1 /*
   2 * Copyright (c) 2010, 2011 Oracle and/or its affiliates. All rights reserved.
   3 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
   4 */
   5 
   6 #include "precompiled.hpp"
   7 #include "runtime/advancedThresholdPolicy.hpp"
   8 #include "runtime/simpleThresholdPolicy.inline.hpp"
   9 
  10 #ifdef TIERED
  11 // Print an event.
  12 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
  13                                              int bci, CompLevel level) {
  14   tty->print(" rate: ");
  15   if (mh->prev_time() == 0) tty->print("n/a");
  16   else tty->print("%f", mh->rate());
  17 
  18   tty->print(" k: %.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  19                                 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  20 
  21 }
  22 
  23 void AdvancedThresholdPolicy::initialize() {
  24   // Turn on ergonomic compiler count selection
  25   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
  26     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  27   }
  28   int count = CICompilerCount;
  29   if (CICompilerCountPerCPU) {
  30     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
  31     int log_cpu = log2_intptr(os::active_processor_count());
  32     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
  33     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  34   }
  35 
  36   set_c1_count(MAX2(count / 3, 1));
  37   set_c2_count(MAX2(count - count / 3, 1));
  38 
  39   // Some inlining tuning
  40 #ifdef X86
  41   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  42     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  43   }
  44 #endif
  45 
  46 #ifdef SPARC
  47   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  48     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  49   }
  50 #endif
  51 
  52 
  53   set_start_time(os::javaTimeMillis());
  54 }
  55 
  56 // update_rate() is called from select_task() while holding a compile queue lock.
  57 void AdvancedThresholdPolicy::update_rate(jlong t, methodOop m) {
  58   if (is_old(m)) {
  59     // We don't remove old methods from the queue,
  60     // so we can just zero the rate.
  61     m->set_rate(0);
  62     return;
  63   }
  64 
  65   // We don't update the rate if we've just came out of a safepoint.
  66   // delta_s is the time since last safepoint in milliseconds.
  67   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  68   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
  69   // How many events were there since the last time?
  70   int event_count = m->invocation_count() + m->backedge_count();
  71   int delta_e = event_count - m->prev_event_count();
  72 
  73   // We should be running for at least 1ms.
  74   if (delta_s >= TieredRateUpdateMinTime) {
  75     // And we must've taken the previous point at least 1ms before.
  76     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
  77       m->set_prev_time(t);
  78       m->set_prev_event_count(event_count);
  79       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
  80     } else
  81       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
  82         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
  83         m->set_rate(0);
  84       }
  85   }
  86 }
  87 
  88 // Check if this method has been stale from a given number of milliseconds.
  89 // See select_task().
  90 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, methodOop m) {
  91   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  92   jlong delta_t = t - m->prev_time();
  93   if (delta_t > timeout && delta_s > timeout) {
  94     int event_count = m->invocation_count() + m->backedge_count();
  95     int delta_e = event_count - m->prev_event_count();
  96     // Return true if there were no events.
  97     return delta_e == 0;
  98   }
  99   return false;
 100 }
 101 
 102 // We don't remove old methods from the compile queue even if they have
 103 // very low activity. See select_task().
 104 bool AdvancedThresholdPolicy::is_old(methodOop method) {
 105   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 106 }
 107 
 108 double AdvancedThresholdPolicy::weight(methodOop method) {
 109   return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
 110 }
 111 
 112 // Apply heuristics and return true if x should be compiled before y
 113 bool AdvancedThresholdPolicy::compare_methods(methodOop x, methodOop y) {
 114   if (x->highest_comp_level() > y->highest_comp_level()) {
 115     // recompilation after deopt
 116     return true;
 117   } else
 118     if (x->highest_comp_level() == y->highest_comp_level()) {
 119       if (weight(x) > weight(y)) {
 120         return true;
 121       }
 122     }
 123   return false;
 124 }
 125 
 126 // Is method profiled enough?
 127 bool AdvancedThresholdPolicy::is_method_profiled(methodOop method) {
 128   methodDataOop mdo = method->method_data();
 129   if (mdo != NULL) {
 130     int i = mdo->invocation_count_delta();
 131     int b = mdo->backedge_count_delta();
 132     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
 133   }
 134   return false;
 135 }
 136 
 137 // Called with the queue locked and with at least one element
 138 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 139   CompileTask *max_task = NULL;
 140   methodOop max_method;
 141   jlong t = os::javaTimeMillis();
 142   // Iterate through the queue and find a method with a maximum rate.
 143   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 144     CompileTask* next_task = task->next();
 145     methodOop method = (methodOop)JNIHandles::resolve(task->method_handle());
 146     methodDataOop mdo = method->method_data();
 147     update_rate(t, method);
 148     if (max_task == NULL) {
 149       max_task = task;
 150       max_method = method;
 151     } else {
 152       // If a method has been stale for some time, remove it from the queue.
 153       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 154         if (PrintTieredEvents) {
 155           print_event(KILL, method, method, task->osr_bci(), (CompLevel)task->comp_level());
 156         }
 157         CompileTaskWrapper ctw(task); // Frees the task
 158         compile_queue->remove(task);
 159         method->clear_queued_for_compilation();
 160         task = next_task;
 161         continue;
 162       }
 163 
 164       // Select a method with a higher rate
 165       if (compare_methods(method, max_method)) {
 166         max_task = task;
 167         max_method = method;
 168       }
 169     }
 170     task = next_task;
 171   }
 172 
 173   if (max_task->comp_level() == CompLevel_full_profile && is_method_profiled(max_method)) {
 174     max_task->set_comp_level(CompLevel_limited_profile);
 175     if (PrintTieredEvents) {
 176       print_event(UPDATE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 177     }
 178   }
 179 
 180   return max_task;
 181 }
 182 
 183 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 184   double queue_size = CompileBroker::queue_size(level);
 185   int comp_count = compiler_count(level);
 186   double k = queue_size / (feedback_k * comp_count) + 1;
 187   return k;
 188 }
 189 
 190 // Call and loop predicates determine whether a transition to a higher
 191 // compilation level should be performed (pointers to predicate functions
 192 // are passed to common()).
 193 // Tier?LoadFeedback is basically a coefficient that determines of
 194 // how many methods per compiler thread can be in the queue before
 195 // the threshold values double.
 196 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
 197   switch(cur_level) {
 198   case CompLevel_none:
 199   case CompLevel_limited_profile: {
 200     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 201     return loop_predicate_helper<CompLevel_none>(i, b, k);
 202   }
 203   case CompLevel_full_profile: {
 204     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 205     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
 206   }
 207   default:
 208     return true;
 209   }
 210 }
 211 
 212 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
 213   switch(cur_level) {
 214   case CompLevel_none:
 215   case CompLevel_limited_profile: {
 216     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 217     return call_predicate_helper<CompLevel_none>(i, b, k);
 218   }
 219   case CompLevel_full_profile: {
 220     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 221     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
 222   }
 223   default:
 224     return true;
 225   }
 226 }
 227 
 228 // If a method is old enough and is still in the interpreter we would want to
 229 // start profiling without waiting for the compiled method to arrive.
 230 // We also take the load on compilers into the account.
 231 bool AdvancedThresholdPolicy::should_create_mdo(methodOop method, CompLevel cur_level) {
 232   if (cur_level == CompLevel_none &&
 233       CompileBroker::queue_size(CompLevel_full_optimization) <=
 234       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 235     int i = method->invocation_count();
 236     int b = method->backedge_count();
 237     double k = Tier0ProfilingStartPercentage / 100.0;
 238     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
 239   }
 240   return false;
 241 }
 242 
 243 // Create MDO if necessary.
 244 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, TRAPS) {
 245   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
 246   if (mh->method_data() == NULL) {
 247     methodOopDesc::build_interpreter_method_data(mh, THREAD);
 248     if (HAS_PENDING_EXCEPTION) {
 249       CLEAR_PENDING_EXCEPTION;
 250     }
 251   }
 252 }
 253 
 254 
 255 /*
 256  * Method states:
 257  *   0 - interpreter (CompLevel_none)
 258  *   1 - pure C1 (CompLevel_simple)
 259  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 260  *   3 - C1 with full profiling (CompLevel_full_profile)
 261  *   4 - C2 (CompLevel_full_optimization)
 262  *
 263  * Common state transition patterns:
 264  * a. 0 -> 3 -> 4.
 265  *    The most common path. But note that even in this straightforward case
 266  *    profiling can start at level 0 and finish at level 3.
 267  *
 268  * b. 0 -> 2 -> 3 -> 4.
 269  *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
 270  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 271  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 272  *
 273  * c. 0 -> (3->2) -> 4.
 274  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 275  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 276  *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
 277  *    is compiling.
 278  *
 279  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 280  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 281  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 282  *
 283  * e. 0 -> 4.
 284  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 285  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 286  *    the compiled version already exists).
 287  *
 288  * Note that since state 0 can be reached from any other state via deoptimization different loops
 289  * are possible.
 290  *
 291  */
 292 
 293 // Common transition function. Given a predicate determines if a method should transition to another level.
 294 CompLevel AdvancedThresholdPolicy::common(Predicate p, methodOop method, CompLevel cur_level) {
 295   if (is_trivial(method)) return CompLevel_simple;
 296 
 297   CompLevel next_level = cur_level;
 298   int i = method->invocation_count();
 299   int b = method->backedge_count();
 300 
 301   switch(cur_level) {
 302   case CompLevel_none:
 303     // If we were at full profile level, would we switch to full opt?
 304     if (common(p, method, CompLevel_full_profile) == CompLevel_full_optimization) {
 305       next_level = CompLevel_full_optimization;
 306     } else if ((this->*p)(i, b, cur_level)) {
 307       // C1-generated fully profiled code is about 30% slower than the limited profile
 308       // code that has only invocation and backedge counters. The observation is that
 309       // if C2 queue is large enough we can spend too much time in the fully profiled code
 310       // while waiting for C2 to pick the method from the queue. To alleviate this problem
 311       // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 312       // we choose to compile a limited profiled version and then recompile with full profiling
 313       // when the load on C2 goes down.
 314       if (CompileBroker::queue_size(CompLevel_full_optimization) >
 315           Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 316         next_level = CompLevel_limited_profile;
 317       } else {
 318         next_level = CompLevel_full_profile;
 319       }
 320     }
 321     break;
 322   case CompLevel_limited_profile:
 323     if (is_method_profiled(method)) {
 324       // Special case: we got here because this method was fully profiled in the interpreter.
 325       next_level = CompLevel_full_optimization;
 326     } else {
 327       methodDataOop mdo = method->method_data();
 328       if (mdo != NULL) {
 329         if (mdo->would_profile()) {
 330           if (CompileBroker::queue_size(CompLevel_full_optimization) <=
 331               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 332               (this->*p)(i, b, cur_level)) {
 333             next_level = CompLevel_full_profile;
 334           }
 335         } else {
 336           next_level = CompLevel_full_optimization;
 337         }
 338       }
 339     }
 340     break;
 341   case CompLevel_full_profile:
 342     {
 343       methodDataOop mdo = method->method_data();
 344       if (mdo != NULL) {
 345         if (mdo->would_profile()) {
 346           int mdo_i = mdo->invocation_count_delta();
 347           int mdo_b = mdo->backedge_count_delta();
 348           if ((this->*p)(mdo_i, mdo_b, cur_level)) {
 349             next_level = CompLevel_full_optimization;
 350           }
 351         } else {
 352           next_level = CompLevel_full_optimization;
 353         }
 354       }
 355     }
 356     break;
 357   }
 358   return next_level;
 359 }
 360 
 361 // Determine if a method should be compiled with a normal entry point at a different level.
 362 CompLevel AdvancedThresholdPolicy::call_event(methodOop method,  CompLevel cur_level) {
 363   CompLevel osr_level = (CompLevel) method->highest_osr_comp_level();
 364   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
 365 
 366   // If OSR method level is greater than the regular method level, the levels should be
 367   // equalized by raising the regular method level in order to avoid OSRs during each
 368   // invocation of the method.
 369   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 370     methodDataOop mdo = method->method_data();
 371     guarantee(mdo != NULL, "MDO should not be NULL");
 372     if (mdo->invocation_count() >= 1) {
 373       next_level = CompLevel_full_optimization;
 374     }
 375   } else {
 376     next_level = MAX2(osr_level, next_level);
 377   }
 378 
 379   return next_level;
 380 }
 381 
 382 // Determine if we should do an OSR compilation of a given method.
 383 CompLevel AdvancedThresholdPolicy::loop_event(methodOop method, CompLevel cur_level) {
 384   if (cur_level == CompLevel_none) {
 385     // If there is a live OSR method that means that we deopted to the interpreter
 386     // for the transition.
 387     CompLevel osr_level = (CompLevel)method->highest_osr_comp_level();
 388     if (osr_level > CompLevel_none) {
 389       return osr_level;
 390     }
 391   }
 392   return common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level);
 393 }
 394 
 395 // Update the rate and submit compile
 396 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
 397   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 398   update_rate(os::javaTimeMillis(), mh());
 399   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", THREAD);
 400 }
 401 
 402 
 403 // Handle the invocation event.
 404 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
 405                                                       CompLevel level, TRAPS) {
 406   if (should_create_mdo(mh(), level)) {
 407     create_mdo(mh, THREAD);
 408   }
 409   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
 410     CompLevel next_level = call_event(mh(), level);
 411     if (next_level != level) {
 412       compile(mh, InvocationEntryBci, next_level, THREAD);
 413     }
 414   }
 415 }
 416 
 417 // Handle the back branch event. Notice that we can compile the method
 418 // with a regular entry from here.
 419 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
 420                                                        int bci, CompLevel level, TRAPS) {
 421   if (should_create_mdo(mh(), level)) {
 422     create_mdo(mh, THREAD);
 423   }
 424 
 425   // If the method is already compiling, quickly bail out.
 426   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, bci)) {
 427     // Use loop event as an opportinity to also check there's been
 428     // enough calls.
 429     CompLevel cur_level = comp_level(mh());
 430     CompLevel next_level = call_event(mh(), cur_level);
 431     CompLevel next_osr_level = loop_event(mh(), level);
 432     if (next_osr_level  == CompLevel_limited_profile) {
 433       next_osr_level = CompLevel_full_profile; // OSRs are supposed to be for very hot methods.
 434     }
 435     next_level = MAX2(next_level,
 436                       next_osr_level < CompLevel_full_optimization ? next_osr_level : cur_level);
 437     bool is_compiling = false;
 438     if (next_level != cur_level) {
 439       compile(mh, InvocationEntryBci, next_level, THREAD);
 440       is_compiling = true;
 441     }
 442 
 443     // Do the OSR version
 444     if (!is_compiling && next_osr_level != level) {
 445       compile(mh, bci, next_osr_level, THREAD);
 446     }
 447   }
 448 }
 449 
 450 #endif // TIERED