1 /*
   2  * Copyright (c) 1996, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  * Portions Copyright (c) 1995  Colin Plumb.  All rights reserved.
  28  */
  29 
  30 package java.math;
  31 
  32 import java.io.IOException;
  33 import java.io.ObjectInputStream;
  34 import java.io.ObjectOutputStream;
  35 import java.io.ObjectStreamField;
  36 import java.util.Arrays;
  37 import java.util.Objects;
  38 import java.util.Random;
  39 import java.util.concurrent.ThreadLocalRandom;
  40 
  41 import jdk.internal.math.DoubleConsts;
  42 import jdk.internal.math.FloatConsts;
  43 import jdk.internal.HotSpotIntrinsicCandidate;
  44 
  45 /**
  46  * Immutable arbitrary-precision integers.  All operations behave as if
  47  * BigIntegers were represented in two's-complement notation (like Java's
  48  * primitive integer types).  BigInteger provides analogues to all of Java's
  49  * primitive integer operators, and all relevant methods from java.lang.Math.
  50  * Additionally, BigInteger provides operations for modular arithmetic, GCD
  51  * calculation, primality testing, prime generation, bit manipulation,
  52  * and a few other miscellaneous operations.
  53  *
  54  * <p>Semantics of arithmetic operations exactly mimic those of Java's integer
  55  * arithmetic operators, as defined in <i>The Java Language Specification</i>.
  56  * For example, division by zero throws an {@code ArithmeticException}, and
  57  * division of a negative by a positive yields a negative (or zero) remainder.
  58  * All of the details in the Spec concerning overflow are ignored, as
  59  * BigIntegers are made as large as necessary to accommodate the results of an
  60  * operation.
  61  *
  62  * <p>Semantics of shift operations extend those of Java's shift operators
  63  * to allow for negative shift distances.  A right-shift with a negative
  64  * shift distance results in a left shift, and vice-versa.  The unsigned
  65  * right shift operator ({@code >>>}) is omitted, as this operation makes
  66  * little sense in combination with the "infinite word size" abstraction
  67  * provided by this class.
  68  *
  69  * <p>Semantics of bitwise logical operations exactly mimic those of Java's
  70  * bitwise integer operators.  The binary operators ({@code and},
  71  * {@code or}, {@code xor}) implicitly perform sign extension on the shorter
  72  * of the two operands prior to performing the operation.
  73  *
  74  * <p>Comparison operations perform signed integer comparisons, analogous to
  75  * those performed by Java's relational and equality operators.
  76  *
  77  * <p>Modular arithmetic operations are provided to compute residues, perform
  78  * exponentiation, and compute multiplicative inverses.  These methods always
  79  * return a non-negative result, between {@code 0} and {@code (modulus - 1)},
  80  * inclusive.
  81  *
  82  * <p>Bit operations operate on a single bit of the two's-complement
  83  * representation of their operand.  If necessary, the operand is sign-
  84  * extended so that it contains the designated bit.  None of the single-bit
  85  * operations can produce a BigInteger with a different sign from the
  86  * BigInteger being operated on, as they affect only a single bit, and the
  87  * "infinite word size" abstraction provided by this class ensures that there
  88  * are infinitely many "virtual sign bits" preceding each BigInteger.
  89  *
  90  * <p>For the sake of brevity and clarity, pseudo-code is used throughout the
  91  * descriptions of BigInteger methods.  The pseudo-code expression
  92  * {@code (i + j)} is shorthand for "a BigInteger whose value is
  93  * that of the BigInteger {@code i} plus that of the BigInteger {@code j}."
  94  * The pseudo-code expression {@code (i == j)} is shorthand for
  95  * "{@code true} if and only if the BigInteger {@code i} represents the same
  96  * value as the BigInteger {@code j}."  Other pseudo-code expressions are
  97  * interpreted similarly.
  98  *
  99  * <p>All methods and constructors in this class throw
 100  * {@code NullPointerException} when passed
 101  * a null object reference for any input parameter.
 102  *
 103  * BigInteger must support values in the range
 104  * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
 105  * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive)
 106  * and may support values outside of that range.
 107  *
 108  * The range of probable prime values is limited and may be less than
 109  * the full supported positive range of {@code BigInteger}.
 110  * The range must be at least 1 to 2<sup>500000000</sup>.
 111  *
 112  * @implNote
 113  * BigInteger constructors and operations throw {@code ArithmeticException} when
 114  * the result is out of the supported range of
 115  * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
 116  * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive).
 117  *
 118  * @see     BigDecimal
 119  * @author  Josh Bloch
 120  * @author  Michael McCloskey
 121  * @author  Alan Eliasen
 122  * @author  Timothy Buktu
 123  * @since 1.1
 124  */
 125 
 126 public class BigInteger extends Number implements Comparable<BigInteger> {
 127     /**
 128      * The signum of this BigInteger: -1 for negative, 0 for zero, or
 129      * 1 for positive.  Note that the BigInteger zero <i>must</i> have
 130      * a signum of 0.  This is necessary to ensures that there is exactly one
 131      * representation for each BigInteger value.
 132      */
 133     final int signum;
 134 
 135     /**
 136      * The magnitude of this BigInteger, in <i>big-endian</i> order: the
 137      * zeroth element of this array is the most-significant int of the
 138      * magnitude.  The magnitude must be "minimal" in that the most-significant
 139      * int ({@code mag[0]}) must be non-zero.  This is necessary to
 140      * ensure that there is exactly one representation for each BigInteger
 141      * value.  Note that this implies that the BigInteger zero has a
 142      * zero-length mag array.
 143      */
 144     final int[] mag;
 145 
 146     // The following fields are stable variables. A stable variable's value
 147     // changes at most once from the default zero value to a non-zero stable
 148     // value. A stable value is calculated lazily on demand.
 149 
 150     /**
 151      * One plus the bitCount of this BigInteger. This is a stable variable.
 152      *
 153      * @see #bitCount
 154      */
 155     private int bitCountPlusOne;
 156 
 157     /**
 158      * One plus the bitLength of this BigInteger. This is a stable variable.
 159      * (either value is acceptable).
 160      *
 161      * @see #bitLength()
 162      */
 163     private int bitLengthPlusOne;
 164 
 165     /**
 166      * Two plus the lowest set bit of this BigInteger. This is a stable variable.
 167      *
 168      * @see #getLowestSetBit
 169      */
 170     private int lowestSetBitPlusTwo;
 171 
 172     /**
 173      * Two plus the index of the lowest-order int in the magnitude of this
 174      * BigInteger that contains a nonzero int. This is a stable variable. The
 175      * least significant int has int-number 0, the next int in order of
 176      * increasing significance has int-number 1, and so forth.
 177      *
 178      * <p>Note: never used for a BigInteger with a magnitude of zero.
 179      *
 180      * @see #firstNonzeroIntNum()
 181      */
 182     private int firstNonzeroIntNumPlusTwo;
 183 
 184     /**
 185      * This mask is used to obtain the value of an int as if it were unsigned.
 186      */
 187     static final long LONG_MASK = 0xffffffffL;
 188 
 189     /**
 190      * This constant limits {@code mag.length} of BigIntegers to the supported
 191      * range.
 192      */
 193     private static final int MAX_MAG_LENGTH = Integer.MAX_VALUE / Integer.SIZE + 1; // (1 << 26)
 194 
 195     /**
 196      * Bit lengths larger than this constant can cause overflow in searchLen
 197      * calculation and in BitSieve.singleSearch method.
 198      */
 199     private static final  int PRIME_SEARCH_BIT_LENGTH_LIMIT = 500000000;
 200 
 201     /**
 202      * The threshold value for using Karatsuba multiplication.  If the number
 203      * of ints in both mag arrays are greater than this number, then
 204      * Karatsuba multiplication will be used.   This value is found
 205      * experimentally to work well.
 206      */
 207     private static final int KARATSUBA_THRESHOLD = 80;
 208 
 209     /**
 210      * The threshold value for using 3-way Toom-Cook multiplication.
 211      * If the number of ints in each mag array is greater than the
 212      * Karatsuba threshold, and the number of ints in at least one of
 213      * the mag arrays is greater than this threshold, then Toom-Cook
 214      * multiplication will be used.
 215      */
 216     private static final int TOOM_COOK_THRESHOLD = 240;
 217 
 218     /**
 219      * The threshold value for using Karatsuba squaring.  If the number
 220      * of ints in the number are larger than this value,
 221      * Karatsuba squaring will be used.   This value is found
 222      * experimentally to work well.
 223      */
 224     private static final int KARATSUBA_SQUARE_THRESHOLD = 128;
 225 
 226     /**
 227      * The threshold value for using Toom-Cook squaring.  If the number
 228      * of ints in the number are larger than this value,
 229      * Toom-Cook squaring will be used.   This value is found
 230      * experimentally to work well.
 231      */
 232     private static final int TOOM_COOK_SQUARE_THRESHOLD = 216;
 233 
 234     /**
 235      * The threshold value for using Burnikel-Ziegler division.  If the number
 236      * of ints in the divisor are larger than this value, Burnikel-Ziegler
 237      * division may be used.  This value is found experimentally to work well.
 238      */
 239     static final int BURNIKEL_ZIEGLER_THRESHOLD = 80;
 240 
 241     /**
 242      * The offset value for using Burnikel-Ziegler division.  If the number
 243      * of ints in the divisor exceeds the Burnikel-Ziegler threshold, and the
 244      * number of ints in the dividend is greater than the number of ints in the
 245      * divisor plus this value, Burnikel-Ziegler division will be used.  This
 246      * value is found experimentally to work well.
 247      */
 248     static final int BURNIKEL_ZIEGLER_OFFSET = 40;
 249 
 250     /**
 251      * The threshold value for using Schoenhage recursive base conversion. If
 252      * the number of ints in the number are larger than this value,
 253      * the Schoenhage algorithm will be used.  In practice, it appears that the
 254      * Schoenhage routine is faster for any threshold down to 2, and is
 255      * relatively flat for thresholds between 2-25, so this choice may be
 256      * varied within this range for very small effect.
 257      */
 258     private static final int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20;
 259 
 260     /**
 261      * The threshold value for using squaring code to perform multiplication
 262      * of a {@code BigInteger} instance by itself.  If the number of ints in
 263      * the number are larger than this value, {@code multiply(this)} will
 264      * return {@code square()}.
 265      */
 266     private static final int MULTIPLY_SQUARE_THRESHOLD = 20;
 267 
 268     /**
 269      * The threshold for using an intrinsic version of
 270      * implMontgomeryXXX to perform Montgomery multiplication.  If the
 271      * number of ints in the number is more than this value we do not
 272      * use the intrinsic.
 273      */
 274     private static final int MONTGOMERY_INTRINSIC_THRESHOLD = 512;
 275 
 276 
 277     // Constructors
 278 
 279     /**
 280      * Translates a byte sub-array containing the two's-complement binary
 281      * representation of a BigInteger into a BigInteger.  The sub-array is
 282      * specified via an offset into the array and a length.  The sub-array is
 283      * assumed to be in <i>big-endian</i> byte-order: the most significant
 284      * byte is the element at index {@code off}.  The {@code val} array is
 285      * assumed to be unchanged for the duration of the constructor call.
 286      *
 287      * An {@code IndexOutOfBoundsException} is thrown if the length of the array
 288      * {@code val} is non-zero and either {@code off} is negative, {@code len}
 289      * is negative, or {@code off+len} is greater than the length of
 290      * {@code val}.
 291      *
 292      * @param  val byte array containing a sub-array which is the big-endian
 293      *         two's-complement binary representation of a BigInteger.
 294      * @param  off the start offset of the binary representation.
 295      * @param  len the number of bytes to use.
 296      * @throws NumberFormatException {@code val} is zero bytes long.
 297      * @throws IndexOutOfBoundsException if the provided array offset and
 298      *         length would cause an index into the byte array to be
 299      *         negative or greater than or equal to the array length.
 300      * @since 1.9
 301      */
 302     public BigInteger(byte[] val, int off, int len) {
 303         if (val.length == 0) {
 304             throw new NumberFormatException("Zero length BigInteger");
 305         } else if ((off < 0) || (off >= val.length) || (len < 0) ||
 306                    (len > val.length - off)) { // 0 <= off < val.length
 307             throw new IndexOutOfBoundsException();
 308         }
 309 
 310         if (val[off] < 0) {
 311             mag = makePositive(val, off, len);
 312             signum = -1;
 313         } else {
 314             mag = stripLeadingZeroBytes(val, off, len);
 315             signum = (mag.length == 0 ? 0 : 1);
 316         }
 317         if (mag.length >= MAX_MAG_LENGTH) {
 318             checkRange();
 319         }
 320     }
 321 
 322     /**
 323      * Translates a byte array containing the two's-complement binary
 324      * representation of a BigInteger into a BigInteger.  The input array is
 325      * assumed to be in <i>big-endian</i> byte-order: the most significant
 326      * byte is in the zeroth element.  The {@code val} array is assumed to be
 327      * unchanged for the duration of the constructor call.
 328      *
 329      * @param  val big-endian two's-complement binary representation of a
 330      *         BigInteger.
 331      * @throws NumberFormatException {@code val} is zero bytes long.
 332      */
 333     public BigInteger(byte[] val) {
 334         this(val, 0, val.length);
 335     }
 336 
 337     /**
 338      * This private constructor translates an int array containing the
 339      * two's-complement binary representation of a BigInteger into a
 340      * BigInteger. The input array is assumed to be in <i>big-endian</i>
 341      * int-order: the most significant int is in the zeroth element.  The
 342      * {@code val} array is assumed to be unchanged for the duration of
 343      * the constructor call.
 344      */
 345     private BigInteger(int[] val) {
 346         if (val.length == 0)
 347             throw new NumberFormatException("Zero length BigInteger");
 348 
 349         if (val[0] < 0) {
 350             mag = makePositive(val);
 351             signum = -1;
 352         } else {
 353             mag = trustedStripLeadingZeroInts(val);
 354             signum = (mag.length == 0 ? 0 : 1);
 355         }
 356         if (mag.length >= MAX_MAG_LENGTH) {
 357             checkRange();
 358         }
 359     }
 360 
 361     /**
 362      * Translates the sign-magnitude representation of a BigInteger into a
 363      * BigInteger.  The sign is represented as an integer signum value: -1 for
 364      * negative, 0 for zero, or 1 for positive.  The magnitude is a sub-array of
 365      * a byte array in <i>big-endian</i> byte-order: the most significant byte
 366      * is the element at index {@code off}.  A zero value of the length
 367      * {@code len} is permissible, and will result in a BigInteger value of 0,
 368      * whether signum is -1, 0 or 1.  The {@code magnitude} array is assumed to
 369      * be unchanged for the duration of the constructor call.
 370      *
 371      * An {@code IndexOutOfBoundsException} is thrown if the length of the array
 372      * {@code magnitude} is non-zero and either {@code off} is negative,
 373      * {@code len} is negative, or {@code off+len} is greater than the length of
 374      * {@code magnitude}.
 375      *
 376      * @param  signum signum of the number (-1 for negative, 0 for zero, 1
 377      *         for positive).
 378      * @param  magnitude big-endian binary representation of the magnitude of
 379      *         the number.
 380      * @param  off the start offset of the binary representation.
 381      * @param  len the number of bytes to use.
 382      * @throws NumberFormatException {@code signum} is not one of the three
 383      *         legal values (-1, 0, and 1), or {@code signum} is 0 and
 384      *         {@code magnitude} contains one or more non-zero bytes.
 385      * @throws IndexOutOfBoundsException if the provided array offset and
 386      *         length would cause an index into the byte array to be
 387      *         negative or greater than or equal to the array length.
 388      * @since 1.9
 389      */
 390     public BigInteger(int signum, byte[] magnitude, int off, int len) {
 391         if (signum < -1 || signum > 1) {
 392             throw(new NumberFormatException("Invalid signum value"));
 393         } else if ((off < 0) || (len < 0) ||
 394             (len > 0 &&
 395                 ((off >= magnitude.length) ||
 396                  (len > magnitude.length - off)))) { // 0 <= off < magnitude.length
 397             throw new IndexOutOfBoundsException();
 398         }
 399 
 400         // stripLeadingZeroBytes() returns a zero length array if len == 0
 401         this.mag = stripLeadingZeroBytes(magnitude, off, len);
 402 
 403         if (this.mag.length == 0) {
 404             this.signum = 0;
 405         } else {
 406             if (signum == 0)
 407                 throw(new NumberFormatException("signum-magnitude mismatch"));
 408             this.signum = signum;
 409         }
 410         if (mag.length >= MAX_MAG_LENGTH) {
 411             checkRange();
 412         }
 413     }
 414 
 415     /**
 416      * Translates the sign-magnitude representation of a BigInteger into a
 417      * BigInteger.  The sign is represented as an integer signum value: -1 for
 418      * negative, 0 for zero, or 1 for positive.  The magnitude is a byte array
 419      * in <i>big-endian</i> byte-order: the most significant byte is the
 420      * zeroth element.  A zero-length magnitude array is permissible, and will
 421      * result in a BigInteger value of 0, whether signum is -1, 0 or 1.  The
 422      * {@code magnitude} array is assumed to be unchanged for the duration of
 423      * the constructor call.
 424      *
 425      * @param  signum signum of the number (-1 for negative, 0 for zero, 1
 426      *         for positive).
 427      * @param  magnitude big-endian binary representation of the magnitude of
 428      *         the number.
 429      * @throws NumberFormatException {@code signum} is not one of the three
 430      *         legal values (-1, 0, and 1), or {@code signum} is 0 and
 431      *         {@code magnitude} contains one or more non-zero bytes.
 432      */
 433     public BigInteger(int signum, byte[] magnitude) {
 434          this(signum, magnitude, 0, magnitude.length);
 435     }
 436 
 437     /**
 438      * A constructor for internal use that translates the sign-magnitude
 439      * representation of a BigInteger into a BigInteger. It checks the
 440      * arguments and copies the magnitude so this constructor would be
 441      * safe for external use.  The {@code magnitude} array is assumed to be
 442      * unchanged for the duration of the constructor call.
 443      */
 444     private BigInteger(int signum, int[] magnitude) {
 445         this.mag = stripLeadingZeroInts(magnitude);
 446 
 447         if (signum < -1 || signum > 1)
 448             throw(new NumberFormatException("Invalid signum value"));
 449 
 450         if (this.mag.length == 0) {
 451             this.signum = 0;
 452         } else {
 453             if (signum == 0)
 454                 throw(new NumberFormatException("signum-magnitude mismatch"));
 455             this.signum = signum;
 456         }
 457         if (mag.length >= MAX_MAG_LENGTH) {
 458             checkRange();
 459         }
 460     }
 461 
 462     /**
 463      * Translates the String representation of a BigInteger in the
 464      * specified radix into a BigInteger.  The String representation
 465      * consists of an optional minus or plus sign followed by a
 466      * sequence of one or more digits in the specified radix.  The
 467      * character-to-digit mapping is provided by {@code
 468      * Character.digit}.  The String may not contain any extraneous
 469      * characters (whitespace, for example).
 470      *
 471      * @param val String representation of BigInteger.
 472      * @param radix radix to be used in interpreting {@code val}.
 473      * @throws NumberFormatException {@code val} is not a valid representation
 474      *         of a BigInteger in the specified radix, or {@code radix} is
 475      *         outside the range from {@link Character#MIN_RADIX} to
 476      *         {@link Character#MAX_RADIX}, inclusive.
 477      * @see    Character#digit
 478      */
 479     public BigInteger(String val, int radix) {
 480         int cursor = 0, numDigits;
 481         final int len = val.length();
 482 
 483         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 484             throw new NumberFormatException("Radix out of range");
 485         if (len == 0)
 486             throw new NumberFormatException("Zero length BigInteger");
 487 
 488         // Check for at most one leading sign
 489         int sign = 1;
 490         int index1 = val.lastIndexOf('-');
 491         int index2 = val.lastIndexOf('+');
 492         if (index1 >= 0) {
 493             if (index1 != 0 || index2 >= 0) {
 494                 throw new NumberFormatException("Illegal embedded sign character");
 495             }
 496             sign = -1;
 497             cursor = 1;
 498         } else if (index2 >= 0) {
 499             if (index2 != 0) {
 500                 throw new NumberFormatException("Illegal embedded sign character");
 501             }
 502             cursor = 1;
 503         }
 504         if (cursor == len)
 505             throw new NumberFormatException("Zero length BigInteger");
 506 
 507         // Skip leading zeros and compute number of digits in magnitude
 508         while (cursor < len &&
 509                Character.digit(val.charAt(cursor), radix) == 0) {
 510             cursor++;
 511         }
 512 
 513         if (cursor == len) {
 514             signum = 0;
 515             mag = ZERO.mag;
 516             return;
 517         }
 518 
 519         numDigits = len - cursor;
 520         signum = sign;
 521 
 522         // Pre-allocate array of expected size. May be too large but can
 523         // never be too small. Typically exact.
 524         long numBits = ((numDigits * bitsPerDigit[radix]) >>> 10) + 1;
 525         if (numBits + 31 >= (1L << 32)) {
 526             reportOverflow();
 527         }
 528         int numWords = (int) (numBits + 31) >>> 5;
 529         int[] magnitude = new int[numWords];
 530 
 531         // Process first (potentially short) digit group
 532         int firstGroupLen = numDigits % digitsPerInt[radix];
 533         if (firstGroupLen == 0)
 534             firstGroupLen = digitsPerInt[radix];
 535         String group = val.substring(cursor, cursor += firstGroupLen);
 536         magnitude[numWords - 1] = Integer.parseInt(group, radix);
 537         if (magnitude[numWords - 1] < 0)
 538             throw new NumberFormatException("Illegal digit");
 539 
 540         // Process remaining digit groups
 541         int superRadix = intRadix[radix];
 542         int groupVal = 0;
 543         while (cursor < len) {
 544             group = val.substring(cursor, cursor += digitsPerInt[radix]);
 545             groupVal = Integer.parseInt(group, radix);
 546             if (groupVal < 0)
 547                 throw new NumberFormatException("Illegal digit");
 548             destructiveMulAdd(magnitude, superRadix, groupVal);
 549         }
 550         // Required for cases where the array was overallocated.
 551         mag = trustedStripLeadingZeroInts(magnitude);
 552         if (mag.length >= MAX_MAG_LENGTH) {
 553             checkRange();
 554         }
 555     }
 556 
 557     /*
 558      * Constructs a new BigInteger using a char array with radix=10.
 559      * Sign is precalculated outside and not allowed in the val. The {@code val}
 560      * array is assumed to be unchanged for the duration of the constructor
 561      * call.
 562      */
 563     BigInteger(char[] val, int sign, int len) {
 564         int cursor = 0, numDigits;
 565 
 566         // Skip leading zeros and compute number of digits in magnitude
 567         while (cursor < len && Character.digit(val[cursor], 10) == 0) {
 568             cursor++;
 569         }
 570         if (cursor == len) {
 571             signum = 0;
 572             mag = ZERO.mag;
 573             return;
 574         }
 575 
 576         numDigits = len - cursor;
 577         signum = sign;
 578         // Pre-allocate array of expected size
 579         int numWords;
 580         if (len < 10) {
 581             numWords = 1;
 582         } else {
 583             long numBits = ((numDigits * bitsPerDigit[10]) >>> 10) + 1;
 584             if (numBits + 31 >= (1L << 32)) {
 585                 reportOverflow();
 586             }
 587             numWords = (int) (numBits + 31) >>> 5;
 588         }
 589         int[] magnitude = new int[numWords];
 590 
 591         // Process first (potentially short) digit group
 592         int firstGroupLen = numDigits % digitsPerInt[10];
 593         if (firstGroupLen == 0)
 594             firstGroupLen = digitsPerInt[10];
 595         magnitude[numWords - 1] = parseInt(val, cursor,  cursor += firstGroupLen);
 596 
 597         // Process remaining digit groups
 598         while (cursor < len) {
 599             int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
 600             destructiveMulAdd(magnitude, intRadix[10], groupVal);
 601         }
 602         mag = trustedStripLeadingZeroInts(magnitude);
 603         if (mag.length >= MAX_MAG_LENGTH) {
 604             checkRange();
 605         }
 606     }
 607 
 608     // Create an integer with the digits between the two indexes
 609     // Assumes start < end. The result may be negative, but it
 610     // is to be treated as an unsigned value.
 611     private int parseInt(char[] source, int start, int end) {
 612         int result = Character.digit(source[start++], 10);
 613         if (result == -1)
 614             throw new NumberFormatException(new String(source));
 615 
 616         for (int index = start; index < end; index++) {
 617             int nextVal = Character.digit(source[index], 10);
 618             if (nextVal == -1)
 619                 throw new NumberFormatException(new String(source));
 620             result = 10*result + nextVal;
 621         }
 622 
 623         return result;
 624     }
 625 
 626     // bitsPerDigit in the given radix times 1024
 627     // Rounded up to avoid underallocation.
 628     private static long bitsPerDigit[] = { 0, 0,
 629         1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
 630         3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
 631         4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
 632                                            5253, 5295};
 633 
 634     // Multiply x array times word y in place, and add word z
 635     private static void destructiveMulAdd(int[] x, int y, int z) {
 636         // Perform the multiplication word by word
 637         long ylong = y & LONG_MASK;
 638         long zlong = z & LONG_MASK;
 639         int len = x.length;
 640 
 641         long product = 0;
 642         long carry = 0;
 643         for (int i = len-1; i >= 0; i--) {
 644             product = ylong * (x[i] & LONG_MASK) + carry;
 645             x[i] = (int)product;
 646             carry = product >>> 32;
 647         }
 648 
 649         // Perform the addition
 650         long sum = (x[len-1] & LONG_MASK) + zlong;
 651         x[len-1] = (int)sum;
 652         carry = sum >>> 32;
 653         for (int i = len-2; i >= 0; i--) {
 654             sum = (x[i] & LONG_MASK) + carry;
 655             x[i] = (int)sum;
 656             carry = sum >>> 32;
 657         }
 658     }
 659 
 660     /**
 661      * Translates the decimal String representation of a BigInteger into a
 662      * BigInteger.  The String representation consists of an optional minus
 663      * sign followed by a sequence of one or more decimal digits.  The
 664      * character-to-digit mapping is provided by {@code Character.digit}.
 665      * The String may not contain any extraneous characters (whitespace, for
 666      * example).
 667      *
 668      * @param val decimal String representation of BigInteger.
 669      * @throws NumberFormatException {@code val} is not a valid representation
 670      *         of a BigInteger.
 671      * @see    Character#digit
 672      */
 673     public BigInteger(String val) {
 674         this(val, 10);
 675     }
 676 
 677     /**
 678      * Constructs a randomly generated BigInteger, uniformly distributed over
 679      * the range 0 to (2<sup>{@code numBits}</sup> - 1), inclusive.
 680      * The uniformity of the distribution assumes that a fair source of random
 681      * bits is provided in {@code rnd}.  Note that this constructor always
 682      * constructs a non-negative BigInteger.
 683      *
 684      * @param  numBits maximum bitLength of the new BigInteger.
 685      * @param  rnd source of randomness to be used in computing the new
 686      *         BigInteger.
 687      * @throws IllegalArgumentException {@code numBits} is negative.
 688      * @see #bitLength()
 689      */
 690     public BigInteger(int numBits, Random rnd) {
 691         this(1, randomBits(numBits, rnd));
 692     }
 693 
 694     private static byte[] randomBits(int numBits, Random rnd) {
 695         if (numBits < 0)
 696             throw new IllegalArgumentException("numBits must be non-negative");
 697         int numBytes = (int)(((long)numBits+7)/8); // avoid overflow
 698         byte[] randomBits = new byte[numBytes];
 699 
 700         // Generate random bytes and mask out any excess bits
 701         if (numBytes > 0) {
 702             rnd.nextBytes(randomBits);
 703             int excessBits = 8*numBytes - numBits;
 704             randomBits[0] &= (1 << (8-excessBits)) - 1;
 705         }
 706         return randomBits;
 707     }
 708 
 709     /**
 710      * Constructs a randomly generated positive BigInteger that is probably
 711      * prime, with the specified bitLength.
 712      *
 713      * <p>It is recommended that the {@link #probablePrime probablePrime}
 714      * method be used in preference to this constructor unless there
 715      * is a compelling need to specify a certainty.
 716      *
 717      * @param  bitLength bitLength of the returned BigInteger.
 718      * @param  certainty a measure of the uncertainty that the caller is
 719      *         willing to tolerate.  The probability that the new BigInteger
 720      *         represents a prime number will exceed
 721      *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
 722      *         this constructor is proportional to the value of this parameter.
 723      * @param  rnd source of random bits used to select candidates to be
 724      *         tested for primality.
 725      * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
 726      * @see    #bitLength()
 727      */
 728     public BigInteger(int bitLength, int certainty, Random rnd) {
 729         BigInteger prime;
 730 
 731         if (bitLength < 2)
 732             throw new ArithmeticException("bitLength < 2");
 733         prime = (bitLength < SMALL_PRIME_THRESHOLD
 734                                 ? smallPrime(bitLength, certainty, rnd)
 735                                 : largePrime(bitLength, certainty, rnd));
 736         signum = 1;
 737         mag = prime.mag;
 738     }
 739 
 740     // Minimum size in bits that the requested prime number has
 741     // before we use the large prime number generating algorithms.
 742     // The cutoff of 95 was chosen empirically for best performance.
 743     private static final int SMALL_PRIME_THRESHOLD = 95;
 744 
 745     // Certainty required to meet the spec of probablePrime
 746     private static final int DEFAULT_PRIME_CERTAINTY = 100;
 747 
 748     /**
 749      * Returns a positive BigInteger that is probably prime, with the
 750      * specified bitLength. The probability that a BigInteger returned
 751      * by this method is composite does not exceed 2<sup>-100</sup>.
 752      *
 753      * @param  bitLength bitLength of the returned BigInteger.
 754      * @param  rnd source of random bits used to select candidates to be
 755      *         tested for primality.
 756      * @return a BigInteger of {@code bitLength} bits that is probably prime
 757      * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
 758      * @see    #bitLength()
 759      * @since 1.4
 760      */
 761     public static BigInteger probablePrime(int bitLength, Random rnd) {
 762         if (bitLength < 2)
 763             throw new ArithmeticException("bitLength < 2");
 764 
 765         return (bitLength < SMALL_PRIME_THRESHOLD ?
 766                 smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
 767                 largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
 768     }
 769 
 770     /**
 771      * Find a random number of the specified bitLength that is probably prime.
 772      * This method is used for smaller primes, its performance degrades on
 773      * larger bitlengths.
 774      *
 775      * This method assumes bitLength > 1.
 776      */
 777     private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
 778         int magLen = (bitLength + 31) >>> 5;
 779         int temp[] = new int[magLen];
 780         int highBit = 1 << ((bitLength+31) & 0x1f);  // High bit of high int
 781         int highMask = (highBit << 1) - 1;  // Bits to keep in high int
 782 
 783         while (true) {
 784             // Construct a candidate
 785             for (int i=0; i < magLen; i++)
 786                 temp[i] = rnd.nextInt();
 787             temp[0] = (temp[0] & highMask) | highBit;  // Ensure exact length
 788             if (bitLength > 2)
 789                 temp[magLen-1] |= 1;  // Make odd if bitlen > 2
 790 
 791             BigInteger p = new BigInteger(temp, 1);
 792 
 793             // Do cheap "pre-test" if applicable
 794             if (bitLength > 6) {
 795                 long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
 796                 if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
 797                     (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
 798                     (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
 799                     continue; // Candidate is composite; try another
 800             }
 801 
 802             // All candidates of bitLength 2 and 3 are prime by this point
 803             if (bitLength < 4)
 804                 return p;
 805 
 806             // Do expensive test if we survive pre-test (or it's inapplicable)
 807             if (p.primeToCertainty(certainty, rnd))
 808                 return p;
 809         }
 810     }
 811 
 812     private static final BigInteger SMALL_PRIME_PRODUCT
 813                        = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);
 814 
 815     /**
 816      * Find a random number of the specified bitLength that is probably prime.
 817      * This method is more appropriate for larger bitlengths since it uses
 818      * a sieve to eliminate most composites before using a more expensive
 819      * test.
 820      */
 821     private static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
 822         BigInteger p;
 823         p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
 824         p.mag[p.mag.length-1] &= 0xfffffffe;
 825 
 826         // Use a sieve length likely to contain the next prime number
 827         int searchLen = getPrimeSearchLen(bitLength);
 828         BitSieve searchSieve = new BitSieve(p, searchLen);
 829         BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);
 830 
 831         while ((candidate == null) || (candidate.bitLength() != bitLength)) {
 832             p = p.add(BigInteger.valueOf(2*searchLen));
 833             if (p.bitLength() != bitLength)
 834                 p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
 835             p.mag[p.mag.length-1] &= 0xfffffffe;
 836             searchSieve = new BitSieve(p, searchLen);
 837             candidate = searchSieve.retrieve(p, certainty, rnd);
 838         }
 839         return candidate;
 840     }
 841 
 842    /**
 843     * Returns the first integer greater than this {@code BigInteger} that
 844     * is probably prime.  The probability that the number returned by this
 845     * method is composite does not exceed 2<sup>-100</sup>. This method will
 846     * never skip over a prime when searching: if it returns {@code p}, there
 847     * is no prime {@code q} such that {@code this < q < p}.
 848     *
 849     * @return the first integer greater than this {@code BigInteger} that
 850     *         is probably prime.
 851     * @throws ArithmeticException {@code this < 0} or {@code this} is too large.
 852     * @since 1.5
 853     */
 854     public BigInteger nextProbablePrime() {
 855         if (this.signum < 0)
 856             throw new ArithmeticException("start < 0: " + this);
 857 
 858         // Handle trivial cases
 859         if ((this.signum == 0) || this.equals(ONE))
 860             return TWO;
 861 
 862         BigInteger result = this.add(ONE);
 863 
 864         // Fastpath for small numbers
 865         if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
 866 
 867             // Ensure an odd number
 868             if (!result.testBit(0))
 869                 result = result.add(ONE);
 870 
 871             while (true) {
 872                 // Do cheap "pre-test" if applicable
 873                 if (result.bitLength() > 6) {
 874                     long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
 875                     if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
 876                         (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
 877                         (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
 878                         result = result.add(TWO);
 879                         continue; // Candidate is composite; try another
 880                     }
 881                 }
 882 
 883                 // All candidates of bitLength 2 and 3 are prime by this point
 884                 if (result.bitLength() < 4)
 885                     return result;
 886 
 887                 // The expensive test
 888                 if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null))
 889                     return result;
 890 
 891                 result = result.add(TWO);
 892             }
 893         }
 894 
 895         // Start at previous even number
 896         if (result.testBit(0))
 897             result = result.subtract(ONE);
 898 
 899         // Looking for the next large prime
 900         int searchLen = getPrimeSearchLen(result.bitLength());
 901 
 902         while (true) {
 903            BitSieve searchSieve = new BitSieve(result, searchLen);
 904            BigInteger candidate = searchSieve.retrieve(result,
 905                                                  DEFAULT_PRIME_CERTAINTY, null);
 906            if (candidate != null)
 907                return candidate;
 908            result = result.add(BigInteger.valueOf(2 * searchLen));
 909         }
 910     }
 911 
 912     private static int getPrimeSearchLen(int bitLength) {
 913         if (bitLength > PRIME_SEARCH_BIT_LENGTH_LIMIT + 1) {
 914             throw new ArithmeticException("Prime search implementation restriction on bitLength");
 915         }
 916         return bitLength / 20 * 64;
 917     }
 918 
 919     /**
 920      * Returns {@code true} if this BigInteger is probably prime,
 921      * {@code false} if it's definitely composite.
 922      *
 923      * This method assumes bitLength > 2.
 924      *
 925      * @param  certainty a measure of the uncertainty that the caller is
 926      *         willing to tolerate: if the call returns {@code true}
 927      *         the probability that this BigInteger is prime exceeds
 928      *         {@code (1 - 1/2<sup>certainty</sup>)}.  The execution time of
 929      *         this method is proportional to the value of this parameter.
 930      * @return {@code true} if this BigInteger is probably prime,
 931      *         {@code false} if it's definitely composite.
 932      */
 933     boolean primeToCertainty(int certainty, Random random) {
 934         int rounds = 0;
 935         int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2;
 936 
 937         // The relationship between the certainty and the number of rounds
 938         // we perform is given in the draft standard ANSI X9.80, "PRIME
 939         // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
 940         int sizeInBits = this.bitLength();
 941         if (sizeInBits < 100) {
 942             rounds = 50;
 943             rounds = n < rounds ? n : rounds;
 944             return passesMillerRabin(rounds, random);
 945         }
 946 
 947         if (sizeInBits < 256) {
 948             rounds = 27;
 949         } else if (sizeInBits < 512) {
 950             rounds = 15;
 951         } else if (sizeInBits < 768) {
 952             rounds = 8;
 953         } else if (sizeInBits < 1024) {
 954             rounds = 4;
 955         } else {
 956             rounds = 2;
 957         }
 958         rounds = n < rounds ? n : rounds;
 959 
 960         return passesMillerRabin(rounds, random) && passesLucasLehmer();
 961     }
 962 
 963     /**
 964      * Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
 965      *
 966      * The following assumptions are made:
 967      * This BigInteger is a positive, odd number.
 968      */
 969     private boolean passesLucasLehmer() {
 970         BigInteger thisPlusOne = this.add(ONE);
 971 
 972         // Step 1
 973         int d = 5;
 974         while (jacobiSymbol(d, this) != -1) {
 975             // 5, -7, 9, -11, ...
 976             d = (d < 0) ? Math.abs(d)+2 : -(d+2);
 977         }
 978 
 979         // Step 2
 980         BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
 981 
 982         // Step 3
 983         return u.mod(this).equals(ZERO);
 984     }
 985 
 986     /**
 987      * Computes Jacobi(p,n).
 988      * Assumes n positive, odd, n>=3.
 989      */
 990     private static int jacobiSymbol(int p, BigInteger n) {
 991         if (p == 0)
 992             return 0;
 993 
 994         // Algorithm and comments adapted from Colin Plumb's C library.
 995         int j = 1;
 996         int u = n.mag[n.mag.length-1];
 997 
 998         // Make p positive
 999         if (p < 0) {
1000             p = -p;
1001             int n8 = u & 7;
1002             if ((n8 == 3) || (n8 == 7))
1003                 j = -j; // 3 (011) or 7 (111) mod 8
1004         }
1005 
1006         // Get rid of factors of 2 in p
1007         while ((p & 3) == 0)
1008             p >>= 2;
1009         if ((p & 1) == 0) {
1010             p >>= 1;
1011             if (((u ^ (u>>1)) & 2) != 0)
1012                 j = -j; // 3 (011) or 5 (101) mod 8
1013         }
1014         if (p == 1)
1015             return j;
1016         // Then, apply quadratic reciprocity
1017         if ((p & u & 2) != 0)   // p = u = 3 (mod 4)?
1018             j = -j;
1019         // And reduce u mod p
1020         u = n.mod(BigInteger.valueOf(p)).intValue();
1021 
1022         // Now compute Jacobi(u,p), u < p
1023         while (u != 0) {
1024             while ((u & 3) == 0)
1025                 u >>= 2;
1026             if ((u & 1) == 0) {
1027                 u >>= 1;
1028                 if (((p ^ (p>>1)) & 2) != 0)
1029                     j = -j;     // 3 (011) or 5 (101) mod 8
1030             }
1031             if (u == 1)
1032                 return j;
1033             // Now both u and p are odd, so use quadratic reciprocity
1034             assert (u < p);
1035             int t = u; u = p; p = t;
1036             if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
1037                 j = -j;
1038             // Now u >= p, so it can be reduced
1039             u %= p;
1040         }
1041         return 0;
1042     }
1043 
1044     private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
1045         BigInteger d = BigInteger.valueOf(z);
1046         BigInteger u = ONE; BigInteger u2;
1047         BigInteger v = ONE; BigInteger v2;
1048 
1049         for (int i=k.bitLength()-2; i >= 0; i--) {
1050             u2 = u.multiply(v).mod(n);
1051 
1052             v2 = v.square().add(d.multiply(u.square())).mod(n);
1053             if (v2.testBit(0))
1054                 v2 = v2.subtract(n);
1055 
1056             v2 = v2.shiftRight(1);
1057 
1058             u = u2; v = v2;
1059             if (k.testBit(i)) {
1060                 u2 = u.add(v).mod(n);
1061                 if (u2.testBit(0))
1062                     u2 = u2.subtract(n);
1063 
1064                 u2 = u2.shiftRight(1);
1065                 v2 = v.add(d.multiply(u)).mod(n);
1066                 if (v2.testBit(0))
1067                     v2 = v2.subtract(n);
1068                 v2 = v2.shiftRight(1);
1069 
1070                 u = u2; v = v2;
1071             }
1072         }
1073         return u;
1074     }
1075 
1076     /**
1077      * Returns true iff this BigInteger passes the specified number of
1078      * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
1079      * 186-2).
1080      *
1081      * The following assumptions are made:
1082      * This BigInteger is a positive, odd number greater than 2.
1083      * iterations<=50.
1084      */
1085     private boolean passesMillerRabin(int iterations, Random rnd) {
1086         // Find a and m such that m is odd and this == 1 + 2**a * m
1087         BigInteger thisMinusOne = this.subtract(ONE);
1088         BigInteger m = thisMinusOne;
1089         int a = m.getLowestSetBit();
1090         m = m.shiftRight(a);
1091 
1092         // Do the tests
1093         if (rnd == null) {
1094             rnd = ThreadLocalRandom.current();
1095         }
1096         for (int i=0; i < iterations; i++) {
1097             // Generate a uniform random on (1, this)
1098             BigInteger b;
1099             do {
1100                 b = new BigInteger(this.bitLength(), rnd);
1101             } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
1102 
1103             int j = 0;
1104             BigInteger z = b.modPow(m, this);
1105             while (!((j == 0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
1106                 if (j > 0 && z.equals(ONE) || ++j == a)
1107                     return false;
1108                 z = z.modPow(TWO, this);
1109             }
1110         }
1111         return true;
1112     }
1113 
1114     /**
1115      * This internal constructor differs from its public cousin
1116      * with the arguments reversed in two ways: it assumes that its
1117      * arguments are correct, and it doesn't copy the magnitude array.
1118      */
1119     BigInteger(int[] magnitude, int signum) {
1120         this.signum = (magnitude.length == 0 ? 0 : signum);
1121         this.mag = magnitude;
1122         if (mag.length >= MAX_MAG_LENGTH) {
1123             checkRange();
1124         }
1125     }
1126 
1127     /**
1128      * This private constructor is for internal use and assumes that its
1129      * arguments are correct.  The {@code magnitude} array is assumed to be
1130      * unchanged for the duration of the constructor call.
1131      */
1132     private BigInteger(byte[] magnitude, int signum) {
1133         this.signum = (magnitude.length == 0 ? 0 : signum);
1134         this.mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length);
1135         if (mag.length >= MAX_MAG_LENGTH) {
1136             checkRange();
1137         }
1138     }
1139 
1140     /**
1141      * Throws an {@code ArithmeticException} if the {@code BigInteger} would be
1142      * out of the supported range.
1143      *
1144      * @throws ArithmeticException if {@code this} exceeds the supported range.
1145      */
1146     private void checkRange() {
1147         if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) {
1148             reportOverflow();
1149         }
1150     }
1151 
1152     private static void reportOverflow() {
1153         throw new ArithmeticException("BigInteger would overflow supported range");
1154     }
1155 
1156     //Static Factory Methods
1157 
1158     /**
1159      * Returns a BigInteger whose value is equal to that of the
1160      * specified {@code long}.  This "static factory method" is
1161      * provided in preference to a ({@code long}) constructor
1162      * because it allows for reuse of frequently used BigIntegers.
1163      *
1164      * @param  val value of the BigInteger to return.
1165      * @return a BigInteger with the specified value.
1166      */
1167     public static BigInteger valueOf(long val) {
1168         // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
1169         if (val == 0)
1170             return ZERO;
1171         if (val > 0 && val <= MAX_CONSTANT)
1172             return posConst[(int) val];
1173         else if (val < 0 && val >= -MAX_CONSTANT)
1174             return negConst[(int) -val];
1175 
1176         return new BigInteger(val);
1177     }
1178 
1179     /**
1180      * Constructs a BigInteger with the specified value, which may not be zero.
1181      */
1182     private BigInteger(long val) {
1183         if (val < 0) {
1184             val = -val;
1185             signum = -1;
1186         } else {
1187             signum = 1;
1188         }
1189 
1190         int highWord = (int)(val >>> 32);
1191         if (highWord == 0) {
1192             mag = new int[1];
1193             mag[0] = (int)val;
1194         } else {
1195             mag = new int[2];
1196             mag[0] = highWord;
1197             mag[1] = (int)val;
1198         }
1199     }
1200 
1201     /**
1202      * Returns a BigInteger with the given two's complement representation.
1203      * Assumes that the input array will not be modified (the returned
1204      * BigInteger will reference the input array if feasible).
1205      */
1206     private static BigInteger valueOf(int val[]) {
1207         return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val));
1208     }
1209 
1210     // Constants
1211 
1212     /**
1213      * Initialize static constant array when class is loaded.
1214      */
1215     private static final int MAX_CONSTANT = 16;
1216     private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1];
1217     private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];
1218 
1219     /**
1220      * The cache of powers of each radix.  This allows us to not have to
1221      * recalculate powers of radix^(2^n) more than once.  This speeds
1222      * Schoenhage recursive base conversion significantly.
1223      */
1224     private static volatile BigInteger[][] powerCache;
1225 
1226     /** The cache of logarithms of radices for base conversion. */
1227     private static final double[] logCache;
1228 
1229     /** The natural log of 2.  This is used in computing cache indices. */
1230     private static final double LOG_TWO = Math.log(2.0);
1231 
1232     static {
1233         for (int i = 1; i <= MAX_CONSTANT; i++) {
1234             int[] magnitude = new int[1];
1235             magnitude[0] = i;
1236             posConst[i] = new BigInteger(magnitude,  1);
1237             negConst[i] = new BigInteger(magnitude, -1);
1238         }
1239 
1240         /*
1241          * Initialize the cache of radix^(2^x) values used for base conversion
1242          * with just the very first value.  Additional values will be created
1243          * on demand.
1244          */
1245         powerCache = new BigInteger[Character.MAX_RADIX+1][];
1246         logCache = new double[Character.MAX_RADIX+1];
1247 
1248         for (int i=Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
1249             powerCache[i] = new BigInteger[] { BigInteger.valueOf(i) };
1250             logCache[i] = Math.log(i);
1251         }
1252     }
1253 
1254     /**
1255      * The BigInteger constant zero.
1256      *
1257      * @since   1.2
1258      */
1259     public static final BigInteger ZERO = new BigInteger(new int[0], 0);
1260 
1261     /**
1262      * The BigInteger constant one.
1263      *
1264      * @since   1.2
1265      */
1266     public static final BigInteger ONE = valueOf(1);
1267 
1268     /**
1269      * The BigInteger constant two.  (Not exported.)
1270      */
1271     private static final BigInteger TWO = valueOf(2);
1272 
1273     /**
1274      * The BigInteger constant -1.  (Not exported.)
1275      */
1276     private static final BigInteger NEGATIVE_ONE = valueOf(-1);
1277 
1278     /**
1279      * The BigInteger constant ten.
1280      *
1281      * @since   1.5
1282      */
1283     public static final BigInteger TEN = valueOf(10);
1284 
1285     // Arithmetic Operations
1286 
1287     /**
1288      * Returns a BigInteger whose value is {@code (this + val)}.
1289      *
1290      * @param  val value to be added to this BigInteger.
1291      * @return {@code this + val}
1292      */
1293     public BigInteger add(BigInteger val) {
1294         if (val.signum == 0)
1295             return this;
1296         if (signum == 0)
1297             return val;
1298         if (val.signum == signum)
1299             return new BigInteger(add(mag, val.mag), signum);
1300 
1301         int cmp = compareMagnitude(val);
1302         if (cmp == 0)
1303             return ZERO;
1304         int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
1305                            : subtract(val.mag, mag));
1306         resultMag = trustedStripLeadingZeroInts(resultMag);
1307 
1308         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1309     }
1310 
1311     /**
1312      * Package private methods used by BigDecimal code to add a BigInteger
1313      * with a long. Assumes val is not equal to INFLATED.
1314      */
1315     BigInteger add(long val) {
1316         if (val == 0)
1317             return this;
1318         if (signum == 0)
1319             return valueOf(val);
1320         if (Long.signum(val) == signum)
1321             return new BigInteger(add(mag, Math.abs(val)), signum);
1322         int cmp = compareMagnitude(val);
1323         if (cmp == 0)
1324             return ZERO;
1325         int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag));
1326         resultMag = trustedStripLeadingZeroInts(resultMag);
1327         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1328     }
1329 
1330     /**
1331      * Adds the contents of the int array x and long value val. This
1332      * method allocates a new int array to hold the answer and returns
1333      * a reference to that array.  Assumes x.length &gt; 0 and val is
1334      * non-negative
1335      */
1336     private static int[] add(int[] x, long val) {
1337         int[] y;
1338         long sum = 0;
1339         int xIndex = x.length;
1340         int[] result;
1341         int highWord = (int)(val >>> 32);
1342         if (highWord == 0) {
1343             result = new int[xIndex];
1344             sum = (x[--xIndex] & LONG_MASK) + val;
1345             result[xIndex] = (int)sum;
1346         } else {
1347             if (xIndex == 1) {
1348                 result = new int[2];
1349                 sum = val  + (x[0] & LONG_MASK);
1350                 result[1] = (int)sum;
1351                 result[0] = (int)(sum >>> 32);
1352                 return result;
1353             } else {
1354                 result = new int[xIndex];
1355                 sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK);
1356                 result[xIndex] = (int)sum;
1357                 sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32);
1358                 result[xIndex] = (int)sum;
1359             }
1360         }
1361         // Copy remainder of longer number while carry propagation is required
1362         boolean carry = (sum >>> 32 != 0);
1363         while (xIndex > 0 && carry)
1364             carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
1365         // Copy remainder of longer number
1366         while (xIndex > 0)
1367             result[--xIndex] = x[xIndex];
1368         // Grow result if necessary
1369         if (carry) {
1370             int bigger[] = new int[result.length + 1];
1371             System.arraycopy(result, 0, bigger, 1, result.length);
1372             bigger[0] = 0x01;
1373             return bigger;
1374         }
1375         return result;
1376     }
1377 
1378     /**
1379      * Adds the contents of the int arrays x and y. This method allocates
1380      * a new int array to hold the answer and returns a reference to that
1381      * array.
1382      */
1383     private static int[] add(int[] x, int[] y) {
1384         // If x is shorter, swap the two arrays
1385         if (x.length < y.length) {
1386             int[] tmp = x;
1387             x = y;
1388             y = tmp;
1389         }
1390 
1391         int xIndex = x.length;
1392         int yIndex = y.length;
1393         int result[] = new int[xIndex];
1394         long sum = 0;
1395         if (yIndex == 1) {
1396             sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ;
1397             result[xIndex] = (int)sum;
1398         } else {
1399             // Add common parts of both numbers
1400             while (yIndex > 0) {
1401                 sum = (x[--xIndex] & LONG_MASK) +
1402                       (y[--yIndex] & LONG_MASK) + (sum >>> 32);
1403                 result[xIndex] = (int)sum;
1404             }
1405         }
1406         // Copy remainder of longer number while carry propagation is required
1407         boolean carry = (sum >>> 32 != 0);
1408         while (xIndex > 0 && carry)
1409             carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
1410 
1411         // Copy remainder of longer number
1412         while (xIndex > 0)
1413             result[--xIndex] = x[xIndex];
1414 
1415         // Grow result if necessary
1416         if (carry) {
1417             int bigger[] = new int[result.length + 1];
1418             System.arraycopy(result, 0, bigger, 1, result.length);
1419             bigger[0] = 0x01;
1420             return bigger;
1421         }
1422         return result;
1423     }
1424 
1425     private static int[] subtract(long val, int[] little) {
1426         int highWord = (int)(val >>> 32);
1427         if (highWord == 0) {
1428             int result[] = new int[1];
1429             result[0] = (int)(val - (little[0] & LONG_MASK));
1430             return result;
1431         } else {
1432             int result[] = new int[2];
1433             if (little.length == 1) {
1434                 long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK);
1435                 result[1] = (int)difference;
1436                 // Subtract remainder of longer number while borrow propagates
1437                 boolean borrow = (difference >> 32 != 0);
1438                 if (borrow) {
1439                     result[0] = highWord - 1;
1440                 } else {        // Copy remainder of longer number
1441                     result[0] = highWord;
1442                 }
1443                 return result;
1444             } else { // little.length == 2
1445                 long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK);
1446                 result[1] = (int)difference;
1447                 difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32);
1448                 result[0] = (int)difference;
1449                 return result;
1450             }
1451         }
1452     }
1453 
1454     /**
1455      * Subtracts the contents of the second argument (val) from the
1456      * first (big).  The first int array (big) must represent a larger number
1457      * than the second.  This method allocates the space necessary to hold the
1458      * answer.
1459      * assumes val &gt;= 0
1460      */
1461     private static int[] subtract(int[] big, long val) {
1462         int highWord = (int)(val >>> 32);
1463         int bigIndex = big.length;
1464         int result[] = new int[bigIndex];
1465         long difference = 0;
1466 
1467         if (highWord == 0) {
1468             difference = (big[--bigIndex] & LONG_MASK) - val;
1469             result[bigIndex] = (int)difference;
1470         } else {
1471             difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK);
1472             result[bigIndex] = (int)difference;
1473             difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32);
1474             result[bigIndex] = (int)difference;
1475         }
1476 
1477         // Subtract remainder of longer number while borrow propagates
1478         boolean borrow = (difference >> 32 != 0);
1479         while (bigIndex > 0 && borrow)
1480             borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
1481 
1482         // Copy remainder of longer number
1483         while (bigIndex > 0)
1484             result[--bigIndex] = big[bigIndex];
1485 
1486         return result;
1487     }
1488 
1489     /**
1490      * Returns a BigInteger whose value is {@code (this - val)}.
1491      *
1492      * @param  val value to be subtracted from this BigInteger.
1493      * @return {@code this - val}
1494      */
1495     public BigInteger subtract(BigInteger val) {
1496         if (val.signum == 0)
1497             return this;
1498         if (signum == 0)
1499             return val.negate();
1500         if (val.signum != signum)
1501             return new BigInteger(add(mag, val.mag), signum);
1502 
1503         int cmp = compareMagnitude(val);
1504         if (cmp == 0)
1505             return ZERO;
1506         int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
1507                            : subtract(val.mag, mag));
1508         resultMag = trustedStripLeadingZeroInts(resultMag);
1509         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1510     }
1511 
1512     /**
1513      * Subtracts the contents of the second int arrays (little) from the
1514      * first (big).  The first int array (big) must represent a larger number
1515      * than the second.  This method allocates the space necessary to hold the
1516      * answer.
1517      */
1518     private static int[] subtract(int[] big, int[] little) {
1519         int bigIndex = big.length;
1520         int result[] = new int[bigIndex];
1521         int littleIndex = little.length;
1522         long difference = 0;
1523 
1524         // Subtract common parts of both numbers
1525         while (littleIndex > 0) {
1526             difference = (big[--bigIndex] & LONG_MASK) -
1527                          (little[--littleIndex] & LONG_MASK) +
1528                          (difference >> 32);
1529             result[bigIndex] = (int)difference;
1530         }
1531 
1532         // Subtract remainder of longer number while borrow propagates
1533         boolean borrow = (difference >> 32 != 0);
1534         while (bigIndex > 0 && borrow)
1535             borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
1536 
1537         // Copy remainder of longer number
1538         while (bigIndex > 0)
1539             result[--bigIndex] = big[bigIndex];
1540 
1541         return result;
1542     }
1543 
1544     /**
1545      * Returns a BigInteger whose value is {@code (this * val)}.
1546      *
1547      * @implNote An implementation may offer better algorithmic
1548      * performance when {@code val == this}.
1549      *
1550      * @param  val value to be multiplied by this BigInteger.
1551      * @return {@code this * val}
1552      */
1553     public BigInteger multiply(BigInteger val) {
1554         if (val.signum == 0 || signum == 0)
1555             return ZERO;
1556 
1557         int xlen = mag.length;
1558 
1559         if (val == this && xlen > MULTIPLY_SQUARE_THRESHOLD) {
1560             return square();
1561         }
1562 
1563         int ylen = val.mag.length;
1564 
1565         if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD)) {
1566             int resultSign = signum == val.signum ? 1 : -1;
1567             if (val.mag.length == 1) {
1568                 return multiplyByInt(mag,val.mag[0], resultSign);
1569             }
1570             if (mag.length == 1) {
1571                 return multiplyByInt(val.mag,mag[0], resultSign);
1572             }
1573             int[] result = multiplyToLen(mag, xlen,
1574                                          val.mag, ylen, null);
1575             result = trustedStripLeadingZeroInts(result);
1576             return new BigInteger(result, resultSign);
1577         } else {
1578             if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) {
1579                 return multiplyKaratsuba(this, val);
1580             } else {
1581                 return multiplyToomCook3(this, val);
1582             }
1583         }
1584     }
1585 
1586     private static BigInteger multiplyByInt(int[] x, int y, int sign) {
1587         if (Integer.bitCount(y) == 1) {
1588             return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign);
1589         }
1590         int xlen = x.length;
1591         int[] rmag =  new int[xlen + 1];
1592         long carry = 0;
1593         long yl = y & LONG_MASK;
1594         int rstart = rmag.length - 1;
1595         for (int i = xlen - 1; i >= 0; i--) {
1596             long product = (x[i] & LONG_MASK) * yl + carry;
1597             rmag[rstart--] = (int)product;
1598             carry = product >>> 32;
1599         }
1600         if (carry == 0L) {
1601             rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
1602         } else {
1603             rmag[rstart] = (int)carry;
1604         }
1605         return new BigInteger(rmag, sign);
1606     }
1607 
1608     /**
1609      * Package private methods used by BigDecimal code to multiply a BigInteger
1610      * with a long. Assumes v is not equal to INFLATED.
1611      */
1612     BigInteger multiply(long v) {
1613         if (v == 0 || signum == 0)
1614           return ZERO;
1615         if (v == BigDecimal.INFLATED)
1616             return multiply(BigInteger.valueOf(v));
1617         int rsign = (v > 0 ? signum : -signum);
1618         if (v < 0)
1619             v = -v;
1620         long dh = v >>> 32;      // higher order bits
1621         long dl = v & LONG_MASK; // lower order bits
1622 
1623         int xlen = mag.length;
1624         int[] value = mag;
1625         int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]);
1626         long carry = 0;
1627         int rstart = rmag.length - 1;
1628         for (int i = xlen - 1; i >= 0; i--) {
1629             long product = (value[i] & LONG_MASK) * dl + carry;
1630             rmag[rstart--] = (int)product;
1631             carry = product >>> 32;
1632         }
1633         rmag[rstart] = (int)carry;
1634         if (dh != 0L) {
1635             carry = 0;
1636             rstart = rmag.length - 2;
1637             for (int i = xlen - 1; i >= 0; i--) {
1638                 long product = (value[i] & LONG_MASK) * dh +
1639                     (rmag[rstart] & LONG_MASK) + carry;
1640                 rmag[rstart--] = (int)product;
1641                 carry = product >>> 32;
1642             }
1643             rmag[0] = (int)carry;
1644         }
1645         if (carry == 0L)
1646             rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
1647         return new BigInteger(rmag, rsign);
1648     }
1649 
1650     /**
1651      * Multiplies int arrays x and y to the specified lengths and places
1652      * the result into z. There will be no leading zeros in the resultant array.
1653      */
1654     private static int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
1655         multiplyToLenCheck(x, xlen);
1656         multiplyToLenCheck(y, ylen);
1657         return implMultiplyToLen(x, xlen, y, ylen, z);
1658     }
1659 
1660     @HotSpotIntrinsicCandidate
1661     private static int[] implMultiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
1662         int xstart = xlen - 1;
1663         int ystart = ylen - 1;
1664 
1665         if (z == null || z.length < (xlen+ ylen))
1666             z = new int[xlen+ylen];
1667 
1668         long carry = 0;
1669         for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) {
1670             long product = (y[j] & LONG_MASK) *
1671                            (x[xstart] & LONG_MASK) + carry;
1672             z[k] = (int)product;
1673             carry = product >>> 32;
1674         }
1675         z[xstart] = (int)carry;
1676 
1677         for (int i = xstart-1; i >= 0; i--) {
1678             carry = 0;
1679             for (int j=ystart, k=ystart+1+i; j >= 0; j--, k--) {
1680                 long product = (y[j] & LONG_MASK) *
1681                                (x[i] & LONG_MASK) +
1682                                (z[k] & LONG_MASK) + carry;
1683                 z[k] = (int)product;
1684                 carry = product >>> 32;
1685             }
1686             z[i] = (int)carry;
1687         }
1688         return z;
1689     }
1690 
1691     private static void multiplyToLenCheck(int[] array, int length) {
1692         if (length <= 0) {
1693             return;  // not an error because multiplyToLen won't execute if len <= 0
1694         }
1695 
1696         Objects.requireNonNull(array);
1697 
1698         if (length > array.length) {
1699             throw new ArrayIndexOutOfBoundsException(length - 1);
1700         }
1701     }
1702 
1703     /**
1704      * Multiplies two BigIntegers using the Karatsuba multiplication
1705      * algorithm.  This is a recursive divide-and-conquer algorithm which is
1706      * more efficient for large numbers than what is commonly called the
1707      * "grade-school" algorithm used in multiplyToLen.  If the numbers to be
1708      * multiplied have length n, the "grade-school" algorithm has an
1709      * asymptotic complexity of O(n^2).  In contrast, the Karatsuba algorithm
1710      * has complexity of O(n^(log2(3))), or O(n^1.585).  It achieves this
1711      * increased performance by doing 3 multiplies instead of 4 when
1712      * evaluating the product.  As it has some overhead, should be used when
1713      * both numbers are larger than a certain threshold (found
1714      * experimentally).
1715      *
1716      * See:  http://en.wikipedia.org/wiki/Karatsuba_algorithm
1717      */
1718     private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) {
1719         int xlen = x.mag.length;
1720         int ylen = y.mag.length;
1721 
1722         // The number of ints in each half of the number.
1723         int half = (Math.max(xlen, ylen)+1) / 2;
1724 
1725         // xl and yl are the lower halves of x and y respectively,
1726         // xh and yh are the upper halves.
1727         BigInteger xl = x.getLower(half);
1728         BigInteger xh = x.getUpper(half);
1729         BigInteger yl = y.getLower(half);
1730         BigInteger yh = y.getUpper(half);
1731 
1732         BigInteger p1 = xh.multiply(yh);  // p1 = xh*yh
1733         BigInteger p2 = xl.multiply(yl);  // p2 = xl*yl
1734 
1735         // p3=(xh+xl)*(yh+yl)
1736         BigInteger p3 = xh.add(xl).multiply(yh.add(yl));
1737 
1738         // result = p1 * 2^(32*2*half) + (p3 - p1 - p2) * 2^(32*half) + p2
1739         BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2);
1740 
1741         if (x.signum != y.signum) {
1742             return result.negate();
1743         } else {
1744             return result;
1745         }
1746     }
1747 
1748     /**
1749      * Multiplies two BigIntegers using a 3-way Toom-Cook multiplication
1750      * algorithm.  This is a recursive divide-and-conquer algorithm which is
1751      * more efficient for large numbers than what is commonly called the
1752      * "grade-school" algorithm used in multiplyToLen.  If the numbers to be
1753      * multiplied have length n, the "grade-school" algorithm has an
1754      * asymptotic complexity of O(n^2).  In contrast, 3-way Toom-Cook has a
1755      * complexity of about O(n^1.465).  It achieves this increased asymptotic
1756      * performance by breaking each number into three parts and by doing 5
1757      * multiplies instead of 9 when evaluating the product.  Due to overhead
1758      * (additions, shifts, and one division) in the Toom-Cook algorithm, it
1759      * should only be used when both numbers are larger than a certain
1760      * threshold (found experimentally).  This threshold is generally larger
1761      * than that for Karatsuba multiplication, so this algorithm is generally
1762      * only used when numbers become significantly larger.
1763      *
1764      * The algorithm used is the "optimal" 3-way Toom-Cook algorithm outlined
1765      * by Marco Bodrato.
1766      *
1767      *  See: http://bodrato.it/toom-cook/
1768      *       http://bodrato.it/papers/#WAIFI2007
1769      *
1770      * "Towards Optimal Toom-Cook Multiplication for Univariate and
1771      * Multivariate Polynomials in Characteristic 2 and 0." by Marco BODRATO;
1772      * In C.Carlet and B.Sunar, Eds., "WAIFI'07 proceedings", p. 116-133,
1773      * LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007.
1774      *
1775      */
1776     private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b) {
1777         int alen = a.mag.length;
1778         int blen = b.mag.length;
1779 
1780         int largest = Math.max(alen, blen);
1781 
1782         // k is the size (in ints) of the lower-order slices.
1783         int k = (largest+2)/3;   // Equal to ceil(largest/3)
1784 
1785         // r is the size (in ints) of the highest-order slice.
1786         int r = largest - 2*k;
1787 
1788         // Obtain slices of the numbers. a2 and b2 are the most significant
1789         // bits of the numbers a and b, and a0 and b0 the least significant.
1790         BigInteger a0, a1, a2, b0, b1, b2;
1791         a2 = a.getToomSlice(k, r, 0, largest);
1792         a1 = a.getToomSlice(k, r, 1, largest);
1793         a0 = a.getToomSlice(k, r, 2, largest);
1794         b2 = b.getToomSlice(k, r, 0, largest);
1795         b1 = b.getToomSlice(k, r, 1, largest);
1796         b0 = b.getToomSlice(k, r, 2, largest);
1797 
1798         BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1;
1799 
1800         v0 = a0.multiply(b0);
1801         da1 = a2.add(a0);
1802         db1 = b2.add(b0);
1803         vm1 = da1.subtract(a1).multiply(db1.subtract(b1));
1804         da1 = da1.add(a1);
1805         db1 = db1.add(b1);
1806         v1 = da1.multiply(db1);
1807         v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply(
1808              db1.add(b2).shiftLeft(1).subtract(b0));
1809         vinf = a2.multiply(b2);
1810 
1811         // The algorithm requires two divisions by 2 and one by 3.
1812         // All divisions are known to be exact, that is, they do not produce
1813         // remainders, and all results are positive.  The divisions by 2 are
1814         // implemented as right shifts which are relatively efficient, leaving
1815         // only an exact division by 3, which is done by a specialized
1816         // linear-time algorithm.
1817         t2 = v2.subtract(vm1).exactDivideBy3();
1818         tm1 = v1.subtract(vm1).shiftRight(1);
1819         t1 = v1.subtract(v0);
1820         t2 = t2.subtract(t1).shiftRight(1);
1821         t1 = t1.subtract(tm1).subtract(vinf);
1822         t2 = t2.subtract(vinf.shiftLeft(1));
1823         tm1 = tm1.subtract(t2);
1824 
1825         // Number of bits to shift left.
1826         int ss = k*32;
1827 
1828         BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
1829 
1830         if (a.signum != b.signum) {
1831             return result.negate();
1832         } else {
1833             return result;
1834         }
1835     }
1836 
1837 
1838     /**
1839      * Returns a slice of a BigInteger for use in Toom-Cook multiplication.
1840      *
1841      * @param lowerSize The size of the lower-order bit slices.
1842      * @param upperSize The size of the higher-order bit slices.
1843      * @param slice The index of which slice is requested, which must be a
1844      * number from 0 to size-1. Slice 0 is the highest-order bits, and slice
1845      * size-1 are the lowest-order bits. Slice 0 may be of different size than
1846      * the other slices.
1847      * @param fullsize The size of the larger integer array, used to align
1848      * slices to the appropriate position when multiplying different-sized
1849      * numbers.
1850      */
1851     private BigInteger getToomSlice(int lowerSize, int upperSize, int slice,
1852                                     int fullsize) {
1853         int start, end, sliceSize, len, offset;
1854 
1855         len = mag.length;
1856         offset = fullsize - len;
1857 
1858         if (slice == 0) {
1859             start = 0 - offset;
1860             end = upperSize - 1 - offset;
1861         } else {
1862             start = upperSize + (slice-1)*lowerSize - offset;
1863             end = start + lowerSize - 1;
1864         }
1865 
1866         if (start < 0) {
1867             start = 0;
1868         }
1869         if (end < 0) {
1870            return ZERO;
1871         }
1872 
1873         sliceSize = (end-start) + 1;
1874 
1875         if (sliceSize <= 0) {
1876             return ZERO;
1877         }
1878 
1879         // While performing Toom-Cook, all slices are positive and
1880         // the sign is adjusted when the final number is composed.
1881         if (start == 0 && sliceSize >= len) {
1882             return this.abs();
1883         }
1884 
1885         int intSlice[] = new int[sliceSize];
1886         System.arraycopy(mag, start, intSlice, 0, sliceSize);
1887 
1888         return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1);
1889     }
1890 
1891     /**
1892      * Does an exact division (that is, the remainder is known to be zero)
1893      * of the specified number by 3.  This is used in Toom-Cook
1894      * multiplication.  This is an efficient algorithm that runs in linear
1895      * time.  If the argument is not exactly divisible by 3, results are
1896      * undefined.  Note that this is expected to be called with positive
1897      * arguments only.
1898      */
1899     private BigInteger exactDivideBy3() {
1900         int len = mag.length;
1901         int[] result = new int[len];
1902         long x, w, q, borrow;
1903         borrow = 0L;
1904         for (int i=len-1; i >= 0; i--) {
1905             x = (mag[i] & LONG_MASK);
1906             w = x - borrow;
1907             if (borrow > x) {      // Did we make the number go negative?
1908                 borrow = 1L;
1909             } else {
1910                 borrow = 0L;
1911             }
1912 
1913             // 0xAAAAAAAB is the modular inverse of 3 (mod 2^32).  Thus,
1914             // the effect of this is to divide by 3 (mod 2^32).
1915             // This is much faster than division on most architectures.
1916             q = (w * 0xAAAAAAABL) & LONG_MASK;
1917             result[i] = (int) q;
1918 
1919             // Now check the borrow. The second check can of course be
1920             // eliminated if the first fails.
1921             if (q >= 0x55555556L) {
1922                 borrow++;
1923                 if (q >= 0xAAAAAAABL)
1924                     borrow++;
1925             }
1926         }
1927         result = trustedStripLeadingZeroInts(result);
1928         return new BigInteger(result, signum);
1929     }
1930 
1931     /**
1932      * Returns a new BigInteger representing n lower ints of the number.
1933      * This is used by Karatsuba multiplication and Karatsuba squaring.
1934      */
1935     private BigInteger getLower(int n) {
1936         int len = mag.length;
1937 
1938         if (len <= n) {
1939             return abs();
1940         }
1941 
1942         int lowerInts[] = new int[n];
1943         System.arraycopy(mag, len-n, lowerInts, 0, n);
1944 
1945         return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1);
1946     }
1947 
1948     /**
1949      * Returns a new BigInteger representing mag.length-n upper
1950      * ints of the number.  This is used by Karatsuba multiplication and
1951      * Karatsuba squaring.
1952      */
1953     private BigInteger getUpper(int n) {
1954         int len = mag.length;
1955 
1956         if (len <= n) {
1957             return ZERO;
1958         }
1959 
1960         int upperLen = len - n;
1961         int upperInts[] = new int[upperLen];
1962         System.arraycopy(mag, 0, upperInts, 0, upperLen);
1963 
1964         return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1);
1965     }
1966 
1967     // Squaring
1968 
1969     /**
1970      * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}.
1971      *
1972      * @return {@code this<sup>2</sup>}
1973      */
1974     private BigInteger square() {
1975         if (signum == 0) {
1976             return ZERO;
1977         }
1978         int len = mag.length;
1979 
1980         if (len < KARATSUBA_SQUARE_THRESHOLD) {
1981             int[] z = squareToLen(mag, len, null);
1982             return new BigInteger(trustedStripLeadingZeroInts(z), 1);
1983         } else {
1984             if (len < TOOM_COOK_SQUARE_THRESHOLD) {
1985                 return squareKaratsuba();
1986             } else {
1987                 return squareToomCook3();
1988             }
1989         }
1990     }
1991 
1992     /**
1993      * Squares the contents of the int array x. The result is placed into the
1994      * int array z.  The contents of x are not changed.
1995      */
1996     private static final int[] squareToLen(int[] x, int len, int[] z) {
1997          int zlen = len << 1;
1998          if (z == null || z.length < zlen)
1999              z = new int[zlen];
2000 
2001          // Execute checks before calling intrinsified method.
2002          implSquareToLenChecks(x, len, z, zlen);
2003          return implSquareToLen(x, len, z, zlen);
2004      }
2005 
2006      /**
2007       * Parameters validation.
2008       */
2009      private static void implSquareToLenChecks(int[] x, int len, int[] z, int zlen) throws RuntimeException {
2010          if (len < 1) {
2011              throw new IllegalArgumentException("invalid input length: " + len);
2012          }
2013          if (len > x.length) {
2014              throw new IllegalArgumentException("input length out of bound: " +
2015                                         len + " > " + x.length);
2016          }
2017          if (len * 2 > z.length) {
2018              throw new IllegalArgumentException("input length out of bound: " +
2019                                         (len * 2) + " > " + z.length);
2020          }
2021          if (zlen < 1) {
2022              throw new IllegalArgumentException("invalid input length: " + zlen);
2023          }
2024          if (zlen > z.length) {
2025              throw new IllegalArgumentException("input length out of bound: " +
2026                                         len + " > " + z.length);
2027          }
2028      }
2029 
2030      /**
2031       * Java Runtime may use intrinsic for this method.
2032       */
2033      @HotSpotIntrinsicCandidate
2034      private static final int[] implSquareToLen(int[] x, int len, int[] z, int zlen) {
2035         /*
2036          * The algorithm used here is adapted from Colin Plumb's C library.
2037          * Technique: Consider the partial products in the multiplication
2038          * of "abcde" by itself:
2039          *
2040          *               a  b  c  d  e
2041          *            *  a  b  c  d  e
2042          *          ==================
2043          *              ae be ce de ee
2044          *           ad bd cd dd de
2045          *        ac bc cc cd ce
2046          *     ab bb bc bd be
2047          *  aa ab ac ad ae
2048          *
2049          * Note that everything above the main diagonal:
2050          *              ae be ce de = (abcd) * e
2051          *           ad bd cd       = (abc) * d
2052          *        ac bc             = (ab) * c
2053          *     ab                   = (a) * b
2054          *
2055          * is a copy of everything below the main diagonal:
2056          *                       de
2057          *                 cd ce
2058          *           bc bd be
2059          *     ab ac ad ae
2060          *
2061          * Thus, the sum is 2 * (off the diagonal) + diagonal.
2062          *
2063          * This is accumulated beginning with the diagonal (which
2064          * consist of the squares of the digits of the input), which is then
2065          * divided by two, the off-diagonal added, and multiplied by two
2066          * again.  The low bit is simply a copy of the low bit of the
2067          * input, so it doesn't need special care.
2068          */
2069 
2070         // Store the squares, right shifted one bit (i.e., divided by 2)
2071         int lastProductLowWord = 0;
2072         for (int j=0, i=0; j < len; j++) {
2073             long piece = (x[j] & LONG_MASK);
2074             long product = piece * piece;
2075             z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
2076             z[i++] = (int)(product >>> 1);
2077             lastProductLowWord = (int)product;
2078         }
2079 
2080         // Add in off-diagonal sums
2081         for (int i=len, offset=1; i > 0; i--, offset+=2) {
2082             int t = x[i-1];
2083             t = mulAdd(z, x, offset, i-1, t);
2084             addOne(z, offset-1, i, t);
2085         }
2086 
2087         // Shift back up and set low bit
2088         primitiveLeftShift(z, zlen, 1);
2089         z[zlen-1] |= x[len-1] & 1;
2090 
2091         return z;
2092     }
2093 
2094     /**
2095      * Squares a BigInteger using the Karatsuba squaring algorithm.  It should
2096      * be used when both numbers are larger than a certain threshold (found
2097      * experimentally).  It is a recursive divide-and-conquer algorithm that
2098      * has better asymptotic performance than the algorithm used in
2099      * squareToLen.
2100      */
2101     private BigInteger squareKaratsuba() {
2102         int half = (mag.length+1) / 2;
2103 
2104         BigInteger xl = getLower(half);
2105         BigInteger xh = getUpper(half);
2106 
2107         BigInteger xhs = xh.square();  // xhs = xh^2
2108         BigInteger xls = xl.square();  // xls = xl^2
2109 
2110         // xh^2 << 64  +  (((xl+xh)^2 - (xh^2 + xl^2)) << 32) + xl^2
2111         return xhs.shiftLeft(half*32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half*32).add(xls);
2112     }
2113 
2114     /**
2115      * Squares a BigInteger using the 3-way Toom-Cook squaring algorithm.  It
2116      * should be used when both numbers are larger than a certain threshold
2117      * (found experimentally).  It is a recursive divide-and-conquer algorithm
2118      * that has better asymptotic performance than the algorithm used in
2119      * squareToLen or squareKaratsuba.
2120      */
2121     private BigInteger squareToomCook3() {
2122         int len = mag.length;
2123 
2124         // k is the size (in ints) of the lower-order slices.
2125         int k = (len+2)/3;   // Equal to ceil(largest/3)
2126 
2127         // r is the size (in ints) of the highest-order slice.
2128         int r = len - 2*k;
2129 
2130         // Obtain slices of the numbers. a2 is the most significant
2131         // bits of the number, and a0 the least significant.
2132         BigInteger a0, a1, a2;
2133         a2 = getToomSlice(k, r, 0, len);
2134         a1 = getToomSlice(k, r, 1, len);
2135         a0 = getToomSlice(k, r, 2, len);
2136         BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1;
2137 
2138         v0 = a0.square();
2139         da1 = a2.add(a0);
2140         vm1 = da1.subtract(a1).square();
2141         da1 = da1.add(a1);
2142         v1 = da1.square();
2143         vinf = a2.square();
2144         v2 = da1.add(a2).shiftLeft(1).subtract(a0).square();
2145 
2146         // The algorithm requires two divisions by 2 and one by 3.
2147         // All divisions are known to be exact, that is, they do not produce
2148         // remainders, and all results are positive.  The divisions by 2 are
2149         // implemented as right shifts which are relatively efficient, leaving
2150         // only a division by 3.
2151         // The division by 3 is done by an optimized algorithm for this case.
2152         t2 = v2.subtract(vm1).exactDivideBy3();
2153         tm1 = v1.subtract(vm1).shiftRight(1);
2154         t1 = v1.subtract(v0);
2155         t2 = t2.subtract(t1).shiftRight(1);
2156         t1 = t1.subtract(tm1).subtract(vinf);
2157         t2 = t2.subtract(vinf.shiftLeft(1));
2158         tm1 = tm1.subtract(t2);
2159 
2160         // Number of bits to shift left.
2161         int ss = k*32;
2162 
2163         return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
2164     }
2165 
2166     // Division
2167 
2168     /**
2169      * Returns a BigInteger whose value is {@code (this / val)}.
2170      *
2171      * @param  val value by which this BigInteger is to be divided.
2172      * @return {@code this / val}
2173      * @throws ArithmeticException if {@code val} is zero.
2174      */
2175     public BigInteger divide(BigInteger val) {
2176         if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
2177                 mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
2178             return divideKnuth(val);
2179         } else {
2180             return divideBurnikelZiegler(val);
2181         }
2182     }
2183 
2184     /**
2185      * Returns a BigInteger whose value is {@code (this / val)} using an O(n^2) algorithm from Knuth.
2186      *
2187      * @param  val value by which this BigInteger is to be divided.
2188      * @return {@code this / val}
2189      * @throws ArithmeticException if {@code val} is zero.
2190      * @see MutableBigInteger#divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
2191      */
2192     private BigInteger divideKnuth(BigInteger val) {
2193         MutableBigInteger q = new MutableBigInteger(),
2194                           a = new MutableBigInteger(this.mag),
2195                           b = new MutableBigInteger(val.mag);
2196 
2197         a.divideKnuth(b, q, false);
2198         return q.toBigInteger(this.signum * val.signum);
2199     }
2200 
2201     /**
2202      * Returns an array of two BigIntegers containing {@code (this / val)}
2203      * followed by {@code (this % val)}.
2204      *
2205      * @param  val value by which this BigInteger is to be divided, and the
2206      *         remainder computed.
2207      * @return an array of two BigIntegers: the quotient {@code (this / val)}
2208      *         is the initial element, and the remainder {@code (this % val)}
2209      *         is the final element.
2210      * @throws ArithmeticException if {@code val} is zero.
2211      */
2212     public BigInteger[] divideAndRemainder(BigInteger val) {
2213         if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
2214                 mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
2215             return divideAndRemainderKnuth(val);
2216         } else {
2217             return divideAndRemainderBurnikelZiegler(val);
2218         }
2219     }
2220 
2221     /** Long division */
2222     private BigInteger[] divideAndRemainderKnuth(BigInteger val) {
2223         BigInteger[] result = new BigInteger[2];
2224         MutableBigInteger q = new MutableBigInteger(),
2225                           a = new MutableBigInteger(this.mag),
2226                           b = new MutableBigInteger(val.mag);
2227         MutableBigInteger r = a.divideKnuth(b, q);
2228         result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1);
2229         result[1] = r.toBigInteger(this.signum);
2230         return result;
2231     }
2232 
2233     /**
2234      * Returns a BigInteger whose value is {@code (this % val)}.
2235      *
2236      * @param  val value by which this BigInteger is to be divided, and the
2237      *         remainder computed.
2238      * @return {@code this % val}
2239      * @throws ArithmeticException if {@code val} is zero.
2240      */
2241     public BigInteger remainder(BigInteger val) {
2242         if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
2243                 mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
2244             return remainderKnuth(val);
2245         } else {
2246             return remainderBurnikelZiegler(val);
2247         }
2248     }
2249 
2250     /** Long division */
2251     private BigInteger remainderKnuth(BigInteger val) {
2252         MutableBigInteger q = new MutableBigInteger(),
2253                           a = new MutableBigInteger(this.mag),
2254                           b = new MutableBigInteger(val.mag);
2255 
2256         return a.divideKnuth(b, q).toBigInteger(this.signum);
2257     }
2258 
2259     /**
2260      * Calculates {@code this / val} using the Burnikel-Ziegler algorithm.
2261      * @param  val the divisor
2262      * @return {@code this / val}
2263      */
2264     private BigInteger divideBurnikelZiegler(BigInteger val) {
2265         return divideAndRemainderBurnikelZiegler(val)[0];
2266     }
2267 
2268     /**
2269      * Calculates {@code this % val} using the Burnikel-Ziegler algorithm.
2270      * @param val the divisor
2271      * @return {@code this % val}
2272      */
2273     private BigInteger remainderBurnikelZiegler(BigInteger val) {
2274         return divideAndRemainderBurnikelZiegler(val)[1];
2275     }
2276 
2277     /**
2278      * Computes {@code this / val} and {@code this % val} using the
2279      * Burnikel-Ziegler algorithm.
2280      * @param val the divisor
2281      * @return an array containing the quotient and remainder
2282      */
2283     private BigInteger[] divideAndRemainderBurnikelZiegler(BigInteger val) {
2284         MutableBigInteger q = new MutableBigInteger();
2285         MutableBigInteger r = new MutableBigInteger(this).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q);
2286         BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(signum*val.signum);
2287         BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(signum);
2288         return new BigInteger[] {qBigInt, rBigInt};
2289     }
2290 
2291     /**
2292      * Returns a BigInteger whose value is <code>(this<sup>exponent</sup>)</code>.
2293      * Note that {@code exponent} is an integer rather than a BigInteger.
2294      *
2295      * @param  exponent exponent to which this BigInteger is to be raised.
2296      * @return <code>this<sup>exponent</sup></code>
2297      * @throws ArithmeticException {@code exponent} is negative.  (This would
2298      *         cause the operation to yield a non-integer value.)
2299      */
2300     public BigInteger pow(int exponent) {
2301         if (exponent < 0) {
2302             throw new ArithmeticException("Negative exponent");
2303         }
2304         if (signum == 0) {
2305             return (exponent == 0 ? ONE : this);
2306         }
2307 
2308         BigInteger partToSquare = this.abs();
2309 
2310         // Factor out powers of two from the base, as the exponentiation of
2311         // these can be done by left shifts only.
2312         // The remaining part can then be exponentiated faster.  The
2313         // powers of two will be multiplied back at the end.
2314         int powersOfTwo = partToSquare.getLowestSetBit();
2315         long bitsToShift = (long)powersOfTwo * exponent;
2316         if (bitsToShift > Integer.MAX_VALUE) {
2317             reportOverflow();
2318         }
2319 
2320         int remainingBits;
2321 
2322         // Factor the powers of two out quickly by shifting right, if needed.
2323         if (powersOfTwo > 0) {
2324             partToSquare = partToSquare.shiftRight(powersOfTwo);
2325             remainingBits = partToSquare.bitLength();
2326             if (remainingBits == 1) {  // Nothing left but +/- 1?
2327                 if (signum < 0 && (exponent&1) == 1) {
2328                     return NEGATIVE_ONE.shiftLeft(powersOfTwo*exponent);
2329                 } else {
2330                     return ONE.shiftLeft(powersOfTwo*exponent);
2331                 }
2332             }
2333         } else {
2334             remainingBits = partToSquare.bitLength();
2335             if (remainingBits == 1) { // Nothing left but +/- 1?
2336                 if (signum < 0  && (exponent&1) == 1) {
2337                     return NEGATIVE_ONE;
2338                 } else {
2339                     return ONE;
2340                 }
2341             }
2342         }
2343 
2344         // This is a quick way to approximate the size of the result,
2345         // similar to doing log2[n] * exponent.  This will give an upper bound
2346         // of how big the result can be, and which algorithm to use.
2347         long scaleFactor = (long)remainingBits * exponent;
2348 
2349         // Use slightly different algorithms for small and large operands.
2350         // See if the result will safely fit into a long. (Largest 2^63-1)
2351         if (partToSquare.mag.length == 1 && scaleFactor <= 62) {
2352             // Small number algorithm.  Everything fits into a long.
2353             int newSign = (signum <0  && (exponent&1) == 1 ? -1 : 1);
2354             long result = 1;
2355             long baseToPow2 = partToSquare.mag[0] & LONG_MASK;
2356 
2357             int workingExponent = exponent;
2358 
2359             // Perform exponentiation using repeated squaring trick
2360             while (workingExponent != 0) {
2361                 if ((workingExponent & 1) == 1) {
2362                     result = result * baseToPow2;
2363                 }
2364 
2365                 if ((workingExponent >>>= 1) != 0) {
2366                     baseToPow2 = baseToPow2 * baseToPow2;
2367                 }
2368             }
2369 
2370             // Multiply back the powers of two (quickly, by shifting left)
2371             if (powersOfTwo > 0) {
2372                 if (bitsToShift + scaleFactor <= 62) { // Fits in long?
2373                     return valueOf((result << bitsToShift) * newSign);
2374                 } else {
2375                     return valueOf(result*newSign).shiftLeft((int) bitsToShift);
2376                 }
2377             }
2378             else {
2379                 return valueOf(result*newSign);
2380             }
2381         } else {
2382             // Large number algorithm.  This is basically identical to
2383             // the algorithm above, but calls multiply() and square()
2384             // which may use more efficient algorithms for large numbers.
2385             BigInteger answer = ONE;
2386 
2387             int workingExponent = exponent;
2388             // Perform exponentiation using repeated squaring trick
2389             while (workingExponent != 0) {
2390                 if ((workingExponent & 1) == 1) {
2391                     answer = answer.multiply(partToSquare);
2392                 }
2393 
2394                 if ((workingExponent >>>= 1) != 0) {
2395                     partToSquare = partToSquare.square();
2396                 }
2397             }
2398             // Multiply back the (exponentiated) powers of two (quickly,
2399             // by shifting left)
2400             if (powersOfTwo > 0) {
2401                 answer = answer.shiftLeft(powersOfTwo*exponent);
2402             }
2403 
2404             if (signum < 0 && (exponent&1) == 1) {
2405                 return answer.negate();
2406             } else {
2407                 return answer;
2408             }
2409         }
2410     }
2411 
2412     /**
2413      * Returns the integer square root of this BigInteger.  The integer square
2414      * root of the corresponding mathematical integer {@code n} is the largest
2415      * mathematical integer {@code s} such that {@code s*s <= n}.  It is equal
2416      * to the value of {@code floor(sqrt(n))}, where {@code sqrt(n)} denotes the
2417      * real square root of {@code n} treated as a real.  Note that the integer
2418      * square root will be less than the real square root if the latter is not
2419      * representable as an integral value.
2420      *
2421      * @return the integer square root of {@code this}
2422      * @throws ArithmeticException if {@code this} is negative.  (The square
2423      *         root of a negative integer {@code val} is
2424      *         {@code (i * sqrt(-val))} where <i>i</i> is the
2425      *         <i>imaginary unit</i> and is equal to
2426      *         {@code sqrt(-1)}.)
2427      * @since  1.9
2428      */
2429     public BigInteger sqrt() {
2430         if (this.signum < 0) {
2431             throw new ArithmeticException("Negative BigInteger");
2432         }
2433 
2434         return new MutableBigInteger(this.mag).sqrt().toBigInteger();
2435     }
2436 
2437     /**
2438      * Returns an array of two BigIntegers containing the integer square root
2439      * {@code s} of {@code this} and its remainder {@code this - s*s},
2440      * respectively.
2441      *
2442      * @return an array of two BigIntegers with the integer square root at
2443      *         offset 0 and the remainder at offset 1
2444      * @throws ArithmeticException if {@code this} is negative.  (The square
2445      *         root of a negative integer {@code val} is
2446      *         {@code (i * sqrt(-val))} where <i>i</i> is the
2447      *         <i>imaginary unit</i> and is equal to
2448      *         {@code sqrt(-1)}.)
2449      * @see #sqrt()
2450      * @since  1.9
2451      */
2452     public BigInteger[] sqrtAndRemainder() {
2453         BigInteger s = sqrt();
2454         BigInteger r = this.subtract(s.square());
2455         assert r.compareTo(BigInteger.ZERO) >= 0;
2456         return new BigInteger[] {s, r};
2457     }
2458 
2459     /**
2460      * Returns a BigInteger whose value is the greatest common divisor of
2461      * {@code abs(this)} and {@code abs(val)}.  Returns 0 if
2462      * {@code this == 0 && val == 0}.
2463      *
2464      * @param  val value with which the GCD is to be computed.
2465      * @return {@code GCD(abs(this), abs(val))}
2466      */
2467     public BigInteger gcd(BigInteger val) {
2468         if (val.signum == 0)
2469             return this.abs();
2470         else if (this.signum == 0)
2471             return val.abs();
2472 
2473         MutableBigInteger a = new MutableBigInteger(this);
2474         MutableBigInteger b = new MutableBigInteger(val);
2475 
2476         MutableBigInteger result = a.hybridGCD(b);
2477 
2478         return result.toBigInteger(1);
2479     }
2480 
2481     /**
2482      * Package private method to return bit length for an integer.
2483      */
2484     static int bitLengthForInt(int n) {
2485         return 32 - Integer.numberOfLeadingZeros(n);
2486     }
2487 
2488     /**
2489      * Left shift int array a up to len by n bits. Returns the array that
2490      * results from the shift since space may have to be reallocated.
2491      */
2492     private static int[] leftShift(int[] a, int len, int n) {
2493         int nInts = n >>> 5;
2494         int nBits = n&0x1F;
2495         int bitsInHighWord = bitLengthForInt(a[0]);
2496 
2497         // If shift can be done without recopy, do so
2498         if (n <= (32-bitsInHighWord)) {
2499             primitiveLeftShift(a, len, nBits);
2500             return a;
2501         } else { // Array must be resized
2502             if (nBits <= (32-bitsInHighWord)) {
2503                 int result[] = new int[nInts+len];
2504                 System.arraycopy(a, 0, result, 0, len);
2505                 primitiveLeftShift(result, result.length, nBits);
2506                 return result;
2507             } else {
2508                 int result[] = new int[nInts+len+1];
2509                 System.arraycopy(a, 0, result, 0, len);
2510                 primitiveRightShift(result, result.length, 32 - nBits);
2511                 return result;
2512             }
2513         }
2514     }
2515 
2516     // shifts a up to len right n bits assumes no leading zeros, 0<n<32
2517     static void primitiveRightShift(int[] a, int len, int n) {
2518         int n2 = 32 - n;
2519         for (int i=len-1, c=a[i]; i > 0; i--) {
2520             int b = c;
2521             c = a[i-1];
2522             a[i] = (c << n2) | (b >>> n);
2523         }
2524         a[0] >>>= n;
2525     }
2526 
2527     // shifts a up to len left n bits assumes no leading zeros, 0<=n<32
2528     static void primitiveLeftShift(int[] a, int len, int n) {
2529         if (len == 0 || n == 0)
2530             return;
2531 
2532         int n2 = 32 - n;
2533         for (int i=0, c=a[i], m=i+len-1; i < m; i++) {
2534             int b = c;
2535             c = a[i+1];
2536             a[i] = (b << n) | (c >>> n2);
2537         }
2538         a[len-1] <<= n;
2539     }
2540 
2541     /**
2542      * Calculate bitlength of contents of the first len elements an int array,
2543      * assuming there are no leading zero ints.
2544      */
2545     private static int bitLength(int[] val, int len) {
2546         if (len == 0)
2547             return 0;
2548         return ((len - 1) << 5) + bitLengthForInt(val[0]);
2549     }
2550 
2551     /**
2552      * Returns a BigInteger whose value is the absolute value of this
2553      * BigInteger.
2554      *
2555      * @return {@code abs(this)}
2556      */
2557     public BigInteger abs() {
2558         return (signum >= 0 ? this : this.negate());
2559     }
2560 
2561     /**
2562      * Returns a BigInteger whose value is {@code (-this)}.
2563      *
2564      * @return {@code -this}
2565      */
2566     public BigInteger negate() {
2567         return new BigInteger(this.mag, -this.signum);
2568     }
2569 
2570     /**
2571      * Returns the signum function of this BigInteger.
2572      *
2573      * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
2574      *         positive.
2575      */
2576     public int signum() {
2577         return this.signum;
2578     }
2579 
2580     // Modular Arithmetic Operations
2581 
2582     /**
2583      * Returns a BigInteger whose value is {@code (this mod m}).  This method
2584      * differs from {@code remainder} in that it always returns a
2585      * <i>non-negative</i> BigInteger.
2586      *
2587      * @param  m the modulus.
2588      * @return {@code this mod m}
2589      * @throws ArithmeticException {@code m} &le; 0
2590      * @see    #remainder
2591      */
2592     public BigInteger mod(BigInteger m) {
2593         if (m.signum <= 0)
2594             throw new ArithmeticException("BigInteger: modulus not positive");
2595 
2596         BigInteger result = this.remainder(m);
2597         return (result.signum >= 0 ? result : result.add(m));
2598     }
2599 
2600     /**
2601      * Returns a BigInteger whose value is
2602      * <code>(this<sup>exponent</sup> mod m)</code>.  (Unlike {@code pow}, this
2603      * method permits negative exponents.)
2604      *
2605      * @param  exponent the exponent.
2606      * @param  m the modulus.
2607      * @return <code>this<sup>exponent</sup> mod m</code>
2608      * @throws ArithmeticException {@code m} &le; 0 or the exponent is
2609      *         negative and this BigInteger is not <i>relatively
2610      *         prime</i> to {@code m}.
2611      * @see    #modInverse
2612      */
2613     public BigInteger modPow(BigInteger exponent, BigInteger m) {
2614         if (m.signum <= 0)
2615             throw new ArithmeticException("BigInteger: modulus not positive");
2616 
2617         // Trivial cases
2618         if (exponent.signum == 0)
2619             return (m.equals(ONE) ? ZERO : ONE);
2620 
2621         if (this.equals(ONE))
2622             return (m.equals(ONE) ? ZERO : ONE);
2623 
2624         if (this.equals(ZERO) && exponent.signum >= 0)
2625             return ZERO;
2626 
2627         if (this.equals(negConst[1]) && (!exponent.testBit(0)))
2628             return (m.equals(ONE) ? ZERO : ONE);
2629 
2630         boolean invertResult;
2631         if ((invertResult = (exponent.signum < 0)))
2632             exponent = exponent.negate();
2633 
2634         BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
2635                            ? this.mod(m) : this);
2636         BigInteger result;
2637         if (m.testBit(0)) { // odd modulus
2638             result = base.oddModPow(exponent, m);
2639         } else {
2640             /*
2641              * Even modulus.  Tear it into an "odd part" (m1) and power of two
2642              * (m2), exponentiate mod m1, manually exponentiate mod m2, and
2643              * use Chinese Remainder Theorem to combine results.
2644              */
2645 
2646             // Tear m apart into odd part (m1) and power of 2 (m2)
2647             int p = m.getLowestSetBit();   // Max pow of 2 that divides m
2648 
2649             BigInteger m1 = m.shiftRight(p);  // m/2**p
2650             BigInteger m2 = ONE.shiftLeft(p); // 2**p
2651 
2652             // Calculate new base from m1
2653             BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
2654                                 ? this.mod(m1) : this);
2655 
2656             // Caculate (base ** exponent) mod m1.
2657             BigInteger a1 = (m1.equals(ONE) ? ZERO :
2658                              base2.oddModPow(exponent, m1));
2659 
2660             // Calculate (this ** exponent) mod m2
2661             BigInteger a2 = base.modPow2(exponent, p);
2662 
2663             // Combine results using Chinese Remainder Theorem
2664             BigInteger y1 = m2.modInverse(m1);
2665             BigInteger y2 = m1.modInverse(m2);
2666 
2667             if (m.mag.length < MAX_MAG_LENGTH / 2) {
2668                 result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m);
2669             } else {
2670                 MutableBigInteger t1 = new MutableBigInteger();
2671                 new MutableBigInteger(a1.multiply(m2)).multiply(new MutableBigInteger(y1), t1);
2672                 MutableBigInteger t2 = new MutableBigInteger();
2673                 new MutableBigInteger(a2.multiply(m1)).multiply(new MutableBigInteger(y2), t2);
2674                 t1.add(t2);
2675                 MutableBigInteger q = new MutableBigInteger();
2676                 result = t1.divide(new MutableBigInteger(m), q).toBigInteger();
2677             }
2678         }
2679 
2680         return (invertResult ? result.modInverse(m) : result);
2681     }
2682 
2683     // Montgomery multiplication.  These are wrappers for
2684     // implMontgomeryXX routines which are expected to be replaced by
2685     // virtual machine intrinsics.  We don't use the intrinsics for
2686     // very large operands: MONTGOMERY_INTRINSIC_THRESHOLD should be
2687     // larger than any reasonable crypto key.
2688     private static int[] montgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv,
2689                                             int[] product) {
2690         implMontgomeryMultiplyChecks(a, b, n, len, product);
2691         if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
2692             // Very long argument: do not use an intrinsic
2693             product = multiplyToLen(a, len, b, len, product);
2694             return montReduce(product, n, len, (int)inv);
2695         } else {
2696             return implMontgomeryMultiply(a, b, n, len, inv, materialize(product, len));
2697         }
2698     }
2699     private static int[] montgomerySquare(int[] a, int[] n, int len, long inv,
2700                                           int[] product) {
2701         implMontgomeryMultiplyChecks(a, a, n, len, product);
2702         if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
2703             // Very long argument: do not use an intrinsic
2704             product = squareToLen(a, len, product);
2705             return montReduce(product, n, len, (int)inv);
2706         } else {
2707             return implMontgomerySquare(a, n, len, inv, materialize(product, len));
2708         }
2709     }
2710 
2711     // Range-check everything.
2712     private static void implMontgomeryMultiplyChecks
2713         (int[] a, int[] b, int[] n, int len, int[] product) throws RuntimeException {
2714         if (len % 2 != 0) {
2715             throw new IllegalArgumentException("input array length must be even: " + len);
2716         }
2717 
2718         if (len < 1) {
2719             throw new IllegalArgumentException("invalid input length: " + len);
2720         }
2721 
2722         if (len > a.length ||
2723             len > b.length ||
2724             len > n.length ||
2725             (product != null && len > product.length)) {
2726             throw new IllegalArgumentException("input array length out of bound: " + len);
2727         }
2728     }
2729 
2730     // Make sure that the int array z (which is expected to contain
2731     // the result of a Montgomery multiplication) is present and
2732     // sufficiently large.
2733     private static int[] materialize(int[] z, int len) {
2734          if (z == null || z.length < len)
2735              z = new int[len];
2736          return z;
2737     }
2738 
2739     // These methods are intended to be be replaced by virtual machine
2740     // intrinsics.
2741     @HotSpotIntrinsicCandidate
2742     private static int[] implMontgomeryMultiply(int[] a, int[] b, int[] n, int len,
2743                                          long inv, int[] product) {
2744         product = multiplyToLen(a, len, b, len, product);
2745         return montReduce(product, n, len, (int)inv);
2746     }
2747     @HotSpotIntrinsicCandidate
2748     private static int[] implMontgomerySquare(int[] a, int[] n, int len,
2749                                        long inv, int[] product) {
2750         product = squareToLen(a, len, product);
2751         return montReduce(product, n, len, (int)inv);
2752     }
2753 
2754     static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793,
2755                                                 Integer.MAX_VALUE}; // Sentinel
2756 
2757     /**
2758      * Returns a BigInteger whose value is x to the power of y mod z.
2759      * Assumes: z is odd && x < z.
2760      */
2761     private BigInteger oddModPow(BigInteger y, BigInteger z) {
2762     /*
2763      * The algorithm is adapted from Colin Plumb's C library.
2764      *
2765      * The window algorithm:
2766      * The idea is to keep a running product of b1 = n^(high-order bits of exp)
2767      * and then keep appending exponent bits to it.  The following patterns
2768      * apply to a 3-bit window (k = 3):
2769      * To append   0: square
2770      * To append   1: square, multiply by n^1
2771      * To append  10: square, multiply by n^1, square
2772      * To append  11: square, square, multiply by n^3
2773      * To append 100: square, multiply by n^1, square, square
2774      * To append 101: square, square, square, multiply by n^5
2775      * To append 110: square, square, multiply by n^3, square
2776      * To append 111: square, square, square, multiply by n^7
2777      *
2778      * Since each pattern involves only one multiply, the longer the pattern
2779      * the better, except that a 0 (no multiplies) can be appended directly.
2780      * We precompute a table of odd powers of n, up to 2^k, and can then
2781      * multiply k bits of exponent at a time.  Actually, assuming random
2782      * exponents, there is on average one zero bit between needs to
2783      * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
2784      * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
2785      * you have to do one multiply per k+1 bits of exponent.
2786      *
2787      * The loop walks down the exponent, squaring the result buffer as
2788      * it goes.  There is a wbits+1 bit lookahead buffer, buf, that is
2789      * filled with the upcoming exponent bits.  (What is read after the
2790      * end of the exponent is unimportant, but it is filled with zero here.)
2791      * When the most-significant bit of this buffer becomes set, i.e.
2792      * (buf & tblmask) != 0, we have to decide what pattern to multiply
2793      * by, and when to do it.  We decide, remember to do it in future
2794      * after a suitable number of squarings have passed (e.g. a pattern
2795      * of "100" in the buffer requires that we multiply by n^1 immediately;
2796      * a pattern of "110" calls for multiplying by n^3 after one more
2797      * squaring), clear the buffer, and continue.
2798      *
2799      * When we start, there is one more optimization: the result buffer
2800      * is implcitly one, so squaring it or multiplying by it can be
2801      * optimized away.  Further, if we start with a pattern like "100"
2802      * in the lookahead window, rather than placing n into the buffer
2803      * and then starting to square it, we have already computed n^2
2804      * to compute the odd-powers table, so we can place that into
2805      * the buffer and save a squaring.
2806      *
2807      * This means that if you have a k-bit window, to compute n^z,
2808      * where z is the high k bits of the exponent, 1/2 of the time
2809      * it requires no squarings.  1/4 of the time, it requires 1
2810      * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
2811      * And the remaining 1/2^(k-1) of the time, the top k bits are a
2812      * 1 followed by k-1 0 bits, so it again only requires k-2
2813      * squarings, not k-1.  The average of these is 1.  Add that
2814      * to the one squaring we have to do to compute the table,
2815      * and you'll see that a k-bit window saves k-2 squarings
2816      * as well as reducing the multiplies.  (It actually doesn't
2817      * hurt in the case k = 1, either.)
2818      */
2819         // Special case for exponent of one
2820         if (y.equals(ONE))
2821             return this;
2822 
2823         // Special case for base of zero
2824         if (signum == 0)
2825             return ZERO;
2826 
2827         int[] base = mag.clone();
2828         int[] exp = y.mag;
2829         int[] mod = z.mag;
2830         int modLen = mod.length;
2831 
2832         // Make modLen even. It is conventional to use a cryptographic
2833         // modulus that is 512, 768, 1024, or 2048 bits, so this code
2834         // will not normally be executed. However, it is necessary for
2835         // the correct functioning of the HotSpot intrinsics.
2836         if ((modLen & 1) != 0) {
2837             int[] x = new int[modLen + 1];
2838             System.arraycopy(mod, 0, x, 1, modLen);
2839             mod = x;
2840             modLen++;
2841         }
2842 
2843         // Select an appropriate window size
2844         int wbits = 0;
2845         int ebits = bitLength(exp, exp.length);
2846         // if exponent is 65537 (0x10001), use minimum window size
2847         if ((ebits != 17) || (exp[0] != 65537)) {
2848             while (ebits > bnExpModThreshTable[wbits]) {
2849                 wbits++;
2850             }
2851         }
2852 
2853         // Calculate appropriate table size
2854         int tblmask = 1 << wbits;
2855 
2856         // Allocate table for precomputed odd powers of base in Montgomery form
2857         int[][] table = new int[tblmask][];
2858         for (int i=0; i < tblmask; i++)
2859             table[i] = new int[modLen];
2860 
2861         // Compute the modular inverse of the least significant 64-bit
2862         // digit of the modulus
2863         long n0 = (mod[modLen-1] & LONG_MASK) + ((mod[modLen-2] & LONG_MASK) << 32);
2864         long inv = -MutableBigInteger.inverseMod64(n0);
2865 
2866         // Convert base to Montgomery form
2867         int[] a = leftShift(base, base.length, modLen << 5);
2868 
2869         MutableBigInteger q = new MutableBigInteger(),
2870                           a2 = new MutableBigInteger(a),
2871                           b2 = new MutableBigInteger(mod);
2872         b2.normalize(); // MutableBigInteger.divide() assumes that its
2873                         // divisor is in normal form.
2874 
2875         MutableBigInteger r= a2.divide(b2, q);
2876         table[0] = r.toIntArray();
2877 
2878         // Pad table[0] with leading zeros so its length is at least modLen
2879         if (table[0].length < modLen) {
2880            int offset = modLen - table[0].length;
2881            int[] t2 = new int[modLen];
2882            System.arraycopy(table[0], 0, t2, offset, table[0].length);
2883            table[0] = t2;
2884         }
2885 
2886         // Set b to the square of the base
2887         int[] b = montgomerySquare(table[0], mod, modLen, inv, null);
2888 
2889         // Set t to high half of b
2890         int[] t = Arrays.copyOf(b, modLen);
2891 
2892         // Fill in the table with odd powers of the base
2893         for (int i=1; i < tblmask; i++) {
2894             table[i] = montgomeryMultiply(t, table[i-1], mod, modLen, inv, null);
2895         }
2896 
2897         // Pre load the window that slides over the exponent
2898         int bitpos = 1 << ((ebits-1) & (32-1));
2899 
2900         int buf = 0;
2901         int elen = exp.length;
2902         int eIndex = 0;
2903         for (int i = 0; i <= wbits; i++) {
2904             buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);
2905             bitpos >>>= 1;
2906             if (bitpos == 0) {
2907                 eIndex++;
2908                 bitpos = 1 << (32-1);
2909                 elen--;
2910             }
2911         }
2912 
2913         int multpos = ebits;
2914 
2915         // The first iteration, which is hoisted out of the main loop
2916         ebits--;
2917         boolean isone = true;
2918 
2919         multpos = ebits - wbits;
2920         while ((buf & 1) == 0) {
2921             buf >>>= 1;
2922             multpos++;
2923         }
2924 
2925         int[] mult = table[buf >>> 1];
2926 
2927         buf = 0;
2928         if (multpos == ebits)
2929             isone = false;
2930 
2931         // The main loop
2932         while (true) {
2933             ebits--;
2934             // Advance the window
2935             buf <<= 1;
2936 
2937             if (elen != 0) {
2938                 buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
2939                 bitpos >>>= 1;
2940                 if (bitpos == 0) {
2941                     eIndex++;
2942                     bitpos = 1 << (32-1);
2943                     elen--;
2944                 }
2945             }
2946 
2947             // Examine the window for pending multiplies
2948             if ((buf & tblmask) != 0) {
2949                 multpos = ebits - wbits;
2950                 while ((buf & 1) == 0) {
2951                     buf >>>= 1;
2952                     multpos++;
2953                 }
2954                 mult = table[buf >>> 1];
2955                 buf = 0;
2956             }
2957 
2958             // Perform multiply
2959             if (ebits == multpos) {
2960                 if (isone) {
2961                     b = mult.clone();
2962                     isone = false;
2963                 } else {
2964                     t = b;
2965                     a = montgomeryMultiply(t, mult, mod, modLen, inv, a);
2966                     t = a; a = b; b = t;
2967                 }
2968             }
2969 
2970             // Check if done
2971             if (ebits == 0)
2972                 break;
2973 
2974             // Square the input
2975             if (!isone) {
2976                 t = b;
2977                 a = montgomerySquare(t, mod, modLen, inv, a);
2978                 t = a; a = b; b = t;
2979             }
2980         }
2981 
2982         // Convert result out of Montgomery form and return
2983         int[] t2 = new int[2*modLen];
2984         System.arraycopy(b, 0, t2, modLen, modLen);
2985 
2986         b = montReduce(t2, mod, modLen, (int)inv);
2987 
2988         t2 = Arrays.copyOf(b, modLen);
2989 
2990         return new BigInteger(1, t2);
2991     }
2992 
2993     /**
2994      * Montgomery reduce n, modulo mod.  This reduces modulo mod and divides
2995      * by 2^(32*mlen). Adapted from Colin Plumb's C library.
2996      */
2997     private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) {
2998         int c=0;
2999         int len = mlen;
3000         int offset=0;
3001 
3002         do {
3003             int nEnd = n[n.length-1-offset];
3004             int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
3005             c += addOne(n, offset, mlen, carry);
3006             offset++;
3007         } while (--len > 0);
3008 
3009         while (c > 0)
3010             c += subN(n, mod, mlen);
3011 
3012         while (intArrayCmpToLen(n, mod, mlen) >= 0)
3013             subN(n, mod, mlen);
3014 
3015         return n;
3016     }
3017 
3018 
3019     /*
3020      * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than,
3021      * equal to, or greater than arg2 up to length len.
3022      */
3023     private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
3024         for (int i=0; i < len; i++) {
3025             long b1 = arg1[i] & LONG_MASK;
3026             long b2 = arg2[i] & LONG_MASK;
3027             if (b1 < b2)
3028                 return -1;
3029             if (b1 > b2)
3030                 return 1;
3031         }
3032         return 0;
3033     }
3034 
3035     /**
3036      * Subtracts two numbers of same length, returning borrow.
3037      */
3038     private static int subN(int[] a, int[] b, int len) {
3039         long sum = 0;
3040 
3041         while (--len >= 0) {
3042             sum = (a[len] & LONG_MASK) -
3043                  (b[len] & LONG_MASK) + (sum >> 32);
3044             a[len] = (int)sum;
3045         }
3046 
3047         return (int)(sum >> 32);
3048     }
3049 
3050     /**
3051      * Multiply an array by one word k and add to result, return the carry
3052      */
3053     static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
3054         implMulAddCheck(out, in, offset, len, k);
3055         return implMulAdd(out, in, offset, len, k);
3056     }
3057 
3058     /**
3059      * Parameters validation.
3060      */
3061     private static void implMulAddCheck(int[] out, int[] in, int offset, int len, int k) {
3062         if (len > in.length) {
3063             throw new IllegalArgumentException("input length is out of bound: " + len + " > " + in.length);
3064         }
3065         if (offset < 0) {
3066             throw new IllegalArgumentException("input offset is invalid: " + offset);
3067         }
3068         if (offset > (out.length - 1)) {
3069             throw new IllegalArgumentException("input offset is out of bound: " + offset + " > " + (out.length - 1));
3070         }
3071         if (len > (out.length - offset)) {
3072             throw new IllegalArgumentException("input len is out of bound: " + len + " > " + (out.length - offset));
3073         }
3074     }
3075 
3076     /**
3077      * Java Runtime may use intrinsic for this method.
3078      */
3079     @HotSpotIntrinsicCandidate
3080     private static int implMulAdd(int[] out, int[] in, int offset, int len, int k) {
3081         long kLong = k & LONG_MASK;
3082         long carry = 0;
3083 
3084         offset = out.length-offset - 1;
3085         for (int j=len-1; j >= 0; j--) {
3086             long product = (in[j] & LONG_MASK) * kLong +
3087                            (out[offset] & LONG_MASK) + carry;
3088             out[offset--] = (int)product;
3089             carry = product >>> 32;
3090         }
3091         return (int)carry;
3092     }
3093 
3094     /**
3095      * Add one word to the number a mlen words into a. Return the resulting
3096      * carry.
3097      */
3098     static int addOne(int[] a, int offset, int mlen, int carry) {
3099         offset = a.length-1-mlen-offset;
3100         long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);
3101 
3102         a[offset] = (int)t;
3103         if ((t >>> 32) == 0)
3104             return 0;
3105         while (--mlen >= 0) {
3106             if (--offset < 0) { // Carry out of number
3107                 return 1;
3108             } else {
3109                 a[offset]++;
3110                 if (a[offset] != 0)
3111                     return 0;
3112             }
3113         }
3114         return 1;
3115     }
3116 
3117     /**
3118      * Returns a BigInteger whose value is (this ** exponent) mod (2**p)
3119      */
3120     private BigInteger modPow2(BigInteger exponent, int p) {
3121         /*
3122          * Perform exponentiation using repeated squaring trick, chopping off
3123          * high order bits as indicated by modulus.
3124          */
3125         BigInteger result = ONE;
3126         BigInteger baseToPow2 = this.mod2(p);
3127         int expOffset = 0;
3128 
3129         int limit = exponent.bitLength();
3130 
3131         if (this.testBit(0))
3132            limit = (p-1) < limit ? (p-1) : limit;
3133 
3134         while (expOffset < limit) {
3135             if (exponent.testBit(expOffset))
3136                 result = result.multiply(baseToPow2).mod2(p);
3137             expOffset++;
3138             if (expOffset < limit)
3139                 baseToPow2 = baseToPow2.square().mod2(p);
3140         }
3141 
3142         return result;
3143     }
3144 
3145     /**
3146      * Returns a BigInteger whose value is this mod(2**p).
3147      * Assumes that this {@code BigInteger >= 0} and {@code p > 0}.
3148      */
3149     private BigInteger mod2(int p) {
3150         if (bitLength() <= p)
3151             return this;
3152 
3153         // Copy remaining ints of mag
3154         int numInts = (p + 31) >>> 5;
3155         int[] mag = new int[numInts];
3156         System.arraycopy(this.mag, (this.mag.length - numInts), mag, 0, numInts);
3157 
3158         // Mask out any excess bits
3159         int excessBits = (numInts << 5) - p;
3160         mag[0] &= (1L << (32-excessBits)) - 1;
3161 
3162         return (mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
3163     }
3164 
3165     /**
3166      * Returns a BigInteger whose value is {@code (this}<sup>-1</sup> {@code mod m)}.
3167      *
3168      * @param  m the modulus.
3169      * @return {@code this}<sup>-1</sup> {@code mod m}.
3170      * @throws ArithmeticException {@code  m} &le; 0, or this BigInteger
3171      *         has no multiplicative inverse mod m (that is, this BigInteger
3172      *         is not <i>relatively prime</i> to m).
3173      */
3174     public BigInteger modInverse(BigInteger m) {
3175         if (m.signum != 1)
3176             throw new ArithmeticException("BigInteger: modulus not positive");
3177 
3178         if (m.equals(ONE))
3179             return ZERO;
3180 
3181         // Calculate (this mod m)
3182         BigInteger modVal = this;
3183         if (signum < 0 || (this.compareMagnitude(m) >= 0))
3184             modVal = this.mod(m);
3185 
3186         if (modVal.equals(ONE))
3187             return ONE;
3188 
3189         MutableBigInteger a = new MutableBigInteger(modVal);
3190         MutableBigInteger b = new MutableBigInteger(m);
3191 
3192         MutableBigInteger result = a.mutableModInverse(b);
3193         return result.toBigInteger(1);
3194     }
3195 
3196     // Shift Operations
3197 
3198     /**
3199      * Returns a BigInteger whose value is {@code (this << n)}.
3200      * The shift distance, {@code n}, may be negative, in which case
3201      * this method performs a right shift.
3202      * (Computes <code>floor(this * 2<sup>n</sup>)</code>.)
3203      *
3204      * @param  n shift distance, in bits.
3205      * @return {@code this << n}
3206      * @see #shiftRight
3207      */
3208     public BigInteger shiftLeft(int n) {
3209         if (signum == 0)
3210             return ZERO;
3211         if (n > 0) {
3212             return new BigInteger(shiftLeft(mag, n), signum);
3213         } else if (n == 0) {
3214             return this;
3215         } else {
3216             // Possible int overflow in (-n) is not a trouble,
3217             // because shiftRightImpl considers its argument unsigned
3218             return shiftRightImpl(-n);
3219         }
3220     }
3221 
3222     /**
3223      * Returns a magnitude array whose value is {@code (mag << n)}.
3224      * The shift distance, {@code n}, is considered unnsigned.
3225      * (Computes <code>this * 2<sup>n</sup></code>.)
3226      *
3227      * @param mag magnitude, the most-significant int ({@code mag[0]}) must be non-zero.
3228      * @param  n unsigned shift distance, in bits.
3229      * @return {@code mag << n}
3230      */
3231     private static int[] shiftLeft(int[] mag, int n) {
3232         int nInts = n >>> 5;
3233         int nBits = n & 0x1f;
3234         int magLen = mag.length;
3235         int newMag[] = null;
3236 
3237         if (nBits == 0) {
3238             newMag = new int[magLen + nInts];
3239             System.arraycopy(mag, 0, newMag, 0, magLen);
3240         } else {
3241             int i = 0;
3242             int nBits2 = 32 - nBits;
3243             int highBits = mag[0] >>> nBits2;
3244             if (highBits != 0) {
3245                 newMag = new int[magLen + nInts + 1];
3246                 newMag[i++] = highBits;
3247             } else {
3248                 newMag = new int[magLen + nInts];
3249             }
3250             int j=0;
3251             while (j < magLen-1)
3252                 newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
3253             newMag[i] = mag[j] << nBits;
3254         }
3255         return newMag;
3256     }
3257 
3258     /**
3259      * Returns a BigInteger whose value is {@code (this >> n)}.  Sign
3260      * extension is performed.  The shift distance, {@code n}, may be
3261      * negative, in which case this method performs a left shift.
3262      * (Computes <code>floor(this / 2<sup>n</sup>)</code>.)
3263      *
3264      * @param  n shift distance, in bits.
3265      * @return {@code this >> n}
3266      * @see #shiftLeft
3267      */
3268     public BigInteger shiftRight(int n) {
3269         if (signum == 0)
3270             return ZERO;
3271         if (n > 0) {
3272             return shiftRightImpl(n);
3273         } else if (n == 0) {
3274             return this;
3275         } else {
3276             // Possible int overflow in {@code -n} is not a trouble,
3277             // because shiftLeft considers its argument unsigned
3278             return new BigInteger(shiftLeft(mag, -n), signum);
3279         }
3280     }
3281 
3282     /**
3283      * Returns a BigInteger whose value is {@code (this >> n)}. The shift
3284      * distance, {@code n}, is considered unsigned.
3285      * (Computes <code>floor(this * 2<sup>-n</sup>)</code>.)
3286      *
3287      * @param  n unsigned shift distance, in bits.
3288      * @return {@code this >> n}
3289      */
3290     private BigInteger shiftRightImpl(int n) {
3291         int nInts = n >>> 5;
3292         int nBits = n & 0x1f;
3293         int magLen = mag.length;
3294         int newMag[] = null;
3295 
3296         // Special case: entire contents shifted off the end
3297         if (nInts >= magLen)
3298             return (signum >= 0 ? ZERO : negConst[1]);
3299 
3300         if (nBits == 0) {
3301             int newMagLen = magLen - nInts;
3302             newMag = Arrays.copyOf(mag, newMagLen);
3303         } else {
3304             int i = 0;
3305             int highBits = mag[0] >>> nBits;
3306             if (highBits != 0) {
3307                 newMag = new int[magLen - nInts];
3308                 newMag[i++] = highBits;
3309             } else {
3310                 newMag = new int[magLen - nInts -1];
3311             }
3312 
3313             int nBits2 = 32 - nBits;
3314             int j=0;
3315             while (j < magLen - nInts - 1)
3316                 newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
3317         }
3318 
3319         if (signum < 0) {
3320             // Find out whether any one-bits were shifted off the end.
3321             boolean onesLost = false;
3322             for (int i=magLen-1, j=magLen-nInts; i >= j && !onesLost; i--)
3323                 onesLost = (mag[i] != 0);
3324             if (!onesLost && nBits != 0)
3325                 onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
3326 
3327             if (onesLost)
3328                 newMag = javaIncrement(newMag);
3329         }
3330 
3331         return new BigInteger(newMag, signum);
3332     }
3333 
3334     int[] javaIncrement(int[] val) {
3335         int lastSum = 0;
3336         for (int i=val.length-1;  i >= 0 && lastSum == 0; i--)
3337             lastSum = (val[i] += 1);
3338         if (lastSum == 0) {
3339             val = new int[val.length+1];
3340             val[0] = 1;
3341         }
3342         return val;
3343     }
3344 
3345     // Bitwise Operations
3346 
3347     /**
3348      * Returns a BigInteger whose value is {@code (this & val)}.  (This
3349      * method returns a negative BigInteger if and only if this and val are
3350      * both negative.)
3351      *
3352      * @param val value to be AND'ed with this BigInteger.
3353      * @return {@code this & val}
3354      */
3355     public BigInteger and(BigInteger val) {
3356         int[] result = new int[Math.max(intLength(), val.intLength())];
3357         for (int i=0; i < result.length; i++)
3358             result[i] = (getInt(result.length-i-1)
3359                          & val.getInt(result.length-i-1));
3360 
3361         return valueOf(result);
3362     }
3363 
3364     /**
3365      * Returns a BigInteger whose value is {@code (this | val)}.  (This method
3366      * returns a negative BigInteger if and only if either this or val is
3367      * negative.)
3368      *
3369      * @param val value to be OR'ed with this BigInteger.
3370      * @return {@code this | val}
3371      */
3372     public BigInteger or(BigInteger val) {
3373         int[] result = new int[Math.max(intLength(), val.intLength())];
3374         for (int i=0; i < result.length; i++)
3375             result[i] = (getInt(result.length-i-1)
3376                          | val.getInt(result.length-i-1));
3377 
3378         return valueOf(result);
3379     }
3380 
3381     /**
3382      * Returns a BigInteger whose value is {@code (this ^ val)}.  (This method
3383      * returns a negative BigInteger if and only if exactly one of this and
3384      * val are negative.)
3385      *
3386      * @param val value to be XOR'ed with this BigInteger.
3387      * @return {@code this ^ val}
3388      */
3389     public BigInteger xor(BigInteger val) {
3390         int[] result = new int[Math.max(intLength(), val.intLength())];
3391         for (int i=0; i < result.length; i++)
3392             result[i] = (getInt(result.length-i-1)
3393                          ^ val.getInt(result.length-i-1));
3394 
3395         return valueOf(result);
3396     }
3397 
3398     /**
3399      * Returns a BigInteger whose value is {@code (~this)}.  (This method
3400      * returns a negative value if and only if this BigInteger is
3401      * non-negative.)
3402      *
3403      * @return {@code ~this}
3404      */
3405     public BigInteger not() {
3406         int[] result = new int[intLength()];
3407         for (int i=0; i < result.length; i++)
3408             result[i] = ~getInt(result.length-i-1);
3409 
3410         return valueOf(result);
3411     }
3412 
3413     /**
3414      * Returns a BigInteger whose value is {@code (this & ~val)}.  This
3415      * method, which is equivalent to {@code and(val.not())}, is provided as
3416      * a convenience for masking operations.  (This method returns a negative
3417      * BigInteger if and only if {@code this} is negative and {@code val} is
3418      * positive.)
3419      *
3420      * @param val value to be complemented and AND'ed with this BigInteger.
3421      * @return {@code this & ~val}
3422      */
3423     public BigInteger andNot(BigInteger val) {
3424         int[] result = new int[Math.max(intLength(), val.intLength())];
3425         for (int i=0; i < result.length; i++)
3426             result[i] = (getInt(result.length-i-1)
3427                          & ~val.getInt(result.length-i-1));
3428 
3429         return valueOf(result);
3430     }
3431 
3432 
3433     // Single Bit Operations
3434 
3435     /**
3436      * Returns {@code true} if and only if the designated bit is set.
3437      * (Computes {@code ((this & (1<<n)) != 0)}.)
3438      *
3439      * @param  n index of bit to test.
3440      * @return {@code true} if and only if the designated bit is set.
3441      * @throws ArithmeticException {@code n} is negative.
3442      */
3443     public boolean testBit(int n) {
3444         if (n < 0)
3445             throw new ArithmeticException("Negative bit address");
3446 
3447         return (getInt(n >>> 5) & (1 << (n & 31))) != 0;
3448     }
3449 
3450     /**
3451      * Returns a BigInteger whose value is equivalent to this BigInteger
3452      * with the designated bit set.  (Computes {@code (this | (1<<n))}.)
3453      *
3454      * @param  n index of bit to set.
3455      * @return {@code this | (1<<n)}
3456      * @throws ArithmeticException {@code n} is negative.
3457      */
3458     public BigInteger setBit(int n) {
3459         if (n < 0)
3460             throw new ArithmeticException("Negative bit address");
3461 
3462         int intNum = n >>> 5;
3463         int[] result = new int[Math.max(intLength(), intNum+2)];
3464 
3465         for (int i=0; i < result.length; i++)
3466             result[result.length-i-1] = getInt(i);
3467 
3468         result[result.length-intNum-1] |= (1 << (n & 31));
3469 
3470         return valueOf(result);
3471     }
3472 
3473     /**
3474      * Returns a BigInteger whose value is equivalent to this BigInteger
3475      * with the designated bit cleared.
3476      * (Computes {@code (this & ~(1<<n))}.)
3477      *
3478      * @param  n index of bit to clear.
3479      * @return {@code this & ~(1<<n)}
3480      * @throws ArithmeticException {@code n} is negative.
3481      */
3482     public BigInteger clearBit(int n) {
3483         if (n < 0)
3484             throw new ArithmeticException("Negative bit address");
3485 
3486         int intNum = n >>> 5;
3487         int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)];
3488 
3489         for (int i=0; i < result.length; i++)
3490             result[result.length-i-1] = getInt(i);
3491 
3492         result[result.length-intNum-1] &= ~(1 << (n & 31));
3493 
3494         return valueOf(result);
3495     }
3496 
3497     /**
3498      * Returns a BigInteger whose value is equivalent to this BigInteger
3499      * with the designated bit flipped.
3500      * (Computes {@code (this ^ (1<<n))}.)
3501      *
3502      * @param  n index of bit to flip.
3503      * @return {@code this ^ (1<<n)}
3504      * @throws ArithmeticException {@code n} is negative.
3505      */
3506     public BigInteger flipBit(int n) {
3507         if (n < 0)
3508             throw new ArithmeticException("Negative bit address");
3509 
3510         int intNum = n >>> 5;
3511         int[] result = new int[Math.max(intLength(), intNum+2)];
3512 
3513         for (int i=0; i < result.length; i++)
3514             result[result.length-i-1] = getInt(i);
3515 
3516         result[result.length-intNum-1] ^= (1 << (n & 31));
3517 
3518         return valueOf(result);
3519     }
3520 
3521     /**
3522      * Returns the index of the rightmost (lowest-order) one bit in this
3523      * BigInteger (the number of zero bits to the right of the rightmost
3524      * one bit).  Returns -1 if this BigInteger contains no one bits.
3525      * (Computes {@code (this == 0? -1 : log2(this & -this))}.)
3526      *
3527      * @return index of the rightmost one bit in this BigInteger.
3528      */
3529     public int getLowestSetBit() {
3530         int lsb = lowestSetBitPlusTwo - 2;
3531         if (lsb == -2) {  // lowestSetBit not initialized yet
3532             lsb = 0;
3533             if (signum == 0) {
3534                 lsb -= 1;
3535             } else {
3536                 // Search for lowest order nonzero int
3537                 int i,b;
3538                 for (i=0; (b = getInt(i)) == 0; i++)
3539                     ;
3540                 lsb += (i << 5) + Integer.numberOfTrailingZeros(b);
3541             }
3542             lowestSetBitPlusTwo = lsb + 2;
3543         }
3544         return lsb;
3545     }
3546 
3547 
3548     // Miscellaneous Bit Operations
3549 
3550     /**
3551      * Returns the number of bits in the minimal two's-complement
3552      * representation of this BigInteger, <i>excluding</i> a sign bit.
3553      * For positive BigIntegers, this is equivalent to the number of bits in
3554      * the ordinary binary representation.  (Computes
3555      * {@code (ceil(log2(this < 0 ? -this : this+1)))}.)
3556      *
3557      * @return number of bits in the minimal two's-complement
3558      *         representation of this BigInteger, <i>excluding</i> a sign bit.
3559      */
3560     public int bitLength() {
3561         int n = bitLengthPlusOne - 1;
3562         if (n == -1) { // bitLength not initialized yet
3563             int[] m = mag;
3564             int len = m.length;
3565             if (len == 0) {
3566                 n = 0; // offset by one to initialize
3567             }  else {
3568                 // Calculate the bit length of the magnitude
3569                 int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]);
3570                  if (signum < 0) {
3571                      // Check if magnitude is a power of two
3572                      boolean pow2 = (Integer.bitCount(mag[0]) == 1);
3573                      for (int i=1; i< len && pow2; i++)
3574                          pow2 = (mag[i] == 0);
3575 
3576                      n = (pow2 ? magBitLength -1 : magBitLength);
3577                  } else {
3578                      n = magBitLength;
3579                  }
3580             }
3581             bitLengthPlusOne = n + 1;
3582         }
3583         return n;
3584     }
3585 
3586     /**
3587      * Returns the number of bits in the two's complement representation
3588      * of this BigInteger that differ from its sign bit.  This method is
3589      * useful when implementing bit-vector style sets atop BigIntegers.
3590      *
3591      * @return number of bits in the two's complement representation
3592      *         of this BigInteger that differ from its sign bit.
3593      */
3594     public int bitCount() {
3595         int bc = bitCountPlusOne - 1;
3596         if (bc == -1) {  // bitCount not initialized yet
3597             bc = 0;      // offset by one to initialize
3598             // Count the bits in the magnitude
3599             for (int i=0; i < mag.length; i++)
3600                 bc += Integer.bitCount(mag[i]);
3601             if (signum < 0) {
3602                 // Count the trailing zeros in the magnitude
3603                 int magTrailingZeroCount = 0, j;
3604                 for (j=mag.length-1; mag[j] == 0; j--)
3605                     magTrailingZeroCount += 32;
3606                 magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]);
3607                 bc += magTrailingZeroCount - 1;
3608             }
3609             bitCountPlusOne = bc + 1;
3610         }
3611         return bc;
3612     }
3613 
3614     // Primality Testing
3615 
3616     /**
3617      * Returns {@code true} if this BigInteger is probably prime,
3618      * {@code false} if it's definitely composite.  If
3619      * {@code certainty} is &le; 0, {@code true} is
3620      * returned.
3621      *
3622      * @param  certainty a measure of the uncertainty that the caller is
3623      *         willing to tolerate: if the call returns {@code true}
3624      *         the probability that this BigInteger is prime exceeds
3625      *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
3626      *         this method is proportional to the value of this parameter.
3627      * @return {@code true} if this BigInteger is probably prime,
3628      *         {@code false} if it's definitely composite.
3629      */
3630     public boolean isProbablePrime(int certainty) {
3631         if (certainty <= 0)
3632             return true;
3633         BigInteger w = this.abs();
3634         if (w.equals(TWO))
3635             return true;
3636         if (!w.testBit(0) || w.equals(ONE))
3637             return false;
3638 
3639         return w.primeToCertainty(certainty, null);
3640     }
3641 
3642     // Comparison Operations
3643 
3644     /**
3645      * Compares this BigInteger with the specified BigInteger.  This
3646      * method is provided in preference to individual methods for each
3647      * of the six boolean comparison operators ({@literal <}, ==,
3648      * {@literal >}, {@literal >=}, !=, {@literal <=}).  The suggested
3649      * idiom for performing these comparisons is: {@code
3650      * (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
3651      * &lt;<i>op</i>&gt; is one of the six comparison operators.
3652      *
3653      * @param  val BigInteger to which this BigInteger is to be compared.
3654      * @return -1, 0 or 1 as this BigInteger is numerically less than, equal
3655      *         to, or greater than {@code val}.
3656      */
3657     public int compareTo(BigInteger val) {
3658         if (signum == val.signum) {
3659             switch (signum) {
3660             case 1:
3661                 return compareMagnitude(val);
3662             case -1:
3663                 return val.compareMagnitude(this);
3664             default:
3665                 return 0;
3666             }
3667         }
3668         return signum > val.signum ? 1 : -1;
3669     }
3670 
3671     /**
3672      * Compares the magnitude array of this BigInteger with the specified
3673      * BigInteger's. This is the version of compareTo ignoring sign.
3674      *
3675      * @param val BigInteger whose magnitude array to be compared.
3676      * @return -1, 0 or 1 as this magnitude array is less than, equal to or
3677      *         greater than the magnitude aray for the specified BigInteger's.
3678      */
3679     final int compareMagnitude(BigInteger val) {
3680         int[] m1 = mag;
3681         int len1 = m1.length;
3682         int[] m2 = val.mag;
3683         int len2 = m2.length;
3684         if (len1 < len2)
3685             return -1;
3686         if (len1 > len2)
3687             return 1;
3688         for (int i = 0; i < len1; i++) {
3689             int a = m1[i];
3690             int b = m2[i];
3691             if (a != b)
3692                 return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
3693         }
3694         return 0;
3695     }
3696 
3697     /**
3698      * Version of compareMagnitude that compares magnitude with long value.
3699      * val can't be Long.MIN_VALUE.
3700      */
3701     final int compareMagnitude(long val) {
3702         assert val != Long.MIN_VALUE;
3703         int[] m1 = mag;
3704         int len = m1.length;
3705         if (len > 2) {
3706             return 1;
3707         }
3708         if (val < 0) {
3709             val = -val;
3710         }
3711         int highWord = (int)(val >>> 32);
3712         if (highWord == 0) {
3713             if (len < 1)
3714                 return -1;
3715             if (len > 1)
3716                 return 1;
3717             int a = m1[0];
3718             int b = (int)val;
3719             if (a != b) {
3720                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
3721             }
3722             return 0;
3723         } else {
3724             if (len < 2)
3725                 return -1;
3726             int a = m1[0];
3727             int b = highWord;
3728             if (a != b) {
3729                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
3730             }
3731             a = m1[1];
3732             b = (int)val;
3733             if (a != b) {
3734                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
3735             }
3736             return 0;
3737         }
3738     }
3739 
3740     /**
3741      * Compares this BigInteger with the specified Object for equality.
3742      *
3743      * @param  x Object to which this BigInteger is to be compared.
3744      * @return {@code true} if and only if the specified Object is a
3745      *         BigInteger whose value is numerically equal to this BigInteger.
3746      */
3747     public boolean equals(Object x) {
3748         // This test is just an optimization, which may or may not help
3749         if (x == this)
3750             return true;
3751 
3752         if (!(x instanceof BigInteger))
3753             return false;
3754 
3755         BigInteger xInt = (BigInteger) x;
3756         if (xInt.signum != signum)
3757             return false;
3758 
3759         int[] m = mag;
3760         int len = m.length;
3761         int[] xm = xInt.mag;
3762         if (len != xm.length)
3763             return false;
3764 
3765         for (int i = 0; i < len; i++)
3766             if (xm[i] != m[i])
3767                 return false;
3768 
3769         return true;
3770     }
3771 
3772     /**
3773      * Returns the minimum of this BigInteger and {@code val}.
3774      *
3775      * @param  val value with which the minimum is to be computed.
3776      * @return the BigInteger whose value is the lesser of this BigInteger and
3777      *         {@code val}.  If they are equal, either may be returned.
3778      */
3779     public BigInteger min(BigInteger val) {
3780         return (compareTo(val) < 0 ? this : val);
3781     }
3782 
3783     /**
3784      * Returns the maximum of this BigInteger and {@code val}.
3785      *
3786      * @param  val value with which the maximum is to be computed.
3787      * @return the BigInteger whose value is the greater of this and
3788      *         {@code val}.  If they are equal, either may be returned.
3789      */
3790     public BigInteger max(BigInteger val) {
3791         return (compareTo(val) > 0 ? this : val);
3792     }
3793 
3794 
3795     // Hash Function
3796 
3797     /**
3798      * Returns the hash code for this BigInteger.
3799      *
3800      * @return hash code for this BigInteger.
3801      */
3802     public int hashCode() {
3803         int hashCode = 0;
3804 
3805         for (int i=0; i < mag.length; i++)
3806             hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
3807 
3808         return hashCode * signum;
3809     }
3810 
3811     /**
3812      * Returns the String representation of this BigInteger in the
3813      * given radix.  If the radix is outside the range from {@link
3814      * Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
3815      * it will default to 10 (as is the case for
3816      * {@code Integer.toString}).  The digit-to-character mapping
3817      * provided by {@code Character.forDigit} is used, and a minus
3818      * sign is prepended if appropriate.  (This representation is
3819      * compatible with the {@link #BigInteger(String, int) (String,
3820      * int)} constructor.)
3821      *
3822      * @param  radix  radix of the String representation.
3823      * @return String representation of this BigInteger in the given radix.
3824      * @see    Integer#toString
3825      * @see    Character#forDigit
3826      * @see    #BigInteger(java.lang.String, int)
3827      */
3828     public String toString(int radix) {
3829         if (signum == 0)
3830             return "0";
3831         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
3832             radix = 10;
3833 
3834         // If it's small enough, use smallToString.
3835         if (mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD)
3836            return smallToString(radix);
3837 
3838         // Otherwise use recursive toString, which requires positive arguments.
3839         // The results will be concatenated into this StringBuilder
3840         StringBuilder sb = new StringBuilder();
3841         if (signum < 0) {
3842             toString(this.negate(), sb, radix, 0);
3843             sb.insert(0, '-');
3844         }
3845         else
3846             toString(this, sb, radix, 0);
3847 
3848         return sb.toString();
3849     }
3850 
3851     /** This method is used to perform toString when arguments are small. */
3852     private String smallToString(int radix) {
3853         if (signum == 0) {
3854             return "0";
3855         }
3856 
3857         // Compute upper bound on number of digit groups and allocate space
3858         int maxNumDigitGroups = (4*mag.length + 6)/7;
3859         String digitGroup[] = new String[maxNumDigitGroups];
3860 
3861         // Translate number to string, a digit group at a time
3862         BigInteger tmp = this.abs();
3863         int numGroups = 0;
3864         while (tmp.signum != 0) {
3865             BigInteger d = longRadix[radix];
3866 
3867             MutableBigInteger q = new MutableBigInteger(),
3868                               a = new MutableBigInteger(tmp.mag),
3869                               b = new MutableBigInteger(d.mag);
3870             MutableBigInteger r = a.divide(b, q);
3871             BigInteger q2 = q.toBigInteger(tmp.signum * d.signum);
3872             BigInteger r2 = r.toBigInteger(tmp.signum * d.signum);
3873 
3874             digitGroup[numGroups++] = Long.toString(r2.longValue(), radix);
3875             tmp = q2;
3876         }
3877 
3878         // Put sign (if any) and first digit group into result buffer
3879         StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1);
3880         if (signum < 0) {
3881             buf.append('-');
3882         }
3883         buf.append(digitGroup[numGroups-1]);
3884 
3885         // Append remaining digit groups padded with leading zeros
3886         for (int i=numGroups-2; i >= 0; i--) {
3887             // Prepend (any) leading zeros for this digit group
3888             int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length();
3889             if (numLeadingZeros != 0) {
3890                 buf.append(zeros[numLeadingZeros]);
3891             }
3892             buf.append(digitGroup[i]);
3893         }
3894         return buf.toString();
3895     }
3896 
3897     /**
3898      * Converts the specified BigInteger to a string and appends to
3899      * {@code sb}.  This implements the recursive Schoenhage algorithm
3900      * for base conversions.
3901      * <p>
3902      * See Knuth, Donald,  _The Art of Computer Programming_, Vol. 2,
3903      * Answers to Exercises (4.4) Question 14.
3904      *
3905      * @param u      The number to convert to a string.
3906      * @param sb     The StringBuilder that will be appended to in place.
3907      * @param radix  The base to convert to.
3908      * @param digits The minimum number of digits to pad to.
3909      */
3910     private static void toString(BigInteger u, StringBuilder sb, int radix,
3911                                  int digits) {
3912         // If we're smaller than a certain threshold, use the smallToString
3913         // method, padding with leading zeroes when necessary.
3914         if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) {
3915             String s = u.smallToString(radix);
3916 
3917             // Pad with internal zeros if necessary.
3918             // Don't pad if we're at the beginning of the string.
3919             if ((s.length() < digits) && (sb.length() > 0)) {
3920                 for (int i=s.length(); i < digits; i++) {
3921                     sb.append('0');
3922                 }
3923             }
3924 
3925             sb.append(s);
3926             return;
3927         }
3928 
3929         int b, n;
3930         b = u.bitLength();
3931 
3932         // Calculate a value for n in the equation radix^(2^n) = u
3933         // and subtract 1 from that value.  This is used to find the
3934         // cache index that contains the best value to divide u.
3935         n = (int) Math.round(Math.log(b * LOG_TWO / logCache[radix]) / LOG_TWO - 1.0);
3936         BigInteger v = getRadixConversionCache(radix, n);
3937         BigInteger[] results;
3938         results = u.divideAndRemainder(v);
3939 
3940         int expectedDigits = 1 << n;
3941 
3942         // Now recursively build the two halves of each number.
3943         toString(results[0], sb, radix, digits-expectedDigits);
3944         toString(results[1], sb, radix, expectedDigits);
3945     }
3946 
3947     /**
3948      * Returns the value radix^(2^exponent) from the cache.
3949      * If this value doesn't already exist in the cache, it is added.
3950      * <p>
3951      * This could be changed to a more complicated caching method using
3952      * {@code Future}.
3953      */
3954     private static BigInteger getRadixConversionCache(int radix, int exponent) {
3955         BigInteger[] cacheLine = powerCache[radix]; // volatile read
3956         if (exponent < cacheLine.length) {
3957             return cacheLine[exponent];
3958         }
3959 
3960         int oldLength = cacheLine.length;
3961         cacheLine = Arrays.copyOf(cacheLine, exponent + 1);
3962         for (int i = oldLength; i <= exponent; i++) {
3963             cacheLine[i] = cacheLine[i - 1].pow(2);
3964         }
3965 
3966         BigInteger[][] pc = powerCache; // volatile read again
3967         if (exponent >= pc[radix].length) {
3968             pc = pc.clone();
3969             pc[radix] = cacheLine;
3970             powerCache = pc; // volatile write, publish
3971         }
3972         return cacheLine[exponent];
3973     }
3974 
3975     /* zero[i] is a string of i consecutive zeros. */
3976     private static String zeros[] = new String[64];
3977     static {
3978         zeros[63] =
3979             "000000000000000000000000000000000000000000000000000000000000000";
3980         for (int i=0; i < 63; i++)
3981             zeros[i] = zeros[63].substring(0, i);
3982     }
3983 
3984     /**
3985      * Returns the decimal String representation of this BigInteger.
3986      * The digit-to-character mapping provided by
3987      * {@code Character.forDigit} is used, and a minus sign is
3988      * prepended if appropriate.  (This representation is compatible
3989      * with the {@link #BigInteger(String) (String)} constructor, and
3990      * allows for String concatenation with Java's + operator.)
3991      *
3992      * @return decimal String representation of this BigInteger.
3993      * @see    Character#forDigit
3994      * @see    #BigInteger(java.lang.String)
3995      */
3996     public String toString() {
3997         return toString(10);
3998     }
3999 
4000     /**
4001      * Returns a byte array containing the two's-complement
4002      * representation of this BigInteger.  The byte array will be in
4003      * <i>big-endian</i> byte-order: the most significant byte is in
4004      * the zeroth element.  The array will contain the minimum number
4005      * of bytes required to represent this BigInteger, including at
4006      * least one sign bit, which is {@code (ceil((this.bitLength() +
4007      * 1)/8))}.  (This representation is compatible with the
4008      * {@link #BigInteger(byte[]) (byte[])} constructor.)
4009      *
4010      * @return a byte array containing the two's-complement representation of
4011      *         this BigInteger.
4012      * @see    #BigInteger(byte[])
4013      */
4014     public byte[] toByteArray() {
4015         int byteLen = bitLength()/8 + 1;
4016         byte[] byteArray = new byte[byteLen];
4017 
4018         for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i >= 0; i--) {
4019             if (bytesCopied == 4) {
4020                 nextInt = getInt(intIndex++);
4021                 bytesCopied = 1;
4022             } else {
4023                 nextInt >>>= 8;
4024                 bytesCopied++;
4025             }
4026             byteArray[i] = (byte)nextInt;
4027         }
4028         return byteArray;
4029     }
4030 
4031     /**
4032      * Converts this BigInteger to an {@code int}.  This
4033      * conversion is analogous to a
4034      * <i>narrowing primitive conversion</i> from {@code long} to
4035      * {@code int} as defined in section 5.1.3 of
4036      * <cite>The Java&trade; Language Specification</cite>:
4037      * if this BigInteger is too big to fit in an
4038      * {@code int}, only the low-order 32 bits are returned.
4039      * Note that this conversion can lose information about the
4040      * overall magnitude of the BigInteger value as well as return a
4041      * result with the opposite sign.
4042      *
4043      * @return this BigInteger converted to an {@code int}.
4044      * @see #intValueExact()
4045      */
4046     public int intValue() {
4047         int result = 0;
4048         result = getInt(0);
4049         return result;
4050     }
4051 
4052     /**
4053      * Converts this BigInteger to a {@code long}.  This
4054      * conversion is analogous to a
4055      * <i>narrowing primitive conversion</i> from {@code long} to
4056      * {@code int} as defined in section 5.1.3 of
4057      * <cite>The Java&trade; Language Specification</cite>:
4058      * if this BigInteger is too big to fit in a
4059      * {@code long}, only the low-order 64 bits are returned.
4060      * Note that this conversion can lose information about the
4061      * overall magnitude of the BigInteger value as well as return a
4062      * result with the opposite sign.
4063      *
4064      * @return this BigInteger converted to a {@code long}.
4065      * @see #longValueExact()
4066      */
4067     public long longValue() {
4068         long result = 0;
4069 
4070         for (int i=1; i >= 0; i--)
4071             result = (result << 32) + (getInt(i) & LONG_MASK);
4072         return result;
4073     }
4074 
4075     /**
4076      * Converts this BigInteger to a {@code float}.  This
4077      * conversion is similar to the
4078      * <i>narrowing primitive conversion</i> from {@code double} to
4079      * {@code float} as defined in section 5.1.3 of
4080      * <cite>The Java&trade; Language Specification</cite>:
4081      * if this BigInteger has too great a magnitude
4082      * to represent as a {@code float}, it will be converted to
4083      * {@link Float#NEGATIVE_INFINITY} or {@link
4084      * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
4085      * the return value is finite, this conversion can lose
4086      * information about the precision of the BigInteger value.
4087      *
4088      * @return this BigInteger converted to a {@code float}.
4089      */
4090     public float floatValue() {
4091         if (signum == 0) {
4092             return 0.0f;
4093         }
4094 
4095         int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
4096 
4097         // exponent == floor(log2(abs(this)))
4098         if (exponent < Long.SIZE - 1) {
4099             return longValue();
4100         } else if (exponent > Float.MAX_EXPONENT) {
4101             return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
4102         }
4103 
4104         /*
4105          * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
4106          * one bit. To make rounding easier, we pick out the top
4107          * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
4108          * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
4109          * bits, and signifFloor the top SIGNIFICAND_WIDTH.
4110          *
4111          * It helps to consider the real number signif = abs(this) *
4112          * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
4113          */
4114         int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH;
4115 
4116         int twiceSignifFloor;
4117         // twiceSignifFloor will be == abs().shiftRight(shift).intValue()
4118         // We do the shift into an int directly to improve performance.
4119 
4120         int nBits = shift & 0x1f;
4121         int nBits2 = 32 - nBits;
4122 
4123         if (nBits == 0) {
4124             twiceSignifFloor = mag[0];
4125         } else {
4126             twiceSignifFloor = mag[0] >>> nBits;
4127             if (twiceSignifFloor == 0) {
4128                 twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits);
4129             }
4130         }
4131 
4132         int signifFloor = twiceSignifFloor >> 1;
4133         signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit
4134 
4135         /*
4136          * We round up if either the fractional part of signif is strictly
4137          * greater than 0.5 (which is true if the 0.5 bit is set and any lower
4138          * bit is set), or if the fractional part of signif is >= 0.5 and
4139          * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
4140          * are set). This is equivalent to the desired HALF_EVEN rounding.
4141          */
4142         boolean increment = (twiceSignifFloor & 1) != 0
4143                 && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
4144         int signifRounded = increment ? signifFloor + 1 : signifFloor;
4145         int bits = ((exponent + FloatConsts.EXP_BIAS))
4146                 << (FloatConsts.SIGNIFICAND_WIDTH - 1);
4147         bits += signifRounded;
4148         /*
4149          * If signifRounded == 2^24, we'd need to set all of the significand
4150          * bits to zero and add 1 to the exponent. This is exactly the behavior
4151          * we get from just adding signifRounded to bits directly. If the
4152          * exponent is Float.MAX_EXPONENT, we round up (correctly) to
4153          * Float.POSITIVE_INFINITY.
4154          */
4155         bits |= signum & FloatConsts.SIGN_BIT_MASK;
4156         return Float.intBitsToFloat(bits);
4157     }
4158 
4159     /**
4160      * Converts this BigInteger to a {@code double}.  This
4161      * conversion is similar to the
4162      * <i>narrowing primitive conversion</i> from {@code double} to
4163      * {@code float} as defined in section 5.1.3 of
4164      * <cite>The Java&trade; Language Specification</cite>:
4165      * if this BigInteger has too great a magnitude
4166      * to represent as a {@code double}, it will be converted to
4167      * {@link Double#NEGATIVE_INFINITY} or {@link
4168      * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
4169      * the return value is finite, this conversion can lose
4170      * information about the precision of the BigInteger value.
4171      *
4172      * @return this BigInteger converted to a {@code double}.
4173      */
4174     public double doubleValue() {
4175         if (signum == 0) {
4176             return 0.0;
4177         }
4178 
4179         int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
4180 
4181         // exponent == floor(log2(abs(this))Double)
4182         if (exponent < Long.SIZE - 1) {
4183             return longValue();
4184         } else if (exponent > Double.MAX_EXPONENT) {
4185             return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
4186         }
4187 
4188         /*
4189          * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
4190          * one bit. To make rounding easier, we pick out the top
4191          * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
4192          * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
4193          * bits, and signifFloor the top SIGNIFICAND_WIDTH.
4194          *
4195          * It helps to consider the real number signif = abs(this) *
4196          * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
4197          */
4198         int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH;
4199 
4200         long twiceSignifFloor;
4201         // twiceSignifFloor will be == abs().shiftRight(shift).longValue()
4202         // We do the shift into a long directly to improve performance.
4203 
4204         int nBits = shift & 0x1f;
4205         int nBits2 = 32 - nBits;
4206 
4207         int highBits;
4208         int lowBits;
4209         if (nBits == 0) {
4210             highBits = mag[0];
4211             lowBits = mag[1];
4212         } else {
4213             highBits = mag[0] >>> nBits;
4214             lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits);
4215             if (highBits == 0) {
4216                 highBits = lowBits;
4217                 lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits);
4218             }
4219         }
4220 
4221         twiceSignifFloor = ((highBits & LONG_MASK) << 32)
4222                 | (lowBits & LONG_MASK);
4223 
4224         long signifFloor = twiceSignifFloor >> 1;
4225         signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit
4226 
4227         /*
4228          * We round up if either the fractional part of signif is strictly
4229          * greater than 0.5 (which is true if the 0.5 bit is set and any lower
4230          * bit is set), or if the fractional part of signif is >= 0.5 and
4231          * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
4232          * are set). This is equivalent to the desired HALF_EVEN rounding.
4233          */
4234         boolean increment = (twiceSignifFloor & 1) != 0
4235                 && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
4236         long signifRounded = increment ? signifFloor + 1 : signifFloor;
4237         long bits = (long) ((exponent + DoubleConsts.EXP_BIAS))
4238                 << (DoubleConsts.SIGNIFICAND_WIDTH - 1);
4239         bits += signifRounded;
4240         /*
4241          * If signifRounded == 2^53, we'd need to set all of the significand
4242          * bits to zero and add 1 to the exponent. This is exactly the behavior
4243          * we get from just adding signifRounded to bits directly. If the
4244          * exponent is Double.MAX_EXPONENT, we round up (correctly) to
4245          * Double.POSITIVE_INFINITY.
4246          */
4247         bits |= signum & DoubleConsts.SIGN_BIT_MASK;
4248         return Double.longBitsToDouble(bits);
4249     }
4250 
4251     /**
4252      * Returns a copy of the input array stripped of any leading zero bytes.
4253      */
4254     private static int[] stripLeadingZeroInts(int val[]) {
4255         int vlen = val.length;
4256         int keep;
4257 
4258         // Find first nonzero byte
4259         for (keep = 0; keep < vlen && val[keep] == 0; keep++)
4260             ;
4261         return java.util.Arrays.copyOfRange(val, keep, vlen);
4262     }
4263 
4264     /**
4265      * Returns the input array stripped of any leading zero bytes.
4266      * Since the source is trusted the copying may be skipped.
4267      */
4268     private static int[] trustedStripLeadingZeroInts(int val[]) {
4269         int vlen = val.length;
4270         int keep;
4271 
4272         // Find first nonzero byte
4273         for (keep = 0; keep < vlen && val[keep] == 0; keep++)
4274             ;
4275         return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);
4276     }
4277 
4278     /**
4279      * Returns a copy of the input array stripped of any leading zero bytes.
4280      */
4281     private static int[] stripLeadingZeroBytes(byte a[], int off, int len) {
4282         int indexBound = off + len;
4283         int keep;
4284 
4285         // Find first nonzero byte
4286         for (keep = off; keep < indexBound && a[keep] == 0; keep++)
4287             ;
4288 
4289         // Allocate new array and copy relevant part of input array
4290         int intLength = ((indexBound - keep) + 3) >>> 2;
4291         int[] result = new int[intLength];
4292         int b = indexBound - 1;
4293         for (int i = intLength-1; i >= 0; i--) {
4294             result[i] = a[b--] & 0xff;
4295             int bytesRemaining = b - keep + 1;
4296             int bytesToTransfer = Math.min(3, bytesRemaining);
4297             for (int j=8; j <= (bytesToTransfer << 3); j += 8)
4298                 result[i] |= ((a[b--] & 0xff) << j);
4299         }
4300         return result;
4301     }
4302 
4303     /**
4304      * Takes an array a representing a negative 2's-complement number and
4305      * returns the minimal (no leading zero bytes) unsigned whose value is -a.
4306      */
4307     private static int[] makePositive(byte a[], int off, int len) {
4308         int keep, k;
4309         int indexBound = off + len;
4310 
4311         // Find first non-sign (0xff) byte of input
4312         for (keep=off; keep < indexBound && a[keep] == -1; keep++)
4313             ;
4314 
4315 
4316         /* Allocate output array.  If all non-sign bytes are 0x00, we must
4317          * allocate space for one extra output byte. */
4318         for (k=keep; k < indexBound && a[k] == 0; k++)
4319             ;
4320 
4321         int extraByte = (k == indexBound) ? 1 : 0;
4322         int intLength = ((indexBound - keep + extraByte) + 3) >>> 2;
4323         int result[] = new int[intLength];
4324 
4325         /* Copy one's complement of input into output, leaving extra
4326          * byte (if it exists) == 0x00 */
4327         int b = indexBound - 1;
4328         for (int i = intLength-1; i >= 0; i--) {
4329             result[i] = a[b--] & 0xff;
4330             int numBytesToTransfer = Math.min(3, b-keep+1);
4331             if (numBytesToTransfer < 0)
4332                 numBytesToTransfer = 0;
4333             for (int j=8; j <= 8*numBytesToTransfer; j += 8)
4334                 result[i] |= ((a[b--] & 0xff) << j);
4335 
4336             // Mask indicates which bits must be complemented
4337             int mask = -1 >>> (8*(3-numBytesToTransfer));
4338             result[i] = ~result[i] & mask;
4339         }
4340 
4341         // Add one to one's complement to generate two's complement
4342         for (int i=result.length-1; i >= 0; i--) {
4343             result[i] = (int)((result[i] & LONG_MASK) + 1);
4344             if (result[i] != 0)
4345                 break;
4346         }
4347 
4348         return result;
4349     }
4350 
4351     /**
4352      * Takes an array a representing a negative 2's-complement number and
4353      * returns the minimal (no leading zero ints) unsigned whose value is -a.
4354      */
4355     private static int[] makePositive(int a[]) {
4356         int keep, j;
4357 
4358         // Find first non-sign (0xffffffff) int of input
4359         for (keep=0; keep < a.length && a[keep] == -1; keep++)
4360             ;
4361 
4362         /* Allocate output array.  If all non-sign ints are 0x00, we must
4363          * allocate space for one extra output int. */
4364         for (j=keep; j < a.length && a[j] == 0; j++)
4365             ;
4366         int extraInt = (j == a.length ? 1 : 0);
4367         int result[] = new int[a.length - keep + extraInt];
4368 
4369         /* Copy one's complement of input into output, leaving extra
4370          * int (if it exists) == 0x00 */
4371         for (int i = keep; i < a.length; i++)
4372             result[i - keep + extraInt] = ~a[i];
4373 
4374         // Add one to one's complement to generate two's complement
4375         for (int i=result.length-1; ++result[i] == 0; i--)
4376             ;
4377 
4378         return result;
4379     }
4380 
4381     /*
4382      * The following two arrays are used for fast String conversions.  Both
4383      * are indexed by radix.  The first is the number of digits of the given
4384      * radix that can fit in a Java long without "going negative", i.e., the
4385      * highest integer n such that radix**n < 2**63.  The second is the
4386      * "long radix" that tears each number into "long digits", each of which
4387      * consists of the number of digits in the corresponding element in
4388      * digitsPerLong (longRadix[i] = i**digitPerLong[i]).  Both arrays have
4389      * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
4390      * used.
4391      */
4392     private static int digitsPerLong[] = {0, 0,
4393         62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14,
4394         14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};
4395 
4396     private static BigInteger longRadix[] = {null, null,
4397         valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
4398         valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
4399         valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
4400         valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
4401         valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
4402         valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
4403         valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
4404         valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
4405         valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L),
4406         valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
4407         valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L),
4408         valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
4409         valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
4410         valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L),
4411         valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L),
4412         valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
4413         valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
4414         valueOf(0x41c21cb8e1000000L)};
4415 
4416     /*
4417      * These two arrays are the integer analogue of above.
4418      */
4419     private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11,
4420         11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
4421         6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};
4422 
4423     private static int intRadix[] = {0, 0,
4424         0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800,
4425         0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61,
4426         0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f,  0x10000000,
4427         0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
4428         0x6c20a40,  0x8d2d931,  0xb640000,  0xe8d4a51,  0x1269ae40,
4429         0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41,
4430         0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400
4431     };
4432 
4433     /**
4434      * These routines provide access to the two's complement representation
4435      * of BigIntegers.
4436      */
4437 
4438     /**
4439      * Returns the length of the two's complement representation in ints,
4440      * including space for at least one sign bit.
4441      */
4442     private int intLength() {
4443         return (bitLength() >>> 5) + 1;
4444     }
4445 
4446     /* Returns sign bit */
4447     private int signBit() {
4448         return signum < 0 ? 1 : 0;
4449     }
4450 
4451     /* Returns an int of sign bits */
4452     private int signInt() {
4453         return signum < 0 ? -1 : 0;
4454     }
4455 
4456     /**
4457      * Returns the specified int of the little-endian two's complement
4458      * representation (int 0 is the least significant).  The int number can
4459      * be arbitrarily high (values are logically preceded by infinitely many
4460      * sign ints).
4461      */
4462     private int getInt(int n) {
4463         if (n < 0)
4464             return 0;
4465         if (n >= mag.length)
4466             return signInt();
4467 
4468         int magInt = mag[mag.length-n-1];
4469 
4470         return (signum >= 0 ? magInt :
4471                 (n <= firstNonzeroIntNum() ? -magInt : ~magInt));
4472     }
4473 
4474     /**
4475     * Returns the index of the int that contains the first nonzero int in the
4476     * little-endian binary representation of the magnitude (int 0 is the
4477     * least significant). If the magnitude is zero, return value is undefined.
4478     *
4479     * <p>Note: never used for a BigInteger with a magnitude of zero.
4480     * @see #getInt.
4481     */
4482     private int firstNonzeroIntNum() {
4483         int fn = firstNonzeroIntNumPlusTwo - 2;
4484         if (fn == -2) { // firstNonzeroIntNum not initialized yet
4485             // Search for the first nonzero int
4486             int i;
4487             int mlen = mag.length;
4488             for (i = mlen - 1; i >= 0 && mag[i] == 0; i--)
4489                 ;
4490             fn = mlen - i - 1;
4491             firstNonzeroIntNumPlusTwo = fn + 2; // offset by two to initialize
4492         }
4493         return fn;
4494     }
4495 
4496     /** use serialVersionUID from JDK 1.1. for interoperability */
4497     private static final long serialVersionUID = -8287574255936472291L;
4498 
4499     /**
4500      * Serializable fields for BigInteger.
4501      *
4502      * @serialField signum  int
4503      *              signum of this BigInteger
4504      * @serialField magnitude byte[]
4505      *              magnitude array of this BigInteger
4506      * @serialField bitCount  int
4507      *              appears in the serialized form for backward compatibility
4508      * @serialField bitLength int
4509      *              appears in the serialized form for backward compatibility
4510      * @serialField firstNonzeroByteNum int
4511      *              appears in the serialized form for backward compatibility
4512      * @serialField lowestSetBit int
4513      *              appears in the serialized form for backward compatibility
4514      */
4515     private static final ObjectStreamField[] serialPersistentFields = {
4516         new ObjectStreamField("signum", Integer.TYPE),
4517         new ObjectStreamField("magnitude", byte[].class),
4518         new ObjectStreamField("bitCount", Integer.TYPE),
4519         new ObjectStreamField("bitLength", Integer.TYPE),
4520         new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE),
4521         new ObjectStreamField("lowestSetBit", Integer.TYPE)
4522         };
4523 
4524     /**
4525      * Reconstitute the {@code BigInteger} instance from a stream (that is,
4526      * deserialize it). The magnitude is read in as an array of bytes
4527      * for historical reasons, but it is converted to an array of ints
4528      * and the byte array is discarded.
4529      * Note:
4530      * The current convention is to initialize the cache fields, bitCountPlusOne,
4531      * bitLengthPlusOne and lowestSetBitPlusTwo, to 0 rather than some other
4532      * marker value. Therefore, no explicit action to set these fields needs to
4533      * be taken in readObject because those fields already have a 0 value by
4534      * default since defaultReadObject is not being used.
4535      */
4536     private void readObject(java.io.ObjectInputStream s)
4537         throws java.io.IOException, ClassNotFoundException {
4538         // prepare to read the alternate persistent fields
4539         ObjectInputStream.GetField fields = s.readFields();
4540 
4541         // Read the alternate persistent fields that we care about
4542         int sign = fields.get("signum", -2);
4543         byte[] magnitude = (byte[])fields.get("magnitude", null);
4544 
4545         // Validate signum
4546         if (sign < -1 || sign > 1) {
4547             String message = "BigInteger: Invalid signum value";
4548             if (fields.defaulted("signum"))
4549                 message = "BigInteger: Signum not present in stream";
4550             throw new java.io.StreamCorruptedException(message);
4551         }
4552         int[] mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length);
4553         if ((mag.length == 0) != (sign == 0)) {
4554             String message = "BigInteger: signum-magnitude mismatch";
4555             if (fields.defaulted("magnitude"))
4556                 message = "BigInteger: Magnitude not present in stream";
4557             throw new java.io.StreamCorruptedException(message);
4558         }
4559 
4560         // Commit final fields via Unsafe
4561         UnsafeHolder.putSign(this, sign);
4562 
4563         // Calculate mag field from magnitude and discard magnitude
4564         UnsafeHolder.putMag(this, mag);
4565         if (mag.length >= MAX_MAG_LENGTH) {
4566             try {
4567                 checkRange();
4568             } catch (ArithmeticException e) {
4569                 throw new java.io.StreamCorruptedException("BigInteger: Out of the supported range");
4570             }
4571         }
4572     }
4573 
4574     // Support for resetting final fields while deserializing
4575     private static class UnsafeHolder {
4576         private static final jdk.internal.misc.Unsafe unsafe;
4577         private static final long signumOffset;
4578         private static final long magOffset;
4579         static {
4580             try {
4581                 unsafe = jdk.internal.misc.Unsafe.getUnsafe();
4582                 signumOffset = unsafe.objectFieldOffset
4583                     (BigInteger.class.getDeclaredField("signum"));
4584                 magOffset = unsafe.objectFieldOffset
4585                     (BigInteger.class.getDeclaredField("mag"));
4586             } catch (Exception ex) {
4587                 throw new ExceptionInInitializerError(ex);
4588             }
4589         }
4590 
4591         static void putSign(BigInteger bi, int sign) {
4592             unsafe.putInt(bi, signumOffset, sign);
4593         }
4594 
4595         static void putMag(BigInteger bi, int[] magnitude) {
4596             unsafe.putObject(bi, magOffset, magnitude);
4597         }
4598     }
4599 
4600     /**
4601      * Save the {@code BigInteger} instance to a stream.  The magnitude of a
4602      * {@code BigInteger} is serialized as a byte array for historical reasons.
4603      * To maintain compatibility with older implementations, the integers
4604      * -1, -1, -2, and -2 are written as the values of the obsolete fields
4605      * {@code bitCount}, {@code bitLength}, {@code lowestSetBit}, and
4606      * {@code firstNonzeroByteNum}, respectively.  These values are compatible
4607      * with older implementations, but will be ignored by current
4608      * implementations.
4609      */
4610     private void writeObject(ObjectOutputStream s) throws IOException {
4611         // set the values of the Serializable fields
4612         ObjectOutputStream.PutField fields = s.putFields();
4613         fields.put("signum", signum);
4614         fields.put("magnitude", magSerializedForm());
4615         // The values written for cached fields are compatible with older
4616         // versions, but are ignored in readObject so don't otherwise matter.
4617         fields.put("bitCount", -1);
4618         fields.put("bitLength", -1);
4619         fields.put("lowestSetBit", -2);
4620         fields.put("firstNonzeroByteNum", -2);
4621 
4622         // save them
4623         s.writeFields();
4624     }
4625 
4626     /**
4627      * Returns the mag array as an array of bytes.
4628      */
4629     private byte[] magSerializedForm() {
4630         int len = mag.length;
4631 
4632         int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0]));
4633         int byteLen = (bitLen + 7) >>> 3;
4634         byte[] result = new byte[byteLen];
4635 
4636         for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0;
4637              i >= 0; i--) {
4638             if (bytesCopied == 4) {
4639                 nextInt = mag[intIndex--];
4640                 bytesCopied = 1;
4641             } else {
4642                 nextInt >>>= 8;
4643                 bytesCopied++;
4644             }
4645             result[i] = (byte)nextInt;
4646         }
4647         return result;
4648     }
4649 
4650     /**
4651      * Converts this {@code BigInteger} to a {@code long}, checking
4652      * for lost information.  If the value of this {@code BigInteger}
4653      * is out of the range of the {@code long} type, then an
4654      * {@code ArithmeticException} is thrown.
4655      *
4656      * @return this {@code BigInteger} converted to a {@code long}.
4657      * @throws ArithmeticException if the value of {@code this} will
4658      * not exactly fit in a {@code long}.
4659      * @see BigInteger#longValue
4660      * @since  1.8
4661      */
4662     public long longValueExact() {
4663         if (mag.length <= 2 && bitLength() <= 63)
4664             return longValue();
4665         else
4666             throw new ArithmeticException("BigInteger out of long range");
4667     }
4668 
4669     /**
4670      * Converts this {@code BigInteger} to an {@code int}, checking
4671      * for lost information.  If the value of this {@code BigInteger}
4672      * is out of the range of the {@code int} type, then an
4673      * {@code ArithmeticException} is thrown.
4674      *
4675      * @return this {@code BigInteger} converted to an {@code int}.
4676      * @throws ArithmeticException if the value of {@code this} will
4677      * not exactly fit in a {@code int}.
4678      * @see BigInteger#intValue
4679      * @since  1.8
4680      */
4681     public int intValueExact() {
4682         if (mag.length <= 1 && bitLength() <= 31)
4683             return intValue();
4684         else
4685             throw new ArithmeticException("BigInteger out of int range");
4686     }
4687 
4688     /**
4689      * Converts this {@code BigInteger} to a {@code short}, checking
4690      * for lost information.  If the value of this {@code BigInteger}
4691      * is out of the range of the {@code short} type, then an
4692      * {@code ArithmeticException} is thrown.
4693      *
4694      * @return this {@code BigInteger} converted to a {@code short}.
4695      * @throws ArithmeticException if the value of {@code this} will
4696      * not exactly fit in a {@code short}.
4697      * @see BigInteger#shortValue
4698      * @since  1.8
4699      */
4700     public short shortValueExact() {
4701         if (mag.length <= 1 && bitLength() <= 31) {
4702             int value = intValue();
4703             if (value >= Short.MIN_VALUE && value <= Short.MAX_VALUE)
4704                 return shortValue();
4705         }
4706         throw new ArithmeticException("BigInteger out of short range");
4707     }
4708 
4709     /**
4710      * Converts this {@code BigInteger} to a {@code byte}, checking
4711      * for lost information.  If the value of this {@code BigInteger}
4712      * is out of the range of the {@code byte} type, then an
4713      * {@code ArithmeticException} is thrown.
4714      *
4715      * @return this {@code BigInteger} converted to a {@code byte}.
4716      * @throws ArithmeticException if the value of {@code this} will
4717      * not exactly fit in a {@code byte}.
4718      * @see BigInteger#byteValue
4719      * @since  1.8
4720      */
4721     public byte byteValueExact() {
4722         if (mag.length <= 1 && bitLength() <= 31) {
4723             int value = intValue();
4724             if (value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE)
4725                 return byteValue();
4726         }
4727         throw new ArithmeticException("BigInteger out of byte range");
4728     }
4729 }