1 /*
   2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc
  87 # include "adfiles/ad_ppc.hpp"
  88 #endif
  89 
  90 
  91 // For debugging purposes:
  92 //  To force FullGCALot inside a runtime function, add the following two lines
  93 //
  94 //  Universe::release_fullgc_alot_dummy();
  95 //  MarkSweep::invoke(0, "Debugging");
  96 //
  97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  98 
  99 
 100 
 101 
 102 // Compiled code entry points
 103 address OptoRuntime::_new_instance_Java                           = NULL;
 104 address OptoRuntime::_new_array_Java                              = NULL;
 105 address OptoRuntime::_multianewarray2_Java                        = NULL;
 106 address OptoRuntime::_multianewarray3_Java                        = NULL;
 107 address OptoRuntime::_multianewarray4_Java                        = NULL;
 108 address OptoRuntime::_multianewarray5_Java                        = NULL;
 109 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 110 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 111 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 112 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 113 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 114 address OptoRuntime::_rethrow_Java                                = NULL;
 115 
 116 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 117 address OptoRuntime::_register_finalizer_Java                     = NULL;
 118 
 119 # ifdef ENABLE_ZAP_DEAD_LOCALS
 120 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 121 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 122 # endif
 123 
 124 ExceptionBlob* OptoRuntime::_exception_blob;
 125 
 126 // This should be called in an assertion at the start of OptoRuntime routines
 127 // which are entered from compiled code (all of them)
 128 #ifndef PRODUCT
 129 static bool check_compiled_frame(JavaThread* thread) {
 130   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 131 #ifdef ASSERT
 132   RegisterMap map(thread, false);
 133   frame caller = thread->last_frame().sender(&map);
 134   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 135 #endif  /* ASSERT */
 136   return true;
 137 }
 138 #endif
 139 
 140 
 141 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 142   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
 143 
 144 void OptoRuntime::generate(ciEnv* env) {
 145 
 146   generate_exception_blob();
 147 
 148   // Note: tls: Means fetching the return oop out of the thread-local storage
 149   //
 150   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 151   // -------------------------------------------------------------------------------------------------------------------------------
 152   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 153   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 154   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 155   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 156   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 157   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 158   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 159   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 160   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 161   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
 162   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 163 
 164   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 165   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 166 
 167 # ifdef ENABLE_ZAP_DEAD_LOCALS
 168   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 169   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 170 # endif
 171 
 172 }
 173 
 174 #undef gen
 175 
 176 
 177 // Helper method to do generation of RunTimeStub's
 178 address OptoRuntime::generate_stub( ciEnv* env,
 179                                     TypeFunc_generator gen, address C_function,
 180                                     const char *name, int is_fancy_jump,
 181                                     bool pass_tls,
 182                                     bool save_argument_registers,
 183                                     bool return_pc ) {
 184   ResourceMark rm;
 185   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 186   return  C.stub_entry_point();
 187 }
 188 
 189 const char* OptoRuntime::stub_name(address entry) {
 190 #ifndef PRODUCT
 191   CodeBlob* cb = CodeCache::find_blob(entry);
 192   RuntimeStub* rs =(RuntimeStub *)cb;
 193   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 194   return rs->name();
 195 #else
 196   // Fast implementation for product mode (maybe it should be inlined too)
 197   return "runtime stub";
 198 #endif
 199 }
 200 
 201 
 202 //=============================================================================
 203 // Opto compiler runtime routines
 204 //=============================================================================
 205 
 206 
 207 //=============================allocation======================================
 208 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 209 // and try allocation again.
 210 
 211 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 212   // After any safepoint, just before going back to compiled code,
 213   // we inform the GC that we will be doing initializing writes to
 214   // this object in the future without emitting card-marks, so
 215   // GC may take any compensating steps.
 216   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 217 
 218   oop new_obj = thread->vm_result();
 219   if (new_obj == NULL)  return;
 220 
 221   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 222          "compiler must check this first");
 223   // GC may decide to give back a safer copy of new_obj.
 224   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 225   thread->set_vm_result(new_obj);
 226 }
 227 
 228 // object allocation
 229 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
 230   JRT_BLOCK;
 231 #ifndef PRODUCT
 232   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 233 #endif
 234   assert(check_compiled_frame(thread), "incorrect caller");
 235 
 236   // These checks are cheap to make and support reflective allocation.
 237   int lh = Klass::cast(klass)->layout_helper();
 238   if (Klass::layout_helper_needs_slow_path(lh)
 239       || !instanceKlass::cast(klass)->is_initialized()) {
 240     KlassHandle kh(THREAD, klass);
 241     kh->check_valid_for_instantiation(false, THREAD);
 242     if (!HAS_PENDING_EXCEPTION) {
 243       instanceKlass::cast(kh())->initialize(THREAD);
 244     }
 245     if (!HAS_PENDING_EXCEPTION) {
 246       klass = kh();
 247     } else {
 248       klass = NULL;
 249     }
 250   }
 251 
 252   if (klass != NULL) {
 253     // Scavenge and allocate an instance.
 254     oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
 255     thread->set_vm_result(result);
 256 
 257     // Pass oops back through thread local storage.  Our apparent type to Java
 258     // is that we return an oop, but we can block on exit from this routine and
 259     // a GC can trash the oop in C's return register.  The generated stub will
 260     // fetch the oop from TLS after any possible GC.
 261   }
 262 
 263   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 264   JRT_BLOCK_END;
 265 
 266   if (GraphKit::use_ReduceInitialCardMarks()) {
 267     // inform GC that we won't do card marks for initializing writes.
 268     new_store_pre_barrier(thread);
 269   }
 270 JRT_END
 271 
 272 
 273 // array allocation
 274 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
 275   JRT_BLOCK;
 276 #ifndef PRODUCT
 277   SharedRuntime::_new_array_ctr++;            // new array requires GC
 278 #endif
 279   assert(check_compiled_frame(thread), "incorrect caller");
 280 
 281   // Scavenge and allocate an instance.
 282   oop result;
 283 
 284   if (Klass::cast(array_type)->oop_is_typeArray()) {
 285     // The oopFactory likes to work with the element type.
 286     // (We could bypass the oopFactory, since it doesn't add much value.)
 287     BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
 288     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 289   } else {
 290     // Although the oopFactory likes to work with the elem_type,
 291     // the compiler prefers the array_type, since it must already have
 292     // that latter value in hand for the fast path.
 293     klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
 294     result = oopFactory::new_objArray(elem_type, len, THREAD);
 295   }
 296 
 297   // Pass oops back through thread local storage.  Our apparent type to Java
 298   // is that we return an oop, but we can block on exit from this routine and
 299   // a GC can trash the oop in C's return register.  The generated stub will
 300   // fetch the oop from TLS after any possible GC.
 301   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 302   thread->set_vm_result(result);
 303   JRT_BLOCK_END;
 304 
 305   if (GraphKit::use_ReduceInitialCardMarks()) {
 306     // inform GC that we won't do card marks for initializing writes.
 307     new_store_pre_barrier(thread);
 308   }
 309 JRT_END
 310 
 311 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 312 
 313 // multianewarray for 2 dimensions
 314 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
 315 #ifndef PRODUCT
 316   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 317 #endif
 318   assert(check_compiled_frame(thread), "incorrect caller");
 319   assert(oop(elem_type)->is_klass(), "not a class");
 320   jint dims[2];
 321   dims[0] = len1;
 322   dims[1] = len2;
 323   oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 324   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 325   thread->set_vm_result(obj);
 326 JRT_END
 327 
 328 // multianewarray for 3 dimensions
 329 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
 330 #ifndef PRODUCT
 331   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 332 #endif
 333   assert(check_compiled_frame(thread), "incorrect caller");
 334   assert(oop(elem_type)->is_klass(), "not a class");
 335   jint dims[3];
 336   dims[0] = len1;
 337   dims[1] = len2;
 338   dims[2] = len3;
 339   oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 340   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 341   thread->set_vm_result(obj);
 342 JRT_END
 343 
 344 // multianewarray for 4 dimensions
 345 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 346 #ifndef PRODUCT
 347   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 348 #endif
 349   assert(check_compiled_frame(thread), "incorrect caller");
 350   assert(oop(elem_type)->is_klass(), "not a class");
 351   jint dims[4];
 352   dims[0] = len1;
 353   dims[1] = len2;
 354   dims[2] = len3;
 355   dims[3] = len4;
 356   oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 357   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 358   thread->set_vm_result(obj);
 359 JRT_END
 360 
 361 // multianewarray for 5 dimensions
 362 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 363 #ifndef PRODUCT
 364   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 365 #endif
 366   assert(check_compiled_frame(thread), "incorrect caller");
 367   assert(oop(elem_type)->is_klass(), "not a class");
 368   jint dims[5];
 369   dims[0] = len1;
 370   dims[1] = len2;
 371   dims[2] = len3;
 372   dims[3] = len4;
 373   dims[4] = len5;
 374   oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 375   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 376   thread->set_vm_result(obj);
 377 JRT_END
 378 
 379 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(klassOopDesc* elem_type, arrayOopDesc* dims, JavaThread *thread))
 380   assert(check_compiled_frame(thread), "incorrect caller");
 381   assert(oop(elem_type)->is_klass(), "not a class");
 382   assert(oop(dims)->is_typeArray(), "not an array");
 383   
 384   ResourceMark rm;
 385   jint len = dims->length();
 386   assert(len > 0, "Dimensions array should contain data");
 387   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 388   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 389   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 390 
 391   oop obj = arrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 392   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 393   thread->set_vm_result(obj);
 394 JRT_END
 395 
 396 
 397 const TypeFunc *OptoRuntime::new_instance_Type() {
 398   // create input type (domain)
 399   const Type **fields = TypeTuple::fields(1);
 400   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 401   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 402 
 403   // create result type (range)
 404   fields = TypeTuple::fields(1);
 405   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 406 
 407   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 408 
 409   return TypeFunc::make(domain, range);
 410 }
 411 
 412 
 413 const TypeFunc *OptoRuntime::athrow_Type() {
 414   // create input type (domain)
 415   const Type **fields = TypeTuple::fields(1);
 416   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 417   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 418 
 419   // create result type (range)
 420   fields = TypeTuple::fields(0);
 421 
 422   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 423 
 424   return TypeFunc::make(domain, range);
 425 }
 426 
 427 
 428 const TypeFunc *OptoRuntime::new_array_Type() {
 429   // create input type (domain)
 430   const Type **fields = TypeTuple::fields(2);
 431   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 432   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 433   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 434 
 435   // create result type (range)
 436   fields = TypeTuple::fields(1);
 437   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 438 
 439   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 440 
 441   return TypeFunc::make(domain, range);
 442 }
 443 
 444 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 445   // create input type (domain)
 446   const int nargs = ndim + 1;
 447   const Type **fields = TypeTuple::fields(nargs);
 448   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 449   for( int i = 1; i < nargs; i++ )
 450     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 451   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 452 
 453   // create result type (range)
 454   fields = TypeTuple::fields(1);
 455   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 456   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 457 
 458   return TypeFunc::make(domain, range);
 459 }
 460 
 461 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 462   return multianewarray_Type(2);
 463 }
 464 
 465 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 466   return multianewarray_Type(3);
 467 }
 468 
 469 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 470   return multianewarray_Type(4);
 471 }
 472 
 473 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 474   return multianewarray_Type(5);
 475 }
 476 
 477 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 478   // create input type (domain)
 479   const Type **fields = TypeTuple::fields(2);
 480   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 481   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 482   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 483 
 484   // create result type (range)
 485   fields = TypeTuple::fields(1);
 486   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 487   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 488 
 489   return TypeFunc::make(domain, range);
 490 }
 491 
 492 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 493   const Type **fields = TypeTuple::fields(2);
 494   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 495   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 496   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 497 
 498   // create result type (range)
 499   fields = TypeTuple::fields(0);
 500   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 501 
 502   return TypeFunc::make(domain, range);
 503 }
 504 
 505 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 506 
 507   const Type **fields = TypeTuple::fields(2);
 508   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 509   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 510   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 511 
 512   // create result type (range)
 513   fields = TypeTuple::fields(0);
 514   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 515 
 516   return TypeFunc::make(domain, range);
 517 }
 518 
 519 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 520   // create input type (domain)
 521   const Type **fields = TypeTuple::fields(1);
 522   // Symbol* name of class to be loaded
 523   fields[TypeFunc::Parms+0] = TypeInt::INT;
 524   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 525 
 526   // create result type (range)
 527   fields = TypeTuple::fields(0);
 528   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 529 
 530   return TypeFunc::make(domain, range);
 531 }
 532 
 533 # ifdef ENABLE_ZAP_DEAD_LOCALS
 534 // Type used for stub generation for zap_dead_locals.
 535 // No inputs or outputs
 536 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 537   // create input type (domain)
 538   const Type **fields = TypeTuple::fields(0);
 539   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 540 
 541   // create result type (range)
 542   fields = TypeTuple::fields(0);
 543   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 544 
 545   return TypeFunc::make(domain,range);
 546 }
 547 # endif
 548 
 549 
 550 //-----------------------------------------------------------------------------
 551 // Monitor Handling
 552 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 553   // create input type (domain)
 554   const Type **fields = TypeTuple::fields(2);
 555   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 556   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 557   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 558 
 559   // create result type (range)
 560   fields = TypeTuple::fields(0);
 561 
 562   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 563 
 564   return TypeFunc::make(domain,range);
 565 }
 566 
 567 
 568 //-----------------------------------------------------------------------------
 569 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 570   // create input type (domain)
 571   const Type **fields = TypeTuple::fields(2);
 572   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 573   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 574   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 575 
 576   // create result type (range)
 577   fields = TypeTuple::fields(0);
 578 
 579   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 580 
 581   return TypeFunc::make(domain,range);
 582 }
 583 
 584 const TypeFunc* OptoRuntime::flush_windows_Type() {
 585   // create input type (domain)
 586   const Type** fields = TypeTuple::fields(1);
 587   fields[TypeFunc::Parms+0] = NULL; // void
 588   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 589 
 590   // create result type
 591   fields = TypeTuple::fields(1);
 592   fields[TypeFunc::Parms+0] = NULL; // void
 593   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 594 
 595   return TypeFunc::make(domain, range);
 596 }
 597 
 598 const TypeFunc* OptoRuntime::l2f_Type() {
 599   // create input type (domain)
 600   const Type **fields = TypeTuple::fields(2);
 601   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 602   fields[TypeFunc::Parms+1] = Type::HALF;
 603   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 604 
 605   // create result type (range)
 606   fields = TypeTuple::fields(1);
 607   fields[TypeFunc::Parms+0] = Type::FLOAT;
 608   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 609 
 610   return TypeFunc::make(domain, range);
 611 }
 612 
 613 const TypeFunc* OptoRuntime::modf_Type() {
 614   const Type **fields = TypeTuple::fields(2);
 615   fields[TypeFunc::Parms+0] = Type::FLOAT;
 616   fields[TypeFunc::Parms+1] = Type::FLOAT;
 617   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 618 
 619   // create result type (range)
 620   fields = TypeTuple::fields(1);
 621   fields[TypeFunc::Parms+0] = Type::FLOAT;
 622 
 623   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 624 
 625   return TypeFunc::make(domain, range);
 626 }
 627 
 628 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 629   // create input type (domain)
 630   const Type **fields = TypeTuple::fields(2);
 631   // Symbol* name of class to be loaded
 632   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 633   fields[TypeFunc::Parms+1] = Type::HALF;
 634   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 635 
 636   // create result type (range)
 637   fields = TypeTuple::fields(2);
 638   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 639   fields[TypeFunc::Parms+1] = Type::HALF;
 640   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 641 
 642   return TypeFunc::make(domain, range);
 643 }
 644 
 645 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 646   const Type **fields = TypeTuple::fields(4);
 647   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 648   fields[TypeFunc::Parms+1] = Type::HALF;
 649   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 650   fields[TypeFunc::Parms+3] = Type::HALF;
 651   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 652 
 653   // create result type (range)
 654   fields = TypeTuple::fields(2);
 655   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 656   fields[TypeFunc::Parms+1] = Type::HALF;
 657   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 658 
 659   return TypeFunc::make(domain, range);
 660 }
 661 
 662 //-------------- currentTimeMillis
 663 
 664 const TypeFunc* OptoRuntime::current_time_millis_Type() {
 665   // create input type (domain)
 666   const Type **fields = TypeTuple::fields(0);
 667   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 668 
 669   // create result type (range)
 670   fields = TypeTuple::fields(2);
 671   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 672   fields[TypeFunc::Parms+1] = Type::HALF;
 673   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 674 
 675   return TypeFunc::make(domain, range);
 676 }
 677 
 678 // arraycopy stub variations:
 679 enum ArrayCopyType {
 680   ac_fast,                      // void(ptr, ptr, size_t)
 681   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 682   ac_slow,                      // void(ptr, int, ptr, int, int)
 683   ac_generic                    //  int(ptr, int, ptr, int, int)
 684 };
 685 
 686 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 687   // create input type (domain)
 688   int num_args      = (act == ac_fast ? 3 : 5);
 689   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 690   int argcnt = num_args;
 691   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 692   const Type** fields = TypeTuple::fields(argcnt);
 693   int argp = TypeFunc::Parms;
 694   fields[argp++] = TypePtr::NOTNULL;    // src
 695   if (num_size_args == 0) {
 696     fields[argp++] = TypeInt::INT;      // src_pos
 697   }
 698   fields[argp++] = TypePtr::NOTNULL;    // dest
 699   if (num_size_args == 0) {
 700     fields[argp++] = TypeInt::INT;      // dest_pos
 701     fields[argp++] = TypeInt::INT;      // length
 702   }
 703   while (num_size_args-- > 0) {
 704     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 705     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 706   }
 707   if (act == ac_checkcast) {
 708     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 709   }
 710   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 711   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 712 
 713   // create result type if needed
 714   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 715   fields = TypeTuple::fields(1);
 716   if (retcnt == 0)
 717     fields[TypeFunc::Parms+0] = NULL; // void
 718   else
 719     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 720   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 721   return TypeFunc::make(domain, range);
 722 }
 723 
 724 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 725   // This signature is simple:  Two base pointers and a size_t.
 726   return make_arraycopy_Type(ac_fast);
 727 }
 728 
 729 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 730   // An extension of fast_arraycopy_Type which adds type checking.
 731   return make_arraycopy_Type(ac_checkcast);
 732 }
 733 
 734 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 735   // This signature is exactly the same as System.arraycopy.
 736   // There are no intptr_t (int/long) arguments.
 737   return make_arraycopy_Type(ac_slow);
 738 }
 739 
 740 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 741   // This signature is like System.arraycopy, except that it returns status.
 742   return make_arraycopy_Type(ac_generic);
 743 }
 744 
 745 
 746 const TypeFunc* OptoRuntime::array_fill_Type() {
 747   // create input type (domain): pointer, int, size_t
 748   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 749   int argp = TypeFunc::Parms;
 750   fields[argp++] = TypePtr::NOTNULL;
 751   fields[argp++] = TypeInt::INT;
 752   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 753   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 754   const TypeTuple *domain = TypeTuple::make(argp, fields);
 755 
 756   // create result type
 757   fields = TypeTuple::fields(1);
 758   fields[TypeFunc::Parms+0] = NULL; // void
 759   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 760 
 761   return TypeFunc::make(domain, range);
 762 }
 763 
 764 //------------- Interpreter state access for on stack replacement
 765 const TypeFunc* OptoRuntime::osr_end_Type() {
 766   // create input type (domain)
 767   const Type **fields = TypeTuple::fields(1);
 768   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
 769   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 770 
 771   // create result type
 772   fields = TypeTuple::fields(1);
 773   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
 774   fields[TypeFunc::Parms+0] = NULL; // void
 775   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 776   return TypeFunc::make(domain, range);
 777 }
 778 
 779 //-------------- methodData update helpers
 780 
 781 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
 782   // create input type (domain)
 783   const Type **fields = TypeTuple::fields(2);
 784   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
 785   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
 786   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 787 
 788   // create result type
 789   fields = TypeTuple::fields(1);
 790   fields[TypeFunc::Parms+0] = NULL; // void
 791   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 792   return TypeFunc::make(domain,range);
 793 }
 794 
 795 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
 796   if (receiver == NULL) return;
 797   klassOop receiver_klass = receiver->klass();
 798 
 799   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
 800   int empty_row = -1;           // free row, if any is encountered
 801 
 802   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
 803   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
 804     // if (vc->receiver(row) == receiver_klass)
 805     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
 806     intptr_t row_recv = *(mdp + receiver_off);
 807     if (row_recv == (intptr_t) receiver_klass) {
 808       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
 809       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
 810       *(mdp + count_off) += DataLayout::counter_increment;
 811       return;
 812     } else if (row_recv == 0) {
 813       // else if (vc->receiver(row) == NULL)
 814       empty_row = (int) row;
 815     }
 816   }
 817 
 818   if (empty_row != -1) {
 819     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
 820     // vc->set_receiver(empty_row, receiver_klass);
 821     *(mdp + receiver_off) = (intptr_t) receiver_klass;
 822     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
 823     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
 824     *(mdp + count_off) = DataLayout::counter_increment;
 825   } else {
 826     // Receiver did not match any saved receiver and there is no empty row for it.
 827     // Increment total counter to indicate polymorphic case.
 828     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
 829     *count_p += DataLayout::counter_increment;
 830   }
 831 JRT_END
 832 
 833 //-----------------------------------------------------------------------------
 834 // implicit exception support.
 835 
 836 static void report_null_exception_in_code_cache(address exception_pc) {
 837   ResourceMark rm;
 838   CodeBlob* n = CodeCache::find_blob(exception_pc);
 839   if (n != NULL) {
 840     tty->print_cr("#");
 841     tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
 842     tty->print_cr("#");
 843     tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
 844 
 845     if (n->is_nmethod()) {
 846       methodOop method = ((nmethod*)n)->method();
 847       tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
 848       tty->print_cr("#");
 849       if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
 850         const char* title    = "HotSpot Runtime Error";
 851         const char* question = "Do you want to exclude compilation of this method in future runs?";
 852         if (os::message_box(title, question)) {
 853           CompilerOracle::append_comment_to_file("");
 854           CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
 855           CompilerOracle::append_comment_to_file("");
 856           CompilerOracle::append_exclude_to_file(method);
 857           tty->print_cr("#");
 858           tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
 859           tty->print_cr("#");
 860         }
 861       }
 862       fatal("Implicit null exception happened in compiled method");
 863     } else {
 864       n->print();
 865       fatal("Implicit null exception happened in generated stub");
 866     }
 867   }
 868   fatal("Implicit null exception at wrong place");
 869 }
 870 
 871 
 872 //-------------------------------------------------------------------------------------
 873 // register policy
 874 
 875 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
 876   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
 877   switch (register_save_policy[reg]) {
 878     case 'C': return false; //SOC
 879     case 'E': return true ; //SOE
 880     case 'N': return false; //NS
 881     case 'A': return false; //AS
 882   }
 883   ShouldNotReachHere();
 884   return false;
 885 }
 886 
 887 //-----------------------------------------------------------------------
 888 // Exceptions
 889 //
 890 
 891 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
 892 
 893 // The method is an entry that is always called by a C++ method not
 894 // directly from compiled code. Compiled code will call the C++ method following.
 895 // We can't allow async exception to be installed during  exception processing.
 896 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
 897 
 898   // Do not confuse exception_oop with pending_exception. The exception_oop
 899   // is only used to pass arguments into the method. Not for general
 900   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
 901   // the runtime stubs checks this on exit.
 902   assert(thread->exception_oop() != NULL, "exception oop is found");
 903   address handler_address = NULL;
 904 
 905   Handle exception(thread, thread->exception_oop());
 906 
 907   if (TraceExceptions) {
 908     trace_exception(exception(), thread->exception_pc(), "");
 909   }
 910   // for AbortVMOnException flag
 911   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 912 
 913   #ifdef ASSERT
 914     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 915       // should throw an exception here
 916       ShouldNotReachHere();
 917     }
 918   #endif
 919 
 920 
 921   // new exception handling: this method is entered only from adapters
 922   // exceptions from compiled java methods are handled in compiled code
 923   // using rethrow node
 924 
 925   address pc = thread->exception_pc();
 926   nm = CodeCache::find_nmethod(pc);
 927   assert(nm != NULL, "No NMethod found");
 928   if (nm->is_native_method()) {
 929     fatal("Native mathod should not have path to exception handling");
 930   } else {
 931     // we are switching to old paradigm: search for exception handler in caller_frame
 932     // instead in exception handler of caller_frame.sender()
 933 
 934     if (JvmtiExport::can_post_on_exceptions()) {
 935       // "Full-speed catching" is not necessary here,
 936       // since we're notifying the VM on every catch.
 937       // Force deoptimization and the rest of the lookup
 938       // will be fine.
 939       deoptimize_caller_frame(thread, true);
 940     }
 941 
 942     // Check the stack guard pages.  If enabled, look for handler in this frame;
 943     // otherwise, forcibly unwind the frame.
 944     //
 945     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
 946     bool force_unwind = !thread->reguard_stack();
 947     bool deopting = false;
 948     if (nm->is_deopt_pc(pc)) {
 949       deopting = true;
 950       RegisterMap map(thread, false);
 951       frame deoptee = thread->last_frame().sender(&map);
 952       assert(deoptee.is_deoptimized_frame(), "must be deopted");
 953       // Adjust the pc back to the original throwing pc
 954       pc = deoptee.pc();
 955     }
 956 
 957     // If we are forcing an unwind because of stack overflow then deopt is
 958     // irrelevant sice we are throwing the frame away anyway.
 959 
 960     if (deopting && !force_unwind) {
 961       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
 962     } else {
 963 
 964       handler_address =
 965         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
 966 
 967       if (handler_address == NULL) {
 968         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
 969         assert (handler_address != NULL, "must have compiled handler");
 970         // Update the exception cache only when the unwind was not forced.
 971         if (!force_unwind) {
 972           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
 973         }
 974       } else {
 975         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
 976       }
 977     }
 978 
 979     thread->set_exception_pc(pc);
 980     thread->set_exception_handler_pc(handler_address);
 981     thread->set_exception_stack_size(0);
 982 
 983     // Check if the exception PC is a MethodHandle call site.
 984     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 985   }
 986 
 987   // Restore correct return pc.  Was saved above.
 988   thread->set_exception_oop(exception());
 989   return handler_address;
 990 
 991 JRT_END
 992 
 993 // We are entering here from exception_blob
 994 // If there is a compiled exception handler in this method, we will continue there;
 995 // otherwise we will unwind the stack and continue at the caller of top frame method
 996 // Note we enter without the usual JRT wrapper. We will call a helper routine that
 997 // will do the normal VM entry. We do it this way so that we can see if the nmethod
 998 // we looked up the handler for has been deoptimized in the meantime. If it has been
 999 // we must not use the handler and instread return the deopt blob.
1000 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1001 //
1002 // We are in Java not VM and in debug mode we have a NoHandleMark
1003 //
1004 #ifndef PRODUCT
1005   SharedRuntime::_find_handler_ctr++;          // find exception handler
1006 #endif
1007   debug_only(NoHandleMark __hm;)
1008   nmethod* nm = NULL;
1009   address handler_address = NULL;
1010   {
1011     // Enter the VM
1012 
1013     ResetNoHandleMark rnhm;
1014     handler_address = handle_exception_C_helper(thread, nm);
1015   }
1016 
1017   // Back in java: Use no oops, DON'T safepoint
1018 
1019   // Now check to see if the handler we are returning is in a now
1020   // deoptimized frame
1021 
1022   if (nm != NULL) {
1023     RegisterMap map(thread, false);
1024     frame caller = thread->last_frame().sender(&map);
1025 #ifdef ASSERT
1026     assert(caller.is_compiled_frame(), "must be");
1027 #endif // ASSERT
1028     if (caller.is_deoptimized_frame()) {
1029       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1030     }
1031   }
1032   return handler_address;
1033 }
1034 
1035 //------------------------------rethrow----------------------------------------
1036 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1037 // is either throwing or rethrowing an exception.  The callee-save registers
1038 // have been restored, synchronized objects have been unlocked and the callee
1039 // stack frame has been removed.  The return address was passed in.
1040 // Exception oop is passed as the 1st argument.  This routine is then called
1041 // from the stub.  On exit, we know where to jump in the caller's code.
1042 // After this C code exits, the stub will pop his frame and end in a jump
1043 // (instead of a return).  We enter the caller's default handler.
1044 //
1045 // This must be JRT_LEAF:
1046 //     - caller will not change its state as we cannot block on exit,
1047 //       therefore raw_exception_handler_for_return_address is all it takes
1048 //       to handle deoptimized blobs
1049 //
1050 // However, there needs to be a safepoint check in the middle!  So compiled
1051 // safepoints are completely watertight.
1052 //
1053 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1054 //
1055 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1056 //
1057 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1058 #ifndef PRODUCT
1059   SharedRuntime::_rethrow_ctr++;               // count rethrows
1060 #endif
1061   assert (exception != NULL, "should have thrown a NULLPointerException");
1062 #ifdef ASSERT
1063   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1064     // should throw an exception here
1065     ShouldNotReachHere();
1066   }
1067 #endif
1068 
1069   thread->set_vm_result(exception);
1070   // Frame not compiled (handles deoptimization blob)
1071   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1072 }
1073 
1074 
1075 const TypeFunc *OptoRuntime::rethrow_Type() {
1076   // create input type (domain)
1077   const Type **fields = TypeTuple::fields(1);
1078   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1079   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1080 
1081   // create result type (range)
1082   fields = TypeTuple::fields(1);
1083   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1084   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1085 
1086   return TypeFunc::make(domain, range);
1087 }
1088 
1089 
1090 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1091   // Deoptimize frame
1092   if (doit) {
1093     // Called from within the owner thread, so no need for safepoint
1094     RegisterMap reg_map(thread);
1095     frame stub_frame = thread->last_frame();
1096     assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1097     frame caller_frame = stub_frame.sender(&reg_map);
1098 
1099     // bypass VM_DeoptimizeFrame and deoptimize the frame directly
1100     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1101   }
1102 }
1103 
1104 
1105 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1106   // create input type (domain)
1107   const Type **fields = TypeTuple::fields(1);
1108   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1109   // // The JavaThread* is passed to each routine as the last argument
1110   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1111   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1112 
1113   // create result type (range)
1114   fields = TypeTuple::fields(0);
1115 
1116   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1117 
1118   return TypeFunc::make(domain,range);
1119 }
1120 
1121 
1122 //-----------------------------------------------------------------------------
1123 // Dtrace support.  entry and exit probes have the same signature
1124 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1125   // create input type (domain)
1126   const Type **fields = TypeTuple::fields(2);
1127   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1128   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
1129   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1130 
1131   // create result type (range)
1132   fields = TypeTuple::fields(0);
1133 
1134   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1135 
1136   return TypeFunc::make(domain,range);
1137 }
1138 
1139 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1140   // create input type (domain)
1141   const Type **fields = TypeTuple::fields(2);
1142   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1143   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1144 
1145   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1146 
1147   // create result type (range)
1148   fields = TypeTuple::fields(0);
1149 
1150   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1151 
1152   return TypeFunc::make(domain,range);
1153 }
1154 
1155 
1156 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1157   assert(obj->is_oop(), "must be a valid oop");
1158   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
1159   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
1160 JRT_END
1161 
1162 //-----------------------------------------------------------------------------
1163 
1164 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1165 
1166 //
1167 // dump the collected NamedCounters.
1168 //
1169 void OptoRuntime::print_named_counters() {
1170   int total_lock_count = 0;
1171   int eliminated_lock_count = 0;
1172 
1173   NamedCounter* c = _named_counters;
1174   while (c) {
1175     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1176       int count = c->count();
1177       if (count > 0) {
1178         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1179         if (Verbose) {
1180           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1181         }
1182         total_lock_count += count;
1183         if (eliminated) {
1184           eliminated_lock_count += count;
1185         }
1186       }
1187     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1188       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1189       if (blc->nonzero()) {
1190         tty->print_cr("%s", c->name());
1191         blc->print_on(tty);
1192       }
1193     }
1194     c = c->next();
1195   }
1196   if (total_lock_count > 0) {
1197     tty->print_cr("dynamic locks: %d", total_lock_count);
1198     if (eliminated_lock_count) {
1199       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1200                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1201     }
1202   }
1203 }
1204 
1205 //
1206 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1207 //  name which consists of method@line for the inlining tree.
1208 //
1209 
1210 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1211   int max_depth = youngest_jvms->depth();
1212 
1213   // Visit scopes from youngest to oldest.
1214   bool first = true;
1215   stringStream st;
1216   for (int depth = max_depth; depth >= 1; depth--) {
1217     JVMState* jvms = youngest_jvms->of_depth(depth);
1218     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1219     if (!first) {
1220       st.print(" ");
1221     } else {
1222       first = false;
1223     }
1224     int bci = jvms->bci();
1225     if (bci < 0) bci = 0;
1226     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1227     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1228   }
1229   NamedCounter* c;
1230   if (tag == NamedCounter::BiasedLockingCounter) {
1231     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1232   } else {
1233     c = new NamedCounter(strdup(st.as_string()), tag);
1234   }
1235 
1236   // atomically add the new counter to the head of the list.  We only
1237   // add counters so this is safe.
1238   NamedCounter* head;
1239   do {
1240     head = _named_counters;
1241     c->set_next(head);
1242   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1243   return c;
1244 }
1245 
1246 //-----------------------------------------------------------------------------
1247 // Non-product code
1248 #ifndef PRODUCT
1249 
1250 int trace_exception_counter = 0;
1251 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1252   ttyLocker ttyl;
1253   trace_exception_counter++;
1254   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1255   exception_oop->print_value();
1256   tty->print(" in ");
1257   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1258   if (blob->is_nmethod()) {
1259     ((nmethod*)blob)->method()->print_value();
1260   } else if (blob->is_runtime_stub()) {
1261     tty->print("<runtime-stub>");
1262   } else {
1263     tty->print("<unknown>");
1264   }
1265   tty->print(" at " INTPTR_FORMAT,  exception_pc);
1266   tty->print_cr("]");
1267 }
1268 
1269 #endif  // PRODUCT
1270 
1271 
1272 # ifdef ENABLE_ZAP_DEAD_LOCALS
1273 // Called from call sites in compiled code with oop maps (actually safepoints)
1274 // Zaps dead locals in first java frame.
1275 // Is entry because may need to lock to generate oop maps
1276 // Currently, only used for compiler frames, but someday may be used
1277 // for interpreter frames, too.
1278 
1279 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1280 
1281 // avoid pointers to member funcs with these helpers
1282 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1283 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1284 
1285 
1286 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1287                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1288   assert(JavaThread::current() == thread, "is this needed?");
1289 
1290   if ( !ZapDeadCompiledLocals )  return;
1291 
1292   bool skip = false;
1293 
1294        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1295   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1296   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1297     warning("starting zapping after skipping");
1298 
1299        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1300   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1301   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1302     warning("about to zap last zap");
1303 
1304   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1305 
1306   if ( skip )  return;
1307 
1308   // find java frame and zap it
1309 
1310   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1311     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1312       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1313       return;
1314     }
1315   }
1316   warning("no frame found to zap in zap_dead_Java_locals_C");
1317 }
1318 
1319 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1320   zap_dead_java_or_native_locals(thread, is_java_frame);
1321 JRT_END
1322 
1323 // The following does not work because for one thing, the
1324 // thread state is wrong; it expects java, but it is native.
1325 // Also, the invariants in a native stub are different and
1326 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1327 // in there.
1328 // So for now, we do not zap in native stubs.
1329 
1330 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1331   zap_dead_java_or_native_locals(thread, is_native_frame);
1332 JRT_END
1333 
1334 # endif