1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import java.lang.reflect.Field;
  29 import java.security.ProtectionDomain;
  30 
  31 import sun.reflect.CallerSensitive;
  32 import sun.reflect.Reflection;
  33 import sun.misc.VM;
  34 
  35 import jdk.internal.HotSpotIntrinsicCandidate;
  36 
  37 
  38 /**
  39  * A collection of methods for performing low-level, unsafe operations.
  40  * Although the class and all methods are public, use of this class is
  41  * limited because only trusted code can obtain instances of it.
  42  *
  43  * @author John R. Rose
  44  * @see #getUnsafe
  45  */
  46 
  47 public final class Unsafe {
  48 
  49     private static native void registerNatives();
  50     static {
  51         registerNatives();
  52         sun.reflect.Reflection.registerMethodsToFilter(Unsafe.class, "getUnsafe");
  53     }
  54 
  55     private Unsafe() {}
  56 
  57     private static final Unsafe theUnsafe = new Unsafe();
  58 
  59     /**
  60      * Provides the caller with the capability of performing unsafe
  61      * operations.
  62      *
  63      * <p>The returned {@code Unsafe} object should be carefully guarded
  64      * by the caller, since it can be used to read and write data at arbitrary
  65      * memory addresses.  It must never be passed to untrusted code.
  66      *
  67      * <p>Most methods in this class are very low-level, and correspond to a
  68      * small number of hardware instructions (on typical machines).  Compilers
  69      * are encouraged to optimize these methods accordingly.
  70      *
  71      * <p>Here is a suggested idiom for using unsafe operations:
  72      *
  73      * <pre> {@code
  74      * class MyTrustedClass {
  75      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  76      *   ...
  77      *   private long myCountAddress = ...;
  78      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  79      * }}</pre>
  80      *
  81      * (It may assist compilers to make the local variable {@code final}.)
  82      *
  83      * @throws  SecurityException  if a security manager exists and its
  84      *          {@code checkPropertiesAccess} method doesn't allow
  85      *          access to the system properties.
  86      */
  87     @CallerSensitive
  88     public static Unsafe getUnsafe() {
  89         Class<?> caller = Reflection.getCallerClass();
  90         if (!VM.isSystemDomainLoader(caller.getClassLoader()))
  91             throw new SecurityException("Unsafe");
  92         return theUnsafe;
  93     }
  94 
  95     /// peek and poke operations
  96     /// (compilers should optimize these to memory ops)
  97 
  98     // These work on object fields in the Java heap.
  99     // They will not work on elements of packed arrays.
 100 
 101     /**
 102      * Fetches a value from a given Java variable.
 103      * More specifically, fetches a field or array element within the given
 104      * object {@code o} at the given offset, or (if {@code o} is null)
 105      * from the memory address whose numerical value is the given offset.
 106      * <p>
 107      * The results are undefined unless one of the following cases is true:
 108      * <ul>
 109      * <li>The offset was obtained from {@link #objectFieldOffset} on
 110      * the {@link java.lang.reflect.Field} of some Java field and the object
 111      * referred to by {@code o} is of a class compatible with that
 112      * field's class.
 113      *
 114      * <li>The offset and object reference {@code o} (either null or
 115      * non-null) were both obtained via {@link #staticFieldOffset}
 116      * and {@link #staticFieldBase} (respectively) from the
 117      * reflective {@link Field} representation of some Java field.
 118      *
 119      * <li>The object referred to by {@code o} is an array, and the offset
 120      * is an integer of the form {@code B+N*S}, where {@code N} is
 121      * a valid index into the array, and {@code B} and {@code S} are
 122      * the values obtained by {@link #arrayBaseOffset} and {@link
 123      * #arrayIndexScale} (respectively) from the array's class.  The value
 124      * referred to is the {@code N}<em>th</em> element of the array.
 125      *
 126      * </ul>
 127      * <p>
 128      * If one of the above cases is true, the call references a specific Java
 129      * variable (field or array element).  However, the results are undefined
 130      * if that variable is not in fact of the type returned by this method.
 131      * <p>
 132      * This method refers to a variable by means of two parameters, and so
 133      * it provides (in effect) a <em>double-register</em> addressing mode
 134      * for Java variables.  When the object reference is null, this method
 135      * uses its offset as an absolute address.  This is similar in operation
 136      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 137      * <em>single-register</em> addressing mode for non-Java variables.
 138      * However, because Java variables may have a different layout in memory
 139      * from non-Java variables, programmers should not assume that these
 140      * two addressing modes are ever equivalent.  Also, programmers should
 141      * remember that offsets from the double-register addressing mode cannot
 142      * be portably confused with longs used in the single-register addressing
 143      * mode.
 144      *
 145      * @param o Java heap object in which the variable resides, if any, else
 146      *        null
 147      * @param offset indication of where the variable resides in a Java heap
 148      *        object, if any, else a memory address locating the variable
 149      *        statically
 150      * @return the value fetched from the indicated Java variable
 151      * @throws RuntimeException No defined exceptions are thrown, not even
 152      *         {@link NullPointerException}
 153      */
 154     @HotSpotIntrinsicCandidate
 155     public native int getInt(Object o, long offset);
 156 
 157     /**
 158      * Stores a value into a given Java variable.
 159      * <p>
 160      * The first two parameters are interpreted exactly as with
 161      * {@link #getInt(Object, long)} to refer to a specific
 162      * Java variable (field or array element).  The given value
 163      * is stored into that variable.
 164      * <p>
 165      * The variable must be of the same type as the method
 166      * parameter {@code x}.
 167      *
 168      * @param o Java heap object in which the variable resides, if any, else
 169      *        null
 170      * @param offset indication of where the variable resides in a Java heap
 171      *        object, if any, else a memory address locating the variable
 172      *        statically
 173      * @param x the value to store into the indicated Java variable
 174      * @throws RuntimeException No defined exceptions are thrown, not even
 175      *         {@link NullPointerException}
 176      */
 177     @HotSpotIntrinsicCandidate
 178     public native void putInt(Object o, long offset, int x);
 179 
 180     /**
 181      * Fetches a reference value from a given Java variable.
 182      * @see #getInt(Object, long)
 183      */
 184     @HotSpotIntrinsicCandidate
 185     public native Object getObject(Object o, long offset);
 186 
 187     /**
 188      * Stores a reference value into a given Java variable.
 189      * <p>
 190      * Unless the reference {@code x} being stored is either null
 191      * or matches the field type, the results are undefined.
 192      * If the reference {@code o} is non-null, card marks or
 193      * other store barriers for that object (if the VM requires them)
 194      * are updated.
 195      * @see #putInt(Object, long, int)
 196      */
 197     @HotSpotIntrinsicCandidate
 198     public native void putObject(Object o, long offset, Object x);
 199 
 200     /** @see #getInt(Object, long) */
 201     @HotSpotIntrinsicCandidate
 202     public native boolean getBoolean(Object o, long offset);
 203     /** @see #putInt(Object, long, int) */
 204     @HotSpotIntrinsicCandidate
 205     public native void    putBoolean(Object o, long offset, boolean x);
 206     /** @see #getInt(Object, long) */
 207     @HotSpotIntrinsicCandidate
 208     public native byte    getByte(Object o, long offset);
 209     /** @see #putInt(Object, long, int) */
 210     @HotSpotIntrinsicCandidate
 211     public native void    putByte(Object o, long offset, byte x);
 212     /** @see #getInt(Object, long) */
 213     @HotSpotIntrinsicCandidate
 214     public native short   getShort(Object o, long offset);
 215     /** @see #putInt(Object, long, int) */
 216     @HotSpotIntrinsicCandidate
 217     public native void    putShort(Object o, long offset, short x);
 218     /** @see #getInt(Object, long) */
 219     @HotSpotIntrinsicCandidate
 220     public native char    getChar(Object o, long offset);
 221     /** @see #putInt(Object, long, int) */
 222     @HotSpotIntrinsicCandidate
 223     public native void    putChar(Object o, long offset, char x);
 224     /** @see #getInt(Object, long) */
 225     @HotSpotIntrinsicCandidate
 226     public native long    getLong(Object o, long offset);
 227     /** @see #putInt(Object, long, int) */
 228     @HotSpotIntrinsicCandidate
 229     public native void    putLong(Object o, long offset, long x);
 230     /** @see #getInt(Object, long) */
 231     @HotSpotIntrinsicCandidate
 232     public native float   getFloat(Object o, long offset);
 233     /** @see #putInt(Object, long, int) */
 234     @HotSpotIntrinsicCandidate
 235     public native void    putFloat(Object o, long offset, float x);
 236     /** @see #getInt(Object, long) */
 237     @HotSpotIntrinsicCandidate
 238     public native double  getDouble(Object o, long offset);
 239     /** @see #putInt(Object, long, int) */
 240     @HotSpotIntrinsicCandidate
 241     public native void    putDouble(Object o, long offset, double x);
 242 
 243     // These read VM internal data.
 244 
 245     /**
 246      * Fetches an uncompressed reference value from a given native variable
 247      * ignoring the VM's compressed references mode.
 248      *
 249      * @param address a memory address locating the variable
 250      * @return the value fetched from the indicated native variable
 251      */
 252     public native Object getUncompressedObject(long address);
 253 
 254     /**
 255      * Fetches the {@link java.lang.Class} Java mirror for the given native
 256      * metaspace {@code Klass} pointer.
 257      *
 258      * @param metaspaceKlass a native metaspace {@code Klass} pointer
 259      * @return the {@link java.lang.Class} Java mirror
 260      */
 261     public native Class<?> getJavaMirror(long metaspaceKlass);
 262 
 263     /**
 264      * Fetches a native metaspace {@code Klass} pointer for the given Java
 265      * object.
 266      *
 267      * @param o Java heap object for which to fetch the class pointer
 268      * @return a native metaspace {@code Klass} pointer
 269      */
 270     public native long getKlassPointer(Object o);
 271 
 272     // These work on values in the C heap.
 273 
 274     /**
 275      * Fetches a value from a given memory address.  If the address is zero, or
 276      * does not point into a block obtained from {@link #allocateMemory}, the
 277      * results are undefined.
 278      *
 279      * @see #allocateMemory
 280      */
 281     @HotSpotIntrinsicCandidate
 282     public native byte    getByte(long address);
 283 
 284     /**
 285      * Stores a value into a given memory address.  If the address is zero, or
 286      * does not point into a block obtained from {@link #allocateMemory}, the
 287      * results are undefined.
 288      *
 289      * @see #getByte(long)
 290      */
 291     @HotSpotIntrinsicCandidate
 292     public native void    putByte(long address, byte x);
 293 
 294     /** @see #getByte(long) */
 295     @HotSpotIntrinsicCandidate
 296     public native short   getShort(long address);
 297     /** @see #putByte(long, byte) */
 298     @HotSpotIntrinsicCandidate
 299     public native void    putShort(long address, short x);
 300     /** @see #getByte(long) */
 301     @HotSpotIntrinsicCandidate
 302     public native char    getChar(long address);
 303     /** @see #putByte(long, byte) */
 304     @HotSpotIntrinsicCandidate
 305     public native void    putChar(long address, char x);
 306     /** @see #getByte(long) */
 307     @HotSpotIntrinsicCandidate
 308     public native int     getInt(long address);
 309     /** @see #putByte(long, byte) */
 310     @HotSpotIntrinsicCandidate
 311     public native void    putInt(long address, int x);
 312     /** @see #getByte(long) */
 313     @HotSpotIntrinsicCandidate
 314     public native long    getLong(long address);
 315     /** @see #putByte(long, byte) */
 316     @HotSpotIntrinsicCandidate
 317     public native void    putLong(long address, long x);
 318     /** @see #getByte(long) */
 319     @HotSpotIntrinsicCandidate
 320     public native float   getFloat(long address);
 321     /** @see #putByte(long, byte) */
 322     @HotSpotIntrinsicCandidate
 323     public native void    putFloat(long address, float x);
 324     /** @see #getByte(long) */
 325     @HotSpotIntrinsicCandidate
 326     public native double  getDouble(long address);
 327     /** @see #putByte(long, byte) */
 328     @HotSpotIntrinsicCandidate
 329     public native void    putDouble(long address, double x);
 330 
 331     /**
 332      * Fetches a native pointer from a given memory address.  If the address is
 333      * zero, or does not point into a block obtained from {@link
 334      * #allocateMemory}, the results are undefined.
 335      *
 336      * <p>If the native pointer is less than 64 bits wide, it is extended as
 337      * an unsigned number to a Java long.  The pointer may be indexed by any
 338      * given byte offset, simply by adding that offset (as a simple integer) to
 339      * the long representing the pointer.  The number of bytes actually read
 340      * from the target address may be determined by consulting {@link
 341      * #addressSize}.
 342      *
 343      * @see #allocateMemory
 344      */
 345     @HotSpotIntrinsicCandidate
 346     public native long getAddress(long address);
 347 
 348     /**
 349      * Stores a native pointer into a given memory address.  If the address is
 350      * zero, or does not point into a block obtained from {@link
 351      * #allocateMemory}, the results are undefined.
 352      *
 353      * <p>The number of bytes actually written at the target address may be
 354      * determined by consulting {@link #addressSize}.
 355      *
 356      * @see #getAddress(long)
 357      */
 358     @HotSpotIntrinsicCandidate
 359     public native void putAddress(long address, long x);
 360 
 361     /// wrappers for malloc, realloc, free:
 362 
 363     /**
 364      * Allocates a new block of native memory, of the given size in bytes.  The
 365      * contents of the memory are uninitialized; they will generally be
 366      * garbage.  The resulting native pointer will never be zero, and will be
 367      * aligned for all value types.  Dispose of this memory by calling {@link
 368      * #freeMemory}, or resize it with {@link #reallocateMemory}.
 369      *
 370      * @throws IllegalArgumentException if the size is negative or too large
 371      *         for the native size_t type
 372      *
 373      * @throws OutOfMemoryError if the allocation is refused by the system
 374      *
 375      * @see #getByte(long)
 376      * @see #putByte(long, byte)
 377      */
 378     public native long allocateMemory(long bytes);
 379 
 380     /**
 381      * Resizes a new block of native memory, to the given size in bytes.  The
 382      * contents of the new block past the size of the old block are
 383      * uninitialized; they will generally be garbage.  The resulting native
 384      * pointer will be zero if and only if the requested size is zero.  The
 385      * resulting native pointer will be aligned for all value types.  Dispose
 386      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 387      * #reallocateMemory}.  The address passed to this method may be null, in
 388      * which case an allocation will be performed.
 389      *
 390      * @throws IllegalArgumentException if the size is negative or too large
 391      *         for the native size_t type
 392      *
 393      * @throws OutOfMemoryError if the allocation is refused by the system
 394      *
 395      * @see #allocateMemory
 396      */
 397     public native long reallocateMemory(long address, long bytes);
 398 
 399     /**
 400      * Sets all bytes in a given block of memory to a fixed value
 401      * (usually zero).
 402      *
 403      * <p>This method determines a block's base address by means of two parameters,
 404      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 405      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 406      * the offset supplies an absolute base address.
 407      *
 408      * <p>The stores are in coherent (atomic) units of a size determined
 409      * by the address and length parameters.  If the effective address and
 410      * length are all even modulo 8, the stores take place in 'long' units.
 411      * If the effective address and length are (resp.) even modulo 4 or 2,
 412      * the stores take place in units of 'int' or 'short'.
 413      *
 414      * @since 1.7
 415      */
 416     public native void setMemory(Object o, long offset, long bytes, byte value);
 417 
 418     /**
 419      * Sets all bytes in a given block of memory to a fixed value
 420      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 421      * as discussed in {@link #getInt(Object,long)}.
 422      *
 423      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 424      */
 425     public void setMemory(long address, long bytes, byte value) {
 426         setMemory(null, address, bytes, value);
 427     }
 428 
 429     /**
 430      * Sets all bytes in a given block of memory to a copy of another
 431      * block.
 432      *
 433      * <p>This method determines each block's base address by means of two parameters,
 434      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 435      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 436      * the offset supplies an absolute base address.
 437      *
 438      * <p>The transfers are in coherent (atomic) units of a size determined
 439      * by the address and length parameters.  If the effective addresses and
 440      * length are all even modulo 8, the transfer takes place in 'long' units.
 441      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 442      * the transfer takes place in units of 'int' or 'short'.
 443      *
 444      * @since 1.7
 445      */
 446     @HotSpotIntrinsicCandidate
 447     public native void copyMemory(Object srcBase, long srcOffset,
 448                                   Object destBase, long destOffset,
 449                                   long bytes);
 450     /**
 451      * Sets all bytes in a given block of memory to a copy of another
 452      * block.  This provides a <em>single-register</em> addressing mode,
 453      * as discussed in {@link #getInt(Object,long)}.
 454      *
 455      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 456      */
 457     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 458         copyMemory(null, srcAddress, null, destAddress, bytes);
 459     }
 460 
 461     /**
 462      * Disposes of a block of native memory, as obtained from {@link
 463      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 464      * this method may be null, in which case no action is taken.
 465      *
 466      * @see #allocateMemory
 467      */
 468     public native void freeMemory(long address);
 469 
 470     /// random queries
 471 
 472     /**
 473      * This constant differs from all results that will ever be returned from
 474      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
 475      * or {@link #arrayBaseOffset}.
 476      */
 477     public static final int INVALID_FIELD_OFFSET   = -1;
 478 
 479     /**
 480      * Reports the location of a given field in the storage allocation of its
 481      * class.  Do not expect to perform any sort of arithmetic on this offset;
 482      * it is just a cookie which is passed to the unsafe heap memory accessors.
 483      *
 484      * <p>Any given field will always have the same offset and base, and no
 485      * two distinct fields of the same class will ever have the same offset
 486      * and base.
 487      *
 488      * <p>As of 1.4.1, offsets for fields are represented as long values,
 489      * although the Sun JVM does not use the most significant 32 bits.
 490      * However, JVM implementations which store static fields at absolute
 491      * addresses can use long offsets and null base pointers to express
 492      * the field locations in a form usable by {@link #getInt(Object,long)}.
 493      * Therefore, code which will be ported to such JVMs on 64-bit platforms
 494      * must preserve all bits of static field offsets.
 495      * @see #getInt(Object, long)
 496      */
 497     public native long objectFieldOffset(Field f);
 498 
 499     /**
 500      * Reports the location of a given static field, in conjunction with {@link
 501      * #staticFieldBase}.
 502      * <p>Do not expect to perform any sort of arithmetic on this offset;
 503      * it is just a cookie which is passed to the unsafe heap memory accessors.
 504      *
 505      * <p>Any given field will always have the same offset, and no two distinct
 506      * fields of the same class will ever have the same offset.
 507      *
 508      * <p>As of 1.4.1, offsets for fields are represented as long values,
 509      * although the Sun JVM does not use the most significant 32 bits.
 510      * It is hard to imagine a JVM technology which needs more than
 511      * a few bits to encode an offset within a non-array object,
 512      * However, for consistency with other methods in this class,
 513      * this method reports its result as a long value.
 514      * @see #getInt(Object, long)
 515      */
 516     public native long staticFieldOffset(Field f);
 517 
 518     /**
 519      * Reports the location of a given static field, in conjunction with {@link
 520      * #staticFieldOffset}.
 521      * <p>Fetch the base "Object", if any, with which static fields of the
 522      * given class can be accessed via methods like {@link #getInt(Object,
 523      * long)}.  This value may be null.  This value may refer to an object
 524      * which is a "cookie", not guaranteed to be a real Object, and it should
 525      * not be used in any way except as argument to the get and put routines in
 526      * this class.
 527      */
 528     public native Object staticFieldBase(Field f);
 529 
 530     /**
 531      * Detects if the given class may need to be initialized. This is often
 532      * needed in conjunction with obtaining the static field base of a
 533      * class.
 534      * @return false only if a call to {@code ensureClassInitialized} would have no effect
 535      */
 536     public native boolean shouldBeInitialized(Class<?> c);
 537 
 538     /**
 539      * Ensures the given class has been initialized. This is often
 540      * needed in conjunction with obtaining the static field base of a
 541      * class.
 542      */
 543     public native void ensureClassInitialized(Class<?> c);
 544 
 545     /**
 546      * Reports the offset of the first element in the storage allocation of a
 547      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
 548      * for the same class, you may use that scale factor, together with this
 549      * base offset, to form new offsets to access elements of arrays of the
 550      * given class.
 551      *
 552      * @see #getInt(Object, long)
 553      * @see #putInt(Object, long, int)
 554      */
 555     public native int arrayBaseOffset(Class<?> arrayClass);
 556 
 557     /** The value of {@code arrayBaseOffset(boolean[].class)} */
 558     public static final int ARRAY_BOOLEAN_BASE_OFFSET
 559             = theUnsafe.arrayBaseOffset(boolean[].class);
 560 
 561     /** The value of {@code arrayBaseOffset(byte[].class)} */
 562     public static final int ARRAY_BYTE_BASE_OFFSET
 563             = theUnsafe.arrayBaseOffset(byte[].class);
 564 
 565     /** The value of {@code arrayBaseOffset(short[].class)} */
 566     public static final int ARRAY_SHORT_BASE_OFFSET
 567             = theUnsafe.arrayBaseOffset(short[].class);
 568 
 569     /** The value of {@code arrayBaseOffset(char[].class)} */
 570     public static final int ARRAY_CHAR_BASE_OFFSET
 571             = theUnsafe.arrayBaseOffset(char[].class);
 572 
 573     /** The value of {@code arrayBaseOffset(int[].class)} */
 574     public static final int ARRAY_INT_BASE_OFFSET
 575             = theUnsafe.arrayBaseOffset(int[].class);
 576 
 577     /** The value of {@code arrayBaseOffset(long[].class)} */
 578     public static final int ARRAY_LONG_BASE_OFFSET
 579             = theUnsafe.arrayBaseOffset(long[].class);
 580 
 581     /** The value of {@code arrayBaseOffset(float[].class)} */
 582     public static final int ARRAY_FLOAT_BASE_OFFSET
 583             = theUnsafe.arrayBaseOffset(float[].class);
 584 
 585     /** The value of {@code arrayBaseOffset(double[].class)} */
 586     public static final int ARRAY_DOUBLE_BASE_OFFSET
 587             = theUnsafe.arrayBaseOffset(double[].class);
 588 
 589     /** The value of {@code arrayBaseOffset(Object[].class)} */
 590     public static final int ARRAY_OBJECT_BASE_OFFSET
 591             = theUnsafe.arrayBaseOffset(Object[].class);
 592 
 593     /**
 594      * Reports the scale factor for addressing elements in the storage
 595      * allocation of a given array class.  However, arrays of "narrow" types
 596      * will generally not work properly with accessors like {@link
 597      * #getByte(Object, long)}, so the scale factor for such classes is reported
 598      * as zero.
 599      *
 600      * @see #arrayBaseOffset
 601      * @see #getInt(Object, long)
 602      * @see #putInt(Object, long, int)
 603      */
 604     public native int arrayIndexScale(Class<?> arrayClass);
 605 
 606     /** The value of {@code arrayIndexScale(boolean[].class)} */
 607     public static final int ARRAY_BOOLEAN_INDEX_SCALE
 608             = theUnsafe.arrayIndexScale(boolean[].class);
 609 
 610     /** The value of {@code arrayIndexScale(byte[].class)} */
 611     public static final int ARRAY_BYTE_INDEX_SCALE
 612             = theUnsafe.arrayIndexScale(byte[].class);
 613 
 614     /** The value of {@code arrayIndexScale(short[].class)} */
 615     public static final int ARRAY_SHORT_INDEX_SCALE
 616             = theUnsafe.arrayIndexScale(short[].class);
 617 
 618     /** The value of {@code arrayIndexScale(char[].class)} */
 619     public static final int ARRAY_CHAR_INDEX_SCALE
 620             = theUnsafe.arrayIndexScale(char[].class);
 621 
 622     /** The value of {@code arrayIndexScale(int[].class)} */
 623     public static final int ARRAY_INT_INDEX_SCALE
 624             = theUnsafe.arrayIndexScale(int[].class);
 625 
 626     /** The value of {@code arrayIndexScale(long[].class)} */
 627     public static final int ARRAY_LONG_INDEX_SCALE
 628             = theUnsafe.arrayIndexScale(long[].class);
 629 
 630     /** The value of {@code arrayIndexScale(float[].class)} */
 631     public static final int ARRAY_FLOAT_INDEX_SCALE
 632             = theUnsafe.arrayIndexScale(float[].class);
 633 
 634     /** The value of {@code arrayIndexScale(double[].class)} */
 635     public static final int ARRAY_DOUBLE_INDEX_SCALE
 636             = theUnsafe.arrayIndexScale(double[].class);
 637 
 638     /** The value of {@code arrayIndexScale(Object[].class)} */
 639     public static final int ARRAY_OBJECT_INDEX_SCALE
 640             = theUnsafe.arrayIndexScale(Object[].class);
 641 
 642     /**
 643      * Reports the size in bytes of a native pointer, as stored via {@link
 644      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
 645      * other primitive types (as stored in native memory blocks) is determined
 646      * fully by their information content.
 647      */
 648     public native int addressSize();
 649 
 650     /** The value of {@code addressSize()} */
 651     public static final int ADDRESS_SIZE = theUnsafe.addressSize();
 652 
 653     /**
 654      * Reports the size in bytes of a native memory page (whatever that is).
 655      * This value will always be a power of two.
 656      */
 657     public native int pageSize();
 658 
 659 
 660     /// random trusted operations from JNI:
 661 
 662     /**
 663      * Tells the VM to define a class, without security checks.  By default, the
 664      * class loader and protection domain come from the caller's class.
 665      */
 666     public native Class<?> defineClass(String name, byte[] b, int off, int len,
 667                                        ClassLoader loader,
 668                                        ProtectionDomain protectionDomain);
 669 
 670     /**
 671      * Defines a class but does not make it known to the class loader or system dictionary.
 672      * <p>
 673      * For each CP entry, the corresponding CP patch must either be null or have
 674      * the a format that matches its tag:
 675      * <ul>
 676      * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
 677      * <li>Utf8: a string (must have suitable syntax if used as signature or name)
 678      * <li>Class: any java.lang.Class object
 679      * <li>String: any object (not just a java.lang.String)
 680      * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
 681      * </ul>
 682      * @param hostClass context for linkage, access control, protection domain, and class loader
 683      * @param data      bytes of a class file
 684      * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
 685      */
 686     public native Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches);
 687 
 688     /**
 689      * Allocates an instance but does not run any constructor.
 690      * Initializes the class if it has not yet been.
 691      */
 692     @HotSpotIntrinsicCandidate
 693     public native Object allocateInstance(Class<?> cls)
 694         throws InstantiationException;
 695 
 696     /** Throws the exception without telling the verifier. */
 697     public native void throwException(Throwable ee);
 698 
 699     /**
 700      * Atomically updates Java variable to {@code x} if it is currently
 701      * holding {@code expected}.
 702      *
 703      * <p>This operation has memory semantics of a {@code volatile} read
 704      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 705      *
 706      * @return {@code true} if successful
 707      */
 708     @HotSpotIntrinsicCandidate
 709     public final native boolean compareAndSwapObject(Object o, long offset,
 710                                                      Object expected,
 711                                                      Object x);
 712 
 713     /**
 714      * Atomically updates Java variable to {@code x} if it is currently
 715      * holding {@code expected}.
 716      *
 717      * <p>This operation has memory semantics of a {@code volatile} read
 718      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 719      *
 720      * @return {@code true} if successful
 721      */
 722     @HotSpotIntrinsicCandidate
 723     public final native boolean compareAndSwapInt(Object o, long offset,
 724                                                   int expected,
 725                                                   int x);
 726 
 727     /**
 728      * Atomically updates Java variable to {@code x} if it is currently
 729      * holding {@code expected}.
 730      *
 731      * <p>This operation has memory semantics of a {@code volatile} read
 732      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 733      *
 734      * @return {@code true} if successful
 735      */
 736     @HotSpotIntrinsicCandidate
 737     public final native boolean compareAndSwapLong(Object o, long offset,
 738                                                    long expected,
 739                                                    long x);
 740 
 741     /**
 742      * Fetches a reference value from a given Java variable, with volatile
 743      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
 744      */
 745     @HotSpotIntrinsicCandidate
 746     public native Object getObjectVolatile(Object o, long offset);
 747 
 748     /**
 749      * Stores a reference value into a given Java variable, with
 750      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
 751      */
 752     @HotSpotIntrinsicCandidate
 753     public native void    putObjectVolatile(Object o, long offset, Object x);
 754 
 755     /** Volatile version of {@link #getInt(Object, long)}  */
 756     @HotSpotIntrinsicCandidate
 757     public native int     getIntVolatile(Object o, long offset);
 758 
 759     /** Volatile version of {@link #putInt(Object, long, int)}  */
 760     @HotSpotIntrinsicCandidate
 761     public native void    putIntVolatile(Object o, long offset, int x);
 762 
 763     /** Volatile version of {@link #getBoolean(Object, long)}  */
 764     @HotSpotIntrinsicCandidate
 765     public native boolean getBooleanVolatile(Object o, long offset);
 766 
 767     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
 768     @HotSpotIntrinsicCandidate
 769     public native void    putBooleanVolatile(Object o, long offset, boolean x);
 770 
 771     /** Volatile version of {@link #getByte(Object, long)}  */
 772     @HotSpotIntrinsicCandidate
 773     public native byte    getByteVolatile(Object o, long offset);
 774 
 775     /** Volatile version of {@link #putByte(Object, long, byte)}  */
 776     @HotSpotIntrinsicCandidate
 777     public native void    putByteVolatile(Object o, long offset, byte x);
 778 
 779     /** Volatile version of {@link #getShort(Object, long)}  */
 780     @HotSpotIntrinsicCandidate
 781     public native short   getShortVolatile(Object o, long offset);
 782 
 783     /** Volatile version of {@link #putShort(Object, long, short)}  */
 784     @HotSpotIntrinsicCandidate
 785     public native void    putShortVolatile(Object o, long offset, short x);
 786 
 787     /** Volatile version of {@link #getChar(Object, long)}  */
 788     @HotSpotIntrinsicCandidate
 789     public native char    getCharVolatile(Object o, long offset);
 790 
 791     /** Volatile version of {@link #putChar(Object, long, char)}  */
 792     @HotSpotIntrinsicCandidate
 793     public native void    putCharVolatile(Object o, long offset, char x);
 794 
 795     /** Volatile version of {@link #getLong(Object, long)}  */
 796     @HotSpotIntrinsicCandidate
 797     public native long    getLongVolatile(Object o, long offset);
 798 
 799     /** Volatile version of {@link #putLong(Object, long, long)}  */
 800     @HotSpotIntrinsicCandidate
 801     public native void    putLongVolatile(Object o, long offset, long x);
 802 
 803     /** Volatile version of {@link #getFloat(Object, long)}  */
 804     @HotSpotIntrinsicCandidate
 805     public native float   getFloatVolatile(Object o, long offset);
 806 
 807     /** Volatile version of {@link #putFloat(Object, long, float)}  */
 808     @HotSpotIntrinsicCandidate
 809     public native void    putFloatVolatile(Object o, long offset, float x);
 810 
 811     /** Volatile version of {@link #getDouble(Object, long)}  */
 812     @HotSpotIntrinsicCandidate
 813     public native double  getDoubleVolatile(Object o, long offset);
 814 
 815     /** Volatile version of {@link #putDouble(Object, long, double)}  */
 816     @HotSpotIntrinsicCandidate
 817     public native void    putDoubleVolatile(Object o, long offset, double x);
 818 
 819     /**
 820      * Version of {@link #putObjectVolatile(Object, long, Object)}
 821      * that does not guarantee immediate visibility of the store to
 822      * other threads. This method is generally only useful if the
 823      * underlying field is a Java volatile (or if an array cell, one
 824      * that is otherwise only accessed using volatile accesses).
 825      *
 826      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
 827      */
 828     @HotSpotIntrinsicCandidate
 829     public native void    putOrderedObject(Object o, long offset, Object x);
 830 
 831     /** Ordered/Lazy version of {@link #putIntVolatile(Object, long, int)}  */
 832     @HotSpotIntrinsicCandidate
 833     public native void    putOrderedInt(Object o, long offset, int x);
 834 
 835     /** Ordered/Lazy version of {@link #putLongVolatile(Object, long, long)} */
 836     @HotSpotIntrinsicCandidate
 837     public native void    putOrderedLong(Object o, long offset, long x);
 838 
 839     /**
 840      * Unblocks the given thread blocked on {@code park}, or, if it is
 841      * not blocked, causes the subsequent call to {@code park} not to
 842      * block.  Note: this operation is "unsafe" solely because the
 843      * caller must somehow ensure that the thread has not been
 844      * destroyed. Nothing special is usually required to ensure this
 845      * when called from Java (in which there will ordinarily be a live
 846      * reference to the thread) but this is not nearly-automatically
 847      * so when calling from native code.
 848      *
 849      * @param thread the thread to unpark.
 850      */
 851     @HotSpotIntrinsicCandidate
 852     public native void unpark(Object thread);
 853 
 854     /**
 855      * Blocks current thread, returning when a balancing
 856      * {@code unpark} occurs, or a balancing {@code unpark} has
 857      * already occurred, or the thread is interrupted, or, if not
 858      * absolute and time is not zero, the given time nanoseconds have
 859      * elapsed, or if absolute, the given deadline in milliseconds
 860      * since Epoch has passed, or spuriously (i.e., returning for no
 861      * "reason"). Note: This operation is in the Unsafe class only
 862      * because {@code unpark} is, so it would be strange to place it
 863      * elsewhere.
 864      */
 865     @HotSpotIntrinsicCandidate
 866     public native void park(boolean isAbsolute, long time);
 867 
 868     /**
 869      * Gets the load average in the system run queue assigned
 870      * to the available processors averaged over various periods of time.
 871      * This method retrieves the given {@code nelem} samples and
 872      * assigns to the elements of the given {@code loadavg} array.
 873      * The system imposes a maximum of 3 samples, representing
 874      * averages over the last 1,  5,  and  15 minutes, respectively.
 875      *
 876      * @param loadavg an array of double of size nelems
 877      * @param nelems the number of samples to be retrieved and
 878      *        must be 1 to 3.
 879      *
 880      * @return the number of samples actually retrieved; or -1
 881      *         if the load average is unobtainable.
 882      */
 883     public native int getLoadAverage(double[] loadavg, int nelems);
 884 
 885     // The following contain CAS-based Java implementations used on
 886     // platforms not supporting native instructions
 887 
 888     /**
 889      * Atomically adds the given value to the current value of a field
 890      * or array element within the given object {@code o}
 891      * at the given {@code offset}.
 892      *
 893      * @param o object/array to update the field/element in
 894      * @param offset field/element offset
 895      * @param delta the value to add
 896      * @return the previous value
 897      * @since 1.8
 898      */
 899     @HotSpotIntrinsicCandidate
 900     public final int getAndAddInt(Object o, long offset, int delta) {
 901         int v;
 902         do {
 903             v = getIntVolatile(o, offset);
 904         } while (!compareAndSwapInt(o, offset, v, v + delta));
 905         return v;
 906     }
 907 
 908     /**
 909      * Atomically adds the given value to the current value of a field
 910      * or array element within the given object {@code o}
 911      * at the given {@code offset}.
 912      *
 913      * @param o object/array to update the field/element in
 914      * @param offset field/element offset
 915      * @param delta the value to add
 916      * @return the previous value
 917      * @since 1.8
 918      */
 919     @HotSpotIntrinsicCandidate
 920     public final long getAndAddLong(Object o, long offset, long delta) {
 921         long v;
 922         do {
 923             v = getLongVolatile(o, offset);
 924         } while (!compareAndSwapLong(o, offset, v, v + delta));
 925         return v;
 926     }
 927 
 928     /**
 929      * Atomically exchanges the given value with the current value of
 930      * a field or array element within the given object {@code o}
 931      * at the given {@code offset}.
 932      *
 933      * @param o object/array to update the field/element in
 934      * @param offset field/element offset
 935      * @param newValue new value
 936      * @return the previous value
 937      * @since 1.8
 938      */
 939     @HotSpotIntrinsicCandidate
 940     public final int getAndSetInt(Object o, long offset, int newValue) {
 941         int v;
 942         do {
 943             v = getIntVolatile(o, offset);
 944         } while (!compareAndSwapInt(o, offset, v, newValue));
 945         return v;
 946     }
 947 
 948     /**
 949      * Atomically exchanges the given value with the current value of
 950      * a field or array element within the given object {@code o}
 951      * at the given {@code offset}.
 952      *
 953      * @param o object/array to update the field/element in
 954      * @param offset field/element offset
 955      * @param newValue new value
 956      * @return the previous value
 957      * @since 1.8
 958      */
 959     @HotSpotIntrinsicCandidate
 960     public final long getAndSetLong(Object o, long offset, long newValue) {
 961         long v;
 962         do {
 963             v = getLongVolatile(o, offset);
 964         } while (!compareAndSwapLong(o, offset, v, newValue));
 965         return v;
 966     }
 967 
 968     /**
 969      * Atomically exchanges the given reference value with the current
 970      * reference value of a field or array element within the given
 971      * object {@code o} at the given {@code offset}.
 972      *
 973      * @param o object/array to update the field/element in
 974      * @param offset field/element offset
 975      * @param newValue new value
 976      * @return the previous value
 977      * @since 1.8
 978      */
 979     @HotSpotIntrinsicCandidate
 980     public final Object getAndSetObject(Object o, long offset, Object newValue) {
 981         Object v;
 982         do {
 983             v = getObjectVolatile(o, offset);
 984         } while (!compareAndSwapObject(o, offset, v, newValue));
 985         return v;
 986     }
 987 
 988 
 989     /**
 990      * Ensures that loads before the fence will not be reordered with loads and
 991      * stores after the fence; a "LoadLoad plus LoadStore barrier".
 992      *
 993      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
 994      * (an "acquire fence").
 995      *
 996      * A pure LoadLoad fence is not provided, since the addition of LoadStore
 997      * is almost always desired, and most current hardware instructions that
 998      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
 999      * @since 1.8
1000      */
1001     @HotSpotIntrinsicCandidate
1002     public native void loadFence();
1003 
1004     /**
1005      * Ensures that loads and stores before the fence will not be reordered with
1006      * stores after the fence; a "StoreStore plus LoadStore barrier".
1007      *
1008      * Corresponds to C11 atomic_thread_fence(memory_order_release)
1009      * (a "release fence").
1010      *
1011      * A pure StoreStore fence is not provided, since the addition of LoadStore
1012      * is almost always desired, and most current hardware instructions that
1013      * provide a StoreStore barrier also provide a LoadStore barrier for free.
1014      * @since 1.8
1015      */
1016     @HotSpotIntrinsicCandidate
1017     public native void storeFence();
1018 
1019     /**
1020      * Ensures that loads and stores before the fence will not be reordered
1021      * with loads and stores after the fence.  Implies the effects of both
1022      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
1023      * barrier.
1024      *
1025      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
1026      * @since 1.8
1027      */
1028     @HotSpotIntrinsicCandidate
1029     public native void fullFence();
1030 
1031     /**
1032      * Throws IllegalAccessError; for use by the VM for access control
1033      * error support.
1034      * @since 1.8
1035      */
1036     private static void throwIllegalAccessError() {
1037         throw new IllegalAccessError();
1038     }
1039 
1040     /**
1041      * @return Returns true if the native byte ordering of this
1042      * platform is big-endian, false if it is little-endian.
1043      */
1044     public final boolean isBigEndian() { return BE; }
1045 
1046     /**
1047      * @return Returns true if this platform is capable of performing
1048      * accesses at addresses which are not aligned for the type of the
1049      * primitive type being accessed, false otherwise.
1050      */
1051     public final boolean unalignedAccess() { return unalignedAccess; }
1052 
1053     /**
1054      * Fetches a value at some byte offset into a given Java object.
1055      * More specifically, fetches a value within the given object
1056      * <code>o</code> at the given offset, or (if <code>o</code> is
1057      * null) from the memory address whose numerical value is the
1058      * given offset.  <p>
1059      *
1060      * The specification of this method is the same as {@link
1061      * #getLong(Object, long)} except that the offset does not need to
1062      * have been obtained from {@link #objectFieldOffset} on the
1063      * {@link java.lang.reflect.Field} of some Java field.  The value
1064      * in memory is raw data, and need not correspond to any Java
1065      * variable.  Unless <code>o</code> is null, the value accessed
1066      * must be entirely within the allocated object.  The endianness
1067      * of the value in memory is the endianness of the native platform.
1068      *
1069      * <p> The read will be atomic with respect to the largest power
1070      * of two that divides the GCD of the offset and the storage size.
1071      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
1072      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
1073      * respectively.  There are no other guarantees of atomicity.
1074      * <p>
1075      * 8-byte atomicity is only guaranteed on platforms on which
1076      * support atomic accesses to longs.
1077      *
1078      * @param o Java heap object in which the value resides, if any, else
1079      *        null
1080      * @param offset The offset in bytes from the start of the object
1081      * @return the value fetched from the indicated object
1082      * @throws RuntimeException No defined exceptions are thrown, not even
1083      *         {@link NullPointerException}
1084      * @since 9
1085      */
1086     @HotSpotIntrinsicCandidate
1087     public final long getLongUnaligned(Object o, long offset) {
1088         if ((offset & 7) == 0) {
1089             return getLong(o, offset);
1090         } else if ((offset & 3) == 0) {
1091             return makeLong(getInt(o, offset),
1092                             getInt(o, offset + 4));
1093         } else if ((offset & 1) == 0) {
1094             return makeLong(getShort(o, offset),
1095                             getShort(o, offset + 2),
1096                             getShort(o, offset + 4),
1097                             getShort(o, offset + 6));
1098         } else {
1099             return makeLong(getByte(o, offset),
1100                             getByte(o, offset + 1),
1101                             getByte(o, offset + 2),
1102                             getByte(o, offset + 3),
1103                             getByte(o, offset + 4),
1104                             getByte(o, offset + 5),
1105                             getByte(o, offset + 6),
1106                             getByte(o, offset + 7));
1107         }
1108     }
1109     /**
1110      * As {@link #getLongUnaligned(Object, long)} but with an
1111      * additional argument which specifies the endianness of the value
1112      * as stored in memory.
1113      *
1114      * @param o Java heap object in which the variable resides
1115      * @param offset The offset in bytes from the start of the object
1116      * @param bigEndian The endianness of the value
1117      * @return the value fetched from the indicated object
1118      * @since 9
1119      */
1120     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
1121         return convEndian(bigEndian, getLongUnaligned(o, offset));
1122     }
1123 
1124     /** @see #getLongUnaligned(Object, long) */
1125     @HotSpotIntrinsicCandidate
1126     public final int getIntUnaligned(Object o, long offset) {
1127         if ((offset & 3) == 0) {
1128             return getInt(o, offset);
1129         } else if ((offset & 1) == 0) {
1130             return makeInt(getShort(o, offset),
1131                            getShort(o, offset + 2));
1132         } else {
1133             return makeInt(getByte(o, offset),
1134                            getByte(o, offset + 1),
1135                            getByte(o, offset + 2),
1136                            getByte(o, offset + 3));
1137         }
1138     }
1139     /** @see #getLongUnaligned(Object, long, boolean) */
1140     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
1141         return convEndian(bigEndian, getIntUnaligned(o, offset));
1142     }
1143 
1144     /** @see #getLongUnaligned(Object, long) */
1145     @HotSpotIntrinsicCandidate
1146     public final short getShortUnaligned(Object o, long offset) {
1147         if ((offset & 1) == 0) {
1148             return getShort(o, offset);
1149         } else {
1150             return makeShort(getByte(o, offset),
1151                              getByte(o, offset + 1));
1152         }
1153     }
1154     /** @see #getLongUnaligned(Object, long, boolean) */
1155     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
1156         return convEndian(bigEndian, getShortUnaligned(o, offset));
1157     }
1158 
1159     /** @see #getLongUnaligned(Object, long) */
1160     @HotSpotIntrinsicCandidate
1161     public final char getCharUnaligned(Object o, long offset) {
1162         return (char)getShortUnaligned(o, offset);
1163     }
1164 
1165     /** @see #getLongUnaligned(Object, long, boolean) */
1166     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
1167         return convEndian(bigEndian, getCharUnaligned(o, offset));
1168     }
1169 
1170     /**
1171      * Stores a value at some byte offset into a given Java object.
1172      * <p>
1173      * The specification of this method is the same as {@link
1174      * #getLong(Object, long)} except that the offset does not need to
1175      * have been obtained from {@link #objectFieldOffset} on the
1176      * {@link java.lang.reflect.Field} of some Java field.  The value
1177      * in memory is raw data, and need not correspond to any Java
1178      * variable.  The endianness of the value in memory is the
1179      * endianness of the native platform.
1180      * <p>
1181      * The write will be atomic with respect to the largest power of
1182      * two that divides the GCD of the offset and the storage size.
1183      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
1184      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
1185      * respectively.  There are no other guarantees of atomicity.
1186      * <p>
1187      * 8-byte atomicity is only guaranteed on platforms on which
1188      * support atomic accesses to longs.
1189      *
1190      * @param o Java heap object in which the value resides, if any, else
1191      *        null
1192      * @param offset The offset in bytes from the start of the object
1193      * @param x the value to store
1194      * @throws RuntimeException No defined exceptions are thrown, not even
1195      *         {@link NullPointerException}
1196      * @since 9
1197      */
1198     @HotSpotIntrinsicCandidate
1199     public final void putLongUnaligned(Object o, long offset, long x) {
1200         if ((offset & 7) == 0) {
1201             putLong(o, offset, x);
1202         } else if ((offset & 3) == 0) {
1203             putLongParts(o, offset,
1204                          (int)(x >> 0),
1205                          (int)(x >>> 32));
1206         } else if ((offset & 1) == 0) {
1207             putLongParts(o, offset,
1208                          (short)(x >>> 0),
1209                          (short)(x >>> 16),
1210                          (short)(x >>> 32),
1211                          (short)(x >>> 48));
1212         } else {
1213             putLongParts(o, offset,
1214                          (byte)(x >>> 0),
1215                          (byte)(x >>> 8),
1216                          (byte)(x >>> 16),
1217                          (byte)(x >>> 24),
1218                          (byte)(x >>> 32),
1219                          (byte)(x >>> 40),
1220                          (byte)(x >>> 48),
1221                          (byte)(x >>> 56));
1222         }
1223     }
1224 
1225     /**
1226      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
1227      * argument which specifies the endianness of the value as stored in memory.
1228      * @param o Java heap object in which the value resides
1229      * @param offset The offset in bytes from the start of the object
1230      * @param x the value to store
1231      * @param bigEndian The endianness of the value
1232      * @throws RuntimeException No defined exceptions are thrown, not even
1233      *         {@link NullPointerException}
1234      * @since 9
1235      */
1236     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
1237         putLongUnaligned(o, offset, convEndian(bigEndian, x));
1238     }
1239 
1240     /** @see #putLongUnaligned(Object, long, long) */
1241     @HotSpotIntrinsicCandidate
1242     public final void putIntUnaligned(Object o, long offset, int x) {
1243         if ((offset & 3) == 0) {
1244             putInt(o, offset, x);
1245         } else if ((offset & 1) == 0) {
1246             putIntParts(o, offset,
1247                         (short)(x >> 0),
1248                         (short)(x >>> 16));
1249         } else {
1250             putIntParts(o, offset,
1251                         (byte)(x >>> 0),
1252                         (byte)(x >>> 8),
1253                         (byte)(x >>> 16),
1254                         (byte)(x >>> 24));
1255         }
1256     }
1257     /** @see #putLongUnaligned(Object, long, long, boolean) */
1258     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
1259         putIntUnaligned(o, offset, convEndian(bigEndian, x));
1260     }
1261 
1262     /** @see #putLongUnaligned(Object, long, long) */
1263     @HotSpotIntrinsicCandidate
1264     public final void putShortUnaligned(Object o, long offset, short x) {
1265         if ((offset & 1) == 0) {
1266             putShort(o, offset, x);
1267         } else {
1268             putShortParts(o, offset,
1269                           (byte)(x >>> 0),
1270                           (byte)(x >>> 8));
1271         }
1272     }
1273     /** @see #putLongUnaligned(Object, long, long, boolean) */
1274     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
1275         putShortUnaligned(o, offset, convEndian(bigEndian, x));
1276     }
1277 
1278     /** @see #putLongUnaligned(Object, long, long) */
1279     @HotSpotIntrinsicCandidate
1280     public final void putCharUnaligned(Object o, long offset, char x) {
1281         putShortUnaligned(o, offset, (short)x);
1282     }
1283     /** @see #putLongUnaligned(Object, long, long, boolean) */
1284     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
1285         putCharUnaligned(o, offset, convEndian(bigEndian, x));
1286     }
1287 
1288     // JVM interface methods
1289     private native boolean unalignedAccess0();
1290     private native boolean isBigEndian0();
1291 
1292     // BE is true iff the native endianness of this platform is big.
1293     private static final boolean BE = theUnsafe.isBigEndian0();
1294 
1295     // unalignedAccess is true iff this platform can perform unaligned accesses.
1296     private static final boolean unalignedAccess = theUnsafe.unalignedAccess0();
1297 
1298     private static int pickPos(int top, int pos) { return BE ? top - pos : pos; }
1299 
1300     // These methods construct integers from bytes.  The byte ordering
1301     // is the native endianness of this platform.
1302     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
1303         return ((toUnsignedLong(i0) << pickPos(56, 0))
1304               | (toUnsignedLong(i1) << pickPos(56, 8))
1305               | (toUnsignedLong(i2) << pickPos(56, 16))
1306               | (toUnsignedLong(i3) << pickPos(56, 24))
1307               | (toUnsignedLong(i4) << pickPos(56, 32))
1308               | (toUnsignedLong(i5) << pickPos(56, 40))
1309               | (toUnsignedLong(i6) << pickPos(56, 48))
1310               | (toUnsignedLong(i7) << pickPos(56, 56)));
1311     }
1312     private static long makeLong(short i0, short i1, short i2, short i3) {
1313         return ((toUnsignedLong(i0) << pickPos(48, 0))
1314               | (toUnsignedLong(i1) << pickPos(48, 16))
1315               | (toUnsignedLong(i2) << pickPos(48, 32))
1316               | (toUnsignedLong(i3) << pickPos(48, 48)));
1317     }
1318     private static long makeLong(int i0, int i1) {
1319         return (toUnsignedLong(i0) << pickPos(32, 0))
1320              | (toUnsignedLong(i1) << pickPos(32, 32));
1321     }
1322     private static int makeInt(short i0, short i1) {
1323         return (toUnsignedInt(i0) << pickPos(16, 0))
1324              | (toUnsignedInt(i1) << pickPos(16, 16));
1325     }
1326     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
1327         return ((toUnsignedInt(i0) << pickPos(24, 0))
1328               | (toUnsignedInt(i1) << pickPos(24, 8))
1329               | (toUnsignedInt(i2) << pickPos(24, 16))
1330               | (toUnsignedInt(i3) << pickPos(24, 24)));
1331     }
1332     private static short makeShort(byte i0, byte i1) {
1333         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
1334                      | (toUnsignedInt(i1) << pickPos(8, 8)));
1335     }
1336 
1337     private static byte  pick(byte  le, byte  be) { return BE ? be : le; }
1338     private static short pick(short le, short be) { return BE ? be : le; }
1339     private static int   pick(int   le, int   be) { return BE ? be : le; }
1340 
1341     // These methods write integers to memory from smaller parts
1342     // provided by their caller.  The ordering in which these parts
1343     // are written is the native endianness of this platform.
1344     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
1345         putByte(o, offset + 0, pick(i0, i7));
1346         putByte(o, offset + 1, pick(i1, i6));
1347         putByte(o, offset + 2, pick(i2, i5));
1348         putByte(o, offset + 3, pick(i3, i4));
1349         putByte(o, offset + 4, pick(i4, i3));
1350         putByte(o, offset + 5, pick(i5, i2));
1351         putByte(o, offset + 6, pick(i6, i1));
1352         putByte(o, offset + 7, pick(i7, i0));
1353     }
1354     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
1355         putShort(o, offset + 0, pick(i0, i3));
1356         putShort(o, offset + 2, pick(i1, i2));
1357         putShort(o, offset + 4, pick(i2, i1));
1358         putShort(o, offset + 6, pick(i3, i0));
1359     }
1360     private void putLongParts(Object o, long offset, int i0, int i1) {
1361         putInt(o, offset + 0, pick(i0, i1));
1362         putInt(o, offset + 4, pick(i1, i0));
1363     }
1364     private void putIntParts(Object o, long offset, short i0, short i1) {
1365         putShort(o, offset + 0, pick(i0, i1));
1366         putShort(o, offset + 2, pick(i1, i0));
1367     }
1368     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
1369         putByte(o, offset + 0, pick(i0, i3));
1370         putByte(o, offset + 1, pick(i1, i2));
1371         putByte(o, offset + 2, pick(i2, i1));
1372         putByte(o, offset + 3, pick(i3, i0));
1373     }
1374     private void putShortParts(Object o, long offset, byte i0, byte i1) {
1375         putByte(o, offset + 0, pick(i0, i1));
1376         putByte(o, offset + 1, pick(i1, i0));
1377     }
1378 
1379     // Zero-extend an integer
1380     private static int toUnsignedInt(byte n)    { return n & 0xff; }
1381     private static int toUnsignedInt(short n)   { return n & 0xffff; }
1382     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
1383     private static long toUnsignedLong(short n) { return n & 0xffffl; }
1384     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
1385 
1386     // Maybe byte-reverse an integer
1387     private static char convEndian(boolean big, char n)   { return big == BE ? n : Character.reverseBytes(n); }
1388     private static short convEndian(boolean big, short n) { return big == BE ? n : Short.reverseBytes(n)    ; }
1389     private static int convEndian(boolean big, int n)     { return big == BE ? n : Integer.reverseBytes(n)  ; }
1390     private static long convEndian(boolean big, long n)   { return big == BE ? n : Long.reverseBytes(n)     ; }
1391 }