Sipush

An sipush instruction is type safe iff one can validly push the typei nt onto the
incoming operand stack yielding the outgoing type state.

i nstructionl sTypeSaf e(si push(_Val ue), Environnment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [], int, StackFrame, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

332

THE cLAss FILE FORMAT Verification of cl ass Files
swap swap

A swap instruction is type safe iff one can validly replace two category 1 types,
Typel and Type2, on the incoming operand stack with the types Type2 and Typel
yielding the outgoing type state.

i nstructionl sTypeSaf e(swap, _Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
StackFrame = frane(_Locals, [Typel, Type2 | Rest], _Flags),
popCat egoryl1([Typel | Rest], Typel, Rest),
popCat egory1([Type2 | Rest], Type2, Rest),
Next St ackFrane = franme(_Local s, [Type2, Typel | Rest], _Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

333

4.10

334

Verification of cl ass Files THE cLAsS FILE FORMAT

tableswitch tableswitch

A tableswitch instruction istype safeif its keys are sorted, one can validly popi nt
off the incoming operand stack yielding a new type state Br anchst ackFr ame, and
all of theinstruction'stargets are valid branch targets assuming Br anchSt ackFr ane
astheir incoming type state.

instructionl sTypeSafe(tabl eswitch(Targets, Keys), Environment, _Ofset,
St ackFrame, afterGoto, ExceptionStackFrane) :-
sort (Keys, Keys),
canPop(StackFrane, [int], BranchStackFrane),
checkl i st (targetlsTypeSafe(Environnent, BranchStackFrane), Targets),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

wide wide

The wide instructions follow the same rules as the instructions they widen.

i nstructi onHasEqui val ent TypeRul e(w de(W denedl nstructi on),
W denedl nstruction).

335

4.10

336

Verification of cl ass Files THE cLAsS FILE FORMAT

4.10.2 Verification by Type Inference

A cl ass file that does not contain a St ackMapTabl e attribute (which necessarily
has a version number of 49.0 or below) must be verified using type inference.

4.10.2.1 The Process of Verification by Type Inference

During linking, the verifier checks the code array of the code attribute for each
method of the cl ass file by performing data-flow analysis on each method. The
verifier ensuresthat at any given point in the program, no matter what code path is
taken to reach that point, all of the following are true:

» Theoperand stack is alwaysthe same size and contains the same types of values.

* No local variable is accessed unless it is known to contain a value of an
appropriate type.

» Methods are invoked with the appropriate arguments.

 Fields are assigned only using values of appropriate types.

« All opcodes have appropriately typed arguments on the operand stack and in the
local variable array.

For efficiency reasons, certain tests that could in principle be performed by the
verifier are delayed until thefirst time the code for the method is actually invoked.
In so doing, the verifier avoidsloading cl ass filesunlessit has to.

For example, if a method invokes another method that returns an instance of class A, and
that instance is assigned only to a field of the same type, the verifier does not bother to
check if the class A actually exists. However, if it is assigned to afield of the type B, the
definitions of both A and B must be loaded in to ensure that A is a subclass of B.

4.10.2.2 The Bytecode Verifier

The code for each method is verified independently. First, the bytes that make up
the code are broken up into a sequence of instructions, and the index into the code
array of the start of each instruction is placed in an array. The verifier then goes
through the code a second time and parses the instructions. During this pass a data
structure is built to hold information about each Java Virtual Machine instruction
in the method. The operands, if any, of each instruction are checked to make sure
they arevalid. For instance:

» Branches must be within the bounds of the code array for the method.

» The targets of al control-flow instructions are each the start of an instruction.
In the case of awide instruction, the wide opcode is considered the start of the

THE cLAss FILE FORMAT Verification of cl ass Files

instruction, and the opcode giving the operation modified by that wideinstruction
isnot considered to start aninstruction. Branchesinto the middle of aninstruction
are disallowed.

» No instruction can access or modify alocal variable at an index greater than or
equal to the number of local variables that its method indicates it allocates.

« All references to the constant pool must be to an entry of the appropriate type.
(For example, the instruction getfield must reference afield.)

» The code does not end in the middle of an instruction.
» Execution cannot fall off the end of the code.

» For each exception handler, the starting and ending point of code protected by
the handler must be at the beginning of aninstruction or, in the case of the ending
point, immediately past the end of the code. The starting point must be before
the ending point. The exception handler code must start at a valid instruction,
and it must not start at an opcode being modified by the wide instruction.

For each instruction of the method, the verifier records the contents of the operand
stack and the contents of the local variable array prior to the execution of that
instruction. For the operand stack, it needs to know the stack height and the type
of each value on it. For each local variable, it needs to know either the type of the
contents of that local variable or that the local variable contains an unusable or
unknown value (it might be uninitialized). The bytecode verifier does not need to
distinguish between the integral types (e.g., byt e, short, char) when determining
the value types on the operand stack.

Next, a data-flow analyzer is initialized. For the first instruction of the method,
the local variables that represent parameters initially contain values of the types
indicated by the method's type descriptor; the operand stack is empty. All other
local variables contain an illegal value. For the other instructions, which have not
been examined yet, no information is available regarding the operand stack or local
variables.

Finally, the data-flow analyzer is run. For each instruction, a "changed" bit
indicates whether thisinstruction needsto be looked at. Initially, the "changed” bit
is set only for the first instruction. The data-flow analyzer executes the following
loop:

1. Select a Java Virtua Machine instruction whose "changed” bit is set. If no
instruction remains whose "changed" hit is set, the method has successfully
been verified. Otherwise, turn off the "changed” bit of the selected instruction.

4.10

337

4.10

338

Verification of cl ass Files THE cLAsS FILE FORMAT

2. Modd theeffect of theinstruction on the operand stack and local variablearray
by doing the following:

If the instruction uses values from the operand stack, ensure that there are a
sufficient number of values on the stack and that the top values on the stack
are of an appropriate type. Otherwise, verification fails.

If theinstruction usesalocal variable, ensure that the specified local variable
contains avalue of the appropriate type. Otherwise, verification fails.

If the instruction pushes values onto the operand stack, ensure that there is
sufficient room on the operand stack for the new values. Add the indicated
types to the top of the modeled operand stack.

If theinstruction modifiesalocal variable, record that the local variable now
contains the new type.

3. Determine the instructions that can follow the current instruction. Successor
instructions can be one of the following:

Thenext instruction, if the current instruction is not an unconditional control
transfer instruction (for instance, goto, return, or athrow). Verification fails
if it ispossibleto "fall off" the last instruction of the method.

The target(s) of a conditional or unconditional branch or switch.

Any exception handlers for this instruction.

4. Merge the state of the operand stack and local variable array at the end of the
execution of the current instruction into each of the successor instructions, as
follows:

If thisisthe first time the successor instruction has been visited, record that
the operand stack and local variable values calculated in step 2 are the state
of the operand stack and local variable array prior to executing the successor
instruction. Set the "changed” bit for the successor instruction.

If the successor instruction has been seen before, merge the operand stack
and local variable values calculated in step 2 into the values already there.
Set the "changed" bit if there is any modification to the values.

In the special case of control transfer to an exception handler:

Record that a single abject, of the exception type indicated by the exception
handler, is the state of the operand stack prior to executing the successor
instruction. There must be sufficient room on the operand stack for thissingle
value, asif an instruction had pushed it.

THE cLAss FILE FORMAT Verification of cl ass Files

* Record that the local variable values from immediately before step 2 are the
state of the local variable array prior to executing the successor instruction.
Thelocal variable values calculated in step 2 areirrelevant.

5. Continue at step 1.

To mergetwo operand stacks, the number of valueson each stack must beidentical.
Then, corresponding values on the two stacks are compared and the value on the
merged stack is computed, as follows:

* If onevalueis aprimitive type, then the corresponding value must be the same
primitive type. The merged value is the primitive type.

« If one value is a non-array reference type, then the corresponding value must
be a reference type (array or non-array). The merged value is a reference to
an instance of the first common supertype of the two reference types. (Such a
reference type always exists because the type bj ect isasupertype of all class,
interface, and array types.)

For example, bj ect and String can be merged; the result is Obj ect . Similarly,
Obj ect and String[] can be merged; the result is again Obj ect . Even Obj ect and
int[] canbemerged, or Stringandint[];theresultisbj ect for both.

* If corresponding values are both array reference types, then their dimensions are
examined. If the array types have the same dimensions, then the merged value
isar ef er ence to an instance of an array type which is first common supertype
of both array types. (If either or both of the array types has a primitive element
type, then vj ect is used as the element type instead.) If the array types have
different dimensions, then the merged value is ar ef er ence to an instance of
an array type whose dimension is the smaller of the two; the element type is
Cl oneabl e Orj ava.io. Seri al i zabl e if the smaller array type was d oneabl e
Orjava.io. Serial i zabl e, and bj ect otherwise.

For example, bject[] and String[] can be merged; the result is Qbject[].
Cl oneabl e[] and String[] can be merged, or j ava.io. Serializable[] and
String[]; theresultisC oneabl e[] andjava.io. Seri al i zabl e[] respectively.
Evenint[] andString[] canbemerged; theresult is Cbj ect [], because bj ect is
used instead of i nt when computing the first common supertype.

Since the array types can have different dimensions, Obj ect[] and String[][] can
be merged, or Qbject[][] and String[]; in both cases the result is Obj ect[].
Cloneabl e[] and String[][] can be merged; the result is Cl oneabl e[] . Finaly,
Cloneabl e[][] andString[] canbe merged; the result isObj ect[].

If the operand stacks cannot be merged, verification of the method fails.

4.10

339

4.10

340

Verification of cl ass Files THE cLAsS FILE FORMAT

To merge two local variable array states, corresponding pairs of local variables
are compared. The value of the merged local variable is computed using the rules
above, except that the corresponding values are permitted to be different primitive
types. In that case, the verifier records that the merged local variable contains an
unusable value.

If the data-flow analyzer runs on a method without reporting a verification failure,
then the method has been successfully verified by the cl ass file verifier.

Certain instructions and data types complicate the data-flow analyzer. We now
examine each of these in more detail.

4.10.2.3 Valuesof Types| ong and doubl e

Vaues of the 1 ong and doubl e types are treated specialy by the verification
process.

Whenever a value of typel ong or doubl e ismoved into alocal variable at index
n, index n+1 is specialy marked to indicate that it has been reserved by the value
at index n and must not be used as alocal variable index. Any value previously at
index n+1 becomes unusable.

Whenever avalueismoved to alocal variable at index n, theindex n-1 isexamined
to seeif it isthe index of avaue of typel ong or doubl e. If so, the local variable
at index n-1 is changed to indicate that it now contains an unusable value. Since
the local variable at index n has been overwritten, the local variable at index n-1
cannot represent avalue of typel ong or doubl e.

Dealing with values of types| ong or doubl e on the operand stack is simpler; the
verifier treatsthem as single values on the stack. For example, the verification code
for the dadd opcode (add two doubl e values) checks that the top two items on the
stack are both of type doubl e. When calculating operand stack length, values of
typel ong and doubl e have length two.

Untyped instructions that manipulate the operand stack must treat values of type
I ong and doubl e asatomic (indivisible). For example, the verifier reports afailure
if the top value on the stack is adoubl e and it encounters an instruction such as
pop or dup. The instructions pop2 or dup2 must be used instead.

4.10.2.4 Instance Initialization Methods and Newly Created Objects

Creating anew class instance is a multistep process. The statement:

new myd ass(i, j, k);

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

can be implemented by the following:

new #1 /1 Al'locate uninitialized space for nyd ass
dup /1 Duplicate object on the operand stack
iload_1 /1 Push i

iload_2 /1 Push j

iload 3 /1l Push k

i nvokespecial #5 // lInvoke nmydass.<init>

This instruction sequence leaves the newly created and initialized object on top of
the operand stack. (Additional examples of compilation to the instruction set of the
JavaVirtual Machine are given in 83 (Compiling for the Java Virtual Machine).)

The instance initialization method (82.9.1) for class nyd ass sees the new
uninitialized object asitst hi s argument in local variable 0. Before that method
invokes another instance initialization method of nyd ass or its direct superclass
on t hi s, the only operation the method can perform on t hi s is assigning fields
declared within nyd ass.

When doing dataflow analysis on instance methods, the verifier initializes local
variable 0 to contain an object of the current class, or, for instance initialization
methods, local variable 0 contains aspecial type indicating an uninitialized object.
After an appropriate instance initiaization method is invoked (from the current
class or its direct superclass) on this object, al occurrences of this specia type
on the verifier's model of the operand stack and in the local variable array are
replaced by the current class type. The verifier rejects code that uses the new
object before it has been initialized or that initializes the object more than once. In
addition, it ensures that every normal return of the method has invoked an instance
initialization method either in the class of this method or in the direct superclass.

Similarly, aspecial typeiscreated and pushed on the verifier'smodel of the operand
stack as the result of the Java Virtual Machine instruction new. The specia type
indicates the instruction by which the class instance was created and the type of
the uninitialized class instance created. When an instance initialization method
declared in the class of the uninitialized class instance is invoked on that class
instance, al occurrences of the specia type are replaced by the intended type of
the class instance. This change in type may propagate to subsequent instructions
as the dataflow analysis proceeds.

The instruction number needs to be stored as part of the specia type, as there
may be multiple not-yet-initialized instances of a class in existence on the operand
stack at onetime. For example, the Java Virtual Machine instruction sequence that
implements:

341

4.10

342

Verification of cl ass Files THE cLAsS FILE FORMAT

new | nput St ream(new Foo(), new InputStrean("foo"))

may havetwo uninitialized instances of | nput St r eamon the operand stack at once.
When an instance initialization method is invoked on a class instance, only those
occurrences of the special type on the operand stack or in the local variable array
that are the same abject as the class instance are replaced.

4.10.25 Exceptionsandfinally

To implement the t ry-final I y construct, a compiler for the Java programming
language that generates cl ass files with version number 50.0 or below may use
the exception-handling facilities together with two special instructions: jsr ("jump
to subroutine") and ret ("return from subroutine”). Thefi nal | y clauseis compiled
as a subroutine within the Java Virtual Machine code for its method, much like the
code for an exception handler. When ajsr instruction that invokes the subroutineis
executed, it pushesitsreturn address, the address of the instruction after the jsr that
is being executed, onto the operand stack as a value of typer et ur nAddr ess. The
code for the subroutine stores the return address in alocal variable. At the end of
the subroutine, aret instruction fetches the return address from the local variable
and transfers control to the instruction at the return address.

Control can be transferred to the final Iy clause (the final I y subroutine can
be invoked) in several different ways. If thetry clause completes normally, the
final l'y subroutine is invoked via a jsr instruction before evaluating the next
expression. A br eak or cont i nue insidethet ry clausethat transfers control outside
the try clause executes a jsr to the code for the fi nal I y clause first. If thetry
clause executes areturn, the compiled code does the following:

1. Savesthereturnvalue (if any) in alocal variable.
2. Executesajsr to the codefor thefinal Iy clause.

3. Upon return from the final Iy clause, returns the value saved in the local
variable.

The compiler sets up a special exception handler, which catches any exception
thrown by thet ry clause. If an exceptionisthrowninthet ry clause, thisexception
handler does the following:

1. Savestheexceptioninalocal variable.
2. Executesajsr tothefinal |y clause.

3. Uponreturn fromthefinal | y clause, rethrows the exception.

For more information about the implementation of thet ry-fi nal | y construct, see §3.13.

THE cLAss FILE FORMAT Verification of cl ass Files

Thecodefor thef i nal | y clause presentsaspecia problemto theverifier. Usually,
if a particular instruction can be reached via multiple paths and a particular local
variable contains incompatible values through those multiple paths, then the local
variable becomes unusable. However, a final Iy clause might be called from
several different places, yieding severa different circumstances:

» Theinvocation from the exception handler may have acertain local variable that
contains an exception.

* Theinvocation to implement return may have some local variable that contains
thereturn value.

» The invocation from the bottom of the t ry clause may have an indeterminate
valuein that same local variable.

Thecodefor thefi nal | y clauseitself might passverification, but after completing
the updating all the successors of theret instruction, the verifier would note that the
local variable that the exception handler expects to hold an exception, or that the
return code expects to hold areturn value, now contains an indeterminate value.

Verifying code that contains afinal Iy clause is complicated. The basic idea is
the following:

e Each instruction keeps track of the list of jsr targets needed to reach that
instruction. For most code, thislist isempty. For instructionsinside code for the
final |y clause, itisof length one. For multiply nestedf i nal I y code (extremely
rarel), it may be longer than one.

 For each instruction and each jsr needed to reach that instruction, a bit vector
ismaintained of all local variables accessed or modified since the execution of
the jsr instruction.

» When executing theret instruction, whichimplementsareturn from asubroutine,
there must be only one possible subroutine from which the instruction can be
returning. Two different subroutines cannot "merge” their execution to asingle
ret instruction.

e To perform the data-flow analysis on a ret instruction, a specia procedure is
used. Since the verifier knows the subroutine from which the instruction must be
returning, it can find all thejsr instructionsthat call the subroutine and mergethe
state of the operand stack and local variable array at thetime of theret instruction
into the operand stack and local variable array of the instructions following the
jsr. Merging uses a special set of valuesfor loca variables:

4.10

343

411 Limitations of the Java Virtual Machine THE cLASS FILE FORMAT

— For any local variablethat the bit vector (constructed above) indicates has been
accessed or modified by the subroutine, use the type of the local variable at
thetime of theret.

— For other local variables, use the type of the local variable before the jsr
instruction.

411 Limitationsof theJava Virtual Machine

The following limitations of the Java Virtual Machine are implicit in the cl ass
file format:

The per-class or per-interface constant pool islimited to 65535 entries by the 16-
bit const ant _pool _count field of the d assFi | e structure (84.1). This acts as
an internal limit on the total complexity of asingle class or interface.

The number of fields that may be declared by a class or interface is limited to
65535 by the size of thefi el ds_count item of the d assFi | e structure (84.1).

Note that the value of thefi el ds_count item of the d assFi | e structure does
not include fields that are inherited from superclasses or superinterfaces.

The number of methods that may be declared by aclass or interfaceislimited to
65535 by the size of the met hods_count item of the d assFi | e structure (84.1).

Note that the value of the net hods_count item of the d assFi | e structure does
not include methods that are inherited from superclasses or superinterfaces.

The number of direct superinterfaces of a class or interface is limited to 65535
by the size of thei nt er f aces_count item of the d assFi | e structure (84.1).

The greatest number of local variables in the local variables array of a frame
created upon invocation of amethod (82.6) islimited to 65535 by the size of the
max_| ocal s item of the Code attribute (84.7.3) giving the code of the method,
and by the 16-hit local variable indexing of the Java Virtua Machine instruction
Set.

Note that values of type I ong and doubl e are each considered to reserve two
local variables and contribute two units toward the max_| ocal s value, so use of
local variables of those types further reduces this limit.

The size of an operand stack in aframe (82.6) islimited to 65535 values by the
max_st ack field of the Code attribute (84.7.3).

THE cLAsS FILE FORMAT Limitations of the Java Virtual Machine

Note that values of type| ong and doubl e are each considered to contribute two
unitstoward the max_st ack value, so use of values of these types on the operand
stack further reduces this limit.

The number of method parametersislimited to 255 by the definition of amethod
descriptor (84.3.3), where the limit includes one unit for t hi s in the case of
instance or interface method invocations.

Notethat amethod descriptor isdefined in terms of anotion of method parameter
length in which a parameter of typel ong or doubl e contributes two units to the
length, so parameters of these types further reduce the limit.

The length of field and method names, field and method descriptors, and other
constant string values (including those referenced by Const ant val ue (84.7.2)
attributes) is limited to 65535 characters by the 16-bit unsigned | engt h item of
the CONSTANT_Ut f 8_i nf o structure (84.4.7).

Note that the limit is on the number of bytes in the encoding and not on
the number of encoded characters. UTF-8 encodes some characters using two
or three bytes. Thus, strings incorporating multibyte characters are further
constrained.

The number of dimensions in an array is limited to 255 by the size of the
dimensions opcode of the multianewarray instruction and by the constraints
imposed on the multianewarray, anewarray, and newarray instructions (84.9.1,
§4.9.2).

411

345

CHAPTER5

Loading, Linking, and
Initializing

T HE Java Virtual Machine dynamically loads, links and initializes classes and
interfaces. Loading is the process of finding the binary representation of a class
or interface type with a particular name and creating a class or interface from
that binary representation. Linking is the process of taking a class or interface and
combining it into the run-time state of the Java Virtua Machine so that it can be
executed. Initialization of a class or interface consists of executing the class or
interface initialization method <cl i ni t > (82.9.2).

In this chapter, 85.1 describes how the Java Virtual Machine derives symbolic
references from the binary representation of a class or interface. 85.2 explains
how the processes of loading, linking, and initialization are first initiated by the
Java Virtual Machine. 85.3 specifies how binary representations of classes and
interfaces are loaded by class loaders and how classes and interfaces are created.
Linking isdescribed in 85.4. 85.5 details how classes and interfaces are initialized.
85.6 introduces the notion of binding native methods. Finally, 85.7 describes when
aJava Virtual Machine exits.

5.1 TheRun-Time Constant Pool

The Java Virtual Machine maintains a per-type constant pool (82.5.5), arun-time
datastructurethat serves many of the purposesof the symbol table of aconventional
programming language implementation.

Theconst ant _pool table(84.4) inthe binary representation of a class or interface
is used to construct the run-time constant pool upon class or interface creation
(85.3). All references in the run-time constant pool are initially symbolic. The

347

51

348

The Run-Time Constant Pool LOADING, LINKING, AND INITIALIZING

symbolic references in the run-time constant pool are derived from structures in
the binary representation of the class or interface as follows:

* A symbolic reference to a class or interface is derived from a
CONSTANT_d ass_i nf o structure (84.4.1) in the binary representation of a class
or interface. Such areference givesthe name of the class or interface in the form
returned by the d ass. get Nane method, that is:

— For anonarray class or an interface, the name is the binary name (84.2.1) of
the class or interface.

— For an array class of n dimensions, the name begins with n occurrences of the
ASCII "[" character followed by arepresentation of the element type:

> If theelement typeisaprimitivetype, it isrepresented by the corresponding
field descriptor (84.3.2).

> Otherwise, if the element type is a reference type, it is represented by the
ASCII "L" character followed by the binary name (84.2.1) of the element
type followed by the ASCII *;" character.

Whenever this chapter refers to the name of a class or interface, it should be
understood to be in the form returned by the O ass. get Name method.

» A symbolic reference to a field of a class or an interface is derived from a
CONSTANT_Fi el dref _i nf o structure (84.4.2) in the binary representation of a
class or interface. Such a reference gives the name and descriptor of the field,
as well as a symbolic reference to the class or interface in which the field is to
be found.

« A symbolic reference to a method of a class is derived from a
CONSTANT_Met hodr ef _i nf o structure (84.4.2) in the binary representation of a
class or interface. Such areference gives the name and descriptor of the method,
aswell as asymbolic reference to the class in which the method is to be found.

* A symbolic reference to a method of an interface is derived from
a CONSTANT_I nterfaceMet hodref _info structure (84.4.2) in the binary
representation of a class or interface. Such a reference gives the name and
descriptor of theinterface method, aswell asasymbolic referencetotheinterface
in which the method isto be found.

* A symbolic reference to a method handle is derived from a
CONSTANT_Met hodHandl e_i nf o structure (84.4.8) in the binary representation of
aclass or interface. Such areference gives a symbolic reference to afield of a
class or interface, or amethod of aclass, or amethod of an interface, depending
on the kind of the method handle.

LOADING, LINKING, AND INITIALIZING The Run-Time Constant Pool 51

* A symbolic reference to a method type is derived from a
CONSTANT_Met hodType_i nf o structure (84.4.9) in the binary representation of a
class or interface. Such areference gives a method descriptor (84.3.3).

* A symbolic reference to a call site specifier is derived from a
CONSTANT_I nvokeDynani c_i nf o structure (84.4.10) in the binary representation
of aclassor interface. Such areference gives:

— a symbolic reference to a method handle, which will serve as a bootstrap
method for an invokedynamic instruction (8invokedynamic);

— a sequence of symbolic references (to classes, method types, and method
handles), string literals, and run-time constant valueswhich will serve asstatic
arguments to a bootstrap method;

— amethod name and method descriptor.

In addition, certain run-time values which are not symbolic references are derived
from itemsfound in the const ant _pool table:

» A string literal isareference to an instance of class String, and is derived
from aCONSTANT_St ri ng_i nf o structure (84.4.3) in the binary representation of
aclassor interface. The CONSTANT_St ri ng_i nf o structure gives the sequence of
Unicode code points constituting the string literal.

The Java programming language requires that identical string literals (that
is, literals that contain the same sequence of code points) must refer to the
same instance of class string (JLS 83.10.5). In addition, if the method
String.intern iscaled on any string, the result is aref er ence to the same
classinstance that would be returned if that string appeared asaliteral. Thus, the
following expression must have the valuet r ue:

("a" + "b" + "c").intern() == "abc"

To derive a string literal, the Java Virtual Machine examines the sequence of
code points given by the CONSTANT_St ri ng_i nf o structure.

— If the method sString. i ntern has previously been called on an instance of
class stri ng containing a sequence of Unicode code points identical to that
given by the CONSTANT_St ri ng_i nf o structure, then the result of string literal
derivationisar ef er ence to that ssme instance of class St ri ng.

— Otherwise, anew instance of class St ri ng is created containing the sequence
of Unicode code points given by the CONSTANT String_i nfo structure; a
r ef er ence tothat classinstanceistheresult of string literal derivation. Finally,
thei nt er n method of the new st ri ng instance is invoked.

349

5.2

350

Java Virtual Machine Startup LOADING, LINKING, AND INITIALIZING

* Run-time constant values are derived from CONSTANT | nteger info,
CONSTANT_FI oat _i nfo, CONSTANT_Long_i nfo, OrF CONSTANT_Doubl e_i nfo
structures (84.4.4, 84.4.5) in the binary representation of a class or interface.

Note that CONSTANT_FI oat _i nf o structures represent valuesin |EEE 754 single
format and CONSTANT_Doubl e_i nf o structures represent values in IEEE 754
double format (84.4.4, 84.4.5). The run-time constant values derived from these
structures must thus be values that can be represented using |EEE 754 single and
double formats, respectively.

The remaining structures in the constant_pool table of the binary
representation of a class or interface - the CONSTANT_NaneAndType_i nfo and
CONSTANT_Ut f 8_i nf o structures (84.4.6, 84.4.7) - are only used indirectly when
deriving symbolic references to classes, interfaces, methods, fields, method types,
and method handles, and when deriving string literals and call site specifiers.

5.2 JavaVirtual Machine Startup

The Java Virtual Machine starts up by creating an initial class or interface using
the bootstrap class loader (85.3.1) or a user-defined class|oader (85.3.2). The Java
Virtual Machine then links the initial class or interface, initializes it, and invokes
thepubl i c stati c method voi d mai n(String[]). Theinvocation of this method
drives al further execution. Execution of the Java Virtual Machine instructions
constituting the mai n method may cause linking (and consequently creation) of
additional classes and interfaces, as well asinvocation of additional methods.

Theinitia class or interface is specified in an implementation-dependent manner.
For example, the initial class or interface could be provided as a command line
argument. Alternatively, the implementation of the Java Virtua Machine could
itself provide an initial class that sets up a class loader which in turn loads an
application. Other choices of the initial class or interface are possible so long as
they are consistent with the specification given in the previous paragraph.

5.3 Creation and Loading

Creation of aclassor interface ¢ denoted by the name N consists of the construction
in the method area of the Java Virtual Machine (82.5.4) of an implementation-
specific internal representation of C. Class or interface creation is triggered by
another class or interface D, which references C through its run-time constant pool.

LOADING, LINKING, AND INITIALIZING Creation and Loading

Class or interface creation may also be triggered by D invoking methodsin certain
Java SE Platform class libraries (82.12) such as reflection.

If cisnot anarray class, itiscreated by loading abinary representation of (84 (The
cl ass File Format)) using a class loader. Array classes do not have an external
binary representation; they are created by the Java Virtual Machine rather than by
aclass loader.

There aretwo kinds of class|oaders: the bootstrap class|oader supplied by the Java
Virtual Machine, and user-defined class|oaders. Every user-defined classloader is
an instance of a subclass of the abstract class d assLoader . Applications employ
user-defined class loaders in order to extend the manner in which the Java Virtual
Machine dynamically loads and thereby creates classes. User-defined classloaders
can be used to create classes that originate from user-defined sources. For example,
a class could be downloaded across a network, generated on the fly, or extracted
from an encrypted file.

A class loader L may create C by defining it directly or by delegating to another
classloader. If L creates C directly, we say that L defines C or, equivalently, that L
isthe defining loader of C.

When one class|oader delegatesto another class|oader, the loader that initiatesthe
loading is not necessarily the same loader that completes the loading and defines
the class. If L creates C, either by defining it directly or by delegation, we say that
L initiates loading of C or, equivalently, that L is an initiating loader of C.

At run time, aclass or interface is determined not by its name alone, but by a pair:
its binary name (84.2.1) and its defining class loader. Each such class or interface
belongsto asinglerun-time package. Therun-time package of aclassor interfaceis
determined by the package name and defining class|oader of the class or interface.

The Java Virtual Machine uses one of three proceduresto create class or interface
C denoted by N:

* If N denotes a nonarray class or an interface, one of the two following methods
is used to load and thereby create C:

— |f bwas defined by the bootstrap class loader, then the bootstrap class |oader
initiates loading of C (85.3.1).

— If D was defined by a user-defined class loader, then that same user-defined
class loader initiates loading of C (85.3.2).

» Otherwise N denotes an array class. An array class is created directly by the
JavaVirtual Machine (85.3.3), not by aclassloader. However, the defining class
loader of Disused in the process of creating array classC.

5.3

351

5.3

352

Creation and Loading LOADING, LINKING, AND INITIALIZING

If an error occurs during class loading, then an instance of a subclass of
Li nkageEr r or must bethrown at apoint in the program that (directly or indirectly)
uses the class or interface being loaded.

If the Java Virtual Machine ever attempts to load a class C during verification
(85.4.1) or resolution (85.4.3) (but not initialization (85.5)), and the class loader
that isusedtoinitiateloading of cthrowsaninstance of d assNot FoundExcept i on,
then the Java Virtual Machine must throw an instance of NoC assDef FoundEr r or
whose cause is the instance of d assNot FoundExcept i on.

(A subtlety here is that recursive class loading to load superclasses is performed
as part of resolution (85.3.5, step 3). Therefore, a d assNot FoundExcept i on that
results from a class loader failing to load a superclass must be wrapped in a
Nod assDef FoundError.)

A well-behaved class loader should maintain three properties:

« Given the same name, a good class loader should always return the same d ass object.

« If aclassloader L, delegatesloading of aclass Cto another loader L, then for any type
T that occurs as the direct superclass or a direct superinterface of C, or as the type of a
field in C, or asthe type of aformal parameter of a method or constructor in C, or asa
return type of amethod in C, L; and L, should return the same Cl ass object.

« If auser-defined classloader prefetches binary representations of classes and interfaces,
or loads a group of related classes together, then it must reflect loading errors only at
pointsin the program wherethey could have arisen without prefetching or group loading.

We will sometimes represent a class or interface using the notation <N, L4>, where
N denotes the name of the class or interface and L4 denotes the defining loader of
the class or interface.

We will also represent a class or interface using the notation N, where N denotes
the name of the class or interface and L; denotes an initiating loader of the class
or interface.

5.3.1 Loading Usingthe Bootstrap Class L oader

The following steps are used to load and thereby create the nonarray class or
interface ¢ denoted by N using the bootstrap class loader.

First, the Java Virtual Machine determines whether the bootstrap class loader has
aready been recorded as an initiating loader of a class or interface denoted by N. If
0, thisclass or interface is C, and no class creation is necessary.

Otherwise, the Java Virtua Machine passes the argument N to an invocation of a
method on the bootstrap class loader to search for a purported representation of C

LOADING, LINKING, AND INITIALIZING Creation and Loading

in aplatform-dependent manner. Typically, aclass or interface will be represented
using afilein ahierarchical file system, and the name of the class or interface will
be encoded in the pathname of thefile.

Note that there is no guarantee that a purported representation found is valid or is
arepresentation of C. This phase of loading must detect the following error:

 If no purported representation of C is found, loading throws an instance of
Cl assNot FoundExcepti on.

Then the Java Virtual Machine attempts to derive a class denoted by N using the
bootstrap class loader from the purported representation using the algorithm found
in 85.3.5. That classiscC.

5.3.2 Loading Using a User-defined Class L oader

The following steps are used to load and thereby create the nonarray class or
interface C denoted by N using a user-defined class loader L.

First, the Java Virtual Machine determines whether L has already been recorded as
an initiating loader of a class or interface denoted by N. If so, this class or interface
isC, and no class creation is necessary.

Otherwise, the Java Virtual Machine invokes | oadd ass(N) on L. The value
returned by the invocation is the created class or interface c. The Java Virtual
Machine then records that L is an initiating loader of C (85.3.4). The remainder of
this section describes this process in more detail.

When thel oadd ass method of the class loader L isinvoked with the name N of a
classor interface cto beloaded, L must perform one of thefollowing two operations
inorder to load C:

1. Theclassloader L can create an array of bytes representing C as the bytes of
ad assFi | e structure (84.1); it then must invoke the method def i ned ass of
class d assLoader . Invoking def i ne ass causes the Java Virtual Machine
to derive aclass or interface denoted by N using L from the array of bytes using
the algorithm found in 85.3.5.

2. Theclassloader L can delegate the loading of C to some other class loader L.
This is accomplished by passing the argument N directly or indirectly to an
invocation of amethod on L' (typically thel oadd ass method). The result of
theinvocationisc.

Ineither (1) or (2), if the classloader L isunableto load aclass or interface denoted
by N for any reason, it must throw an instance of d assNot FoundExcept i on.

5.3

353

5.3

354

Creation and Loading LOADING, LINKING, AND INITIALIZING

Since JDK release 1.1, Oracle’s Java Virtual Machine implementation has invoked the
| oadd ass method of a class loader in order to cause it to load a class or interface.
The argument to | oadCl ass is the name of the class or interface to be loaded. There is
also a two-argument version of the | oadCl ass method, where the second argument is a
bool ean that indicates whether the class or interface is to be linked or not. Only the two-
argument version was supplied in JDK release 1.0.2, and Oracle’s Java Virtual Machine
implementation relied on it to link the loaded class or interface. From JDK release 1.1
onward, Oracle’ s JavaVirtual Machineimplementation linksthe class or interface directly,
without relying on the class loader.

5.3.3 Creating Array Classes

The following steps are used to create the array class C denoted by N using class
loader L. Class loader L may be either the bootstrap class |oader or a user-defined
class loader.

If L hasalready been recorded asaninitiating loader of an array classwith the same
component type as N, that classis C, and no array class creation is necessary.

Otherwise, the following steps are performed to create C:

1. If thecomponent typeisar ef er ence type, the algorithm of this section (85.3)
is applied recursively using class loader L in order to load and thereby create
the component type of C.

2. The Java Virtual Machine creates a new array class with the indicated
component type and number of dimensions.

If the component typeisar ef er ence type, Cismarked as having been defined
by the defining class loader of the component type. Otherwise, Cis marked as
having been defined by the bootstrap class loader.

In any case, the Java Virtual Machine then recordsthat L is an initiating loader
for C (85.3.4).

If the component type is a ref erence type, the accessibility of the array
classis determined by the accessibility of its component type. Otherwise, the
accessibility of the array classispubl i c.

5.3.4 Loading Constraints

Ensuring type safelinkagein the presence of classloadersrequiresspecial care. Itis
possible that when two different classloadersinitiate loading of aclassor interface
denoted by N, the name N may denote a different class or interface in each loader.

When aclass or interface C = <Ny, L;> makes a symbolic reference to a field or
method of another class or interface D = <N, L,>, the symbolic reference includes

LOADING, LINKING, AND INITIALIZING Creation and Loading

a descriptor specifying the type of the field, or the return and argument types of
the method. It is essential that any type name N mentioned in the field or method
descriptor denote the same class or interface when loaded by L; and when loaded
by L,.

To ensure this, the Java Virtual Machine imposes loading constraints of the form
N1 = N-2 during preparation (85.4.2) and resolution (85.4.3). To enforce these
constraints, the Java Virtual Machine will, at certain prescribed times (see 85.3.1,
85.3.2, 85.3.3, and 85.3.5), record that a particular loader is an initiating loader of
a particular class. After recording that a loader is an initiating loader of a class,
the Java Virtual Machine must immediately check to seeif any loading constraints
are violated. If so, the record is retracted, the Java Virtual Machine throws a
Li nkageEr r or, and the loading operation that caused the recording to take place
fails.

Similarly, after imposing a loading constraint (see §85.4.2, 85.4.3.2, §5.4.3.3, and
85.4.3.4), the Java Virtua Machine must immediately check to seeif any loading
constraintsareviolated. If so, the newly imposed loading constraint isretracted, the
Java Virtua Machine throws a Li nkageEr r or, and the operation that caused the
constraint to be imposed (either resolution or preparation, asthe case may be) fails.

The situations described here are the only times at which the Java Virtual Machine
checks whether any loading constraints have been violated. A loading constraint is
violated if, and only if, all the following four conditions hold:

» Thereexistsaloader L suchthat L hasbeen recorded by the JavaVirtual Machine
as an initiating loader of aclass c named N.

» Thereexistsaloader L' suchthat L' hasbeenrecorded by the JavaVirtual Machine
as an initiating loader of aclass Cc' named N.

* Theequivalencerelation defined by the (transitive closure of the) set of imposed
constraintsimplies N = N-.

e CZC"

A full discussion of classloaders and type safety is beyond the scope of this specification.
For a more comprehensive discussion, readers are referred to Dynamic Class Loading in
the Java Virtual Machine by Sheng Liang and Gilad Bracha (Proceedings of the 1998
ACM S GPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications).

5.3

355

5.3

356

Creation and Loading LOADING, LINKING, AND INITIALIZING

5.3.5 DerivingaClassfrom acl ass File Representation

The following steps are used to derive a d ass object for the nonarray class or
interface C denoted by N using loader L from a purported representation in cl ass
file format.

1. First, the JavaVirtua Machine determineswhether it has already recorded that
L isaninitiating loader of a class or interface denoted by N. If so, this creation
attempt isinvalid and loading throws a Li nkageEr r or .

2. Otherwise, the Java Virtua Machine attempts to parse the purported
representation. However, the purported representation may not in fact be a
valid representation of C.

This phase of loading must detect the following errors:

* If the purported representation is not a C assFi | e structure (84.1, §4.8),
loading throws an instance of d assFor mat Er r or .

» Otherwise, if the purported representation is not of a supported
maor or minor version (84.1), loading throws an instance of
Unsupport edC assVer si onError.

Unsuppor t edd assVer si onError, a subclass of d assFormat Error, was
introduced to enable easy identification of a O assFormat Error caused by
an attempt to load a class whose representation uses an unsupported version
of the class file format. In JDK release 1.1 and earlier, an instance of
NoCl assDef FoundError or C assFormat Error was thrown in case of an
unsupported version, depending on whether the class was being loaded by the
system class loader or a user-defined class |oader.

» Otherwise, if the purported representation does not actually represent a

class named N, loading throws an instance of Nod assDef FoundEr r or OF an
instance of one of its subclasses.

This occurs when the purported representation has either at hi s_cl ass item
which specifies a name other than N, or an access_f 1 ags item which has
the ACC_MODULE flag set.

3. If chasadirect superclass, the symbolic referencefrom ctoitsdirect superclass
isresolved using the algorithm of 85.4.3.1. Notethat if cisan interface it must
have bj ect as its direct superclass, which must already have been loaded.
Only oj ect has no direct superclass.

Any exceptions that can be thrown due to class or interface resolution can be
thrown as a result of this phase of loading. In addition, this phase of loading
must detect the following errors:

LOADING, LINKING, AND INITIALIZING Creation and Loading

* If the class or interface named as the direct superclass of C isin fact an
interface, loading throws an I nconpat i bl ed assChangeEr r or .

» Otherwise, if any of the superclasses of C is C itself, loading throws a
ClassCircularityError.

4. If chasany direct superinterfaces, the symbolic references from cto its direct
superinterfaces are resolved using the algorithm of 85.4.3.1.

Any exceptions that can be thrown due to class or interface resolution can be
thrown as a result of this phase of loading. In addition, this phase of loading
must detect the following errors:

* If any of the classes or interfaces named as direct superinterfaces of Cis not
in fact an interface, loading throws an | nconpat i bl ed assChangeEr r or .

» Otherwise, if any of the superinterfaces of C is C itself, loading throws a
ClassCircularityError.

5. TheJavaVirtua Machine marks C as having L as its defining class loader and
recordsthat L isaninitiating loader of C (85.3.4).

5.3.6 Modulesand Layers

The Java Virtual Machine supports the organization of classes and interfaces into
modules. The membership of aclass or interface Cin amodule Mis used to control
access to C from classes and interfaces in modules other than M(85.4.4).

Module membership is defined in terms of run-time packages (85.3). A program
determines the names of the packages in each module, and the class loaders that
will create the classes and interfaces of the named packages; it then specifies the
packages and class loaders to an invocation of the def i neModul es method of the
class Modul eLayer . Invoking def i neModul es causes the Java Virtual Machine to
create new run-time modules that are associated with the run-time packages of the
class loaders.

Every run-time module indicates the run-time packages that it exports, which
influences access to the publ i ¢ classes and interfaces in those run-time packages.
Every run-time module aso indicates the other run-time modules that it reads,
which influences access by itsown codeto thepubl i ¢ typesand interfacesin those
run-time modules.

We say that a class is in a run-time module iff the class's run-time package is
associated (or will be associated, if the classis actually created) with that run-time
module.

5.3

357

5.3

358

Creation and Loading LOADING, LINKING, AND INITIALIZING

A class created by a class loader isin exactly one run-time package and therefore
exactly one run-time module, because the Java Virtual Machine does not support
a run-time package being associated with (or more evocatively, "split across")
multiple run-time modules.

A run-time moduleisimplicitly bound to exactly one classloader, by the semantics
of defi neMbdul es. On the other hand, a class loader may create classes in more
than one run-time module, because the Java Virtual Machine does not require al
the run-time packages of a class |oader to be associated with the same run-time
module.

In other words, the relationship between class loaders and run-time modules need not be
1:1. For agiven set of modulesto be loaded, if a program can determine that the names of
the packages in each module are found only in that module, then the program may specify
only one class loader to the invocation of def i neModul es. This class loader will create
classes across multiple run-time modul es.

Every run-time module created by defi neModul es is part of a layer. A layer
representsaset of classloadersthat jointly serveto create classesin aset of run-time
modules. There are two kinds of layers: the boot layer supplied by the Java Virtual
Machine, and user-defined layers. Theboot layer iscreated at JavaVirtual Machine
startup in an implementati on-dependent manner. It associatesthe standard run-time
modulej ava. base with standard run-time packages defined by the bootstrap class
loader, such asj ava. | ang. User-defined layers are created by programsin order to
construct sets of run-time modules that depend on j ava. base and other standard
run-time modul es.

A run-time module is implicitly part of exactly one layer, by the semantics of
def i neMbdul es. Ontheother hand, aclass|oader may create classesintherun-time
modules of more than one layer, because the same class loader may be specified
to multiple invocations of def i neMbdul es. Access control isgoverned by aclass's
run-time module, not by the class loader which created the class or by the layer(s)
which the class loader serves.

The set of class loaders specified for a layer, and the set of run-time modules
which are part of a layer, are immutable after the layer is created. However,
the Mbdul eLayer class affords programs a degree of dynamic control over the
relationships between the run-time modules in a user-defined layer.

If a user-defined layer contains more than one class loader, then any delegation
between the class|oadersisthe responsibility of the program that created the layer.
The Java Virtual Machine does not check that the layer's class |oaders delegate to
each other in accordance with how the layer's run-time modules read each other.
Moreover, if the layer's run-time modules are modified viathe Modul eLayer class

LOADING, LINKING, AND INITIALIZING Linking 54

to read additional run-time modules, then the Java Virtual M achine does not check
that the layer's class loaders are modified by some out-of-band mechanism to
delegate in a corresponding fashion.

There are similarities and differences between class loaders and layers. On the one hand,
alayer is similar to a class loader in that each may delegate to, respectively, one or more
parent layersor classloadersthat created, respectively, modulesor classesat an earlier time.
That is, the set of modules specified to alayer may depend on modules not specified to the
layer, and instead specified previously to one or more parent layers. On the other hand, a
layer may be used to create new modules only once, whereas a class loader may be used to
create new classes or interfaces at any time via multiple invocations of the def i neCl ass
method.

It is possible for a class |loader to define a class or interface in a run-time package
that was not associated with a run-time module by any of the layers which the
class loader serves. This may occur if the run-time package embodies a named
package that was not specified to def i neMbdul es, or if the class or interface has
a simple binary name (84.2.1) and thus is a member of a run-time package that
embodies an unnamed package (JLS 8§7.4.2). In either case, the classor interfaceis
treated as a member of a specia run-time module which isimplicitly bound to the
classloader. This specia run-time module is known as the unnamed module of the
class loader. The run-time package of the class or interface is associated with the
unnamed module of the classloader. There are special rules for unnamed maodules,
designed to maximize their interoperation with other run-time modules, asfollows:

» A class loader's unnamed module is distinct from al other run-time modules
bound to the same class |oader.

* A classloader'sunnamed moduleisdistinct fromall run-time modules (including
unnamed modules) bound to other class loaders.

» Every unnamed module reads every run-time module.

» Every unnamed module exports, to every run-time module, every run-time
package associated with itself.

5.4 Linking

Linking aclassor interfaceinvolves verifying and preparing that class or interface,
itsdirect superclass, its direct superinterfaces, and its el ement type (if it isan array
type), if necessary. Resolution of symbolic references in the class or interface is
an optional part of linking.

359

5.4

360

Linking LOADING, LINKING, AND INITIALIZING

This specification allowsan implementation flexibility asto when linking activities
(and, because of recursion, loading) take place, provided that al of the following
properties are maintained:

» A classor interface is completely loaded before it islinked.
» A classor interface is completely verified and prepared beforeit isinitialized.

* Errors detected during linkage are thrown at a point in the program where some
action is taken by the program that might, directly or indirectly, require linkage
to the class or interface involved in the error.

For example, a Java Virtual Machine implementation may choose to resolve each
symbolic reference in a class or interface individually when it is used ("lazy"
or "late" resolution), or to resolve them all at once when the class is being
verified ("eager" or "static" resolution). This meansthat the resol ution process may
continue, in some implementations, after a class or interface has been initialized.
Whichever strategy is followed, any error detected during resolution must be
thrown at a point in the program that (directly or indirectly) uses a symbolic
reference to the class or interface.

Because linking involves the allocation of new data structures, it may fail with an
Qut OF Menor yErr or .

54.1 Verification

Verification (84.10) ensures that the binary representation of a classor interfaceis
structurally correct (84.9). Verification may cause additional classes and interfaces
to be loaded (85.3) but need not cause them to be verified or prepared.

If the binary representation of a class or interface does not satisfy the static or
structural constraintslistedin 84.9, thenaVveri f yEr r or must bethrown at the point
in the program that caused the class or interface to be verified.

If an attempt by the Java Virtual Machine to verify a class or interface fails
because an error isthrown that isan instance of Li nkageEr r or (or asubclass), then
subsequent attempts to verify the class or interface always fail with the same error
that was thrown as aresult of the initial verification attempt.

5.4.2 Preparation

Preparationinvolvescreating thestatic fieldsfor aclassor interfaceand initializing
such fields to their default values (82.3, §2.4). This does not require the execution

LOADING, LINKING, AND INITIALIZING Linking

of any JavaVirtual Machine code; explicit initializersfor static fields are executed
as part of initialization (85.5), not preparation.

During preparation of aclass or interface C, the Java Virtual Machine also imposes
loading constraints (85.3.4). Let L, be the defining loader of C. For each method
m declared in C that overrides (85.4.5) a method declared in a superclass or
superinterface <D, L,>, the Java Virtual Machine imposes the following loading
constraints:

Given that the return type of mis T,, and that the formal parameter types of mare
Tf1y eeey Tn, then:

If T, notanarray type, let To be T, ; otherwise, let To bethe element type (§82.4) of T, .

Fori=1ton:If T;; isnot an array type, let T, be T;; ; otherwise, let T; be the
element type (82.4) of T;; .

Then T, L1=Ti L2 fori=0ton.

Furthermore, if C implements a method mdeclared in a superinterface <1, L3> of
C, but c does not itself declare the method m then let <D, L,> be the superclass of
C that declares the implementation of method minherited by c. The Java Virtua
M achine imposes the following constraints:

Given that the return type of mis T,, and that the formal parameter types of mare
Tf1y eeey Tn, then:

If T, notanarray type, let To beT, ; otherwise, let To bethe element type (82.4) of T, .

Fori=1ton:If T;; isnot an array type, let T, be T¢; ; otherwise, let T; be the
element type (82.4) of Ty; .

ThenT; L2=Ti Lsfori=0ton.

Preparation may occur at any time following creation but must be completed prior
toinitialization.

5.4.3 Resolution

The Java Virtua Machine instructions anewarray, checkcast, getfield,
getstatic, instanceof, invokedynamic, invokeinterface, invokespecial, invokestatic,
invokevirtual, Idc, Idc_w, multianewarray, new, putfield, and putstatic make
symbolic references to the run-time constant pool. Execution of any of these
instructions requires resolution of its symbolic reference.

Resolution is the process of dynamically determining concrete values from
symbolic references in the run-time constant pool.

5.4

361

5.4

362

Linking LOADING, LINKING, AND INITIALIZING

Resolution of the symbolic reference of one occurrence of an invokedynamic
instruction does not imply that the same symbolic referenceis considered resolved
for any other invokedynamic instruction.

For al other instructions above, resolution of the symbolic reference of one
occurrence of an instruction does imply that the same symbolic reference is
considered resolved for any other non-invokedynamic instruction.

(The above text implies that the concrete value determined by resolution for a
specific invokedynamic instruction is a call site object bound to that specific
invokedynamic instruction.)

Resolution can be attempted on a symbolic reference that has already been
resolved. An attempt to resolve a symbolic reference that has aready successfully
been resolved always succeeds trivially and always results in the same entity
produced by the initial resolution of that reference.

If an error occurs during resolution of a symbolic reference, then an instance of
I nconpat i bl ed assChangeErr or (Or asubclass) must be thrown at a point in the
program that (directly or indirectly) uses the symbolic reference.

If an attempt by the Java Virtual Machine to resolve a symbolic reference fails
because an error isthrown that isan instance of Li nkageEr r or (or asubclass), then
subsequent attempts to resolve the reference always fail with the same error that
was thrown as aresult of the initial resolution attempt.

This means that a class in one module that attempts to access, via resolution of
a symbolic reference in its run-time constant pool, an unexported publ i ¢ typein
a different module will always receive the same error indicating an inaccessible
type (85.4.4), even if the Java SE Platform API is used to dynamically export the
publ i ¢ type's package at some time after the classsfirst attempt.

A symbolic referenceto acall site specifier by aspecificinvokedynamicinstruction
must not be resolved prior to execution of that instruction.

In the case of failed resolution of an invokedynamic instruction, the bootstrap
method is not re-executed on subsequent resol ution attempts.

Certain of the instructions above require additional linking checks when resolving
symbolic references. For instance, in order for agetfield instruction to successfully
resolve the symbolic reference to the field on which it operates, it must not only
complete the field resolution steps given in 85.4.3.2 but also check that thefield is
notstatic. Ifitisastatic field, alinking exception must be thrown.

Notably, in order for an invokedynamic instruction to successfully resolve the
symbolic reference to a call site specifier, the bootstrap method specified therein

LOADING, LINKING, AND INITIALIZING Linking

must complete normally and return a suitable call site object. If the bootstrap
method completes abruptly or returns an unsuitable call site object, a linking
exception must be thrown.

Linking exceptions generated by checks that are specific to the execution of a
particular Java Virtual Machine instruction are given in the description of that
instruction and are not covered in this genera discussion of resolution. Note
that such exceptions, although described as part of the execution of Java Virtua
Machine instructions rather than resolution, are still properly considered failures
of resolution.

The following sections describe the process of resolving a symbolic reference in
the run-time constant pool (85.1) of a class or interface D. Details of resolution
differ with the kind of symbolic reference to be resolved.

54.3.1 Classand Interface Resolution

Toresolvean unresolved symbolic referencefrom Dto aclassor interface c denoted
by N, the following steps are performed:

1. Thedefining classloader of Dis used to create a class or interface denoted by
N. This class or interface is C. The details of the process are givenin 85.3.

Any exception that can be thrown as a result of failure of class or interface
creation can thus be thrown as a result of failure of class and interface
resolution.

2. If cisanarray classand itselement typeisar ef er ence type, then asymbolic
reference to the class or interface representing the element type is resolved by
invoking the algorithm in 85.4.3.1 recursively.

3. Finally, access permissionsto C are checked.

» If cis not accessible (85.4.4) to D, class or interface resolution throws an
I'l'l egal AccessError.

This condition can occur, for example, if Cisaclassthat was originally declared to
be publ i ¢ but was changed to be non-publ i ¢ after D was compiled.

If steps 1 and 2 succeed but step 3 fails, cis still valid and usable. Nevertheless,
resolution fails, and D is prohibited from accessing C.

5.4.3.2 Field Resolution

Toresolve an unresolved symbolic reference from Dto afieldin aclass or interface
C, the symboalic reference to C given by the field reference must first be resolved

5.4

363

5.4

364

Linking LOADING, LINKING, AND INITIALIZING

(85.4.3.1). Therefore, any exception that can be thrown as a result of failure of
resolution of a class or interface reference can be thrown as a result of failure of
field resolution. If the reference to C can be successfully resolved, an exception
relating to the failure of resolution of the field reference itself can be thrown.

When resolving a field reference, field resolution first attempts to look up the
referenced field in c and its superclasses:

1. If c declares a field with the name and descriptor specified by the field
reference, field lookup succeeds. The declared field is the result of the field
lookup.

2. Otherwise, field lookup is applied recursively to the direct superinterfaces of
the specified class or interface C.

3. Otherwise, if chasasuperclass s, field lookup is applied recursively to s.
4. Otherwise, field lookup fails.

Then:

* If field lookup fails, field resolution throws a NoSuchFi el dError .

» Otherwise, if field lookup succeeds but the referenced field is not accessible
(85.4.4) to D, field resolution throws an 1 1 | egal AccessError.

» Otherwise, let <E, L;> be the class or interface in which the referenced field is
actually declared and let L, be the defining loader of D.

Given that the type of the referenced field is T¢, let T be T; if T¢ is not an array
type, and let T be the element type (82.4) of T; otherwise.

The Java Virtua Machine must impose the loading constraint that b1 = 7he

(85.3.4).

5.4.3.3 Method Resolution

To resolve an unresolved symbolic reference from D to a method in a class c, the
symbolic reference to C given by the method referenceisfirst resolved (85.4.3.1).
Therefore, any exception that can be thrown as a result of failure of resolution of
a class reference can be thrown as a result of failure of method resolution. If the
reference to C can be successfully resolved, exceptions relating to the resolution of
the method reference itself can be thrown.

When resolving a method reference:

1. If ¢ is an inteface, method resolution throws an
I nconpat i bl ed assChangeErr or .

LOADING, LINKING, AND INITIALIZING Linking

2. Otherwise, method resolution attempts to locate the referenced method in C
and its superclasses:

If C declares exactly one method with the name specified by the method
reference, and the declaration is a signature polymorphic method (§2.9.3),
then method lookup succeeds. All the class names mentioned in the
descriptor are resolved (85.4.3.1).

The resolved method is the signature polymor phic method declaration. It is
not necessary for C to declare a method with the descriptor specified by the
method reference.

Otherwise, if C declares amethod with the name and descriptor specified by
the method reference, method lookup succeeds.

Otherwise, if C has a superclass, step 2 of method resolution is recursively
invoked on the direct superclass of C.

3. Otherwise, method resolution attempts to locate the referenced method in the
superinterfaces of the specified class C:

* If the maximally-specific superinterface methods of C for the name and

descriptor specified by the method referenceinclude exactly one method that
does not have its ACC_ABSTRACT flag set, then this method is chosen and
method lookup succeeds.

» Otherwise, if any superinterface of C declares a method with the name and

descriptor specified by the method referencethat hasneither itSACC_PRI VATE
flag nor itsacC_STATI Cflag set, one of theseisarbitrarily chosen and method
lookup succeeds.

 Otherwise, method lookup fails.

A maximally-specific superinterface method of aclassor interface cfor aparticular
method name and descriptor is any method for which all of the following are true:

» The method is declared in a superinterface (direct or indirect) of C.

» The method is declared with the specified name and descriptor.

» The method has neither its ACC_PRI VATE flag nor its ACC_STATI C flag set.

» Where the method is declared in interface |, there exists no other maximally-
specific superinterface method of ¢ with the specified name and descriptor that
isdeclared in asubinterface of 1 .

Theresult of method resolution is determined by whether method |ookup succeeds
or fails:

5.4

365

5.4

366

Linking LOADING, LINKING, AND INITIALIZING

* If method lookup fails, method resolution throws a NoSuchMet hodEr r or .

» Otherwise, if method lookup succeeds and the referenced method is not
accessible (85.4.4) to b, method resolution throwsan 1 1 1 egal AccessError.

» Otherwise, let <E, L1> bethe class or interface in which the referenced method m
is actualy declared, and let L, be the defining loader of D.

Given that the return type of mis T, and that the formal parameter types of m
areT;q, ..., Trn, then:

If T, isnot an array type, let To be T, ; otherwise, let To be the element type (8§2.4)
of T;.

Fori=1ton: If T;; isnot an array type, let T; be T;; ; otherwise, let T; be the
element type (82.4) of Ty; .

The Java Virtual Machine must impose the loading constraints T; L= T L2 tor
i =0ton(85.3.4).

When resol ution searches for amethod in the class's superinterfaces, the best outcomeisto
identify a maximally-specific non-abst r act method. It is possible that this method will
be chosen by method selection, so it is desirable to add class loader constraints for it.

Otherwise, the result is nondeterministic. This is not new: The Javae Virtual Machine
Soecification has never identified exactly which method is chosen, and how "ties" should
be broken. Prior to Java SE 8, this was mostly an unobservable distinction. However,
beginning with Java SE 8, the set of interface methods is more heterogenous, so care must
be taken to avoid problems with nondeterministic behavior. Thus:

¢ Superinterface methodsthat arepri vat e and st at i ¢ areignored by resolution. Thisis
consistent with the Java programming language, where such interface methods are not
inherited.

e Any behavior controlled by the resolved method should not depend on whether the
method isabst ract or not.

Note that if the result of resolution is an abst r act method, the referenced class C may
be non-abst r act . Requiring Cto be abst r act would conflict with the nondeterministic
choice of superinterface methods. Instead, resolution assumes that the run time class of the
invoked object has a concrete implementation of the method.

5.4.3.4 Interface Method Resolution

To resolve an unresolved symbolic reference from D to an interface method in an
interface c, the symbolic reference to C given by the interface method referenceis
first resolved (85.4.3.1). Therefore, any exception that can be thrown as aresult of
failure of resolution of an interface reference can be thrown as a result of failure
of interface method resolution. If the reference to € can be successfully resolved,

LOADING, LINKING, AND INITIALIZING Linking

exceptions relating to the resolution of the interface method reference itself can be
thrown.

When resolving an interface method reference:

1. If ¢ is not an interface, interface method resolution throws an
I nconpati bl e assChangeError.

2. Otherwise, if C declares a method with the name and descriptor specified by
the interface method reference, method lookup succeeds.

3. Otherwiseg, if the class bj ect declares amethod with the name and descriptor
specified by the interface method reference, which hasits AcC_PuBLI Cflag set
and does not have its ACC_STATI C flag set, method lookup succeeds.

4. Otherwise, if the maximally-specific superinterface methods (85.4.3.3) of C
for the name and descriptor specified by the method reference include exactly
one method that does not have its ACC_ABSTRACT flag set, then this method is
chosen and method lookup succeeds.

5. Otherwise, if any superinterface of C declares a method with the name and
descriptor specified by the method reference that has neither its ACC_PRI VATE
flag nor its AcC_STATI Cflag set, one of these is arbitrarily chosen and method
lookup succeeds.

6. Otherwise, method lookup fails.

Theresult of interface method resolution is determined by whether method lookup
succeeds or fails:

o If method lookup fails, interface method resolution throws a
NoSuchMet hodEr r or .

« If method lookup succeeds and the referenced method is not accessible (85.4.4)
to D, interface method resolution throwsan 1 | | egal AccessError.

» Otherwise, let <E, L;> be the class or interface in which the referenced interface
method mis actually declared, and let L, be the defining loader of D.

Given that the return type of mis T,, and that the formal parameter types of m
areTrq, ..., Tn, then:

If T, isnot an array type, let To be T, ; otherwise, let To be the element type (§2.4)
of T;.

Fori=1ton: If T;; isnot an array type, let T; be T;; ; otherwise, let T; be the
element type (82.4) of T;; .

5.4

367

5.4

368

Linking LOADING, LINKING, AND INITIALIZING

The Java Virtual Machine must impose the loading constraints T; L= Ti L2 tor
i =0ton(85.34).

The clause about accessibility is necessary because interface method resolution may pick a
pri vat e method of interface C. (Prior to Java SE 8, theresult of interface method resolution
couldbeanon-publ i ¢ method of classbj ect or ast at i ¢ method of classbj ect ; such
results were not consistent with the inheritance model of the Java programming language,
and are disallowed in Java SE 8 and above.)

5.4.3.5 Method Type and Method Handle Resolution

To resolve an unresolved symbolic reference to a method type, it isasif resolution
occursof unresolved symbolic referencesto classesand interfaces(85.4.3.1) whose
names correspond to the types given in the method descriptor (84.3.3).

Any exception that can be thrown as a result of failure of resolution of a class
reference can thus be thrown as aresult of failure of method type resolution.

The result of successful method type resolution is ar ef er ence to an instance of
j ava. | ang. i nvoke. Met hodType which represents the method descriptor.

Method type resolution occurs regardless of whether the run time constant pool actually
contains symbolic references to classes and interfaces indicated in the method descriptor.
Also, the resolution is deemed to occur on unresolved symbolic references, so a failure
to resolve one method type will not necessarily lead to a later failure to resolve another
method type with the same textual method descriptor, if suitable classes and interfaces can
be loaded by the later time.

Resolution of an unresolved symbolic reference to a method handle is more
complicated. Each method handle resolved by the Java Virtual Machine has an
equivalent instruction sequence called its bytecode behavior, indicated by the
method handl€'s kind. The integer values and descriptions of the nine kinds of
method handle are given in Table 5.4.3.5-A.

Symboalic references by an instruction sequence to fields or methods are indicated
by C. x: T, wherex and T are the name and descriptor (84.3.2, 84.3.3) of thefield or
method, and Cisthe class or interface in which the field or method is to be found.

LOADING, LINKING, AND INITIALIZING Linking

Table 5.4.3.5-A. Bytecode Behaviorsfor Method Handles

Kind Description Inter pretation

1 REF _getField getfield Cf:T

2 REF _get Static getstatic Cf:T

3 REF _putField putfield Cf:T

4 REF _put Static putstatic Cf: T

5 REF_i nvokeVi rt ual i nvokevirtual C m (A*)T

6 REF_i nvokeStatic i nvokestatic C.m (A*)T

7 REF_i nvokeSpeci al i nvokespecial Cm (A*)T

8 REF_new nvokeSpeci al new C dup; i nvokespeci al
C.<init> (A*)V

9 REF_i nvokel nterface i nvokeinterface C.m (A*)T

Let MH be the symbolic reference to a method handle (85.1) being resolved. Also:

Let R be the symbolic reference to the field or method contained within M.

R is derived from the CONSTANT Fiel dref, CONSTANT Methodref, oOr
CONSTANT_I nt er f aceMet hodr ef structure referred to by ther ef er ence_i ndex
item of the CONSTANT _Met hodHand! e from which M is derived.

For example, Ris a symbolic referenceto C. f for bytecode behavior of kind 1, and a
symbalic referenceto C. <i ni t > for bytecode behavior of kind 8.

If MH's bytecode behavior is kind 7 (REF_i nvokeSpeci al), then C must be the
current classor interface, asuperclass of the current class, adirect superinterface
of the current class or interface, or j ect .

Let T be the type of the field referenced by R, or the return type of the method
referenced by R. Let A* be the sequence (perhaps empty) of parameter types of
the method referenced by R.

T and A* arederived from the CONSTANT_NameAndType structurereferred to by the
narme_and_t ype_i ndex iteminthe CONSTANT Fi el dr ef , CONSTANT Met hodr ef
Or CONSTANT _I nt er f aceMet hodr ef structure from which Ris derived.

To resolve MH, all symbolic referencesto classes, interfaces, fields, and methodsin
MH's bytecode behavior are resolved, using the following four steps:

First, Ris resolved. This occurs as if by field resolution (85.4.3.2) when MH's
bytecode behavior iskind 1, 2, 3, or 4, and asif by method resolution (85.4.3.3)

5.4

369

5.4

370

Linking LOADING, LINKING, AND INITIALIZING

when MH's bytecode behavior iskind 5, 6, 7, or 8, and as if by interface method
resolution (85.4.3.4) when MH's bytecode behavior iskind 9.

Second, the following constraints apply to the result of resolving R. These
constraints correspond to those that would be enforced during verification or
execution of the instruction sequence for the relevant bytecode behavior.

— If MH's bytecode behavior is kind 8 (REF_new nvokeSpeci al), then R must
resolve to an instance initialization method declared in class C.

— If MH's bytecode behavior is kind 9 (REF_i nvokel nterface), then R must
resolve to anon-pri vat e method.

— If Rresolvesto apr ot ect ed member, then thefollowing rulesapply depending
on the kind of MH's bytecode behavior:

> For kinds 1, 3, and 5 (REF getField, REF putField, and
REF invokeVirtual): If C.f or C. mresolved to a protected field or
method, and cisin adifferent run-time package than the current class, then
C must be assignable to the current class.

> For kind 8 (REF_new nvokeSpeci al): If C. <i ni t >resolvedtoapr ot ect ed
method, then ¢ must be declared in the same run-time package asthe current
class.

— Rmust resolveto astati c or non-st ati ¢ member depending on the kind of
MH's bytecode behavior:

> For kinds 1, 3, 5 7, and 9 (REF getField, REF putField,
REF_i nvokeVi rtual , REF_i nvokeSpeci al , and REF_i nvokel nterf ace):
C.f or C. mmust resolveto anon-st at i ¢ field or method.

> For kinds 2, 4, and 6 (REF getStatic, REF putStatic, and
REF i nvokeStatic): C.f or C. mmust resolveto astati ¢ field or method.

Third, resolution occurs as if of unresolved symbolic references to classes and
interfaces whose names correspond to each type in A*, and to the type T, in that
order.

Fourth, areferencetoaninstanceof j ava. | ang. i nvoke. Met hodType iSsobtained
as if by resolution of an unresolved symbolic reference to a method type that
contains the method descriptor specified in Table 5.4.3.5-B for the kind of MH.

Itisasif the symbolic reference to amethod handle contains asymbolic reference to the
method type that the resolved method handle will eventually have. The detailed structure
of the method type is obtained by inspecting Table 5.4.3.5-B.

LOADING, LINKING, AND INITIALIZING

Table 5.4.3.5-B. Method Descriptorsfor Method Handles

Linking

Kind Description Method descriptor
1 REF_getField (OT

2 REF_get Static OT

3 REF_put Fi el d (CTV

4 REF_put Static (T)V

5 REF_i nvokeVi rt ual (C AT

6 REF_i nvokeSt atic (AT

7 REF_i nvokeSpeci al (C AT

8 REF_new nvokeSpeci al (A*)C

9 REF_i nvokelnterface (C A*)T

In steps 1, 3, and 4, any exception that can be thrown as a result of failure of

resolution of a symbolic reference to a class, interface, field, or method can be
thrown as aresult of failure of method handle resolution. In step 2, any failure due

to the specified constraints causes a failure of method handle resolution due to an
11l egal AccessError.

Theintent isthat resolving amethod handle can be done in exactly the same circumstances
that the JavaVirtual Machinewould successfully verify and resolvethe symbolic references

in the bytecode behavior. In particular, method handles to pri vat e, prot ect ed, and

stati ¢ members can be created in exactly those classes for which the corresponding

normal accesses are legal.

The result of successful method handle resolutionisar ef er ence to an instance of
java. | ang. i nvoke. Met hodHandl e which represents the method handle MH.

The type descriptor of this j ava. | ang. i nvoke. Met hodHandl e instance is the

j ava. | ang. i nvoke. Met hodType instance produced in the third step of method
handl e resol ution above.

The type descriptor of a method handle is such that a valid call to i nvokeExact in
j ava. | ang. i nvoke. Met hodHandl e on the method handle has exactly the same stack

effects asthe bytecode behavior. Calling thismethod handle on avalid set of arguments has
exactly the same effect and returns the same result (if any) as the corresponding bytecode
behavior.

5.4

371

5.4

372

Linking LOADING, LINKING, AND INITIALIZING

If the method referenced by R has the ACC VARARGS flag set (84.6), then the
j ava. |l ang. i nvoke. Met hodHandl e instance is a variable arity method handle;
otherwise, it isafixed arity method handle.

A variable arity method handle performs argument list boxing (JLS §15.12.4.2)
when invoked viai nvoke, while its behavior with respect to i nvokeExact isasif
the ACC_VARARGS flag were not set.

Method handle resolution throws an | nconpati bl ed assChangeError if the
method referenced by R has the ACC_VARARGS flag set and either A* is an empty
seguence or the last parameter type in A* is not an array type. That is, creation of
avariable arity method handle fails.

An implementation of the Java Virtual Machine is not required to intern
method types or method handles. That is, two distinct symbolic references
to method types or method handles which are structurally identical might
not resolve to the same instance of java.lang.invoke. Met hodType oOrF
java.lang. i nvoke. Met hodHandl e respectively.

The j ava. | ang. i nvoke. Met hodHandl es class in the Java SE Platform APl alows
creation of method handles with no bytecode behavior. Their behavior is defined by
the method of j ava. | ang. i nvoke. Met hodHandl es that creates them. For example, a
method handle may, when invoked, first apply transformationsto its argument values, then
supply the transformed values to the invocation of another method handle, then apply a
transformation to the value returned from that invocation, then return the transformed value
asits own result.

5.4.3.6 Call Ste Specifier Resolution

To resolve an unresolved symbolic reference to a call site specifier involves three

steps:

» A cdl site specifier gives a symboalic reference to a method handle which
is to serve as the bootstrap method for a dynamic call site (84.7.23).
The method handle is resolved to obtain a reference to an instance of
java.lang. i nvoke. Met hodHandl e (85.4.3.5).

* A cal site specifier gives amethod descriptor, TD. A r ef er ence t0 an instance
of j ava. | ang. i nvoke. Met hodType isobtained asif by resolution of asymbolic
reference to a method type with the same parameter and return types as TD
(85.4.3.5).

» A call site specifier gives zero or more static arguments, which communicate
application-specific metadata to the bootstrap method. Any static arguments
which are symbolic references to classes, method handles, or method types
are resolved, as if by invocation of the Idc instruction (8ldc), to obtain

LOADING, LINKING, AND INITIALIZING Linking

ref erenceSto d ass objects, j ava. | ang. i nvoke. Met hodHandl e objects, and
j ava. |l ang. i nvoke. Met hodType objectsrespectively. Any static argumentsthat
are string literals are used to obtain r ef er encesto St ri ng objects.

The result of call site specifier resolution is a tuple consisting of:
» thereference toaninstance of j ava. | ang. i nvoke. Met hodHandl e,
» thereference toaninstance of j ava. | ang. i nvoke. Met hodType,

» the references to instances of d ass, java.l ang.invoke. Met hodHandl e,
j ava. | ang. i nvoke. Met hodType, and St ri ng.

During resolution of the symbolic reference to the method handle in the call site
specifier, or resolution of the symboalic reference to the method type for the method
descriptor in the call site specifier, or resolution of a symbolic reference to any
static argument, any of the exceptions pertaining to method type or method handle
resolution may be thrown (85.4.3.5).

5.4.4 Access Control

A class or interface C is accessible to a class or interface D if and only if one of
the following is true:

* Cispublic, and amember of the same run-time module as D (85.3.6).

e Cispublic, and a member of adifferent run-time module than b, and C's run-
time moduleis read by D's run-time module, and C's run-time module exports C's
run-time package to D's run-time module.

e Cisnot public, and c and D are members of the same run-time package.

A field or method R is accessible to a class or interface D if and only if any of the
following istrue:
e Rispublic.

* Risprotected and is declared in aclass C, and D is either a subclass of C or
citsdf. Furthermore, if Risnot st at i ¢, then the symbolic reference to R must
contain a symbolic reference to aclass T, such that T is either a subclass of D, a
superclass of D, or Ditself.

* Riseither prot ect ed or hasdefault access(that is, neither publ i ¢ nor pr ot ect ed
nor pri vat e), and is declared by a class in the same run-time package as D.

* Risprivate andisdeclaredinD.

5.4

373

55

374

Initialization LOADING, LINKING, AND INITIALIZING

This discussion of access control omits a related restriction on the target of a
protected field access or method invocation (the target must be of class D or
a subtype of D). That requirement is checked as part of the verification process
(84.10.1.8); it is not part of link-time access control.

545 Overriding

An instance method m- declared in class C overrides another instance method m,
declared in class A iff either mc is the same as my, or al of the following are true:

* Cisasubclassof A.

* m has the same name and descriptor as m.
* m:isnot marked ACC PRI VATE.

* Oneof thefollowingistrue:

— my ismarked ACC_PUBLI C; or is marked ACC_PROTECTED; or is marked neither
ACC_PUBLI C nor ACC_PROTECTED nor ACC_PRI VATE and A belongs to the same
run-time package as C.

— meoverridesamethod m (m distinct from me and my) suchthat m overrides m.

5.5 Initialization

Initialization of a class or interface consists of executing its class or interface
initialization method (82.9.2).

A class or interface C may beinitialized only as aresult of:

* The execution of any one of the Java Virtua Machine instructions new,
getstatic, putstatic, or invokestatic that references C (8new, 8getstatic, Sputstatic,
8invokestatic).

Upon execution of a new instruction, the class to be initialized is the class
referenced by the instruction.

Upon execution of a getstatic, putstatic, or invokestatic instruction, the class or
interface to be initialized isthe class or interface that declares the resolved field
or method.

» The first invocation of a java. | ang. i nvoke. Met hodHandl e instance which
was the result of method handle resolution (85.4.3.5) for a method handle

LOADING, LINKING, AND INITIALIZING Initialization

of kind 2 (REF_get Static), 4 (REF_putStatic), 6 (REF_i nvokeStatic), or 8
(REF_new nvokeSpeci al).

Thisimpliesthat the class of abootstrap method isinitialized when the bootstrap method
isinvoked for an invokedynamic instruction (8invokedynamic), as part of the continuing
resolution of the call site specifier.
* Invocation of certain reflective methodsin the classlibrary (82.12), for example,
inclassd ass or in packagej ava. | ang. refl ect.

» |f cisaclass, theinitidization of one of its subclasses.

* If Ccis an interface that declares a non-abstract, non-stati ¢ method, the
initialization of a class that implements C directly or indirectly.

* Its designation as the initia class or interface at Java Virtual Machine startup
(85.2).

Prior toinitialization, aclassor interface must be linked, that is, verified, prepared,
and optionally resolved.

Because the Java Virtua Machine is multithreaded, initialization of a class or
interface requires careful synchronization, since some other thread may be trying
toinitializethe same classor interface at the sametime. Thereisalso the possibility
that initialization of a class or interface may be requested recursively as part
of the initialization of that class or interface. The implementation of the Java
Virtual Machine is responsible for taking care of synchronization and recursive
initialization by using the following procedure. It assumes that the d ass object
has already been verified and prepared, and that the d ass object contains state
that indicates one of four situations:

» Thisd ass object is verified and prepared but not initialized.
» Thisd ass object isbeing initialized by some particular thread.
» Thisd ass object isfully initialized and ready for use.

» This d ass object is in an erroneous state, perhaps because initialization was
attempted and failed.

For each class or interface C, there is a unique initialization lock LC. The mapping
from cto LCis|eft to the discretion of the Java Virtua Machine implementation.
For example, LcC could be the d ass object for C, or the monitor associated with
that d ass object. The procedure for initializing C isthen asfollows:

1. Synchronize ontheinitialization lock, Lc, for C. Thisinvolveswaiting until the
current thread can acquire LC.

55

375

55

376

Initialization LOADING, LINKING, AND INITIALIZING

If thed ass object for cindicatesthat initialization isin progressfor c by some
other thread, then release Lc and block the current thread until informed that the
in-progress initialization has completed, at which time repeat this procedure.

Thread interrupt status is unaffected by execution of the initialization
procedure.

If the d ass object for cindicates that initialization isin progress for c by the
current thread, then this must be a recursive request for initialization. Release
Lc and complete normally.

If the A ass object for C indicates that C has already been initialized, then no
further action isrequired. Release LC and complete normally.

If the d ass object for C isin an erroneous state, then initialization is not
possible. Release LC and throw aNod assDef FoundError .

Otherwise, record the fact that initialization of the d ass object for cisin
progress by the current thread, and release LC.

Then, initialize each final static field of C with the constant value in
its Const ant Val ue attribute (84.7.2), in the order the fields appear in the
d assFi | e structure.

Next, if cisaclassrather than an interface, then let sC be its superclass and let
Sl 4, ..., Sl n be al superinterfaces of c (whether direct or indirect) that declare
at least one non-abst r act , Non-st at i ¢ method. The order of superinterfaces
is given by arecursive enumeration over the superinterface hierarchy of each
interface directly implemented by C. For each interface! directly implemented
by c (inthe order of thei nt er f aces array of C), the enumeration recurson|'s
superinterfaces (in the order of thei nt er f aces array of 1) beforereturning | .

For each sinthelist[sC, Sl 4, ..., SI 4], if S has not yet been initialized, then
recursively perform thisentire procedurefor s. If necessary, verify and prepare
s firgt.

If theinitialization of s completes abruptly because of athrown exception, then
acquireLC, label thed ass object for C as erroneous, notify all waiting threads,
release LC, and complete abruptly, throwing the same exception that resulted
from initializing sc.

Next, determine whether assertions are enabled for C by querying its defining
class loader.

Next, execute the class or interface initialization method of C.

LOADING, LINKING, AND INITIALIZING Binding Native Method Implementations

10. If the execution of the class or interface initialization method completes
normally, then acquireLC, label thed ass object for casfully initialized, notify
all waiting threads, release Lc, and compl ete this procedure normally.

11. Otherwise, the class or interface initidization method must have
completed abruptly by throwing some exception E. If the class of E
is not Error or one of its subclasses, then create a new instance
of the class ExceptionininitializerError with E as the argument,
and use this object in place of E in the following step. If a new
instance of ExceptionlnlnitializerError cannot be created because an
Qut OF Meror yEr r or Occurs, then use an cut of Menor yEr r or object in place of
E in the following step.

12. Acquire LC, label the d ass abject for C as erroneous, notify al waiting
threads, release LC, and complete this procedure abruptly with reason E or its
replacement as determined in the previous step.

A Java Virtual Machine implementation may optimize this procedure by eliding
the lock acquisition in step 1 (and release in step 4/5) when it can determine that
the initialization of the class has already completed, provided that, in terms of the
Java memory model, all happens-before orderings (JL S §17.4.5) that would exist
if the lock were acquired, still exist when the optimization is performed.

5.6 Binding Native Method | mplementations

Binding is the process by which a function written in a language other than the
Javaprogramming language and implementing anat i ve method isintegrated into
the Java Virtual Machine so that it can be executed. Although this process is
traditionally referred to as linking, the term binding is used in the specification to
avoid confusion with linking of classes or interfaces by the Java Virtual Machine.

5.7 JavaVirtual Machine Exit

The Java Virtua Machine exits when some thread invokes the exi t method of
classRunt i me or class Syst em or the hal t method of classRunt i e, and the exi t
or hal t operation is permitted by the security manager.

In addition, the NI (Java Native Interface) Specification describes termination of
the Java Virtual Machine when the NI Invocation APl is used to load and unload
the Java Virtual Machine.

5.6

377

CHAPTER6

The Java Virtua Machine
| nstruction Set

A Java Virtual Machine instruction consists of an opcode specifying the
operation to be performed, followed by zero or more operands embodying valuesto
be operated upon. This chapter gives details about the format of each Java Virtual
Machine instruction and the operation it performs.

6.1 Assumptions: The Meaning of " Must"

The description of each instruction is always given in the context of Java Virtua
Machine code that satisfies the static and structural constraints of 84 (The cl ass
File Format). Inthedescription of individual JavaVirtual Machineinstructions, we
frequently state that some situation "must” or "must not" be the case: "The value2
must be of typeint." The constraints of 84 (The cl ass File Format) guarantee
that all such expectationswill in fact be met. If some constraint (a"must” or "must
not") in an instruction description is not satisfied at run time, the behavior of the
Java Virtual Machine is undefined.

The JavaVirtual Machine checksthat JavaVirtual Machine code satisfiesthe static
and structural constraints at link time using acl ass file verifier (84.10). Thus, a
Java Virtual Machine will only attempt to execute code from valid cl ass files.
Performing verification at link time is attractive in that the checks are performed
just once, substantially reducing the amount of work that must be done at run time.
Other implementation strategies are possible, provided that they comply with The
Java Language Specification, Java SE 10 Edition and The Java Virtual Machine
Soecification, Java SE 10 Edition.

379

6.2

380

Reserved Opcodes THE JAVA VIRTUAL MACHINE INSTRUCTION SET

6.2 Reserved Opcodes

In addition to the opcodes of the instructions specified later in this chapter, which
areused in cl ass files (84 (The cl ass File Format)), three opcodes are reserved
for internal use by a Java Virtual Machine implementation. If the instruction set
of the Java Virtual Machine is extended in the future, these reserved opcodes are
guaranteed not to be used.

Two of the reserved opcodes, numbers 254 (Oxfe) and 255 (Oxff), have
the mnemonics impdepl and impdep2, respectively. These instructions are
intended to provide "back doors' or traps to implementation-specific functionality
implemented in software and hardware, respectively. The third reserved opcode,
number 202 (Oxca), has the mnemonic breakpoint and is intended to be used by
debuggers to implement breakpoints.

Although these opcodes have been reserved, they may be used only inside a Java
Virtua Machine implementation. They cannot appear in valid cl ass files. Tools
such as debuggers or JIT code generators (82.13) that might directly interact
with Java Virtual Machine code that has been already loaded and executed may
encounter these opcodes. Such tools should attempt to behave gracefully if they
encounter any of these reserved instructions.

6.3 Virtual MachineErrors

A Java Virtua Machine implementation throws an object that is an instance of
a subclass of the class Vi r t ual Machi neError when an internal error or resource
limitation prevents it from implementing the semantics described in this chapter.
This specification cannot predict where internal errors or resource limitations may
be encountered and does not mandate precisely when they can be reported. Thus,
any of the Vi r t ual Machi neEr r or subclasses defined below may be thrown at any
time during the operation of the Java Virtua Machine:

* Internal Error: An interna error has occurred in the Java Virtual Machine
implementation because of a fault in the software implementing the virtual
machine, afaultinthe underlying host system software, or afaultinthe hardware.
Thiserror isdelivered asynchronously (82.10) when it is detected and may occur
at any point in a program.

* Qut O MenoryError: The Java Virtual Machine implementation has run out of
either virtual or physical memory, and the automatic storage manager was unable
to reclaim enough memory to satisfy an object creation request.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Format of Instruction Descriptions

* StackOverflowError: The Java Virtual Machine implementation has run out
of stack space for athread, typically because the thread is doing an unbounded
number of recursive invocations as aresult of afault in the executing program.

* UnknownEr r or : Anexception or error has occurred, but the JavaVirtual Machine
implementation is unable to report the actual exception or error.

6.4 Format of Instruction Descriptions

Java Virtual Machine instructions are represented in this chapter by entries of the
form shown below, in aphabetical order and each beginning on a new page.

6.4

361

6.4

382

Format of Instruction Descriptions

mnemonic

Operation

Format

Forms

Operand
Stack

Description

Linking
Exceptions

Run-time
Exceptions

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

mnemonic

Short description of the instruction

mnemonic
operandl
operand2

mnemonic = opcode

..., valuel, value2 -

..., value3

A longer description detailing constraints on operand stack
contentsor constant pool entries, the operation performed, thetype
of the results, etc.

If any linking exceptions may be thrown by the execution of this
instruction, they are set off oneto aline, inthe order in which they
must be thrown.

If any run-time exceptions can be thrown by the execution of an
instruction, they are set off oneto aline, in the order in which they
must be thrown.

Other than the linking and run-time exceptions, if any, listed
for an instruction, that instruction must not throw any run-time
exceptions except for instances of Vi rtual Machi neError Of its
subclasses.

Comments not strictly part of the specification of an instruction
are set aside as notes at the end of the description.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Format of Instruction Descriptions

Each cell in the instruction format diagram represents a single 8-bit byte. The
instruction's mnemonic is its name. Its opcode is its numeric representation and is
given in both decimal and hexadecimal forms. Only the numeric representation is
actually present in the Java Virtual Machine codein acl ass file.

Keep in mind that there are "operands' generated at compile time and embedded
within Java Virtual Machine instructions, as well as "operands' calculated at run
time and supplied on the operand stack. Although they are supplied from severa
different areas, all these operands represent the same thing: values to be operated
upon by the Java Virtual Machine instruction being executed. By implicitly
taking many of its operands from its operand stack, rather than representing them
explicitly in its compiled code as additional operand bytes, register numbers, etc.,
the Java Virtual Machine's code stays compact.

Some instructions are presented as members of a family of related instructions
sharing a single description, format, and operand stack diagram. As such, afamily
of instructions includes several opcodes and opcode mnemonics; only the family
mnemonic appears in the instruction format diagram, and a separate forms line
lists all member mnemonics and opcodes. For example, the Forms line for the
Iconst_<I> family of instructions, giving mnemonic and opcode information for
the two instructionsin that family (Iconst_0 and Iconst_1), is

Iconst_0 =9 (0x9)
Iconst_1 = 10 (Oxa)

In the description of the Java Virtual Machine instructions, the effect of an
instruction's execution on the operand stack (82.6.2) of the current frame (82.6)
is represented textually, with the stack growing from left to right and each value
represented separately. Thus,

..., valuel, value2 -
..., result

shows an operation that begins by having value2 on top of the operand stack with
valuel just beneath it. As aresult of the execution of the instruction, valuel and
value2 are popped from the operand stack and replaced by result value, which has
been calculated by theinstruction. The remainder of the operand stack, represented
by an ellipsis(...), is unaffected by the instruction's execution.

Values of types| ong and doubl e are represented by a single entry on the operand
stack.

Inthe First Edition of The Javae Virtual Machine Specification, values on the operand stack
of types| ong and doubl e were each represented in the stack diagram by two entries.

6.4

383

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

6.5 Instructions

384

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

aaload

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

aaload

Load r ef er ence from array

aaload ‘

aaload = 50 (0x32)

..., arrayref, index —

..., value

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of type r ef er ence. The index must be of
type i nt . Both arrayref and index are popped from the operand
stack. Ther ef er ence value in the component of the array at index
isretrieved and pushed onto the operand stack.

If arrayref isnul |, aaload throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the aaload instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

6.5

385

6.5

386

Instructions

aastore

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

aastore

Storeintor ef er ence array

aastore ‘

aastore = 83 (0x53)

..., arrayref, index, value -

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of type r ef er ence. The index must be of
type i nt, and value must be of type reference. The arrayref,
index, and value are popped from the operand stack.

If valueisnul | , then valueis stored as the component of the array
at index.

Otherwise, value is non-nul | . If the type of value is assignment
compatiblewith thetype of the componentsof thearray referenced
by arrayref, then value is stored as the component of the array at
index.

The following rules are used to determine whether a value that
is not nul | is assignment compatible with the array component
type. If sisthetype of the object referred to by value, and T isthe
reference type of the array components, then aastore determines
whether assignment is compatible as follows:

 If sisaclasstype, then:

— If Tisaclasstype, then s must be the same classas T, or S
must be a subclass of T;

— If Tisan interface type, then s must implement interface T.

» If sisanarray typesc], that is, an array of components of type
SC, then:

— If Tisaclasstype, then T must be tbj ect .

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

— If T isan interface type, then T must be one of the interfaces
implemented by arrays (JLS §4.10.3).

— If Tisan array type 7C[], that is, an array of components of
type TC, then one of the following must be true:

> TCand Sc are the same primitive type.

> TC and Sc are reference types, and type Scis assignable to
TC by these run-timerules.

Run-time If arrayrefisnul |, aastore throws aNul | Poi nt er Except i on.

Exceptions Otherwise, if index is not within the bounds of the array
referenced by arrayref, the aastore instruction throws an
Arrayl ndexCut Of BoundsExcept i on.

Otherwise, if arrayref is not null and the actua type of
the non-nul I value is not assignment compatible with the
actual type of the components of the array, aastore throws an
ArraySt or eExcepti on.

6.5

387

6.5

388

Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

aconst_null aconst_null

Operation Push nul |

Format aconst_null ‘
Forms aconst_null =1 (0x1)
Operand o

Stack oy nul |

Description ~ Pushthenul I object r ef er ence onto the operand stack.

Notes The Java Virtual Machine does not mandate a concrete value for
nul .

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

aload

Operation

Format

Forms

Operand
Stack

Description

Notes

aload

Load r ef er ence from loca variable

aload
index

aload = 25 (0x19)

e d

..., objectref

Theindex is an unsigned byte that must be an index into the local
variable array of the current frame (82.6). The local variable at
index must contain ar ef er ence. Theobjectrefinthelocal variable
at index is pushed onto the operand stack.

The aload instruction cannot be used to load a value of type
ret ur nAddr ess from alocal variable onto the operand stack. This
asymmetry with the astore instruction (8astore) is intentional.

The aload opcode can be used in conjunction with the wide
instruction (8wide) to access a local variable using a two-byte
unsigned index.

6.5

389

6.5

390

Instructions

aload <n>

Operation
Format

Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

aload_<n>

Load r ef er ence from loca variable

aload_<n> ‘

aload_0 =42 (0x2a)
aload 1 =43 (0x2b)
aload 2 =44 (0x2c)
aload_3 =45 (0x2d)

o

..., Objectref

The <n> must be an index into the local variable array of the
current frame (82.6). The local variable at <n> must contain a
ref erence. The objectref in the local variable at <n> is pushed
onto the operand stack.

Anaload <n> instruction cannot be used to load a value of type
returnAddress from a local variable onto the operand stack.
This asymmetry with the corresponding astore_<n> instruction
(8astore_<n>) isintentional.

Each of the aload_<n> instructions is the same as aload with an
index of <n>, except that the operand <n> isimplicit.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

anewarray

Operation

Format

Forms

Operand
Stack

Description

Linking
Exceptions

Run-time
Exceptions

Notes

Instructions

anewarray

Create new array of r ef erence

anewarray

indexbytel

indexbyte2

anewarray = 189 (Oxbd)

..., count -

..., arrayref

The count must be of typei nt . It is popped off the operand stack.
The count represents the number of components of the array to
be created. The unsigned indexbytel and indexbyte2? are used to
construct an index into the run-time constant pool of the current
class (82.6), where the value of the index is (indexbytel << 8) |
indexbyte2. The run-time constant pool item at that index must
be a symbolic reference to a class, array, or interface type. The
named class, array, or interface typeisresolved (85.4.3.1). A new
array with components of that type, of length count, is allocated
from the garbage-collected heap, and ar ef er ence arrayref to this
new array object is pushed onto the operand stack. All components
of the new array are initialized to nul I, the default value for
ref er ence types (82.4).

During resolution of the symbolic reference to the class, array, or
interface type, any of the exceptions documented in 85.4.3.1 can
be thrown.

Otherwise, if count is less than zero, the anewarray instruction
throws aNegat i veAr raySi zeExcept i on.

The anewarray instruction is used to create a single dimension of
an array of object references or part of a multidimensional array.

6.5

391

6.5

392

Instructions

areturn

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

areturn

Return r ef er ence from method

areturn ‘

areturn = 176 (0Oxb0)

..., objectref -
[empty]

The objectref must be of type ref erence and must refer to an
object of atype that isassignment compatible (JLS 85.2) with the
type represented by the return descriptor (84.3.3) of the current
method. If the current method is a synchroni zed method, the
monitor entered or reentered on invocation of the method is
updated and possibly exited as if by execution of a monitorexit
instruction (8monitorexit) in the current thread. If no exception is
thrown, objectref is popped from the operand stack of the current
frame (82.6) and pushed onto the operand stack of the frame of
the invoker. Any other values on the operand stack of the current
method are discarded.

Theinterpreter then reinstates the frame of theinvoker and returns
control to the invoker.

If the Java Virtua Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current methodisasynchr oni zed method and the current thread is
not the owner of the monitor entered or reentered on invocation of
the method, areturnthrowsan| | | egal Moni t or St at eExcept i on.
Thiscan happen, for example, if asynchr oni zed method contains
a monitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
therules on structured locking describedin 82.11.10 and if thefirst
of those rulesis violated during invocation of the current method,
then areturnthrowsan | I | egal Moni t or St at eExcept i on.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

arraylength arraylength

Operation Get length of array

Format arraylength ‘

Forms arraylength = 190 (Oxbe)

Operand ..., arrayref -

Stack ..., length

Description ~ Thearrayref must beof typer ef er ence and must refer toan array .
It is popped from the operand stack. The length of the array it
references is determined. That length is pushed onto the operand
stack asanint.

Run-time If the arrayref is nul |, the arraylength instruction throws a

Exceptions Nul | Poi nt er Excepti on.

6.5

393

6.5

394

Instructions

astore

Operation

Format

Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

astore

Storer ef er ence into local variable

astore
index

astore = 58 (0x3a)

..., objectref -

Theindex is an unsigned byte that must be an index into the local
variable array of the current frame (§2.6). The objectref on the top
of the operand stack must be of type r et ur nAddr ess or of type
ref er ence. It is popped from the operand stack, and the value of
the local variable at index is set to objectref.

The astore instruction is used with an objectref of type
ret ur nAddr ess when implementing the fi nal 1y clause of the
Java programming language (83.13).

The aload instruction (8aload) cannot be used to load a value of
typer et ur nAddr ess from alocal variable onto the operand stack.
This asymmetry with the astore instruction is intentional.

The astore opcode can be used in conjunction with the wide
instruction (8wide) to access a loca variable using a two-byte
unsigned index.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

astore_<n>

Operation
Format

Forms

Operand
Stack

Description

Notes

astore_<n>

Storer ef er ence into local variable

astore_<n> |

astore_0=75 (0x4b)
astore 1 =76 (0x4c)
astore 2 = 77 (0x4d)
astore 3 =78 (0Ox4e)

..., objectref —

The <n> must be an index into the local variable array of the
current frame (82.6). The objectref on the top of the operand stack
must be of typer et ur nAddr ess or of typer ef er ence. It ispopped
from the operand stack, and the value of the local variable at <n>
is set to objectref.

An astore <n> instruction is used with an objectref of type
ret ur nAddr ess When implementing the fi nal I y clauses of the
Java programming language (8§3.13).

An aload_<n> instruction (8aload_<n>) cannot be used to
load a value of type returnAddress from a loca variable
onto the operand stack. This asymmetry with the corresponding
astore_<n> instruction isintentional.

Each of the astore_<n> instructionsis the same as astore with an
index of <n>, except that the operand <n> isimplicit.

6.5

395

6.5

396

Instructions

athrow

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

athrow

Throw exception or error

athrow ‘

athrow = 191 (Oxbf)

..., objectref —
objectref

The objectref must be of type ref erence and must refer to an
object that is an instance of class Thr owabl e or of a subclass of
Throwabl e. It is popped from the operand stack. The objectref is
then thrown by searching the current method (82.6) for the first
exception handler that matches the class of objectref, as given by
the algorithm in §2.10.

If an exception handler that matches objectref isfound, it contains
the location of the code intended to handle this exception. The pc
register is reset to that location, the operand stack of the current
frameis cleared, abjectref is pushed back onto the operand stack,
and execution continues.

If no matching exception handler is found in the current frame,
that frameis popped. If the current frame represents an invocation
of a synchroni zed method, the monitor entered or reentered
on invocation of the method is exited as if by execution of a
monitorexit instruction (8monitorexit). Finaly, the frame of its
invoker is reinstated, if such a frame exists, and the objectref is
rethrown. |f no such frame exists, the current thread exits.

If objectref is null, athrow throws a Nul | Poi nt er Except i on
instead of objectref.

Otherwise, if the Java Virtual Machine implementation does not
enforce the rules on structured locking described in §2.11.10,
then if the method of the current frame is a synchroni zed
method and the current thread is not the owner of the monitor

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Notes

entered or reentered on invocation of the method, athrow
throwsan 111 egal Moni t or St at eExcept i on instead of the object
previously being thrown. This can happen, for example, if an
abruptly completing synchr oni zed method containsamonitorexit
instruction, but no monitorenter instruction, on the object onwhich
the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
theruleson structured locking describedin 82.11.10 and if thefirst
of those rulesisviolated during invocation of the current method,
then athrow throws an 1 1 | egal Moni t or St at eExcept i on instead
of the object previously being thrown.

The operand stack diagram for the athrow instruction may be
misleading: If ahandler for thisexception ismatched in the current
method, the athrow instruction discards all the values on the
operand stack, then pushes the thrown object onto the operand
stack. However, if no handler is matched in the current method
and the exception is thrown farther up the method invocation
chain, then the operand stack of the method (if any) that handles
the exception is cleared and objectref is pushed onto that empty
operand stack. All intervening frames from the method that threw
the exception up to, but not including, the method that handlesthe
exception are discarded.

6.5

397

6.5

398

Instructions

baload

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

baload

Load byt e of bool ean from array

baload |

baload = 51 (0x33)

..., arrayref, index —

..., value

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of typebyt e or of typebool ean. Theindex
must be of typei nt . Both arrayref and index are popped from the
operand stack. The byt e value in the component of the array at
index isretrieved, sign-extended to anii nt value, and pushed onto
the top of the operand stack.

If arrayrefisnul |, baload throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the baload instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

The baload instruction is used to load values from both byt e and
bool ean arrays. In Oracle's JavaVirtual Machineimplementation,
bool ean arrays - that is, arrays of type T_BOOLEAN (82.2,
8newarray) - are implemented as arrays of 8-bit values. Other
implementations may implement packed bool ean arrays; the
bal oad instruction of such implementations must be used to access
those arrays.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

bastore

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

Notes

bastore

Store into byt e Or bool ean array

bastore ‘

bastore = 84 (0x54)

..., arrayref, index, value -

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of typebyt e or of typebool ean. Theindex
and the value must both be of typei nt . The arrayref, index, and
value are popped from the operand stack.

If the arrayref refers to an array whose components are of type
byt e, then thei nt valueis truncated to abyt e and stored as the
component of the array indexed by index.

If the arrayref refers to an array whose components are of type
bool ean, then the i nt value is narrowed by taking the bitwise
AND of value and 1; the result is stored as the component of the
array indexed by index.

If arrayref isnul |, bastore throwsaNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the bastore instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

The bastore instruction is used to store values into both byt e and
bool ean arrays. In Oracle's JavaVirtual Machineimplementation,
bool ean arrays - that is, arrays of type T_BOOLEAN (8§2.2,
8newarray) - are implemented as arrays of 8-bit values. Other
implementations may implement packed bool ean arrays; in such
implementations the bastore instruction must be able to store
bool ean valuesinto packed bool ean arraysaswell asbyt e values
into byt e arrays.

6.5

399

6.5

400

Instructions
bipush

Operation

Format

Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET
bipush

Push byt e

bipush

byte

bipush = 16 (0x10)

e d

..., value

The immediate byte is sign-extended to an i nt value. That value
is pushed onto the operand stack.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

caload

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

caload

Load char from array

caload ‘

caload = 52 (0x34)

..., arrayref, index —

..., value

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of type char. The index must be of type
i nt . Both arrayref and index are popped from the operand stack.
The component of thearray at indexisretrieved and zero-extended
toanint value. That valueis pushed onto the operand stack.

If arrayref isnul |, caload throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the caload instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

6.5

401

6.5

402

Instructions

castore

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

castore

Storeinto char array

castore ‘

castore = 85 (0x55)

..., arrayref, index, value -

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of type char . Theindex and the value must
both be of type i nt. The arrayref, index, and value are popped
from the operand stack. Thei nt valueis truncated to achar and
stored as the component of the array indexed by index.

If arrayrefisnul |, castore throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the castore instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

checkcast checkcast

Operation Check whether object is of given type

Format checkcast
indexbytel
indexbyte2

Forms checkcast = 192 (0xcQ)

Operand ..., objectref -

Stack ..., objectref

Description The objectref must be of type reference. The unsigned
indexbytel and indexbyte2 are used to construct an index into
the run-time constant pool of the current class (8§2.6), where the
value of the index is (indexbytel << 8) | indexbyte2. The run-time
constant pool item at the index must be a symbolic reference to a
class, array, or interface type.

If objectref isnul |, then the operand stack is unchanged.

Otherwise, the named class, array, or interface type is resolved
(85.4.3.1). If objectref can be cast to the resolved class, array,
or interface type, the operand stack is unchanged; otherwise, the
checkcast instruction throws a d assCast Except i on.

Thefollowing rulesare used to determine whether an objectref that
isnot nul I can be cast to the resolved type. If s isthe type of the
object referred to by objectref, and T is the resolved class, array,
or interface type, then checkcast determines whether objectref can
be cast to type T asfollows:

 If sisaclasstype, then:

— If Tisaclasstype, then s must bethe sameclassas T, or S
must be a subclass of T;

— If Tisan interface type, then S must implement interface T.

6.5

403

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

» If sisanarray typesc], that is, an array of components of type
SC, then:

— If Tisaclasstype, then T must be tbj ect .

— If Tisan interface type, then T must be one of the interfaces
implemented by arrays (JLS §4.10.3).

— If Tisan array type T([], that is, an array of components of
type TC, then one of the following must be true:

> TCand SC are the same primitive type.

> TCand sc are reference types, and type SC can be cast to TC
by recursive application of these rules.

Linking During resolution of the symbolic reference to the class, array, or

Exceptions interface type, any of the exceptions documented in 85.4.3.1 can
be thrown.

Run-time Otherwise, if objectref cannot be cast to the resolved class,

Exception array, or interface type, the checkcast instruction throws a
Cl assCast Excepti on.

Notes The checkcast instruction is very similar to the instanceof

instruction (8instanceof). It differs in its treatment of nul |, its
behavior when its test fails (checkcast throws an exception,
instanceof pushes a result code), and its effect on the operand
stack.

404

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

d2f d2f

Operation Convert doubl e tof | oat

Format | d2f
Forms d2f = 144 (0x90)
Operand ..., value -
Stack .., result

Description ~ Thevalue on the top of the operand stack must be of type doubl e.
It is popped from the operand stack and undergoes value set
conversion (82.8.3) resulting in value'. Then value' is converted to
afloat result using |IEEE 754 round to nearest mode. The result
is pushed onto the operand stack.

Where an d2f instruction is FP-strict (82.8.2), the result of the
conversion is always rounded to the nearest representable valuein
the float value set (82.3.2).

Where an d2f instruction is not FP-strict, the result of the
conversion may be taken from the float-extended-exponent
value set (82.3.2); it is not necessarily rounded to the nearest
representable value in the float value set.

A finite value' too small to be represented asaf | oat isconverted
to azero of the same sign; afinitevalue too largeto be represented
asafl oat isconverted to an infinity of the same sign. A doubl e
NaN isconverted to afl oat NaN.

Notes The d2f instruction performs a narrowing primitive conversion
(JLS 85.1.3). It may lose information about the overall magnitude
of value' and may also lose precision.

405

6.5

406

Instructions

d2i

Operation
Format
Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

d2i

Convert doubl e tOi nt

| d2i

d2i = 142 (0x8e)

..., value -

..., result

The value on the top of the operand stack must be of type doubl e.
It is popped from the operand stack and undergoes value set
conversion (82.8.3) resulting in value'. Then value' is converted to
anint . Theresult is pushed onto the operand stack:

 |If thevalue' is NaN, the result of the conversionisanint O.

» Otherwise, if the value' is not an infinity, it is rounded to an
integer value v, rounding towards zero using |EEE 754 round
towards zero mode. If thisinteger value v can be represented as
ani nt, thentheresult isthei nt valuev.

» Otherwise, either the value' must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type int, or the value must
be too large (a positive value of large magnitude or positive
infinity), and the result isthe largest representabl e value of type
int.

The d2i instruction performs a narrowing primitive conversion
(JLS 85.1.3). It may lose information about the overall magnitude
of value' and may also lose precision.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

d2| d2|

Operation Convert doubl e to | ong

Format | d2|
Forms d2l =143 (0X8f)
Operand ..., value -
Stack ..., result

Description ~ Thevalue on the top of the operand stack must be of type doubl e.
It is popped from the operand stack and undergoes value set
conversion (82.8.3) resulting in value'. Then value' is converted to
al ong. Theresult is pushed onto the operand stack:

« |f thevalue' is NaN, theresult of the conversionisal ong O.

» Otherwise, if the value' is not an infinity, it is rounded to an
integer value v, rounding towards zero using |EEE 754 round
towards zero mode. If thisinteger value v can be represented as
al ong, then theresult isthel ong value V.

» Otherwise, either the value' must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type | ong, or the value' must
be too large (a positive value of large magnitude or positive
infinity), and the result isthe largest representabl e value of type
| ong.

Notes The d2l instruction performs a narrowing primitive conversion

(JLS 85.1.3). It may lose information about the overall magnitude
of value' and may also lose precision.

407

6.5

408

Instructions

dadd

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

dadd

Add doubl e

dadd

dadd = 99 (0x63)

., valuel, value2 -

, result

Both valuel and value2 must be of type doubl e. The values are
popped from the operand stack and undergo value set conversion
(82.8.3), resulting in valuel' and value2'. The doubl e result is
valuel' + value?'. The result is pushed onto the operand stack.

The result of adadd instruction is governed by the rules of IEEE
arithmetic:

If either valuel' or value2' is NaN, the result is NaN.
The sum of two infinities of opposite signis NaN.

The sum of two infinities of the same sign isthe infinity of that
sign.

The sum of an infinity and any finite value is equal to the
infinity.

The sum of two zeroes of opposite sign is positive zero.

The sum of two zeroes of the same sign is the zero of that sign.

The sum of a zero and a nonzero finite value is equa to the
nonzero value.

The sum of two nonzero finite values of the same magnitude and
opposite sign is positive zero.

In the remaining cases, where neither operand is an infinity, a
zero, or NaN and the values have the same sign or have different
magnitudes, the sum is computed and rounded to the nearest
representable value using |EEE 754 round to nearest mode. |If

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

the magnitude is too large to represent as a doubl e, we say the
operation overflows; the result is then an infinity of appropriate
sign. If the magnitude is too small to represent as a doubl e,
we say the operation underflows; the result is then a zero of
appropriate sign.

The Java Virtual Machine requires support of gradual underflow
asdefined by |EEE 754. Despitethefact that overflow, underflow,
or loss of precision may occur, execution of a dadd instruction
never throws a run-time exception.

409

6.5

410

Instructions

daload

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

daload

Load doubl e from array

daload |

daload = 49 (0x31)

..., arrayref, index —

..., value

The arrayref must be of type reference and must refer to an
array whose components are of type doubl e. The index must be
of typei nt . Both arrayref and index are popped from the operand
stack. The doubl e value in the component of the array at index is
retrieved and pushed onto the operand stack.

If arrayref isnul |, daload throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the daload instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

dastore

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

dastore

Store into doubl e array

dastore ‘

dastore = 82 (0x52)

..., arrayref, index, value -

The arrayref must be of type reference and must refer to an
array whose components are of typedoubl e. Theindex must be of
typei nt , and value must be of type doubl e. The arrayref, index,
and value are popped from the operand stack. The doubl e value
undergoes value set conversion (82.8.3), resulting in value', which
is stored as the component of the array indexed by index.

If arrayrefisnul |, dastore throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the dastore instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

6.5

411

6.5

412

Instructions
dcmp<op>

Operation
Format
Forms
Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET
dcmp<op>

Compare doubl e

dcmp<op> ‘

dcmpg = 152 (0x98)
dcmpl = 151 (0x97)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type doubl e. The values
are popped from the operand stack and undergo value set
conversion (82.8.3), resulting in valuel' and value2'. A floating-
point comparison is performed:

* If valuel' is greater than value?', thei nt value 1 is pushed onto
the operand stack.

» Otherwise, if valuel' is equal to value?, the int value O is
pushed onto the operand stack.

» Otherwise, if valuel' is less than value?', the i nt vaue -1 is
pushed onto the operand stack.

» Otherwise, at least one of valuel' or value2' isNaN. The decmpg
instruction pushes the i nt value 1 onto the operand stack and
the dempl instruction pushes the i nt value -1 onto the operand
stack.

Floating-point comparison is performed in accordance with |IEEE
754. All values other than NaN are ordered, with negative infinity
lessthan all finite values and positiveinfinity greater than all finite
values. Positive zero and negative zero are considered equal.

The dempg and dempl instructions differ only in their treatment of
a comparison involving NaN. NaN is unordered, so any doubl e
comparison fails if either or both of its operands are NaN. With
both dcmpg and decmpl available, any doubl e comparison may

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

be compiled to push the same result onto the operand stack
whether the comparison fails on non-NaN values or fails because
it encountered a NaN. For more information, see 83.5.

413

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

dconst_<d> dconst_<d>

Operation Push doubl e

Format dconst_<d> ‘

Forms dconst_0 = 14 (Oxe)
dconst_1 = 15 (Oxf)

Operand o
Stack ..., <d>

Description ~ Pushthedoubl e constant <d> (0.0 or 1.0) onto the operand stack.

414

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions
ddiv ddiv
Operation Divide doubl e

Format ddiv

Forms ddiv = 111 (Ox6f)

Operand ..., valuel, value2 -

Stack .., result

Description Both valuel and value2 must be of type doubl e. The values are

popped from the operand stack and undergo value set conversion
(82.8.3), resulting in valuel' and value2'. The doubl e result is
valuel' / value?'. The result is pushed onto the operand stack.

The result of a ddiv instruction is governed by the rules of IEEE
arithmetic:

* |f either valuel' or value2' is NaN, the result is NaN.

* |If neither valuel' nor value?' is NaN, the sign of the result is
positiveif both values have the same sign, negativeif the values
have different signs.

* Division of aninfinity by an infinity resultsin NaN.

» Division of an infinity by a finite value results in a signed
infinity, with the sign-producing rule just given.

» Division of afinite value by an infinity resultsin a signed zero,
with the sign-producing rule just given.

* Division of a zero by a zero results in NaN; division of zero
by any other finite value resultsin a signed zero, with the sign-
producing rule just given.

 Division of a nonzero finite value by a zero results in a signed
infinity, with the sign-producing rule just given.

* In the remaining cases, where neither operand is an infinity,
a zero, or NaN, the quotient is computed and rounded to the
nearest doubl e using |EEE 754 round to nearest mode. If the

6.5

415

6.5

416

Instructions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

magnitude is too large to represent as a doubl e, we say the
operation overflows; the result is then an infinity of appropriate
sign. If the magnitude is too small to represent as a doubl e,
we say the operation underflows; the result is then a zero of
appropriate sign.

The Java Virtual Machine requires support of gradual underflow
asdefined by |EEE 754. Despitethefact that overflow, underflow,
division by zero, or loss of precision may occur, execution of a
ddiv instruction never throws a run-time exception.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

dload dload

Operation Load doubl e from local variable

Format dload

index

Forms dioad = 24 (0x18)

Operand .o

Stack ..., value

Description Theindex is an unsigned byte. Both index and index+1 must be
indices into the local variable array of the current frame (82.6).
The local variable at index must contain a doubl e. The value of
the local variable at index is pushed onto the operand stack.

Notes The dload opcode can be used in conjunction with the wide

instruction (8wide) to access a local variable using a two-byte
unsigned index.

6.5

417

6.5 Instructions

dload_<n>

Operation
Format

Forms

Operand
Stack

Description

Notes

418

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

dload_<n>

Load doubl e from local variable

dload_<n> ‘

dload_0 = 38 (0x26)
dload 1 =39 (0x27)
dload_2 =40 (0x28)
dload_3 =41 (0x29)

o

..., value

Both <n> and <n>+1 must be indices into the local variable array
of the current frame (82.6). Thelocal variable at <n> must contain
adoubl e. The value of the local variable at <n> is pushed onto
the operand stack.

Each of the dload <n> ingtructions is the same as dload with an
index of <n>, except that the operand <n> isimplicit.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions
dmul dmul
Operation Multiply doubl e

Format dmul

Forms dmul = 107 (Ox6b)

Operand ..., valuel, value2 -

Stack .., Fesult

Description Both valuel and value2 must be of type doubl e. The values are

popped from the operand stack and undergo value set conversion
(82.8.3), resulting in valuel' and value2'. The doubl e result is
valuel' * value?'. Theresult is pushed onto the operand stack.

The result of admul instruction is governed by the rules of IEEE
arithmetic:

* |f either valuel' or value2' is NaN, the result is NaN.

* |If neither valuel' nor value?' is NaN, the sign of the result is
positive if both values have the same sign and negative if the
values have different signs.

» Multiplication of an infinity by a zero resultsin NaN.

» Multiplication of aninfinity by afinite value resultsin asigned
infinity, with the sign-producing rule just given.

* In the remaining cases, where neither an infinity nor NaN is
involved, the product is computed and rounded to the nearest
representable value using |EEE 754 round to nearest mode. If
the magnitude is too large to represent as a doubl e, we say the
operation overflows; the result isthen an infinity of appropriate
sign. If the magnitude is too small to represent as a doubl e,
we say the operation underflows; the result is then a zero of
appropriate sign.

The Java Virtual Machine requires support of gradual underflow
asdefined by |EEE 754. Despitethefact that overflow, underflow,

6.5

419

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

or loss of precision may occur, execution of a dmul instruction
never throws a run-time exception.

420

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

dneg

Operation
Format
Forms

Operand
Stack

Description

dneg

Negate doubl e

dneg

dneg = 119 (0x77)

..., value -

..., result

The value must be of type doubl e. It is popped from the operand
stack and undergoes value set conversion (82.8.3), resulting in
value'. The doubl e result isthe arithmetic negation of value'. The
result is pushed onto the operand stack.

For doubl e values, negation is not the same as subtraction from
zero. If x is +0. 0, then 0. 0-x equals +0. 0, but - x equals - 0. 0.
Unary minus merely inverts the sign of adoubl e.

Special cases of interest:

* If the operand is NaN, the result is NaN (recall that NaN has
no sign).

« If the operand is an infinity, the result is the infinity of opposite
sign.

« If the operand is a zero, the result is the zero of opposite sign.

6.5

421

6.5

422

Instructions

drem

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

drem

Remainder doubl e

drem

drem = 115 (0x73)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type doubl e. The values are
popped from the operand stack and undergo value set conversion
(82.8.3), resulting in valuel' and value2'. The result is calcul ated
and pushed onto the operand stack as adoubl e.

The result of adrem instruction is not the same as that of the so-
called remainder operation defined by |IEEE 754. The IEEE 754
"remainder" operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not
analogous to that of the usual integer remainder operator. Instead,
the Java Virtual Machine defines drem to behave in a manner
analogous to that of the Java Virtual Machine integer remainder
instructions (irem and Irem); this may be compared with the C
library function f mod.

The result of adreminstruction is governed by these rules:
* If either valuel' or value2' is NaN, the result is NaN.

* If neither valuel' nor value2' isNaN, the sign of theresult equals
the sign of the dividend.

« If thedividend is an infinity or the divisor isa zero or both, the
result is NaN.

« |f the dividend is finite and the divisor is an infinity, the result
equals the dividend.

« If thedividendisazero and the divisor isfinite, theresult equals
the dividend.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

* In the remaining cases, where neither operand is an infinity,
a zero, or NaN, the floating-point remainder result from
a dividend valuel' and a divisor value2' is defined by the
mathematical relation result = valuel' - (value2' * q), where
g is an integer that is negative only if valuel' / value2' is
negative, and positive only if valuel' / value?' is positive, and
whose magnitude is as large as possible without exceeding the
magnitude of the true mathematical quotient of valuel' and
value2'.

Despite the fact that division by zero may occur, evaluation of
adrem instruction never throws a run-time exception. Overflow,
underflow, or loss of precision cannot occur.

Notes The |IEEE 754 remainder operation may be computed by the
library routine Mat h. | EEEr emai nder .

423

6.5

424

Instructions

dreturn

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

dreturn

Return doubl e from method

dreturn ‘

dreturn = 175 (Oxaf)

..., value -

[empty]

The current method must have return type doubl e. The value
must be of type doubl e. If the current method isasynchr oni zed
method, the monitor entered or reentered on invocation of the
method is updated and possibly exited as if by execution of a
monitorexit instruction (8monitorexit) in the current thread. If no
exception isthrown, valueis popped from the operand stack of the
current frame (82.6) and undergoes value set conversion (§2.8.3),
resulting in value'. The value' is pushed onto the operand stack of
theframe of theinvoker. Any other values on the operand stack of
the current method are discarded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

If the Java Virtua Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current methodisasynchr oni zed method and thecurrent thread is
not the owner of the monitor entered or reentered on invocation of
the method, dreturnthrowsan | | | egal Moni t or St at eExcept i on.
This can happen, for example, if asynchr oni zed method contains
a monitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
theruleson structured locking described in §2.11.10 and if thefirst
of those rulesis violated during invocation of the current method,
then dreturn throwsan | |1 | egal Moni t or St at eExcept i on.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

dstore

Operation

Format

Forms

Operand
Stack

Description

Notes

dstore

Store doubl e into local variable

dstore
index

dstore = 57 (0x39)

..., value -

The index is an unsigned byte. Both index and index+1 must be
indices into the local variable array of the current frame (82.6).
The value on the top of the operand stack must be of type doubl e.
It is popped from the operand stack and undergoes value set
conversion (82.8.3), resultinginvalue'. Thelocal variablesat index
and index+1 are set to value'.

The dstore opcode can be used in conjunction with the wide
instruction (8wide) to access a local variable using a two-byte
unsigned index.

6.5

425

6.5 Instructions

dstore <n>

Operation
Format

Forms

Operand
Stack

Description

Notes

426

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

dstore <n>

Store doubl e into local variable

dstore <n> ‘

dstore 0= 71 (0x47)
dstore 1 =72 (0x48)
dstore 2 =73 (0x49)
dstore 3 =74 (0x44)

..., value -

Both <n> and <n>+1 must be indices into the local variable array
of the current frame (82.6). The value on the top of the operand
stack must be of type doubl e. It is popped from the operand stack
and undergoes value set conversion (82.8.3), resulting in value'.
Thelocal variables at <n> and <n>+1 are set to value'.

Each of the dstore_<n> instructions is the same as dstore with an
index of <n>, except that the operand <n> isimplicit.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions
dsub dsub
Operation Subtract doubl e

Format dsub

Forms dsub = 103 (0x67)

Operand ..., valuel, value2 -

Stack .., result

Description Both valuel and value2 must be of type doubl e. The values are

popped from the operand stack and undergo value set conversion
(82.8.3), resulting in valuel' and value2'. The doubl e result is
valuel' - value2'. Theresult is pushed onto the operand stack.

For doubl e subtraction, it is aways the case that a- b produces
the same result as a+(-b). However, for the dsub instruction,
subtraction from zero is not the same as negation, because if x is
+0. 0, then 0. 0- x equals +0. 0, but - x equals- 0. 0.

TheJavaVirtual Machinerequiressupport of gradual underflow as
defined by | EEE 754. Despitethefact that overflow, underflow, or
loss of precision may occur, execution of a dsub instruction never
throws a run-time exception.

6.5

427

6.5

428

Instructions

dup

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET
dup

Duplicate the top operand stack value

‘ dup

dup = 89 (0x59)

..., value -

..., value, value

Duplicate the top value on the operand stack and push the
duplicated value onto the operand stack.

The dup instruction must not be used unless value is a value of a
category 1 computational type (82.11.1).

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

dup_x1

Operation
Format
Forms

Operand
Stack

Description

dup_x1

Duplicate the top operand stack value and insert two values down

dup x1 ‘

dup_x1 =90 (0Ox5a)

..., value2, valuel -

..., valuel, value2, valuel

Duplicate the top value on the operand stack and insert the
duplicated value two values down in the operand stack.

The dup_x1 instruction must not be used unless both valuel and
value2 are values of a category 1 computational type (82.11.1).

6.5

429

6.5

430

Instructions

dup_x2

Operation

Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

dup_x2

Duplicate the top operand stack value and insert two or three
values down

dup_x2 |

dup x2 =91 (0x5b)

Form 1:
..., value3, value2, valuel -
..., valuel, value3, value2, valuel

where valuel, value2, and value3 are all values of a category 1
computational type (82.11.1).

Form 2:
..., value2, valuel -
..., valuel, value2, valuel

where valuel is a value of a category 1 computational type and
value? is avalue of acategory 2 computationa type (82.11.1).

Duplicate the top value on the operand stack and insert the
duplicated value two or three values down in the operand stack.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

dup2

Operation
Format
Forms

Operand
Stack

Description

dup2

Duplicate the top one or two operand stack values

dup2

dup2 = 92 (0x5c¢)

Form 1:
..., value2, valuel —
..., value2, valuel, value2, valuel

where both valuel and value2 are values of a category 1
computational type (82.11.1).

Form 2:
..., value -
..., value, value

where value is a value of a category 2 computationa type
(82.11.1).

Duplicate the top one or two values on the operand stack and push
the duplicated value or values back onto the operand stack in the
original order.

6.5

431

6.5 Instructions
dup2 x1
Operation

Format
Forms

Operand
Stack

Description

432

THE JAVA VIRTUAL MACHINE INSTRUCTION SET
dup2 x1

Duplicate the top one or two operand stack values and insert two
or three values down

dup2_x1 |

dup2_x1 =93 (0x5d)

Form 1:
..., value3, value2, valuel -
..., value2, valuel, value3, value2, valuel

where valuel, value2, and value3 are all values of a category 1
computational type (82.11.1).

Form 2:
..., value2, valuel -
..., valuel, value2, valuel

where valuel is a value of a category 2 computational type and
value? is avalue of acategory 1 computationa type (82.11.1).

Duplicate thetop one or two values on the operand stack and insert
the duplicated values, in the original order, one value beneath the
original value or values in the operand stack.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions
dup2_x2 dup2_x2
Operation Duplicate the top one or two operand stack values and insert two,

Format
Forms

Operand
Stack

three, or four values down

dup2_x2 |

dup2_x2 = 94 (0x5e)

Form 1:
..., valued, values, value2, valuel -
..., value2, valuel, valued, value3, value2, valuel

where valuel, value2, value3, and valued4 are all vaues of a
category 1 computational type (82.11.1).

Form 2:
..., value3, value2, valuel -
..., valuel, value3, value2, valuel

where valuel is a value of a category 2 computational type and
value2 and value3 are both values of a category 1 computational
type (82.11.1).

Form 3:
..., value3, value2, valuel -
..., value2, valuel, value3, value2, valuel

where valuel and value2 are both values of a category 1
computational type and value3 is a value of a category 2
computational type (82.11.1).

Form 4.
..., value2, valuel -
..., valuel, value2, valuel

where valuel and value2 are both values of a category 2
computational type (82.11.1).

6.5

433

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

Description Duplicatethetop one or two values on the operand stack and insert
the duplicated values, in the original order, into the operand stack.

434

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

f2d

Operation
Format
Forms

Operand
Stack

Description

Notes

f2d

Convert f1 oat todoubl e

| f2d

f2d = 141 (Ox8d)

..., value -

..., result

The value on the top of the operand stack must be of typef | oat .
It is popped from the operand stack and undergoes value set
conversion (82.8.3), resulting in value'. Then value' is converted
to adoubl e result. Thisresult is pushed onto the operand stack.

Where an f2d instruction is FP-strict (82.8.2) it performs a
widening primitive conversion (JLS 85.1.2). Because all values of
the float value set (82.3.2) are exactly representable by values of
the double value set (82.3.2), such a conversion is exact.

Where an f2d instruction is not FP-strict, the result of the
conversion may be taken from the double-extended-exponent
value set; it is not necessarily rounded to the nearest representable
value in the double value set. However, if the operand value is
taken from the float-extended-exponent value set and the target
result is constrained to the doubl e value set, rounding of value may
be required.

6.5

435

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

f2i f2i

Operation Convert fl oat toint

Format | f2i
Forms f2i = 139 (0X8b)
Operand ..., value -
Stack ..., result

Description ~ The value on the top of the operand stack must be of typef | oat .
It is popped from the operand stack and undergoes value set
conversion (82.8.3), resulting in value'. Then value' is converted
toanint result. Thisresult is pushed onto the operand stack:

 |If thevalue' is NaN, the result of the conversionisanint O.

» Otherwise, if the value' is not an infinity, it is rounded to an
integer value v, rounding towards zero using |EEE 754 round
towards zero mode. If thisinteger value v can be represented as
ani nt, thentheresult isthei nt value V.

» Otherwise, either the value' must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type int, or the value must
be too large (a positive value of large magnitude or positive
infinity), and the result isthe largest representabl e value of type
int.

Notes The f2i ingtruction performs a narrowing primitive conversion

(JLS 85.1.3). It may lose information about the overall magnitude
of value' and may also lose precision.

436

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

f2l f2l

Operation Convert fl oat tol ong

Format | f2l
Forms f2I = 140 (0x8c)
Operand ..., value -
Stack ..., result

Description ~ The value on the top of the operand stack must be of typef | oat .
It is popped from the operand stack and undergoes value set
conversion (82.8.3), resulting in value'. Then value' is converted
to al ong result. Thisresult is pushed onto the operand stack:

« |f thevalue' is NaN, the result of the conversionisal ong O.

» Otherwise, if the value' is not an infinity, it is rounded to an
integer value v, rounding towards zero using |EEE 754 round
towards zero mode. If thisinteger value v can be represented as
al ong, then theresult isthel ong value V.

» Otherwise, either the value' must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type | ong, or the value' must
be too large (a positive value of large magnitude or positive
infinity), and the result isthe largest representabl e value of type
| ong.

Notes The 2l ingtruction performs a narrowing primitive conversion

(JLS 85.1.3). It may lose information about the overall magnitude
of value' and may also lose precision.

437

6.5

438

Instructions

fadd

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

fadd

Add f | oat

fadd

fadd = 98 (0x62)

, valuel, value2 -

, result

Both valuel and value2 must be of type f | oat. The values are
popped from the operand stack and undergo value set conversion
(82.8.3), resulting in valuel' and value2'. The float result is
valuel' + value?'. The result is pushed onto the operand stack.

The result of an fadd instruction is governed by the rules of IEEE
arithmetic:

If either valuel' or value2' is NaN, the result is NaN.
The sum of two infinities of opposite signis NaN.

The sum of two infinities of the same sign isthe infinity of that
sign.

The sum of an infinity and any finite value is equal to the
infinity.

The sum of two zeroes of opposite sign is positive zero.

The sum of two zeroes of the same sign is the zero of that sign.

The sum of a zero and a nonzero finite value is equa to the
nonzero value.

The sum of two nonzero finite values of the same magnitude and
opposite sign is positive zero.

In the remaining cases, where neither operand is an infinity, a
zero, or NaN and the values have the same sign or have different
magnitudes, the sum is computed and rounded to the nearest
representable value using |EEE 754 round to nearest mode. |If

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

the magnitude is too large to represent as af | oat , we say the
operation overflows; the result is then an infinity of appropriate
sign. If themagnitudeistoo small to represent asaf | oat , wesay
the operation underflows; the result isthen azero of appropriate
sign.

The Java Virtual Machine requires support of gradual underflow
asdefined by |EEE 754. Despitethefact that overflow, underflow,
or loss of precision may occur, execution of an fadd instruction
never throws a run-time exception.

439

6.5

440

Instructions

faload

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

faload

Load f1 oat from array

faload

faload = 48 (0x30)

..., arrayref, index —

..., value

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of type f 1 oat . The index must be of type
i nt . Both arrayref and index are popped from the operand stack.
Thef oat valueinthecomponent of thearray at indexisretrieved
and pushed onto the operand stack.

If arrayrefisnul |, faload throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the faload instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

fastore

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

fastore

Storeintof | oat array

fastore ‘

fastore = 81 (0x51)

..., arrayref, index, value -

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of type f 1 oat . The index must be of type
i nt, and the value must be of type f1 oat . The arrayref, index,
and value are popped from the operand stack. The f1 oat value
undergoes value set conversion (82.8.3), resulting in value', and
value' is stored as the component of the array indexed by index.

If arrayrefisnul |, fastore throwsanNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the fastore instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

Instructions

6.5

441

6.5

442

Instructions
fcmp<op>
Operation

Format
Forms
Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET
fcmp<op>

Comparefl oat

fcmp<op> ‘

fcmpg = 150 (0x96)
fcmpl = 149 (0x95)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type float. The values
are popped from the operand stack and undergo value set
conversion (82.8.3), resulting in valuel' and value2'. A floating-
point comparison is performed:

* If valuel' is greater than value?', thei nt value 1 is pushed onto
the operand stack.

» Otherwise, if valuel' is equal to value?, the int value O is
pushed onto the operand stack.

» Otherwise, if valuel' is less than value?', the i nt vaue -1 is
pushed onto the operand stack.

» Otherwise, at least one of valuel' or value2' is NaN. The fcmpg
instruction pushes the i nt value 1 onto the operand stack and
the fcmpl instruction pushes thei nt value -1 onto the operand
stack.

Floating-point comparison is performed in accordance with |IEEE
754. All values other than NaN are ordered, with negative infinity
lessthan all finite values and positiveinfinity greater than all finite
values. Positive zero and negative zero are considered equal.

The fempg and fempl instructions differ only in their treatment of
a comparison involving NaN. NaN is unordered, so any f1 oat
comparison fails if either or both of its operands are NaN. With
both fcmpg and fcmpl available, any float comparison may

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

be compiled to push the same result onto the operand stack
whether the comparison fails on non-NaN values or fails because
it encountered a NaN. For more information, see 83.5.

443

6.5

Instructions

fconst_<f>

Operation
Format

Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

fconst <f>

Push | oat

fconst_<f> ‘

fconst_0 = 11 (Oxb)
fconst_1 = 12 (Oxc)
fconst_2 = 13 (0Oxd)

o

<f>

Push the f1 oat constant <f> (0.0, 1.0, or 2.0) onto the operand
stack.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions
fdiv fdiv
Operation Dividef | oat

Format fdiv

Forms fdiv = 110 (Ox6e)

Operand ..., valuel, value2 -

Stack .., result

Description Both valuel and value2 must be of type f I oat. The values are

popped from the operand stack and undergo value set conversion
(82.8.3), resulting in valuel' and value2'. The float result is
valuel' / value?'. The result is pushed onto the operand stack.

The result of an fdiv instruction is governed by the rules of IEEE
arithmetic:

* |f either valuel' or value2' is NaN, the result is NaN.

* |If neither valuel' nor value?' is NaN, the sign of the result is
positiveif both values have the same sign, negativeif the values
have different signs.

* Division of aninfinity by an infinity resultsin NaN.

» Division of an infinity by a finite value results in a signed
infinity, with the sign-producing rule just given.

» Division of afinite value by an infinity resultsin a signed zero,
with the sign-producing rule just given.

* Division of a zero by a zero results in NaN; division of zero
by any other finite value resultsin a signed zero, with the sign-
producing rule just given.

 Division of a nonzero finite value by a zero results in a signed
infinity, with the sign-producing rule just given.

* In the remaining cases, where neither operand is an infinity,
a zero, or NaN, the quotient is computed and rounded to the
nearest fl oat using |IEEE 754 round to nearest mode. If the

6.5

445

6.5

446

Instructions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

magnitude is too large to represent as a fl oat, we say the
operation overflows; the result is then an infinity of appropriate
sign. If themagnitudeistoo small to represent asaf | oat , wesay
the operation underflows; the result isthen azero of appropriate
sign.

The Java Virtual Machine requires support of gradual underflow
asdefined by |EEE 754. Despitethefact that overflow, underflow,
division by zero, or loss of precision may occur, execution of an
fdiv instruction never throws a run-time exception.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

fload fload

Operation Load f I oat from local variable

Format fload
index

Forms fload = 23 (0x17)

Operand o

Stack ..., value

Description Theindex is an unsigned byte that must be an index into the local
variable array of the current frame (82.6). The local variable at
index must contain af | oat . Thevalue of thelocal variable at index
is pushed onto the operand stack.

Notes The fload opcode can be used in conjunction with the wide

instruction (8wide) to access a local variable using a two-byte
unsigned index.

447

6.5 Instructions

fload <n>

Operation
Format

Forms

Operand
Stack

Description

Notes

448

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

fload <n>

Load f | oat from loca variable

fload_<n> ‘

fload_0 = 34 (0x22)
fload_1 = 35 (0x23)
fload_2 = 36 (0x24)
fload 3 = 37 (0x25)

o

..., value

The <n> must be an index into the local variable array of the
current frame (82.6). The local variable at <n> must contain a
f1 oat. The value of the local variable at <n> is pushed onto the
operand stack.

Each of the fload_<n> instructions is the same as fload with an
index of <n>, except that the operand <n> isimplicit.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions
fmul fmul
Operation Multiply 1 oat

Format fmul

Forms fmul = 106 (Ox6a)

Operand ..., valuel, value2 -

Stack .., result

Description Both valuel and value2 must be of type f I oat. The values are

popped from the operand stack and undergo value set conversion
(82.8.3), resulting in valuel' and value2'. The float result is
valuel' * value?'. Theresult is pushed onto the operand stack.

The result of an fmul instruction is governed by the rules of IEEE
arithmetic:

* |f either valuel' or value2' is NaN, the result is NaN.

* |If neither valuel' nor value?' is NaN, the sign of the result is
positive if both values have the same sign, and negative if the
values have different signs.

» Multiplication of an infinity by a zero resultsin NaN.

» Multiplication of aninfinity by afinite value resultsin asigned
infinity, with the sign-producing rule just given.

* In the remaining cases, where neither an infinity nor NaN is
involved, the product is computed and rounded to the nearest
representable value using |EEE 754 round to nearest mode. If
the magnitude is too large to represent as af | oat , we say the
operation overflows; the result isthen an infinity of appropriate
sign. If themagnitudeistoo small to represent asaf | oat , wesay
the operation underflows; the result isthen azero of appropriate
sign.

The Java Virtual Machine requires support of gradual underflow
asdefined by |EEE 754. Despitethefact that overflow, underflow,

6.5

449

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

or loss of precision may occur, execution of an fmul instruction
never throws a run-time exception.

450

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

fneg

Operation
Format
Forms

Operand
Stack

Description

fneg

Negatef | oat

frneg

fneg = 118 (0x76)

..., value -

..., result

The value must be of typef1 oat . It is popped from the operand
stack and undergoes value set conversion (82.8.3), resulting in
value'. Thefl oat result isthe arithmetic negation of value'. This
result is pushed onto the operand stack.

For f1 oat values, negation is not the same as subtraction from
zero. If x is +0. 0, then 0. 0-x equals +0. 0, but - x equals - 0. 0.
Unary minus merely invertsthe sign of afl oat .

Special cases of interest:

* If the operand is NaN, the result is NaN (recall that NaN has
no sign).

« If the operand is an infinity, the result is the infinity of opposite
sign.

« If the operand is a zero, the result is the zero of opposite sign.

6.5

451

6.5

452

Instructions

frem

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

frem

Remainder f | oat

frem

frem = 114 (0x72)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type f | oat. The values are
popped from the operand stack and undergo value set conversion
(82.8.3), resulting in valuel' and value2'. The result is calcul ated
and pushed onto the operand stack asaf | oat .

Theresult of an freminstruction is not the same as that of the so-
called remainder operation defined by |IEEE 754. The IEEE 754
"remainder" operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not
analogous to that of the usual integer remainder operator. Instead,
the Java Virtua Machine defines frem to behave in a manner
analogous to that of the Java Virtual Machine integer remainder
instructions (irem and Irem); this may be compared with the C
library function f mod.

The result of an freminstruction is governed by these rules:
* If either valuel' or value2' is NaN, the result is NaN.

* If neither valuel' nor value2' isNaN, the sign of theresult equals
the sign of the dividend.

« If thedividend is an infinity or the divisor isa zero or both, the
result is NaN.

« |f the dividend is finite and the divisor is an infinity, the result
equals the dividend.

« If thedividendisazero and the divisor isfinite, theresult equals
the dividend.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

* In the remaining cases, where neither operand is an infinity,
a zero, or NaN, the floating-point remainder result from
a dividend valuel' and a divisor value2' is defined by the
mathematical relation result = valuel' - (value2' * q), where
g is an integer that is negative only if valuel' / value2' is
negative and positive only if valuel' / value2' is positive, and
whose magnitude is as large as possible without exceeding the
magnitude of the true mathematical quotient of valuel' and
value2'.

Despite the fact that division by zero may occur, evaluation of
an freminstruction never throws a run-time exception. Overflow,
underflow, or loss of precision cannot occur.

Notes The |IEEE 754 remainder operation may be computed by the
library routine Mat h. | EEEr emai nder .

453

6.5 Instructions

freturn

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

454

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

freturn

Return f 1 oat from method

freturn ‘

freturn = 174 (Oxae)

..., value -

[empty]

The current method must have return type float. The value
must be of typef i oat . If the current method is asynchr oni zed
method, the monitor entered or reentered on invocation of the
method is updated and possibly exited as if by execution of a
monitorexit instruction (8monitorexit) in the current thread. If no
exception isthrown, valueis popped from the operand stack of the
current frame (82.6) and undergoes value set conversion (§2.8.3),
resulting in value'. The value' is pushed onto the operand stack of
theframe of theinvoker. Any other values on the operand stack of
the current method are discarded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

If the Java Virtua Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current methodisasynchr oni zed method and thecurrent thread is
not the owner of the monitor entered or reentered on invocation of
the method, freturn throwsan 1 | | egal Moni t or St at eExcept i on.
This can happen, for example, if asynchr oni zed method contains
a monitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
theruleson structured locking described in §2.11.10 and if thefirst
of those rulesis violated during invocation of the current method,
then freturn throwsan 1 1 | egal Moni t or St at eExcept i on.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

fstore

Operation

Format

Forms

Operand
Stack

Description

Notes

fstore

Storef | oat intolocal variable

fstore
index

fstore = 56 (0x38)

..., value -

Theindex is an unsigned byte that must be an index into the local
variable array of the current frame (82.6). The value on the top
of the operand stack must be of type float . It is popped from
the operand stack and undergoes value set conversion (8§82.8.3),
resulting in value'. The value of the local variable at index is set
tovalue'.

The fstore opcode can be used in conjunction with the wide
instruction (8wide) to access a local variable using a two-byte
unsigned index.

6.5

455

6.5 Instructions

fstore <n>

Operation
Format

Forms

Operand
Stack

Description

Notes

456

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

fstore <n>

Storef | oat intolocal variable

fstore <n> ‘

fstore 0 =67 (0x43)
fstore 1 = 68 (0x44)
fstore 2 = 69 (0x45)
fstore 3 =70 (0x46)

..., value -

The <n> must be an index into the local variable array of the
current frame (82.6). The value on the top of the operand stack
must be of type f i oat . It is popped from the operand stack and
undergoes value set conversion (82.8.3), resulting in value'. The
value of the local variable at <n> is set to value'.

Each of the fstore_<n> instructions is the same as fstore with an
index of <n>, except that the operand <n> isimplicit.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

fsub

Operation
Format
Forms

Operand
Stack

Description

fsub

Subtract f | oat

fsub

fsub = 102 (0x66)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type f | oat. The values are
popped from the operand stack and undergo value set conversion
(82.8.3), resulting in valuel' and value2'. The float result is
valuel' - value2'. Theresult is pushed onto the operand stack.

For f1oat subtraction, it is always the case that a- b produces
the same result as a+(-b). However, for the fsub instruction,
subtraction from zero is not the same as negation, because if x is
+0. 0, then 0. 0- x equals +0. 0, but - x equals- 0. 0.

The Java Virtual Machine requires support of gradual underflow
asdefined by |EEE 754. Despitethefact that overflow, underflow,
or loss of precision may occur, execution of an fsub instruction
never throws a run-time exception.

6.5

457

6.5

458

Instructions

getfield

Operation

Format

Forms

Operand
Stack

Description

Linking
Exceptions

Run-time
Exception

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET
getfield

Fetch field from object

getfield
indexbytel
indexbyte2

getfield = 180 (Oxb4)

..., objectref -

..., value

The unsigned indexbytel and indexbyte? are used to construct an
index into the run-time constant pool of the current class (82.6),
where the value of the index is (indexbytel << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
referenceto afield (85.1), which gives the name and descriptor of
the field as well as a symbalic reference to the class in which the
field isto be found. The referenced field isresolved (85.4.3.2).

The objectref, which must be of typer ef er ence but not an array
type, ispopped from the operand stack. Thevalue of the referenced
field in objectref is fetched and pushed onto the operand stack.

During resolution of the symbolic referenceto thefield, any of the
errors pertaining to field resolution (85.4.3.2) can be thrown.

Otherwise, if the resolved field isast ati ¢ field, getfield throws
an | nconpati bl ed assChangeError.

Otherwise, if objectref is nul I, the getfield instruction throws a
Nul | Poi nt er Excepti on.

The getfield instruction cannot be used to accessthe | engt h field
of an array. The arraylength instruction (8arraylength) is used
instead.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

getstatic

Operation

Format

Forms

Operand
Stack

Description

Linking
Exceptions

getstatic

Get st ati c field from class

getstatic
indexbytel
indexbyte2

getstatic = 178 (0xb2)

ey —

..., value

The unsigned indexbytel and indexbyte? are used to construct an
index into the run-time constant pool of the current class (82.6),
where the value of the index is (indexbytel << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
referenceto afield (85.1), which gives the name and descriptor of
the field as well as a symbolic reference to the class or interface
in which the field is to be found. The referenced field is resolved
(85.4.3.2).

On successful resolution of the field, the class or interface that
declared the resolved field is initialized if that class or interface
has not already been initialized (85.5).

Thevalue of the class or interface field is fetched and pushed onto
the operand stack.

During resolution of the symbolic reference to the class or
interface field, any of the exceptions pertaining to field resolution
(85.4.3.2) can be thrown.

Otherwise, if the resolved field is not a static
(class) field or an interface field, getstatic throws an
I nconpat i bl eCl assChangeErr or.

6.5

459

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

Run-time Otherwise, if execution of this getstatic instruction causes
initidlization of the referenced class or interface, getstatic may

Exception AR
throw an Er r or asdetailed in 85.5.

460

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions
goto goto
Operation Branch adways
Format goto
branchbytel
branchbyte2
Forms goto = 167 (Oxar)
Operand No change
Stack
Description The unsigned bytes branchbytel and branchbyte? are used to

construct a signed 16-bit branchoffset, where branchoffset is
(branchbytel << 8) | branchbyte?2. Execution proceeds at that
offset from the address of the opcode of this goto instruction. The
target address must be that of an opcode of an instruction within
the method that contains this goto instruction.

6.5

461

6.5

462

Instructions

goto_w

Operation

Format

Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET
goto_w

Branch always (wide index)

goto_w
branchbytel
branchbyte2
branchbyte3
branchbyte4

goto_w = 200 (0xc8)

No change

The unsigned bytes branchbytel, branchbyte2, branchbyte3, and
branchbyte4 are used to construct a signed 32-bit branchoffset,
where branchoffset is (branchbytel << 24) | (branchbyte2 << 16)
| (branchbyte3 << 8) | branchbyte4. Execution proceeds at that
offset from the address of the opcode of this goto_w instruction.
The target address must be that of an opcode of an instruction
within the method that contains this goto_w instruction.

Althoughthegoto winstructiontakesa4-byte branch offset, other
factorslimit the size of amethod to 65535 bytes (§84.11). Thislimit
may be raised in a future release of the Java Virtual Machine.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

12b 12b

Operation Convertint tobyte

Format | i2b
Forms i2b = 145 (0x91)
Operand ..., value -
Stack ..., result

Description ~ The value on the top of the operand stack must be of typei nt . It
is popped from the operand stack, truncated to a byt e, then sign-
extended to ani nt result. That result is pushed onto the operand
stack.

Notes The i2b instruction performs a narrowing primitive conversion
(JLS 85.1.3). It may lose information about the overall magnitude
of value. Theresult may also not have the same sign as value.

463

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

i12C 12C

Operation Convertint tochar

Format | i2c
Forms i2c = 146 (0x92)
Operand ..., value -
Stack .., result

Description ~ The value on the top of the operand stack must be of typei nt . It
is popped from the operand stack, truncated to char, then zero-
extended to ani nt result. That result is pushed onto the operand
stack.

Notes The i2c instruction performs a narrowing primitive conversion
(JLS 85.1.3). It may lose information about the overall magnitude
of value. The result (which is always positive) may also not have
the same sign as value.

464

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

i2d

Operation
Format
Forms

Operand
Stack

Description

Notes

i2d

Converti nt todoubl e

| i2d

i2d = 135 (Ox87)

..., value -

..., result

Thevalue on the top of the operand stack must be of typei nt . Itis
popped from the operand stack and converted to adoubl e result.
The result is pushed onto the operand stack.

Thei2dinstruction performsawidening primitive conversion (JLS
§5.1.2). Because al values of typei nt are exactly representable
by type doubl e, the conversion is exact.

6.5

465

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

1 2f | 2f

Operation Convertint tofl oat

Format | i2f
Forms i2f=134 (0X86)
Operand ..., value -
Stack ..., result

Description ~ Thevalue on thetop of the operand stack must be of typei nt . Itis
popped from the operand stack and converted to the f 1 oat result
using |EEE 754 round to nearest mode. The result is pushed onto
the operand stack.

Notes Thei2f instruction performsawidening primitive conversion (JLS
§5.1.2), but may result in aloss of precision because values of type
fl oat haveonly 24 significand bits.

466

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

12l

Operation
Format
Forms

Operand
Stack

Description

Notes

12l

Convertint tol ong

| il

i2l = 133 (0x85)

..., value -

..., result

Thevalue on the top of the operand stack must be of typei nt . Itis
popped from the operand stack and sign-extended to al ong result.
That result is pushed onto the operand stack.

Thei2l instruction performsawidening primitive conversion (JLS
§5.1.2). Because al values of typei nt are exactly representable
by typel ong, the conversion is exact.

6.5

467

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

12s 12s

Operation Convertint toshort

Format | i2s
Forms i2s =147 (0X93)
Operand ..., value -
Stack ..., result

Description ~ The value on the top of the operand stack must be of typei nt . It
is popped from the operand stack, truncated to ashort , then sign-
extended to ani nt result. That result is pushed onto the operand
stack.

Notes The i2s instruction performs a narrowing primitive conversion
(JLS 85.1.3). It may lose information about the overall magnitude
of value. Theresult may also not have the same sign as value.

468

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

ladd ladd

Operation Addi nt

Format | iadd
Forms iadd = 96 (0x60)
Operand ..., valuel, value2 -
Stack ..., result

Description Bothvaluel and value2 must be of typei nt . Theva uesare popped
from the operand stack. The i nt result is valuel + value2. The
result is pushed onto the operand stack.

The result is the 32 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of typei nt. If overflow occurs, then the sign of the result
may not be the same as the sign of the mathematical sum of the
two values.

Despite the fact that overflow may occur, execution of an iadd
instruction never throws a run-time exception.

469

6.5

470

Instructions

iaload

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

iaload

Load i nt from array

iaload

iaload = 46 (0x2¢€)

..., arrayref, index —

..., value

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of typei nt . Theindex must be of typei nt .
Both arrayref and index are popped from the operand stack. The
i nt value in the component of the array at index is retrieved and
pushed onto the operand stack.

If arrayrefisnul |, iaload throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the iaload instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

land

Operation
Format
Forms

Operand
Stack

Description

land

Boolean AND i nt

iand

iand = 126 (Ox7e)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type i nt. They are popped
from the operand stack. Ani nt result is calculated by taking the
bitwise AND (conjunction) of valuel and value2. The result is
pushed onto the operand stack.

6.5

471

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

lastore lastore

Operation Storeintoi nt array

Format iastore

Forms iastore = 79 (0x4f)
Operand ..., arrayref, index, value -
Stack

Description ~ Thearrayref must be of typer ef er ence and must refer to an array
whose components are of typei nt . Both index and value must be
of typei nt. The arrayref, index, and value are popped from the
operand stack. Theint value is stored as the component of the
array indexed by index.

Run-time If arrayrefisnul |, iastore throws aNul | Poi nt er Except i on.

Exceptions Otherwise, if index is not within the bounds of the array
referenced by arrayref, the iastore instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

472

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

iconst_<i>

Operation
Format

Forms

Operand
Stack

Description

Notes

iconst_<i>

Pushi nt constant

iconst_<i> ‘

iconst_ml = 2 (0x2)
iconst_0 =3 (0x3)
iconst_1 =4 (0x4)
iconst_2 =5 (0x5)
iconst_3 =6 (0x6)
iconst_ 4 =7 (0x7)
iconst_5 = 8 (0x8)

<>

Push thei nt constant <i> (-1, 0, 1, 2, 3, 4 or 5) onto the operand
stack.

Each of thisfamily of instructionsis equivalent to bipush <i> for
therespective value of <i>, except that the operand <i>isimplicit.

6.5

473

6.5

474

Instructions

idiv

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exception

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

idiv

Dividei nt

idiv

idiv = 108 (Ox6¢)

..., valuel, value2 -

..., result

Both valuel and value2 must be of typei nt . Thevaluesare popped
from the operand stack. The i nt result is the value of the Java
programming language expression valuel / value2. The result is
pushed onto the operand stack.

Anint division rounds towards O; that is, the quotient produced
forint vauesinn/disani nt value qwhose magnitudeisaslarge
as possible while satisfying |d [0g| < |n|. Moreover, q is positive
when |n| = |d| and n and d have the same sign, but q is negative
when |n| = [d| and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the
dividend is the negative integer of largest possible magnitude for
thei nt type, and the divisor is -1, then overflow occurs, and the
result is equal to the dividend. Despite the overflow, no exception
isthrown in this case.

If the value of the divisor in ani nt division is O, idiv throws an
Arithneti cException.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

If _acmp<cond> if _acmp<cond>
Operation Branch if r ef er ence comparison succeeds
Format if_acmp<cond>

branchbytel

branchbyte2
Forms if_acmpeq = 165 (0xab)

if_acmpne = 166 (Oxab)

Operand ..., valuel, value2 -
Stack
Description Bothvaluel and value2 must be of typer ef er ence. They are both

popped from the operand stack and compared. The results of the
comparison are as follows:

* if_acmpeq succeedsif and only if valuel = value2
* if_acmpne succeedsif and only if valuel # value2

If the comparison succeeds, the unsigned branchbytel and
branchbyte2 are used to construct a signed 16-bit offset, where
the offset is calculated to be (branchbytel << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the
opcode of this if_acmp<cond> instruction. The target address
must be that of an opcode of an instruction within the method that
containsthisif_acmp<cond> instruction.

Otherwise, if the comparison fails, execution proceeds at
the address of the instruction following this if acmp<cond>
instruction.

6.5

475

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET
If_icmp<cond> If_icmp<cond>
Operation Branch if i nt comparison succeeds
Format if_icmp<cond>

branchbytel
branchbyte2
Forms if_icmpeq = 159 (0x9f)
if_icmpne = 160 (0xa0)
if icmplt = 161 (Oxal)
if icmpge = 162 (0xa2)
if icmpgt = 163 (0xa3)
if_icmple = 164 (Oxa4)
Operand ..., valuel, value2 —
Stack
Description Bothvaluel and value2 must be of typei nt . They are both popped

476

from the operand stack and compared. All comparisonsare signed.
The results of the comparison are as follows:

« if_icmpeq succeedsif and only if valuel = value2
« if_icmpne succeedsif and only if valuel # value2
* if_icmplt succeedsif and only if valuel < value2

* if_icmple succeedsif and only if valuel < value2
* if_icmpgt succeedsif and only if valuel > value2
« if_icmpge succeedsif and only if valuel = value2

If the comparison succeeds, the unsigned branchbytel and
branchbyte2 are used to construct a signed 16-bit offset, where
the offset is calculated to be (branchbytel << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the
opcode of thisif_icmp<cond> instruction. Thetarget address must

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

be that of an opcode of an instruction within the method that
contains thisif_icmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction
following thisif_icmp<cond> instruction.

477

6.5 Instructions

if<cond>

Operation

Format

Forms

Operand
Stack

Description

478

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

iIf<cond>

Branch if i nt comparison with zero succeeds

if<cond>

branchbytel

branchbyte2

ifeq = 153 (0x99)
ifne = 154 (0x9a)
iflt = 155 (0x9b)

ifge = 156 (0x9c)
ifgt = 157 (0x9d)
ifle =158 (0x9e)

..., value -

The value must be of typeint. It is popped from the operand
stack and compared against zero. All comparisons are signed. The
results of the comparisons are as follows:

* ifeq succeedsif and only if value=0
« ifne succeeds if and only if value# 0
o iflt succeedsif and only if value <0

* ifle succeedsif and only if value< 0
* ifgt succeedsif and only if value> 0
* ifge succeedsif and only if value = 0

If the comparison succeeds, the unsigned branchbytel and
branchbyte2 are used to construct a signed 16-bit offset, where
the offset is calculated to be (branchbytel << 8) | branchbyte?.
Execution then proceeds at that offset from the address of the
opcode of this if<cond> instruction. The target address must be

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

that of an opcode of an instruction within the method that contains
thisif<cond> instruction.

Otherwise, execution proceeds at the address of the instruction
following this if<cond> instruction.

479

6.5

480

Instructions

ifnonnull

Operation

Format

Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

ifnonnull

Branch if r ef er ence not nul |

ifnonnull

branchbytel

branchbyte2

ifnonnull = 199 (0xc7)

..., value -

The value must be of type reference. It is popped from the
operand stack. If valueisnot nul I , the unsigned branchbytel and
branchbyte? are used to construct a signed 16-bit offset, where
the offset is calculated to be (branchbytel << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the
opcode of this ifnonnull instruction. The target address must be
that of an opcode of an instruction within the method that contains
thisifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction
following this ifnonnull instruction.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

ifnull

Operation

Format

Forms

Operand
Stack

Description

ifnull

Branch if ref erence isnul |

ifnull

branchbytel

branchbyte2

ifnull = 198 (Oxc6)

..., value -

The value must of typer ef er ence. It is popped from the operand
stack. If valueisnul I , the unsigned branchbytel and branchbyte?
are used to construct a signed 16-bit offset, where the offset is
calculated to be (branchbytel << 8) | branchbyte2. Execution then
proceeds at that offset from the address of the opcode of thisifnull
instruction. The target address must be that of an opcode of an
instruction within the method that contains thisifnull instruction.

Otherwise, execution proceeds at the address of the instruction
following thisifnull instruction.

6.5

481

6.5

482

Instructions

Inc

Operation

Format

Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

linc

Increment local variable by constant

iinc

index

const

iinc = 132 (0x84)

No change

The index is an unsigned byte that must be an index into the
local variable array of the current frame (82.6). The const is an
immediate signed byte. The local variable at index must contain
anint. Thevalue const isfirst sign-extended to an i nt, and then
the local variable at index isincremented by that amount.

The iinc opcode can be used in conjunction with the wide
instruction (8wide) to access a local variable using a two-byte
unsigned index and to increment it by atwo-byteimmediate signed
value.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

iload

Operation

Format

Forms

Operand
Stack

Description

Notes

Iload

Loadi nt from local variable

iload
index

iload = 21 (0x15)

e d

..., value

Theindex is an unsigned byte that must be an index into the local
variable array of the current frame (82.6). The local variable at
index must contain ani nt . The value of the local variable at index
is pushed onto the operand stack.

The iload opcode can be used in conjunction with the wide
instruction (8wide) to access a local variable using a two-byte
unsigned index.

6.5

483

6.5

484

Instructions
iload <n>
Operation

Format

Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

iload <n>

Loadi nt from local variable

iload <n> ‘

iload_0 =26 (0x14)
iload 1 =27 (0Ox1b)
iload_2 =28 (0x1c)
iload 3 =29 (0x1d)

o

..., value

The <n> must be an index into the local variable array of the
current frame (82.6). The local variable at <n> must contain an
i nt. The value of the local variable at <n> is pushed onto the
operand stack.

Each of the iload_<n> instructions is the same as iload with an
index of <n>, except that the operand <n> isimplicit.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

imul imul

Operation Multiply i nt

Format imul
Forms imul = 104 (0x68)
Operand ..., valuel, value2 -
Stack ..., result

Description Bothvaluel and value2 must be of typei nt . Theva uesare popped
from the operand stack. The i nt result is valuel * value2. The
result is pushed onto the operand stack.

The result is the 32 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of typei nt. If overflow occurs, then the sign of the result
may hot be the same asthe sign of the mathematical multiplication
of the two values.

Despite the fact that overflow may occur, execution of an imul
instruction never throws a run-time exception.

485

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET
ineg ineg

Operation Negatei nt

Format ineg
Forms ineg =116 (OX74)
Operand ..., value -
Stack ..., result

Description ~ The value must be of typeint. It is popped from the operand
stack. Thei nt result is the arithmetic negation of value, -value.
The result is pushed onto the operand stack.

For int values, negation is the same as subtraction from
zero. Because the Java Virtua Machine uses two's-complement
representation for integers and the range of two's-complement
values is not symmetric, the negation of the maximum negative
i nt resultsin that same maximum negative number. Despite the
fact that overflow has occurred, no exception is thrown.

For dl i nt valuesx, - x equals (~x) +1.

486

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

instanceof

Operation

Format

Forms

Operand
Stack

Description

Instanceof

Determineif object is of given type

instanceof
indexbytel
indexbyte2

instanceof = 193 (0xcl)

..., objectref -

..., result

The objectref, which must be of typer ef er ence, is popped from
the operand stack. The unsigned indexbytel and indexbyte? are
used to construct an index into the run-time constant pool of the
current class (82.6), where the value of theindex is (indexbytel <<
8) | indexbyte2. The run-time constant pool item at the index must
be asymbolic reference to aclass, array, or interface type.

If objectrefisnul |, theinstanceof instruction pushesani nt result
of Oasani nt onto the operand stack.

Otherwise, the named class, array, or interface type is resolved
(85.4.3.1). If objectref is an instance of the resolved class or
array type, or implements the resolved interface, the instanceof
instruction pushes ani nt result of 1 asanint onto the operand
stack; otherwise, it pushesani nt result of 0.

Thefollowing rulesare used to determine whether an obj ectref that
isnot nul I isaninstance of theresolved type. If sisthetype of the
object referred to by objectref, and T is the resolved class, array,
or interface type, then instanceof determines whether objectref is
an instance of T asfollows:

 |f sisaclasstype, then:

— If Tisaclass type, then S must be the same classas T, or S
must be a subclass of T;

— If Tisan interface type, then s must implement interface T.

6.5

487

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

» If sisanarray typesc], that is, an array of components of type
SC, then:

— If Tisaclasstype, then T must be tbj ect .

— If Tisan interface type, then T must be one of the interfaces
implemented by arrays (JLS §4.10.3).

— If Tisan array type T([], that is, an array of components of
type TC, then one of the following must be true:

> TCand SC are the same primitive type.

> TCand sc are reference types, and type SC can be cast to TC
by these run-time rules.

Linking During resolution of the symbolic reference to the class, array, or

Exceptions interface type, any of the exceptions documented in 85.4.3.1 can
be thrown.

Notes The instanceof instruction is very similar to the checkcast

instruction (8checkcast). It differs in its treatment of nul |, its
behavior when its test fails (checkcast throws an exception,
instanceof pushes a result code), and its effect on the operand
stack.

488

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Invokedynamic Invokedynamic
Operation Invoke dynamic method
Format invokedynamic
indexbytel
indexbyte2
0
0
Forms invokedynamic = 186 (Oxba)
Operand . [argl, [arg2 ..]] -
Stack
Description Each specific lexical occurrence of an invokedynamic instruction

is called adynamic call site.

First, the unsigned indexbytel and indexbyte2 are used to construct
anindex into the run-time constant pool of the current class (82.6),
where the value of the index is (indexbytel << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
referenceto acall site specifier (85.1). The values of the third and
fourth operand bytes must always be zero.

The cal site specifier is resolved (85.4.3.6) for this
specific dynamic call site to obtain a reference to an
instance of java. ! ang. i nvoke. Met hodHandl e that will serve
as the bootstrap method, a reference to an instance of
java.l ang. i nvoke. Met hodType, and references to dtatic
arguments.

Next, as part of the continuing resolution of the call site specifier,
the bootstrap method is invoked as if by execution of an
invokevirtual instruction (8invokevirtual) that indicates arun-time
constant pool index to a symbolic reference R where:

* Risasymbolic reference to a method of aclass (85.1);

6.5

489

6.5

490

Instructions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

for the symbolic reference to the classin which the method isto
be found, R specifiesj ava. I ang. i nvoke. Met hodHandl e;

for the name of the method, R specifiesi nvoke;

for the descriptor of the method, R specifies a return type
of java. | ang. i nvoke. Cal | Si t e and parameter types derived
from the items pushed onto the operand stack.

The first three parameter types are
java.l ang. i nvoke. Met hodHandl es. Lookup, String, and
j ava. |l ang. i nvoke. Met hodType, in that order. If the call
site specifier has any static arguments, then a parameter
type for each argument is appended to the parameter types
of the method descriptor in the order that the arguments
were pushed on to the operand stack. These parameter
types may be Cass, java.lang.invoke. Met hodHandl e,
java.l ang. i nvoke. Met hodType, String,int,long,float,Or
doubl e.

and where it is as if the following items were pushed, in order,
onto the operand stack:

the reference to the instance of
j ava. | ang. i nvoke. Met hodHandl e that serves as the bootstrap
method;

a reference to an instance of
j ava. | ang. i nvoke. Met hodHandl es. Lookup for the class in
which this dynamic call site occurs;

aref erence toast ri ng denoting the method name in the call
site specifier;
the ref erence to the instance of

j ava. |l ang. i nvoke. Met hodType obtained for the method
descriptor in the call site specifier;

references to classes, method types, method handles, and
string literals denoted as static arguments in the call site
specifier, and numeric values (82.3.1, §2.3.2) denoted as static
arguments in the call site specifier, in the order in which they
appear in the cal site specifier. (That is, no boxing occurs for
primitive values.)

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

The symbolic reference R describes a method which is
signature polymorphic (82.9.3). Due to the operation of
invokevirtual on a signature polymorphic method called
i nvoke, the type descriptor of the receiving method handle
(representing the bootstrap method) need not be semantically
equal to the method descriptor specified by R. For example,
the first parameter type specified by R could be vject
instead of java.lang.invoke. Met hodHandl es. Lookup, and
the return type specified by R could be vject instead
of java.lang.invoke.CallSite. As long as the bootstrap
method can be invoked by the invoke method without a
java. | ang. i nvoke. W ongMet hodTypeExcept i on being thrown,
the type descriptor of the method handle which represents the
bootstrap method is arbitrary.

If the bootstrap method is a variable arity method, then some or
all of the arguments on the operand stack specified above may be
collected into atrailing array parameter.

The invocation of a bootstrap method occurs within a thread
that is attempting resolution of the symbolic reference to the
cal site specifier of this dynamic call site. If there are several
such threads, the bootstrap method may be invoked in severa
threads concurrently. Therefore, bootstrap methods which access
global application datamust takethe usual precautionsagainst race
conditions.

The result returned by the bootstrap method must be ar ef er ence
to an object whose class is j ava. | ang. i nvoke. Cal I Site Or a
subclass of j ava. | ang. i nvoke. Cal | Si t e. This object is known
asthe call site object. Ther ef er ence is popped from the operand
stack used asif in the execution of an invokevirtual instruction.

If several threads simultaneously execute the bootstrap method for
the same dynamic call site, the Java Virtual Machine must choose
onereturned call siteobject and install it visibly to all threads. Any
other bootstrap methods executing for the dynamic call site are
allowed to complete, but their results are ignored, and the threads
execution of the dynamic call site proceeds with the chosen call
site object.

The call site object has a type descriptor (an instance of
java. |l ang. i nvoke. Met hodType) which must be semantically

491

6.5

492

Instructions

Linking
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

equal tothej ava. | ang. i nvoke. Met hodType Object obtained for
the method descriptor in the call site specifier.

The result of successful call site specifier resolution is a cal site
object which is permanently bound to the dynamic call site.

The method handle represented by the target of the bound call site
object isinvoked. The invocation occurs as if by execution of an
invokevirtual instruction that indicates a run-time constant pool
index to a symbolic reference T where:

* Tisasymbolic reference to a method of aclass;

» for the symbolic reference to the class in which the method isto
be found, T specifiesj ava. | ang. i nvoke. Met hodHandl e;

« for the name of the method, T specifiesi nvokeExact ;

o for the descriptor of the method, T specifies the method
descriptor in the call site specifier.

and where it is as if the following items were pushed, in order,
onto the operand stack:

* theref erence to thetarget of the call site object;

* the nargs argument values, where the number, type, and order
of the values must be consistent with the method descriptor in
the call site specifier.

If resolution of the symboalic reference to the call site specifier
throws an exception E, the invokedynamic instruction throws
E if the type of E is Error or a subclass, else throws a
Boot st r apMet hodEr r or that wrapsE.

Otherwise, during the continuing resolution of the call site
specifier, if invocation of the bootstrap method completes
abruptly (82.6.5) because of a throw of an exception E,
the invokedynamic instruction throws E if the type of E is
Error or a subclass, else throws a Boot st rapMet hodErr or
that wraps E. (The latter can occur if the bootstrap
method has the wrong arity, parameter type, or return type,
causing j ava. | ang. i nvoke. Met hodHandl e . i nvoke to throw
java. | ang. i nvoke. W ongMet hodTypeExcept i on.)

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Run-time
Exceptions

Otherwise, during the continuing resolution of the call site
specifier, if the result from the bootstrap method invocation is not
areference toaninstanceof j ava. | ang. i nvoke. Cal | Sit e, the
invokedynamic instruction throws a Boot st r apMet hodEr r or .

Otherwise, during the continuing resolution of the call site
specifier, if the type descriptor of the target of the call site
object is not semantically equal to the method descriptor in
the call site specifier, the invokedynamic instruction throws a
Boot st rapMet hodError .

If thisspecific dynamic call sitecompleted resolution of itscall site
specifier, it implies that a non-nul | ref er ence to an instance of
java. | ang.invoke. Cal | Si t e isbound to this dynamic call site.
Therefore, the operand stack item which representsar ef er ence to
the target of the call site object isnever nul I . Similarly, it implies
that the method descriptor in the call site specifier is semantically
equal to the type descriptor of the method handle to be invoked
asif by execution of an invokevirtual instruction. Together, these
invariants mean that an invokedynamic instruction which is bound
to a call site object never throws a Nul | Poi nt er Except i on Or a
java.l ang. i nvoke. W ongMet hodTypeExcepti on.

6.5

493

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

Invoke nterface Invoke nterface
Operation Invoke interface method
Format invokeinterface

indexbytel

indexbyte2

count
0

Forms invokeinterface = 185 (0xb9)
Operand ..., objectref, [argl, [arg2 ...]] -
Stack

Description The unsigned indexbytel and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§82.6),
where the value of the index is (indexbytel << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
reference to an interface method (85.1), which givesthe name and
descriptor (84.3.3) of the interface method as well as a symbolic
reference to the interface in which the interface method is to be
found. The named interface method is resolved (85.4.3.4).

The resolved interface method must not be an instance
initialization method, or the class or interfaceinitialization method
(82.9.1, 82.9.2).

The count operand is an unsigned byte that must not be zero. The
objectref must be of typer ef er ence and must be followed on the
operand stack by nargs argument values, where the number, type,
and order of the values must be consi stent with the descriptor of the
resolved interface method. The value of the fourth operand byte
must always be zero.

Let c be the class of objectref. The actual method to be invoked is
selected by the following lookup procedure:

494

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

1. If c contains a declaration for an instance method with the
same name and descriptor as the resolved method, then it is
the method to be invoked.

2. Otherwise, if C has a superclass, a search for a declaration
of an instance method with the same name and descriptor
as the resolved method is performed, starting with the direct
superclass of ¢ and continuing with the direct superclass of
that class, and so forth, until a match is found or no further
superclasses exist. If a match is found, then it is the method
to be invoked.

3. Otherwise, if there is exactly one maximally-specific method
(85.4.3.3) in the superinterfaces of Cthat matchesthe resolved
method's name and descriptor and is not abst r act , then it is
the method to be invoked.

If the method is synchroni zed, the monitor associated with
objectref is entered or reentered as if by execution of a
monitorenter instruction (8monitorenter) in the current thread.

If the method is not native, the nargs argument values and
objectref are popped from the operand stack. A new frame is
created on the Java Virtual Machine stack for the method being
invoked. The objectref and the argument values are consecutively
made the values of local variables of the new frame, with objectref
in local variable O, argl in local variable 1 (or, if argl is of
type | ong or doubl e, in local variables 1 and 2), and so on. Any
argument value that is of a floating-point type undergoes value
set conversion (82.8.3) prior to being stored in a local variable.
The new frameisthen made current, and the Java Virtual Machine
pc is set to the opcode of the first instruction of the method to
be invoked. Execution continues with the first instruction of the
method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (85.6) into the Java Virtual
Machine, that is done. The nargs argument values and objectref
are popped from the operand stack and are passed as parameters
to the code that implements the method. Any argument value that
is of afloating-point type undergoes val ue set conversion (§2.8.3)
prior to being passed as a parameter. The parameters are passed

495

6.5

496

Instructions

Linking
Exceptions

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

and the code isinvoked in an implementation-dependent manner.
When the platform-dependent code returns:

 |f thenative method issynchroni zed, the monitor associated
with objectref is updated and possibly exited as if by execution
of amonitorexit instruction (8monitorexit) in the current thread.

* If the nati ve method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

During resolution of the symbolic reference to the interface
method, any of the exceptions pertaining to interface method
resolution (85.4.3.4) can be thrown.

Otherwise, if the resolved method is static or
private, the invokeinterface instruction throws an
I nconpati bl e assChangeError.

Otherwise, if objectref is nul I, the invokeinterface instruction
throws aNul | Poi nt er Except i on.

Otherwise, if the <class of objectref does not
implement the resolved interface, invokeinterface throws an
I nconmpat i bl eCl assChangeError .

Otherwise, if step 1 or step 2 of the lookup procedure
selects a method that is not publ i ¢, invokeinterface throws an
I'l'l egal AccessError.

Otherwise, if step 1 or step 2 of the lookup procedure
selects an abstract method, invokeinterface throws an
Abst ract Met hodError.

Otherwise, if step 1 or step 2 of the lookup procedure selects a
nati ve method and the code that implements the method cannot
be bound, invokeinterface throws an Unsat i sfi edLi nkError .

Otherwise, if step 3 of the lookup procedure determines
there are multiple maximally-specific methods in the
superinterfaces of C that match the resolved method's name
and descriptor and are not abst r act , invokeinterface throws an
I nconpat i bl eC assChangeErr or

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Notes

Otherwise, if step 3 of the lookup procedure determines there
are zero maximally-specific methods in the superinterfaces of C
that match the resolved method's name and descriptor and are not
abst ract , invokeinterface throws an Abst r act Met hodEr r or .

The count operand of the invokeinterface instruction records a
measure of the number of argument values, where an argument
value of type | ong or type doubl e contributes two units to the
count value and an argument of any other type contributes one
unit. This information can also be derived from the descriptor of
the selected method. The redundancy is historical.

The fourth operand byte exists to reserve space for an additional
operand used in certain of Oracle's Java Virtua Machine
implementations, which replace the invokeinterface instruction by
a speciaized pseudo-instruction at run time. It must be retained
for backwards compatibility.

The nargs argument values and objectref are not one-to-one with
the first nargs+1 local variables. Argument values of types| ong
and doubl e must be stored in two consecutive local variables, thus
more than nargs local variables may be required to pass nargs
argument values to the invoked method.

The selection logic alows a non-abst ract method declared in
a superinterface to be selected. Methods in interfaces are only
considered if there is no matching method in the class hierarchy.
In the event that there are two non-abstract methods in the
superinterface hierarchy, with neither more specific than the other,
an error occurs; there is no attempt to disambiguate (for example,
one may be the referenced method and one may be unrelated, but
wedo not prefer thereferenced method). Onthe other hand, if there
are many abst r act methods but only one non-abst r act method,
the non-abst r act method isselected (unlessan abst r act method
is more specific).

6.5

497

6.5

498

Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET
invokespecial invokespecial
Operation Invoke instance method; special handling for superclass, private,
and instance initialization method invocations
Format invokespecial
indexbytel
indexbyte2
Forms invokespecial = 183 (0xb7)
Operand ..., Objectref, [argl, [arg2 ...]] -
Stack
Description ~ The unsigned indexbytel and indexbyte2 are used to construct an

index into the run-time constant pool of the current class (82.6),
where the value of the index is (indexbytel << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
reference to a method or an interface method (85.1), which gives
the name and descriptor (84.3.3) of the method or interface method
as well as a symboalic reference to the class or interface in which
the method or interface method isto be found. The named method
isresolved (85.4.3.3, 85.4.3.4).

If all of the following are true, let C be the direct superclass of the
current class:

* The resolved method is not an instance initialization method
(82.9.2).

« If the symboalic reference names a class (not an interface), then
that classis a superclass of the current class.

» TheAcc_superflagisset for thecl ass file (84.1).

Otherwise, let C be the class or interface named by the symbolic
reference.

The actual method to be invoked is selected by the following
lookup procedure:

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

1. If c contains a declaration for an instance method with the
same name and descriptor as the resolved method, then it is
the method to be invoked.

2. Otherwise, if Cis a class and has a superclass, a search for
a declaration of an instance method with the same name
and descriptor as the resolved method is performed, starting
with the direct superclass of ¢ and continuing with the direct
superclass of that class, and so forth, until amatch isfound or
no further superclasses exist. If amatch isfound, thenitisthe
method to be invoked.

3. Otherwisg, if Ccisan interface and the class j ect contains a
declaration of apubl i ¢ instance method with the same name
and descriptor as the resolved method, then it is the method
to be invoked.

4. Otherwise, if thereis exactly one maximally-specific method
(85.4.3.3) in the superinterfaces of Cthat matchesthe resolved
method's name and descriptor and is not abst ract , then it is
the method to be invoked.

The objectref must be of typer ef er ence and must befollowed on
the operand stack by nargs argument values, where the number,
type, and order of the values must be consistent with the descriptor
of the selected instance method.

If the method is synchroni zed, the monitor associated with
objectref is entered or reentered as if by execution of a
monitorenter instruction (8monitorenter) in the current thread.

If the method is not native, the nargs argument values and
objectref are popped from the operand stack. A new frame is
created on the Java Virtual Machine stack for the method being
invoked. The objectref and the argument values are consecutively
made the values of local variables of the new frame, with objectref
in local variable 0, argl in local variable 1 (or, if argl is of
type I ong or doubl e, in local variables 1 and 2), and so on. Any
argument value that is of a floating-point type undergoes value
set conversion (82.8.3) prior to being stored in a local variable.
The new frameisthen made current, and the JavaVirtual Machine
pc is set to the opcode of the first instruction of the method to

499

6.5

500

Instructions

Linking
Exceptions

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

be invoked. Execution continues with the first instruction of the
method.

If the method is nati ve and the platform-dependent code that
implements it has not yet been bound (85.6) into the Java Virtual
Machine, that isdone. The nargsargument val ues and obj ectref are
popped from the operand stack and are passed as parametersto the
code that implements the method. Any argument value that is of a
floating-point type undergoes value set conversion (82.8.3) prior
to being passed as a parameter. The parameters are passed and the
code is invoked in an implementation-dependent manner. When
the platform-dependent code returns, the following take place:

 |f thenative method issynchroni zed, the monitor associated
with objectref is updated and possibly exited as if by execution
of amonitorexit instruction (8monitorexit) in the current thread.

* If the nati ve method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the nati ve method and
pushed onto the operand stack.

During resolution of the symbolic reference to the method, any of
the exceptions pertaining to method resolution (85.4.3.3) can be
thrown.

Otherwise, if the resolved method is an instance initialization
method, and the class in which it is declared is not the class
symbolicaly referenced by theinstruction, aNoSuchMet hodEr r or
is thrown.

Otherwise, if the resolved method is a class
(static) method, the invokespecial instruction throws an
I nconpat i bl eCl assChangeError .

Otherwise, if objectref is nul I, the invokespecial instruction
throws aNul | Poi nt er Except i on.

Otherwise, if step 1, step 2, or step 3 of the lookup
procedure selects an abst ract method, invokespecial throws an
Abstract Met hodError.

Otherwise, if step 1, step 2, or step 3 of the lookup
procedure selects a native method and the code that

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Notes

implements the method cannot be bound, invokespecial throws an
Unsati sfi edLi nkError.

Otherwise, if step 4 of the lookup procedure determines
there are multiple maximally-specific methods in the
superinterfaces of C that match the resolved method's name
and descriptor and are not abstract, invokespecial throws an
I nconpat i bl eCl assChangeErr or

Otherwise, if step 4 of the lookup procedure determines there
are zero maximally-specific methods in the superinterfaces of C
that match the resolved method's name and descriptor and are not
abst ract , invokespecial throws an Abst r act Met hodEr r or .

The difference between the invokespecial instruction and the
invokevirtual instruction (8invokevirtual) is that invokevirtual
invokes a method based on the class of the object. The
invokespecial instruction is used to invoke instance initialization
methods (82.9.1) as well as pri vat e methods and methods of a
superclass of the current class.

The invokespecial instruction was named i nvokenonvi rt ual prior
to JDK release 1.0.2.

The nargs argument values and objectref are not one-to-one with
the first nargs+1 local variables. Argument values of types| ong
and doubl e must be stored in two consecutive local variables, thus
more than nargs local variables may be required to pass nargs
argument values to the invoked method.

The invokespecial instruction handles invocation of a private
interface method, a non-abst ract interface method referenced
viaadirect superinterface, and a non-abst r act interface method
referenced via a superclass. In these cases, the rules for selection
are essentially the same as those for invokeinterface (except that
the search starts from a different class).

6.5

501

6.5

502

Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET
Invokestatic Invokestatic
Operation Invoke aclass (st at i ¢) method
Format invokestatic
indexbytel
indexbyte2
Forms invokestatic = 184 (0xb8)
Operand ., [argl, [arg2...]] -
Stack
Description The unsigned indexbytel and indexbyte? are used to construct an

index into the run-time constant pool of the current class (82.6),
where the value of the index is (indexbytel << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
reference to a method or an interface method (85.1), which gives
the name and descriptor (84.3.3) of the method or interface method
as well as a symboalic reference to the class or interface in which
the method or interface method isto be found. The named method
isresolved (85.4.3.3, §85.4.3.4).

Theresolved method must not be an instanceinitiali zation method,
or the class or interface initialization method (82.9.1, §2.9.2).

The resolved method must be st ati c, and therefore cannot be
abstract.

On successful resolution of the method, the class or interface that
declared the resolved method isinitialized if that class or interface
has not aready been initialized (85.5).

The operand stack must contain nargs argument values, where the
number, type, and order of the values must be consistent with the
descriptor of the resolved method.

If the method is synchr oni zed, the monitor associated with the
resolved ass object is entered or reentered asif by execution of
amonitorenter instruction (8monitorenter) in the current thread.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Linking
Exceptions

If themethod isnot nat i ve, the nargs argument val ues are popped
from the operand stack. A new frameis created on the Java Virtual
Machine stack for the method being invoked. The nargs argument
values are consecutively made the values of local variables of
the new frame, with argl in local variable O (or, if argl is of
type | ong or doubl e, in local variables 0 and 1) and so on. Any
argument value that is of a floating-point type undergoes value
set conversion (82.8.3) prior to being stored in a local variable.
The new frameisthen made current, and the Java Virtual Machine
pc is set to the opcode of the first instruction of the method to
be invoked. Execution continues with the first instruction of the
method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (85.6) into the Java Virtual
Machine, that isdone. The nargsargument values are popped from
the operand stack and are passed as parameters to the code that
implements the method. Any argument value that is of afloating-
point type undergoes value set conversion (82.8.3) prior to being
passed as a parameter. The parameters are passed and the code
is invoked in an implementation-dependent manner. When the
platform-dependent code returns, the following take place:

 |f thenative method issynchroni zed, the monitor associated
with the resolved d ass object is updated and possibly exited
asif by execution of amonitorexit instruction (8monitorexit) in
the current thread.

* If the nati ve method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the nati ve method and
pushed onto the operand stack.

During resolution of the symbolic reference to the method, any of
the exceptions pertaining to method resolution (85.4.3.3) can be
thrown.

Otherwise, if the resolved method is an instance
method, the invokestatic instruction throws an
I nconpat i bl eCl assChangeError .

6.5

503

6.5

504

Instructions

Run-time
Exceptions

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

Otherwise, if execution of this invokestatic instruction causes
initialization of the referenced class or interface, invokestatic may
throw an Er r or asdetailed in 85.5.

Otherwise, if the resolved method is nati ve and the code that
implements the method cannot be bound, invokestatic throws an
Unsati sfi edLi nkError.

The nargs argument values are not one-to-one with thefirst nargs
local variables. Argument values of types| ong and doubl e must
be stored in two consecutive local variables, thus more than nargs
local variables may be required to pass nargs argument values to
the invoked method.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Invokevirtual Invokevirtual
Operation Invoke instance method; dispatch based on class
Format invokevirtual
indexbytel
indexbyte2
Forms invokevirtual = 182 (Oxb6)
Operand ..., objectref, [argl, [arg2 ...]] -
Stack
Description The unsigned indexbytel and indexbyte? are used to construct an

index into the run-time constant pool of the current class (82.6),
where the value of the index is (indexbytel << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
reference to amethod (85.1), which gives the name and descriptor
(84.3.3) of the method as well as asymbolic referenceto the class
in which the method isto be found. The named method isresolved
(85.4.3.3).

If the resolved method is not signature polymorphic (82.9.3), then
the invokevirtual instruction proceeds as follows.

Let c be the class of abjectref. The actual method to beinvoked is
selected by the following lookup procedure:

1. If c contains a declaration for an instance method m that
overrides (85.4.5) the resolved method, then mis the method
to be invoked.

2. Otherwisg, if C has a superclass, a search for a declaration
of an instance method that overrides the resolved method
is performed, starting with the direct superclass of c and
continuing with the direct superclass of that class, and so forth,
until an overriding method is found or no further superclasses
exist. If an overriding method is found, it is the method to be
invoked.

6.5

505

6.5

506

Instructions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

3. Otherwiseg, if there is exactly one maximally-specific method
(85.4.3.3) in the superinterfaces of Cthat matchesthe resolved
method's name and descriptor and is not abst r act , then it is
the method to be invoked.

The objectref must be followed on the operand stack by nargs
argument values, where the number, type, and order of the values
must be consistent with the descriptor of the selected instance
method.

If the method is synchroni zed, the monitor associated with
objectref is entered or reentered as if by execution of a
monitorenter instruction (8monitorenter) in the current thread.

If the method is not native, the nargs argument values and
objectref are popped from the operand stack. A new frame is
created on the Java Virtual Machine stack for the method being
invoked. The objectref and the argument values are consecutively
made the values of local variables of the new frame, with objectref
in local variable O, argl in local variable 1 (or, if argl is of
type | ong or doubl e, in local variables 1 and 2), and so on. Any
argument value that is of a floating-point type undergoes value
set conversion (82.8.3) prior to being stored in a local variable.
The new frameisthen made current, and the Java Virtual Machine
pc is set to the opcode of the first instruction of the method to
be invoked. Execution continues with the first instruction of the
method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (85.6) into the Java Virtual
Machine, that isdone. The nargsargument values and objectref are
popped from the operand stack and are passed as parametersto the
code that implements the method. Any argument value that is of a
floating-point type undergoes value set conversion (82.8.3) prior
to being passed as a parameter. The parameters are passed and the
code is invoked in an implementation-dependent manner. When
the platform-dependent code returns, the following take place:

 |f thenative method issynchroni zed, the monitor associated
with objectref is updated and possibly exited as if by execution
of amonitorexit instruction (8monitorexit) in the current thread.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

e |If the nati ve method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the nati ve method and
pushed onto the operand stack.

If the resolved method is signature polymorphic (82.9.3), and
declared in the j ava. | ang. i nvoke. Met hodHandl e class, then
the invokevirtual instruction proceeds as follows, where D is
the descriptor of the method symbolicaly referenced by the
instruction.

First, a ref erence to an instance of
java. | ang. i nvoke. Met hodType isobtained asif by resolution of
a symbolic reference to a method type (85.4.3.5) with the same
parameter and return types as D.

e If the named method is invokeExact, the instance of
j ava. | ang. i nvoke. Met hodType must be semantically equal to
the type descriptor of thereceiving method handle objectref. The
method handle to be invoked is objectref.

e If the named method is invoke, and the instance of
j ava. | ang. i nvoke. Met hodType IS semantically equal to the
type descriptor of the receiving method handle objectref, then
the method handle to be invoked is objectref.

e If the named method is invoke, and the instance of
java. | ang. i nvoke. Met hodType is not semantically equal to
the type descriptor of the receiving method handle objectref,
then the Java Virtual Machine attempts to adjust the type
descriptor of the receiving method handle, as if by invocation
of the asType method of j ava. | ang. i nvoke. Met hodHandl e,
to obtain an exactly invokable method handle m The method
handle to be invoked ism

The objectref must be followed on the operand stack by nargs
argument values, where the number, type, and order of the values
must be consistent with the type descriptor of the method handle
to beinvoked. (Thistype descriptor will correspond to the method
descriptor appropriate for the kind of the method handle to be
invoked, as specified in §5.4.3.5.)

Then, if the method handle to be invoked has bytecode
behavior, the Java Virtual Machine invokes the method

6.5

507

6.5

508

Instructions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

handle as if by execution of the bytecode behavior
associated with the method handles kind. If the kind
is 5 (REF_invokeVirtual), 6 (REF_invokeStatic), 7
(REF_i nvokeSpecial), 8 (REF_new nvokeSpecial), or 9
(REF_i nvokel nt er f ace), then a frame will be created and made
current in the cour se of executing the bytecode behavior; when the
method invoked by the bytecode behavior completes (normally or
abruptly), the frame of itsinvoker is considered to be the frame for
the method containing this invokevirtual instruction.

Theframein which the bytecode behavior itself executesisnot visible.

Otherwise, if the method handle to be invoked has no
bytecode behavior, the Java Virtual Machine invokes it in an
implementati on-dependent manner.

If the resolved method is signature polymorphic and declared in
the j ava. | ang. i nvoke. Var Handl e class, then the invokevirtual
instruction proceeds as follows, where N and D are the name
and descriptor of the method symbolicaly referenced by the
instruction.

First, a ref erence to an instance of
j ava. | ang. i nvoke. Var Handl e. AccessMbde is obtained as if
by invocation of the val ueFronMet hodNane method of
j ava. l ang. i nvoke. Var Handl e. AccessMbde Wwith a String
argument denoting N.

Second, a reference to an instance of
java. | ang. i nvoke. Met hodType isobtained asif by invocation of
the accessMbdeType method of j ava. | ang. i nvoke. Var Handl e
on the instance objectref, with the instance of
j ava. | ang. i nvoke. Var Handl e. AccessMde asthe argument.

Third, a ref erence to an instance of
java.lang.invoke. Met hodHandl e iS obtained as if by
invocation of the varHandl eExact|nvoker method of
j ava. |l ang. i nvoke. Met hodHandl es with the instance of
j ava. | ang. i nvoke. Var Handl e. AccessMbde as the first
argument and the instance of j ava. | ang. i nvoke. Met hodType as
the second argument. The resulting instance is called the invoker
method handle.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Linking
Exceptions

Finaly, the invoker method handle is invoked. The invocation
occurs as if by execution of an invokevirtual instruction that
indicates a run-time constant pool index to a symbolic reference
Rwhere;

» Risasymbolic reference to amethod of aclass;

« for the symboalic reference to the classin which the method isto
be found, R specifiesj ava. | ang. i nvoke. Met hodHandl e;

« for the name of the method, R specifiesi nvoke;

 for the descriptor of the method, R specifies a return type
indicated by the return descriptor of D, and specifies a first
parameter type of j ava. | ang. i nvoke. Var Handl e followed by
the parameter types indicated by the parameter descriptors of D
(if any) in order.

and where it is as if the following items were pushed, in order,
onto the operand stack:

» the reference to the instance of
java. | ang. i nvoke. Met hodHandl e (the invoker method
handle);

* objectref;

* the nargs argument values, where the number, type, and order
of the values must be consistent with the type descriptor of the
invoker method handle.

During resolution of the symbolic reference to the method, any of
the exceptions pertaining to method resolution (85.4.3.3) can be
thrown.

Otherwise, if the resolved method is a class
(static) method, the invokevirtual instruction throws an
I nconpat i bl eCl assChangeError .

Otherwise, if the resolved method is signature polymorphic and
declared in the j ava. | ang. i nvoke. Met hodHandl e class, then
during resolution of the method type derived from the descriptor
in the symbolic reference to the method, any of the exceptions
pertaining to method type resolution (85.4.3.5) can be thrown.

6.5

509

6.5

510

Instructions

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

Otherwise, if the resolved method is signature polymorphic and
declared in the j ava. I ang. i nvoke. Var Handl e class, then any
linking exception that may arise from invocation of the invoker
method handle can be thrown. No linking exceptions are thrown
from invocation of the val ueFr omvet hodName, accessMbdeType,
and var Handl eExact | nvoker methods.

Otherwise, if objectref is null, the invokevirtual instruction
throws aNul | Poi nt er Excepti on.

Otherwisg, if the resolved method is not signature polymorphic:

« If step 1 or step 2 of the lookup procedure selects an abst r act
method, invokevirtual throws an Abst r act Met hodEr r or .

» Otherwise, if step 1 or step 2 of the lookup procedure selects a
nat i ve method and the code that implements the method cannot
be bound, invokevirtual throws an Unsat i sfi edLi nkErr or .

» Otherwise, if step 3 of the lookup procedure determines
there are multiple maximally-specific methods in the
superinterfaces of C that match the resolved method's name
and descriptor and are not abstr act , invokevirtual throws an
I nconpati bl eCl assChangeErr or

» Otherwise, if step 3 of the lookup procedure determines there
are zero maximally-specific methodsin the superinterfaces of C
that match the resolved method's name and descriptor and are
not abst r act , invokevirtual throws an Abst r act Met hodEr r or .

Otherwise, if the resolved method is signature polymorphic and
declared inthej ava. | ang. i nvoke. Met hodHandl e class, then:

e |If the method name is invokeExact, and the obtained
instanceof j ava. | ang. i nvoke. Met hodType isnot semantically
equal to the type descriptor of the receiving method
handle objectref, the invokevirtual instruction throws a
java.l ang. i nvoke. W ongMet hodTypeExcepti on.

e If the method name is invoke, and the obtained
instance of java.lang.invoke. MethodType iS hot
a vaid agument to the asType method of
j ava. | ang. i nvoke. Met hodHandl e invoked on the receiving

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Notes

method handle objectref, the invokevirtual instruction throws a
java.l ang. i nvoke. W ongMet hodTypeExcepti on.

Otherwise, if the resolved method is signature polymorphic
and declared in the j ava. | ang. i nvoke. Var Handl e class, then
any run-time exception that may arise from invocation of the
invoker method handle can be thrown. No run-time exceptions
are thrown from invocation of the val ueFr omvet hodNane,
accessMvdeType, and var Handl eExact | nvoker methods, except
Nul | Poi nt er Except i on if objectrefisnul I .

The nargs argument values and objectref are not one-to-one with
the first nargs+1 local variables. Argument values of types| ong
and doubl e must be stored in two consecutive local variables, thus
more than nargs loca variables may be required to pass nargs
argument values to the invoked method.

It is possible that the symbolic reference of an invokevirtual
instruction resolves to an interface method. In this case, it is
possible that there is no overriding method in the class hierarchy,
but that a non-abst r act interface method matches the resolved
method's descriptor. The selection logic matches such a method,
using the same rules as for invokeinterface.

6.5

511

6.5

512

Instructions

or

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

ior

Boolean ORi nt

‘ ior

ior = 128 (0x80)

..., valuel, value2 -

..., result

Both valuel and value2 must be of typei nt . They are popped from
the operand stack. Ani nt result iscalculated by taking the bitwise
inclusive OR of valuel and value2. The result is pushed onto the
operand stack.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

irem

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exception

irem

Remainder i nt

irem

irem= 112 (0x70)

..., valuel, value2 -

..., result

Both valuel and value2 must be of typei nt . Thevaluesare popped
from the operand stack. Thei nt resultisvaluel - (valuel/ value?)
* value2. Theresult is pushed onto the operand stack.

Theresult of theireminstructionissuch that (a/ b) *b + (a%) is
equal to a. Thisidentity holds even in the specia caseinwhichthe
dividend is the negative i nt of largest possible magnitude for its
type and the divisor is-1 (the remainder is 0). It follows from this
rulethat the result of the remainder operation can be negative only
if the dividend is negative and can be positive only if the dividend
is positive. Moreover, the magnitude of the result is aways less
than the magnitude of the divisor.

If the value of the divisor for ani nt remainder operator isO, irem
throwsan Ari t hret i cExcepti on.

6.5

513

6.5

514

Instructions

ireturn

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

ireturn

Returni nt from method

ireturn ‘

ireturn = 172 (Oxac)

..., value -

[empty]

The current method must have return type bool ean, byt e, char,
short,orint . Thevaluemust beof typei nt . If the current method
is a synchroni zed method, the monitor entered or reentered on
invocation of the method is updated and possibly exited as if by
execution of amonitorexit instruction (8monitorexit) in the current
thread. If no exceptionisthrown, valueis popped from the operand
stack of the current frame (82.6) and pushed onto the operand stack
of the frame of theinvoker. Any other values on the operand stack
of the current method are discarded.

Prior to pushing value onto the operand stack of the frame of the
invoker, it may have to be converted. If the return type of the
invoked method wasbyt e, char , or shor t , then value is converted
from i nt to the return type as if by execution of i2b, i2c, or
i2s, respectively. If the return type of the invoked method was
bool ean, then value is narrowed from i nt to bool ean by taking
the bitwise AND of valueand 1.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

If the Java Virtua Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current methodisasynchr oni zed method and thecurrent threadis
not the owner of the monitor entered or reentered on invocation of
the method, ireturn throwsan 1 | | egal Moni t or St at eExcepti on.
This can happen, for example, if asynchr oni zed method contains

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

amonitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
therules on structured locking describedin 82.11.10 and if thefirst
of those rulesis violated during invocation of the current method,
then ireturn throwsan 1 1| egal Moni t or St at eExcept i on.

515

6.5

516

Instructions

ishi

Operation
Format
Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

ishl

Shift lefti nt

ishl

ishl = 120 (Ox78)

..., valuel, value2 -

..., result

Both valuel and value2 must be of typei nt . Thevaluesare popped
from the operand stack. Anint result is calculated by shifting
valuel left by sbit positions, where sis the value of the low 5 bits
of value2. The result is pushed onto the operand stack.

This is equivalent (even if overflow occurs) to multiplication by
2 to the power s. The shift distance actually used is alwaysin the
range O to 31, inclusive, as if value2 were subjected to a bitwise
logical AND with the mask value Ox1f.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

ishr ishr

Operation Arithmetic shift right i nt

Format ishr
Forms ishr = 122 (0x7a)
Operand ..., valuel, value2 -
Stack ..., result

Description Bothvaluel and value2 must be of typei nt . Theva uesare popped
from the operand stack. Anint result is calculated by shifting
valuel right by s bit positions, with sign extension, where sisthe
value of the low 5 bits of value2. The result is pushed onto the
operand stack.

Notes The resulting value is floor(valuel / 2%, where s is value2 &
Ox1f. For non-negative valuel, thisis equivalent to truncating i nt
division by 2 to the power s. The shift distance actually used is
alwaysin therange O to 31, inclusive, asif value2 were subjected
to abitwise logical AND with the mask value Ox1f.

517

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

istore istore

Operation Storei nt into local variable

Format istore
index

Forms istore = 54 (0x36)

Operand ..., value -

Stack

Description Theindex is an unsigned byte that must be an index into the local
variable array of the current frame (82.6). The value on the top
of the operand stack must be of type i nt. It is popped from the
operand stack, and the value of the local variable at index is set
to value.

Notes The istore opcode can be used in conjunction with the wide
instruction (8wide) to access a loca variable using a two-byte
unsigned index.

518

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Istore_<n>

Operation
Format

Forms

Operand
Stack

Description

Notes

istore <n>

Storei nt into local variable

istore_<n> ‘

istore_0 =59 (0x3b)
istore_1 =60 (0x3c)
istore 2 =61 (0x3d)
istore 3 =62 (0x3e)

..., value -

The <n> must be an index into the local variable array of the
current frame (82.6). The value on the top of the operand stack
must be of typei nt . It is popped from the operand stack, and the
value of the local variable at <n> is set to value.

Each of the istore <n> ingructions is the same as istore with an
index of <n>, except that the operand <n> isimplicit.

6.5

519

6.5

520

Instructions

Isub

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

isub

Subtract i nt

isub

isub = 100 (0x64)

..., valuel, value2 -

..., result

Both valuel and value2 must be of typei nt . Thevaluesare popped
from the operand stack. The i nt result is valuel - value2. The
result is pushed onto the operand stack.

For i nt subtraction, a- b produces the same result as a+(- b) . For
i nt values, subtraction from zero is the same as negation.

The result is the 32 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of typei nt . If overflow occurs, then the sign of the result
may not be the same as the sign of the mathematical difference of
the two values.

Despite the fact that overflow may occur, execution of an isub
instruction never throws a run-time exception.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

iushr lushr

Operation Logical shift right i nt

Format iushr
Forms iushr = 124 (0x7c)
Operand ..., valuel, value2 -
Stack ..., result

Description Bothvaluel and value2 must be of typei nt . Theva uesare popped
from the operand stack. Anint result is calculated by shifting
valuel right by s bit positions, with zero extension, where sisthe
value of the low 5 bits of value2. The result is pushed onto the
operand stack.

Notes If valuel is positive and sisvalue2 & Ox1f, the result is the same
as that of valuel >> s; if valuel is negative, the result is equal to
the value of the expression (valuel >> s) + (2 << ~s). The addition
of the (2 << ~s) term cancels out the propagated sign bit. The shift
distance actually used is always in the range 0 to 31, inclusive.

521

6.5

522

Instructions

iIxXor

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

IXor

Boolean XOR i nt

ixor

ixor =130 (0x82)

..., valuel, value2 -

..., result

Both valuel and value2 must be of typei nt . They are popped from
the operand stack. Ani nt result iscalculated by taking the bitwise
exclusive OR of valuel and value2. The result is pushed onto the
operand stack.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

jsr

Operation

Format

Forms

Operand
Stack

Description

Notes

jsr

Jump subroutine

jsr
branchbytel
branchbyte2

jsr = 168 (Oxa8)

o

..., address

The address of the opcode of the instruction immediately
following this jsr instruction is pushed onto the operand stack as
avalue of type r et ur nAddr ess. The unsigned branchbytel and
branchbyte2 are used to construct a signed 16-bit offset, where
the offset is (branchbytel << 8) | branchbyte2. Execution proceeds
at that offset from the address of this jsr instruction. The target
address must be that of an opcode of an instruction within the
method that contains thisjsr instruction.

Note that jsr pushes the address onto the operand stack and ret
(8ret) getsit out of alocal variable. Thisasymmetry isintentional.

In Oracle's implementation of a compiler for the Java
programming language prior to Java SE 6, the jsr instruction was
used with the ret instruction in the implementation of thef i nal I y
clause (83.13, §4.10.2.5).

6.5

523

6.5

524

Instructions
JSr W

Operation

Format

Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET
jsr_w

Jump subroutine (wide index)

jsr_w
branchbytel
branchbyte2
branchbyte3
branchbyte4

jsr_w =201 (0xc9)

.

..., address

The address of the opcode of the instruction immediately
following this jsr_w instruction is pushed onto the operand stack
as a value of type ret urnAddress. The unsigned branchbytel,
branchbyte2, branchbyte3, and branchbyte4 are used to construct
a signed 32-bit offset, where the offset is (branchbytel << 24) |
(branchbyte2 << 16) | (branchbyte3 << 8) | branchbyte4. Execution
proceeds at that offset from the address of this jsr_w instruction.
The target address must be that of an opcode of an instruction
within the method that contains thisjsr_w instruction.

Note that jsr_w pushes the address onto the operand stack and ret
(8ret) getsit out of alocal variable. Thisasymmetry isintentional.

In Oracle's implementation of a compiler for the Java
programming language prior to Java SE 6, the jsr_w instruction
was used with the ret instruction in the implementation of the
finally clause (83.13, §4.10.2.5).

Although the jsr_w instruction takes a 4-byte branch offset, other
factorslimit the size of amethod to 65535 bytes (84.11). Thislimit
may be raised in afuture release of the Java Virtual Machine.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

I2d l2d

Operation Convert | ong to doubl e

Format | 12d
Forms 12d = 138 (0x84)
Operand ..., value -
Stack ..., result

Description ~ Thevalue on the top of the operand stack must be of type ong. It
is popped from the operand stack and converted to adoubl e result
using |EEE 754 round to nearest mode. The result is pushed onto
the operand stack.

Notes Thel2dinstruction performsawidening primitive conversion (JLS
§5.1.2) that may lose precision because values of typedoubl e have
only 53 significand bits.

525

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

|2f | 2f

Operation Convert 1 ong tof | oat

Format | | 2f
Forms 12f =137 (0X89)
Operand ..., value -
Stack ..., result

Description ~ Thevalue on the top of the operand stack must be of type ong. It
is popped from the operand stack and converted to af | oat result
using |EEE 754 round to nearest mode. The result is pushed onto
the operand stack.

Notes Thel2f instruction performs awidening primitive conversion (JLS
§5.1.2) that may lose precision because values of typef | oat have
only 24 significand bits.

526

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

12i 12i

Operation Convert 1 ong toi nt

Format | 12i
Forms 12i = 136 (0x88)
Operand ..., value -
Stack ..., result

Description ~ Thevalue on the top of the operand stack must be of type ong. It
is popped from the operand stack and converted to ani nt result
by taking the low-order 32 bits of the | ong value and discarding
the high-order 32 bits. Theresult is pushed onto the operand stack.

Notes The 12 instruction performs a narrowing primitive conversion

(JLS 85.1.3). It may lose information about the overall magnitude
of value. Theresult may also not have the same sign as value.

527

6.5

528

Instructions

ladd

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

ladd

Add| ong

| ladd

ladd = 97 (0x61)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type | ong. The values are
popped from the operand stack. Thel ong result isvaluel + value2.
The result is pushed onto the operand stack.

The result is the 64 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of type ong. If overflow occurs, the sign of the result may
not be the same as the sign of the mathematical sum of the two
values.

Despite the fact that overflow may occur, execution of an ladd
instruction never throws a run-time exception.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

laload

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

|aload

Load | ong from array

laload

laload = 47 (0x2f)

..., arrayref, index —

..., value

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of type | ong. The index must be of type
i nt . Both arrayref and index are popped from the operand stack.
Thel ong value in the component of the array at index isretrieved
and pushed onto the operand stack.

If arrayrefisnul |, laload throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the laload instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

6.5

529

6.5

530

Instructions

land

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

land

Boolean AND | ong

land

land = 127 (0Ox7f)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type | ong. They are popped
from the operand stack. A | ong result is calculated by taking the
bitwise AND of valuel and value2. The result is pushed onto the
operand stack.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

lastore

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

lastore

Storeinto | ong array

lastore ‘

lastore = 80 (0x50)

..., arrayref, index, value -

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of type | ong. The index must be of type
i nt, and valuemust beof typel ong. Thearrayref, index, and value
are popped from the operand stack. Thel ong valueis stored asthe
component of the array indexed by index.

If arrayrefisnul |, lastore throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the lastore instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

6.5

531

6.5

532

Instructions

lcmp

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

lcmp

Comparel ong

lemp

lcmp = 148 (0x94)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type | ong. They are both
popped from the operand stack, and a signed integer comparison
is performed. If valuel is greater than value2, theint value 1 is
pushed onto the operand stack. If valuel is equal to value2, the
i nt value 0 is pushed onto the operand stack. If valuel islessthan
value2, thei nt value -1 is pushed onto the operand stack.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

lconst_<I> lconst_<I>

Operation Push | ong constant

Format lconst_<I> ‘

Forms Iconst_0 = 9 (0x9)
[const_1 = 10 (Oxa)

Operand o
Stack <>

Description Pushthel ong constant <I> (0 or 1) onto the operand stack.

533

6.5

534

Instructions

ldc

Operation

Format

Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

ldc

Push item from run-time constant pool

Idc

index

Idc = 18 (0x12)

e d

..., value

The index is an unsigned byte that must be a valid index into the
run-time constant pool of the current class (82.6). The run-time
constant pool entry at index either must be a run-time constant of
typei nt orfl oat, or ar ef er ence toastring literal, or asymbolic
reference to a class, method type, or method handle (85.1).

If the run-time constant pool entry is a run-time constant of type
i nt orfl oat , thenumeric value of that run-time constant is pushed
onto the operand stack asani nt or f | oat , respectively.

Otherwisg, if the run-time constant pool entry isar ef er ence to an
instance of class stri ng representing a string literal (85.1), then
areference to that instance, value, is pushed onto the operand
stack.

Otherwise, if the run-time constant pool entry is a symbolic
reference to a class (85.1), then the named class is resolved
(85.4.3.1) and aref erence to the d ass object representing that
class, value, is pushed onto the operand stack.

Otherwise, the run-time constant pool entry must be a symbolic
reference to amethod type or amethod handle (85.1). The method
type or method handle is resolved (85.4.3.5) and areference
to the resulting instance of j ava. | ang. i nvoke. Met hodType Or
java. | ang. i nvoke. Met hodHandl e, value, is pushed onto the
operand stack.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Linking During resolution of a symboalic reference to a class, any of the

Exceptions exceptions pertaining to class resolution (85.4.3.1) can be thrown.
During resolution of a symbolic reference to a method type or
method handle, any of the exception pertaining to method type or
method handle resolution (85.4.3.5) can be thrown.

Notes Theldc instruction can only be used to push avalue of typef | oat

taken from the float value set (82.3.2) because a constant of type
fl oat in the constant pool (84.4.4) must be taken from the float
value set.

6.5

535

6.5

536

Instructions

Idc w

Operation

Format

Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

ldc_ w

Push item from run-time constant pool (wide index)

Idc w

indexbytel

indexbyte2

ldc_w = 19 (0x13)

o

..., value

The unsigned indexbytel and indexbyte2 are assembled into an
unsigned 16-bit index into the run-time constant pool of the
current class (82.6), where the value of the index is calculated as
(indexbytel << 8) | indexbyte2. The index must be a valid index
into the run-time constant pool of the current class. The run-time
constant pool entry at the index either must be arun-time constant
of typeint or float, or areference to a string literal, or a
symbolic reference to a class, method type, or method handle
(85.2).

If the run-time constant pool entry is a run-time constant of type
i nt orfl oat , thenumeric value of that run-time constant is pushed
onto the operand stack asani nt or f | oat , respectively.

Otherwise, if the run-time constant pool entry isar ef er ence toan
instance of class Stri ng representing a string literal (85.1), then
areference to that instance, value, is pushed onto the operand
stack.

Otherwise, if the run-time constant pool entry is a symbolic
referencetoaclass(84.4.1). Thenamed classisresolved (85.4.3.1)
and ar ef er ence tothed ass object representing that class, value,
is pushed onto the operand stack.

Otherwise, the run-time constant pool entry must be a symbolic
reference to amethod type or amethod handle (85.1). The method
type or method handle is resolved (85.4.3.5) and a ref erence

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Linking
Exceptions

Notes

to the resulting instance of j ava. | ang. i nvoke. Met hodType Orf
j ava. |l ang. i nvoke. Met hodHandl e, value, is pushed onto the
operand stack.

During resolution of the symbolic reference to a class, any of the
exceptions pertaining to class resolution (85.4.3.1) can be thrown.

During resolution of a symbolic reference to a method type or
method handle, any of the exception pertaining to method type or
method handle resolution (85.4.3.5) can be thrown.

The ldc_w instruction is identical to the Idc instruction (8ldc)
except for its wider run-time constant pool index.

The Idc_w instruction can only be used to push a value of type
fl oat taken from the float value set (82.3.2) because a constant
of typef I oat inthe constant pool (84.4.4) must be taken from the
float value set.

6.5

537

6.5

538

Instructions

ldc2_w

Operation

Format

Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

|ldc2_ w

Push | ong or doubl e from run-time constant pool (wide index)

Idc2 w

indexbytel

indexbyte2

Idc2_w = 20 (0x14)

o

..., value

The unsigned indexbytel and indexbyte2 are assembled into an
unsigned 16-bit index into the run-time constant pool of the
current class (82.6), where the value of the index is calculated as
(indexbytel << 8) | indexbyte2. The index must be a valid index
into the run-time constant pool of the current class. The run-time
constant pool entry at the index must be a run-time constant of
type | ong or doubl e (85.1). The numeric value of that run-time
constant is pushed onto the operand stack as a | ong or doubl e,
respectively.

Only awide-index version of the Idc2_w instruction exists; there
isno Idc2 instruction that pushesal ong or doubl e with asingle-
byte index.

The ldc2_w instruction can only be used to push a value of type
doubl e taken from the double val ue set (§2.3.2) because aconstant
of type doubl e in the constant pool (84.4.5) must be taken from
the double value set.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Idiv Idiv

Operation Dividel ong

Format [div

Forms Idiv = 109 (0x6d)

Operand ..., valuel, value2 -

Stack ..., result

Description Both valuel and value2 must be of type | ong. The vaues are
popped from the operand stack. The | ong result is the value of
the Java programming language expression valuel / value2. The
result is pushed onto the operand stack.
A 1 ong division rounds towards O; that is, the quotient produced
for 1 ong valuesin n/ dis al ong vaue q whose magnitude is
as large as possible while satisfying [d (0| < |n|. Moreover, q is
positive when |n| = [d| and n and d have the same sign, but g is
negative when |n| = |d| and n and d have opposite signs.
There is one special case that does not satisfy this rule: if the
dividend is the negative integer of largest possible magnitude for
the | ong type and the divisor is -1, then overflow occurs and the
result is equal to the dividend; despite the overflow, no exception
isthrown in this case.

Run-time If the value of the divisor in al ong division is 0, Idiv throws an

Exception Arithneti cException.

6.5

539

6.5

540

Instructions

[load

Operation

Format

Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

lload

Load | ong from local variable

[load

index

lload = 22 (0x16)

e d

..., value

The index is an unsigned byte. Both index and index+1 must be
indices into the local variable array of the current frame (82.6).
The loca variable at index must contain al ong. The value of the
local variable at index is pushed onto the operand stack.

The lload opcode can be used in conjunction with the wide
instruction (8wide) to access a local variable using a two-byte
unsigned index.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

lload <n>

Operation
Format

Forms

Operand
Stack

Description

Notes

lload <n>

Load | ong from local variable

lload <n> ‘

lload_O = 30 (Ox1€)
[load_1 = 31 (Ox1f)
lload_2 = 32 (0x20)
lload 3= 33 (0x21)

o

..., value

Both <n> and <n>+1 must be indices into the local variable array
of the current frame (82.6). Thelocal variable at <n> must contain
al ong. The value of the local variable at <n> is pushed onto the
operand stack.

Each of the lload_<n> instructions is the same as |load with an
index of <n>, except that the operand <n> isimplicit.

6.5

541

6.5

542

Instructions

Imul

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

[mul

Multiply I ong

Imul

Imul = 105 (Ox69)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type | ong. The values are
popped from the operand stack. Thel ong resultisvaluel * value2.
The result is pushed onto the operand stack.

The result is the 64 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of type ong. If overflow occurs, the sign of the result may
not be the same as the sign of the mathematical multiplication of
the two values.

Despite the fact that overflow may occur, execution of an Imul
instruction never throws a run-time exception.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5
Ineg Ineg

Operation Negate! ong

Format Ineg
Forms Ineg =117 (OX75)
Operand ..., value -
Stack ..., result

Description ~ The value must be of type I ong. It is popped from the operand
stack. Thel ong result is the arithmetic negation of value, -value.
The result is pushed onto the operand stack.

For 1ong values, negation is the same as subtraction from
zero. Because the Java Virtua Machine uses two's-complement
representation for integers and the range of two's-complement
values is not symmetric, the negation of the maximum negative
I ong resultsin that same maximum negative number. Despite the
fact that overflow has occurred, no exception is thrown.

For dl | ong valuesx, - x equals (~x) +1.

543

6.5

Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET
lookupswitch lookupswitch
Operation Access jump table by key match and jump
Format lookupswitch
<0-3 byte pad>
defaultbytel
defaultbyte?
defaultbyte3
defaultbyted
npairsl
npairs2
npairs3
npairs4
match-offset pairs...
Forms lookupswitch = 171 (Oxab)
Operand . ey —
Stack
Description A lookupswitch isavariable-length instruction. Immediately after

the lookupswitch opcode, between zero and three bytes must act
as padding, such that defaultbytel begins at an address that is
a multiple of four bytes from the start of the current method
(the opcode of itsfirst instruction). Immediately after the padding
follow a series of signed 32-bit values: default, npairs, and then
npairs pairs of signed 32-bit values. The npairs must be greater
than or equal to 0. Each of thenpairspairsconsistsof ani nt match
and a signed 32-bit offset. Each of these signed 32-bit values is
constructed from four unsigned bytes as (bytel << 24) | (byte2 <<
16) | (byte3 << 8) | byted.

The table match-offset pairs of the lookupswitch instruction must
be sorted in increasing numerical order by match.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Notes

The key must be of type int and is popped from the operand
stack. The key is compared against the match values. If it is equal
to one of them, then a target address is calculated by adding
the corresponding offset to the address of the opcode of this
lookupswitch instruction. If the key does not match any of the
match values, the target address is calculated by adding default
to the address of the opcode of this lookupswitch instruction.
Execution then continues at the target address.

The target address that can be calculated from the offset of each
match-offset pair, aswell as the one calculated from default, must
be the address of an opcode of an instruction within the method
that contains this lookupswitch instruction.

Theaignment required of the 4-byte operands of the lookupswitch
instruction guarantees 4-byte alignment of those operands if and
only if the method that contains the lookupswitch is positioned on
a 4-byte boundary.

The match-offset pairs are sorted to support lookup routines that
are quicker than linear search.

6.5

545

6.5

546

Instructions

lor

Operation
Format
Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

lor

Boolean OR | ong

‘ lor

lor = 129 (0x81)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type | ong. They are popped
from the operand stack. A | ong result is calculated by taking the
bitwise inclusive OR of valuel and value2. The result is pushed
onto the operand stack.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Irem Irem

Operation Remainder | ong

Format I[rem

Forms Irem= 113 (0x71)

Operand ..., valuel, value2 -

Stack ..., result

Description Both valuel and value2 must be of type | ong. The vaues are
popped from the operand stack. Thel ong resultisvaluel - (valuel
[value?) * value2. Theresult is pushed onto the operand stack.
Theresult of thelreminstructionissuch that (a/ b) *b + (a%) is
equal to a. Thisidentity holds even in the specia caseinwhichthe
dividend isthe negativel ong of largest possible magnitude for its
type and the divisor is-1 (the remainder is 0). It follows from this
rulethat the result of the remainder operation can be negative only
if the dividend is negative and can be positive only if the dividend
is positive; moreover, the magnitude of the result is aways less
than the magnitude of the divisor.

Run-time If the value of the divisor for al ong remainder operator isO, Irem

Exception throwsan Ari t hret i cExcepti on.

6.5

547

6.5

548

Instructions

Ireturn

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

Ireturn

Return | ong from method

Ireturn ‘

Ireturn = 173 (Oxad)

..., value -

[empty]

The current method must have return type | ong. The value must
be of typel ong. If the current method isasynchr oni zed method,
the monitor entered or reentered on invocation of the method is
updated and possibly exited as if by execution of a monitorexit
instruction (8monitorexit) in the current thread. If no exception
is thrown, value is popped from the operand stack of the current
frame (82.6) and pushed onto the operand stack of the frame of
the invoker. Any other values on the operand stack of the current
method are discarded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

If the Java Virtual Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current methodisasynchr oni zed method and thecurrent threadis
not the owner of the monitor entered or reentered on invocation of
the method, Ireturn throwsan 1 | | egal Moni t or St at eExcept i on.
This can happen, for example, if asynchr oni zed method contains
amonitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchr oni zed.

Otherwise, if the Java Virtual Machine implementation enforces
therules on structured locking describedin 82.11.10 and if thefirst
of those rulesisviolated during invocation of the current method,
then Ireturn throwsan 1 1 | egal Moni t or St at eExcept i on.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

|shi

Operation
Format
Forms

Operand
Stack

Description

Notes

Ishi

Shift left | ong

Ishl

Ishl = 121 (0x79)

..., valuel, value2 -

..., result

The valuel must be of typel ong, and value2 must be of typei nt .
The values are popped from the operand stack. A 1 ong result is
calculated by shifting valuel left by s bit positions, where sisthe
low 6 bits of value2. The result is pushed onto the operand stack.

Thisisequivaent (evenif overflow occurs) to multiplication by 2
to the power s. The shift distance actually used istherefore aways
in the range O to 63, inclusive, as if value2 were subjected to a
bitwise logical AND with the mask value Ox3f.

6.5

549

6.5

550

Instructions

[shr

Operation
Format
Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

[shr

Arithmetic shift right | ong

Ishr

Ishr = 123 (Ox7b)

..., valuel, value2 -

..., result

The valuel must be of typel ong, and value2 must be of typei nt .
The values are popped from the operand stack. A 1 ong result is
calculated by shifting valuel right by s bit positions, with sign
extension, where s is the value of the low 6 bits of value2. The
result is pushed onto the operand stack.

The resulting valueisfloor(valuel / 2%, wheresisvalue2 & 0x3f.
For non-negative valuel, this is equivalent to truncating | ong
division by 2 to the power s. The shift distance actually used is
therefore always in the range 0 to 63, inclusive, asif value2 were
subjected to a bitwise logical AND with the mask value Ox3f.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Istore

Operation

Format

Forms

Operand
Stack

Description

Notes

|store

Storel ong into local variable

|store
index

Istore = 55 (0x37)

..., value -

The index is an unsigned byte. Both index and index+1 must be
indices into the local variable array of the current frame (82.6).
The value on the top of the operand stack must be of typel ong. It
is popped from the operand stack, and the local variables at index
and index+1 are set to value.

The Istore opcode can be used in conjunction with the wide
instruction (8wide) to access a loca variable using a two-byte
unsigned index.

6.5

551

6.5

552

Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

Istore <n> |store <n>

Operation Store | ong into local variable

Format Istore_<n> ‘

Forms Istore_0 = 63 (0x3f)
Istore_1 = 64 (0x40)
Istore 2 =65 (0x41)
Istore 3 =66 (0x42)

Operand ..., value -
Stack

Description ~ Both <n>and <n>+1 must be indicesinto the local variable array
of the current frame (82.6). The value on the top of the operand
stack must be of type | ong. It is popped from the operand stack,
and the local variables at <n> and <n>+1 are set to value.

Notes Each of the Istore_<n> ingtructions is the same as Istore with an
index of <n>, except that the operand <n> isimplicit.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

Isub Isub

Operation Subtract | ong

Format Isub
Forms Isub = 101 (0x65)
Operand ..., valuel, value2 -
Stack ..., result

Description Both valuel and value2 must be of type | ong. The vaues are
popped from the operand stack. Thel ong resultisvaluel - value2.
The result is pushed onto the operand stack.

For | ong subtraction, a- b producesthe sameresult asa+(- b) . For
I ong values, subtraction from zero is the same as negation.

The result is the 64 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of typel ong. If overflow occurs, then the sign of the result
may not be the same as the sign of the mathematical difference of
the two values.

Despite the fact that overflow may occur, execution of an Isub
instruction never throws a run-time exception.

553

6.5

554

Instructions

[ushr

Operation
Format
Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

lushr

Logical shift right 1 ong

lushr

lushr = 125 (0x7d)

..., valuel, value2 -

..., result

The valuel must be of typel ong, and value2 must be of typei nt .
The values are popped from the operand stack. A 1 ong result is
calculated by shifting valuel right logically by sbit positions, with
zero extension, where s is the value of the low 6 bits of value2.
Theresult is pushed onto the operand stack.

If valuel is positive and sisvalue2 & Ox3f, the result is the same
asthat of valuel >> s; if valuel isnegative, theresult isequal to the
value of the expression (valuel >> s) + (2L << ~s). The addition of
the (2L << ~s) term cancels out the propagated sign bit. The shift
distance actually used is always in the range 0 to 63, inclusive.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Ixor

Operation
Format
Forms

Operand
Stack

Description

Ixor

Boolean XOR | ong

I xor

Ixor = 131 (0x83)

..., valuel, value2 -

..., result

Both valuel and value2 must be of type | ong. They are popped
from the operand stack. A | ong result is calculated by taking the
bitwise exclusive OR of valuel and value2. The result is pushed
onto the operand stack.

6.5

555

6.5 Instructions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

monitorenter monitorenter
Operation Enter monitor for object

Format monitorenter ‘

Forms monitorenter = 194 (0xc2)

Operand ..., objectref -

Stack

Description ~ The objectref must be of typer ef er ence.

Each object is associated with a monitor. A monitor is locked if

and only if it has an owner. The thread that executes monitorenter

attempts to gain ownership of the monitor associated with
objectref, asfollows:

« If the entry count of the monitor associated with objectref is
zero, the thread enters the monitor and sets its entry count to
one. The thread is then the owner of the monitor.

* If thethread already ownsthe monitor associated with objectref,
it reenters the monitor, incrementing its entry count.

 If another thread aready owns the monitor associated with
objectref, the thread blocks until the monitor's entry count is
zero, then tries again to gain ownership.

Run-time If objectref is nul I, monitorenter throws a
Exception Nul | Poi nt er Excepti on.
Notes A monitorenter instruction may be used with one or

556

more monitorexit instructions (8monitorexit) to implement a
synchroni zed statement in the Java programming language
(83.14). The monitorenter and monitorexit instructions are not
used in the implementation of synchr oni zed methods, although
they can be used to provide equival ent locking semantics. Monitor
entry on invocation of asynchr oni zed method, and monitor exit

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

onitsreturn, are handled implicitly by the Java Virtual Machine's
method invocation and return instructions, as if monitorenter and
monitorexit were used.

The association of a monitor with an object may be managed in
various ways that are beyond the scope of this specification. For
instance, the monitor may be allocated and deall ocated at the same
time as the object. Alternatively, it may be dynamically allocated
at the time when athread attempts to gain exclusive access to the
object and freed at some later time when no thread remainsin the
monitor for the object.

The synchronization constructs of the Java programming language
require support for operations on monitors besides entry and exit.
These include waiting on amonitor (j ect . wai t) and notifying
other threads waiting on a monitor (j ect.notifyAll and
Qvj ect . not i fy). These operations are supported in the standard
package j ava. | ang supplied with the Java Virtual Machine. No
explicit support for these operations appears in the instruction set
of the Java Virtua Machine.

557

6.5 Instructions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

monitorexit monitorexit

Operation Exit monitor for object

Format monitorexit ‘

Forms monitorexit = 195 (0xc3)

Operand ..., objectref —

Stack

Description ~ The objectref must be of typer ef er ence.
The thread that executes monitorexit must be the owner of the
monitor associated with the instance referenced by objectref.
The thread decrements the entry count of the monitor associated
with objectref. If asaresult the value of the entry count is zero, the
thread exits the monitor and is no longer its owner. Other threads
that are blocking to enter the monitor are allowed to attempt to do
SO.

Run-time If objectrefisnul I, monitorexit throwsanul | Poi nt er Except i on.

Exceptions Otherwise, if the thread that executes monitorexit is not the owner
of themonitor associated with theinstance referenced by objectref,
monitorexit throwsan 1 | | egal Moni t or St at eExcept i on.
Otherwise, if the Java Virtual Machine implementation enforces
the rules on structured locking described in §2.11.10 and
if the second of those rules is violated by the execution
of this monitorexit instruction, then monitorexit throws an
111 egal Moni t or St at eExcepti on.

Notes One or more monitorexit instructions may be used with

558

a monitorenter instruction (8monitorenter) to implement a
synchroni zed statement in the Java programming language
(83.14). The monitorenter and monitorexit instructions are not
used in the implementation of synchr oni zed methods, although
they can be used to provide equivalent locking semantics.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

The Java Virtual Machine supports exceptions thrown within
synchr oni zed methodsand synchr oni zed statementsdifferently:

» Monitor exit on normal synchroni zed method completion
is handled by the Java Virtual Machine's return instructions.
Monitor exit on abrupt synchroni zed method completion
is handled implicitly by the Java Virtual Machine's athrow
instruction.

* When an exception is thrown from within a synchroni zed
statement, exit from the monitor entered prior to the execution of
the synchr oni zed statement is achieved using the Java Virtual
Machine's exception handling mechanism (83.14).

559

6.5

560

Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET
multianewarray multianewarray
Operation Create new multidimensional array
Format multianewarray
indexbytel
indexbyte2
dimensions
Forms multianewarray = 197 (0xc5)
Operand ..., countl, [count2, ...] -
Stack .., arrayref
Description ~ The dimensions operand is an unsigned byte that must be greater

than or equal to 1. It represents the number of dimensions of the
array to be created. The operand stack must contain dimensions
values. Each such value represents the number of componentsin
adimension of the array to be created, must be of typei nt, and
must be non-negative. The countl isthe desired length in the first
dimension, count2 in the second, etc.

All of the count values are popped off the operand stack. The
unsigned indexbytel and indexbyte2 are used to construct an index
into the run-time constant pool of the current class (82.6), where
the value of the index is (indexbytel << 8) | indexbyte2. The run-
time constant pool item at the index must be a symbolic reference
to a class, array, or interface type. The named class, array, or
interface type is resolved (85.4.3.1). The resulting entry must be
an array class type of dimensionality greater than or equal to
dimensions.

A new multidimensional array of the array type is allocated
from the garbage-collected heap. If any count value is zero, no
subseguent dimensions are allocated. The components of the array
in thefirst dimension areinitialized to subarrays of the type of the
second dimension, and so on. The components of the last all ocated
dimension of the array are initialized to the default initial value

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Linking
Exceptions

Run-time
Exception

Notes

(82.3, 82.4) for the element type of the array type. A reference
arrayref to the new array is pushed onto the operand stack.

During resolution of the symbolic reference to the class, array, or
interface type, any of the exceptions documented in 85.4.3.1 can
be thrown.

Otherwise, if the current class does not have permission to access
the element type of the resolved array class, multianewarray
throwsan 1 1 | egal AccessError.

Otherwise, if any of the dimensions values on the operand
stack are less than zero, the multianewarray instruction throws a
Negati veArraySi zeExcepti on.

It may be more efficient to use newarray or anewarray
(8newarray, Sanewarray) when creating an array of a single
dimension.

The array class referenced via the run-time constant pool may
have more dimensions than the dimensions operand of the
multianewarray instruction. In that case, only the first dimensions
of the dimensions of the array are created.

6.5

561

6.5

562

Instructions

new

Operation

Format

Forms

Operand
Stack

Description

Linking
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

new

Create new object

new
indexbytel
indexbyte2

new = 187 (Oxbb)

o

..., objectref

The unsigned indexbytel and indexbyte? are used to construct an
index into the run-time constant pool of the current class (82.6),
where the value of the index is (indexbytel << 8) | indexbyte2.
The run-time constant pool item at the index must be a symbolic
referenceto aclass or interface type. The named class or interface
type is resolved (85.4.3.1) and should result in a class type.
Memory for a new instance of that class is allocated from the
garbage-collected heap, and the instance variables of the new
object areinitialized to their default initial values (82.3, §2.4). The
objectref, ar ef er ence to theinstance, is pushed onto the operand
stack.

On successful resolution of the class, it isinitialized if it has not
already been initialized (85.5).

During resolution of the symbolic reference to the class or
interface type, any of the exceptions documented in 85.4.3.1 can
be thrown.

Otherwise, if the symbolic reference to the class or interface type
resolves to an interface or an abstract class, new throws an
InstantiationError.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Run-time
Exception

Notes

Otherwise, if execution of thisnew instruction causesinitiaization
of thereferenced class, new may throw an Er r or asdetailedinJLS
815.9.4.

The new instruction does not completely create a new instance;
instance creation is not completed until an instance initialization
method (82.9.1) has been invoked on the uninitialized instance.

6.5

563

6.5

564

Instructions

newarray

Operation

Format

Forms

Operand
Stack

Description

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

newarray

Create new array

newarray
atype

newarray = 188 (0xbc)

..., count —
..., arrayref
The count must be of typei nt . It is popped off the operand stack.

The count represents the number of elements in the array to be
created.

Theatypeisacodethat indicatesthetype of array to create. It must
take one of the following values:

Table 6.5.newarray-A. Array type codes

Array Type
T_BOCLEAN

atype

T_CHAR

T_DOUBLE

T _BYTE

4
5
T_FLOAT 6
7
8
9

T_SHORT

T INT 10

T_LONG 11

A new array whose components are of type atype and of length
count is allocated from the garbage-collected heap. A r ef er ence
arrayref to this new array object is pushed into the operand stack.
Each of the elements of the new array is initialized to the default
initial value (82.3, §2.4) for the element type of the array type.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions
Run-time If count is less than zero, newarray throws a
Exception Negati veArraySi zeExcepti on.

Notes In Oracle's Java Virtual Machine implementation, arrays of type

bool ean (atypeis T_BOOLEAN) are stored as arrays of 8-bit values
and are manipulated using the baload and bastore instructions
(8baload, 8bastore) which also access arrays of type byt e. Other
implementations may implement packed bool ean arrays; the
baload and bastore instructions must still be used to access those
arrays.

6.5

565

6.5

566

Instructions

nop

Operation Do nothing

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

nop

Format | nop
Forms nop = 0 (0x0)
Operand No change
Stack

Description Do nothing.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Pop

Operation
Format
Forms

Operand
Stack

Description

Pop

Pop the top operand stack value

| pop

pop = 87 (0x57)

..., value -

Pop the top value from the operand stack.

The pop instruction must not be used unless value is a value of a
category 1 computational type (82.11.1).

6.5

567

6.5 Instructions
pop2

Operation
Format
Forms

Operand
Stack

Description

568

THE JAVA VIRTUAL MACHINE INSTRUCTION SET
pop2

Pop the top one or two operand stack values

pop2

pop2 = 88 (0x58)

Form 1.

..., value2, valuel —

where each of valuel and value2 is a value of a category 1
computational type (82.11.1).

Form 2:

..., value -

where value is a value of a category 2 computationa type
(82.11.1).

Pop the top one or two values from the operand stack.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

putfield

Operation

Format

Forms

Operand
Stack

Description

putfield

Set field in object

putfield
indexbytel
indexbyte2

putfield = 181 (Oxb5)

..., objectref, value -

The unsigned indexbytel and indexbyte? are used to construct an
index into the run-time constant pool of the current class (82.6),
where the value of the index is (indexbytel << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
referenceto afield (85.1), which gives the name and descriptor of
the field as well as a symbalic reference to the class in which the
field isto be found. The referenced field isresolved (85.4.3.2).

The type of a value stored by a putfield instruction must be
compatible with the descriptor of the referenced field (84.3.2). If
the field descriptor type is bool ean, byt e, char, short, Or i nt,
thenthevalue must beani nt . If the field descriptor typeisf | oat ,
| ong, Or doubl e, then the value must be af | oat , | ong, Or doubl e,
respectively. If the field descriptor type is a reference type, then
the value must be of a type that is assignment compatible (JLS
85.2) with thefield descriptor type. If thefieldisfi nal , it must be
declared in the current class, and the instruction must occur in an
instance initialization method of the current class (§2.9.1).

The value and objectref are popped from the operand stack.
The objectref must be of typer ef er ence but not an array type.

If the valueisof typei nt and thefield descriptor typeisbool ean,
thenthei nt valueisnarrowed by taking the bitwise AND of value
and 1, resulting in value'. Otherwise, the value undergoes val ue set
conversion (82.8.3), resulting in value'.

6.5

569

6.5

570

Instructions

Linking

Exceptions

Run-time
Exception

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

The referenced field in objectref is set to value'.

During resolution of the symbolic referenceto the field, any of the
exceptions pertaining to field resolution (85.4.3.2) can be thrown.

Otherwise, if the resolved field isast ati ¢ field, putfield throws
an | nconpati bl ed assChangeError.

Otherwise, if the resolved field is final , it must be declared
in the current class, and the instruction must occur in an
instance initialization method of the current class. Otherwise, an
I'll egal AccessError isthrown.

Otherwise, if objectref is nul I, the putfield instruction throws a
Nul | Poi nt er Excepti on.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

putstatic

Operation

Format

Forms

Operand
Stack

Description

putstatic

Set static field in class

putstatic
indexbytel
indexbyte2

putstatic = 179 (Oxb3)

..., value -

The unsigned indexbytel and indexbyte? are used to construct an
index into the run-time constant pool of the current class (82.6),
where the value of the index is (indexbytel << 8) | indexbyte2.
The run-time constant pool item at that index must be a symbolic
referenceto afield (85.1), which gives the name and descriptor of
the field as well as a symbolic reference to the class or interface
in which the field is to be found. The referenced field is resolved
(85.4.3.2).

On successful resolution of the field, the class or interface that
declared the resolved field is initialized if that class or interface
has not already been initialized (85.5).

The type of a value stored by a putstatic instruction must be
compatible with the descriptor of the referenced field (84.3.2). If
the field descriptor type is bool ean, byt e, char, short, Or i nt,
then the value must beani nt . If thefield descriptor typeisf | oat ,
| ong, Or doubl e, then thevalue must beaf | oat , | ong, Or doubl e,
respectively. If the field descriptor type is a reference type, then
the value must be of a type that is assignment compatible (JLS
85.2) with the field descriptor type. If thefieldisfi nal , it must be
declared in the current class or interface, and the instruction must
occur in the class or interface initialization method of the current
class or interface (§2.9.2).

The value is popped from the operand stack.

6.5

571

6.5

572

Instructions

Linking
Exceptions

Run-time
Exception

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

If thevalueisof typei nt and thefield descriptor typeisbool ean,
thenthei nt valueisnarrowed by taking the bitwise AND of value
and 1, resulting in value'. Otherwise, the value undergoes val ue set
conversion (82.8.3), resulting in value'.

The referenced field in the class or interface is set to value'.

During resolution of the symbolic reference to the class or
interface field, any of the exceptions pertaining to field resolution
(85.4.3.2) can be thrown.

Otherwise, if the resolved field is not a static
(class) field or an interface field, putstatic throws an
I nconpat i bl eCl assChangeError .

Otherwise, if the resolved field isfi nal , it must be declared in
the current class or interface, and the instruction must occur in
the class or interface initialization method of the current class or
interface. Otherwise, an 11 | egal AccessError isthrown.

Otherwise, if execution of this putstatic instruction causes
initidization of the referenced class or interface, putstatic may
throw an Error asdetailed in 85.5.

A putstatic instruction may be used only to set the value of an
interface field on the initialization of that field. Interface fields
may be assigned to only once, on execution of aninterfacevariable
initialization expression when theinterfaceisinitialized (85.5, LS
89.3.1).

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

ret

Operation

Format

Forms

Operand
Stack

Description

Notes

ret

Return from subroutine

ret
index

ret = 169 (0xa9)

No change

The index is an unsigned byte between 0 and 255, inclusive.
The local variable at index in the current frame (82.6) must
contain avalue of typer et ur nAddr ess. The contents of the local
variable are written into the Java Virtual Machin€'s pc register,
and execution continues there.

Note that jsr (§jsr) pushes the address onto the operand stack and
ret getsit out of alocal variable. This asymmetry isintentional.

In Oracle's implementation of a compiler for the Java
programming language prior to Java SE 6, the ret instruction
was used with the jsr and jsr_w instructions (§jsr, §jsr_w) in the
implementation of thefi nal | y clause (§3.13, 84.10.2.5).

The ret instruction should not be confused with the return
instruction (8return). A return instruction returns control from
a method to its invoker, without passing any value back to the
invoker.

The ret opcode can be used in conjunction with the wide
instruction (8wide) to access a local variable using a two-byte
unsigned index.

6.5

573

6.5

574

Instructions

return

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

return

Return voi d from method

return ‘

return = 177 (Oxbl)

[empty]

The current method must have return type void. If the
current method is a synchr oni zed method, the monitor entered
or reentered on invocation of the method is updated and
possibly exited as if by execution of a monitorexit instruction
(8monitorexit) in the current thread. If no exception is thrown,
any values on the operand stack of the current frame (82.6) are
discarded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

If the Java Virtua Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current methodisasynchr oni zed method and the current thread is
not the owner of the monitor entered or reentered on invocation of
the method, return throws an 1 | | egal Moni t or St at eExcept i on.
Thiscan happen, for example, if asynchr oni zed method contains
amonitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchr oni zed.

Otherwise, if the Java Virtual Machine implementation enforces
theruleson structured locking describedin §2.11.10 and if thefirst
of those rulesisviolated during invocation of the current method,
then return throwsan 1 1 | egal Moni t or St at eExcept i on.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

saload

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

saload

Load short from array

saload

saload = 53 (0x35)

..., arrayref, index —

..., value

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of type short . The index must be of type
i nt . Both arrayref and index are popped from the operand stack.
The component of the array at index isretrieved and sign-extended
toanint value. That valueis pushed onto the operand stack.

If arrayref isnul |, saload throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the saload instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

6.5

575

6.5

576

Instructions

sastore

Operation
Format
Forms

Operand
Stack

Description

Run-time
Exceptions

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

sastore

Storeinto short array

sastore ‘

sastore = 86 (0x56)

..., arrayref, index, value -

Thearrayref must be of typer ef er ence and must refer to an array
whose components are of type shor t . Both index and value must
beof typei nt . Thearrayref, index, and value are popped from the
operand stack. Thei nt valueistruncated to ashort and stored as
the component of the array indexed by index.

If arrayref isnul |, sastore throws aNul | Poi nt er Except i on.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the sastore instruction throws an
Arrayl ndexQut Of BoundsExcepti on.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions

Sipush

Operation

Format

Forms

Operand
Stack

Description

Sipush

Push short

sipush
bytel
byte2

sipush = 17 (0x11)

o

..., value

Theimmediate unsigned bytel and byte? values are assembled into
an intermediate shor t , where the value of the short is (bytel <<
8) | byte2. The intermediate value is then sign-extended to an i nt
value. That value is pushed onto the operand stack.

6.5

577

6.5

578

Instructions

Swap

Operation
Format
Forms

Operand
Stack

Description

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

swap

Swap the top two operand stack values

swap

swap = 95 (0x5f)

..., value2, valuel -

..., valuel, value2

Swap the top two values on the operand stack.

The swap instruction must not be used unless valuel and value2
are both values of a category 1 computational type (82.11.1).

The Java Virtual Machine does not provide an instruction
implementing a swap on operands of category 2 computational

types.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

tableswitch tableswitch

Operation Access jump table by index and jump

Format tableswitch
<0-3 byte pad>
defaultbytel
defaultbyte?
defaultbyte3
defaultbyted
lowbytel
lowbyte2
lowbyte3
lowbyted
highbytel
highbyte2
highbyte3
highbyte4
jump offsets...

Forms tableswitch = 170 (Oxaa)

Operand oy INdEX
Stack

Description A tableswitch is a variable-length instruction. Immediately after
the tableswitch opcode, between zero and three bytes must act
as padding, such that defaultbytel begins at an address that is a
multiple of four bytes from the start of the current method (the
opcode of itsfirst instruction). Immediately after the padding are
bytes constituting three signed 32-bit values: default, low, and
high. Immediately following are bytes constituting aseries of high
- low + 1 signed 32-hit offsets. The value low must be less than or
equal to high. The high - low + 1 signed 32-hit offsets are treated

579

6.5

580

Instructions

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

as a O-based jump table. Each of these signed 32-hit values is
constructed as (bytel << 24) | (byte2 << 16) | (byte3 << 8) | byte4.

The index must be of type i nt and is popped from the operand
stack. If index is less than low or index is greater than high, then
atarget address is calculated by adding default to the address of
the opcode of this tableswitch instruction. Otherwise, the offset
at position index - low of the jump table is extracted. The target
address is calculated by adding that offset to the address of the
opcode of this tableswitch instruction. Execution then continues
at the target address.

The target address that can be calculated from each jump table
offset, aswell asthe one that can be calculated from default, must
be the address of an opcode of an instruction within the method
that contains this tableswitch instruction.

The alignment required of the 4-byte operands of the tableswitch
instruction guarantees 4-byte alignment of those operands if and
only if the method that contains the tableswitch starts on a 4-byte
boundary.

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

wide wide

Operation Extend local variable index by additional bytes

Format 1 wide

<opcode>
indexbytel
indexbyte2

where <opcode> isone of iload, fload, aload, Iload, dioad, istore,
fstore, astore, Istore, dstore, or ret

Format 2 wide
iinc
indexbytel
indexbyte2
constbytel
constbyte?
Forms wide = 196 (0Oxc4)
Operand Same as modified instruction
Stack

Description ~ Thewide instruction modifies the behavior of another instruction.
It takes one of two formats, depending on the instruction being
modified. Thefirst form of thewideinstruction modifiesone of the
instructionsiload, fload, aload, lload, dload, istore, fstore, astore,
Istore, dstore, or ret (8iload, &fload, 8aload, 8lload, &dload,
8istore, §fstore, 8astore, 8lstore, 8dstore, 8ret). The second form
applies only to theiinc instruction (8iinc).

In either case, the wide opcode itself is followed in the compiled
code by the opcode of the instruction wide modifies. In either
form, two unsigned bytes indexbytel and indexbyte2 follow the
modified opcode and are assembled into a 16-bit unsigned index
to a local variable in the current frame (82.6), where the value

581

6.5

582

Instructions

Notes

THE JAVA VIRTUAL MACHINE INSTRUCTION SET

of the index is (indexbytel << 8) | indexbyte2. The calculated
index must be an index into the local variable array of the current
frame. Wherethewideinstruction modifiesan lload, dload, Istore,
or dstore instruction, the index following the calculated index
(index + 1) must also be an index into the local variable array. In
the second form, two immediate unsigned bytes constbytel and
constbyte2 follow indexbytel and indexbyte2 in the code stream.
Those bytes are also assembled into a signed 16-bit constant,
where the constant is (constbytel << 8) | constbyte?.

The widened bytecode operates as normal, except for the use of
the wider index and, in the case of the second form, the larger
increment range.

Although we say that wide "modifies the behavior of another
instruction," the wide instruction effectively treats the bytes
constituting the modified instruction as operands, denaturing the
embedded instruction in the process. In the case of amodified iinc
instruction, one of the logical operands of the iinc is not even at
thenormal offset from the opcode. The embedded instruction must
never be executed directly; its opcode must never be the target of
any control transfer instruction.

CHAPTER ;

Opcode M nemonics by
Opcode

T HIS chapter givesthe mapping from Java Virtual Machineinstruction opcodes,
including the reserved opcodes (86.2), to the mnemonics for the instructions
represented by those opcodes.

Opcode value 186 was not used prior to Java SE 7.

583

584

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

Constants

(0x00)
(0x01)
(0x02)
(0x03)
(0x04)
(0x05)
(0x06)
(0x07)
(0x08)
(0x09)
(0x0a)
(0x0b)
(0x0c)
(0x0d)
(0x0e)
(0x0f)
(0x10)
(0x11)
(0x12)
(0x13)
(0x14)

nop
aconst_null
iconst_ml
iconst 0
iconst_1
iconst_2
iconst_3
iconst_4
iconst_5
Iconst_ O
Iconst_1
fconst_0
fconst_1
fconst_2
dconst_0
dconst_1
bipush
sipush

Idc

Idc_w
Idc2 w

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Loads

(0x15)
(0x16)
(0x17)
(0x18)
(0x19)
(Ox1a)
(0x1b)
(0x1c)
(0x1d)
(0x1le)
(0x1f)
(0x20)
(0x21)
(0x22)
(0x23)
(0x24)
(0x25)
(0x26)
(0x27)
(0x28)
(0x29)
(0x2a)
(0x2b)
(0x2c)
(0x2d)
(0x2e)
(0x2f)
(0x30)
(0x31)
(0x32)
(0x33)
(0x34)
(0x35)

OPCODE MNEMONICS BY OPCODE

iload
lload
fload
dload
aload
iload_O
iload 1
iload 2
iload 3
lload O
lload 1
lload 2
lload_3
fload 0
fload 1
fload_2
fload_3
dload 0
dioad 1
dioad 2
dload 3
aload 0
aload 1
aload 2
aload 3
iaload
laload
faload
daload
aaload
baload
caload
saload

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Stores

(0x36)
(0x37)
(0x38)
(0x39)
(0x3a)
(0x3b)
(0x3c)
(0x3d)
(0x3e)
(0x3f)
(0x40)
(0x41)
(0x42)
(0x43)
(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)
(0x4a)
(0x4b)
(0x4c)
(0x4d)
(Ox4e)
(0x4f)
(0x50)
(0x51)
(0x52)
(0x53)
(0x54)
(0x55)
(0x56)

istore
Istore
fstore
dstore
astore
istore 0
istore 1
istore 2
istore 3
Istore O
Istore 1
Istore 2
Istore 3
fstore 0
fstore 1
fstore 2
fstore 3
dstore 0
dstore 1
dstore 2
dstore 3
astore 0
astore 1
astore 2
astore 3
iastore
lastore
fastore
dastore
aastore
bastore
castore
sastore

OPCODE MNEMONICS BY OPCODE

87
88
89
90
91
92
93
94
95

Stack

(0x57)
(0x58)
(0x59)
(0xb5a)
(0x5b)
(0x5¢c)
(0x5d)
(0x5e)
(0x5f)

pop
pop2
dup
dup_x1
dup_x2
dup2
dup2_x1
dup2_x2
swap

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Math

(0x60)
(0x61)
(0x62)
(0x63)
(0x64)
(0x65)
(0x66)
(0x67)
(0x68)
(0x69)
(0x6a)
(0x6b)
(0x6c)
(0x6d)
(0x6e)
(0x6f)
(0x70)
(0x71)
(0x72)
(0x73)
(0x74)
(0x75)
(0x76)
(0x77)
(0x78)
(0x79)
(0x7a)
(0x7b)
(0x7c)
(0x7d)
(0x7e)
(Ox7f)
(0x80)
(0x81)
(0x82)
(0x83)
(0x84)

iadd
ladd
fadd
dadd
isub
Isub
fsub
dsub
imul
Imul
fmul
dmul
idiv
Idiv
fdiv
ddiv
irem
Irem
frem
drem

ineg

fneg
dneg
ishl
Ishl
ishr

iushr
lushr
iand
land
ior
lor
ixor
Ixor
iinc

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
