1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_posix.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/elfFile.hpp"
  75 #include "utilities/growableArray.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/powerOfTwo.hpp"
  78 #include "utilities/vmError.hpp"
  79 
  80 // put OS-includes here
  81 # include <sys/types.h>
  82 # include <sys/mman.h>
  83 # include <sys/stat.h>
  84 # include <sys/select.h>
  85 # include <pthread.h>
  86 # include <signal.h>
  87 # include <endian.h>
  88 # include <errno.h>
  89 # include <dlfcn.h>
  90 # include <stdio.h>
  91 # include <unistd.h>
  92 # include <sys/resource.h>
  93 # include <pthread.h>
  94 # include <sys/stat.h>
  95 # include <sys/time.h>
  96 # include <sys/times.h>
  97 # include <sys/utsname.h>
  98 # include <sys/socket.h>
  99 # include <sys/wait.h>
 100 # include <pwd.h>
 101 # include <poll.h>
 102 # include <fcntl.h>
 103 # include <string.h>
 104 # include <syscall.h>
 105 # include <sys/sysinfo.h>
 106 # include <gnu/libc-version.h>
 107 # include <sys/ipc.h>
 108 # include <sys/shm.h>
 109 # include <link.h>
 110 # include <stdint.h>
 111 # include <inttypes.h>
 112 # include <sys/ioctl.h>
 113 
 114 #ifndef _GNU_SOURCE
 115   #define _GNU_SOURCE
 116   #include <sched.h>
 117   #undef _GNU_SOURCE
 118 #else
 119   #include <sched.h>
 120 #endif
 121 
 122 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 123 // getrusage() is prepared to handle the associated failure.
 124 #ifndef RUSAGE_THREAD
 125   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 126 #endif
 127 
 128 #define MAX_PATH    (2 * K)
 129 
 130 #define MAX_SECS 100000000
 131 
 132 // for timer info max values which include all bits
 133 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 134 
 135 enum CoredumpFilterBit {
 136   FILE_BACKED_PVT_BIT = 1 << 2,
 137   FILE_BACKED_SHARED_BIT = 1 << 3,
 138   LARGEPAGES_BIT = 1 << 6,
 139   DAX_SHARED_BIT = 1 << 8
 140 };
 141 
 142 ////////////////////////////////////////////////////////////////////////////////
 143 // global variables
 144 julong os::Linux::_physical_memory = 0;
 145 
 146 address   os::Linux::_initial_thread_stack_bottom = NULL;
 147 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 148 
 149 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 150 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 151 pthread_t os::Linux::_main_thread;
 152 int os::Linux::_page_size = -1;
 153 bool os::Linux::_supports_fast_thread_cpu_time = false;
 154 const char * os::Linux::_glibc_version = NULL;
 155 const char * os::Linux::_libpthread_version = NULL;
 156 
 157 static jlong initial_time_count=0;
 158 
 159 static int clock_tics_per_sec = 100;
 160 
 161 // If the VM might have been created on the primordial thread, we need to resolve the
 162 // primordial thread stack bounds and check if the current thread might be the
 163 // primordial thread in places. If we know that the primordial thread is never used,
 164 // such as when the VM was created by one of the standard java launchers, we can
 165 // avoid this
 166 static bool suppress_primordial_thread_resolution = false;
 167 
 168 // For diagnostics to print a message once. see run_periodic_checks
 169 static sigset_t check_signal_done;
 170 static bool check_signals = true;
 171 
 172 // Signal number used to suspend/resume a thread
 173 
 174 // do not use any signal number less than SIGSEGV, see 4355769
 175 static int SR_signum = SIGUSR2;
 176 sigset_t SR_sigset;
 177 
 178 // utility functions
 179 
 180 static int SR_initialize();
 181 
 182 julong os::available_memory() {
 183   return Linux::available_memory();
 184 }
 185 
 186 julong os::Linux::available_memory() {
 187   // values in struct sysinfo are "unsigned long"
 188   struct sysinfo si;
 189   julong avail_mem;
 190 
 191   if (OSContainer::is_containerized()) {
 192     jlong mem_limit, mem_usage;
 193     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 194       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 195                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 196     }
 197     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 198       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 199     }
 200     if (mem_limit > 0 && mem_usage > 0 ) {
 201       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 202       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 203       return avail_mem;
 204     }
 205   }
 206 
 207   sysinfo(&si);
 208   avail_mem = (julong)si.freeram * si.mem_unit;
 209   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 210   return avail_mem;
 211 }
 212 
 213 julong os::physical_memory() {
 214   jlong phys_mem = 0;
 215   if (OSContainer::is_containerized()) {
 216     jlong mem_limit;
 217     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 218       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 219       return mem_limit;
 220     }
 221     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 222                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 223   }
 224 
 225   phys_mem = Linux::physical_memory();
 226   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 227   return phys_mem;
 228 }
 229 
 230 static uint64_t initial_total_ticks = 0;
 231 static uint64_t initial_steal_ticks = 0;
 232 static bool     has_initial_tick_info = false;
 233 
 234 static void next_line(FILE *f) {
 235   int c;
 236   do {
 237     c = fgetc(f);
 238   } while (c != '\n' && c != EOF);
 239 }
 240 
 241 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 242   FILE*         fh;
 243   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 244   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 245   // irq: time  servicing interrupts; softirq: time servicing softirqs
 246   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 247   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 248   uint64_t      stealTicks = 0;
 249   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 250   // control of the Linux kernel
 251   uint64_t      guestNiceTicks = 0;
 252   int           logical_cpu = -1;
 253   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 254   int           n;
 255 
 256   memset(pticks, 0, sizeof(CPUPerfTicks));
 257 
 258   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 259     return false;
 260   }
 261 
 262   if (which_logical_cpu == -1) {
 263     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 264             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 265             UINT64_FORMAT " " UINT64_FORMAT " ",
 266             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 267             &iowTicks, &irqTicks, &sirqTicks,
 268             &stealTicks, &guestNiceTicks);
 269   } else {
 270     // Move to next line
 271     next_line(fh);
 272 
 273     // find the line for requested cpu faster to just iterate linefeeds?
 274     for (int i = 0; i < which_logical_cpu; i++) {
 275       next_line(fh);
 276     }
 277 
 278     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 279                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 280                UINT64_FORMAT " " UINT64_FORMAT " ",
 281                &logical_cpu, &userTicks, &niceTicks,
 282                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 283                &stealTicks, &guestNiceTicks);
 284   }
 285 
 286   fclose(fh);
 287   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 288     return false;
 289   }
 290   pticks->used       = userTicks + niceTicks;
 291   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 292   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 293                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 294 
 295   if (n > required_tickinfo_count + 3) {
 296     pticks->steal = stealTicks;
 297     pticks->has_steal_ticks = true;
 298   } else {
 299     pticks->steal = 0;
 300     pticks->has_steal_ticks = false;
 301   }
 302 
 303   return true;
 304 }
 305 
 306 // Return true if user is running as root.
 307 
 308 bool os::have_special_privileges() {
 309   static bool init = false;
 310   static bool privileges = false;
 311   if (!init) {
 312     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 313     init = true;
 314   }
 315   return privileges;
 316 }
 317 
 318 
 319 #ifndef SYS_gettid
 320 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 321   #ifdef __ia64__
 322     #define SYS_gettid 1105
 323   #else
 324     #ifdef __i386__
 325       #define SYS_gettid 224
 326     #else
 327       #ifdef __amd64__
 328         #define SYS_gettid 186
 329       #else
 330         #ifdef __sparc__
 331           #define SYS_gettid 143
 332         #else
 333           #error define gettid for the arch
 334         #endif
 335       #endif
 336     #endif
 337   #endif
 338 #endif
 339 
 340 
 341 // pid_t gettid()
 342 //
 343 // Returns the kernel thread id of the currently running thread. Kernel
 344 // thread id is used to access /proc.
 345 pid_t os::Linux::gettid() {
 346   int rslt = syscall(SYS_gettid);
 347   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 348   return (pid_t)rslt;
 349 }
 350 
 351 // Most versions of linux have a bug where the number of processors are
 352 // determined by looking at the /proc file system.  In a chroot environment,
 353 // the system call returns 1.
 354 static bool unsafe_chroot_detected = false;
 355 static const char *unstable_chroot_error = "/proc file system not found.\n"
 356                      "Java may be unstable running multithreaded in a chroot "
 357                      "environment on Linux when /proc filesystem is not mounted.";
 358 
 359 void os::Linux::initialize_system_info() {
 360   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 361   if (processor_count() == 1) {
 362     pid_t pid = os::Linux::gettid();
 363     char fname[32];
 364     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 365     FILE *fp = fopen(fname, "r");
 366     if (fp == NULL) {
 367       unsafe_chroot_detected = true;
 368     } else {
 369       fclose(fp);
 370     }
 371   }
 372   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 373   assert(processor_count() > 0, "linux error");
 374 }
 375 
 376 void os::init_system_properties_values() {
 377   // The next steps are taken in the product version:
 378   //
 379   // Obtain the JAVA_HOME value from the location of libjvm.so.
 380   // This library should be located at:
 381   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 382   //
 383   // If "/jre/lib/" appears at the right place in the path, then we
 384   // assume libjvm.so is installed in a JDK and we use this path.
 385   //
 386   // Otherwise exit with message: "Could not create the Java virtual machine."
 387   //
 388   // The following extra steps are taken in the debugging version:
 389   //
 390   // If "/jre/lib/" does NOT appear at the right place in the path
 391   // instead of exit check for $JAVA_HOME environment variable.
 392   //
 393   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 394   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 395   // it looks like libjvm.so is installed there
 396   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 397   //
 398   // Otherwise exit.
 399   //
 400   // Important note: if the location of libjvm.so changes this
 401   // code needs to be changed accordingly.
 402 
 403   // See ld(1):
 404   //      The linker uses the following search paths to locate required
 405   //      shared libraries:
 406   //        1: ...
 407   //        ...
 408   //        7: The default directories, normally /lib and /usr/lib.
 409 #ifndef OVERRIDE_LIBPATH
 410   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 411     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 412   #else
 413     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 414   #endif
 415 #else
 416   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 417 #endif
 418 
 419 // Base path of extensions installed on the system.
 420 #define SYS_EXT_DIR     "/usr/java/packages"
 421 #define EXTENSIONS_DIR  "/lib/ext"
 422 
 423   // Buffer that fits several sprintfs.
 424   // Note that the space for the colon and the trailing null are provided
 425   // by the nulls included by the sizeof operator.
 426   const size_t bufsize =
 427     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 428          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 429   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 430 
 431   // sysclasspath, java_home, dll_dir
 432   {
 433     char *pslash;
 434     os::jvm_path(buf, bufsize);
 435 
 436     // Found the full path to libjvm.so.
 437     // Now cut the path to <java_home>/jre if we can.
 438     pslash = strrchr(buf, '/');
 439     if (pslash != NULL) {
 440       *pslash = '\0';            // Get rid of /libjvm.so.
 441     }
 442     pslash = strrchr(buf, '/');
 443     if (pslash != NULL) {
 444       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 445     }
 446     Arguments::set_dll_dir(buf);
 447 
 448     if (pslash != NULL) {
 449       pslash = strrchr(buf, '/');
 450       if (pslash != NULL) {
 451         *pslash = '\0';        // Get rid of /lib.
 452       }
 453     }
 454     Arguments::set_java_home(buf);
 455     if (!set_boot_path('/', ':')) {
 456       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 457     }
 458   }
 459 
 460   // Where to look for native libraries.
 461   //
 462   // Note: Due to a legacy implementation, most of the library path
 463   // is set in the launcher. This was to accomodate linking restrictions
 464   // on legacy Linux implementations (which are no longer supported).
 465   // Eventually, all the library path setting will be done here.
 466   //
 467   // However, to prevent the proliferation of improperly built native
 468   // libraries, the new path component /usr/java/packages is added here.
 469   // Eventually, all the library path setting will be done here.
 470   {
 471     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 472     // should always exist (until the legacy problem cited above is
 473     // addressed).
 474     const char *v = ::getenv("LD_LIBRARY_PATH");
 475     const char *v_colon = ":";
 476     if (v == NULL) { v = ""; v_colon = ""; }
 477     // That's +1 for the colon and +1 for the trailing '\0'.
 478     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
 479                                              strlen(v) + 1 +
 480                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 481                                              mtInternal);
 482     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 483     Arguments::set_library_path(ld_library_path);
 484     FREE_C_HEAP_ARRAY(char, ld_library_path);
 485   }
 486 
 487   // Extensions directories.
 488   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 489   Arguments::set_ext_dirs(buf);
 490 
 491   FREE_C_HEAP_ARRAY(char, buf);
 492 
 493 #undef DEFAULT_LIBPATH
 494 #undef SYS_EXT_DIR
 495 #undef EXTENSIONS_DIR
 496 }
 497 
 498 ////////////////////////////////////////////////////////////////////////////////
 499 // breakpoint support
 500 
 501 void os::breakpoint() {
 502   BREAKPOINT;
 503 }
 504 
 505 extern "C" void breakpoint() {
 506   // use debugger to set breakpoint here
 507 }
 508 
 509 ////////////////////////////////////////////////////////////////////////////////
 510 // signal support
 511 
 512 debug_only(static bool signal_sets_initialized = false);
 513 static sigset_t unblocked_sigs, vm_sigs;
 514 
 515 void os::Linux::signal_sets_init() {
 516   // Should also have an assertion stating we are still single-threaded.
 517   assert(!signal_sets_initialized, "Already initialized");
 518   // Fill in signals that are necessarily unblocked for all threads in
 519   // the VM. Currently, we unblock the following signals:
 520   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 521   //                         by -Xrs (=ReduceSignalUsage));
 522   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 523   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 524   // the dispositions or masks wrt these signals.
 525   // Programs embedding the VM that want to use the above signals for their
 526   // own purposes must, at this time, use the "-Xrs" option to prevent
 527   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 528   // (See bug 4345157, and other related bugs).
 529   // In reality, though, unblocking these signals is really a nop, since
 530   // these signals are not blocked by default.
 531   sigemptyset(&unblocked_sigs);
 532   sigaddset(&unblocked_sigs, SIGILL);
 533   sigaddset(&unblocked_sigs, SIGSEGV);
 534   sigaddset(&unblocked_sigs, SIGBUS);
 535   sigaddset(&unblocked_sigs, SIGFPE);
 536 #if defined(PPC64)
 537   sigaddset(&unblocked_sigs, SIGTRAP);
 538 #endif
 539   sigaddset(&unblocked_sigs, SR_signum);
 540 
 541   if (!ReduceSignalUsage) {
 542     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 543       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 544     }
 545     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 546       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 547     }
 548     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 549       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 550     }
 551   }
 552   // Fill in signals that are blocked by all but the VM thread.
 553   sigemptyset(&vm_sigs);
 554   if (!ReduceSignalUsage) {
 555     sigaddset(&vm_sigs, BREAK_SIGNAL);
 556   }
 557   debug_only(signal_sets_initialized = true);
 558 
 559 }
 560 
 561 // These are signals that are unblocked while a thread is running Java.
 562 // (For some reason, they get blocked by default.)
 563 sigset_t* os::Linux::unblocked_signals() {
 564   assert(signal_sets_initialized, "Not initialized");
 565   return &unblocked_sigs;
 566 }
 567 
 568 // These are the signals that are blocked while a (non-VM) thread is
 569 // running Java. Only the VM thread handles these signals.
 570 sigset_t* os::Linux::vm_signals() {
 571   assert(signal_sets_initialized, "Not initialized");
 572   return &vm_sigs;
 573 }
 574 
 575 void os::Linux::hotspot_sigmask(Thread* thread) {
 576 
 577   //Save caller's signal mask before setting VM signal mask
 578   sigset_t caller_sigmask;
 579   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 580 
 581   OSThread* osthread = thread->osthread();
 582   osthread->set_caller_sigmask(caller_sigmask);
 583 
 584   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 585 
 586   if (!ReduceSignalUsage) {
 587     if (thread->is_VM_thread()) {
 588       // Only the VM thread handles BREAK_SIGNAL ...
 589       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 590     } else {
 591       // ... all other threads block BREAK_SIGNAL
 592       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 593     }
 594   }
 595 }
 596 
 597 //////////////////////////////////////////////////////////////////////////////
 598 // detecting pthread library
 599 
 600 void os::Linux::libpthread_init() {
 601   // Save glibc and pthread version strings.
 602 #if !defined(_CS_GNU_LIBC_VERSION) || \
 603     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 604   #error "glibc too old (< 2.3.2)"
 605 #endif
 606 
 607   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 608   assert(n > 0, "cannot retrieve glibc version");
 609   char *str = (char *)malloc(n, mtInternal);
 610   confstr(_CS_GNU_LIBC_VERSION, str, n);
 611   os::Linux::set_glibc_version(str);
 612 
 613   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 614   assert(n > 0, "cannot retrieve pthread version");
 615   str = (char *)malloc(n, mtInternal);
 616   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 617   os::Linux::set_libpthread_version(str);
 618 }
 619 
 620 /////////////////////////////////////////////////////////////////////////////
 621 // thread stack expansion
 622 
 623 // os::Linux::manually_expand_stack() takes care of expanding the thread
 624 // stack. Note that this is normally not needed: pthread stacks allocate
 625 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 626 // committed. Therefore it is not necessary to expand the stack manually.
 627 //
 628 // Manually expanding the stack was historically needed on LinuxThreads
 629 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 630 // it is kept to deal with very rare corner cases:
 631 //
 632 // For one, user may run the VM on an own implementation of threads
 633 // whose stacks are - like the old LinuxThreads - implemented using
 634 // mmap(MAP_GROWSDOWN).
 635 //
 636 // Also, this coding may be needed if the VM is running on the primordial
 637 // thread. Normally we avoid running on the primordial thread; however,
 638 // user may still invoke the VM on the primordial thread.
 639 //
 640 // The following historical comment describes the details about running
 641 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 642 
 643 
 644 // Force Linux kernel to expand current thread stack. If "bottom" is close
 645 // to the stack guard, caller should block all signals.
 646 //
 647 // MAP_GROWSDOWN:
 648 //   A special mmap() flag that is used to implement thread stacks. It tells
 649 //   kernel that the memory region should extend downwards when needed. This
 650 //   allows early versions of LinuxThreads to only mmap the first few pages
 651 //   when creating a new thread. Linux kernel will automatically expand thread
 652 //   stack as needed (on page faults).
 653 //
 654 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 655 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 656 //   region, it's hard to tell if the fault is due to a legitimate stack
 657 //   access or because of reading/writing non-exist memory (e.g. buffer
 658 //   overrun). As a rule, if the fault happens below current stack pointer,
 659 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 660 //   application (see Linux kernel fault.c).
 661 //
 662 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 663 //   stack overflow detection.
 664 //
 665 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 666 //   not use MAP_GROWSDOWN.
 667 //
 668 // To get around the problem and allow stack banging on Linux, we need to
 669 // manually expand thread stack after receiving the SIGSEGV.
 670 //
 671 // There are two ways to expand thread stack to address "bottom", we used
 672 // both of them in JVM before 1.5:
 673 //   1. adjust stack pointer first so that it is below "bottom", and then
 674 //      touch "bottom"
 675 //   2. mmap() the page in question
 676 //
 677 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 678 // if current sp is already near the lower end of page 101, and we need to
 679 // call mmap() to map page 100, it is possible that part of the mmap() frame
 680 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 681 // That will destroy the mmap() frame and cause VM to crash.
 682 //
 683 // The following code works by adjusting sp first, then accessing the "bottom"
 684 // page to force a page fault. Linux kernel will then automatically expand the
 685 // stack mapping.
 686 //
 687 // _expand_stack_to() assumes its frame size is less than page size, which
 688 // should always be true if the function is not inlined.
 689 
 690 static void NOINLINE _expand_stack_to(address bottom) {
 691   address sp;
 692   size_t size;
 693   volatile char *p;
 694 
 695   // Adjust bottom to point to the largest address within the same page, it
 696   // gives us a one-page buffer if alloca() allocates slightly more memory.
 697   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 698   bottom += os::Linux::page_size() - 1;
 699 
 700   // sp might be slightly above current stack pointer; if that's the case, we
 701   // will alloca() a little more space than necessary, which is OK. Don't use
 702   // os::current_stack_pointer(), as its result can be slightly below current
 703   // stack pointer, causing us to not alloca enough to reach "bottom".
 704   sp = (address)&sp;
 705 
 706   if (sp > bottom) {
 707     size = sp - bottom;
 708     p = (volatile char *)alloca(size);
 709     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 710     p[0] = '\0';
 711   }
 712 }
 713 
 714 void os::Linux::expand_stack_to(address bottom) {
 715   _expand_stack_to(bottom);
 716 }
 717 
 718 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 719   assert(t!=NULL, "just checking");
 720   assert(t->osthread()->expanding_stack(), "expand should be set");
 721 
 722   if (t->is_in_usable_stack(addr)) {
 723     sigset_t mask_all, old_sigset;
 724     sigfillset(&mask_all);
 725     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 726     _expand_stack_to(addr);
 727     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 728     return true;
 729   }
 730   return false;
 731 }
 732 
 733 //////////////////////////////////////////////////////////////////////////////
 734 // create new thread
 735 
 736 // Thread start routine for all newly created threads
 737 static void *thread_native_entry(Thread *thread) {
 738 
 739   thread->record_stack_base_and_size();
 740 
 741   // Try to randomize the cache line index of hot stack frames.
 742   // This helps when threads of the same stack traces evict each other's
 743   // cache lines. The threads can be either from the same JVM instance, or
 744   // from different JVM instances. The benefit is especially true for
 745   // processors with hyperthreading technology.
 746   static int counter = 0;
 747   int pid = os::current_process_id();
 748   alloca(((pid ^ counter++) & 7) * 128);
 749 
 750   thread->initialize_thread_current();
 751 
 752   OSThread* osthread = thread->osthread();
 753   Monitor* sync = osthread->startThread_lock();
 754 
 755   osthread->set_thread_id(os::current_thread_id());
 756 
 757   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 758     os::current_thread_id(), (uintx) pthread_self());
 759 
 760   if (UseNUMA) {
 761     int lgrp_id = os::numa_get_group_id();
 762     if (lgrp_id != -1) {
 763       thread->set_lgrp_id(lgrp_id);
 764     }
 765   }
 766   // initialize signal mask for this thread
 767   os::Linux::hotspot_sigmask(thread);
 768 
 769   // initialize floating point control register
 770   os::Linux::init_thread_fpu_state();
 771 
 772   // handshaking with parent thread
 773   {
 774     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 775 
 776     // notify parent thread
 777     osthread->set_state(INITIALIZED);
 778     sync->notify_all();
 779 
 780     // wait until os::start_thread()
 781     while (osthread->get_state() == INITIALIZED) {
 782       sync->wait_without_safepoint_check();
 783     }
 784   }
 785 
 786   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 787 
 788   // call one more level start routine
 789   thread->call_run();
 790 
 791   // Note: at this point the thread object may already have deleted itself.
 792   // Prevent dereferencing it from here on out.
 793   thread = NULL;
 794 
 795   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 796     os::current_thread_id(), (uintx) pthread_self());
 797 
 798   return 0;
 799 }
 800 
 801 // On Linux, glibc places static TLS blocks (for __thread variables) on
 802 // the thread stack. This decreases the stack size actually available
 803 // to threads.
 804 //
 805 // For large static TLS sizes, this may cause threads to malfunction due
 806 // to insufficient stack space. This is a well-known issue in glibc:
 807 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 808 //
 809 // As a workaround, we call a private but assumed-stable glibc function,
 810 // __pthread_get_minstack() to obtain the minstack size and derive the
 811 // static TLS size from it. We then increase the user requested stack
 812 // size by this TLS size.
 813 //
 814 // Due to compatibility concerns, this size adjustment is opt-in and
 815 // controlled via AdjustStackSizeForTLS.
 816 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 817 
 818 GetMinStack _get_minstack_func = NULL;
 819 
 820 static void get_minstack_init() {
 821   _get_minstack_func =
 822         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 823   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 824                        _get_minstack_func == NULL ? "failed" : "succeeded");
 825 }
 826 
 827 // Returns the size of the static TLS area glibc puts on thread stacks.
 828 // The value is cached on first use, which occurs when the first thread
 829 // is created during VM initialization.
 830 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 831   size_t tls_size = 0;
 832   if (_get_minstack_func != NULL) {
 833     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 834     size_t minstack_size = _get_minstack_func(attr);
 835 
 836     // Remove non-TLS area size included in minstack size returned
 837     // by __pthread_get_minstack() to get the static TLS size.
 838     // In glibc before 2.27, minstack size includes guard_size.
 839     // In glibc 2.27 and later, guard_size is automatically added
 840     // to the stack size by pthread_create and is no longer included
 841     // in minstack size. In both cases, the guard_size is taken into
 842     // account, so there is no need to adjust the result for that.
 843     //
 844     // Although __pthread_get_minstack() is a private glibc function,
 845     // it is expected to have a stable behavior across future glibc
 846     // versions while glibc still allocates the static TLS blocks off
 847     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 848     //
 849     // size_t
 850     // __pthread_get_minstack (const pthread_attr_t *attr)
 851     // {
 852     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 853     // }
 854     //
 855     //
 856     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 857     // if check is done for precaution.
 858     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 859       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 860     }
 861   }
 862 
 863   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 864                        tls_size);
 865   return tls_size;
 866 }
 867 
 868 bool os::create_thread(Thread* thread, ThreadType thr_type,
 869                        size_t req_stack_size) {
 870   assert(thread->osthread() == NULL, "caller responsible");
 871 
 872   // Allocate the OSThread object
 873   OSThread* osthread = new OSThread(NULL, NULL);
 874   if (osthread == NULL) {
 875     return false;
 876   }
 877 
 878   // set the correct thread state
 879   osthread->set_thread_type(thr_type);
 880 
 881   // Initial state is ALLOCATED but not INITIALIZED
 882   osthread->set_state(ALLOCATED);
 883 
 884   thread->set_osthread(osthread);
 885 
 886   // init thread attributes
 887   pthread_attr_t attr;
 888   pthread_attr_init(&attr);
 889   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 890 
 891   // Calculate stack size if it's not specified by caller.
 892   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 893   // In glibc versions prior to 2.7 the guard size mechanism
 894   // is not implemented properly. The posix standard requires adding
 895   // the size of the guard pages to the stack size, instead Linux
 896   // takes the space out of 'stacksize'. Thus we adapt the requested
 897   // stack_size by the size of the guard pages to mimick proper
 898   // behaviour. However, be careful not to end up with a size
 899   // of zero due to overflow. Don't add the guard page in that case.
 900   size_t guard_size = os::Linux::default_guard_size(thr_type);
 901   // Configure glibc guard page. Must happen before calling
 902   // get_static_tls_area_size(), which uses the guard_size.
 903   pthread_attr_setguardsize(&attr, guard_size);
 904 
 905   size_t stack_adjust_size = 0;
 906   if (AdjustStackSizeForTLS) {
 907     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 908     stack_adjust_size += get_static_tls_area_size(&attr);
 909   } else {
 910     stack_adjust_size += guard_size;
 911   }
 912 
 913   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 914   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 915     stack_size += stack_adjust_size;
 916   }
 917   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 918 
 919   int status = pthread_attr_setstacksize(&attr, stack_size);
 920   assert_status(status == 0, status, "pthread_attr_setstacksize");
 921 
 922   ThreadState state;
 923 
 924   {
 925     pthread_t tid;
 926     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 927 
 928     char buf[64];
 929     if (ret == 0) {
 930       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 931         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 932     } else {
 933       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 934         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 935       // Log some OS information which might explain why creating the thread failed.
 936       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 937       LogStream st(Log(os, thread)::info());
 938       os::Posix::print_rlimit_info(&st);
 939       os::print_memory_info(&st);
 940       os::Linux::print_proc_sys_info(&st);
 941       os::Linux::print_container_info(&st);
 942     }
 943 
 944     pthread_attr_destroy(&attr);
 945 
 946     if (ret != 0) {
 947       // Need to clean up stuff we've allocated so far
 948       thread->set_osthread(NULL);
 949       delete osthread;
 950       return false;
 951     }
 952 
 953     // Store pthread info into the OSThread
 954     osthread->set_pthread_id(tid);
 955 
 956     // Wait until child thread is either initialized or aborted
 957     {
 958       Monitor* sync_with_child = osthread->startThread_lock();
 959       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 960       while ((state = osthread->get_state()) == ALLOCATED) {
 961         sync_with_child->wait_without_safepoint_check();
 962       }
 963     }
 964   }
 965 
 966   // Aborted due to thread limit being reached
 967   if (state == ZOMBIE) {
 968     thread->set_osthread(NULL);
 969     delete osthread;
 970     return false;
 971   }
 972 
 973   // The thread is returned suspended (in state INITIALIZED),
 974   // and is started higher up in the call chain
 975   assert(state == INITIALIZED, "race condition");
 976   return true;
 977 }
 978 
 979 /////////////////////////////////////////////////////////////////////////////
 980 // attach existing thread
 981 
 982 // bootstrap the main thread
 983 bool os::create_main_thread(JavaThread* thread) {
 984   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 985   return create_attached_thread(thread);
 986 }
 987 
 988 bool os::create_attached_thread(JavaThread* thread) {
 989 #ifdef ASSERT
 990   thread->verify_not_published();
 991 #endif
 992 
 993   // Allocate the OSThread object
 994   OSThread* osthread = new OSThread(NULL, NULL);
 995 
 996   if (osthread == NULL) {
 997     return false;
 998   }
 999 
1000   // Store pthread info into the OSThread
1001   osthread->set_thread_id(os::Linux::gettid());
1002   osthread->set_pthread_id(::pthread_self());
1003 
1004   // initialize floating point control register
1005   os::Linux::init_thread_fpu_state();
1006 
1007   // Initial thread state is RUNNABLE
1008   osthread->set_state(RUNNABLE);
1009 
1010   thread->set_osthread(osthread);
1011 
1012   if (UseNUMA) {
1013     int lgrp_id = os::numa_get_group_id();
1014     if (lgrp_id != -1) {
1015       thread->set_lgrp_id(lgrp_id);
1016     }
1017   }
1018 
1019   if (os::is_primordial_thread()) {
1020     // If current thread is primordial thread, its stack is mapped on demand,
1021     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1022     // the entire stack region to avoid SEGV in stack banging.
1023     // It is also useful to get around the heap-stack-gap problem on SuSE
1024     // kernel (see 4821821 for details). We first expand stack to the top
1025     // of yellow zone, then enable stack yellow zone (order is significant,
1026     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1027     // is no gap between the last two virtual memory regions.
1028 
1029     JavaThread *jt = (JavaThread *)thread;
1030     address addr = jt->stack_reserved_zone_base();
1031     assert(addr != NULL, "initialization problem?");
1032     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1033 
1034     osthread->set_expanding_stack();
1035     os::Linux::manually_expand_stack(jt, addr);
1036     osthread->clear_expanding_stack();
1037   }
1038 
1039   // initialize signal mask for this thread
1040   // and save the caller's signal mask
1041   os::Linux::hotspot_sigmask(thread);
1042 
1043   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1044     os::current_thread_id(), (uintx) pthread_self());
1045 
1046   return true;
1047 }
1048 
1049 void os::pd_start_thread(Thread* thread) {
1050   OSThread * osthread = thread->osthread();
1051   assert(osthread->get_state() != INITIALIZED, "just checking");
1052   Monitor* sync_with_child = osthread->startThread_lock();
1053   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1054   sync_with_child->notify();
1055 }
1056 
1057 // Free Linux resources related to the OSThread
1058 void os::free_thread(OSThread* osthread) {
1059   assert(osthread != NULL, "osthread not set");
1060 
1061   // We are told to free resources of the argument thread,
1062   // but we can only really operate on the current thread.
1063   assert(Thread::current()->osthread() == osthread,
1064          "os::free_thread but not current thread");
1065 
1066 #ifdef ASSERT
1067   sigset_t current;
1068   sigemptyset(&current);
1069   pthread_sigmask(SIG_SETMASK, NULL, &current);
1070   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1071 #endif
1072 
1073   // Restore caller's signal mask
1074   sigset_t sigmask = osthread->caller_sigmask();
1075   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1076 
1077   delete osthread;
1078 }
1079 
1080 //////////////////////////////////////////////////////////////////////////////
1081 // primordial thread
1082 
1083 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1084 bool os::is_primordial_thread(void) {
1085   if (suppress_primordial_thread_resolution) {
1086     return false;
1087   }
1088   char dummy;
1089   // If called before init complete, thread stack bottom will be null.
1090   // Can be called if fatal error occurs before initialization.
1091   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1092   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1093          os::Linux::initial_thread_stack_size()   != 0,
1094          "os::init did not locate primordial thread's stack region");
1095   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1096       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1097                         os::Linux::initial_thread_stack_size()) {
1098     return true;
1099   } else {
1100     return false;
1101   }
1102 }
1103 
1104 // Find the virtual memory area that contains addr
1105 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1106   FILE *fp = fopen("/proc/self/maps", "r");
1107   if (fp) {
1108     address low, high;
1109     while (!feof(fp)) {
1110       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1111         if (low <= addr && addr < high) {
1112           if (vma_low)  *vma_low  = low;
1113           if (vma_high) *vma_high = high;
1114           fclose(fp);
1115           return true;
1116         }
1117       }
1118       for (;;) {
1119         int ch = fgetc(fp);
1120         if (ch == EOF || ch == (int)'\n') break;
1121       }
1122     }
1123     fclose(fp);
1124   }
1125   return false;
1126 }
1127 
1128 // Locate primordial thread stack. This special handling of primordial thread stack
1129 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1130 // bogus value for the primordial process thread. While the launcher has created
1131 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1132 // JNI invocation API from a primordial thread.
1133 void os::Linux::capture_initial_stack(size_t max_size) {
1134 
1135   // max_size is either 0 (which means accept OS default for thread stacks) or
1136   // a user-specified value known to be at least the minimum needed. If we
1137   // are actually on the primordial thread we can make it appear that we have a
1138   // smaller max_size stack by inserting the guard pages at that location. But we
1139   // cannot do anything to emulate a larger stack than what has been provided by
1140   // the OS or threading library. In fact if we try to use a stack greater than
1141   // what is set by rlimit then we will crash the hosting process.
1142 
1143   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1144   // If this is "unlimited" then it will be a huge value.
1145   struct rlimit rlim;
1146   getrlimit(RLIMIT_STACK, &rlim);
1147   size_t stack_size = rlim.rlim_cur;
1148 
1149   // 6308388: a bug in ld.so will relocate its own .data section to the
1150   //   lower end of primordial stack; reduce ulimit -s value a little bit
1151   //   so we won't install guard page on ld.so's data section.
1152   //   But ensure we don't underflow the stack size - allow 1 page spare
1153   if (stack_size >= (size_t)(3 * page_size())) {
1154     stack_size -= 2 * page_size();
1155   }
1156 
1157   // Try to figure out where the stack base (top) is. This is harder.
1158   //
1159   // When an application is started, glibc saves the initial stack pointer in
1160   // a global variable "__libc_stack_end", which is then used by system
1161   // libraries. __libc_stack_end should be pretty close to stack top. The
1162   // variable is available since the very early days. However, because it is
1163   // a private interface, it could disappear in the future.
1164   //
1165   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1166   // to __libc_stack_end, it is very close to stack top, but isn't the real
1167   // stack top. Note that /proc may not exist if VM is running as a chroot
1168   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1169   // /proc/<pid>/stat could change in the future (though unlikely).
1170   //
1171   // We try __libc_stack_end first. If that doesn't work, look for
1172   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1173   // as a hint, which should work well in most cases.
1174 
1175   uintptr_t stack_start;
1176 
1177   // try __libc_stack_end first
1178   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1179   if (p && *p) {
1180     stack_start = *p;
1181   } else {
1182     // see if we can get the start_stack field from /proc/self/stat
1183     FILE *fp;
1184     int pid;
1185     char state;
1186     int ppid;
1187     int pgrp;
1188     int session;
1189     int nr;
1190     int tpgrp;
1191     unsigned long flags;
1192     unsigned long minflt;
1193     unsigned long cminflt;
1194     unsigned long majflt;
1195     unsigned long cmajflt;
1196     unsigned long utime;
1197     unsigned long stime;
1198     long cutime;
1199     long cstime;
1200     long prio;
1201     long nice;
1202     long junk;
1203     long it_real;
1204     uintptr_t start;
1205     uintptr_t vsize;
1206     intptr_t rss;
1207     uintptr_t rsslim;
1208     uintptr_t scodes;
1209     uintptr_t ecode;
1210     int i;
1211 
1212     // Figure what the primordial thread stack base is. Code is inspired
1213     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1214     // followed by command name surrounded by parentheses, state, etc.
1215     char stat[2048];
1216     int statlen;
1217 
1218     fp = fopen("/proc/self/stat", "r");
1219     if (fp) {
1220       statlen = fread(stat, 1, 2047, fp);
1221       stat[statlen] = '\0';
1222       fclose(fp);
1223 
1224       // Skip pid and the command string. Note that we could be dealing with
1225       // weird command names, e.g. user could decide to rename java launcher
1226       // to "java 1.4.2 :)", then the stat file would look like
1227       //                1234 (java 1.4.2 :)) R ... ...
1228       // We don't really need to know the command string, just find the last
1229       // occurrence of ")" and then start parsing from there. See bug 4726580.
1230       char * s = strrchr(stat, ')');
1231 
1232       i = 0;
1233       if (s) {
1234         // Skip blank chars
1235         do { s++; } while (s && isspace(*s));
1236 
1237 #define _UFM UINTX_FORMAT
1238 #define _DFM INTX_FORMAT
1239 
1240         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1241         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1242         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1243                    &state,          // 3  %c
1244                    &ppid,           // 4  %d
1245                    &pgrp,           // 5  %d
1246                    &session,        // 6  %d
1247                    &nr,             // 7  %d
1248                    &tpgrp,          // 8  %d
1249                    &flags,          // 9  %lu
1250                    &minflt,         // 10 %lu
1251                    &cminflt,        // 11 %lu
1252                    &majflt,         // 12 %lu
1253                    &cmajflt,        // 13 %lu
1254                    &utime,          // 14 %lu
1255                    &stime,          // 15 %lu
1256                    &cutime,         // 16 %ld
1257                    &cstime,         // 17 %ld
1258                    &prio,           // 18 %ld
1259                    &nice,           // 19 %ld
1260                    &junk,           // 20 %ld
1261                    &it_real,        // 21 %ld
1262                    &start,          // 22 UINTX_FORMAT
1263                    &vsize,          // 23 UINTX_FORMAT
1264                    &rss,            // 24 INTX_FORMAT
1265                    &rsslim,         // 25 UINTX_FORMAT
1266                    &scodes,         // 26 UINTX_FORMAT
1267                    &ecode,          // 27 UINTX_FORMAT
1268                    &stack_start);   // 28 UINTX_FORMAT
1269       }
1270 
1271 #undef _UFM
1272 #undef _DFM
1273 
1274       if (i != 28 - 2) {
1275         assert(false, "Bad conversion from /proc/self/stat");
1276         // product mode - assume we are the primordial thread, good luck in the
1277         // embedded case.
1278         warning("Can't detect primordial thread stack location - bad conversion");
1279         stack_start = (uintptr_t) &rlim;
1280       }
1281     } else {
1282       // For some reason we can't open /proc/self/stat (for example, running on
1283       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1284       // most cases, so don't abort:
1285       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1286       stack_start = (uintptr_t) &rlim;
1287     }
1288   }
1289 
1290   // Now we have a pointer (stack_start) very close to the stack top, the
1291   // next thing to do is to figure out the exact location of stack top. We
1292   // can find out the virtual memory area that contains stack_start by
1293   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1294   // and its upper limit is the real stack top. (again, this would fail if
1295   // running inside chroot, because /proc may not exist.)
1296 
1297   uintptr_t stack_top;
1298   address low, high;
1299   if (find_vma((address)stack_start, &low, &high)) {
1300     // success, "high" is the true stack top. (ignore "low", because initial
1301     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1302     stack_top = (uintptr_t)high;
1303   } else {
1304     // failed, likely because /proc/self/maps does not exist
1305     warning("Can't detect primordial thread stack location - find_vma failed");
1306     // best effort: stack_start is normally within a few pages below the real
1307     // stack top, use it as stack top, and reduce stack size so we won't put
1308     // guard page outside stack.
1309     stack_top = stack_start;
1310     stack_size -= 16 * page_size();
1311   }
1312 
1313   // stack_top could be partially down the page so align it
1314   stack_top = align_up(stack_top, page_size());
1315 
1316   // Allowed stack value is minimum of max_size and what we derived from rlimit
1317   if (max_size > 0) {
1318     _initial_thread_stack_size = MIN2(max_size, stack_size);
1319   } else {
1320     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1321     // clamp it at 8MB as we do on Solaris
1322     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1323   }
1324   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1325   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1326 
1327   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1328 
1329   if (log_is_enabled(Info, os, thread)) {
1330     // See if we seem to be on primordial process thread
1331     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1332                       uintptr_t(&rlim) < stack_top;
1333 
1334     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1335                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1336                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1337                          stack_top, intptr_t(_initial_thread_stack_bottom));
1338   }
1339 }
1340 
1341 ////////////////////////////////////////////////////////////////////////////////
1342 // time support
1343 
1344 #ifndef SUPPORTS_CLOCK_MONOTONIC
1345 #error "Build platform doesn't support clock_gettime and related functionality"
1346 #endif
1347 
1348 // Time since start-up in seconds to a fine granularity.
1349 // Used by VMSelfDestructTimer and the MemProfiler.
1350 double os::elapsedTime() {
1351 
1352   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1353 }
1354 
1355 jlong os::elapsed_counter() {
1356   return javaTimeNanos() - initial_time_count;
1357 }
1358 
1359 jlong os::elapsed_frequency() {
1360   return NANOSECS_PER_SEC; // nanosecond resolution
1361 }
1362 
1363 bool os::supports_vtime() { return true; }
1364 
1365 double os::elapsedVTime() {
1366   struct rusage usage;
1367   int retval = getrusage(RUSAGE_THREAD, &usage);
1368   if (retval == 0) {
1369     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1370   } else {
1371     // better than nothing, but not much
1372     return elapsedTime();
1373   }
1374 }
1375 
1376 jlong os::javaTimeMillis() {
1377   timeval time;
1378   int status = gettimeofday(&time, NULL);
1379   assert(status != -1, "linux error");
1380   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1381 }
1382 
1383 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1384   timeval time;
1385   int status = gettimeofday(&time, NULL);
1386   assert(status != -1, "linux error");
1387   seconds = jlong(time.tv_sec);
1388   nanos = jlong(time.tv_usec) * 1000;
1389 }
1390 
1391 void os::Linux::fast_thread_clock_init() {
1392   if (!UseLinuxPosixThreadCPUClocks) {
1393     return;
1394   }
1395   clockid_t clockid;
1396   struct timespec tp;
1397   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1398       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1399 
1400   // Switch to using fast clocks for thread cpu time if
1401   // the clock_getres() returns 0 error code.
1402   // Note, that some kernels may support the current thread
1403   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1404   // returned by the pthread_getcpuclockid().
1405   // If the fast Posix clocks are supported then the clock_getres()
1406   // must return at least tp.tv_sec == 0 which means a resolution
1407   // better than 1 sec. This is extra check for reliability.
1408 
1409   if (pthread_getcpuclockid_func &&
1410       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1411       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1412     _supports_fast_thread_cpu_time = true;
1413     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1414   }
1415 }
1416 
1417 jlong os::javaTimeNanos() {
1418   if (os::supports_monotonic_clock()) {
1419     struct timespec tp;
1420     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1421     assert(status == 0, "gettime error");
1422     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1423     return result;
1424   } else {
1425     timeval time;
1426     int status = gettimeofday(&time, NULL);
1427     assert(status != -1, "linux error");
1428     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1429     return 1000 * usecs;
1430   }
1431 }
1432 
1433 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1434   if (os::supports_monotonic_clock()) {
1435     info_ptr->max_value = ALL_64_BITS;
1436 
1437     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1438     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1439     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1440   } else {
1441     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1442     info_ptr->max_value = ALL_64_BITS;
1443 
1444     // gettimeofday is a real time clock so it skips
1445     info_ptr->may_skip_backward = true;
1446     info_ptr->may_skip_forward = true;
1447   }
1448 
1449   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1450 }
1451 
1452 // Return the real, user, and system times in seconds from an
1453 // arbitrary fixed point in the past.
1454 bool os::getTimesSecs(double* process_real_time,
1455                       double* process_user_time,
1456                       double* process_system_time) {
1457   struct tms ticks;
1458   clock_t real_ticks = times(&ticks);
1459 
1460   if (real_ticks == (clock_t) (-1)) {
1461     return false;
1462   } else {
1463     double ticks_per_second = (double) clock_tics_per_sec;
1464     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1465     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1466     *process_real_time = ((double) real_ticks) / ticks_per_second;
1467 
1468     return true;
1469   }
1470 }
1471 
1472 
1473 char * os::local_time_string(char *buf, size_t buflen) {
1474   struct tm t;
1475   time_t long_time;
1476   time(&long_time);
1477   localtime_r(&long_time, &t);
1478   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1479                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1480                t.tm_hour, t.tm_min, t.tm_sec);
1481   return buf;
1482 }
1483 
1484 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1485   return localtime_r(clock, res);
1486 }
1487 
1488 ////////////////////////////////////////////////////////////////////////////////
1489 // runtime exit support
1490 
1491 // Note: os::shutdown() might be called very early during initialization, or
1492 // called from signal handler. Before adding something to os::shutdown(), make
1493 // sure it is async-safe and can handle partially initialized VM.
1494 void os::shutdown() {
1495 
1496   // allow PerfMemory to attempt cleanup of any persistent resources
1497   perfMemory_exit();
1498 
1499   // needs to remove object in file system
1500   AttachListener::abort();
1501 
1502   // flush buffered output, finish log files
1503   ostream_abort();
1504 
1505   // Check for abort hook
1506   abort_hook_t abort_hook = Arguments::abort_hook();
1507   if (abort_hook != NULL) {
1508     abort_hook();
1509   }
1510 
1511 }
1512 
1513 // Note: os::abort() might be called very early during initialization, or
1514 // called from signal handler. Before adding something to os::abort(), make
1515 // sure it is async-safe and can handle partially initialized VM.
1516 void os::abort(bool dump_core, void* siginfo, const void* context) {
1517   os::shutdown();
1518   if (dump_core) {
1519     if (DumpPrivateMappingsInCore) {
1520       ClassLoader::close_jrt_image();
1521     }
1522 #ifndef PRODUCT
1523     fdStream out(defaultStream::output_fd());
1524     out.print_raw("Current thread is ");
1525     char buf[16];
1526     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1527     out.print_raw_cr(buf);
1528     out.print_raw_cr("Dumping core ...");
1529 #endif
1530     ::abort(); // dump core
1531   }
1532 
1533   ::exit(1);
1534 }
1535 
1536 // Die immediately, no exit hook, no abort hook, no cleanup.
1537 // Dump a core file, if possible, for debugging.
1538 void os::die() {
1539   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1540     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1541     // and don't take the time to generate a core file.
1542     os::signal_raise(SIGKILL);
1543   } else {
1544     ::abort();
1545   }
1546 }
1547 
1548 // thread_id is kernel thread id (similar to Solaris LWP id)
1549 intx os::current_thread_id() { return os::Linux::gettid(); }
1550 int os::current_process_id() {
1551   return ::getpid();
1552 }
1553 
1554 // DLL functions
1555 
1556 const char* os::dll_file_extension() { return ".so"; }
1557 
1558 // This must be hard coded because it's the system's temporary
1559 // directory not the java application's temp directory, ala java.io.tmpdir.
1560 const char* os::get_temp_directory() { return "/tmp"; }
1561 
1562 static bool file_exists(const char* filename) {
1563   struct stat statbuf;
1564   if (filename == NULL || strlen(filename) == 0) {
1565     return false;
1566   }
1567   return os::stat(filename, &statbuf) == 0;
1568 }
1569 
1570 // check if addr is inside libjvm.so
1571 bool os::address_is_in_vm(address addr) {
1572   static address libjvm_base_addr;
1573   Dl_info dlinfo;
1574 
1575   if (libjvm_base_addr == NULL) {
1576     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1577       libjvm_base_addr = (address)dlinfo.dli_fbase;
1578     }
1579     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1580   }
1581 
1582   if (dladdr((void *)addr, &dlinfo) != 0) {
1583     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1584   }
1585 
1586   return false;
1587 }
1588 
1589 bool os::dll_address_to_function_name(address addr, char *buf,
1590                                       int buflen, int *offset,
1591                                       bool demangle) {
1592   // buf is not optional, but offset is optional
1593   assert(buf != NULL, "sanity check");
1594 
1595   Dl_info dlinfo;
1596 
1597   if (dladdr((void*)addr, &dlinfo) != 0) {
1598     // see if we have a matching symbol
1599     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1600       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1601         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1602       }
1603       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1604       return true;
1605     }
1606     // no matching symbol so try for just file info
1607     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1608       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1609                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1610         return true;
1611       }
1612     }
1613   }
1614 
1615   buf[0] = '\0';
1616   if (offset != NULL) *offset = -1;
1617   return false;
1618 }
1619 
1620 struct _address_to_library_name {
1621   address addr;          // input : memory address
1622   size_t  buflen;        //         size of fname
1623   char*   fname;         // output: library name
1624   address base;          //         library base addr
1625 };
1626 
1627 static int address_to_library_name_callback(struct dl_phdr_info *info,
1628                                             size_t size, void *data) {
1629   int i;
1630   bool found = false;
1631   address libbase = NULL;
1632   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1633 
1634   // iterate through all loadable segments
1635   for (i = 0; i < info->dlpi_phnum; i++) {
1636     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1637     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1638       // base address of a library is the lowest address of its loaded
1639       // segments.
1640       if (libbase == NULL || libbase > segbase) {
1641         libbase = segbase;
1642       }
1643       // see if 'addr' is within current segment
1644       if (segbase <= d->addr &&
1645           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1646         found = true;
1647       }
1648     }
1649   }
1650 
1651   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1652   // so dll_address_to_library_name() can fall through to use dladdr() which
1653   // can figure out executable name from argv[0].
1654   if (found && info->dlpi_name && info->dlpi_name[0]) {
1655     d->base = libbase;
1656     if (d->fname) {
1657       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1658     }
1659     return 1;
1660   }
1661   return 0;
1662 }
1663 
1664 bool os::dll_address_to_library_name(address addr, char* buf,
1665                                      int buflen, int* offset) {
1666   // buf is not optional, but offset is optional
1667   assert(buf != NULL, "sanity check");
1668 
1669   Dl_info dlinfo;
1670   struct _address_to_library_name data;
1671 
1672   // There is a bug in old glibc dladdr() implementation that it could resolve
1673   // to wrong library name if the .so file has a base address != NULL. Here
1674   // we iterate through the program headers of all loaded libraries to find
1675   // out which library 'addr' really belongs to. This workaround can be
1676   // removed once the minimum requirement for glibc is moved to 2.3.x.
1677   data.addr = addr;
1678   data.fname = buf;
1679   data.buflen = buflen;
1680   data.base = NULL;
1681   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1682 
1683   if (rslt) {
1684     // buf already contains library name
1685     if (offset) *offset = addr - data.base;
1686     return true;
1687   }
1688   if (dladdr((void*)addr, &dlinfo) != 0) {
1689     if (dlinfo.dli_fname != NULL) {
1690       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1691     }
1692     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1693       *offset = addr - (address)dlinfo.dli_fbase;
1694     }
1695     return true;
1696   }
1697 
1698   buf[0] = '\0';
1699   if (offset) *offset = -1;
1700   return false;
1701 }
1702 
1703 // Loads .dll/.so and
1704 // in case of error it checks if .dll/.so was built for the
1705 // same architecture as Hotspot is running on
1706 
1707 
1708 // Remember the stack's state. The Linux dynamic linker will change
1709 // the stack to 'executable' at most once, so we must safepoint only once.
1710 bool os::Linux::_stack_is_executable = false;
1711 
1712 // VM operation that loads a library.  This is necessary if stack protection
1713 // of the Java stacks can be lost during loading the library.  If we
1714 // do not stop the Java threads, they can stack overflow before the stacks
1715 // are protected again.
1716 class VM_LinuxDllLoad: public VM_Operation {
1717  private:
1718   const char *_filename;
1719   char *_ebuf;
1720   int _ebuflen;
1721   void *_lib;
1722  public:
1723   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1724     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1725   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1726   void doit() {
1727     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1728     os::Linux::_stack_is_executable = true;
1729   }
1730   void* loaded_library() { return _lib; }
1731 };
1732 
1733 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1734   void * result = NULL;
1735   bool load_attempted = false;
1736 
1737   log_info(os)("attempting shared library load of %s", filename);
1738 
1739   // Check whether the library to load might change execution rights
1740   // of the stack. If they are changed, the protection of the stack
1741   // guard pages will be lost. We need a safepoint to fix this.
1742   //
1743   // See Linux man page execstack(8) for more info.
1744   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1745     if (!ElfFile::specifies_noexecstack(filename)) {
1746       if (!is_init_completed()) {
1747         os::Linux::_stack_is_executable = true;
1748         // This is OK - No Java threads have been created yet, and hence no
1749         // stack guard pages to fix.
1750         //
1751         // Dynamic loader will make all stacks executable after
1752         // this function returns, and will not do that again.
1753         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1754       } else {
1755         warning("You have loaded library %s which might have disabled stack guard. "
1756                 "The VM will try to fix the stack guard now.\n"
1757                 "It's highly recommended that you fix the library with "
1758                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1759                 filename);
1760 
1761         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1762         JavaThread *jt = JavaThread::current();
1763         if (jt->thread_state() != _thread_in_native) {
1764           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1765           // that requires ExecStack. Cannot enter safe point. Let's give up.
1766           warning("Unable to fix stack guard. Giving up.");
1767         } else {
1768           if (!LoadExecStackDllInVMThread) {
1769             // This is for the case where the DLL has an static
1770             // constructor function that executes JNI code. We cannot
1771             // load such DLLs in the VMThread.
1772             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1773           }
1774 
1775           ThreadInVMfromNative tiv(jt);
1776           debug_only(VMNativeEntryWrapper vew;)
1777 
1778           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1779           VMThread::execute(&op);
1780           if (LoadExecStackDllInVMThread) {
1781             result = op.loaded_library();
1782           }
1783           load_attempted = true;
1784         }
1785       }
1786     }
1787   }
1788 
1789   if (!load_attempted) {
1790     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1791   }
1792 
1793   if (result != NULL) {
1794     // Successful loading
1795     return result;
1796   }
1797 
1798   Elf32_Ehdr elf_head;
1799   int diag_msg_max_length=ebuflen-strlen(ebuf);
1800   char* diag_msg_buf=ebuf+strlen(ebuf);
1801 
1802   if (diag_msg_max_length==0) {
1803     // No more space in ebuf for additional diagnostics message
1804     return NULL;
1805   }
1806 
1807 
1808   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1809 
1810   if (file_descriptor < 0) {
1811     // Can't open library, report dlerror() message
1812     return NULL;
1813   }
1814 
1815   bool failed_to_read_elf_head=
1816     (sizeof(elf_head)!=
1817      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1818 
1819   ::close(file_descriptor);
1820   if (failed_to_read_elf_head) {
1821     // file i/o error - report dlerror() msg
1822     return NULL;
1823   }
1824 
1825   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1826     // handle invalid/out of range endianness values
1827     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1828       return NULL;
1829     }
1830 
1831 #if defined(VM_LITTLE_ENDIAN)
1832     // VM is LE, shared object BE
1833     elf_head.e_machine = be16toh(elf_head.e_machine);
1834 #else
1835     // VM is BE, shared object LE
1836     elf_head.e_machine = le16toh(elf_head.e_machine);
1837 #endif
1838   }
1839 
1840   typedef struct {
1841     Elf32_Half    code;         // Actual value as defined in elf.h
1842     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1843     unsigned char elf_class;    // 32 or 64 bit
1844     unsigned char endianness;   // MSB or LSB
1845     char*         name;         // String representation
1846   } arch_t;
1847 
1848 #ifndef EM_486
1849   #define EM_486          6               /* Intel 80486 */
1850 #endif
1851 #ifndef EM_AARCH64
1852   #define EM_AARCH64    183               /* ARM AARCH64 */
1853 #endif
1854 #ifndef EM_RISCV
1855   #define EM_RISCV      243               /* RISC-V */
1856 #endif
1857 
1858   static const arch_t arch_array[]={
1859     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1860     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1861     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1862     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1863     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1864     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1865     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1866     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1867 #if defined(VM_LITTLE_ENDIAN)
1868     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1869     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1870 #else
1871     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1872     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1873 #endif
1874     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1875     // we only support 64 bit z architecture
1876     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1877     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1878     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1879     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1880     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1881     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1882     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1883     {EM_RISCV,       EM_RISCV,   ELFCLASS64, ELFDATA2LSB, (char*)"RISC-V"},
1884   };
1885 
1886 #if  (defined IA32)
1887   static  Elf32_Half running_arch_code=EM_386;
1888 #elif   (defined AMD64) || (defined X32)
1889   static  Elf32_Half running_arch_code=EM_X86_64;
1890 #elif  (defined IA64)
1891   static  Elf32_Half running_arch_code=EM_IA_64;
1892 #elif  (defined __sparc) && (defined _LP64)
1893   static  Elf32_Half running_arch_code=EM_SPARCV9;
1894 #elif  (defined __sparc) && (!defined _LP64)
1895   static  Elf32_Half running_arch_code=EM_SPARC;
1896 #elif  (defined __powerpc64__)
1897   static  Elf32_Half running_arch_code=EM_PPC64;
1898 #elif  (defined __powerpc__)
1899   static  Elf32_Half running_arch_code=EM_PPC;
1900 #elif  (defined AARCH64)
1901   static  Elf32_Half running_arch_code=EM_AARCH64;
1902 #elif  (defined ARM)
1903   static  Elf32_Half running_arch_code=EM_ARM;
1904 #elif  (defined S390)
1905   static  Elf32_Half running_arch_code=EM_S390;
1906 #elif  (defined ALPHA)
1907   static  Elf32_Half running_arch_code=EM_ALPHA;
1908 #elif  (defined MIPSEL)
1909   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1910 #elif  (defined PARISC)
1911   static  Elf32_Half running_arch_code=EM_PARISC;
1912 #elif  (defined MIPS)
1913   static  Elf32_Half running_arch_code=EM_MIPS;
1914 #elif  (defined M68K)
1915   static  Elf32_Half running_arch_code=EM_68K;
1916 #elif  (defined SH)
1917   static  Elf32_Half running_arch_code=EM_SH;
1918 #elif  (defined RISCV)
1919   static  Elf32_Half running_arch_code=EM_RISCV;
1920 #else
1921     #error Method os::dll_load requires that one of following is defined:\
1922         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, RISCV, S390, SH, __sparc
1923 #endif
1924 
1925   // Identify compatibility class for VM's architecture and library's architecture
1926   // Obtain string descriptions for architectures
1927 
1928   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1929   int running_arch_index=-1;
1930 
1931   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1932     if (running_arch_code == arch_array[i].code) {
1933       running_arch_index    = i;
1934     }
1935     if (lib_arch.code == arch_array[i].code) {
1936       lib_arch.compat_class = arch_array[i].compat_class;
1937       lib_arch.name         = arch_array[i].name;
1938     }
1939   }
1940 
1941   assert(running_arch_index != -1,
1942          "Didn't find running architecture code (running_arch_code) in arch_array");
1943   if (running_arch_index == -1) {
1944     // Even though running architecture detection failed
1945     // we may still continue with reporting dlerror() message
1946     return NULL;
1947   }
1948 
1949   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1950     if (lib_arch.name != NULL) {
1951       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1952                  " (Possible cause: can't load %s .so on a %s platform)",
1953                  lib_arch.name, arch_array[running_arch_index].name);
1954     } else {
1955       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1956                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1957                  lib_arch.code, arch_array[running_arch_index].name);
1958     }
1959     return NULL;
1960   }
1961 
1962   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1963     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1964     return NULL;
1965   }
1966 
1967   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1968   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1969     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1970     return NULL;
1971   }
1972 
1973   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1974     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1975                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1976                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1977     return NULL;
1978   }
1979 
1980   return NULL;
1981 }
1982 
1983 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1984                                 int ebuflen) {
1985   void * result = ::dlopen(filename, RTLD_LAZY);
1986   if (result == NULL) {
1987     const char* error_report = ::dlerror();
1988     if (error_report == NULL) {
1989       error_report = "dlerror returned no error description";
1990     }
1991     if (ebuf != NULL && ebuflen > 0) {
1992       ::strncpy(ebuf, error_report, ebuflen-1);
1993       ebuf[ebuflen-1]='\0';
1994     }
1995     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1996     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1997   } else {
1998     Events::log(NULL, "Loaded shared library %s", filename);
1999     log_info(os)("shared library load of %s was successful", filename);
2000   }
2001   return result;
2002 }
2003 
2004 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2005                                        int ebuflen) {
2006   void * result = NULL;
2007   if (LoadExecStackDllInVMThread) {
2008     result = dlopen_helper(filename, ebuf, ebuflen);
2009   }
2010 
2011   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2012   // library that requires an executable stack, or which does not have this
2013   // stack attribute set, dlopen changes the stack attribute to executable. The
2014   // read protection of the guard pages gets lost.
2015   //
2016   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2017   // may have been queued at the same time.
2018 
2019   if (!_stack_is_executable) {
2020     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2021       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2022           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2023         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2024           warning("Attempt to reguard stack yellow zone failed.");
2025         }
2026       }
2027     }
2028   }
2029 
2030   return result;
2031 }
2032 
2033 void* os::dll_lookup(void* handle, const char* name) {
2034   void* res = dlsym(handle, name);
2035   return res;
2036 }
2037 
2038 void* os::get_default_process_handle() {
2039   return (void*)::dlopen(NULL, RTLD_LAZY);
2040 }
2041 
2042 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2043   int fd = ::open(filename, O_RDONLY);
2044   if (fd == -1) {
2045     return false;
2046   }
2047 
2048   if (hdr != NULL) {
2049     st->print_cr("%s", hdr);
2050   }
2051 
2052   char buf[33];
2053   int bytes;
2054   buf[32] = '\0';
2055   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2056     st->print_raw(buf, bytes);
2057   }
2058 
2059   ::close(fd);
2060 
2061   return true;
2062 }
2063 
2064 void os::print_dll_info(outputStream *st) {
2065   st->print_cr("Dynamic libraries:");
2066 
2067   char fname[32];
2068   pid_t pid = os::Linux::gettid();
2069 
2070   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2071 
2072   if (!_print_ascii_file(fname, st)) {
2073     st->print("Can not get library information for pid = %d\n", pid);
2074   }
2075 }
2076 
2077 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2078   FILE *procmapsFile = NULL;
2079 
2080   // Open the procfs maps file for the current process
2081   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2082     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2083     char line[PATH_MAX + 100];
2084 
2085     // Read line by line from 'file'
2086     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2087       u8 base, top, inode;
2088       char name[sizeof(line)];
2089 
2090       // Parse fields from line, discard perms, offset and device
2091       int matches = sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %*s %*s %*s " INT64_FORMAT " %s",
2092              &base, &top, &inode, name);
2093       // the last entry 'name' is empty for some entries, so we might have 3 matches instead of 4 for some lines
2094       if (matches < 3) continue;
2095       if (matches == 3) name[0] = '\0';
2096 
2097       // Filter by inode 0 so that we only get file system mapped files.
2098       if (inode != 0) {
2099 
2100         // Call callback with the fields of interest
2101         if(callback(name, (address)base, (address)top, param)) {
2102           // Oops abort, callback aborted
2103           fclose(procmapsFile);
2104           return 1;
2105         }
2106       }
2107     }
2108     fclose(procmapsFile);
2109   }
2110   return 0;
2111 }
2112 
2113 void os::print_os_info_brief(outputStream* st) {
2114   os::Linux::print_distro_info(st);
2115 
2116   os::Posix::print_uname_info(st);
2117 
2118   os::Linux::print_libversion_info(st);
2119 
2120 }
2121 
2122 void os::print_os_info(outputStream* st) {
2123   st->print("OS:");
2124 
2125   os::Linux::print_distro_info(st);
2126 
2127   os::Posix::print_uname_info(st);
2128 
2129   os::Linux::print_uptime_info(st);
2130 
2131   // Print warning if unsafe chroot environment detected
2132   if (unsafe_chroot_detected) {
2133     st->print("WARNING!! ");
2134     st->print_cr("%s", unstable_chroot_error);
2135   }
2136 
2137   os::Linux::print_libversion_info(st);
2138 
2139   os::Posix::print_rlimit_info(st);
2140 
2141   os::Posix::print_load_average(st);
2142 
2143   os::Linux::print_full_memory_info(st);
2144 
2145   os::Linux::print_proc_sys_info(st);
2146 
2147   os::Linux::print_ld_preload_file(st);
2148 
2149   os::Linux::print_container_info(st);
2150 
2151   VM_Version::print_platform_virtualization_info(st);
2152 
2153   os::Linux::print_steal_info(st);
2154 }
2155 
2156 // Try to identify popular distros.
2157 // Most Linux distributions have a /etc/XXX-release file, which contains
2158 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2159 // file that also contains the OS version string. Some have more than one
2160 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2161 // /etc/redhat-release.), so the order is important.
2162 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2163 // their own specific XXX-release file as well as a redhat-release file.
2164 // Because of this the XXX-release file needs to be searched for before the
2165 // redhat-release file.
2166 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2167 // search for redhat-release / SuSE-release needs to be before lsb-release.
2168 // Since the lsb-release file is the new standard it needs to be searched
2169 // before the older style release files.
2170 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2171 // next to last resort.  The os-release file is a new standard that contains
2172 // distribution information and the system-release file seems to be an old
2173 // standard that has been replaced by the lsb-release and os-release files.
2174 // Searching for the debian_version file is the last resort.  It contains
2175 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2176 // "Debian " is printed before the contents of the debian_version file.
2177 
2178 const char* distro_files[] = {
2179   "/etc/oracle-release",
2180   "/etc/mandriva-release",
2181   "/etc/mandrake-release",
2182   "/etc/sun-release",
2183   "/etc/redhat-release",
2184   "/etc/SuSE-release",
2185   "/etc/lsb-release",
2186   "/etc/turbolinux-release",
2187   "/etc/gentoo-release",
2188   "/etc/ltib-release",
2189   "/etc/angstrom-version",
2190   "/etc/system-release",
2191   "/etc/os-release",
2192   NULL };
2193 
2194 void os::Linux::print_distro_info(outputStream* st) {
2195   for (int i = 0;; i++) {
2196     const char* file = distro_files[i];
2197     if (file == NULL) {
2198       break;  // done
2199     }
2200     // If file prints, we found it.
2201     if (_print_ascii_file(file, st)) {
2202       return;
2203     }
2204   }
2205 
2206   if (file_exists("/etc/debian_version")) {
2207     st->print("Debian ");
2208     _print_ascii_file("/etc/debian_version", st);
2209   } else {
2210     st->print("Linux");
2211   }
2212   st->cr();
2213 }
2214 
2215 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2216   char buf[256];
2217   while (fgets(buf, sizeof(buf), fp)) {
2218     // Edit out extra stuff in expected format
2219     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2220       char* ptr = strstr(buf, "\"");  // the name is in quotes
2221       if (ptr != NULL) {
2222         ptr++; // go beyond first quote
2223         char* nl = strchr(ptr, '\"');
2224         if (nl != NULL) *nl = '\0';
2225         strncpy(distro, ptr, length);
2226       } else {
2227         ptr = strstr(buf, "=");
2228         ptr++; // go beyond equals then
2229         char* nl = strchr(ptr, '\n');
2230         if (nl != NULL) *nl = '\0';
2231         strncpy(distro, ptr, length);
2232       }
2233       return;
2234     } else if (get_first_line) {
2235       char* nl = strchr(buf, '\n');
2236       if (nl != NULL) *nl = '\0';
2237       strncpy(distro, buf, length);
2238       return;
2239     }
2240   }
2241   // print last line and close
2242   char* nl = strchr(buf, '\n');
2243   if (nl != NULL) *nl = '\0';
2244   strncpy(distro, buf, length);
2245 }
2246 
2247 static void parse_os_info(char* distro, size_t length, const char* file) {
2248   FILE* fp = fopen(file, "r");
2249   if (fp != NULL) {
2250     // if suse format, print out first line
2251     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2252     parse_os_info_helper(fp, distro, length, get_first_line);
2253     fclose(fp);
2254   }
2255 }
2256 
2257 void os::get_summary_os_info(char* buf, size_t buflen) {
2258   for (int i = 0;; i++) {
2259     const char* file = distro_files[i];
2260     if (file == NULL) {
2261       break; // ran out of distro_files
2262     }
2263     if (file_exists(file)) {
2264       parse_os_info(buf, buflen, file);
2265       return;
2266     }
2267   }
2268   // special case for debian
2269   if (file_exists("/etc/debian_version")) {
2270     strncpy(buf, "Debian ", buflen);
2271     if (buflen > 7) {
2272       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2273     }
2274   } else {
2275     strncpy(buf, "Linux", buflen);
2276   }
2277 }
2278 
2279 void os::Linux::print_libversion_info(outputStream* st) {
2280   // libc, pthread
2281   st->print("libc:");
2282   st->print("%s ", os::Linux::glibc_version());
2283   st->print("%s ", os::Linux::libpthread_version());
2284   st->cr();
2285 }
2286 
2287 void os::Linux::print_proc_sys_info(outputStream* st) {
2288   st->cr();
2289   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2290   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2291   st->cr();
2292   st->cr();
2293 
2294   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2295   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2296   st->cr();
2297   st->cr();
2298 
2299   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2300   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2301   st->cr();
2302   st->cr();
2303 }
2304 
2305 void os::Linux::print_full_memory_info(outputStream* st) {
2306   st->print("\n/proc/meminfo:\n");
2307   _print_ascii_file("/proc/meminfo", st);
2308   st->cr();
2309 
2310   // some information regarding THPs; for details see
2311   // https://www.kernel.org/doc/Documentation/vm/transhuge.txt
2312   st->print_cr("/sys/kernel/mm/transparent_hugepage/enabled:");
2313   if (!_print_ascii_file("/sys/kernel/mm/transparent_hugepage/enabled", st)) {
2314     st->print_cr("  <Not Available>");
2315   }
2316   st->cr();
2317   st->print_cr("/sys/kernel/mm/transparent_hugepage/defrag (defrag/compaction efforts parameter):");
2318   if (!_print_ascii_file("/sys/kernel/mm/transparent_hugepage/defrag", st)) {
2319     st->print_cr("  <Not Available>");
2320   }
2321   st->cr();
2322 }
2323 
2324 void os::Linux::print_ld_preload_file(outputStream* st) {
2325   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2326   st->cr();
2327 }
2328 
2329 void os::Linux::print_uptime_info(outputStream* st) {
2330   struct sysinfo sinfo;
2331   int ret = sysinfo(&sinfo);
2332   if (ret == 0) {
2333     os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
2334   }
2335 }
2336 
2337 
2338 void os::Linux::print_container_info(outputStream* st) {
2339   if (!OSContainer::is_containerized()) {
2340     return;
2341   }
2342 
2343   st->print("container (cgroup) information:\n");
2344 
2345   const char *p_ct = OSContainer::container_type();
2346   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2347 
2348   char *p = OSContainer::cpu_cpuset_cpus();
2349   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2350   free(p);
2351 
2352   p = OSContainer::cpu_cpuset_memory_nodes();
2353   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2354   free(p);
2355 
2356   int i = OSContainer::active_processor_count();
2357   st->print("active_processor_count: ");
2358   if (i > 0) {
2359     st->print("%d\n", i);
2360   } else {
2361     st->print("not supported\n");
2362   }
2363 
2364   i = OSContainer::cpu_quota();
2365   st->print("cpu_quota: ");
2366   if (i > 0) {
2367     st->print("%d\n", i);
2368   } else {
2369     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2370   }
2371 
2372   i = OSContainer::cpu_period();
2373   st->print("cpu_period: ");
2374   if (i > 0) {
2375     st->print("%d\n", i);
2376   } else {
2377     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2378   }
2379 
2380   i = OSContainer::cpu_shares();
2381   st->print("cpu_shares: ");
2382   if (i > 0) {
2383     st->print("%d\n", i);
2384   } else {
2385     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2386   }
2387 
2388   jlong j = OSContainer::memory_limit_in_bytes();
2389   st->print("memory_limit_in_bytes: ");
2390   if (j > 0) {
2391     st->print(JLONG_FORMAT "\n", j);
2392   } else {
2393     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2394   }
2395 
2396   j = OSContainer::memory_and_swap_limit_in_bytes();
2397   st->print("memory_and_swap_limit_in_bytes: ");
2398   if (j > 0) {
2399     st->print(JLONG_FORMAT "\n", j);
2400   } else {
2401     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2402   }
2403 
2404   j = OSContainer::memory_soft_limit_in_bytes();
2405   st->print("memory_soft_limit_in_bytes: ");
2406   if (j > 0) {
2407     st->print(JLONG_FORMAT "\n", j);
2408   } else {
2409     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2410   }
2411 
2412   j = OSContainer::OSContainer::memory_usage_in_bytes();
2413   st->print("memory_usage_in_bytes: ");
2414   if (j > 0) {
2415     st->print(JLONG_FORMAT "\n", j);
2416   } else {
2417     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2418   }
2419 
2420   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2421   st->print("memory_max_usage_in_bytes: ");
2422   if (j > 0) {
2423     st->print(JLONG_FORMAT "\n", j);
2424   } else {
2425     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2426   }
2427   st->cr();
2428 }
2429 
2430 void os::Linux::print_steal_info(outputStream* st) {
2431   if (has_initial_tick_info) {
2432     CPUPerfTicks pticks;
2433     bool res = os::Linux::get_tick_information(&pticks, -1);
2434 
2435     if (res && pticks.has_steal_ticks) {
2436       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2437       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2438       double steal_ticks_perc = 0.0;
2439       if (total_ticks_difference != 0) {
2440         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2441       }
2442       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2443       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2444     }
2445   }
2446 }
2447 
2448 void os::print_memory_info(outputStream* st) {
2449 
2450   st->print("Memory:");
2451   st->print(" %dk page", os::vm_page_size()>>10);
2452 
2453   // values in struct sysinfo are "unsigned long"
2454   struct sysinfo si;
2455   sysinfo(&si);
2456 
2457   st->print(", physical " UINT64_FORMAT "k",
2458             os::physical_memory() >> 10);
2459   st->print("(" UINT64_FORMAT "k free)",
2460             os::available_memory() >> 10);
2461   st->print(", swap " UINT64_FORMAT "k",
2462             ((jlong)si.totalswap * si.mem_unit) >> 10);
2463   st->print("(" UINT64_FORMAT "k free)",
2464             ((jlong)si.freeswap * si.mem_unit) >> 10);
2465   st->cr();
2466 }
2467 
2468 // Print the first "model name" line and the first "flags" line
2469 // that we find and nothing more. We assume "model name" comes
2470 // before "flags" so if we find a second "model name", then the
2471 // "flags" field is considered missing.
2472 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2473 #if defined(IA32) || defined(AMD64)
2474   // Other platforms have less repetitive cpuinfo files
2475   FILE *fp = fopen("/proc/cpuinfo", "r");
2476   if (fp) {
2477     while (!feof(fp)) {
2478       if (fgets(buf, buflen, fp)) {
2479         // Assume model name comes before flags
2480         bool model_name_printed = false;
2481         if (strstr(buf, "model name") != NULL) {
2482           if (!model_name_printed) {
2483             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2484             st->print_raw(buf);
2485             model_name_printed = true;
2486           } else {
2487             // model name printed but not flags?  Odd, just return
2488             fclose(fp);
2489             return true;
2490           }
2491         }
2492         // print the flags line too
2493         if (strstr(buf, "flags") != NULL) {
2494           st->print_raw(buf);
2495           fclose(fp);
2496           return true;
2497         }
2498       }
2499     }
2500     fclose(fp);
2501   }
2502 #endif // x86 platforms
2503   return false;
2504 }
2505 
2506 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2507   // Only print the model name if the platform provides this as a summary
2508   if (!print_model_name_and_flags(st, buf, buflen)) {
2509     st->print("\n/proc/cpuinfo:\n");
2510     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2511       st->print_cr("  <Not Available>");
2512     }
2513   }
2514 }
2515 
2516 #if defined(AMD64) || defined(IA32) || defined(X32)
2517 const char* search_string = "model name";
2518 #elif defined(M68K)
2519 const char* search_string = "CPU";
2520 #elif defined(PPC64)
2521 const char* search_string = "cpu";
2522 #elif defined(S390)
2523 const char* search_string = "machine =";
2524 #elif defined(SPARC)
2525 const char* search_string = "cpu";
2526 #else
2527 const char* search_string = "Processor";
2528 #endif
2529 
2530 // Parses the cpuinfo file for string representing the model name.
2531 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2532   FILE* fp = fopen("/proc/cpuinfo", "r");
2533   if (fp != NULL) {
2534     while (!feof(fp)) {
2535       char buf[256];
2536       if (fgets(buf, sizeof(buf), fp)) {
2537         char* start = strstr(buf, search_string);
2538         if (start != NULL) {
2539           char *ptr = start + strlen(search_string);
2540           char *end = buf + strlen(buf);
2541           while (ptr != end) {
2542              // skip whitespace and colon for the rest of the name.
2543              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2544                break;
2545              }
2546              ptr++;
2547           }
2548           if (ptr != end) {
2549             // reasonable string, get rid of newline and keep the rest
2550             char* nl = strchr(buf, '\n');
2551             if (nl != NULL) *nl = '\0';
2552             strncpy(cpuinfo, ptr, length);
2553             fclose(fp);
2554             return;
2555           }
2556         }
2557       }
2558     }
2559     fclose(fp);
2560   }
2561   // cpuinfo not found or parsing failed, just print generic string.  The entire
2562   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2563 #if   defined(AARCH64)
2564   strncpy(cpuinfo, "AArch64", length);
2565 #elif defined(AMD64)
2566   strncpy(cpuinfo, "x86_64", length);
2567 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2568   strncpy(cpuinfo, "ARM", length);
2569 #elif defined(IA32)
2570   strncpy(cpuinfo, "x86_32", length);
2571 #elif defined(IA64)
2572   strncpy(cpuinfo, "IA64", length);
2573 #elif defined(PPC)
2574   strncpy(cpuinfo, "PPC64", length);
2575 #elif defined(S390)
2576   strncpy(cpuinfo, "S390", length);
2577 #elif defined(SPARC)
2578   strncpy(cpuinfo, "sparcv9", length);
2579 #elif defined(ZERO_LIBARCH)
2580   strncpy(cpuinfo, ZERO_LIBARCH, length);
2581 #else
2582   strncpy(cpuinfo, "unknown", length);
2583 #endif
2584 }
2585 
2586 static void print_signal_handler(outputStream* st, int sig,
2587                                  char* buf, size_t buflen);
2588 
2589 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2590   st->print_cr("Signal Handlers:");
2591   print_signal_handler(st, SIGSEGV, buf, buflen);
2592   print_signal_handler(st, SIGBUS , buf, buflen);
2593   print_signal_handler(st, SIGFPE , buf, buflen);
2594   print_signal_handler(st, SIGPIPE, buf, buflen);
2595   print_signal_handler(st, SIGXFSZ, buf, buflen);
2596   print_signal_handler(st, SIGILL , buf, buflen);
2597   print_signal_handler(st, SR_signum, buf, buflen);
2598   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2599   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2600   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2601   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2602 #if defined(PPC64)
2603   print_signal_handler(st, SIGTRAP, buf, buflen);
2604 #endif
2605 }
2606 
2607 static char saved_jvm_path[MAXPATHLEN] = {0};
2608 
2609 // Find the full path to the current module, libjvm.so
2610 void os::jvm_path(char *buf, jint buflen) {
2611   // Error checking.
2612   if (buflen < MAXPATHLEN) {
2613     assert(false, "must use a large-enough buffer");
2614     buf[0] = '\0';
2615     return;
2616   }
2617   // Lazy resolve the path to current module.
2618   if (saved_jvm_path[0] != 0) {
2619     strcpy(buf, saved_jvm_path);
2620     return;
2621   }
2622 
2623   char dli_fname[MAXPATHLEN];
2624   bool ret = dll_address_to_library_name(
2625                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2626                                          dli_fname, sizeof(dli_fname), NULL);
2627   assert(ret, "cannot locate libjvm");
2628   char *rp = NULL;
2629   if (ret && dli_fname[0] != '\0') {
2630     rp = os::Posix::realpath(dli_fname, buf, buflen);
2631   }
2632   if (rp == NULL) {
2633     return;
2634   }
2635 
2636   if (Arguments::sun_java_launcher_is_altjvm()) {
2637     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2638     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2639     // If "/jre/lib/" appears at the right place in the string, then
2640     // assume we are installed in a JDK and we're done. Otherwise, check
2641     // for a JAVA_HOME environment variable and fix up the path so it
2642     // looks like libjvm.so is installed there (append a fake suffix
2643     // hotspot/libjvm.so).
2644     const char *p = buf + strlen(buf) - 1;
2645     for (int count = 0; p > buf && count < 5; ++count) {
2646       for (--p; p > buf && *p != '/'; --p)
2647         /* empty */ ;
2648     }
2649 
2650     if (strncmp(p, "/jre/lib/", 9) != 0) {
2651       // Look for JAVA_HOME in the environment.
2652       char* java_home_var = ::getenv("JAVA_HOME");
2653       if (java_home_var != NULL && java_home_var[0] != 0) {
2654         char* jrelib_p;
2655         int len;
2656 
2657         // Check the current module name "libjvm.so".
2658         p = strrchr(buf, '/');
2659         if (p == NULL) {
2660           return;
2661         }
2662         assert(strstr(p, "/libjvm") == p, "invalid library name");
2663 
2664         rp = os::Posix::realpath(java_home_var, buf, buflen);
2665         if (rp == NULL) {
2666           return;
2667         }
2668 
2669         // determine if this is a legacy image or modules image
2670         // modules image doesn't have "jre" subdirectory
2671         len = strlen(buf);
2672         assert(len < buflen, "Ran out of buffer room");
2673         jrelib_p = buf + len;
2674         snprintf(jrelib_p, buflen-len, "/jre/lib");
2675         if (0 != access(buf, F_OK)) {
2676           snprintf(jrelib_p, buflen-len, "/lib");
2677         }
2678 
2679         if (0 == access(buf, F_OK)) {
2680           // Use current module name "libjvm.so"
2681           len = strlen(buf);
2682           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2683         } else {
2684           // Go back to path of .so
2685           rp = os::Posix::realpath(dli_fname, buf, buflen);
2686           if (rp == NULL) {
2687             return;
2688           }
2689         }
2690       }
2691     }
2692   }
2693 
2694   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2695   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2696 }
2697 
2698 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2699   // no prefix required, not even "_"
2700 }
2701 
2702 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2703   // no suffix required
2704 }
2705 
2706 ////////////////////////////////////////////////////////////////////////////////
2707 // sun.misc.Signal support
2708 
2709 static void UserHandler(int sig, void *siginfo, void *context) {
2710   // Ctrl-C is pressed during error reporting, likely because the error
2711   // handler fails to abort. Let VM die immediately.
2712   if (sig == SIGINT && VMError::is_error_reported()) {
2713     os::die();
2714   }
2715 
2716   os::signal_notify(sig);
2717 }
2718 
2719 void* os::user_handler() {
2720   return CAST_FROM_FN_PTR(void*, UserHandler);
2721 }
2722 
2723 extern "C" {
2724   typedef void (*sa_handler_t)(int);
2725   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2726 }
2727 
2728 void* os::signal(int signal_number, void* handler) {
2729   struct sigaction sigAct, oldSigAct;
2730 
2731   sigfillset(&(sigAct.sa_mask));
2732   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2733   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2734 
2735   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2736     // -1 means registration failed
2737     return (void *)-1;
2738   }
2739 
2740   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2741 }
2742 
2743 void os::signal_raise(int signal_number) {
2744   ::raise(signal_number);
2745 }
2746 
2747 // The following code is moved from os.cpp for making this
2748 // code platform specific, which it is by its very nature.
2749 
2750 // Will be modified when max signal is changed to be dynamic
2751 int os::sigexitnum_pd() {
2752   return NSIG;
2753 }
2754 
2755 // a counter for each possible signal value
2756 static volatile jint pending_signals[NSIG+1] = { 0 };
2757 
2758 // Linux(POSIX) specific hand shaking semaphore.
2759 static Semaphore* sig_sem = NULL;
2760 static PosixSemaphore sr_semaphore;
2761 
2762 static void jdk_misc_signal_init() {
2763   // Initialize signal structures
2764   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2765 
2766   // Initialize signal semaphore
2767   sig_sem = new Semaphore();
2768 }
2769 
2770 void os::signal_notify(int sig) {
2771   if (sig_sem != NULL) {
2772     Atomic::inc(&pending_signals[sig]);
2773     sig_sem->signal();
2774   } else {
2775     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2776     // initialization isn't called.
2777     assert(ReduceSignalUsage, "signal semaphore should be created");
2778   }
2779 }
2780 
2781 static int check_pending_signals() {
2782   for (;;) {
2783     for (int i = 0; i < NSIG + 1; i++) {
2784       jint n = pending_signals[i];
2785       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
2786         return i;
2787       }
2788     }
2789     JavaThread *thread = JavaThread::current();
2790     ThreadBlockInVM tbivm(thread);
2791 
2792     bool threadIsSuspended;
2793     do {
2794       thread->set_suspend_equivalent();
2795       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2796       sig_sem->wait();
2797 
2798       // were we externally suspended while we were waiting?
2799       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2800       if (threadIsSuspended) {
2801         // The semaphore has been incremented, but while we were waiting
2802         // another thread suspended us. We don't want to continue running
2803         // while suspended because that would surprise the thread that
2804         // suspended us.
2805         sig_sem->signal();
2806 
2807         thread->java_suspend_self();
2808       }
2809     } while (threadIsSuspended);
2810   }
2811 }
2812 
2813 int os::signal_wait() {
2814   return check_pending_signals();
2815 }
2816 
2817 ////////////////////////////////////////////////////////////////////////////////
2818 // Virtual Memory
2819 
2820 int os::vm_page_size() {
2821   // Seems redundant as all get out
2822   assert(os::Linux::page_size() != -1, "must call os::init");
2823   return os::Linux::page_size();
2824 }
2825 
2826 // Solaris allocates memory by pages.
2827 int os::vm_allocation_granularity() {
2828   assert(os::Linux::page_size() != -1, "must call os::init");
2829   return os::Linux::page_size();
2830 }
2831 
2832 // Rationale behind this function:
2833 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2834 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2835 //  samples for JITted code. Here we create private executable mapping over the code cache
2836 //  and then we can use standard (well, almost, as mapping can change) way to provide
2837 //  info for the reporting script by storing timestamp and location of symbol
2838 void linux_wrap_code(char* base, size_t size) {
2839   static volatile jint cnt = 0;
2840 
2841   if (!UseOprofile) {
2842     return;
2843   }
2844 
2845   char buf[PATH_MAX+1];
2846   int num = Atomic::add(&cnt, 1);
2847 
2848   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2849            os::get_temp_directory(), os::current_process_id(), num);
2850   unlink(buf);
2851 
2852   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2853 
2854   if (fd != -1) {
2855     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2856     if (rv != (off_t)-1) {
2857       if (::write(fd, "", 1) == 1) {
2858         mmap(base, size,
2859              PROT_READ|PROT_WRITE|PROT_EXEC,
2860              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2861       }
2862     }
2863     ::close(fd);
2864     unlink(buf);
2865   }
2866 }
2867 
2868 static bool recoverable_mmap_error(int err) {
2869   // See if the error is one we can let the caller handle. This
2870   // list of errno values comes from JBS-6843484. I can't find a
2871   // Linux man page that documents this specific set of errno
2872   // values so while this list currently matches Solaris, it may
2873   // change as we gain experience with this failure mode.
2874   switch (err) {
2875   case EBADF:
2876   case EINVAL:
2877   case ENOTSUP:
2878     // let the caller deal with these errors
2879     return true;
2880 
2881   default:
2882     // Any remaining errors on this OS can cause our reserved mapping
2883     // to be lost. That can cause confusion where different data
2884     // structures think they have the same memory mapped. The worst
2885     // scenario is if both the VM and a library think they have the
2886     // same memory mapped.
2887     return false;
2888   }
2889 }
2890 
2891 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2892                                     int err) {
2893   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2894           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2895           os::strerror(err), err);
2896 }
2897 
2898 static void warn_fail_commit_memory(char* addr, size_t size,
2899                                     size_t alignment_hint, bool exec,
2900                                     int err) {
2901   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2902           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2903           alignment_hint, exec, os::strerror(err), err);
2904 }
2905 
2906 // NOTE: Linux kernel does not really reserve the pages for us.
2907 //       All it does is to check if there are enough free pages
2908 //       left at the time of mmap(). This could be a potential
2909 //       problem.
2910 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2911   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2912   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2913                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2914   if (res != (uintptr_t) MAP_FAILED) {
2915     if (UseNUMAInterleaving) {
2916       numa_make_global(addr, size);
2917     }
2918     return 0;
2919   }
2920 
2921   int err = errno;  // save errno from mmap() call above
2922 
2923   if (!recoverable_mmap_error(err)) {
2924     warn_fail_commit_memory(addr, size, exec, err);
2925     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2926   }
2927 
2928   return err;
2929 }
2930 
2931 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2932   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2933 }
2934 
2935 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2936                                   const char* mesg) {
2937   assert(mesg != NULL, "mesg must be specified");
2938   int err = os::Linux::commit_memory_impl(addr, size, exec);
2939   if (err != 0) {
2940     // the caller wants all commit errors to exit with the specified mesg:
2941     warn_fail_commit_memory(addr, size, exec, err);
2942     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2943   }
2944 }
2945 
2946 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2947 #ifndef MAP_HUGETLB
2948   #define MAP_HUGETLB 0x40000
2949 #endif
2950 
2951 // mmap: If MAP_HUGETLB is set, and the system supports multiple huge page sizes,
2952 // flag bits [26:31] can be used to encode the log2 of the desired huge page size.
2953 // Otherwise the system's default huge page size will be used.
2954 #ifndef MAP_HUGE_SHIFT
2955   #define MAP_HUGE_SHIFT 26
2956 #endif
2957 
2958 #ifndef MAP_HUGE_2MB
2959   #define MAP_HUGE_2MB (21 << MAP_HUGE_SHIFT)
2960 #endif
2961 
2962 #ifndef MAP_HUGE_1GB
2963   #define MAP_HUGE_1GB (30 << MAP_HUGE_SHIFT)
2964 #endif
2965 
2966 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2967 #ifndef MADV_HUGEPAGE
2968   #define MADV_HUGEPAGE 14
2969 #endif
2970 
2971 int os::Linux::commit_memory_impl(char* addr, size_t size,
2972                                   size_t alignment_hint, bool exec) {
2973   int err = os::Linux::commit_memory_impl(addr, size, exec);
2974   if (err == 0) {
2975     realign_memory(addr, size, alignment_hint);
2976   }
2977   return err;
2978 }
2979 
2980 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2981                           bool exec) {
2982   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2983 }
2984 
2985 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2986                                   size_t alignment_hint, bool exec,
2987                                   const char* mesg) {
2988   assert(mesg != NULL, "mesg must be specified");
2989   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2990   if (err != 0) {
2991     // the caller wants all commit errors to exit with the specified mesg:
2992     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2993     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2994   }
2995 }
2996 
2997 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2998   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2999     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
3000     // be supported or the memory may already be backed by huge pages.
3001     ::madvise(addr, bytes, MADV_HUGEPAGE);
3002   }
3003 }
3004 
3005 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
3006   // This method works by doing an mmap over an existing mmaping and effectively discarding
3007   // the existing pages. However it won't work for SHM-based large pages that cannot be
3008   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
3009   // small pages on top of the SHM segment. This method always works for small pages, so we
3010   // allow that in any case.
3011   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
3012     commit_memory(addr, bytes, alignment_hint, !ExecMem);
3013   }
3014 }
3015 
3016 void os::numa_make_global(char *addr, size_t bytes) {
3017   Linux::numa_interleave_memory(addr, bytes);
3018 }
3019 
3020 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
3021 // bind policy to MPOL_PREFERRED for the current thread.
3022 #define USE_MPOL_PREFERRED 0
3023 
3024 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
3025   // To make NUMA and large pages more robust when both enabled, we need to ease
3026   // the requirements on where the memory should be allocated. MPOL_BIND is the
3027   // default policy and it will force memory to be allocated on the specified
3028   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
3029   // the specified node, but will not force it. Using this policy will prevent
3030   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
3031   // free large pages.
3032   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
3033   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
3034 }
3035 
3036 bool os::numa_topology_changed() { return false; }
3037 
3038 size_t os::numa_get_groups_num() {
3039   // Return just the number of nodes in which it's possible to allocate memory
3040   // (in numa terminology, configured nodes).
3041   return Linux::numa_num_configured_nodes();
3042 }
3043 
3044 int os::numa_get_group_id() {
3045   int cpu_id = Linux::sched_getcpu();
3046   if (cpu_id != -1) {
3047     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3048     if (lgrp_id != -1) {
3049       return lgrp_id;
3050     }
3051   }
3052   return 0;
3053 }
3054 
3055 int os::numa_get_group_id_for_address(const void* address) {
3056   void** pages = const_cast<void**>(&address);
3057   int id = -1;
3058 
3059   if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
3060     return -1;
3061   }
3062   if (id < 0) {
3063     return -1;
3064   }
3065   return id;
3066 }
3067 
3068 int os::Linux::get_existing_num_nodes() {
3069   int node;
3070   int highest_node_number = Linux::numa_max_node();
3071   int num_nodes = 0;
3072 
3073   // Get the total number of nodes in the system including nodes without memory.
3074   for (node = 0; node <= highest_node_number; node++) {
3075     if (is_node_in_existing_nodes(node)) {
3076       num_nodes++;
3077     }
3078   }
3079   return num_nodes;
3080 }
3081 
3082 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3083   int highest_node_number = Linux::numa_max_node();
3084   size_t i = 0;
3085 
3086   // Map all node ids in which it is possible to allocate memory. Also nodes are
3087   // not always consecutively available, i.e. available from 0 to the highest
3088   // node number. If the nodes have been bound explicitly using numactl membind,
3089   // then allocate memory from those nodes only.
3090   for (int node = 0; node <= highest_node_number; node++) {
3091     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3092       ids[i++] = node;
3093     }
3094   }
3095   return i;
3096 }
3097 
3098 bool os::get_page_info(char *start, page_info* info) {
3099   return false;
3100 }
3101 
3102 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3103                      page_info* page_found) {
3104   return end;
3105 }
3106 
3107 
3108 int os::Linux::sched_getcpu_syscall(void) {
3109   unsigned int cpu = 0;
3110   int retval = -1;
3111 
3112 #if defined(IA32)
3113   #ifndef SYS_getcpu
3114     #define SYS_getcpu 318
3115   #endif
3116   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3117 #elif defined(AMD64)
3118 // Unfortunately we have to bring all these macros here from vsyscall.h
3119 // to be able to compile on old linuxes.
3120   #define __NR_vgetcpu 2
3121   #define VSYSCALL_START (-10UL << 20)
3122   #define VSYSCALL_SIZE 1024
3123   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3124   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3125   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3126   retval = vgetcpu(&cpu, NULL, NULL);
3127 #endif
3128 
3129   return (retval == -1) ? retval : cpu;
3130 }
3131 
3132 void os::Linux::sched_getcpu_init() {
3133   // sched_getcpu() should be in libc.
3134   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3135                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3136 
3137   // If it's not, try a direct syscall.
3138   if (sched_getcpu() == -1) {
3139     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3140                                     (void*)&sched_getcpu_syscall));
3141   }
3142 
3143   if (sched_getcpu() == -1) {
3144     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3145   }
3146 }
3147 
3148 // Something to do with the numa-aware allocator needs these symbols
3149 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3150 extern "C" JNIEXPORT void numa_error(char *where) { }
3151 
3152 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3153 // load symbol from base version instead.
3154 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3155   void *f = dlvsym(handle, name, "libnuma_1.1");
3156   if (f == NULL) {
3157     f = dlsym(handle, name);
3158   }
3159   return f;
3160 }
3161 
3162 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3163 // Return NULL if the symbol is not defined in this particular version.
3164 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3165   return dlvsym(handle, name, "libnuma_1.2");
3166 }
3167 
3168 bool os::Linux::libnuma_init() {
3169   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3170     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3171     if (handle != NULL) {
3172       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3173                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3174       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3175                                        libnuma_dlsym(handle, "numa_max_node")));
3176       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3177                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3178       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3179                                         libnuma_dlsym(handle, "numa_available")));
3180       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3181                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3182       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3183                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3184       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3185                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3186       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3187                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3188       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3189                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3190       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3191                                        libnuma_dlsym(handle, "numa_distance")));
3192       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3193                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3194       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3195                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3196       set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
3197                                          libnuma_dlsym(handle, "numa_move_pages")));
3198       set_numa_set_preferred(CAST_TO_FN_PTR(numa_set_preferred_func_t,
3199                                             libnuma_dlsym(handle, "numa_set_preferred")));
3200 
3201       if (numa_available() != -1) {
3202         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3203         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3204         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3205         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3206         set_numa_membind_bitmask(_numa_get_membind());
3207         // Create an index -> node mapping, since nodes are not always consecutive
3208         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3209         rebuild_nindex_to_node_map();
3210         // Create a cpu -> node mapping
3211         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3212         rebuild_cpu_to_node_map();
3213         return true;
3214       }
3215     }
3216   }
3217   return false;
3218 }
3219 
3220 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3221   // Creating guard page is very expensive. Java thread has HotSpot
3222   // guard pages, only enable glibc guard page for non-Java threads.
3223   // (Remember: compiler thread is a Java thread, too!)
3224   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3225 }
3226 
3227 void os::Linux::rebuild_nindex_to_node_map() {
3228   int highest_node_number = Linux::numa_max_node();
3229 
3230   nindex_to_node()->clear();
3231   for (int node = 0; node <= highest_node_number; node++) {
3232     if (Linux::is_node_in_existing_nodes(node)) {
3233       nindex_to_node()->append(node);
3234     }
3235   }
3236 }
3237 
3238 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3239 // The table is later used in get_node_by_cpu().
3240 void os::Linux::rebuild_cpu_to_node_map() {
3241   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3242                               // in libnuma (possible values are starting from 16,
3243                               // and continuing up with every other power of 2, but less
3244                               // than the maximum number of CPUs supported by kernel), and
3245                               // is a subject to change (in libnuma version 2 the requirements
3246                               // are more reasonable) we'll just hardcode the number they use
3247                               // in the library.
3248   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3249 
3250   size_t cpu_num = processor_count();
3251   size_t cpu_map_size = NCPUS / BitsPerCLong;
3252   size_t cpu_map_valid_size =
3253     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3254 
3255   cpu_to_node()->clear();
3256   cpu_to_node()->at_grow(cpu_num - 1);
3257 
3258   size_t node_num = get_existing_num_nodes();
3259 
3260   int distance = 0;
3261   int closest_distance = INT_MAX;
3262   int closest_node = 0;
3263   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3264   for (size_t i = 0; i < node_num; i++) {
3265     // Check if node is configured (not a memory-less node). If it is not, find
3266     // the closest configured node. Check also if node is bound, i.e. it's allowed
3267     // to allocate memory from the node. If it's not allowed, map cpus in that node
3268     // to the closest node from which memory allocation is allowed.
3269     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3270         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3271       closest_distance = INT_MAX;
3272       // Check distance from all remaining nodes in the system. Ignore distance
3273       // from itself, from another non-configured node, and from another non-bound
3274       // node.
3275       for (size_t m = 0; m < node_num; m++) {
3276         if (m != i &&
3277             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3278             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3279           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3280           // If a closest node is found, update. There is always at least one
3281           // configured and bound node in the system so there is always at least
3282           // one node close.
3283           if (distance != 0 && distance < closest_distance) {
3284             closest_distance = distance;
3285             closest_node = nindex_to_node()->at(m);
3286           }
3287         }
3288       }
3289      } else {
3290        // Current node is already a configured node.
3291        closest_node = nindex_to_node()->at(i);
3292      }
3293 
3294     // Get cpus from the original node and map them to the closest node. If node
3295     // is a configured node (not a memory-less node), then original node and
3296     // closest node are the same.
3297     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3298       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3299         if (cpu_map[j] != 0) {
3300           for (size_t k = 0; k < BitsPerCLong; k++) {
3301             if (cpu_map[j] & (1UL << k)) {
3302               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3303             }
3304           }
3305         }
3306       }
3307     }
3308   }
3309   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3310 }
3311 
3312 int os::Linux::get_node_by_cpu(int cpu_id) {
3313   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3314     return cpu_to_node()->at(cpu_id);
3315   }
3316   return -1;
3317 }
3318 
3319 GrowableArray<int>* os::Linux::_cpu_to_node;
3320 GrowableArray<int>* os::Linux::_nindex_to_node;
3321 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3322 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3323 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3324 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3325 os::Linux::numa_available_func_t os::Linux::_numa_available;
3326 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3327 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3328 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3329 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3330 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3331 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3332 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3333 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3334 os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
3335 os::Linux::numa_set_preferred_func_t os::Linux::_numa_set_preferred;
3336 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3337 unsigned long* os::Linux::_numa_all_nodes;
3338 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3339 struct bitmask* os::Linux::_numa_nodes_ptr;
3340 struct bitmask* os::Linux::_numa_interleave_bitmask;
3341 struct bitmask* os::Linux::_numa_membind_bitmask;
3342 
3343 bool os::pd_uncommit_memory(char* addr, size_t size) {
3344   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3345                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3346   return res  != (uintptr_t) MAP_FAILED;
3347 }
3348 
3349 static address get_stack_commited_bottom(address bottom, size_t size) {
3350   address nbot = bottom;
3351   address ntop = bottom + size;
3352 
3353   size_t page_sz = os::vm_page_size();
3354   unsigned pages = size / page_sz;
3355 
3356   unsigned char vec[1];
3357   unsigned imin = 1, imax = pages + 1, imid;
3358   int mincore_return_value = 0;
3359 
3360   assert(imin <= imax, "Unexpected page size");
3361 
3362   while (imin < imax) {
3363     imid = (imax + imin) / 2;
3364     nbot = ntop - (imid * page_sz);
3365 
3366     // Use a trick with mincore to check whether the page is mapped or not.
3367     // mincore sets vec to 1 if page resides in memory and to 0 if page
3368     // is swapped output but if page we are asking for is unmapped
3369     // it returns -1,ENOMEM
3370     mincore_return_value = mincore(nbot, page_sz, vec);
3371 
3372     if (mincore_return_value == -1) {
3373       // Page is not mapped go up
3374       // to find first mapped page
3375       if (errno != EAGAIN) {
3376         assert(errno == ENOMEM, "Unexpected mincore errno");
3377         imax = imid;
3378       }
3379     } else {
3380       // Page is mapped go down
3381       // to find first not mapped page
3382       imin = imid + 1;
3383     }
3384   }
3385 
3386   nbot = nbot + page_sz;
3387 
3388   // Adjust stack bottom one page up if last checked page is not mapped
3389   if (mincore_return_value == -1) {
3390     nbot = nbot + page_sz;
3391   }
3392 
3393   return nbot;
3394 }
3395 
3396 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3397   int mincore_return_value;
3398   const size_t stripe = 1024;  // query this many pages each time
3399   unsigned char vec[stripe + 1];
3400   // set a guard
3401   vec[stripe] = 'X';
3402 
3403   const size_t page_sz = os::vm_page_size();
3404   size_t pages = size / page_sz;
3405 
3406   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3407   assert(is_aligned(size, page_sz), "Size must be page aligned");
3408 
3409   committed_start = NULL;
3410 
3411   int loops = (pages + stripe - 1) / stripe;
3412   int committed_pages = 0;
3413   address loop_base = start;
3414   bool found_range = false;
3415 
3416   for (int index = 0; index < loops && !found_range; index ++) {
3417     assert(pages > 0, "Nothing to do");
3418     int pages_to_query = (pages >= stripe) ? stripe : pages;
3419     pages -= pages_to_query;
3420 
3421     // Get stable read
3422     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3423 
3424     // During shutdown, some memory goes away without properly notifying NMT,
3425     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3426     // Bailout and return as not committed for now.
3427     if (mincore_return_value == -1 && errno == ENOMEM) {
3428       return false;
3429     }
3430 
3431     assert(vec[stripe] == 'X', "overflow guard");
3432     assert(mincore_return_value == 0, "Range must be valid");
3433     // Process this stripe
3434     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3435       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3436         // End of current contiguous region
3437         if (committed_start != NULL) {
3438           found_range = true;
3439           break;
3440         }
3441       } else { // committed
3442         // Start of region
3443         if (committed_start == NULL) {
3444           committed_start = loop_base + page_sz * vecIdx;
3445         }
3446         committed_pages ++;
3447       }
3448     }
3449 
3450     loop_base += pages_to_query * page_sz;
3451   }
3452 
3453   if (committed_start != NULL) {
3454     assert(committed_pages > 0, "Must have committed region");
3455     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3456     assert(committed_start >= start && committed_start < start + size, "Out of range");
3457     committed_size = page_sz * committed_pages;
3458     return true;
3459   } else {
3460     assert(committed_pages == 0, "Should not have committed region");
3461     return false;
3462   }
3463 }
3464 
3465 
3466 // Linux uses a growable mapping for the stack, and if the mapping for
3467 // the stack guard pages is not removed when we detach a thread the
3468 // stack cannot grow beyond the pages where the stack guard was
3469 // mapped.  If at some point later in the process the stack expands to
3470 // that point, the Linux kernel cannot expand the stack any further
3471 // because the guard pages are in the way, and a segfault occurs.
3472 //
3473 // However, it's essential not to split the stack region by unmapping
3474 // a region (leaving a hole) that's already part of the stack mapping,
3475 // so if the stack mapping has already grown beyond the guard pages at
3476 // the time we create them, we have to truncate the stack mapping.
3477 // So, we need to know the extent of the stack mapping when
3478 // create_stack_guard_pages() is called.
3479 
3480 // We only need this for stacks that are growable: at the time of
3481 // writing thread stacks don't use growable mappings (i.e. those
3482 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3483 // only applies to the main thread.
3484 
3485 // If the (growable) stack mapping already extends beyond the point
3486 // where we're going to put our guard pages, truncate the mapping at
3487 // that point by munmap()ping it.  This ensures that when we later
3488 // munmap() the guard pages we don't leave a hole in the stack
3489 // mapping. This only affects the main/primordial thread
3490 
3491 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3492   if (os::is_primordial_thread()) {
3493     // As we manually grow stack up to bottom inside create_attached_thread(),
3494     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3495     // we don't need to do anything special.
3496     // Check it first, before calling heavy function.
3497     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3498     unsigned char vec[1];
3499 
3500     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3501       // Fallback to slow path on all errors, including EAGAIN
3502       stack_extent = (uintptr_t) get_stack_commited_bottom(
3503                                                            os::Linux::initial_thread_stack_bottom(),
3504                                                            (size_t)addr - stack_extent);
3505     }
3506 
3507     if (stack_extent < (uintptr_t)addr) {
3508       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3509     }
3510   }
3511 
3512   return os::commit_memory(addr, size, !ExecMem);
3513 }
3514 
3515 // If this is a growable mapping, remove the guard pages entirely by
3516 // munmap()ping them.  If not, just call uncommit_memory(). This only
3517 // affects the main/primordial thread, but guard against future OS changes.
3518 // It's safe to always unmap guard pages for primordial thread because we
3519 // always place it right after end of the mapped region.
3520 
3521 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3522   uintptr_t stack_extent, stack_base;
3523 
3524   if (os::is_primordial_thread()) {
3525     return ::munmap(addr, size) == 0;
3526   }
3527 
3528   return os::uncommit_memory(addr, size);
3529 }
3530 
3531 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3532 // at 'requested_addr'. If there are existing memory mappings at the same
3533 // location, however, they will be overwritten. If 'fixed' is false,
3534 // 'requested_addr' is only treated as a hint, the return value may or
3535 // may not start from the requested address. Unlike Linux mmap(), this
3536 // function returns NULL to indicate failure.
3537 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3538   char * addr;
3539   int flags;
3540 
3541   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3542   if (fixed) {
3543     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3544     flags |= MAP_FIXED;
3545   }
3546 
3547   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3548   // touch an uncommitted page. Otherwise, the read/write might
3549   // succeed if we have enough swap space to back the physical page.
3550   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3551                        flags, -1, 0);
3552 
3553   return addr == MAP_FAILED ? NULL : addr;
3554 }
3555 
3556 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3557 //   (req_addr != NULL) or with a given alignment.
3558 //  - bytes shall be a multiple of alignment.
3559 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3560 //  - alignment sets the alignment at which memory shall be allocated.
3561 //     It must be a multiple of allocation granularity.
3562 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3563 //  req_addr or NULL.
3564 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3565 
3566   size_t extra_size = bytes;
3567   if (req_addr == NULL && alignment > 0) {
3568     extra_size += alignment;
3569   }
3570 
3571   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3572     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3573     -1, 0);
3574   if (start == MAP_FAILED) {
3575     start = NULL;
3576   } else {
3577     if (req_addr != NULL) {
3578       if (start != req_addr) {
3579         ::munmap(start, extra_size);
3580         start = NULL;
3581       }
3582     } else {
3583       char* const start_aligned = align_up(start, alignment);
3584       char* const end_aligned = start_aligned + bytes;
3585       char* const end = start + extra_size;
3586       if (start_aligned > start) {
3587         ::munmap(start, start_aligned - start);
3588       }
3589       if (end_aligned < end) {
3590         ::munmap(end_aligned, end - end_aligned);
3591       }
3592       start = start_aligned;
3593     }
3594   }
3595   return start;
3596 }
3597 
3598 static int anon_munmap(char * addr, size_t size) {
3599   return ::munmap(addr, size) == 0;
3600 }
3601 
3602 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3603                             size_t alignment_hint) {
3604   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3605 }
3606 
3607 bool os::pd_release_memory(char* addr, size_t size) {
3608   return anon_munmap(addr, size);
3609 }
3610 
3611 static bool linux_mprotect(char* addr, size_t size, int prot) {
3612   // Linux wants the mprotect address argument to be page aligned.
3613   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3614 
3615   // According to SUSv3, mprotect() should only be used with mappings
3616   // established by mmap(), and mmap() always maps whole pages. Unaligned
3617   // 'addr' likely indicates problem in the VM (e.g. trying to change
3618   // protection of malloc'ed or statically allocated memory). Check the
3619   // caller if you hit this assert.
3620   assert(addr == bottom, "sanity check");
3621 
3622   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3623   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3624   return ::mprotect(bottom, size, prot) == 0;
3625 }
3626 
3627 // Set protections specified
3628 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3629                         bool is_committed) {
3630   unsigned int p = 0;
3631   switch (prot) {
3632   case MEM_PROT_NONE: p = PROT_NONE; break;
3633   case MEM_PROT_READ: p = PROT_READ; break;
3634   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3635   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3636   default:
3637     ShouldNotReachHere();
3638   }
3639   // is_committed is unused.
3640   return linux_mprotect(addr, bytes, p);
3641 }
3642 
3643 bool os::guard_memory(char* addr, size_t size) {
3644   return linux_mprotect(addr, size, PROT_NONE);
3645 }
3646 
3647 bool os::unguard_memory(char* addr, size_t size) {
3648   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3649 }
3650 
3651 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3652                                                     size_t page_size) {
3653   bool result = false;
3654   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3655                  MAP_ANONYMOUS|MAP_PRIVATE,
3656                  -1, 0);
3657   if (p != MAP_FAILED) {
3658     void *aligned_p = align_up(p, page_size);
3659 
3660     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3661 
3662     munmap(p, page_size * 2);
3663   }
3664 
3665   if (warn && !result) {
3666     warning("TransparentHugePages is not supported by the operating system.");
3667   }
3668 
3669   return result;
3670 }
3671 
3672 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3673   bool result = false;
3674   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3675                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3676                  -1, 0);
3677 
3678   if (p != MAP_FAILED) {
3679     // We don't know if this really is a huge page or not.
3680     FILE *fp = fopen("/proc/self/maps", "r");
3681     if (fp) {
3682       while (!feof(fp)) {
3683         char chars[257];
3684         long x = 0;
3685         if (fgets(chars, sizeof(chars), fp)) {
3686           if (sscanf(chars, "%lx-%*x", &x) == 1
3687               && x == (long)p) {
3688             if (strstr (chars, "hugepage")) {
3689               result = true;
3690               break;
3691             }
3692           }
3693         }
3694       }
3695       fclose(fp);
3696     }
3697     munmap(p, page_size);
3698   }
3699 
3700   if (warn && !result) {
3701     warning("HugeTLBFS is not supported by the operating system.");
3702   }
3703 
3704   return result;
3705 }
3706 
3707 // From the coredump_filter documentation:
3708 //
3709 // - (bit 0) anonymous private memory
3710 // - (bit 1) anonymous shared memory
3711 // - (bit 2) file-backed private memory
3712 // - (bit 3) file-backed shared memory
3713 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3714 //           effective only if the bit 2 is cleared)
3715 // - (bit 5) hugetlb private memory
3716 // - (bit 6) hugetlb shared memory
3717 // - (bit 7) dax private memory
3718 // - (bit 8) dax shared memory
3719 //
3720 static void set_coredump_filter(CoredumpFilterBit bit) {
3721   FILE *f;
3722   long cdm;
3723 
3724   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3725     return;
3726   }
3727 
3728   if (fscanf(f, "%lx", &cdm) != 1) {
3729     fclose(f);
3730     return;
3731   }
3732 
3733   long saved_cdm = cdm;
3734   rewind(f);
3735   cdm |= bit;
3736 
3737   if (cdm != saved_cdm) {
3738     fprintf(f, "%#lx", cdm);
3739   }
3740 
3741   fclose(f);
3742 }
3743 
3744 // Large page support
3745 
3746 static size_t _large_page_size = 0;
3747 
3748 size_t os::Linux::find_default_large_page_size() {
3749   size_t large_page_size = 0;
3750 
3751   // large_page_size on Linux is used to round up heap size. x86 uses either
3752   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3753   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3754   // page as large as 256M.
3755   //
3756   // Here we try to figure out page size by parsing /proc/meminfo and looking
3757   // for a line with the following format:
3758   //    Hugepagesize:     2048 kB
3759   //
3760   // If we can't determine the value (e.g. /proc is not mounted, or the text
3761   // format has been changed), we'll use the largest page size supported by
3762   // the processor.
3763 
3764 #ifndef ZERO
3765   large_page_size =
3766     AARCH64_ONLY(2 * M)
3767     AMD64_ONLY(2 * M)
3768     ARM32_ONLY(2 * M)
3769     IA32_ONLY(4 * M)
3770     IA64_ONLY(256 * M)
3771     PPC_ONLY(4 * M)
3772     S390_ONLY(1 * M)
3773     SPARC_ONLY(4 * M);
3774 #endif // ZERO
3775 
3776   FILE *fp = fopen("/proc/meminfo", "r");
3777   if (fp) {
3778     while (!feof(fp)) {
3779       int x = 0;
3780       char buf[16];
3781       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3782         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3783           large_page_size = x * K;
3784           break;
3785         }
3786       } else {
3787         // skip to next line
3788         for (;;) {
3789           int ch = fgetc(fp);
3790           if (ch == EOF || ch == (int)'\n') break;
3791         }
3792       }
3793     }
3794     fclose(fp);
3795   }
3796   return large_page_size;
3797 }
3798 
3799 void os::Linux::find_large_page_sizes() {
3800   _page_sizes[0] = 0;
3801   // We need to scan /sys/kernel/mm/hugepages
3802   // to discover the available page sizes
3803   const char* sys_hugepages = "/sys/kernel/mm/hugepages";
3804   if (dir_is_empty(sys_hugepages)) {
3805     return;
3806   }
3807 
3808   DIR *dir = opendir(sys_hugepages);
3809   if (dir == NULL) {
3810     return;
3811   }
3812 
3813   struct dirent *entry;
3814   size_t page_size;
3815   int count = 0;
3816 
3817   while (count < page_sizes_max - 1 && (entry = readdir(dir)) != NULL) {
3818     if(entry->d_type == DT_DIR &&
3819         sscanf(entry->d_name, "hugepages-%zukB", &page_size) ) {
3820 
3821       // The kernel is using kB, hotspot uses bytes
3822       _page_sizes[count] = page_size * K;
3823       count++;
3824     }
3825   }
3826   _page_sizes[count] = 0;
3827   closedir(dir);
3828   return;
3829 }
3830 
3831 bool os::Linux::is_valid_large_page_size(size_t page_size) {
3832   find_large_page_sizes();
3833   int count = 0;
3834   while (_page_sizes[count] != 0) {
3835     if (_page_sizes[count++] == page_size) {
3836       return true;
3837     }
3838   }
3839   return false;
3840 }
3841 
3842 size_t os::Linux::setup_large_page_size() {
3843   _large_page_size = Linux::find_default_large_page_size();
3844 
3845   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != _large_page_size ) {
3846      if (is_valid_large_page_size(LargePageSizeInBytes)) {
3847        _large_page_size =  LargePageSizeInBytes;
3848      } else {
3849        warning("Setting LargePageSizeInBytes=" SIZE_FORMAT " has no effect on this OS. Default large page size is "
3850                SIZE_FORMAT "%s.",
3851                LargePageSizeInBytes,
3852                byte_size_in_proper_unit(_large_page_size), proper_unit_for_byte_size(_large_page_size));
3853      }
3854   }
3855 
3856   const size_t default_page_size = (size_t)Linux::page_size();
3857   if (_large_page_size > default_page_size) {
3858     _page_sizes[0] = _large_page_size;
3859     _page_sizes[1] = default_page_size;
3860     _page_sizes[2] = 0;
3861   }
3862 
3863   return _large_page_size;
3864 }
3865 
3866 bool os::Linux::setup_large_page_type(size_t page_size) {
3867   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3868       FLAG_IS_DEFAULT(UseSHM) &&
3869       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3870 
3871     // The type of large pages has not been specified by the user.
3872 
3873     // Try UseHugeTLBFS and then UseSHM.
3874     UseHugeTLBFS = UseSHM = true;
3875 
3876     // Don't try UseTransparentHugePages since there are known
3877     // performance issues with it turned on. This might change in the future.
3878     UseTransparentHugePages = false;
3879   }
3880 
3881   if (UseTransparentHugePages) {
3882     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3883     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3884       UseHugeTLBFS = false;
3885       UseSHM = false;
3886       return true;
3887     }
3888     UseTransparentHugePages = false;
3889   }
3890 
3891   if (UseHugeTLBFS) {
3892     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3893     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3894       UseSHM = false;
3895       return true;
3896     }
3897     UseHugeTLBFS = false;
3898   }
3899 
3900   return UseSHM;
3901 }
3902 
3903 void os::large_page_init() {
3904   if (!UseLargePages &&
3905       !UseTransparentHugePages &&
3906       !UseHugeTLBFS &&
3907       !UseSHM) {
3908     // Not using large pages.
3909     return;
3910   }
3911 
3912   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3913     // The user explicitly turned off large pages.
3914     // Ignore the rest of the large pages flags.
3915     UseTransparentHugePages = false;
3916     UseHugeTLBFS = false;
3917     UseSHM = false;
3918     return;
3919   }
3920 
3921   size_t large_page_size = Linux::setup_large_page_size();
3922   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3923 
3924   set_coredump_filter(LARGEPAGES_BIT);
3925 }
3926 
3927 #ifndef SHM_HUGETLB
3928   #define SHM_HUGETLB 04000
3929 #endif
3930 
3931 #define shm_warning_format(format, ...)              \
3932   do {                                               \
3933     if (UseLargePages &&                             \
3934         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3935          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3936          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3937       warning(format, __VA_ARGS__);                  \
3938     }                                                \
3939   } while (0)
3940 
3941 #define shm_warning(str) shm_warning_format("%s", str)
3942 
3943 #define shm_warning_with_errno(str)                \
3944   do {                                             \
3945     int err = errno;                               \
3946     shm_warning_format(str " (error = %d)", err);  \
3947   } while (0)
3948 
3949 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3950   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3951 
3952   if (!is_aligned(alignment, SHMLBA)) {
3953     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3954     return NULL;
3955   }
3956 
3957   // To ensure that we get 'alignment' aligned memory from shmat,
3958   // we pre-reserve aligned virtual memory and then attach to that.
3959 
3960   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3961   if (pre_reserved_addr == NULL) {
3962     // Couldn't pre-reserve aligned memory.
3963     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3964     return NULL;
3965   }
3966 
3967   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3968   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3969 
3970   if ((intptr_t)addr == -1) {
3971     int err = errno;
3972     shm_warning_with_errno("Failed to attach shared memory.");
3973 
3974     assert(err != EACCES, "Unexpected error");
3975     assert(err != EIDRM,  "Unexpected error");
3976     assert(err != EINVAL, "Unexpected error");
3977 
3978     // Since we don't know if the kernel unmapped the pre-reserved memory area
3979     // we can't unmap it, since that would potentially unmap memory that was
3980     // mapped from other threads.
3981     return NULL;
3982   }
3983 
3984   return addr;
3985 }
3986 
3987 static char* shmat_at_address(int shmid, char* req_addr) {
3988   if (!is_aligned(req_addr, SHMLBA)) {
3989     assert(false, "Requested address needs to be SHMLBA aligned");
3990     return NULL;
3991   }
3992 
3993   char* addr = (char*)shmat(shmid, req_addr, 0);
3994 
3995   if ((intptr_t)addr == -1) {
3996     shm_warning_with_errno("Failed to attach shared memory.");
3997     return NULL;
3998   }
3999 
4000   return addr;
4001 }
4002 
4003 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
4004   // If a req_addr has been provided, we assume that the caller has already aligned the address.
4005   if (req_addr != NULL) {
4006     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
4007     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
4008     return shmat_at_address(shmid, req_addr);
4009   }
4010 
4011   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
4012   // return large page size aligned memory addresses when req_addr == NULL.
4013   // However, if the alignment is larger than the large page size, we have
4014   // to manually ensure that the memory returned is 'alignment' aligned.
4015   if (alignment > os::large_page_size()) {
4016     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
4017     return shmat_with_alignment(shmid, bytes, alignment);
4018   } else {
4019     return shmat_at_address(shmid, NULL);
4020   }
4021 }
4022 
4023 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
4024                                             char* req_addr, bool exec) {
4025   // "exec" is passed in but not used.  Creating the shared image for
4026   // the code cache doesn't have an SHM_X executable permission to check.
4027   assert(UseLargePages && UseSHM, "only for SHM large pages");
4028   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4029   assert(is_aligned(req_addr, alignment), "Unaligned address");
4030 
4031   if (!is_aligned(bytes, os::large_page_size())) {
4032     return NULL; // Fallback to small pages.
4033   }
4034 
4035   // Create a large shared memory region to attach to based on size.
4036   // Currently, size is the total size of the heap.
4037   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
4038   if (shmid == -1) {
4039     // Possible reasons for shmget failure:
4040     // 1. shmmax is too small for Java heap.
4041     //    > check shmmax value: cat /proc/sys/kernel/shmmax
4042     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
4043     // 2. not enough large page memory.
4044     //    > check available large pages: cat /proc/meminfo
4045     //    > increase amount of large pages:
4046     //          echo new_value > /proc/sys/vm/nr_hugepages
4047     //      Note 1: different Linux may use different name for this property,
4048     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
4049     //      Note 2: it's possible there's enough physical memory available but
4050     //            they are so fragmented after a long run that they can't
4051     //            coalesce into large pages. Try to reserve large pages when
4052     //            the system is still "fresh".
4053     shm_warning_with_errno("Failed to reserve shared memory.");
4054     return NULL;
4055   }
4056 
4057   // Attach to the region.
4058   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
4059 
4060   // Remove shmid. If shmat() is successful, the actual shared memory segment
4061   // will be deleted when it's detached by shmdt() or when the process
4062   // terminates. If shmat() is not successful this will remove the shared
4063   // segment immediately.
4064   shmctl(shmid, IPC_RMID, NULL);
4065 
4066   return addr;
4067 }
4068 
4069 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
4070                                         int error) {
4071   assert(error == ENOMEM, "Only expect to fail if no memory is available");
4072 
4073   bool warn_on_failure = UseLargePages &&
4074       (!FLAG_IS_DEFAULT(UseLargePages) ||
4075        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
4076        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
4077 
4078   if (warn_on_failure) {
4079     char msg[128];
4080     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
4081                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
4082     warning("%s", msg);
4083   }
4084 }
4085 
4086 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
4087                                                         char* req_addr,
4088                                                         bool exec) {
4089   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4090   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
4091   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4092 
4093   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4094   int flags = MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB;
4095 
4096   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes)) {
4097      flags |= (os::large_page_size() > (1 << (MAP_HUGE_2MB >> MAP_HUGE_SHIFT)))
4098                 ? MAP_HUGE_1GB
4099                 : MAP_HUGE_2MB;
4100   }
4101   char* addr = (char*)::mmap(req_addr, bytes, prot, flags, -1, 0);
4102 
4103   if (addr == MAP_FAILED) {
4104     warn_on_large_pages_failure(req_addr, bytes, errno);
4105     return NULL;
4106   }
4107 
4108   assert(is_aligned(addr, os::large_page_size()), "Must be");
4109 
4110   return addr;
4111 }
4112 
4113 // Reserve memory using mmap(MAP_HUGETLB).
4114 //  - bytes shall be a multiple of alignment.
4115 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4116 //  - alignment sets the alignment at which memory shall be allocated.
4117 //     It must be a multiple of allocation granularity.
4118 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4119 //  req_addr or NULL.
4120 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4121                                                          size_t alignment,
4122                                                          char* req_addr,
4123                                                          bool exec) {
4124   size_t large_page_size = os::large_page_size();
4125   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4126 
4127   assert(is_aligned(req_addr, alignment), "Must be");
4128   assert(is_aligned(bytes, alignment), "Must be");
4129 
4130   // First reserve - but not commit - the address range in small pages.
4131   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4132 
4133   if (start == NULL) {
4134     return NULL;
4135   }
4136 
4137   assert(is_aligned(start, alignment), "Must be");
4138 
4139   char* end = start + bytes;
4140 
4141   // Find the regions of the allocated chunk that can be promoted to large pages.
4142   char* lp_start = align_up(start, large_page_size);
4143   char* lp_end   = align_down(end, large_page_size);
4144 
4145   size_t lp_bytes = lp_end - lp_start;
4146 
4147   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4148 
4149   if (lp_bytes == 0) {
4150     // The mapped region doesn't even span the start and the end of a large page.
4151     // Fall back to allocate a non-special area.
4152     ::munmap(start, end - start);
4153     return NULL;
4154   }
4155 
4156   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4157   int flags = MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED;
4158   void* result;
4159 
4160   // Commit small-paged leading area.
4161   if (start != lp_start) {
4162     result = ::mmap(start, lp_start - start, prot, flags, -1, 0);
4163     if (result == MAP_FAILED) {
4164       ::munmap(lp_start, end - lp_start);
4165       return NULL;
4166     }
4167   }
4168 
4169   // Commit large-paged area.
4170   flags |= MAP_HUGETLB;
4171 
4172   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes)) {
4173      flags |= (os::large_page_size() > (1 << (MAP_HUGE_2MB >> MAP_HUGE_SHIFT)))
4174                 ? MAP_HUGE_1GB
4175                 : MAP_HUGE_2MB;
4176   }
4177 
4178   result = ::mmap(lp_start, lp_bytes, prot, flags, -1, 0);
4179   if (result == MAP_FAILED) {
4180     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4181     // If the mmap above fails, the large pages region will be unmapped and we
4182     // have regions before and after with small pages. Release these regions.
4183     //
4184     // |  mapped  |  unmapped  |  mapped  |
4185     // ^          ^            ^          ^
4186     // start      lp_start     lp_end     end
4187     //
4188     ::munmap(start, lp_start - start);
4189     ::munmap(lp_end, end - lp_end);
4190     return NULL;
4191   }
4192 
4193   // Commit small-paged trailing area.
4194   if (lp_end != end) {
4195     result = ::mmap(lp_end, end - lp_end, prot,
4196                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4197                     -1, 0);
4198     if (result == MAP_FAILED) {
4199       ::munmap(start, lp_end - start);
4200       return NULL;
4201     }
4202   }
4203 
4204   return start;
4205 }
4206 
4207 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4208                                                    size_t alignment,
4209                                                    char* req_addr,
4210                                                    bool exec) {
4211   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4212   assert(is_aligned(req_addr, alignment), "Must be");
4213   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4214   assert(is_power_of_2(os::large_page_size()), "Must be");
4215   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4216 
4217   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4218     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4219   } else {
4220     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4221   }
4222 }
4223 
4224 char* os::pd_reserve_memory_special(size_t bytes, size_t alignment,
4225                                     char* req_addr, bool exec) {
4226   assert(UseLargePages, "only for large pages");
4227 
4228   char* addr;
4229   if (UseSHM) {
4230     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4231   } else {
4232     assert(UseHugeTLBFS, "must be");
4233     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4234   }
4235 
4236   if (addr != NULL) {
4237     if (UseNUMAInterleaving) {
4238       numa_make_global(addr, bytes);
4239     }
4240   }
4241 
4242   return addr;
4243 }
4244 
4245 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4246   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4247   return shmdt(base) == 0;
4248 }
4249 
4250 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4251   return pd_release_memory(base, bytes);
4252 }
4253 
4254 bool os::pd_release_memory_special(char* base, size_t bytes) {
4255   assert(UseLargePages, "only for large pages");
4256   bool res;
4257 
4258   if (UseSHM) {
4259     res = os::Linux::release_memory_special_shm(base, bytes);
4260   } else {
4261     assert(UseHugeTLBFS, "must be");
4262     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4263   }
4264   return res;
4265 }
4266 
4267 size_t os::large_page_size() {
4268   return _large_page_size;
4269 }
4270 
4271 // With SysV SHM the entire memory region must be allocated as shared
4272 // memory.
4273 // HugeTLBFS allows application to commit large page memory on demand.
4274 // However, when committing memory with HugeTLBFS fails, the region
4275 // that was supposed to be committed will lose the old reservation
4276 // and allow other threads to steal that memory region. Because of this
4277 // behavior we can't commit HugeTLBFS memory.
4278 bool os::can_commit_large_page_memory() {
4279   return UseTransparentHugePages;
4280 }
4281 
4282 bool os::can_execute_large_page_memory() {
4283   return UseTransparentHugePages || UseHugeTLBFS;
4284 }
4285 
4286 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4287   assert(file_desc >= 0, "file_desc is not valid");
4288   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4289   if (result != NULL) {
4290     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4291       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4292     }
4293   }
4294   return result;
4295 }
4296 
4297 // Reserve memory at an arbitrary address, only if that area is
4298 // available (and not reserved for something else).
4299 
4300 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4301   // Assert only that the size is a multiple of the page size, since
4302   // that's all that mmap requires, and since that's all we really know
4303   // about at this low abstraction level.  If we need higher alignment,
4304   // we can either pass an alignment to this method or verify alignment
4305   // in one of the methods further up the call chain.  See bug 5044738.
4306   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4307 
4308   // Repeatedly allocate blocks until the block is allocated at the
4309   // right spot.
4310 
4311   // Linux mmap allows caller to pass an address as hint; give it a try first,
4312   // if kernel honors the hint then we can return immediately.
4313   char * addr = anon_mmap(requested_addr, bytes, false);
4314   if (addr == requested_addr) {
4315     return requested_addr;
4316   }
4317 
4318   if (addr != NULL) {
4319     // mmap() is successful but it fails to reserve at the requested address
4320     anon_munmap(addr, bytes);
4321   }
4322 
4323   return NULL;
4324 }
4325 
4326 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4327 void os::infinite_sleep() {
4328   while (true) {    // sleep forever ...
4329     ::sleep(100);   // ... 100 seconds at a time
4330   }
4331 }
4332 
4333 // Used to convert frequent JVM_Yield() to nops
4334 bool os::dont_yield() {
4335   return DontYieldALot;
4336 }
4337 
4338 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4339 // actually give up the CPU. Since skip buddy (v2.6.28):
4340 //
4341 // * Sets the yielding task as skip buddy for current CPU's run queue.
4342 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4343 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4344 //
4345 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4346 // getting re-scheduled immediately.
4347 //
4348 void os::naked_yield() {
4349   sched_yield();
4350 }
4351 
4352 ////////////////////////////////////////////////////////////////////////////////
4353 // thread priority support
4354 
4355 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4356 // only supports dynamic priority, static priority must be zero. For real-time
4357 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4358 // However, for large multi-threaded applications, SCHED_RR is not only slower
4359 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4360 // of 5 runs - Sep 2005).
4361 //
4362 // The following code actually changes the niceness of kernel-thread/LWP. It
4363 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4364 // not the entire user process, and user level threads are 1:1 mapped to kernel
4365 // threads. It has always been the case, but could change in the future. For
4366 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4367 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4368 // (e.g., root privilege or CAP_SYS_NICE capability).
4369 
4370 int os::java_to_os_priority[CriticalPriority + 1] = {
4371   19,              // 0 Entry should never be used
4372 
4373    4,              // 1 MinPriority
4374    3,              // 2
4375    2,              // 3
4376 
4377    1,              // 4
4378    0,              // 5 NormPriority
4379   -1,              // 6
4380 
4381   -2,              // 7
4382   -3,              // 8
4383   -4,              // 9 NearMaxPriority
4384 
4385   -5,              // 10 MaxPriority
4386 
4387   -5               // 11 CriticalPriority
4388 };
4389 
4390 static int prio_init() {
4391   if (ThreadPriorityPolicy == 1) {
4392     if (geteuid() != 0) {
4393       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy) && !FLAG_IS_JIMAGE_RESOURCE(ThreadPriorityPolicy)) {
4394         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4395                 "e.g., being the root user. If the necessary permission is not " \
4396                 "possessed, changes to priority will be silently ignored.");
4397       }
4398     }
4399   }
4400   if (UseCriticalJavaThreadPriority) {
4401     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4402   }
4403   return 0;
4404 }
4405 
4406 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4407   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4408 
4409   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4410   return (ret == 0) ? OS_OK : OS_ERR;
4411 }
4412 
4413 OSReturn os::get_native_priority(const Thread* const thread,
4414                                  int *priority_ptr) {
4415   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4416     *priority_ptr = java_to_os_priority[NormPriority];
4417     return OS_OK;
4418   }
4419 
4420   errno = 0;
4421   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4422   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4423 }
4424 
4425 ////////////////////////////////////////////////////////////////////////////////
4426 // suspend/resume support
4427 
4428 //  The low-level signal-based suspend/resume support is a remnant from the
4429 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4430 //  within hotspot. Currently used by JFR's OSThreadSampler
4431 //
4432 //  The remaining code is greatly simplified from the more general suspension
4433 //  code that used to be used.
4434 //
4435 //  The protocol is quite simple:
4436 //  - suspend:
4437 //      - sends a signal to the target thread
4438 //      - polls the suspend state of the osthread using a yield loop
4439 //      - target thread signal handler (SR_handler) sets suspend state
4440 //        and blocks in sigsuspend until continued
4441 //  - resume:
4442 //      - sets target osthread state to continue
4443 //      - sends signal to end the sigsuspend loop in the SR_handler
4444 //
4445 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4446 //  but is checked for NULL in SR_handler as a thread termination indicator.
4447 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4448 //
4449 //  Note that resume_clear_context() and suspend_save_context() are needed
4450 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4451 //  which in part is used by:
4452 //    - Forte Analyzer: AsyncGetCallTrace()
4453 //    - StackBanging: get_frame_at_stack_banging_point()
4454 
4455 static void resume_clear_context(OSThread *osthread) {
4456   osthread->set_ucontext(NULL);
4457   osthread->set_siginfo(NULL);
4458 }
4459 
4460 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4461                                  ucontext_t* context) {
4462   osthread->set_ucontext(context);
4463   osthread->set_siginfo(siginfo);
4464 }
4465 
4466 // Handler function invoked when a thread's execution is suspended or
4467 // resumed. We have to be careful that only async-safe functions are
4468 // called here (Note: most pthread functions are not async safe and
4469 // should be avoided.)
4470 //
4471 // Note: sigwait() is a more natural fit than sigsuspend() from an
4472 // interface point of view, but sigwait() prevents the signal hander
4473 // from being run. libpthread would get very confused by not having
4474 // its signal handlers run and prevents sigwait()'s use with the
4475 // mutex granting granting signal.
4476 //
4477 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4478 //
4479 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4480   // Save and restore errno to avoid confusing native code with EINTR
4481   // after sigsuspend.
4482   int old_errno = errno;
4483 
4484   Thread* thread = Thread::current_or_null_safe();
4485   assert(thread != NULL, "Missing current thread in SR_handler");
4486 
4487   // On some systems we have seen signal delivery get "stuck" until the signal
4488   // mask is changed as part of thread termination. Check that the current thread
4489   // has not already terminated (via SR_lock()) - else the following assertion
4490   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4491   // destructor has completed.
4492 
4493   if (thread->SR_lock() == NULL) {
4494     return;
4495   }
4496 
4497   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4498 
4499   OSThread* osthread = thread->osthread();
4500 
4501   os::SuspendResume::State current = osthread->sr.state();
4502   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4503     suspend_save_context(osthread, siginfo, context);
4504 
4505     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4506     os::SuspendResume::State state = osthread->sr.suspended();
4507     if (state == os::SuspendResume::SR_SUSPENDED) {
4508       sigset_t suspend_set;  // signals for sigsuspend()
4509       sigemptyset(&suspend_set);
4510       // get current set of blocked signals and unblock resume signal
4511       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4512       sigdelset(&suspend_set, SR_signum);
4513 
4514       sr_semaphore.signal();
4515       // wait here until we are resumed
4516       while (1) {
4517         sigsuspend(&suspend_set);
4518 
4519         os::SuspendResume::State result = osthread->sr.running();
4520         if (result == os::SuspendResume::SR_RUNNING) {
4521           sr_semaphore.signal();
4522           break;
4523         }
4524       }
4525 
4526     } else if (state == os::SuspendResume::SR_RUNNING) {
4527       // request was cancelled, continue
4528     } else {
4529       ShouldNotReachHere();
4530     }
4531 
4532     resume_clear_context(osthread);
4533   } else if (current == os::SuspendResume::SR_RUNNING) {
4534     // request was cancelled, continue
4535   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4536     // ignore
4537   } else {
4538     // ignore
4539   }
4540 
4541   errno = old_errno;
4542 }
4543 
4544 static int SR_initialize() {
4545   struct sigaction act;
4546   char *s;
4547 
4548   // Get signal number to use for suspend/resume
4549   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4550     int sig = ::strtol(s, 0, 10);
4551     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4552         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4553       SR_signum = sig;
4554     } else {
4555       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4556               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4557     }
4558   }
4559 
4560   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4561          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4562 
4563   sigemptyset(&SR_sigset);
4564   sigaddset(&SR_sigset, SR_signum);
4565 
4566   // Set up signal handler for suspend/resume
4567   act.sa_flags = SA_RESTART|SA_SIGINFO;
4568   act.sa_handler = (void (*)(int)) SR_handler;
4569 
4570   // SR_signum is blocked by default.
4571   // 4528190 - We also need to block pthread restart signal (32 on all
4572   // supported Linux platforms). Note that LinuxThreads need to block
4573   // this signal for all threads to work properly. So we don't have
4574   // to use hard-coded signal number when setting up the mask.
4575   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4576 
4577   if (sigaction(SR_signum, &act, 0) == -1) {
4578     return -1;
4579   }
4580 
4581   // Save signal flag
4582   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4583   return 0;
4584 }
4585 
4586 static int sr_notify(OSThread* osthread) {
4587   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4588   assert_status(status == 0, status, "pthread_kill");
4589   return status;
4590 }
4591 
4592 // "Randomly" selected value for how long we want to spin
4593 // before bailing out on suspending a thread, also how often
4594 // we send a signal to a thread we want to resume
4595 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4596 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4597 
4598 // returns true on success and false on error - really an error is fatal
4599 // but this seems the normal response to library errors
4600 static bool do_suspend(OSThread* osthread) {
4601   assert(osthread->sr.is_running(), "thread should be running");
4602   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4603 
4604   // mark as suspended and send signal
4605   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4606     // failed to switch, state wasn't running?
4607     ShouldNotReachHere();
4608     return false;
4609   }
4610 
4611   if (sr_notify(osthread) != 0) {
4612     ShouldNotReachHere();
4613   }
4614 
4615   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4616   while (true) {
4617     if (sr_semaphore.timedwait(2)) {
4618       break;
4619     } else {
4620       // timeout
4621       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4622       if (cancelled == os::SuspendResume::SR_RUNNING) {
4623         return false;
4624       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4625         // make sure that we consume the signal on the semaphore as well
4626         sr_semaphore.wait();
4627         break;
4628       } else {
4629         ShouldNotReachHere();
4630         return false;
4631       }
4632     }
4633   }
4634 
4635   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4636   return true;
4637 }
4638 
4639 static void do_resume(OSThread* osthread) {
4640   assert(osthread->sr.is_suspended(), "thread should be suspended");
4641   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4642 
4643   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4644     // failed to switch to WAKEUP_REQUEST
4645     ShouldNotReachHere();
4646     return;
4647   }
4648 
4649   while (true) {
4650     if (sr_notify(osthread) == 0) {
4651       if (sr_semaphore.timedwait(2)) {
4652         if (osthread->sr.is_running()) {
4653           return;
4654         }
4655       }
4656     } else {
4657       ShouldNotReachHere();
4658     }
4659   }
4660 
4661   guarantee(osthread->sr.is_running(), "Must be running!");
4662 }
4663 
4664 ///////////////////////////////////////////////////////////////////////////////////
4665 // signal handling (except suspend/resume)
4666 
4667 // This routine may be used by user applications as a "hook" to catch signals.
4668 // The user-defined signal handler must pass unrecognized signals to this
4669 // routine, and if it returns true (non-zero), then the signal handler must
4670 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4671 // routine will never retun false (zero), but instead will execute a VM panic
4672 // routine kill the process.
4673 //
4674 // If this routine returns false, it is OK to call it again.  This allows
4675 // the user-defined signal handler to perform checks either before or after
4676 // the VM performs its own checks.  Naturally, the user code would be making
4677 // a serious error if it tried to handle an exception (such as a null check
4678 // or breakpoint) that the VM was generating for its own correct operation.
4679 //
4680 // This routine may recognize any of the following kinds of signals:
4681 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4682 // It should be consulted by handlers for any of those signals.
4683 //
4684 // The caller of this routine must pass in the three arguments supplied
4685 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4686 // field of the structure passed to sigaction().  This routine assumes that
4687 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4688 //
4689 // Note that the VM will print warnings if it detects conflicting signal
4690 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4691 //
4692 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4693                                                  siginfo_t* siginfo,
4694                                                  void* ucontext,
4695                                                  int abort_if_unrecognized);
4696 
4697 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4698   assert(info != NULL && uc != NULL, "it must be old kernel");
4699   int orig_errno = errno;  // Preserve errno value over signal handler.
4700   JVM_handle_linux_signal(sig, info, uc, true);
4701   errno = orig_errno;
4702 }
4703 
4704 
4705 // This boolean allows users to forward their own non-matching signals
4706 // to JVM_handle_linux_signal, harmlessly.
4707 bool os::Linux::signal_handlers_are_installed = false;
4708 
4709 // For signal-chaining
4710 bool os::Linux::libjsig_is_loaded = false;
4711 typedef struct sigaction *(*get_signal_t)(int);
4712 get_signal_t os::Linux::get_signal_action = NULL;
4713 
4714 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4715   struct sigaction *actp = NULL;
4716 
4717   if (libjsig_is_loaded) {
4718     // Retrieve the old signal handler from libjsig
4719     actp = (*get_signal_action)(sig);
4720   }
4721   if (actp == NULL) {
4722     // Retrieve the preinstalled signal handler from jvm
4723     actp = os::Posix::get_preinstalled_handler(sig);
4724   }
4725 
4726   return actp;
4727 }
4728 
4729 static bool call_chained_handler(struct sigaction *actp, int sig,
4730                                  siginfo_t *siginfo, void *context) {
4731   // Call the old signal handler
4732   if (actp->sa_handler == SIG_DFL) {
4733     // It's more reasonable to let jvm treat it as an unexpected exception
4734     // instead of taking the default action.
4735     return false;
4736   } else if (actp->sa_handler != SIG_IGN) {
4737     if ((actp->sa_flags & SA_NODEFER) == 0) {
4738       // automaticlly block the signal
4739       sigaddset(&(actp->sa_mask), sig);
4740     }
4741 
4742     sa_handler_t hand = NULL;
4743     sa_sigaction_t sa = NULL;
4744     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4745     // retrieve the chained handler
4746     if (siginfo_flag_set) {
4747       sa = actp->sa_sigaction;
4748     } else {
4749       hand = actp->sa_handler;
4750     }
4751 
4752     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4753       actp->sa_handler = SIG_DFL;
4754     }
4755 
4756     // try to honor the signal mask
4757     sigset_t oset;
4758     sigemptyset(&oset);
4759     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4760 
4761     // call into the chained handler
4762     if (siginfo_flag_set) {
4763       (*sa)(sig, siginfo, context);
4764     } else {
4765       (*hand)(sig);
4766     }
4767 
4768     // restore the signal mask
4769     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4770   }
4771   // Tell jvm's signal handler the signal is taken care of.
4772   return true;
4773 }
4774 
4775 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4776   bool chained = false;
4777   // signal-chaining
4778   if (UseSignalChaining) {
4779     struct sigaction *actp = get_chained_signal_action(sig);
4780     if (actp != NULL) {
4781       chained = call_chained_handler(actp, sig, siginfo, context);
4782     }
4783   }
4784   return chained;
4785 }
4786 
4787 // for diagnostic
4788 int sigflags[NSIG];
4789 
4790 int os::Linux::get_our_sigflags(int sig) {
4791   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4792   return sigflags[sig];
4793 }
4794 
4795 void os::Linux::set_our_sigflags(int sig, int flags) {
4796   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4797   if (sig > 0 && sig < NSIG) {
4798     sigflags[sig] = flags;
4799   }
4800 }
4801 
4802 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4803   // Check for overwrite.
4804   struct sigaction oldAct;
4805   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4806 
4807   void* oldhand = oldAct.sa_sigaction
4808                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4809                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4810   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4811       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4812       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4813     if (AllowUserSignalHandlers || !set_installed) {
4814       // Do not overwrite; user takes responsibility to forward to us.
4815       return;
4816     } else if (UseSignalChaining) {
4817       // save the old handler in jvm
4818       os::Posix::save_preinstalled_handler(sig, oldAct);
4819       // libjsig also interposes the sigaction() call below and saves the
4820       // old sigaction on it own.
4821     } else {
4822       fatal("Encountered unexpected pre-existing sigaction handler "
4823             "%#lx for signal %d.", (long)oldhand, sig);
4824     }
4825   }
4826 
4827   struct sigaction sigAct;
4828   sigfillset(&(sigAct.sa_mask));
4829   sigAct.sa_handler = SIG_DFL;
4830   if (!set_installed) {
4831     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4832   } else {
4833     sigAct.sa_sigaction = signalHandler;
4834     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4835   }
4836   // Save flags, which are set by ours
4837   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4838   sigflags[sig] = sigAct.sa_flags;
4839 
4840   int ret = sigaction(sig, &sigAct, &oldAct);
4841   assert(ret == 0, "check");
4842 
4843   void* oldhand2  = oldAct.sa_sigaction
4844                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4845                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4846   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4847 }
4848 
4849 // install signal handlers for signals that HotSpot needs to
4850 // handle in order to support Java-level exception handling.
4851 
4852 void os::Linux::install_signal_handlers() {
4853   if (!signal_handlers_are_installed) {
4854     signal_handlers_are_installed = true;
4855 
4856     // signal-chaining
4857     typedef void (*signal_setting_t)();
4858     signal_setting_t begin_signal_setting = NULL;
4859     signal_setting_t end_signal_setting = NULL;
4860     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4861                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4862     if (begin_signal_setting != NULL) {
4863       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4864                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4865       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4866                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4867       libjsig_is_loaded = true;
4868       assert(UseSignalChaining, "should enable signal-chaining");
4869     }
4870     if (libjsig_is_loaded) {
4871       // Tell libjsig jvm is setting signal handlers
4872       (*begin_signal_setting)();
4873     }
4874 
4875     set_signal_handler(SIGSEGV, true);
4876     set_signal_handler(SIGPIPE, true);
4877     set_signal_handler(SIGBUS, true);
4878     set_signal_handler(SIGILL, true);
4879     set_signal_handler(SIGFPE, true);
4880 #if defined(PPC64)
4881     set_signal_handler(SIGTRAP, true);
4882 #endif
4883     set_signal_handler(SIGXFSZ, true);
4884 
4885     if (libjsig_is_loaded) {
4886       // Tell libjsig jvm finishes setting signal handlers
4887       (*end_signal_setting)();
4888     }
4889 
4890     // We don't activate signal checker if libjsig is in place, we trust ourselves
4891     // and if UserSignalHandler is installed all bets are off.
4892     // Log that signal checking is off only if -verbose:jni is specified.
4893     if (CheckJNICalls) {
4894       if (libjsig_is_loaded) {
4895         log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
4896         check_signals = false;
4897       }
4898       if (AllowUserSignalHandlers) {
4899         log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4900         check_signals = false;
4901       }
4902     }
4903   }
4904 }
4905 
4906 // This is the fastest way to get thread cpu time on Linux.
4907 // Returns cpu time (user+sys) for any thread, not only for current.
4908 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4909 // It might work on 2.6.10+ with a special kernel/glibc patch.
4910 // For reference, please, see IEEE Std 1003.1-2004:
4911 //   http://www.unix.org/single_unix_specification
4912 
4913 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4914   struct timespec tp;
4915   int rc = os::Posix::clock_gettime(clockid, &tp);
4916   assert(rc == 0, "clock_gettime is expected to return 0 code");
4917 
4918   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4919 }
4920 
4921 /////
4922 // glibc on Linux platform uses non-documented flag
4923 // to indicate, that some special sort of signal
4924 // trampoline is used.
4925 // We will never set this flag, and we should
4926 // ignore this flag in our diagnostic
4927 #ifdef SIGNIFICANT_SIGNAL_MASK
4928   #undef SIGNIFICANT_SIGNAL_MASK
4929 #endif
4930 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4931 
4932 static const char* get_signal_handler_name(address handler,
4933                                            char* buf, int buflen) {
4934   int offset = 0;
4935   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4936   if (found) {
4937     // skip directory names
4938     const char *p1, *p2;
4939     p1 = buf;
4940     size_t len = strlen(os::file_separator());
4941     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4942     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4943   } else {
4944     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4945   }
4946   return buf;
4947 }
4948 
4949 static void print_signal_handler(outputStream* st, int sig,
4950                                  char* buf, size_t buflen) {
4951   struct sigaction sa;
4952 
4953   sigaction(sig, NULL, &sa);
4954 
4955   // See comment for SIGNIFICANT_SIGNAL_MASK define
4956   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4957 
4958   st->print("%s: ", os::exception_name(sig, buf, buflen));
4959 
4960   address handler = (sa.sa_flags & SA_SIGINFO)
4961     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4962     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4963 
4964   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4965     st->print("SIG_DFL");
4966   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4967     st->print("SIG_IGN");
4968   } else {
4969     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4970   }
4971 
4972   st->print(", sa_mask[0]=");
4973   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4974 
4975   address rh = VMError::get_resetted_sighandler(sig);
4976   // May be, handler was resetted by VMError?
4977   if (rh != NULL) {
4978     handler = rh;
4979     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4980   }
4981 
4982   st->print(", sa_flags=");
4983   os::Posix::print_sa_flags(st, sa.sa_flags);
4984 
4985   // Check: is it our handler?
4986   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4987       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4988     // It is our signal handler
4989     // check for flags, reset system-used one!
4990     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4991       st->print(
4992                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4993                 os::Linux::get_our_sigflags(sig));
4994     }
4995   }
4996   st->cr();
4997 }
4998 
4999 
5000 #define DO_SIGNAL_CHECK(sig)                      \
5001   do {                                            \
5002     if (!sigismember(&check_signal_done, sig)) {  \
5003       os::Linux::check_signal_handler(sig);       \
5004     }                                             \
5005   } while (0)
5006 
5007 // This method is a periodic task to check for misbehaving JNI applications
5008 // under CheckJNI, we can add any periodic checks here
5009 
5010 void os::run_periodic_checks() {
5011   if (check_signals == false) return;
5012 
5013   // SEGV and BUS if overridden could potentially prevent
5014   // generation of hs*.log in the event of a crash, debugging
5015   // such a case can be very challenging, so we absolutely
5016   // check the following for a good measure:
5017   DO_SIGNAL_CHECK(SIGSEGV);
5018   DO_SIGNAL_CHECK(SIGILL);
5019   DO_SIGNAL_CHECK(SIGFPE);
5020   DO_SIGNAL_CHECK(SIGBUS);
5021   DO_SIGNAL_CHECK(SIGPIPE);
5022   DO_SIGNAL_CHECK(SIGXFSZ);
5023 #if defined(PPC64)
5024   DO_SIGNAL_CHECK(SIGTRAP);
5025 #endif
5026 
5027   // ReduceSignalUsage allows the user to override these handlers
5028   // see comments at the very top and jvm_md.h
5029   if (!ReduceSignalUsage) {
5030     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
5031     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
5032     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
5033     DO_SIGNAL_CHECK(BREAK_SIGNAL);
5034   }
5035 
5036   DO_SIGNAL_CHECK(SR_signum);
5037 }
5038 
5039 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
5040 
5041 static os_sigaction_t os_sigaction = NULL;
5042 
5043 void os::Linux::check_signal_handler(int sig) {
5044   char buf[O_BUFLEN];
5045   address jvmHandler = NULL;
5046 
5047 
5048   struct sigaction act;
5049   if (os_sigaction == NULL) {
5050     // only trust the default sigaction, in case it has been interposed
5051     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
5052     if (os_sigaction == NULL) return;
5053   }
5054 
5055   os_sigaction(sig, (struct sigaction*)NULL, &act);
5056 
5057 
5058   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
5059 
5060   address thisHandler = (act.sa_flags & SA_SIGINFO)
5061     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
5062     : CAST_FROM_FN_PTR(address, act.sa_handler);
5063 
5064 
5065   switch (sig) {
5066   case SIGSEGV:
5067   case SIGBUS:
5068   case SIGFPE:
5069   case SIGPIPE:
5070   case SIGILL:
5071   case SIGXFSZ:
5072     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5073     break;
5074 
5075   case SHUTDOWN1_SIGNAL:
5076   case SHUTDOWN2_SIGNAL:
5077   case SHUTDOWN3_SIGNAL:
5078   case BREAK_SIGNAL:
5079     jvmHandler = (address)user_handler();
5080     break;
5081 
5082   default:
5083     if (sig == SR_signum) {
5084       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5085     } else {
5086       return;
5087     }
5088     break;
5089   }
5090 
5091   if (thisHandler != jvmHandler) {
5092     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5093     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5094     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5095     // No need to check this sig any longer
5096     sigaddset(&check_signal_done, sig);
5097     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5098     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5099       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5100                     exception_name(sig, buf, O_BUFLEN));
5101     }
5102   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5103     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5104     tty->print("expected:");
5105     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5106     tty->cr();
5107     tty->print("  found:");
5108     os::Posix::print_sa_flags(tty, act.sa_flags);
5109     tty->cr();
5110     // No need to check this sig any longer
5111     sigaddset(&check_signal_done, sig);
5112   }
5113 
5114   // Dump all the signal
5115   if (sigismember(&check_signal_done, sig)) {
5116     print_signal_handlers(tty, buf, O_BUFLEN);
5117   }
5118 }
5119 
5120 extern void report_error(char* file_name, int line_no, char* title,
5121                          char* format, ...);
5122 
5123 // this is called _before_ most of the global arguments have been parsed
5124 void os::init(void) {
5125   char dummy;   // used to get a guess on initial stack address
5126 
5127   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5128 
5129   init_random(1234567);
5130 
5131   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5132   if (Linux::page_size() == -1) {
5133     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5134           os::strerror(errno));
5135   }
5136   init_page_sizes((size_t) Linux::page_size());
5137 
5138   Linux::initialize_system_info();
5139 
5140   os::Linux::CPUPerfTicks pticks;
5141   bool res = os::Linux::get_tick_information(&pticks, -1);
5142 
5143   if (res && pticks.has_steal_ticks) {
5144     has_initial_tick_info = true;
5145     initial_total_ticks = pticks.total;
5146     initial_steal_ticks = pticks.steal;
5147   }
5148 
5149   // _main_thread points to the thread that created/loaded the JVM.
5150   Linux::_main_thread = pthread_self();
5151 
5152   // retrieve entry point for pthread_setname_np
5153   Linux::_pthread_setname_np =
5154     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5155 
5156   os::Posix::init();
5157 
5158   initial_time_count = javaTimeNanos();
5159 
5160   // Always warn if no monotonic clock available
5161   if (!os::Posix::supports_monotonic_clock()) {
5162     warning("No monotonic clock was available - timed services may "    \
5163             "be adversely affected if the time-of-day clock changes");
5164   }
5165 }
5166 
5167 // To install functions for atexit system call
5168 extern "C" {
5169   static void perfMemory_exit_helper() {
5170     perfMemory_exit();
5171   }
5172 }
5173 
5174 void os::pd_init_container_support() {
5175   OSContainer::init();
5176 }
5177 
5178 void os::Linux::numa_init() {
5179 
5180   // Java can be invoked as
5181   // 1. Without numactl and heap will be allocated/configured on all nodes as
5182   //    per the system policy.
5183   // 2. With numactl --interleave:
5184   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5185   //      API for membind case bitmask is reset.
5186   //      Interleave is only hint and Kernel can fallback to other nodes if
5187   //      no memory is available on the target nodes.
5188   // 3. With numactl --membind:
5189   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5190   //      interleave case returns bitmask of all nodes.
5191   // numa_all_nodes_ptr holds bitmask of all nodes.
5192   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5193   // bitmask when externally configured to run on all or fewer nodes.
5194 
5195   if (!Linux::libnuma_init()) {
5196     UseNUMA = false;
5197   } else {
5198     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5199       // If there's only one node (they start from 0) or if the process
5200       // is bound explicitly to a single node using membind, disable NUMA unless
5201       // user explicilty forces NUMA optimizations on single-node/UMA systems
5202       UseNUMA = ForceNUMA;
5203     } else {
5204 
5205       LogTarget(Info,os) log;
5206       LogStream ls(log);
5207 
5208       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5209 
5210       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5211       const char* numa_mode = "membind";
5212 
5213       if (Linux::is_running_in_interleave_mode()) {
5214         bmp = Linux::_numa_interleave_bitmask;
5215         numa_mode = "interleave";
5216       }
5217 
5218       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5219                " Heap will be configured using NUMA memory nodes:", numa_mode);
5220 
5221       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5222         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5223           ls.print(" %d", node);
5224         }
5225       }
5226     }
5227   }
5228 
5229   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5230     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5231     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5232     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5233     // and disable adaptive resizing.
5234     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5235       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5236               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5237       UseAdaptiveSizePolicy = false;
5238       UseAdaptiveNUMAChunkSizing = false;
5239     }
5240   }
5241 }
5242 
5243 // this is called _after_ the global arguments have been parsed
5244 jint os::init_2(void) {
5245 
5246   // This could be set after os::Posix::init() but all platforms
5247   // have to set it the same so we have to mirror Solaris.
5248   DEBUG_ONLY(os::set_mutex_init_done();)
5249 
5250   os::Posix::init_2();
5251 
5252   Linux::fast_thread_clock_init();
5253 
5254   // initialize suspend/resume support - must do this before signal_sets_init()
5255   if (SR_initialize() != 0) {
5256     perror("SR_initialize failed");
5257     return JNI_ERR;
5258   }
5259 
5260   Linux::signal_sets_init();
5261   Linux::install_signal_handlers();
5262   // Initialize data for jdk.internal.misc.Signal
5263   if (!ReduceSignalUsage) {
5264     jdk_misc_signal_init();
5265   }
5266 
5267   if (AdjustStackSizeForTLS) {
5268     get_minstack_init();
5269   }
5270 
5271   // Check and sets minimum stack sizes against command line options
5272   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5273     return JNI_ERR;
5274   }
5275 
5276 #if defined(IA32)
5277   // Need to ensure we've determined the process's initial stack to
5278   // perform the workaround
5279   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5280   workaround_expand_exec_shield_cs_limit();
5281 #else
5282   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5283   if (!suppress_primordial_thread_resolution) {
5284     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5285   }
5286 #endif
5287 
5288   Linux::libpthread_init();
5289   Linux::sched_getcpu_init();
5290   log_info(os)("HotSpot is running with %s, %s",
5291                Linux::glibc_version(), Linux::libpthread_version());
5292 
5293   if (UseNUMA) {
5294     Linux::numa_init();
5295   }
5296 
5297   if (MaxFDLimit) {
5298     // set the number of file descriptors to max. print out error
5299     // if getrlimit/setrlimit fails but continue regardless.
5300     struct rlimit nbr_files;
5301     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5302     if (status != 0) {
5303       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5304     } else {
5305       nbr_files.rlim_cur = nbr_files.rlim_max;
5306       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5307       if (status != 0) {
5308         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5309       }
5310     }
5311   }
5312 
5313   // at-exit methods are called in the reverse order of their registration.
5314   // atexit functions are called on return from main or as a result of a
5315   // call to exit(3C). There can be only 32 of these functions registered
5316   // and atexit() does not set errno.
5317 
5318   if (PerfAllowAtExitRegistration) {
5319     // only register atexit functions if PerfAllowAtExitRegistration is set.
5320     // atexit functions can be delayed until process exit time, which
5321     // can be problematic for embedded VM situations. Embedded VMs should
5322     // call DestroyJavaVM() to assure that VM resources are released.
5323 
5324     // note: perfMemory_exit_helper atexit function may be removed in
5325     // the future if the appropriate cleanup code can be added to the
5326     // VM_Exit VMOperation's doit method.
5327     if (atexit(perfMemory_exit_helper) != 0) {
5328       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5329     }
5330   }
5331 
5332   // initialize thread priority policy
5333   prio_init();
5334 
5335   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5336     set_coredump_filter(DAX_SHARED_BIT);
5337   }
5338 
5339   if (DumpPrivateMappingsInCore) {
5340     set_coredump_filter(FILE_BACKED_PVT_BIT);
5341   }
5342 
5343   if (DumpSharedMappingsInCore) {
5344     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5345   }
5346 
5347   return JNI_OK;
5348 }
5349 
5350 // older glibc versions don't have this macro (which expands to
5351 // an optimized bit-counting function) so we have to roll our own
5352 #ifndef CPU_COUNT
5353 
5354 static int _cpu_count(const cpu_set_t* cpus) {
5355   int count = 0;
5356   // only look up to the number of configured processors
5357   for (int i = 0; i < os::processor_count(); i++) {
5358     if (CPU_ISSET(i, cpus)) {
5359       count++;
5360     }
5361   }
5362   return count;
5363 }
5364 
5365 #define CPU_COUNT(cpus) _cpu_count(cpus)
5366 
5367 #endif // CPU_COUNT
5368 
5369 // Get the current number of available processors for this process.
5370 // This value can change at any time during a process's lifetime.
5371 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5372 // If it appears there may be more than 1024 processors then we do a
5373 // dynamic check - see 6515172 for details.
5374 // If anything goes wrong we fallback to returning the number of online
5375 // processors - which can be greater than the number available to the process.
5376 int os::Linux::active_processor_count() {
5377   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5378   cpu_set_t* cpus_p = &cpus;
5379   int cpus_size = sizeof(cpu_set_t);
5380 
5381   int configured_cpus = os::processor_count();  // upper bound on available cpus
5382   int cpu_count = 0;
5383 
5384 // old build platforms may not support dynamic cpu sets
5385 #ifdef CPU_ALLOC
5386 
5387   // To enable easy testing of the dynamic path on different platforms we
5388   // introduce a diagnostic flag: UseCpuAllocPath
5389   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5390     // kernel may use a mask bigger than cpu_set_t
5391     log_trace(os)("active_processor_count: using dynamic path %s"
5392                   "- configured processors: %d",
5393                   UseCpuAllocPath ? "(forced) " : "",
5394                   configured_cpus);
5395     cpus_p = CPU_ALLOC(configured_cpus);
5396     if (cpus_p != NULL) {
5397       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5398       // zero it just to be safe
5399       CPU_ZERO_S(cpus_size, cpus_p);
5400     }
5401     else {
5402        // failed to allocate so fallback to online cpus
5403        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5404        log_trace(os)("active_processor_count: "
5405                      "CPU_ALLOC failed (%s) - using "
5406                      "online processor count: %d",
5407                      os::strerror(errno), online_cpus);
5408        return online_cpus;
5409     }
5410   }
5411   else {
5412     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5413                   configured_cpus);
5414   }
5415 #else // CPU_ALLOC
5416 // these stubs won't be executed
5417 #define CPU_COUNT_S(size, cpus) -1
5418 #define CPU_FREE(cpus)
5419 
5420   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5421                 configured_cpus);
5422 #endif // CPU_ALLOC
5423 
5424   // pid 0 means the current thread - which we have to assume represents the process
5425   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5426     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5427       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5428     }
5429     else {
5430       cpu_count = CPU_COUNT(cpus_p);
5431     }
5432     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5433   }
5434   else {
5435     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5436     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5437             "which may exceed available processors", os::strerror(errno), cpu_count);
5438   }
5439 
5440   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5441     CPU_FREE(cpus_p);
5442   }
5443 
5444   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5445   return cpu_count;
5446 }
5447 
5448 // Determine the active processor count from one of
5449 // three different sources:
5450 //
5451 // 1. User option -XX:ActiveProcessorCount
5452 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5453 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5454 //
5455 // Option 1, if specified, will always override.
5456 // If the cgroup subsystem is active and configured, we
5457 // will return the min of the cgroup and option 2 results.
5458 // This is required since tools, such as numactl, that
5459 // alter cpu affinity do not update cgroup subsystem
5460 // cpuset configuration files.
5461 int os::active_processor_count() {
5462   // User has overridden the number of active processors
5463   if (ActiveProcessorCount > 0) {
5464     log_trace(os)("active_processor_count: "
5465                   "active processor count set by user : %d",
5466                   ActiveProcessorCount);
5467     return ActiveProcessorCount;
5468   }
5469 
5470   int active_cpus;
5471   if (OSContainer::is_containerized()) {
5472     active_cpus = OSContainer::active_processor_count();
5473     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5474                    active_cpus);
5475   } else {
5476     active_cpus = os::Linux::active_processor_count();
5477   }
5478 
5479   return active_cpus;
5480 }
5481 
5482 uint os::processor_id() {
5483   const int id = Linux::sched_getcpu();
5484   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5485   return (uint)id;
5486 }
5487 
5488 void os::set_native_thread_name(const char *name) {
5489   if (Linux::_pthread_setname_np) {
5490     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5491     snprintf(buf, sizeof(buf), "%s", name);
5492     buf[sizeof(buf) - 1] = '\0';
5493     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5494     // ERANGE should not happen; all other errors should just be ignored.
5495     assert(rc != ERANGE, "pthread_setname_np failed");
5496   }
5497 }
5498 
5499 bool os::bind_to_processor(uint processor_id) {
5500   // Not yet implemented.
5501   return false;
5502 }
5503 
5504 ///
5505 
5506 void os::SuspendedThreadTask::internal_do_task() {
5507   if (do_suspend(_thread->osthread())) {
5508     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5509     do_task(context);
5510     do_resume(_thread->osthread());
5511   }
5512 }
5513 
5514 ////////////////////////////////////////////////////////////////////////////////
5515 // debug support
5516 
5517 bool os::find(address addr, outputStream* st) {
5518   Dl_info dlinfo;
5519   memset(&dlinfo, 0, sizeof(dlinfo));
5520   if (dladdr(addr, &dlinfo) != 0) {
5521     st->print(PTR_FORMAT ": ", p2i(addr));
5522     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5523       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5524                 p2i(addr) - p2i(dlinfo.dli_saddr));
5525     } else if (dlinfo.dli_fbase != NULL) {
5526       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5527     } else {
5528       st->print("<absolute address>");
5529     }
5530     if (dlinfo.dli_fname != NULL) {
5531       st->print(" in %s", dlinfo.dli_fname);
5532     }
5533     if (dlinfo.dli_fbase != NULL) {
5534       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5535     }
5536     st->cr();
5537 
5538     if (Verbose) {
5539       // decode some bytes around the PC
5540       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5541       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5542       address       lowest = (address) dlinfo.dli_sname;
5543       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5544       if (begin < lowest)  begin = lowest;
5545       Dl_info dlinfo2;
5546       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5547           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5548         end = (address) dlinfo2.dli_saddr;
5549       }
5550       Disassembler::decode(begin, end, st);
5551     }
5552     return true;
5553   }
5554   return false;
5555 }
5556 
5557 ////////////////////////////////////////////////////////////////////////////////
5558 // misc
5559 
5560 // This does not do anything on Linux. This is basically a hook for being
5561 // able to use structured exception handling (thread-local exception filters)
5562 // on, e.g., Win32.
5563 void
5564 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5565                          JavaCallArguments* args, Thread* thread) {
5566   f(value, method, args, thread);
5567 }
5568 
5569 void os::print_statistics() {
5570 }
5571 
5572 bool os::message_box(const char* title, const char* message) {
5573   int i;
5574   fdStream err(defaultStream::error_fd());
5575   for (i = 0; i < 78; i++) err.print_raw("=");
5576   err.cr();
5577   err.print_raw_cr(title);
5578   for (i = 0; i < 78; i++) err.print_raw("-");
5579   err.cr();
5580   err.print_raw_cr(message);
5581   for (i = 0; i < 78; i++) err.print_raw("=");
5582   err.cr();
5583 
5584   char buf[16];
5585   // Prevent process from exiting upon "read error" without consuming all CPU
5586   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5587 
5588   return buf[0] == 'y' || buf[0] == 'Y';
5589 }
5590 
5591 // Is a (classpath) directory empty?
5592 bool os::dir_is_empty(const char* path) {
5593   DIR *dir = NULL;
5594   struct dirent *ptr;
5595 
5596   dir = opendir(path);
5597   if (dir == NULL) return true;
5598 
5599   // Scan the directory
5600   bool result = true;
5601   while (result && (ptr = readdir(dir)) != NULL) {
5602     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5603       result = false;
5604     }
5605   }
5606   closedir(dir);
5607   return result;
5608 }
5609 
5610 // This code originates from JDK's sysOpen and open64_w
5611 // from src/solaris/hpi/src/system_md.c
5612 
5613 int os::open(const char *path, int oflag, int mode) {
5614   if (strlen(path) > MAX_PATH - 1) {
5615     errno = ENAMETOOLONG;
5616     return -1;
5617   }
5618 
5619   // All file descriptors that are opened in the Java process and not
5620   // specifically destined for a subprocess should have the close-on-exec
5621   // flag set.  If we don't set it, then careless 3rd party native code
5622   // might fork and exec without closing all appropriate file descriptors
5623   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5624   // turn might:
5625   //
5626   // - cause end-of-file to fail to be detected on some file
5627   //   descriptors, resulting in mysterious hangs, or
5628   //
5629   // - might cause an fopen in the subprocess to fail on a system
5630   //   suffering from bug 1085341.
5631   //
5632   // (Yes, the default setting of the close-on-exec flag is a Unix
5633   // design flaw)
5634   //
5635   // See:
5636   // 1085341: 32-bit stdio routines should support file descriptors >255
5637   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5638   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5639   //
5640   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5641   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5642   // because it saves a system call and removes a small window where the flag
5643   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5644   // and we fall back to using FD_CLOEXEC (see below).
5645 #ifdef O_CLOEXEC
5646   oflag |= O_CLOEXEC;
5647 #endif
5648 
5649   int fd = ::open64(path, oflag, mode);
5650   if (fd == -1) return -1;
5651 
5652   //If the open succeeded, the file might still be a directory
5653   {
5654     struct stat64 buf64;
5655     int ret = ::fstat64(fd, &buf64);
5656     int st_mode = buf64.st_mode;
5657 
5658     if (ret != -1) {
5659       if ((st_mode & S_IFMT) == S_IFDIR) {
5660         errno = EISDIR;
5661         ::close(fd);
5662         return -1;
5663       }
5664     } else {
5665       ::close(fd);
5666       return -1;
5667     }
5668   }
5669 
5670 #ifdef FD_CLOEXEC
5671   // Validate that the use of the O_CLOEXEC flag on open above worked.
5672   // With recent kernels, we will perform this check exactly once.
5673   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5674   if (!O_CLOEXEC_is_known_to_work) {
5675     int flags = ::fcntl(fd, F_GETFD);
5676     if (flags != -1) {
5677       if ((flags & FD_CLOEXEC) != 0)
5678         O_CLOEXEC_is_known_to_work = 1;
5679       else
5680         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5681     }
5682   }
5683 #endif
5684 
5685   return fd;
5686 }
5687 
5688 
5689 // create binary file, rewriting existing file if required
5690 int os::create_binary_file(const char* path, bool rewrite_existing) {
5691   int oflags = O_WRONLY | O_CREAT;
5692   if (!rewrite_existing) {
5693     oflags |= O_EXCL;
5694   }
5695   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5696 }
5697 
5698 // return current position of file pointer
5699 jlong os::current_file_offset(int fd) {
5700   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5701 }
5702 
5703 // move file pointer to the specified offset
5704 jlong os::seek_to_file_offset(int fd, jlong offset) {
5705   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5706 }
5707 
5708 // This code originates from JDK's sysAvailable
5709 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5710 
5711 int os::available(int fd, jlong *bytes) {
5712   jlong cur, end;
5713   int mode;
5714   struct stat64 buf64;
5715 
5716   if (::fstat64(fd, &buf64) >= 0) {
5717     mode = buf64.st_mode;
5718     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5719       int n;
5720       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5721         *bytes = n;
5722         return 1;
5723       }
5724     }
5725   }
5726   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5727     return 0;
5728   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5729     return 0;
5730   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5731     return 0;
5732   }
5733   *bytes = end - cur;
5734   return 1;
5735 }
5736 
5737 // Map a block of memory.
5738 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5739                         char *addr, size_t bytes, bool read_only,
5740                         bool allow_exec) {
5741   int prot;
5742   int flags = MAP_PRIVATE;
5743 
5744   if (read_only) {
5745     prot = PROT_READ;
5746   } else {
5747     prot = PROT_READ | PROT_WRITE;
5748   }
5749 
5750   if (allow_exec) {
5751     prot |= PROT_EXEC;
5752   }
5753 
5754   if (addr != NULL) {
5755     flags |= MAP_FIXED;
5756   }
5757 
5758   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5759                                      fd, file_offset);
5760   if (mapped_address == MAP_FAILED) {
5761     return NULL;
5762   }
5763   return mapped_address;
5764 }
5765 
5766 
5767 // Remap a block of memory.
5768 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5769                           char *addr, size_t bytes, bool read_only,
5770                           bool allow_exec) {
5771   // same as map_memory() on this OS
5772   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5773                         allow_exec);
5774 }
5775 
5776 
5777 // Unmap a block of memory.
5778 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5779   return munmap(addr, bytes) == 0;
5780 }
5781 
5782 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5783 
5784 static jlong fast_cpu_time(Thread *thread) {
5785     clockid_t clockid;
5786     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5787                                               &clockid);
5788     if (rc == 0) {
5789       return os::Linux::fast_thread_cpu_time(clockid);
5790     } else {
5791       // It's possible to encounter a terminated native thread that failed
5792       // to detach itself from the VM - which should result in ESRCH.
5793       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5794       return -1;
5795     }
5796 }
5797 
5798 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5799 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5800 // of a thread.
5801 //
5802 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5803 // the fast estimate available on the platform.
5804 
5805 jlong os::current_thread_cpu_time() {
5806   if (os::Linux::supports_fast_thread_cpu_time()) {
5807     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5808   } else {
5809     // return user + sys since the cost is the same
5810     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5811   }
5812 }
5813 
5814 jlong os::thread_cpu_time(Thread* thread) {
5815   // consistent with what current_thread_cpu_time() returns
5816   if (os::Linux::supports_fast_thread_cpu_time()) {
5817     return fast_cpu_time(thread);
5818   } else {
5819     return slow_thread_cpu_time(thread, true /* user + sys */);
5820   }
5821 }
5822 
5823 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5824   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5825     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5826   } else {
5827     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5828   }
5829 }
5830 
5831 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5832   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5833     return fast_cpu_time(thread);
5834   } else {
5835     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5836   }
5837 }
5838 
5839 //  -1 on error.
5840 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5841   pid_t  tid = thread->osthread()->thread_id();
5842   char *s;
5843   char stat[2048];
5844   int statlen;
5845   char proc_name[64];
5846   int count;
5847   long sys_time, user_time;
5848   char cdummy;
5849   int idummy;
5850   long ldummy;
5851   FILE *fp;
5852 
5853   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5854   fp = fopen(proc_name, "r");
5855   if (fp == NULL) return -1;
5856   statlen = fread(stat, 1, 2047, fp);
5857   stat[statlen] = '\0';
5858   fclose(fp);
5859 
5860   // Skip pid and the command string. Note that we could be dealing with
5861   // weird command names, e.g. user could decide to rename java launcher
5862   // to "java 1.4.2 :)", then the stat file would look like
5863   //                1234 (java 1.4.2 :)) R ... ...
5864   // We don't really need to know the command string, just find the last
5865   // occurrence of ")" and then start parsing from there. See bug 4726580.
5866   s = strrchr(stat, ')');
5867   if (s == NULL) return -1;
5868 
5869   // Skip blank chars
5870   do { s++; } while (s && isspace(*s));
5871 
5872   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5873                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5874                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5875                  &user_time, &sys_time);
5876   if (count != 13) return -1;
5877   if (user_sys_cpu_time) {
5878     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5879   } else {
5880     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5881   }
5882 }
5883 
5884 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5885   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5886   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5887   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5888   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5889 }
5890 
5891 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5892   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5893   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5894   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5895   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5896 }
5897 
5898 bool os::is_thread_cpu_time_supported() {
5899   return true;
5900 }
5901 
5902 // System loadavg support.  Returns -1 if load average cannot be obtained.
5903 // Linux doesn't yet have a (official) notion of processor sets,
5904 // so just return the system wide load average.
5905 int os::loadavg(double loadavg[], int nelem) {
5906   return ::getloadavg(loadavg, nelem);
5907 }
5908 
5909 void os::pause() {
5910   char filename[MAX_PATH];
5911   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5912     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5913   } else {
5914     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5915   }
5916 
5917   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5918   if (fd != -1) {
5919     struct stat buf;
5920     ::close(fd);
5921     while (::stat(filename, &buf) == 0) {
5922       (void)::poll(NULL, 0, 100);
5923     }
5924   } else {
5925     jio_fprintf(stderr,
5926                 "Could not open pause file '%s', continuing immediately.\n", filename);
5927   }
5928 }
5929 
5930 extern char** environ;
5931 
5932 // Run the specified command in a separate process. Return its exit value,
5933 // or -1 on failure (e.g. can't fork a new process).
5934 // Unlike system(), this function can be called from signal handler. It
5935 // doesn't block SIGINT et al.
5936 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5937   const char * argv[4] = {"sh", "-c", cmd, NULL};
5938 
5939   pid_t pid ;
5940 
5941   if (use_vfork_if_available) {
5942     pid = vfork();
5943   } else {
5944     pid = fork();
5945   }
5946 
5947   if (pid < 0) {
5948     // fork failed
5949     return -1;
5950 
5951   } else if (pid == 0) {
5952     // child process
5953 
5954     execve("/bin/sh", (char* const*)argv, environ);
5955 
5956     // execve failed
5957     _exit(-1);
5958 
5959   } else  {
5960     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5961     // care about the actual exit code, for now.
5962 
5963     int status;
5964 
5965     // Wait for the child process to exit.  This returns immediately if
5966     // the child has already exited. */
5967     while (waitpid(pid, &status, 0) < 0) {
5968       switch (errno) {
5969       case ECHILD: return 0;
5970       case EINTR: break;
5971       default: return -1;
5972       }
5973     }
5974 
5975     if (WIFEXITED(status)) {
5976       // The child exited normally; get its exit code.
5977       return WEXITSTATUS(status);
5978     } else if (WIFSIGNALED(status)) {
5979       // The child exited because of a signal
5980       // The best value to return is 0x80 + signal number,
5981       // because that is what all Unix shells do, and because
5982       // it allows callers to distinguish between process exit and
5983       // process death by signal.
5984       return 0x80 + WTERMSIG(status);
5985     } else {
5986       // Unknown exit code; pass it through
5987       return status;
5988     }
5989   }
5990 }
5991 
5992 // Get the default path to the core file
5993 // Returns the length of the string
5994 int os::get_core_path(char* buffer, size_t bufferSize) {
5995   /*
5996    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5997    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5998    */
5999   const int core_pattern_len = 129;
6000   char core_pattern[core_pattern_len] = {0};
6001 
6002   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6003   if (core_pattern_file == -1) {
6004     return -1;
6005   }
6006 
6007   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6008   ::close(core_pattern_file);
6009   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6010     return -1;
6011   }
6012   if (core_pattern[ret-1] == '\n') {
6013     core_pattern[ret-1] = '\0';
6014   } else {
6015     core_pattern[ret] = '\0';
6016   }
6017 
6018   // Replace the %p in the core pattern with the process id. NOTE: we do this
6019   // only if the pattern doesn't start with "|", and we support only one %p in
6020   // the pattern.
6021   char *pid_pos = strstr(core_pattern, "%p");
6022   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
6023   int written;
6024 
6025   if (core_pattern[0] == '/') {
6026     if (pid_pos != NULL) {
6027       *pid_pos = '\0';
6028       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
6029                              current_process_id(), tail);
6030     } else {
6031       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6032     }
6033   } else {
6034     char cwd[PATH_MAX];
6035 
6036     const char* p = get_current_directory(cwd, PATH_MAX);
6037     if (p == NULL) {
6038       return -1;
6039     }
6040 
6041     if (core_pattern[0] == '|') {
6042       written = jio_snprintf(buffer, bufferSize,
6043                              "\"%s\" (or dumping to %s/core.%d)",
6044                              &core_pattern[1], p, current_process_id());
6045     } else if (pid_pos != NULL) {
6046       *pid_pos = '\0';
6047       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
6048                              current_process_id(), tail);
6049     } else {
6050       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6051     }
6052   }
6053 
6054   if (written < 0) {
6055     return -1;
6056   }
6057 
6058   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6059     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6060 
6061     if (core_uses_pid_file != -1) {
6062       char core_uses_pid = 0;
6063       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6064       ::close(core_uses_pid_file);
6065 
6066       if (core_uses_pid == '1') {
6067         jio_snprintf(buffer + written, bufferSize - written,
6068                                           ".%d", current_process_id());
6069       }
6070     }
6071   }
6072 
6073   return strlen(buffer);
6074 }
6075 
6076 bool os::start_debugging(char *buf, int buflen) {
6077   int len = (int)strlen(buf);
6078   char *p = &buf[len];
6079 
6080   jio_snprintf(p, buflen-len,
6081                "\n\n"
6082                "Do you want to debug the problem?\n\n"
6083                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6084                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6085                "Otherwise, press RETURN to abort...",
6086                os::current_process_id(), os::current_process_id(),
6087                os::current_thread_id(), os::current_thread_id());
6088 
6089   bool yes = os::message_box("Unexpected Error", buf);
6090 
6091   if (yes) {
6092     // yes, user asked VM to launch debugger
6093     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6094                  os::current_process_id(), os::current_process_id());
6095 
6096     os::fork_and_exec(buf);
6097     yes = false;
6098   }
6099   return yes;
6100 }
6101 
6102 
6103 // Java/Compiler thread:
6104 //
6105 //   Low memory addresses
6106 // P0 +------------------------+
6107 //    |                        |\  Java thread created by VM does not have glibc
6108 //    |    glibc guard page    | - guard page, attached Java thread usually has
6109 //    |                        |/  1 glibc guard page.
6110 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6111 //    |                        |\
6112 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6113 //    |                        |/
6114 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6115 //    |                        |\
6116 //    |      Normal Stack      | -
6117 //    |                        |/
6118 // P2 +------------------------+ Thread::stack_base()
6119 //
6120 // Non-Java thread:
6121 //
6122 //   Low memory addresses
6123 // P0 +------------------------+
6124 //    |                        |\
6125 //    |  glibc guard page      | - usually 1 page
6126 //    |                        |/
6127 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6128 //    |                        |\
6129 //    |      Normal Stack      | -
6130 //    |                        |/
6131 // P2 +------------------------+ Thread::stack_base()
6132 //
6133 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6134 //    returned from pthread_attr_getstack().
6135 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6136 //    of the stack size given in pthread_attr. We work around this for
6137 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6138 //
6139 #ifndef ZERO
6140 static void current_stack_region(address * bottom, size_t * size) {
6141   if (os::is_primordial_thread()) {
6142     // primordial thread needs special handling because pthread_getattr_np()
6143     // may return bogus value.
6144     *bottom = os::Linux::initial_thread_stack_bottom();
6145     *size   = os::Linux::initial_thread_stack_size();
6146   } else {
6147     pthread_attr_t attr;
6148 
6149     int rslt = pthread_getattr_np(pthread_self(), &attr);
6150 
6151     // JVM needs to know exact stack location, abort if it fails
6152     if (rslt != 0) {
6153       if (rslt == ENOMEM) {
6154         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6155       } else {
6156         fatal("pthread_getattr_np failed with error = %d", rslt);
6157       }
6158     }
6159 
6160     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6161       fatal("Cannot locate current stack attributes!");
6162     }
6163 
6164     // Work around NPTL stack guard error.
6165     size_t guard_size = 0;
6166     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6167     if (rslt != 0) {
6168       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6169     }
6170     *bottom += guard_size;
6171     *size   -= guard_size;
6172 
6173     pthread_attr_destroy(&attr);
6174 
6175   }
6176   assert(os::current_stack_pointer() >= *bottom &&
6177          os::current_stack_pointer() < *bottom + *size, "just checking");
6178 }
6179 
6180 address os::current_stack_base() {
6181   address bottom;
6182   size_t size;
6183   current_stack_region(&bottom, &size);
6184   return (bottom + size);
6185 }
6186 
6187 size_t os::current_stack_size() {
6188   // This stack size includes the usable stack and HotSpot guard pages
6189   // (for the threads that have Hotspot guard pages).
6190   address bottom;
6191   size_t size;
6192   current_stack_region(&bottom, &size);
6193   return size;
6194 }
6195 #endif
6196 
6197 static inline struct timespec get_mtime(const char* filename) {
6198   struct stat st;
6199   int ret = os::stat(filename, &st);
6200   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6201   return st.st_mtim;
6202 }
6203 
6204 int os::compare_file_modified_times(const char* file1, const char* file2) {
6205   struct timespec filetime1 = get_mtime(file1);
6206   struct timespec filetime2 = get_mtime(file2);
6207   int diff = filetime1.tv_sec - filetime2.tv_sec;
6208   if (diff == 0) {
6209     return filetime1.tv_nsec - filetime2.tv_nsec;
6210   }
6211   return diff;
6212 }
6213 
6214 bool os::supports_map_sync() {
6215   return true;
6216 }
6217 
6218 /////////////// Unit tests ///////////////
6219 
6220 #ifndef PRODUCT
6221 
6222 class TestReserveMemorySpecial : AllStatic {
6223  public:
6224   static void small_page_write(void* addr, size_t size) {
6225     size_t page_size = os::vm_page_size();
6226 
6227     char* end = (char*)addr + size;
6228     for (char* p = (char*)addr; p < end; p += page_size) {
6229       *p = 1;
6230     }
6231   }
6232 
6233   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6234     if (!UseHugeTLBFS) {
6235       return;
6236     }
6237 
6238     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6239 
6240     if (addr != NULL) {
6241       small_page_write(addr, size);
6242 
6243       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6244     }
6245   }
6246 
6247   static void test_reserve_memory_special_huge_tlbfs_only() {
6248     if (!UseHugeTLBFS) {
6249       return;
6250     }
6251 
6252     size_t lp = os::large_page_size();
6253 
6254     for (size_t size = lp; size <= lp * 10; size += lp) {
6255       test_reserve_memory_special_huge_tlbfs_only(size);
6256     }
6257   }
6258 
6259   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6260     size_t lp = os::large_page_size();
6261     size_t ag = os::vm_allocation_granularity();
6262 
6263     // sizes to test
6264     const size_t sizes[] = {
6265       lp, lp + ag, lp + lp / 2, lp * 2,
6266       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6267       lp * 10, lp * 10 + lp / 2
6268     };
6269     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6270 
6271     // For each size/alignment combination, we test three scenarios:
6272     // 1) with req_addr == NULL
6273     // 2) with a non-null req_addr at which we expect to successfully allocate
6274     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6275     //    expect the allocation to either fail or to ignore req_addr
6276 
6277     // Pre-allocate two areas; they shall be as large as the largest allocation
6278     //  and aligned to the largest alignment we will be testing.
6279     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6280     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6281       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6282       -1, 0);
6283     assert(mapping1 != MAP_FAILED, "should work");
6284 
6285     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6286       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6287       -1, 0);
6288     assert(mapping2 != MAP_FAILED, "should work");
6289 
6290     // Unmap the first mapping, but leave the second mapping intact: the first
6291     // mapping will serve as a value for a "good" req_addr (case 2). The second
6292     // mapping, still intact, as "bad" req_addr (case 3).
6293     ::munmap(mapping1, mapping_size);
6294 
6295     // Case 1
6296     for (int i = 0; i < num_sizes; i++) {
6297       const size_t size = sizes[i];
6298       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6299         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6300         if (p != NULL) {
6301           assert(is_aligned(p, alignment), "must be");
6302           small_page_write(p, size);
6303           os::Linux::release_memory_special_huge_tlbfs(p, size);
6304         }
6305       }
6306     }
6307 
6308     // Case 2
6309     for (int i = 0; i < num_sizes; i++) {
6310       const size_t size = sizes[i];
6311       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6312         char* const req_addr = align_up(mapping1, alignment);
6313         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6314         if (p != NULL) {
6315           assert(p == req_addr, "must be");
6316           small_page_write(p, size);
6317           os::Linux::release_memory_special_huge_tlbfs(p, size);
6318         }
6319       }
6320     }
6321 
6322     // Case 3
6323     for (int i = 0; i < num_sizes; i++) {
6324       const size_t size = sizes[i];
6325       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6326         char* const req_addr = align_up(mapping2, alignment);
6327         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6328         // as the area around req_addr contains already existing mappings, the API should always
6329         // return NULL (as per contract, it cannot return another address)
6330         assert(p == NULL, "must be");
6331       }
6332     }
6333 
6334     ::munmap(mapping2, mapping_size);
6335 
6336   }
6337 
6338   static void test_reserve_memory_special_huge_tlbfs() {
6339     if (!UseHugeTLBFS) {
6340       return;
6341     }
6342 
6343     test_reserve_memory_special_huge_tlbfs_only();
6344     test_reserve_memory_special_huge_tlbfs_mixed();
6345   }
6346 
6347   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6348     if (!UseSHM) {
6349       return;
6350     }
6351 
6352     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6353 
6354     if (addr != NULL) {
6355       assert(is_aligned(addr, alignment), "Check");
6356       assert(is_aligned(addr, os::large_page_size()), "Check");
6357 
6358       small_page_write(addr, size);
6359 
6360       os::Linux::release_memory_special_shm(addr, size);
6361     }
6362   }
6363 
6364   static void test_reserve_memory_special_shm() {
6365     size_t lp = os::large_page_size();
6366     size_t ag = os::vm_allocation_granularity();
6367 
6368     for (size_t size = ag; size < lp * 3; size += ag) {
6369       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6370         test_reserve_memory_special_shm(size, alignment);
6371       }
6372     }
6373   }
6374 
6375   static void test() {
6376     test_reserve_memory_special_huge_tlbfs();
6377     test_reserve_memory_special_shm();
6378   }
6379 };
6380 
6381 void TestReserveMemorySpecial_test() {
6382   TestReserveMemorySpecial::test();
6383 }
6384 
6385 #endif