1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_posix.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/elfFile.hpp"
  75 #include "utilities/growableArray.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/powerOfTwo.hpp"
  78 #include "utilities/vmError.hpp"
  79 
  80 // put OS-includes here
  81 # include <sys/types.h>
  82 # include <sys/mman.h>
  83 # include <sys/stat.h>
  84 # include <sys/select.h>
  85 # include <pthread.h>
  86 # include <signal.h>
  87 # include <endian.h>
  88 # include <errno.h>
  89 # include <dlfcn.h>
  90 # include <stdio.h>
  91 # include <unistd.h>
  92 # include <sys/resource.h>
  93 # include <pthread.h>
  94 # include <sys/stat.h>
  95 # include <sys/time.h>
  96 # include <sys/times.h>
  97 # include <sys/utsname.h>
  98 # include <sys/socket.h>
  99 # include <sys/wait.h>
 100 # include <pwd.h>
 101 # include <poll.h>
 102 # include <fcntl.h>
 103 # include <string.h>
 104 # include <syscall.h>
 105 # include <sys/sysinfo.h>
 106 # include <gnu/libc-version.h>
 107 # include <sys/ipc.h>
 108 # include <sys/shm.h>
 109 # include <link.h>
 110 # include <stdint.h>
 111 # include <inttypes.h>
 112 # include <sys/ioctl.h>
 113 
 114 #ifndef _GNU_SOURCE
 115   #define _GNU_SOURCE
 116   #include <sched.h>
 117   #undef _GNU_SOURCE
 118 #else
 119   #include <sched.h>
 120 #endif
 121 
 122 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 123 // getrusage() is prepared to handle the associated failure.
 124 #ifndef RUSAGE_THREAD
 125   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 126 #endif
 127 
 128 #define MAX_PATH    (2 * K)
 129 
 130 #define MAX_SECS 100000000
 131 
 132 // for timer info max values which include all bits
 133 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 134 
 135 enum CoredumpFilterBit {
 136   FILE_BACKED_PVT_BIT = 1 << 2,
 137   FILE_BACKED_SHARED_BIT = 1 << 3,
 138   LARGEPAGES_BIT = 1 << 6,
 139   DAX_SHARED_BIT = 1 << 8
 140 };
 141 
 142 ////////////////////////////////////////////////////////////////////////////////
 143 // global variables
 144 julong os::Linux::_physical_memory = 0;
 145 
 146 address   os::Linux::_initial_thread_stack_bottom = NULL;
 147 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 148 
 149 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 150 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 151 pthread_t os::Linux::_main_thread;
 152 int os::Linux::_page_size = -1;
 153 bool os::Linux::_supports_fast_thread_cpu_time = false;
 154 const char * os::Linux::_glibc_version = NULL;
 155 const char * os::Linux::_libpthread_version = NULL;
 156 size_t os::Linux::_default_large_page_size = 0;
 157 
 158 static jlong initial_time_count=0;
 159 
 160 static int clock_tics_per_sec = 100;
 161 
 162 // If the VM might have been created on the primordial thread, we need to resolve the
 163 // primordial thread stack bounds and check if the current thread might be the
 164 // primordial thread in places. If we know that the primordial thread is never used,
 165 // such as when the VM was created by one of the standard java launchers, we can
 166 // avoid this
 167 static bool suppress_primordial_thread_resolution = false;
 168 
 169 // For diagnostics to print a message once. see run_periodic_checks
 170 static sigset_t check_signal_done;
 171 static bool check_signals = true;
 172 
 173 // Signal number used to suspend/resume a thread
 174 
 175 // do not use any signal number less than SIGSEGV, see 4355769
 176 static int SR_signum = SIGUSR2;
 177 sigset_t SR_sigset;
 178 
 179 // utility functions
 180 
 181 static int SR_initialize();
 182 
 183 julong os::available_memory() {
 184   return Linux::available_memory();
 185 }
 186 
 187 julong os::Linux::available_memory() {
 188   // values in struct sysinfo are "unsigned long"
 189   struct sysinfo si;
 190   julong avail_mem;
 191 
 192   if (OSContainer::is_containerized()) {
 193     jlong mem_limit, mem_usage;
 194     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 195       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 196                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 197     }
 198     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 199       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 200     }
 201     if (mem_limit > 0 && mem_usage > 0 ) {
 202       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 203       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 204       return avail_mem;
 205     }
 206   }
 207 
 208   sysinfo(&si);
 209   avail_mem = (julong)si.freeram * si.mem_unit;
 210   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 211   return avail_mem;
 212 }
 213 
 214 julong os::physical_memory() {
 215   jlong phys_mem = 0;
 216   if (OSContainer::is_containerized()) {
 217     jlong mem_limit;
 218     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 219       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 220       return mem_limit;
 221     }
 222     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 223                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 224   }
 225 
 226   phys_mem = Linux::physical_memory();
 227   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 228   return phys_mem;
 229 }
 230 
 231 static uint64_t initial_total_ticks = 0;
 232 static uint64_t initial_steal_ticks = 0;
 233 static bool     has_initial_tick_info = false;
 234 
 235 static void next_line(FILE *f) {
 236   int c;
 237   do {
 238     c = fgetc(f);
 239   } while (c != '\n' && c != EOF);
 240 }
 241 
 242 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 243   FILE*         fh;
 244   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 245   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 246   // irq: time  servicing interrupts; softirq: time servicing softirqs
 247   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 248   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 249   uint64_t      stealTicks = 0;
 250   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 251   // control of the Linux kernel
 252   uint64_t      guestNiceTicks = 0;
 253   int           logical_cpu = -1;
 254   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 255   int           n;
 256 
 257   memset(pticks, 0, sizeof(CPUPerfTicks));
 258 
 259   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 260     return false;
 261   }
 262 
 263   if (which_logical_cpu == -1) {
 264     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 265             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 266             UINT64_FORMAT " " UINT64_FORMAT " ",
 267             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 268             &iowTicks, &irqTicks, &sirqTicks,
 269             &stealTicks, &guestNiceTicks);
 270   } else {
 271     // Move to next line
 272     next_line(fh);
 273 
 274     // find the line for requested cpu faster to just iterate linefeeds?
 275     for (int i = 0; i < which_logical_cpu; i++) {
 276       next_line(fh);
 277     }
 278 
 279     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 280                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 281                UINT64_FORMAT " " UINT64_FORMAT " ",
 282                &logical_cpu, &userTicks, &niceTicks,
 283                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 284                &stealTicks, &guestNiceTicks);
 285   }
 286 
 287   fclose(fh);
 288   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 289     return false;
 290   }
 291   pticks->used       = userTicks + niceTicks;
 292   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 293   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 294                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 295 
 296   if (n > required_tickinfo_count + 3) {
 297     pticks->steal = stealTicks;
 298     pticks->has_steal_ticks = true;
 299   } else {
 300     pticks->steal = 0;
 301     pticks->has_steal_ticks = false;
 302   }
 303 
 304   return true;
 305 }
 306 
 307 // Return true if user is running as root.
 308 
 309 bool os::have_special_privileges() {
 310   static bool init = false;
 311   static bool privileges = false;
 312   if (!init) {
 313     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 314     init = true;
 315   }
 316   return privileges;
 317 }
 318 
 319 
 320 #ifndef SYS_gettid
 321 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 322   #ifdef __ia64__
 323     #define SYS_gettid 1105
 324   #else
 325     #ifdef __i386__
 326       #define SYS_gettid 224
 327     #else
 328       #ifdef __amd64__
 329         #define SYS_gettid 186
 330       #else
 331         #ifdef __sparc__
 332           #define SYS_gettid 143
 333         #else
 334           #error define gettid for the arch
 335         #endif
 336       #endif
 337     #endif
 338   #endif
 339 #endif
 340 
 341 
 342 // pid_t gettid()
 343 //
 344 // Returns the kernel thread id of the currently running thread. Kernel
 345 // thread id is used to access /proc.
 346 pid_t os::Linux::gettid() {
 347   int rslt = syscall(SYS_gettid);
 348   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 349   return (pid_t)rslt;
 350 }
 351 
 352 // Most versions of linux have a bug where the number of processors are
 353 // determined by looking at the /proc file system.  In a chroot environment,
 354 // the system call returns 1.
 355 static bool unsafe_chroot_detected = false;
 356 static const char *unstable_chroot_error = "/proc file system not found.\n"
 357                      "Java may be unstable running multithreaded in a chroot "
 358                      "environment on Linux when /proc filesystem is not mounted.";
 359 
 360 void os::Linux::initialize_system_info() {
 361   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 362   if (processor_count() == 1) {
 363     pid_t pid = os::Linux::gettid();
 364     char fname[32];
 365     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 366     FILE *fp = fopen(fname, "r");
 367     if (fp == NULL) {
 368       unsafe_chroot_detected = true;
 369     } else {
 370       fclose(fp);
 371     }
 372   }
 373   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 374   assert(processor_count() > 0, "linux error");
 375 }
 376 
 377 void os::init_system_properties_values() {
 378   // The next steps are taken in the product version:
 379   //
 380   // Obtain the JAVA_HOME value from the location of libjvm.so.
 381   // This library should be located at:
 382   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 383   //
 384   // If "/jre/lib/" appears at the right place in the path, then we
 385   // assume libjvm.so is installed in a JDK and we use this path.
 386   //
 387   // Otherwise exit with message: "Could not create the Java virtual machine."
 388   //
 389   // The following extra steps are taken in the debugging version:
 390   //
 391   // If "/jre/lib/" does NOT appear at the right place in the path
 392   // instead of exit check for $JAVA_HOME environment variable.
 393   //
 394   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 395   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 396   // it looks like libjvm.so is installed there
 397   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 398   //
 399   // Otherwise exit.
 400   //
 401   // Important note: if the location of libjvm.so changes this
 402   // code needs to be changed accordingly.
 403 
 404   // See ld(1):
 405   //      The linker uses the following search paths to locate required
 406   //      shared libraries:
 407   //        1: ...
 408   //        ...
 409   //        7: The default directories, normally /lib and /usr/lib.
 410 #ifndef OVERRIDE_LIBPATH
 411   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 412     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 413   #else
 414     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 415   #endif
 416 #else
 417   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 418 #endif
 419 
 420 // Base path of extensions installed on the system.
 421 #define SYS_EXT_DIR     "/usr/java/packages"
 422 #define EXTENSIONS_DIR  "/lib/ext"
 423 
 424   // Buffer that fits several sprintfs.
 425   // Note that the space for the colon and the trailing null are provided
 426   // by the nulls included by the sizeof operator.
 427   const size_t bufsize =
 428     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 429          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 430   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 431 
 432   // sysclasspath, java_home, dll_dir
 433   {
 434     char *pslash;
 435     os::jvm_path(buf, bufsize);
 436 
 437     // Found the full path to libjvm.so.
 438     // Now cut the path to <java_home>/jre if we can.
 439     pslash = strrchr(buf, '/');
 440     if (pslash != NULL) {
 441       *pslash = '\0';            // Get rid of /libjvm.so.
 442     }
 443     pslash = strrchr(buf, '/');
 444     if (pslash != NULL) {
 445       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 446     }
 447     Arguments::set_dll_dir(buf);
 448 
 449     if (pslash != NULL) {
 450       pslash = strrchr(buf, '/');
 451       if (pslash != NULL) {
 452         *pslash = '\0';        // Get rid of /lib.
 453       }
 454     }
 455     Arguments::set_java_home(buf);
 456     if (!set_boot_path('/', ':')) {
 457       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 458     }
 459   }
 460 
 461   // Where to look for native libraries.
 462   //
 463   // Note: Due to a legacy implementation, most of the library path
 464   // is set in the launcher. This was to accomodate linking restrictions
 465   // on legacy Linux implementations (which are no longer supported).
 466   // Eventually, all the library path setting will be done here.
 467   //
 468   // However, to prevent the proliferation of improperly built native
 469   // libraries, the new path component /usr/java/packages is added here.
 470   // Eventually, all the library path setting will be done here.
 471   {
 472     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 473     // should always exist (until the legacy problem cited above is
 474     // addressed).
 475     const char *v = ::getenv("LD_LIBRARY_PATH");
 476     const char *v_colon = ":";
 477     if (v == NULL) { v = ""; v_colon = ""; }
 478     // That's +1 for the colon and +1 for the trailing '\0'.
 479     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
 480                                              strlen(v) + 1 +
 481                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 482                                              mtInternal);
 483     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 484     Arguments::set_library_path(ld_library_path);
 485     FREE_C_HEAP_ARRAY(char, ld_library_path);
 486   }
 487 
 488   // Extensions directories.
 489   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 490   Arguments::set_ext_dirs(buf);
 491 
 492   FREE_C_HEAP_ARRAY(char, buf);
 493 
 494 #undef DEFAULT_LIBPATH
 495 #undef SYS_EXT_DIR
 496 #undef EXTENSIONS_DIR
 497 }
 498 
 499 ////////////////////////////////////////////////////////////////////////////////
 500 // breakpoint support
 501 
 502 void os::breakpoint() {
 503   BREAKPOINT;
 504 }
 505 
 506 extern "C" void breakpoint() {
 507   // use debugger to set breakpoint here
 508 }
 509 
 510 ////////////////////////////////////////////////////////////////////////////////
 511 // signal support
 512 
 513 debug_only(static bool signal_sets_initialized = false);
 514 static sigset_t unblocked_sigs, vm_sigs;
 515 
 516 void os::Linux::signal_sets_init() {
 517   // Should also have an assertion stating we are still single-threaded.
 518   assert(!signal_sets_initialized, "Already initialized");
 519   // Fill in signals that are necessarily unblocked for all threads in
 520   // the VM. Currently, we unblock the following signals:
 521   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 522   //                         by -Xrs (=ReduceSignalUsage));
 523   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 524   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 525   // the dispositions or masks wrt these signals.
 526   // Programs embedding the VM that want to use the above signals for their
 527   // own purposes must, at this time, use the "-Xrs" option to prevent
 528   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 529   // (See bug 4345157, and other related bugs).
 530   // In reality, though, unblocking these signals is really a nop, since
 531   // these signals are not blocked by default.
 532   sigemptyset(&unblocked_sigs);
 533   sigaddset(&unblocked_sigs, SIGILL);
 534   sigaddset(&unblocked_sigs, SIGSEGV);
 535   sigaddset(&unblocked_sigs, SIGBUS);
 536   sigaddset(&unblocked_sigs, SIGFPE);
 537 #if defined(PPC64)
 538   sigaddset(&unblocked_sigs, SIGTRAP);
 539 #endif
 540   sigaddset(&unblocked_sigs, SR_signum);
 541 
 542   if (!ReduceSignalUsage) {
 543     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 544       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 545     }
 546     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 547       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 548     }
 549     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 550       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 551     }
 552   }
 553   // Fill in signals that are blocked by all but the VM thread.
 554   sigemptyset(&vm_sigs);
 555   if (!ReduceSignalUsage) {
 556     sigaddset(&vm_sigs, BREAK_SIGNAL);
 557   }
 558   debug_only(signal_sets_initialized = true);
 559 
 560 }
 561 
 562 // These are signals that are unblocked while a thread is running Java.
 563 // (For some reason, they get blocked by default.)
 564 sigset_t* os::Linux::unblocked_signals() {
 565   assert(signal_sets_initialized, "Not initialized");
 566   return &unblocked_sigs;
 567 }
 568 
 569 // These are the signals that are blocked while a (non-VM) thread is
 570 // running Java. Only the VM thread handles these signals.
 571 sigset_t* os::Linux::vm_signals() {
 572   assert(signal_sets_initialized, "Not initialized");
 573   return &vm_sigs;
 574 }
 575 
 576 void os::Linux::hotspot_sigmask(Thread* thread) {
 577 
 578   //Save caller's signal mask before setting VM signal mask
 579   sigset_t caller_sigmask;
 580   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 581 
 582   OSThread* osthread = thread->osthread();
 583   osthread->set_caller_sigmask(caller_sigmask);
 584 
 585   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 586 
 587   if (!ReduceSignalUsage) {
 588     if (thread->is_VM_thread()) {
 589       // Only the VM thread handles BREAK_SIGNAL ...
 590       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 591     } else {
 592       // ... all other threads block BREAK_SIGNAL
 593       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 594     }
 595   }
 596 }
 597 
 598 //////////////////////////////////////////////////////////////////////////////
 599 // detecting pthread library
 600 
 601 void os::Linux::libpthread_init() {
 602   // Save glibc and pthread version strings.
 603 #if !defined(_CS_GNU_LIBC_VERSION) || \
 604     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 605   #error "glibc too old (< 2.3.2)"
 606 #endif
 607 
 608   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 609   assert(n > 0, "cannot retrieve glibc version");
 610   char *str = (char *)malloc(n, mtInternal);
 611   confstr(_CS_GNU_LIBC_VERSION, str, n);
 612   os::Linux::set_glibc_version(str);
 613 
 614   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 615   assert(n > 0, "cannot retrieve pthread version");
 616   str = (char *)malloc(n, mtInternal);
 617   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 618   os::Linux::set_libpthread_version(str);
 619 }
 620 
 621 /////////////////////////////////////////////////////////////////////////////
 622 // thread stack expansion
 623 
 624 // os::Linux::manually_expand_stack() takes care of expanding the thread
 625 // stack. Note that this is normally not needed: pthread stacks allocate
 626 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 627 // committed. Therefore it is not necessary to expand the stack manually.
 628 //
 629 // Manually expanding the stack was historically needed on LinuxThreads
 630 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 631 // it is kept to deal with very rare corner cases:
 632 //
 633 // For one, user may run the VM on an own implementation of threads
 634 // whose stacks are - like the old LinuxThreads - implemented using
 635 // mmap(MAP_GROWSDOWN).
 636 //
 637 // Also, this coding may be needed if the VM is running on the primordial
 638 // thread. Normally we avoid running on the primordial thread; however,
 639 // user may still invoke the VM on the primordial thread.
 640 //
 641 // The following historical comment describes the details about running
 642 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 643 
 644 
 645 // Force Linux kernel to expand current thread stack. If "bottom" is close
 646 // to the stack guard, caller should block all signals.
 647 //
 648 // MAP_GROWSDOWN:
 649 //   A special mmap() flag that is used to implement thread stacks. It tells
 650 //   kernel that the memory region should extend downwards when needed. This
 651 //   allows early versions of LinuxThreads to only mmap the first few pages
 652 //   when creating a new thread. Linux kernel will automatically expand thread
 653 //   stack as needed (on page faults).
 654 //
 655 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 656 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 657 //   region, it's hard to tell if the fault is due to a legitimate stack
 658 //   access or because of reading/writing non-exist memory (e.g. buffer
 659 //   overrun). As a rule, if the fault happens below current stack pointer,
 660 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 661 //   application (see Linux kernel fault.c).
 662 //
 663 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 664 //   stack overflow detection.
 665 //
 666 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 667 //   not use MAP_GROWSDOWN.
 668 //
 669 // To get around the problem and allow stack banging on Linux, we need to
 670 // manually expand thread stack after receiving the SIGSEGV.
 671 //
 672 // There are two ways to expand thread stack to address "bottom", we used
 673 // both of them in JVM before 1.5:
 674 //   1. adjust stack pointer first so that it is below "bottom", and then
 675 //      touch "bottom"
 676 //   2. mmap() the page in question
 677 //
 678 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 679 // if current sp is already near the lower end of page 101, and we need to
 680 // call mmap() to map page 100, it is possible that part of the mmap() frame
 681 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 682 // That will destroy the mmap() frame and cause VM to crash.
 683 //
 684 // The following code works by adjusting sp first, then accessing the "bottom"
 685 // page to force a page fault. Linux kernel will then automatically expand the
 686 // stack mapping.
 687 //
 688 // _expand_stack_to() assumes its frame size is less than page size, which
 689 // should always be true if the function is not inlined.
 690 
 691 static void NOINLINE _expand_stack_to(address bottom) {
 692   address sp;
 693   size_t size;
 694   volatile char *p;
 695 
 696   // Adjust bottom to point to the largest address within the same page, it
 697   // gives us a one-page buffer if alloca() allocates slightly more memory.
 698   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 699   bottom += os::Linux::page_size() - 1;
 700 
 701   // sp might be slightly above current stack pointer; if that's the case, we
 702   // will alloca() a little more space than necessary, which is OK. Don't use
 703   // os::current_stack_pointer(), as its result can be slightly below current
 704   // stack pointer, causing us to not alloca enough to reach "bottom".
 705   sp = (address)&sp;
 706 
 707   if (sp > bottom) {
 708     size = sp - bottom;
 709     p = (volatile char *)alloca(size);
 710     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 711     p[0] = '\0';
 712   }
 713 }
 714 
 715 void os::Linux::expand_stack_to(address bottom) {
 716   _expand_stack_to(bottom);
 717 }
 718 
 719 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 720   assert(t!=NULL, "just checking");
 721   assert(t->osthread()->expanding_stack(), "expand should be set");
 722 
 723   if (t->is_in_usable_stack(addr)) {
 724     sigset_t mask_all, old_sigset;
 725     sigfillset(&mask_all);
 726     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 727     _expand_stack_to(addr);
 728     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 729     return true;
 730   }
 731   return false;
 732 }
 733 
 734 //////////////////////////////////////////////////////////////////////////////
 735 // create new thread
 736 
 737 // Thread start routine for all newly created threads
 738 static void *thread_native_entry(Thread *thread) {
 739 
 740   thread->record_stack_base_and_size();
 741 
 742   // Try to randomize the cache line index of hot stack frames.
 743   // This helps when threads of the same stack traces evict each other's
 744   // cache lines. The threads can be either from the same JVM instance, or
 745   // from different JVM instances. The benefit is especially true for
 746   // processors with hyperthreading technology.
 747   static int counter = 0;
 748   int pid = os::current_process_id();
 749   alloca(((pid ^ counter++) & 7) * 128);
 750 
 751   thread->initialize_thread_current();
 752 
 753   OSThread* osthread = thread->osthread();
 754   Monitor* sync = osthread->startThread_lock();
 755 
 756   osthread->set_thread_id(os::current_thread_id());
 757 
 758   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 759     os::current_thread_id(), (uintx) pthread_self());
 760 
 761   if (UseNUMA) {
 762     int lgrp_id = os::numa_get_group_id();
 763     if (lgrp_id != -1) {
 764       thread->set_lgrp_id(lgrp_id);
 765     }
 766   }
 767   // initialize signal mask for this thread
 768   os::Linux::hotspot_sigmask(thread);
 769 
 770   // initialize floating point control register
 771   os::Linux::init_thread_fpu_state();
 772 
 773   // handshaking with parent thread
 774   {
 775     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 776 
 777     // notify parent thread
 778     osthread->set_state(INITIALIZED);
 779     sync->notify_all();
 780 
 781     // wait until os::start_thread()
 782     while (osthread->get_state() == INITIALIZED) {
 783       sync->wait_without_safepoint_check();
 784     }
 785   }
 786 
 787   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 788 
 789   // call one more level start routine
 790   thread->call_run();
 791 
 792   // Note: at this point the thread object may already have deleted itself.
 793   // Prevent dereferencing it from here on out.
 794   thread = NULL;
 795 
 796   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 797     os::current_thread_id(), (uintx) pthread_self());
 798 
 799   return 0;
 800 }
 801 
 802 // On Linux, glibc places static TLS blocks (for __thread variables) on
 803 // the thread stack. This decreases the stack size actually available
 804 // to threads.
 805 //
 806 // For large static TLS sizes, this may cause threads to malfunction due
 807 // to insufficient stack space. This is a well-known issue in glibc:
 808 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 809 //
 810 // As a workaround, we call a private but assumed-stable glibc function,
 811 // __pthread_get_minstack() to obtain the minstack size and derive the
 812 // static TLS size from it. We then increase the user requested stack
 813 // size by this TLS size.
 814 //
 815 // Due to compatibility concerns, this size adjustment is opt-in and
 816 // controlled via AdjustStackSizeForTLS.
 817 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 818 
 819 GetMinStack _get_minstack_func = NULL;
 820 
 821 static void get_minstack_init() {
 822   _get_minstack_func =
 823         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 824   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 825                        _get_minstack_func == NULL ? "failed" : "succeeded");
 826 }
 827 
 828 // Returns the size of the static TLS area glibc puts on thread stacks.
 829 // The value is cached on first use, which occurs when the first thread
 830 // is created during VM initialization.
 831 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 832   size_t tls_size = 0;
 833   if (_get_minstack_func != NULL) {
 834     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 835     size_t minstack_size = _get_minstack_func(attr);
 836 
 837     // Remove non-TLS area size included in minstack size returned
 838     // by __pthread_get_minstack() to get the static TLS size.
 839     // In glibc before 2.27, minstack size includes guard_size.
 840     // In glibc 2.27 and later, guard_size is automatically added
 841     // to the stack size by pthread_create and is no longer included
 842     // in minstack size. In both cases, the guard_size is taken into
 843     // account, so there is no need to adjust the result for that.
 844     //
 845     // Although __pthread_get_minstack() is a private glibc function,
 846     // it is expected to have a stable behavior across future glibc
 847     // versions while glibc still allocates the static TLS blocks off
 848     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 849     //
 850     // size_t
 851     // __pthread_get_minstack (const pthread_attr_t *attr)
 852     // {
 853     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 854     // }
 855     //
 856     //
 857     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 858     // if check is done for precaution.
 859     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 860       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 861     }
 862   }
 863 
 864   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 865                        tls_size);
 866   return tls_size;
 867 }
 868 
 869 bool os::create_thread(Thread* thread, ThreadType thr_type,
 870                        size_t req_stack_size) {
 871   assert(thread->osthread() == NULL, "caller responsible");
 872 
 873   // Allocate the OSThread object
 874   OSThread* osthread = new OSThread(NULL, NULL);
 875   if (osthread == NULL) {
 876     return false;
 877   }
 878 
 879   // set the correct thread state
 880   osthread->set_thread_type(thr_type);
 881 
 882   // Initial state is ALLOCATED but not INITIALIZED
 883   osthread->set_state(ALLOCATED);
 884 
 885   thread->set_osthread(osthread);
 886 
 887   // init thread attributes
 888   pthread_attr_t attr;
 889   pthread_attr_init(&attr);
 890   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 891 
 892   // Calculate stack size if it's not specified by caller.
 893   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 894   // In glibc versions prior to 2.7 the guard size mechanism
 895   // is not implemented properly. The posix standard requires adding
 896   // the size of the guard pages to the stack size, instead Linux
 897   // takes the space out of 'stacksize'. Thus we adapt the requested
 898   // stack_size by the size of the guard pages to mimick proper
 899   // behaviour. However, be careful not to end up with a size
 900   // of zero due to overflow. Don't add the guard page in that case.
 901   size_t guard_size = os::Linux::default_guard_size(thr_type);
 902   // Configure glibc guard page. Must happen before calling
 903   // get_static_tls_area_size(), which uses the guard_size.
 904   pthread_attr_setguardsize(&attr, guard_size);
 905 
 906   size_t stack_adjust_size = 0;
 907   if (AdjustStackSizeForTLS) {
 908     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 909     stack_adjust_size += get_static_tls_area_size(&attr);
 910   } else {
 911     stack_adjust_size += guard_size;
 912   }
 913 
 914   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 915   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 916     stack_size += stack_adjust_size;
 917   }
 918   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 919 
 920   int status = pthread_attr_setstacksize(&attr, stack_size);
 921   assert_status(status == 0, status, "pthread_attr_setstacksize");
 922 
 923   ThreadState state;
 924 
 925   {
 926     pthread_t tid;
 927     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 928 
 929     char buf[64];
 930     if (ret == 0) {
 931       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 932         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 933     } else {
 934       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 935         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 936       // Log some OS information which might explain why creating the thread failed.
 937       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 938       LogStream st(Log(os, thread)::info());
 939       os::Posix::print_rlimit_info(&st);
 940       os::print_memory_info(&st);
 941       os::Linux::print_proc_sys_info(&st);
 942       os::Linux::print_container_info(&st);
 943     }
 944 
 945     pthread_attr_destroy(&attr);
 946 
 947     if (ret != 0) {
 948       // Need to clean up stuff we've allocated so far
 949       thread->set_osthread(NULL);
 950       delete osthread;
 951       return false;
 952     }
 953 
 954     // Store pthread info into the OSThread
 955     osthread->set_pthread_id(tid);
 956 
 957     // Wait until child thread is either initialized or aborted
 958     {
 959       Monitor* sync_with_child = osthread->startThread_lock();
 960       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 961       while ((state = osthread->get_state()) == ALLOCATED) {
 962         sync_with_child->wait_without_safepoint_check();
 963       }
 964     }
 965   }
 966 
 967   // Aborted due to thread limit being reached
 968   if (state == ZOMBIE) {
 969     thread->set_osthread(NULL);
 970     delete osthread;
 971     return false;
 972   }
 973 
 974   // The thread is returned suspended (in state INITIALIZED),
 975   // and is started higher up in the call chain
 976   assert(state == INITIALIZED, "race condition");
 977   return true;
 978 }
 979 
 980 /////////////////////////////////////////////////////////////////////////////
 981 // attach existing thread
 982 
 983 // bootstrap the main thread
 984 bool os::create_main_thread(JavaThread* thread) {
 985   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 986   return create_attached_thread(thread);
 987 }
 988 
 989 bool os::create_attached_thread(JavaThread* thread) {
 990 #ifdef ASSERT
 991   thread->verify_not_published();
 992 #endif
 993 
 994   // Allocate the OSThread object
 995   OSThread* osthread = new OSThread(NULL, NULL);
 996 
 997   if (osthread == NULL) {
 998     return false;
 999   }
1000 
1001   // Store pthread info into the OSThread
1002   osthread->set_thread_id(os::Linux::gettid());
1003   osthread->set_pthread_id(::pthread_self());
1004 
1005   // initialize floating point control register
1006   os::Linux::init_thread_fpu_state();
1007 
1008   // Initial thread state is RUNNABLE
1009   osthread->set_state(RUNNABLE);
1010 
1011   thread->set_osthread(osthread);
1012 
1013   if (UseNUMA) {
1014     int lgrp_id = os::numa_get_group_id();
1015     if (lgrp_id != -1) {
1016       thread->set_lgrp_id(lgrp_id);
1017     }
1018   }
1019 
1020   if (os::is_primordial_thread()) {
1021     // If current thread is primordial thread, its stack is mapped on demand,
1022     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023     // the entire stack region to avoid SEGV in stack banging.
1024     // It is also useful to get around the heap-stack-gap problem on SuSE
1025     // kernel (see 4821821 for details). We first expand stack to the top
1026     // of yellow zone, then enable stack yellow zone (order is significant,
1027     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028     // is no gap between the last two virtual memory regions.
1029 
1030     JavaThread *jt = (JavaThread *)thread;
1031     address addr = jt->stack_reserved_zone_base();
1032     assert(addr != NULL, "initialization problem?");
1033     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034 
1035     osthread->set_expanding_stack();
1036     os::Linux::manually_expand_stack(jt, addr);
1037     osthread->clear_expanding_stack();
1038   }
1039 
1040   // initialize signal mask for this thread
1041   // and save the caller's signal mask
1042   os::Linux::hotspot_sigmask(thread);
1043 
1044   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1045     os::current_thread_id(), (uintx) pthread_self());
1046 
1047   return true;
1048 }
1049 
1050 void os::pd_start_thread(Thread* thread) {
1051   OSThread * osthread = thread->osthread();
1052   assert(osthread->get_state() != INITIALIZED, "just checking");
1053   Monitor* sync_with_child = osthread->startThread_lock();
1054   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1055   sync_with_child->notify();
1056 }
1057 
1058 // Free Linux resources related to the OSThread
1059 void os::free_thread(OSThread* osthread) {
1060   assert(osthread != NULL, "osthread not set");
1061 
1062   // We are told to free resources of the argument thread,
1063   // but we can only really operate on the current thread.
1064   assert(Thread::current()->osthread() == osthread,
1065          "os::free_thread but not current thread");
1066 
1067 #ifdef ASSERT
1068   sigset_t current;
1069   sigemptyset(&current);
1070   pthread_sigmask(SIG_SETMASK, NULL, &current);
1071   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1072 #endif
1073 
1074   // Restore caller's signal mask
1075   sigset_t sigmask = osthread->caller_sigmask();
1076   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1077 
1078   delete osthread;
1079 }
1080 
1081 //////////////////////////////////////////////////////////////////////////////
1082 // primordial thread
1083 
1084 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1085 bool os::is_primordial_thread(void) {
1086   if (suppress_primordial_thread_resolution) {
1087     return false;
1088   }
1089   char dummy;
1090   // If called before init complete, thread stack bottom will be null.
1091   // Can be called if fatal error occurs before initialization.
1092   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1093   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1094          os::Linux::initial_thread_stack_size()   != 0,
1095          "os::init did not locate primordial thread's stack region");
1096   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1097       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1098                         os::Linux::initial_thread_stack_size()) {
1099     return true;
1100   } else {
1101     return false;
1102   }
1103 }
1104 
1105 // Find the virtual memory area that contains addr
1106 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1107   FILE *fp = fopen("/proc/self/maps", "r");
1108   if (fp) {
1109     address low, high;
1110     while (!feof(fp)) {
1111       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1112         if (low <= addr && addr < high) {
1113           if (vma_low)  *vma_low  = low;
1114           if (vma_high) *vma_high = high;
1115           fclose(fp);
1116           return true;
1117         }
1118       }
1119       for (;;) {
1120         int ch = fgetc(fp);
1121         if (ch == EOF || ch == (int)'\n') break;
1122       }
1123     }
1124     fclose(fp);
1125   }
1126   return false;
1127 }
1128 
1129 // Locate primordial thread stack. This special handling of primordial thread stack
1130 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1131 // bogus value for the primordial process thread. While the launcher has created
1132 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1133 // JNI invocation API from a primordial thread.
1134 void os::Linux::capture_initial_stack(size_t max_size) {
1135 
1136   // max_size is either 0 (which means accept OS default for thread stacks) or
1137   // a user-specified value known to be at least the minimum needed. If we
1138   // are actually on the primordial thread we can make it appear that we have a
1139   // smaller max_size stack by inserting the guard pages at that location. But we
1140   // cannot do anything to emulate a larger stack than what has been provided by
1141   // the OS or threading library. In fact if we try to use a stack greater than
1142   // what is set by rlimit then we will crash the hosting process.
1143 
1144   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1145   // If this is "unlimited" then it will be a huge value.
1146   struct rlimit rlim;
1147   getrlimit(RLIMIT_STACK, &rlim);
1148   size_t stack_size = rlim.rlim_cur;
1149 
1150   // 6308388: a bug in ld.so will relocate its own .data section to the
1151   //   lower end of primordial stack; reduce ulimit -s value a little bit
1152   //   so we won't install guard page on ld.so's data section.
1153   //   But ensure we don't underflow the stack size - allow 1 page spare
1154   if (stack_size >= (size_t)(3 * page_size())) {
1155     stack_size -= 2 * page_size();
1156   }
1157 
1158   // Try to figure out where the stack base (top) is. This is harder.
1159   //
1160   // When an application is started, glibc saves the initial stack pointer in
1161   // a global variable "__libc_stack_end", which is then used by system
1162   // libraries. __libc_stack_end should be pretty close to stack top. The
1163   // variable is available since the very early days. However, because it is
1164   // a private interface, it could disappear in the future.
1165   //
1166   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1167   // to __libc_stack_end, it is very close to stack top, but isn't the real
1168   // stack top. Note that /proc may not exist if VM is running as a chroot
1169   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1170   // /proc/<pid>/stat could change in the future (though unlikely).
1171   //
1172   // We try __libc_stack_end first. If that doesn't work, look for
1173   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1174   // as a hint, which should work well in most cases.
1175 
1176   uintptr_t stack_start;
1177 
1178   // try __libc_stack_end first
1179   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1180   if (p && *p) {
1181     stack_start = *p;
1182   } else {
1183     // see if we can get the start_stack field from /proc/self/stat
1184     FILE *fp;
1185     int pid;
1186     char state;
1187     int ppid;
1188     int pgrp;
1189     int session;
1190     int nr;
1191     int tpgrp;
1192     unsigned long flags;
1193     unsigned long minflt;
1194     unsigned long cminflt;
1195     unsigned long majflt;
1196     unsigned long cmajflt;
1197     unsigned long utime;
1198     unsigned long stime;
1199     long cutime;
1200     long cstime;
1201     long prio;
1202     long nice;
1203     long junk;
1204     long it_real;
1205     uintptr_t start;
1206     uintptr_t vsize;
1207     intptr_t rss;
1208     uintptr_t rsslim;
1209     uintptr_t scodes;
1210     uintptr_t ecode;
1211     int i;
1212 
1213     // Figure what the primordial thread stack base is. Code is inspired
1214     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1215     // followed by command name surrounded by parentheses, state, etc.
1216     char stat[2048];
1217     int statlen;
1218 
1219     fp = fopen("/proc/self/stat", "r");
1220     if (fp) {
1221       statlen = fread(stat, 1, 2047, fp);
1222       stat[statlen] = '\0';
1223       fclose(fp);
1224 
1225       // Skip pid and the command string. Note that we could be dealing with
1226       // weird command names, e.g. user could decide to rename java launcher
1227       // to "java 1.4.2 :)", then the stat file would look like
1228       //                1234 (java 1.4.2 :)) R ... ...
1229       // We don't really need to know the command string, just find the last
1230       // occurrence of ")" and then start parsing from there. See bug 4726580.
1231       char * s = strrchr(stat, ')');
1232 
1233       i = 0;
1234       if (s) {
1235         // Skip blank chars
1236         do { s++; } while (s && isspace(*s));
1237 
1238 #define _UFM UINTX_FORMAT
1239 #define _DFM INTX_FORMAT
1240 
1241         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1242         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1243         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1244                    &state,          // 3  %c
1245                    &ppid,           // 4  %d
1246                    &pgrp,           // 5  %d
1247                    &session,        // 6  %d
1248                    &nr,             // 7  %d
1249                    &tpgrp,          // 8  %d
1250                    &flags,          // 9  %lu
1251                    &minflt,         // 10 %lu
1252                    &cminflt,        // 11 %lu
1253                    &majflt,         // 12 %lu
1254                    &cmajflt,        // 13 %lu
1255                    &utime,          // 14 %lu
1256                    &stime,          // 15 %lu
1257                    &cutime,         // 16 %ld
1258                    &cstime,         // 17 %ld
1259                    &prio,           // 18 %ld
1260                    &nice,           // 19 %ld
1261                    &junk,           // 20 %ld
1262                    &it_real,        // 21 %ld
1263                    &start,          // 22 UINTX_FORMAT
1264                    &vsize,          // 23 UINTX_FORMAT
1265                    &rss,            // 24 INTX_FORMAT
1266                    &rsslim,         // 25 UINTX_FORMAT
1267                    &scodes,         // 26 UINTX_FORMAT
1268                    &ecode,          // 27 UINTX_FORMAT
1269                    &stack_start);   // 28 UINTX_FORMAT
1270       }
1271 
1272 #undef _UFM
1273 #undef _DFM
1274 
1275       if (i != 28 - 2) {
1276         assert(false, "Bad conversion from /proc/self/stat");
1277         // product mode - assume we are the primordial thread, good luck in the
1278         // embedded case.
1279         warning("Can't detect primordial thread stack location - bad conversion");
1280         stack_start = (uintptr_t) &rlim;
1281       }
1282     } else {
1283       // For some reason we can't open /proc/self/stat (for example, running on
1284       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1285       // most cases, so don't abort:
1286       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1287       stack_start = (uintptr_t) &rlim;
1288     }
1289   }
1290 
1291   // Now we have a pointer (stack_start) very close to the stack top, the
1292   // next thing to do is to figure out the exact location of stack top. We
1293   // can find out the virtual memory area that contains stack_start by
1294   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1295   // and its upper limit is the real stack top. (again, this would fail if
1296   // running inside chroot, because /proc may not exist.)
1297 
1298   uintptr_t stack_top;
1299   address low, high;
1300   if (find_vma((address)stack_start, &low, &high)) {
1301     // success, "high" is the true stack top. (ignore "low", because initial
1302     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1303     stack_top = (uintptr_t)high;
1304   } else {
1305     // failed, likely because /proc/self/maps does not exist
1306     warning("Can't detect primordial thread stack location - find_vma failed");
1307     // best effort: stack_start is normally within a few pages below the real
1308     // stack top, use it as stack top, and reduce stack size so we won't put
1309     // guard page outside stack.
1310     stack_top = stack_start;
1311     stack_size -= 16 * page_size();
1312   }
1313 
1314   // stack_top could be partially down the page so align it
1315   stack_top = align_up(stack_top, page_size());
1316 
1317   // Allowed stack value is minimum of max_size and what we derived from rlimit
1318   if (max_size > 0) {
1319     _initial_thread_stack_size = MIN2(max_size, stack_size);
1320   } else {
1321     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1322     // clamp it at 8MB as we do on Solaris
1323     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1324   }
1325   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1326   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1327 
1328   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1329 
1330   if (log_is_enabled(Info, os, thread)) {
1331     // See if we seem to be on primordial process thread
1332     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1333                       uintptr_t(&rlim) < stack_top;
1334 
1335     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1336                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1337                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1338                          stack_top, intptr_t(_initial_thread_stack_bottom));
1339   }
1340 }
1341 
1342 ////////////////////////////////////////////////////////////////////////////////
1343 // time support
1344 
1345 #ifndef SUPPORTS_CLOCK_MONOTONIC
1346 #error "Build platform doesn't support clock_gettime and related functionality"
1347 #endif
1348 
1349 // Time since start-up in seconds to a fine granularity.
1350 // Used by VMSelfDestructTimer and the MemProfiler.
1351 double os::elapsedTime() {
1352 
1353   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1354 }
1355 
1356 jlong os::elapsed_counter() {
1357   return javaTimeNanos() - initial_time_count;
1358 }
1359 
1360 jlong os::elapsed_frequency() {
1361   return NANOSECS_PER_SEC; // nanosecond resolution
1362 }
1363 
1364 bool os::supports_vtime() { return true; }
1365 
1366 double os::elapsedVTime() {
1367   struct rusage usage;
1368   int retval = getrusage(RUSAGE_THREAD, &usage);
1369   if (retval == 0) {
1370     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1371   } else {
1372     // better than nothing, but not much
1373     return elapsedTime();
1374   }
1375 }
1376 
1377 jlong os::javaTimeMillis() {
1378   timeval time;
1379   int status = gettimeofday(&time, NULL);
1380   assert(status != -1, "linux error");
1381   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1382 }
1383 
1384 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1385   timeval time;
1386   int status = gettimeofday(&time, NULL);
1387   assert(status != -1, "linux error");
1388   seconds = jlong(time.tv_sec);
1389   nanos = jlong(time.tv_usec) * 1000;
1390 }
1391 
1392 void os::Linux::fast_thread_clock_init() {
1393   if (!UseLinuxPosixThreadCPUClocks) {
1394     return;
1395   }
1396   clockid_t clockid;
1397   struct timespec tp;
1398   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1399       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1400 
1401   // Switch to using fast clocks for thread cpu time if
1402   // the clock_getres() returns 0 error code.
1403   // Note, that some kernels may support the current thread
1404   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1405   // returned by the pthread_getcpuclockid().
1406   // If the fast Posix clocks are supported then the clock_getres()
1407   // must return at least tp.tv_sec == 0 which means a resolution
1408   // better than 1 sec. This is extra check for reliability.
1409 
1410   if (pthread_getcpuclockid_func &&
1411       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1412       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1413     _supports_fast_thread_cpu_time = true;
1414     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1415   }
1416 }
1417 
1418 jlong os::javaTimeNanos() {
1419   if (os::supports_monotonic_clock()) {
1420     struct timespec tp;
1421     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1422     assert(status == 0, "gettime error");
1423     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1424     return result;
1425   } else {
1426     timeval time;
1427     int status = gettimeofday(&time, NULL);
1428     assert(status != -1, "linux error");
1429     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1430     return 1000 * usecs;
1431   }
1432 }
1433 
1434 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1435   if (os::supports_monotonic_clock()) {
1436     info_ptr->max_value = ALL_64_BITS;
1437 
1438     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1439     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1440     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1441   } else {
1442     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1443     info_ptr->max_value = ALL_64_BITS;
1444 
1445     // gettimeofday is a real time clock so it skips
1446     info_ptr->may_skip_backward = true;
1447     info_ptr->may_skip_forward = true;
1448   }
1449 
1450   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1451 }
1452 
1453 // Return the real, user, and system times in seconds from an
1454 // arbitrary fixed point in the past.
1455 bool os::getTimesSecs(double* process_real_time,
1456                       double* process_user_time,
1457                       double* process_system_time) {
1458   struct tms ticks;
1459   clock_t real_ticks = times(&ticks);
1460 
1461   if (real_ticks == (clock_t) (-1)) {
1462     return false;
1463   } else {
1464     double ticks_per_second = (double) clock_tics_per_sec;
1465     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1466     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1467     *process_real_time = ((double) real_ticks) / ticks_per_second;
1468 
1469     return true;
1470   }
1471 }
1472 
1473 
1474 char * os::local_time_string(char *buf, size_t buflen) {
1475   struct tm t;
1476   time_t long_time;
1477   time(&long_time);
1478   localtime_r(&long_time, &t);
1479   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1480                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1481                t.tm_hour, t.tm_min, t.tm_sec);
1482   return buf;
1483 }
1484 
1485 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1486   return localtime_r(clock, res);
1487 }
1488 
1489 ////////////////////////////////////////////////////////////////////////////////
1490 // runtime exit support
1491 
1492 // Note: os::shutdown() might be called very early during initialization, or
1493 // called from signal handler. Before adding something to os::shutdown(), make
1494 // sure it is async-safe and can handle partially initialized VM.
1495 void os::shutdown() {
1496 
1497   // allow PerfMemory to attempt cleanup of any persistent resources
1498   perfMemory_exit();
1499 
1500   // needs to remove object in file system
1501   AttachListener::abort();
1502 
1503   // flush buffered output, finish log files
1504   ostream_abort();
1505 
1506   // Check for abort hook
1507   abort_hook_t abort_hook = Arguments::abort_hook();
1508   if (abort_hook != NULL) {
1509     abort_hook();
1510   }
1511 
1512 }
1513 
1514 // Note: os::abort() might be called very early during initialization, or
1515 // called from signal handler. Before adding something to os::abort(), make
1516 // sure it is async-safe and can handle partially initialized VM.
1517 void os::abort(bool dump_core, void* siginfo, const void* context) {
1518   os::shutdown();
1519   if (dump_core) {
1520     if (DumpPrivateMappingsInCore) {
1521       ClassLoader::close_jrt_image();
1522     }
1523 #ifndef PRODUCT
1524     fdStream out(defaultStream::output_fd());
1525     out.print_raw("Current thread is ");
1526     char buf[16];
1527     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1528     out.print_raw_cr(buf);
1529     out.print_raw_cr("Dumping core ...");
1530 #endif
1531     ::abort(); // dump core
1532   }
1533 
1534   ::exit(1);
1535 }
1536 
1537 // Die immediately, no exit hook, no abort hook, no cleanup.
1538 // Dump a core file, if possible, for debugging.
1539 void os::die() {
1540   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1541     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1542     // and don't take the time to generate a core file.
1543     os::signal_raise(SIGKILL);
1544   } else {
1545     ::abort();
1546   }
1547 }
1548 
1549 // thread_id is kernel thread id (similar to Solaris LWP id)
1550 intx os::current_thread_id() { return os::Linux::gettid(); }
1551 int os::current_process_id() {
1552   return ::getpid();
1553 }
1554 
1555 // DLL functions
1556 
1557 const char* os::dll_file_extension() { return ".so"; }
1558 
1559 // This must be hard coded because it's the system's temporary
1560 // directory not the java application's temp directory, ala java.io.tmpdir.
1561 const char* os::get_temp_directory() { return "/tmp"; }
1562 
1563 static bool file_exists(const char* filename) {
1564   struct stat statbuf;
1565   if (filename == NULL || strlen(filename) == 0) {
1566     return false;
1567   }
1568   return os::stat(filename, &statbuf) == 0;
1569 }
1570 
1571 // check if addr is inside libjvm.so
1572 bool os::address_is_in_vm(address addr) {
1573   static address libjvm_base_addr;
1574   Dl_info dlinfo;
1575 
1576   if (libjvm_base_addr == NULL) {
1577     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1578       libjvm_base_addr = (address)dlinfo.dli_fbase;
1579     }
1580     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1581   }
1582 
1583   if (dladdr((void *)addr, &dlinfo) != 0) {
1584     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1585   }
1586 
1587   return false;
1588 }
1589 
1590 bool os::dll_address_to_function_name(address addr, char *buf,
1591                                       int buflen, int *offset,
1592                                       bool demangle) {
1593   // buf is not optional, but offset is optional
1594   assert(buf != NULL, "sanity check");
1595 
1596   Dl_info dlinfo;
1597 
1598   if (dladdr((void*)addr, &dlinfo) != 0) {
1599     // see if we have a matching symbol
1600     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1601       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1602         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1603       }
1604       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1605       return true;
1606     }
1607     // no matching symbol so try for just file info
1608     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1609       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1610                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1611         return true;
1612       }
1613     }
1614   }
1615 
1616   buf[0] = '\0';
1617   if (offset != NULL) *offset = -1;
1618   return false;
1619 }
1620 
1621 struct _address_to_library_name {
1622   address addr;          // input : memory address
1623   size_t  buflen;        //         size of fname
1624   char*   fname;         // output: library name
1625   address base;          //         library base addr
1626 };
1627 
1628 static int address_to_library_name_callback(struct dl_phdr_info *info,
1629                                             size_t size, void *data) {
1630   int i;
1631   bool found = false;
1632   address libbase = NULL;
1633   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1634 
1635   // iterate through all loadable segments
1636   for (i = 0; i < info->dlpi_phnum; i++) {
1637     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1638     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1639       // base address of a library is the lowest address of its loaded
1640       // segments.
1641       if (libbase == NULL || libbase > segbase) {
1642         libbase = segbase;
1643       }
1644       // see if 'addr' is within current segment
1645       if (segbase <= d->addr &&
1646           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1647         found = true;
1648       }
1649     }
1650   }
1651 
1652   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1653   // so dll_address_to_library_name() can fall through to use dladdr() which
1654   // can figure out executable name from argv[0].
1655   if (found && info->dlpi_name && info->dlpi_name[0]) {
1656     d->base = libbase;
1657     if (d->fname) {
1658       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1659     }
1660     return 1;
1661   }
1662   return 0;
1663 }
1664 
1665 bool os::dll_address_to_library_name(address addr, char* buf,
1666                                      int buflen, int* offset) {
1667   // buf is not optional, but offset is optional
1668   assert(buf != NULL, "sanity check");
1669 
1670   Dl_info dlinfo;
1671   struct _address_to_library_name data;
1672 
1673   // There is a bug in old glibc dladdr() implementation that it could resolve
1674   // to wrong library name if the .so file has a base address != NULL. Here
1675   // we iterate through the program headers of all loaded libraries to find
1676   // out which library 'addr' really belongs to. This workaround can be
1677   // removed once the minimum requirement for glibc is moved to 2.3.x.
1678   data.addr = addr;
1679   data.fname = buf;
1680   data.buflen = buflen;
1681   data.base = NULL;
1682   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1683 
1684   if (rslt) {
1685     // buf already contains library name
1686     if (offset) *offset = addr - data.base;
1687     return true;
1688   }
1689   if (dladdr((void*)addr, &dlinfo) != 0) {
1690     if (dlinfo.dli_fname != NULL) {
1691       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1692     }
1693     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1694       *offset = addr - (address)dlinfo.dli_fbase;
1695     }
1696     return true;
1697   }
1698 
1699   buf[0] = '\0';
1700   if (offset) *offset = -1;
1701   return false;
1702 }
1703 
1704 // Loads .dll/.so and
1705 // in case of error it checks if .dll/.so was built for the
1706 // same architecture as Hotspot is running on
1707 
1708 
1709 // Remember the stack's state. The Linux dynamic linker will change
1710 // the stack to 'executable' at most once, so we must safepoint only once.
1711 bool os::Linux::_stack_is_executable = false;
1712 
1713 // VM operation that loads a library.  This is necessary if stack protection
1714 // of the Java stacks can be lost during loading the library.  If we
1715 // do not stop the Java threads, they can stack overflow before the stacks
1716 // are protected again.
1717 class VM_LinuxDllLoad: public VM_Operation {
1718  private:
1719   const char *_filename;
1720   char *_ebuf;
1721   int _ebuflen;
1722   void *_lib;
1723  public:
1724   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1725     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1726   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1727   void doit() {
1728     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1729     os::Linux::_stack_is_executable = true;
1730   }
1731   void* loaded_library() { return _lib; }
1732 };
1733 
1734 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1735   void * result = NULL;
1736   bool load_attempted = false;
1737 
1738   log_info(os)("attempting shared library load of %s", filename);
1739 
1740   // Check whether the library to load might change execution rights
1741   // of the stack. If they are changed, the protection of the stack
1742   // guard pages will be lost. We need a safepoint to fix this.
1743   //
1744   // See Linux man page execstack(8) for more info.
1745   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1746     if (!ElfFile::specifies_noexecstack(filename)) {
1747       if (!is_init_completed()) {
1748         os::Linux::_stack_is_executable = true;
1749         // This is OK - No Java threads have been created yet, and hence no
1750         // stack guard pages to fix.
1751         //
1752         // Dynamic loader will make all stacks executable after
1753         // this function returns, and will not do that again.
1754         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1755       } else {
1756         warning("You have loaded library %s which might have disabled stack guard. "
1757                 "The VM will try to fix the stack guard now.\n"
1758                 "It's highly recommended that you fix the library with "
1759                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1760                 filename);
1761 
1762         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1763         JavaThread *jt = JavaThread::current();
1764         if (jt->thread_state() != _thread_in_native) {
1765           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1766           // that requires ExecStack. Cannot enter safe point. Let's give up.
1767           warning("Unable to fix stack guard. Giving up.");
1768         } else {
1769           if (!LoadExecStackDllInVMThread) {
1770             // This is for the case where the DLL has an static
1771             // constructor function that executes JNI code. We cannot
1772             // load such DLLs in the VMThread.
1773             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1774           }
1775 
1776           ThreadInVMfromNative tiv(jt);
1777           debug_only(VMNativeEntryWrapper vew;)
1778 
1779           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1780           VMThread::execute(&op);
1781           if (LoadExecStackDllInVMThread) {
1782             result = op.loaded_library();
1783           }
1784           load_attempted = true;
1785         }
1786       }
1787     }
1788   }
1789 
1790   if (!load_attempted) {
1791     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1792   }
1793 
1794   if (result != NULL) {
1795     // Successful loading
1796     return result;
1797   }
1798 
1799   Elf32_Ehdr elf_head;
1800   int diag_msg_max_length=ebuflen-strlen(ebuf);
1801   char* diag_msg_buf=ebuf+strlen(ebuf);
1802 
1803   if (diag_msg_max_length==0) {
1804     // No more space in ebuf for additional diagnostics message
1805     return NULL;
1806   }
1807 
1808 
1809   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1810 
1811   if (file_descriptor < 0) {
1812     // Can't open library, report dlerror() message
1813     return NULL;
1814   }
1815 
1816   bool failed_to_read_elf_head=
1817     (sizeof(elf_head)!=
1818      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1819 
1820   ::close(file_descriptor);
1821   if (failed_to_read_elf_head) {
1822     // file i/o error - report dlerror() msg
1823     return NULL;
1824   }
1825 
1826   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1827     // handle invalid/out of range endianness values
1828     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1829       return NULL;
1830     }
1831 
1832 #if defined(VM_LITTLE_ENDIAN)
1833     // VM is LE, shared object BE
1834     elf_head.e_machine = be16toh(elf_head.e_machine);
1835 #else
1836     // VM is BE, shared object LE
1837     elf_head.e_machine = le16toh(elf_head.e_machine);
1838 #endif
1839   }
1840 
1841   typedef struct {
1842     Elf32_Half    code;         // Actual value as defined in elf.h
1843     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1844     unsigned char elf_class;    // 32 or 64 bit
1845     unsigned char endianness;   // MSB or LSB
1846     char*         name;         // String representation
1847   } arch_t;
1848 
1849 #ifndef EM_486
1850   #define EM_486          6               /* Intel 80486 */
1851 #endif
1852 #ifndef EM_AARCH64
1853   #define EM_AARCH64    183               /* ARM AARCH64 */
1854 #endif
1855 #ifndef EM_RISCV
1856   #define EM_RISCV      243               /* RISC-V */
1857 #endif
1858 
1859   static const arch_t arch_array[]={
1860     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1861     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1862     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1863     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1864     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1865     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1866     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1867     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1868 #if defined(VM_LITTLE_ENDIAN)
1869     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1870     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1871 #else
1872     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1873     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1874 #endif
1875     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1876     // we only support 64 bit z architecture
1877     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1878     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1879     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1880     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1881     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1882     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1883     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1884     {EM_RISCV,       EM_RISCV,   ELFCLASS64, ELFDATA2LSB, (char*)"RISC-V"},
1885   };
1886 
1887 #if  (defined IA32)
1888   static  Elf32_Half running_arch_code=EM_386;
1889 #elif   (defined AMD64) || (defined X32)
1890   static  Elf32_Half running_arch_code=EM_X86_64;
1891 #elif  (defined IA64)
1892   static  Elf32_Half running_arch_code=EM_IA_64;
1893 #elif  (defined __sparc) && (defined _LP64)
1894   static  Elf32_Half running_arch_code=EM_SPARCV9;
1895 #elif  (defined __sparc) && (!defined _LP64)
1896   static  Elf32_Half running_arch_code=EM_SPARC;
1897 #elif  (defined __powerpc64__)
1898   static  Elf32_Half running_arch_code=EM_PPC64;
1899 #elif  (defined __powerpc__)
1900   static  Elf32_Half running_arch_code=EM_PPC;
1901 #elif  (defined AARCH64)
1902   static  Elf32_Half running_arch_code=EM_AARCH64;
1903 #elif  (defined ARM)
1904   static  Elf32_Half running_arch_code=EM_ARM;
1905 #elif  (defined S390)
1906   static  Elf32_Half running_arch_code=EM_S390;
1907 #elif  (defined ALPHA)
1908   static  Elf32_Half running_arch_code=EM_ALPHA;
1909 #elif  (defined MIPSEL)
1910   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1911 #elif  (defined PARISC)
1912   static  Elf32_Half running_arch_code=EM_PARISC;
1913 #elif  (defined MIPS)
1914   static  Elf32_Half running_arch_code=EM_MIPS;
1915 #elif  (defined M68K)
1916   static  Elf32_Half running_arch_code=EM_68K;
1917 #elif  (defined SH)
1918   static  Elf32_Half running_arch_code=EM_SH;
1919 #elif  (defined RISCV)
1920   static  Elf32_Half running_arch_code=EM_RISCV;
1921 #else
1922     #error Method os::dll_load requires that one of following is defined:\
1923         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, RISCV, S390, SH, __sparc
1924 #endif
1925 
1926   // Identify compatibility class for VM's architecture and library's architecture
1927   // Obtain string descriptions for architectures
1928 
1929   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1930   int running_arch_index=-1;
1931 
1932   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1933     if (running_arch_code == arch_array[i].code) {
1934       running_arch_index    = i;
1935     }
1936     if (lib_arch.code == arch_array[i].code) {
1937       lib_arch.compat_class = arch_array[i].compat_class;
1938       lib_arch.name         = arch_array[i].name;
1939     }
1940   }
1941 
1942   assert(running_arch_index != -1,
1943          "Didn't find running architecture code (running_arch_code) in arch_array");
1944   if (running_arch_index == -1) {
1945     // Even though running architecture detection failed
1946     // we may still continue with reporting dlerror() message
1947     return NULL;
1948   }
1949 
1950   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1951     if (lib_arch.name != NULL) {
1952       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1953                  " (Possible cause: can't load %s .so on a %s platform)",
1954                  lib_arch.name, arch_array[running_arch_index].name);
1955     } else {
1956       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1957                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1958                  lib_arch.code, arch_array[running_arch_index].name);
1959     }
1960     return NULL;
1961   }
1962 
1963   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1964     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1965     return NULL;
1966   }
1967 
1968   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1969   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1970     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1971     return NULL;
1972   }
1973 
1974   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1975     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1976                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1977                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1978     return NULL;
1979   }
1980 
1981   return NULL;
1982 }
1983 
1984 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1985                                 int ebuflen) {
1986   void * result = ::dlopen(filename, RTLD_LAZY);
1987   if (result == NULL) {
1988     const char* error_report = ::dlerror();
1989     if (error_report == NULL) {
1990       error_report = "dlerror returned no error description";
1991     }
1992     if (ebuf != NULL && ebuflen > 0) {
1993       ::strncpy(ebuf, error_report, ebuflen-1);
1994       ebuf[ebuflen-1]='\0';
1995     }
1996     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1997     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1998   } else {
1999     Events::log(NULL, "Loaded shared library %s", filename);
2000     log_info(os)("shared library load of %s was successful", filename);
2001   }
2002   return result;
2003 }
2004 
2005 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2006                                        int ebuflen) {
2007   void * result = NULL;
2008   if (LoadExecStackDllInVMThread) {
2009     result = dlopen_helper(filename, ebuf, ebuflen);
2010   }
2011 
2012   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2013   // library that requires an executable stack, or which does not have this
2014   // stack attribute set, dlopen changes the stack attribute to executable. The
2015   // read protection of the guard pages gets lost.
2016   //
2017   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2018   // may have been queued at the same time.
2019 
2020   if (!_stack_is_executable) {
2021     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2022       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2023           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2024         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2025           warning("Attempt to reguard stack yellow zone failed.");
2026         }
2027       }
2028     }
2029   }
2030 
2031   return result;
2032 }
2033 
2034 void* os::dll_lookup(void* handle, const char* name) {
2035   void* res = dlsym(handle, name);
2036   return res;
2037 }
2038 
2039 void* os::get_default_process_handle() {
2040   return (void*)::dlopen(NULL, RTLD_LAZY);
2041 }
2042 
2043 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2044   int fd = ::open(filename, O_RDONLY);
2045   if (fd == -1) {
2046     return false;
2047   }
2048 
2049   if (hdr != NULL) {
2050     st->print_cr("%s", hdr);
2051   }
2052 
2053   char buf[33];
2054   int bytes;
2055   buf[32] = '\0';
2056   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2057     st->print_raw(buf, bytes);
2058   }
2059 
2060   ::close(fd);
2061 
2062   return true;
2063 }
2064 
2065 void os::print_dll_info(outputStream *st) {
2066   st->print_cr("Dynamic libraries:");
2067 
2068   char fname[32];
2069   pid_t pid = os::Linux::gettid();
2070 
2071   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2072 
2073   if (!_print_ascii_file(fname, st)) {
2074     st->print("Can not get library information for pid = %d\n", pid);
2075   }
2076 }
2077 
2078 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2079   FILE *procmapsFile = NULL;
2080 
2081   // Open the procfs maps file for the current process
2082   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2083     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2084     char line[PATH_MAX + 100];
2085 
2086     // Read line by line from 'file'
2087     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2088       u8 base, top, inode;
2089       char name[sizeof(line)];
2090 
2091       // Parse fields from line, discard perms, offset and device
2092       int matches = sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %*s %*s %*s " INT64_FORMAT " %s",
2093              &base, &top, &inode, name);
2094       // the last entry 'name' is empty for some entries, so we might have 3 matches instead of 4 for some lines
2095       if (matches < 3) continue;
2096       if (matches == 3) name[0] = '\0';
2097 
2098       // Filter by inode 0 so that we only get file system mapped files.
2099       if (inode != 0) {
2100 
2101         // Call callback with the fields of interest
2102         if(callback(name, (address)base, (address)top, param)) {
2103           // Oops abort, callback aborted
2104           fclose(procmapsFile);
2105           return 1;
2106         }
2107       }
2108     }
2109     fclose(procmapsFile);
2110   }
2111   return 0;
2112 }
2113 
2114 void os::print_os_info_brief(outputStream* st) {
2115   os::Linux::print_distro_info(st);
2116 
2117   os::Posix::print_uname_info(st);
2118 
2119   os::Linux::print_libversion_info(st);
2120 
2121 }
2122 
2123 void os::print_os_info(outputStream* st) {
2124   st->print("OS:");
2125 
2126   os::Linux::print_distro_info(st);
2127 
2128   os::Posix::print_uname_info(st);
2129 
2130   os::Linux::print_uptime_info(st);
2131 
2132   // Print warning if unsafe chroot environment detected
2133   if (unsafe_chroot_detected) {
2134     st->print("WARNING!! ");
2135     st->print_cr("%s", unstable_chroot_error);
2136   }
2137 
2138   os::Linux::print_libversion_info(st);
2139 
2140   os::Posix::print_rlimit_info(st);
2141 
2142   os::Posix::print_load_average(st);
2143 
2144   os::Linux::print_full_memory_info(st);
2145 
2146   os::Linux::print_proc_sys_info(st);
2147 
2148   os::Linux::print_ld_preload_file(st);
2149 
2150   os::Linux::print_container_info(st);
2151 
2152   VM_Version::print_platform_virtualization_info(st);
2153 
2154   os::Linux::print_steal_info(st);
2155 }
2156 
2157 // Try to identify popular distros.
2158 // Most Linux distributions have a /etc/XXX-release file, which contains
2159 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2160 // file that also contains the OS version string. Some have more than one
2161 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2162 // /etc/redhat-release.), so the order is important.
2163 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2164 // their own specific XXX-release file as well as a redhat-release file.
2165 // Because of this the XXX-release file needs to be searched for before the
2166 // redhat-release file.
2167 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2168 // search for redhat-release / SuSE-release needs to be before lsb-release.
2169 // Since the lsb-release file is the new standard it needs to be searched
2170 // before the older style release files.
2171 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2172 // next to last resort.  The os-release file is a new standard that contains
2173 // distribution information and the system-release file seems to be an old
2174 // standard that has been replaced by the lsb-release and os-release files.
2175 // Searching for the debian_version file is the last resort.  It contains
2176 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2177 // "Debian " is printed before the contents of the debian_version file.
2178 
2179 const char* distro_files[] = {
2180   "/etc/oracle-release",
2181   "/etc/mandriva-release",
2182   "/etc/mandrake-release",
2183   "/etc/sun-release",
2184   "/etc/redhat-release",
2185   "/etc/SuSE-release",
2186   "/etc/lsb-release",
2187   "/etc/turbolinux-release",
2188   "/etc/gentoo-release",
2189   "/etc/ltib-release",
2190   "/etc/angstrom-version",
2191   "/etc/system-release",
2192   "/etc/os-release",
2193   NULL };
2194 
2195 void os::Linux::print_distro_info(outputStream* st) {
2196   for (int i = 0;; i++) {
2197     const char* file = distro_files[i];
2198     if (file == NULL) {
2199       break;  // done
2200     }
2201     // If file prints, we found it.
2202     if (_print_ascii_file(file, st)) {
2203       return;
2204     }
2205   }
2206 
2207   if (file_exists("/etc/debian_version")) {
2208     st->print("Debian ");
2209     _print_ascii_file("/etc/debian_version", st);
2210   } else {
2211     st->print("Linux");
2212   }
2213   st->cr();
2214 }
2215 
2216 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2217   char buf[256];
2218   while (fgets(buf, sizeof(buf), fp)) {
2219     // Edit out extra stuff in expected format
2220     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2221       char* ptr = strstr(buf, "\"");  // the name is in quotes
2222       if (ptr != NULL) {
2223         ptr++; // go beyond first quote
2224         char* nl = strchr(ptr, '\"');
2225         if (nl != NULL) *nl = '\0';
2226         strncpy(distro, ptr, length);
2227       } else {
2228         ptr = strstr(buf, "=");
2229         ptr++; // go beyond equals then
2230         char* nl = strchr(ptr, '\n');
2231         if (nl != NULL) *nl = '\0';
2232         strncpy(distro, ptr, length);
2233       }
2234       return;
2235     } else if (get_first_line) {
2236       char* nl = strchr(buf, '\n');
2237       if (nl != NULL) *nl = '\0';
2238       strncpy(distro, buf, length);
2239       return;
2240     }
2241   }
2242   // print last line and close
2243   char* nl = strchr(buf, '\n');
2244   if (nl != NULL) *nl = '\0';
2245   strncpy(distro, buf, length);
2246 }
2247 
2248 static void parse_os_info(char* distro, size_t length, const char* file) {
2249   FILE* fp = fopen(file, "r");
2250   if (fp != NULL) {
2251     // if suse format, print out first line
2252     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2253     parse_os_info_helper(fp, distro, length, get_first_line);
2254     fclose(fp);
2255   }
2256 }
2257 
2258 void os::get_summary_os_info(char* buf, size_t buflen) {
2259   for (int i = 0;; i++) {
2260     const char* file = distro_files[i];
2261     if (file == NULL) {
2262       break; // ran out of distro_files
2263     }
2264     if (file_exists(file)) {
2265       parse_os_info(buf, buflen, file);
2266       return;
2267     }
2268   }
2269   // special case for debian
2270   if (file_exists("/etc/debian_version")) {
2271     strncpy(buf, "Debian ", buflen);
2272     if (buflen > 7) {
2273       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2274     }
2275   } else {
2276     strncpy(buf, "Linux", buflen);
2277   }
2278 }
2279 
2280 void os::Linux::print_libversion_info(outputStream* st) {
2281   // libc, pthread
2282   st->print("libc:");
2283   st->print("%s ", os::Linux::glibc_version());
2284   st->print("%s ", os::Linux::libpthread_version());
2285   st->cr();
2286 }
2287 
2288 void os::Linux::print_proc_sys_info(outputStream* st) {
2289   st->cr();
2290   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2291   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2292   st->cr();
2293   st->cr();
2294 
2295   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2296   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2297   st->cr();
2298   st->cr();
2299 
2300   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2301   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2302   st->cr();
2303   st->cr();
2304 }
2305 
2306 void os::Linux::print_full_memory_info(outputStream* st) {
2307   st->print("\n/proc/meminfo:\n");
2308   _print_ascii_file("/proc/meminfo", st);
2309   st->cr();
2310 
2311   // some information regarding THPs; for details see
2312   // https://www.kernel.org/doc/Documentation/vm/transhuge.txt
2313   st->print_cr("/sys/kernel/mm/transparent_hugepage/enabled:");
2314   if (!_print_ascii_file("/sys/kernel/mm/transparent_hugepage/enabled", st)) {
2315     st->print_cr("  <Not Available>");
2316   }
2317   st->cr();
2318   st->print_cr("/sys/kernel/mm/transparent_hugepage/defrag (defrag/compaction efforts parameter):");
2319   if (!_print_ascii_file("/sys/kernel/mm/transparent_hugepage/defrag", st)) {
2320     st->print_cr("  <Not Available>");
2321   }
2322   st->cr();
2323 }
2324 
2325 void os::Linux::print_ld_preload_file(outputStream* st) {
2326   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2327   st->cr();
2328 }
2329 
2330 void os::Linux::print_uptime_info(outputStream* st) {
2331   struct sysinfo sinfo;
2332   int ret = sysinfo(&sinfo);
2333   if (ret == 0) {
2334     os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
2335   }
2336 }
2337 
2338 
2339 void os::Linux::print_container_info(outputStream* st) {
2340   if (!OSContainer::is_containerized()) {
2341     return;
2342   }
2343 
2344   st->print("container (cgroup) information:\n");
2345 
2346   const char *p_ct = OSContainer::container_type();
2347   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2348 
2349   char *p = OSContainer::cpu_cpuset_cpus();
2350   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2351   free(p);
2352 
2353   p = OSContainer::cpu_cpuset_memory_nodes();
2354   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2355   free(p);
2356 
2357   int i = OSContainer::active_processor_count();
2358   st->print("active_processor_count: ");
2359   if (i > 0) {
2360     st->print("%d\n", i);
2361   } else {
2362     st->print("not supported\n");
2363   }
2364 
2365   i = OSContainer::cpu_quota();
2366   st->print("cpu_quota: ");
2367   if (i > 0) {
2368     st->print("%d\n", i);
2369   } else {
2370     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2371   }
2372 
2373   i = OSContainer::cpu_period();
2374   st->print("cpu_period: ");
2375   if (i > 0) {
2376     st->print("%d\n", i);
2377   } else {
2378     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2379   }
2380 
2381   i = OSContainer::cpu_shares();
2382   st->print("cpu_shares: ");
2383   if (i > 0) {
2384     st->print("%d\n", i);
2385   } else {
2386     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2387   }
2388 
2389   jlong j = OSContainer::memory_limit_in_bytes();
2390   st->print("memory_limit_in_bytes: ");
2391   if (j > 0) {
2392     st->print(JLONG_FORMAT "\n", j);
2393   } else {
2394     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2395   }
2396 
2397   j = OSContainer::memory_and_swap_limit_in_bytes();
2398   st->print("memory_and_swap_limit_in_bytes: ");
2399   if (j > 0) {
2400     st->print(JLONG_FORMAT "\n", j);
2401   } else {
2402     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2403   }
2404 
2405   j = OSContainer::memory_soft_limit_in_bytes();
2406   st->print("memory_soft_limit_in_bytes: ");
2407   if (j > 0) {
2408     st->print(JLONG_FORMAT "\n", j);
2409   } else {
2410     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2411   }
2412 
2413   j = OSContainer::OSContainer::memory_usage_in_bytes();
2414   st->print("memory_usage_in_bytes: ");
2415   if (j > 0) {
2416     st->print(JLONG_FORMAT "\n", j);
2417   } else {
2418     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2419   }
2420 
2421   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2422   st->print("memory_max_usage_in_bytes: ");
2423   if (j > 0) {
2424     st->print(JLONG_FORMAT "\n", j);
2425   } else {
2426     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2427   }
2428   st->cr();
2429 }
2430 
2431 void os::Linux::print_steal_info(outputStream* st) {
2432   if (has_initial_tick_info) {
2433     CPUPerfTicks pticks;
2434     bool res = os::Linux::get_tick_information(&pticks, -1);
2435 
2436     if (res && pticks.has_steal_ticks) {
2437       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2438       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2439       double steal_ticks_perc = 0.0;
2440       if (total_ticks_difference != 0) {
2441         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2442       }
2443       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2444       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2445     }
2446   }
2447 }
2448 
2449 void os::print_memory_info(outputStream* st) {
2450 
2451   st->print("Memory:");
2452   st->print(" %dk page", os::vm_page_size()>>10);
2453 
2454   // values in struct sysinfo are "unsigned long"
2455   struct sysinfo si;
2456   sysinfo(&si);
2457 
2458   st->print(", physical " UINT64_FORMAT "k",
2459             os::physical_memory() >> 10);
2460   st->print("(" UINT64_FORMAT "k free)",
2461             os::available_memory() >> 10);
2462   st->print(", swap " UINT64_FORMAT "k",
2463             ((jlong)si.totalswap * si.mem_unit) >> 10);
2464   st->print("(" UINT64_FORMAT "k free)",
2465             ((jlong)si.freeswap * si.mem_unit) >> 10);
2466   st->cr();
2467 }
2468 
2469 // Print the first "model name" line and the first "flags" line
2470 // that we find and nothing more. We assume "model name" comes
2471 // before "flags" so if we find a second "model name", then the
2472 // "flags" field is considered missing.
2473 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2474 #if defined(IA32) || defined(AMD64)
2475   // Other platforms have less repetitive cpuinfo files
2476   FILE *fp = fopen("/proc/cpuinfo", "r");
2477   if (fp) {
2478     while (!feof(fp)) {
2479       if (fgets(buf, buflen, fp)) {
2480         // Assume model name comes before flags
2481         bool model_name_printed = false;
2482         if (strstr(buf, "model name") != NULL) {
2483           if (!model_name_printed) {
2484             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2485             st->print_raw(buf);
2486             model_name_printed = true;
2487           } else {
2488             // model name printed but not flags?  Odd, just return
2489             fclose(fp);
2490             return true;
2491           }
2492         }
2493         // print the flags line too
2494         if (strstr(buf, "flags") != NULL) {
2495           st->print_raw(buf);
2496           fclose(fp);
2497           return true;
2498         }
2499       }
2500     }
2501     fclose(fp);
2502   }
2503 #endif // x86 platforms
2504   return false;
2505 }
2506 
2507 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2508   // Only print the model name if the platform provides this as a summary
2509   if (!print_model_name_and_flags(st, buf, buflen)) {
2510     st->print("\n/proc/cpuinfo:\n");
2511     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2512       st->print_cr("  <Not Available>");
2513     }
2514   }
2515 }
2516 
2517 #if defined(AMD64) || defined(IA32) || defined(X32)
2518 const char* search_string = "model name";
2519 #elif defined(M68K)
2520 const char* search_string = "CPU";
2521 #elif defined(PPC64)
2522 const char* search_string = "cpu";
2523 #elif defined(S390)
2524 const char* search_string = "machine =";
2525 #elif defined(SPARC)
2526 const char* search_string = "cpu";
2527 #else
2528 const char* search_string = "Processor";
2529 #endif
2530 
2531 // Parses the cpuinfo file for string representing the model name.
2532 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2533   FILE* fp = fopen("/proc/cpuinfo", "r");
2534   if (fp != NULL) {
2535     while (!feof(fp)) {
2536       char buf[256];
2537       if (fgets(buf, sizeof(buf), fp)) {
2538         char* start = strstr(buf, search_string);
2539         if (start != NULL) {
2540           char *ptr = start + strlen(search_string);
2541           char *end = buf + strlen(buf);
2542           while (ptr != end) {
2543              // skip whitespace and colon for the rest of the name.
2544              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2545                break;
2546              }
2547              ptr++;
2548           }
2549           if (ptr != end) {
2550             // reasonable string, get rid of newline and keep the rest
2551             char* nl = strchr(buf, '\n');
2552             if (nl != NULL) *nl = '\0';
2553             strncpy(cpuinfo, ptr, length);
2554             fclose(fp);
2555             return;
2556           }
2557         }
2558       }
2559     }
2560     fclose(fp);
2561   }
2562   // cpuinfo not found or parsing failed, just print generic string.  The entire
2563   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2564 #if   defined(AARCH64)
2565   strncpy(cpuinfo, "AArch64", length);
2566 #elif defined(AMD64)
2567   strncpy(cpuinfo, "x86_64", length);
2568 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2569   strncpy(cpuinfo, "ARM", length);
2570 #elif defined(IA32)
2571   strncpy(cpuinfo, "x86_32", length);
2572 #elif defined(IA64)
2573   strncpy(cpuinfo, "IA64", length);
2574 #elif defined(PPC)
2575   strncpy(cpuinfo, "PPC64", length);
2576 #elif defined(S390)
2577   strncpy(cpuinfo, "S390", length);
2578 #elif defined(SPARC)
2579   strncpy(cpuinfo, "sparcv9", length);
2580 #elif defined(ZERO_LIBARCH)
2581   strncpy(cpuinfo, ZERO_LIBARCH, length);
2582 #else
2583   strncpy(cpuinfo, "unknown", length);
2584 #endif
2585 }
2586 
2587 static void print_signal_handler(outputStream* st, int sig,
2588                                  char* buf, size_t buflen);
2589 
2590 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2591   st->print_cr("Signal Handlers:");
2592   print_signal_handler(st, SIGSEGV, buf, buflen);
2593   print_signal_handler(st, SIGBUS , buf, buflen);
2594   print_signal_handler(st, SIGFPE , buf, buflen);
2595   print_signal_handler(st, SIGPIPE, buf, buflen);
2596   print_signal_handler(st, SIGXFSZ, buf, buflen);
2597   print_signal_handler(st, SIGILL , buf, buflen);
2598   print_signal_handler(st, SR_signum, buf, buflen);
2599   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2600   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2601   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2602   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2603 #if defined(PPC64)
2604   print_signal_handler(st, SIGTRAP, buf, buflen);
2605 #endif
2606 }
2607 
2608 static char saved_jvm_path[MAXPATHLEN] = {0};
2609 
2610 // Find the full path to the current module, libjvm.so
2611 void os::jvm_path(char *buf, jint buflen) {
2612   // Error checking.
2613   if (buflen < MAXPATHLEN) {
2614     assert(false, "must use a large-enough buffer");
2615     buf[0] = '\0';
2616     return;
2617   }
2618   // Lazy resolve the path to current module.
2619   if (saved_jvm_path[0] != 0) {
2620     strcpy(buf, saved_jvm_path);
2621     return;
2622   }
2623 
2624   char dli_fname[MAXPATHLEN];
2625   bool ret = dll_address_to_library_name(
2626                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2627                                          dli_fname, sizeof(dli_fname), NULL);
2628   assert(ret, "cannot locate libjvm");
2629   char *rp = NULL;
2630   if (ret && dli_fname[0] != '\0') {
2631     rp = os::Posix::realpath(dli_fname, buf, buflen);
2632   }
2633   if (rp == NULL) {
2634     return;
2635   }
2636 
2637   if (Arguments::sun_java_launcher_is_altjvm()) {
2638     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2639     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2640     // If "/jre/lib/" appears at the right place in the string, then
2641     // assume we are installed in a JDK and we're done. Otherwise, check
2642     // for a JAVA_HOME environment variable and fix up the path so it
2643     // looks like libjvm.so is installed there (append a fake suffix
2644     // hotspot/libjvm.so).
2645     const char *p = buf + strlen(buf) - 1;
2646     for (int count = 0; p > buf && count < 5; ++count) {
2647       for (--p; p > buf && *p != '/'; --p)
2648         /* empty */ ;
2649     }
2650 
2651     if (strncmp(p, "/jre/lib/", 9) != 0) {
2652       // Look for JAVA_HOME in the environment.
2653       char* java_home_var = ::getenv("JAVA_HOME");
2654       if (java_home_var != NULL && java_home_var[0] != 0) {
2655         char* jrelib_p;
2656         int len;
2657 
2658         // Check the current module name "libjvm.so".
2659         p = strrchr(buf, '/');
2660         if (p == NULL) {
2661           return;
2662         }
2663         assert(strstr(p, "/libjvm") == p, "invalid library name");
2664 
2665         rp = os::Posix::realpath(java_home_var, buf, buflen);
2666         if (rp == NULL) {
2667           return;
2668         }
2669 
2670         // determine if this is a legacy image or modules image
2671         // modules image doesn't have "jre" subdirectory
2672         len = strlen(buf);
2673         assert(len < buflen, "Ran out of buffer room");
2674         jrelib_p = buf + len;
2675         snprintf(jrelib_p, buflen-len, "/jre/lib");
2676         if (0 != access(buf, F_OK)) {
2677           snprintf(jrelib_p, buflen-len, "/lib");
2678         }
2679 
2680         if (0 == access(buf, F_OK)) {
2681           // Use current module name "libjvm.so"
2682           len = strlen(buf);
2683           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2684         } else {
2685           // Go back to path of .so
2686           rp = os::Posix::realpath(dli_fname, buf, buflen);
2687           if (rp == NULL) {
2688             return;
2689           }
2690         }
2691       }
2692     }
2693   }
2694 
2695   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2696   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2697 }
2698 
2699 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2700   // no prefix required, not even "_"
2701 }
2702 
2703 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2704   // no suffix required
2705 }
2706 
2707 ////////////////////////////////////////////////////////////////////////////////
2708 // sun.misc.Signal support
2709 
2710 static void UserHandler(int sig, void *siginfo, void *context) {
2711   // Ctrl-C is pressed during error reporting, likely because the error
2712   // handler fails to abort. Let VM die immediately.
2713   if (sig == SIGINT && VMError::is_error_reported()) {
2714     os::die();
2715   }
2716 
2717   os::signal_notify(sig);
2718 }
2719 
2720 void* os::user_handler() {
2721   return CAST_FROM_FN_PTR(void*, UserHandler);
2722 }
2723 
2724 extern "C" {
2725   typedef void (*sa_handler_t)(int);
2726   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2727 }
2728 
2729 void* os::signal(int signal_number, void* handler) {
2730   struct sigaction sigAct, oldSigAct;
2731 
2732   sigfillset(&(sigAct.sa_mask));
2733   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2734   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2735 
2736   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2737     // -1 means registration failed
2738     return (void *)-1;
2739   }
2740 
2741   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2742 }
2743 
2744 void os::signal_raise(int signal_number) {
2745   ::raise(signal_number);
2746 }
2747 
2748 // The following code is moved from os.cpp for making this
2749 // code platform specific, which it is by its very nature.
2750 
2751 // Will be modified when max signal is changed to be dynamic
2752 int os::sigexitnum_pd() {
2753   return NSIG;
2754 }
2755 
2756 // a counter for each possible signal value
2757 static volatile jint pending_signals[NSIG+1] = { 0 };
2758 
2759 // Linux(POSIX) specific hand shaking semaphore.
2760 static Semaphore* sig_sem = NULL;
2761 static PosixSemaphore sr_semaphore;
2762 
2763 static void jdk_misc_signal_init() {
2764   // Initialize signal structures
2765   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2766 
2767   // Initialize signal semaphore
2768   sig_sem = new Semaphore();
2769 }
2770 
2771 void os::signal_notify(int sig) {
2772   if (sig_sem != NULL) {
2773     Atomic::inc(&pending_signals[sig]);
2774     sig_sem->signal();
2775   } else {
2776     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2777     // initialization isn't called.
2778     assert(ReduceSignalUsage, "signal semaphore should be created");
2779   }
2780 }
2781 
2782 static int check_pending_signals() {
2783   for (;;) {
2784     for (int i = 0; i < NSIG + 1; i++) {
2785       jint n = pending_signals[i];
2786       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
2787         return i;
2788       }
2789     }
2790     JavaThread *thread = JavaThread::current();
2791     ThreadBlockInVM tbivm(thread);
2792 
2793     bool threadIsSuspended;
2794     do {
2795       thread->set_suspend_equivalent();
2796       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2797       sig_sem->wait();
2798 
2799       // were we externally suspended while we were waiting?
2800       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2801       if (threadIsSuspended) {
2802         // The semaphore has been incremented, but while we were waiting
2803         // another thread suspended us. We don't want to continue running
2804         // while suspended because that would surprise the thread that
2805         // suspended us.
2806         sig_sem->signal();
2807 
2808         thread->java_suspend_self();
2809       }
2810     } while (threadIsSuspended);
2811   }
2812 }
2813 
2814 int os::signal_wait() {
2815   return check_pending_signals();
2816 }
2817 
2818 ////////////////////////////////////////////////////////////////////////////////
2819 // Virtual Memory
2820 
2821 int os::vm_page_size() {
2822   // Seems redundant as all get out
2823   assert(os::Linux::page_size() != -1, "must call os::init");
2824   return os::Linux::page_size();
2825 }
2826 
2827 // Solaris allocates memory by pages.
2828 int os::vm_allocation_granularity() {
2829   assert(os::Linux::page_size() != -1, "must call os::init");
2830   return os::Linux::page_size();
2831 }
2832 
2833 // Rationale behind this function:
2834 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2835 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2836 //  samples for JITted code. Here we create private executable mapping over the code cache
2837 //  and then we can use standard (well, almost, as mapping can change) way to provide
2838 //  info for the reporting script by storing timestamp and location of symbol
2839 void linux_wrap_code(char* base, size_t size) {
2840   static volatile jint cnt = 0;
2841 
2842   if (!UseOprofile) {
2843     return;
2844   }
2845 
2846   char buf[PATH_MAX+1];
2847   int num = Atomic::add(&cnt, 1);
2848 
2849   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2850            os::get_temp_directory(), os::current_process_id(), num);
2851   unlink(buf);
2852 
2853   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2854 
2855   if (fd != -1) {
2856     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2857     if (rv != (off_t)-1) {
2858       if (::write(fd, "", 1) == 1) {
2859         mmap(base, size,
2860              PROT_READ|PROT_WRITE|PROT_EXEC,
2861              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2862       }
2863     }
2864     ::close(fd);
2865     unlink(buf);
2866   }
2867 }
2868 
2869 static bool recoverable_mmap_error(int err) {
2870   // See if the error is one we can let the caller handle. This
2871   // list of errno values comes from JBS-6843484. I can't find a
2872   // Linux man page that documents this specific set of errno
2873   // values so while this list currently matches Solaris, it may
2874   // change as we gain experience with this failure mode.
2875   switch (err) {
2876   case EBADF:
2877   case EINVAL:
2878   case ENOTSUP:
2879     // let the caller deal with these errors
2880     return true;
2881 
2882   default:
2883     // Any remaining errors on this OS can cause our reserved mapping
2884     // to be lost. That can cause confusion where different data
2885     // structures think they have the same memory mapped. The worst
2886     // scenario is if both the VM and a library think they have the
2887     // same memory mapped.
2888     return false;
2889   }
2890 }
2891 
2892 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2893                                     int err) {
2894   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2895           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2896           os::strerror(err), err);
2897 }
2898 
2899 static void warn_fail_commit_memory(char* addr, size_t size,
2900                                     size_t alignment_hint, bool exec,
2901                                     int err) {
2902   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2903           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2904           alignment_hint, exec, os::strerror(err), err);
2905 }
2906 
2907 // NOTE: Linux kernel does not really reserve the pages for us.
2908 //       All it does is to check if there are enough free pages
2909 //       left at the time of mmap(). This could be a potential
2910 //       problem.
2911 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2912   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2913   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2914                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2915   if (res != (uintptr_t) MAP_FAILED) {
2916     if (UseNUMAInterleaving) {
2917       numa_make_global(addr, size);
2918     }
2919     return 0;
2920   }
2921 
2922   int err = errno;  // save errno from mmap() call above
2923 
2924   if (!recoverable_mmap_error(err)) {
2925     warn_fail_commit_memory(addr, size, exec, err);
2926     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2927   }
2928 
2929   return err;
2930 }
2931 
2932 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2933   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2934 }
2935 
2936 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2937                                   const char* mesg) {
2938   assert(mesg != NULL, "mesg must be specified");
2939   int err = os::Linux::commit_memory_impl(addr, size, exec);
2940   if (err != 0) {
2941     // the caller wants all commit errors to exit with the specified mesg:
2942     warn_fail_commit_memory(addr, size, exec, err);
2943     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2944   }
2945 }
2946 
2947 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2948 #ifndef MAP_HUGETLB
2949   #define MAP_HUGETLB 0x40000
2950 #endif
2951 
2952 // If MAP_HUGETLB is set, and the system supports multiple huge page sizes,
2953 // flag bits [26:31] can be used to encode the log2 of the desired huge page size.
2954 // Otherwise the system's default huge page size will be used.
2955 // See mmap(2) man page for more info (since Linux 3.8).
2956 // https://lwn.net/Articles/533499/
2957 #ifndef MAP_HUGE_SHIFT
2958   #define MAP_HUGE_SHIFT 26
2959 #endif
2960 
2961 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2962 #ifndef MADV_HUGEPAGE
2963   #define MADV_HUGEPAGE 14
2964 #endif
2965 
2966 int os::Linux::commit_memory_impl(char* addr, size_t size,
2967                                   size_t alignment_hint, bool exec) {
2968   int err = os::Linux::commit_memory_impl(addr, size, exec);
2969   if (err == 0) {
2970     realign_memory(addr, size, alignment_hint);
2971   }
2972   return err;
2973 }
2974 
2975 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2976                           bool exec) {
2977   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2978 }
2979 
2980 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2981                                   size_t alignment_hint, bool exec,
2982                                   const char* mesg) {
2983   assert(mesg != NULL, "mesg must be specified");
2984   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2985   if (err != 0) {
2986     // the caller wants all commit errors to exit with the specified mesg:
2987     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2988     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2989   }
2990 }
2991 
2992 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2993   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2994     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2995     // be supported or the memory may already be backed by huge pages.
2996     ::madvise(addr, bytes, MADV_HUGEPAGE);
2997   }
2998 }
2999 
3000 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
3001   // This method works by doing an mmap over an existing mmaping and effectively discarding
3002   // the existing pages. However it won't work for SHM-based large pages that cannot be
3003   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
3004   // small pages on top of the SHM segment. This method always works for small pages, so we
3005   // allow that in any case.
3006   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
3007     commit_memory(addr, bytes, alignment_hint, !ExecMem);
3008   }
3009 }
3010 
3011 void os::numa_make_global(char *addr, size_t bytes) {
3012   Linux::numa_interleave_memory(addr, bytes);
3013 }
3014 
3015 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
3016 // bind policy to MPOL_PREFERRED for the current thread.
3017 #define USE_MPOL_PREFERRED 0
3018 
3019 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
3020   // To make NUMA and large pages more robust when both enabled, we need to ease
3021   // the requirements on where the memory should be allocated. MPOL_BIND is the
3022   // default policy and it will force memory to be allocated on the specified
3023   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
3024   // the specified node, but will not force it. Using this policy will prevent
3025   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
3026   // free large pages.
3027   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
3028   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
3029 }
3030 
3031 bool os::numa_topology_changed() { return false; }
3032 
3033 size_t os::numa_get_groups_num() {
3034   // Return just the number of nodes in which it's possible to allocate memory
3035   // (in numa terminology, configured nodes).
3036   return Linux::numa_num_configured_nodes();
3037 }
3038 
3039 int os::numa_get_group_id() {
3040   int cpu_id = Linux::sched_getcpu();
3041   if (cpu_id != -1) {
3042     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3043     if (lgrp_id != -1) {
3044       return lgrp_id;
3045     }
3046   }
3047   return 0;
3048 }
3049 
3050 int os::numa_get_group_id_for_address(const void* address) {
3051   void** pages = const_cast<void**>(&address);
3052   int id = -1;
3053 
3054   if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
3055     return -1;
3056   }
3057   if (id < 0) {
3058     return -1;
3059   }
3060   return id;
3061 }
3062 
3063 int os::Linux::get_existing_num_nodes() {
3064   int node;
3065   int highest_node_number = Linux::numa_max_node();
3066   int num_nodes = 0;
3067 
3068   // Get the total number of nodes in the system including nodes without memory.
3069   for (node = 0; node <= highest_node_number; node++) {
3070     if (is_node_in_existing_nodes(node)) {
3071       num_nodes++;
3072     }
3073   }
3074   return num_nodes;
3075 }
3076 
3077 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3078   int highest_node_number = Linux::numa_max_node();
3079   size_t i = 0;
3080 
3081   // Map all node ids in which it is possible to allocate memory. Also nodes are
3082   // not always consecutively available, i.e. available from 0 to the highest
3083   // node number. If the nodes have been bound explicitly using numactl membind,
3084   // then allocate memory from those nodes only.
3085   for (int node = 0; node <= highest_node_number; node++) {
3086     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3087       ids[i++] = node;
3088     }
3089   }
3090   return i;
3091 }
3092 
3093 bool os::get_page_info(char *start, page_info* info) {
3094   return false;
3095 }
3096 
3097 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3098                      page_info* page_found) {
3099   return end;
3100 }
3101 
3102 
3103 int os::Linux::sched_getcpu_syscall(void) {
3104   unsigned int cpu = 0;
3105   int retval = -1;
3106 
3107 #if defined(IA32)
3108   #ifndef SYS_getcpu
3109     #define SYS_getcpu 318
3110   #endif
3111   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3112 #elif defined(AMD64)
3113 // Unfortunately we have to bring all these macros here from vsyscall.h
3114 // to be able to compile on old linuxes.
3115   #define __NR_vgetcpu 2
3116   #define VSYSCALL_START (-10UL << 20)
3117   #define VSYSCALL_SIZE 1024
3118   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3119   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3120   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3121   retval = vgetcpu(&cpu, NULL, NULL);
3122 #endif
3123 
3124   return (retval == -1) ? retval : cpu;
3125 }
3126 
3127 void os::Linux::sched_getcpu_init() {
3128   // sched_getcpu() should be in libc.
3129   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3130                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3131 
3132   // If it's not, try a direct syscall.
3133   if (sched_getcpu() == -1) {
3134     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3135                                     (void*)&sched_getcpu_syscall));
3136   }
3137 
3138   if (sched_getcpu() == -1) {
3139     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3140   }
3141 }
3142 
3143 // Something to do with the numa-aware allocator needs these symbols
3144 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3145 extern "C" JNIEXPORT void numa_error(char *where) { }
3146 
3147 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3148 // load symbol from base version instead.
3149 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3150   void *f = dlvsym(handle, name, "libnuma_1.1");
3151   if (f == NULL) {
3152     f = dlsym(handle, name);
3153   }
3154   return f;
3155 }
3156 
3157 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3158 // Return NULL if the symbol is not defined in this particular version.
3159 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3160   return dlvsym(handle, name, "libnuma_1.2");
3161 }
3162 
3163 bool os::Linux::libnuma_init() {
3164   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3165     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3166     if (handle != NULL) {
3167       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3168                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3169       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3170                                        libnuma_dlsym(handle, "numa_max_node")));
3171       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3172                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3173       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3174                                         libnuma_dlsym(handle, "numa_available")));
3175       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3176                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3177       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3178                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3179       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3180                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3181       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3182                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3183       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3184                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3185       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3186                                        libnuma_dlsym(handle, "numa_distance")));
3187       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3188                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3189       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3190                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3191       set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
3192                                          libnuma_dlsym(handle, "numa_move_pages")));
3193       set_numa_set_preferred(CAST_TO_FN_PTR(numa_set_preferred_func_t,
3194                                             libnuma_dlsym(handle, "numa_set_preferred")));
3195 
3196       if (numa_available() != -1) {
3197         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3198         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3199         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3200         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3201         set_numa_membind_bitmask(_numa_get_membind());
3202         // Create an index -> node mapping, since nodes are not always consecutive
3203         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3204         rebuild_nindex_to_node_map();
3205         // Create a cpu -> node mapping
3206         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3207         rebuild_cpu_to_node_map();
3208         return true;
3209       }
3210     }
3211   }
3212   return false;
3213 }
3214 
3215 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3216   // Creating guard page is very expensive. Java thread has HotSpot
3217   // guard pages, only enable glibc guard page for non-Java threads.
3218   // (Remember: compiler thread is a Java thread, too!)
3219   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3220 }
3221 
3222 void os::Linux::rebuild_nindex_to_node_map() {
3223   int highest_node_number = Linux::numa_max_node();
3224 
3225   nindex_to_node()->clear();
3226   for (int node = 0; node <= highest_node_number; node++) {
3227     if (Linux::is_node_in_existing_nodes(node)) {
3228       nindex_to_node()->append(node);
3229     }
3230   }
3231 }
3232 
3233 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3234 // The table is later used in get_node_by_cpu().
3235 void os::Linux::rebuild_cpu_to_node_map() {
3236   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3237                               // in libnuma (possible values are starting from 16,
3238                               // and continuing up with every other power of 2, but less
3239                               // than the maximum number of CPUs supported by kernel), and
3240                               // is a subject to change (in libnuma version 2 the requirements
3241                               // are more reasonable) we'll just hardcode the number they use
3242                               // in the library.
3243   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3244 
3245   size_t cpu_num = processor_count();
3246   size_t cpu_map_size = NCPUS / BitsPerCLong;
3247   size_t cpu_map_valid_size =
3248     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3249 
3250   cpu_to_node()->clear();
3251   cpu_to_node()->at_grow(cpu_num - 1);
3252 
3253   size_t node_num = get_existing_num_nodes();
3254 
3255   int distance = 0;
3256   int closest_distance = INT_MAX;
3257   int closest_node = 0;
3258   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3259   for (size_t i = 0; i < node_num; i++) {
3260     // Check if node is configured (not a memory-less node). If it is not, find
3261     // the closest configured node. Check also if node is bound, i.e. it's allowed
3262     // to allocate memory from the node. If it's not allowed, map cpus in that node
3263     // to the closest node from which memory allocation is allowed.
3264     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3265         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3266       closest_distance = INT_MAX;
3267       // Check distance from all remaining nodes in the system. Ignore distance
3268       // from itself, from another non-configured node, and from another non-bound
3269       // node.
3270       for (size_t m = 0; m < node_num; m++) {
3271         if (m != i &&
3272             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3273             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3274           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3275           // If a closest node is found, update. There is always at least one
3276           // configured and bound node in the system so there is always at least
3277           // one node close.
3278           if (distance != 0 && distance < closest_distance) {
3279             closest_distance = distance;
3280             closest_node = nindex_to_node()->at(m);
3281           }
3282         }
3283       }
3284      } else {
3285        // Current node is already a configured node.
3286        closest_node = nindex_to_node()->at(i);
3287      }
3288 
3289     // Get cpus from the original node and map them to the closest node. If node
3290     // is a configured node (not a memory-less node), then original node and
3291     // closest node are the same.
3292     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3293       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3294         if (cpu_map[j] != 0) {
3295           for (size_t k = 0; k < BitsPerCLong; k++) {
3296             if (cpu_map[j] & (1UL << k)) {
3297               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3298             }
3299           }
3300         }
3301       }
3302     }
3303   }
3304   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3305 }
3306 
3307 int os::Linux::get_node_by_cpu(int cpu_id) {
3308   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3309     return cpu_to_node()->at(cpu_id);
3310   }
3311   return -1;
3312 }
3313 
3314 GrowableArray<int>* os::Linux::_cpu_to_node;
3315 GrowableArray<int>* os::Linux::_nindex_to_node;
3316 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3317 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3318 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3319 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3320 os::Linux::numa_available_func_t os::Linux::_numa_available;
3321 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3322 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3323 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3324 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3325 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3326 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3327 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3328 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3329 os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
3330 os::Linux::numa_set_preferred_func_t os::Linux::_numa_set_preferred;
3331 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3332 unsigned long* os::Linux::_numa_all_nodes;
3333 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3334 struct bitmask* os::Linux::_numa_nodes_ptr;
3335 struct bitmask* os::Linux::_numa_interleave_bitmask;
3336 struct bitmask* os::Linux::_numa_membind_bitmask;
3337 
3338 bool os::pd_uncommit_memory(char* addr, size_t size) {
3339   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3340                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3341   return res  != (uintptr_t) MAP_FAILED;
3342 }
3343 
3344 static address get_stack_commited_bottom(address bottom, size_t size) {
3345   address nbot = bottom;
3346   address ntop = bottom + size;
3347 
3348   size_t page_sz = os::vm_page_size();
3349   unsigned pages = size / page_sz;
3350 
3351   unsigned char vec[1];
3352   unsigned imin = 1, imax = pages + 1, imid;
3353   int mincore_return_value = 0;
3354 
3355   assert(imin <= imax, "Unexpected page size");
3356 
3357   while (imin < imax) {
3358     imid = (imax + imin) / 2;
3359     nbot = ntop - (imid * page_sz);
3360 
3361     // Use a trick with mincore to check whether the page is mapped or not.
3362     // mincore sets vec to 1 if page resides in memory and to 0 if page
3363     // is swapped output but if page we are asking for is unmapped
3364     // it returns -1,ENOMEM
3365     mincore_return_value = mincore(nbot, page_sz, vec);
3366 
3367     if (mincore_return_value == -1) {
3368       // Page is not mapped go up
3369       // to find first mapped page
3370       if (errno != EAGAIN) {
3371         assert(errno == ENOMEM, "Unexpected mincore errno");
3372         imax = imid;
3373       }
3374     } else {
3375       // Page is mapped go down
3376       // to find first not mapped page
3377       imin = imid + 1;
3378     }
3379   }
3380 
3381   nbot = nbot + page_sz;
3382 
3383   // Adjust stack bottom one page up if last checked page is not mapped
3384   if (mincore_return_value == -1) {
3385     nbot = nbot + page_sz;
3386   }
3387 
3388   return nbot;
3389 }
3390 
3391 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3392   int mincore_return_value;
3393   const size_t stripe = 1024;  // query this many pages each time
3394   unsigned char vec[stripe + 1];
3395   // set a guard
3396   vec[stripe] = 'X';
3397 
3398   const size_t page_sz = os::vm_page_size();
3399   size_t pages = size / page_sz;
3400 
3401   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3402   assert(is_aligned(size, page_sz), "Size must be page aligned");
3403 
3404   committed_start = NULL;
3405 
3406   int loops = (pages + stripe - 1) / stripe;
3407   int committed_pages = 0;
3408   address loop_base = start;
3409   bool found_range = false;
3410 
3411   for (int index = 0; index < loops && !found_range; index ++) {
3412     assert(pages > 0, "Nothing to do");
3413     int pages_to_query = (pages >= stripe) ? stripe : pages;
3414     pages -= pages_to_query;
3415 
3416     // Get stable read
3417     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3418 
3419     // During shutdown, some memory goes away without properly notifying NMT,
3420     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3421     // Bailout and return as not committed for now.
3422     if (mincore_return_value == -1 && errno == ENOMEM) {
3423       return false;
3424     }
3425 
3426     assert(vec[stripe] == 'X', "overflow guard");
3427     assert(mincore_return_value == 0, "Range must be valid");
3428     // Process this stripe
3429     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3430       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3431         // End of current contiguous region
3432         if (committed_start != NULL) {
3433           found_range = true;
3434           break;
3435         }
3436       } else { // committed
3437         // Start of region
3438         if (committed_start == NULL) {
3439           committed_start = loop_base + page_sz * vecIdx;
3440         }
3441         committed_pages ++;
3442       }
3443     }
3444 
3445     loop_base += pages_to_query * page_sz;
3446   }
3447 
3448   if (committed_start != NULL) {
3449     assert(committed_pages > 0, "Must have committed region");
3450     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3451     assert(committed_start >= start && committed_start < start + size, "Out of range");
3452     committed_size = page_sz * committed_pages;
3453     return true;
3454   } else {
3455     assert(committed_pages == 0, "Should not have committed region");
3456     return false;
3457   }
3458 }
3459 
3460 
3461 // Linux uses a growable mapping for the stack, and if the mapping for
3462 // the stack guard pages is not removed when we detach a thread the
3463 // stack cannot grow beyond the pages where the stack guard was
3464 // mapped.  If at some point later in the process the stack expands to
3465 // that point, the Linux kernel cannot expand the stack any further
3466 // because the guard pages are in the way, and a segfault occurs.
3467 //
3468 // However, it's essential not to split the stack region by unmapping
3469 // a region (leaving a hole) that's already part of the stack mapping,
3470 // so if the stack mapping has already grown beyond the guard pages at
3471 // the time we create them, we have to truncate the stack mapping.
3472 // So, we need to know the extent of the stack mapping when
3473 // create_stack_guard_pages() is called.
3474 
3475 // We only need this for stacks that are growable: at the time of
3476 // writing thread stacks don't use growable mappings (i.e. those
3477 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3478 // only applies to the main thread.
3479 
3480 // If the (growable) stack mapping already extends beyond the point
3481 // where we're going to put our guard pages, truncate the mapping at
3482 // that point by munmap()ping it.  This ensures that when we later
3483 // munmap() the guard pages we don't leave a hole in the stack
3484 // mapping. This only affects the main/primordial thread
3485 
3486 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3487   if (os::is_primordial_thread()) {
3488     // As we manually grow stack up to bottom inside create_attached_thread(),
3489     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3490     // we don't need to do anything special.
3491     // Check it first, before calling heavy function.
3492     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3493     unsigned char vec[1];
3494 
3495     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3496       // Fallback to slow path on all errors, including EAGAIN
3497       stack_extent = (uintptr_t) get_stack_commited_bottom(
3498                                                            os::Linux::initial_thread_stack_bottom(),
3499                                                            (size_t)addr - stack_extent);
3500     }
3501 
3502     if (stack_extent < (uintptr_t)addr) {
3503       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3504     }
3505   }
3506 
3507   return os::commit_memory(addr, size, !ExecMem);
3508 }
3509 
3510 // If this is a growable mapping, remove the guard pages entirely by
3511 // munmap()ping them.  If not, just call uncommit_memory(). This only
3512 // affects the main/primordial thread, but guard against future OS changes.
3513 // It's safe to always unmap guard pages for primordial thread because we
3514 // always place it right after end of the mapped region.
3515 
3516 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3517   uintptr_t stack_extent, stack_base;
3518 
3519   if (os::is_primordial_thread()) {
3520     return ::munmap(addr, size) == 0;
3521   }
3522 
3523   return os::uncommit_memory(addr, size);
3524 }
3525 
3526 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3527 // at 'requested_addr'. If there are existing memory mappings at the same
3528 // location, however, they will be overwritten. If 'fixed' is false,
3529 // 'requested_addr' is only treated as a hint, the return value may or
3530 // may not start from the requested address. Unlike Linux mmap(), this
3531 // function returns NULL to indicate failure.
3532 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3533   char * addr;
3534   int flags;
3535 
3536   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3537   if (fixed) {
3538     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3539     flags |= MAP_FIXED;
3540   }
3541 
3542   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3543   // touch an uncommitted page. Otherwise, the read/write might
3544   // succeed if we have enough swap space to back the physical page.
3545   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3546                        flags, -1, 0);
3547 
3548   return addr == MAP_FAILED ? NULL : addr;
3549 }
3550 
3551 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3552 //   (req_addr != NULL) or with a given alignment.
3553 //  - bytes shall be a multiple of alignment.
3554 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3555 //  - alignment sets the alignment at which memory shall be allocated.
3556 //     It must be a multiple of allocation granularity.
3557 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3558 //  req_addr or NULL.
3559 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3560 
3561   size_t extra_size = bytes;
3562   if (req_addr == NULL && alignment > 0) {
3563     extra_size += alignment;
3564   }
3565 
3566   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3567     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3568     -1, 0);
3569   if (start == MAP_FAILED) {
3570     start = NULL;
3571   } else {
3572     if (req_addr != NULL) {
3573       if (start != req_addr) {
3574         ::munmap(start, extra_size);
3575         start = NULL;
3576       }
3577     } else {
3578       char* const start_aligned = align_up(start, alignment);
3579       char* const end_aligned = start_aligned + bytes;
3580       char* const end = start + extra_size;
3581       if (start_aligned > start) {
3582         ::munmap(start, start_aligned - start);
3583       }
3584       if (end_aligned < end) {
3585         ::munmap(end_aligned, end - end_aligned);
3586       }
3587       start = start_aligned;
3588     }
3589   }
3590   return start;
3591 }
3592 
3593 static int anon_munmap(char * addr, size_t size) {
3594   return ::munmap(addr, size) == 0;
3595 }
3596 
3597 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3598                             size_t alignment_hint) {
3599   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3600 }
3601 
3602 bool os::pd_release_memory(char* addr, size_t size) {
3603   return anon_munmap(addr, size);
3604 }
3605 
3606 static bool linux_mprotect(char* addr, size_t size, int prot) {
3607   // Linux wants the mprotect address argument to be page aligned.
3608   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3609 
3610   // According to SUSv3, mprotect() should only be used with mappings
3611   // established by mmap(), and mmap() always maps whole pages. Unaligned
3612   // 'addr' likely indicates problem in the VM (e.g. trying to change
3613   // protection of malloc'ed or statically allocated memory). Check the
3614   // caller if you hit this assert.
3615   assert(addr == bottom, "sanity check");
3616 
3617   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3618   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3619   return ::mprotect(bottom, size, prot) == 0;
3620 }
3621 
3622 // Set protections specified
3623 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3624                         bool is_committed) {
3625   unsigned int p = 0;
3626   switch (prot) {
3627   case MEM_PROT_NONE: p = PROT_NONE; break;
3628   case MEM_PROT_READ: p = PROT_READ; break;
3629   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3630   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3631   default:
3632     ShouldNotReachHere();
3633   }
3634   // is_committed is unused.
3635   return linux_mprotect(addr, bytes, p);
3636 }
3637 
3638 bool os::guard_memory(char* addr, size_t size) {
3639   return linux_mprotect(addr, size, PROT_NONE);
3640 }
3641 
3642 bool os::unguard_memory(char* addr, size_t size) {
3643   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3644 }
3645 
3646 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3647                                                     size_t page_size) {
3648   bool result = false;
3649   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3650                  MAP_ANONYMOUS|MAP_PRIVATE,
3651                  -1, 0);
3652   if (p != MAP_FAILED) {
3653     void *aligned_p = align_up(p, page_size);
3654 
3655     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3656 
3657     munmap(p, page_size * 2);
3658   }
3659 
3660   if (warn && !result) {
3661     warning("TransparentHugePages is not supported by the operating system.");
3662   }
3663 
3664   return result;
3665 }
3666 
3667 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3668   bool result = false;
3669   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3670                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3671                  -1, 0);
3672 
3673   if (p != MAP_FAILED) {
3674     // We don't know if this really is a huge page or not.
3675     FILE *fp = fopen("/proc/self/maps", "r");
3676     if (fp) {
3677       while (!feof(fp)) {
3678         char chars[257];
3679         long x = 0;
3680         if (fgets(chars, sizeof(chars), fp)) {
3681           if (sscanf(chars, "%lx-%*x", &x) == 1
3682               && x == (long)p) {
3683             if (strstr (chars, "hugepage")) {
3684               result = true;
3685               break;
3686             }
3687           }
3688         }
3689       }
3690       fclose(fp);
3691     }
3692     munmap(p, page_size);
3693   }
3694 
3695   if (warn && !result) {
3696     warning("HugeTLBFS is not supported by the operating system.");
3697   }
3698 
3699   return result;
3700 }
3701 
3702 // From the coredump_filter documentation:
3703 //
3704 // - (bit 0) anonymous private memory
3705 // - (bit 1) anonymous shared memory
3706 // - (bit 2) file-backed private memory
3707 // - (bit 3) file-backed shared memory
3708 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3709 //           effective only if the bit 2 is cleared)
3710 // - (bit 5) hugetlb private memory
3711 // - (bit 6) hugetlb shared memory
3712 // - (bit 7) dax private memory
3713 // - (bit 8) dax shared memory
3714 //
3715 static void set_coredump_filter(CoredumpFilterBit bit) {
3716   FILE *f;
3717   long cdm;
3718 
3719   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3720     return;
3721   }
3722 
3723   if (fscanf(f, "%lx", &cdm) != 1) {
3724     fclose(f);
3725     return;
3726   }
3727 
3728   long saved_cdm = cdm;
3729   rewind(f);
3730   cdm |= bit;
3731 
3732   if (cdm != saved_cdm) {
3733     fprintf(f, "%#lx", cdm);
3734   }
3735 
3736   fclose(f);
3737 }
3738 
3739 // Large page support
3740 
3741 static size_t _large_page_size = 0;
3742 
3743 size_t os::Linux::find_default_large_page_size() {
3744   size_t large_page_size = 0;
3745 
3746   // large_page_size on Linux is used to round up heap size. x86 uses either
3747   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3748   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3749   // page as large as 256M.
3750   //
3751   // Here we try to figure out page size by parsing /proc/meminfo and looking
3752   // for a line with the following format:
3753   //    Hugepagesize:     2048 kB
3754   //
3755   // If we can't determine the value (e.g. /proc is not mounted, or the text
3756   // format has been changed), we'll use the largest page size supported by
3757   // the processor.
3758 
3759 #ifndef ZERO
3760   large_page_size =
3761     AARCH64_ONLY(2 * M)
3762     AMD64_ONLY(2 * M)
3763     ARM32_ONLY(2 * M)
3764     IA32_ONLY(4 * M)
3765     IA64_ONLY(256 * M)
3766     PPC_ONLY(4 * M)
3767     S390_ONLY(1 * M)
3768     SPARC_ONLY(4 * M);
3769 #endif // ZERO
3770 
3771   FILE *fp = fopen("/proc/meminfo", "r");
3772   if (fp) {
3773     while (!feof(fp)) {
3774       int x = 0;
3775       char buf[16];
3776       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3777         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3778           large_page_size = x * K;
3779           break;
3780         }
3781       } else {
3782         // skip to next line
3783         for (;;) {
3784           int ch = fgetc(fp);
3785           if (ch == EOF || ch == (int)'\n') break;
3786         }
3787       }
3788     }
3789     fclose(fp);
3790   }
3791   return large_page_size;
3792 }
3793 
3794 bool os::Linux::is_valid_large_page_size(size_t large_page_size) {
3795   // We need to scan /sys/kernel/mm/hugepages
3796   // to discover the available page sizes
3797   const char* sys_hugepages = "/sys/kernel/mm/hugepages";
3798   if (dir_is_empty(sys_hugepages)) {
3799     return false;
3800   }
3801 
3802   DIR *dir = opendir(sys_hugepages);
3803   if (dir == NULL) {
3804     return false;
3805   }
3806 
3807   struct dirent *entry;
3808   size_t page_size;
3809   bool is_valid = false;
3810   while ( (entry = readdir(dir)) != NULL) {
3811     if (entry->d_type == DT_DIR &&
3812         sscanf(entry->d_name, "hugepages-%zukB", &page_size) == 1) {
3813       // The kernel is using kB, hotspot uses bytes
3814       if (large_page_size == page_size * K) {
3815         is_valid = true;
3816         break;
3817       }
3818     }
3819   }
3820   closedir(dir);
3821   return is_valid;
3822 }
3823 
3824 size_t os::Linux::setup_large_page_size() {
3825   _default_large_page_size = Linux::find_default_large_page_size();
3826   _large_page_size = _default_large_page_size;
3827 
3828   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != _large_page_size ) {
3829     if (is_valid_large_page_size(LargePageSizeInBytes)) {
3830       _large_page_size =  LargePageSizeInBytes;
3831     } else {
3832       warning("Setting LargePageSizeInBytes=" SIZE_FORMAT " has no effect on this OS. Default large page size is "
3833               SIZE_FORMAT "%s.",
3834               LargePageSizeInBytes,
3835               byte_size_in_proper_unit(_large_page_size), proper_unit_for_byte_size(_large_page_size));
3836     }
3837   }
3838 
3839   const size_t default_page_size = (size_t)Linux::page_size();
3840   if (_large_page_size > default_page_size) {
3841     _page_sizes[0] = _large_page_size;
3842     _page_sizes[1] = default_page_size;
3843     _page_sizes[2] = 0;
3844   }
3845 
3846   return _large_page_size;
3847 }
3848 
3849 size_t os::Linux::default_large_page_size() {
3850   return _default_large_page_size;
3851 }
3852 
3853 bool os::Linux::setup_large_page_type(size_t page_size) {
3854   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3855       FLAG_IS_DEFAULT(UseSHM) &&
3856       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3857 
3858     // The type of large pages has not been specified by the user.
3859 
3860     // Try UseHugeTLBFS and then UseSHM.
3861     UseHugeTLBFS = UseSHM = true;
3862 
3863     // Don't try UseTransparentHugePages since there are known
3864     // performance issues with it turned on. This might change in the future.
3865     UseTransparentHugePages = false;
3866   }
3867 
3868   if (UseTransparentHugePages) {
3869     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3870     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3871       UseHugeTLBFS = false;
3872       UseSHM = false;
3873       return true;
3874     }
3875     UseTransparentHugePages = false;
3876   }
3877 
3878   if (UseHugeTLBFS) {
3879     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3880     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3881       UseSHM = false;
3882       return true;
3883     }
3884     UseHugeTLBFS = false;
3885   }
3886 
3887   return UseSHM;
3888 }
3889 
3890 void os::large_page_init() {
3891   if (!UseLargePages &&
3892       !UseTransparentHugePages &&
3893       !UseHugeTLBFS &&
3894       !UseSHM) {
3895     // Not using large pages.
3896     return;
3897   }
3898 
3899   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3900     // The user explicitly turned off large pages.
3901     // Ignore the rest of the large pages flags.
3902     UseTransparentHugePages = false;
3903     UseHugeTLBFS = false;
3904     UseSHM = false;
3905     return;
3906   }
3907 
3908   size_t large_page_size = Linux::setup_large_page_size();
3909   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3910 
3911   set_coredump_filter(LARGEPAGES_BIT);
3912 }
3913 
3914 #ifndef SHM_HUGETLB
3915   #define SHM_HUGETLB 04000
3916 #endif
3917 
3918 #define shm_warning_format(format, ...)              \
3919   do {                                               \
3920     if (UseLargePages &&                             \
3921         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3922          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3923          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3924       warning(format, __VA_ARGS__);                  \
3925     }                                                \
3926   } while (0)
3927 
3928 #define shm_warning(str) shm_warning_format("%s", str)
3929 
3930 #define shm_warning_with_errno(str)                \
3931   do {                                             \
3932     int err = errno;                               \
3933     shm_warning_format(str " (error = %d)", err);  \
3934   } while (0)
3935 
3936 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3937   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3938 
3939   if (!is_aligned(alignment, SHMLBA)) {
3940     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3941     return NULL;
3942   }
3943 
3944   // To ensure that we get 'alignment' aligned memory from shmat,
3945   // we pre-reserve aligned virtual memory and then attach to that.
3946 
3947   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3948   if (pre_reserved_addr == NULL) {
3949     // Couldn't pre-reserve aligned memory.
3950     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3951     return NULL;
3952   }
3953 
3954   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3955   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3956 
3957   if ((intptr_t)addr == -1) {
3958     int err = errno;
3959     shm_warning_with_errno("Failed to attach shared memory.");
3960 
3961     assert(err != EACCES, "Unexpected error");
3962     assert(err != EIDRM,  "Unexpected error");
3963     assert(err != EINVAL, "Unexpected error");
3964 
3965     // Since we don't know if the kernel unmapped the pre-reserved memory area
3966     // we can't unmap it, since that would potentially unmap memory that was
3967     // mapped from other threads.
3968     return NULL;
3969   }
3970 
3971   return addr;
3972 }
3973 
3974 static char* shmat_at_address(int shmid, char* req_addr) {
3975   if (!is_aligned(req_addr, SHMLBA)) {
3976     assert(false, "Requested address needs to be SHMLBA aligned");
3977     return NULL;
3978   }
3979 
3980   char* addr = (char*)shmat(shmid, req_addr, 0);
3981 
3982   if ((intptr_t)addr == -1) {
3983     shm_warning_with_errno("Failed to attach shared memory.");
3984     return NULL;
3985   }
3986 
3987   return addr;
3988 }
3989 
3990 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3991   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3992   if (req_addr != NULL) {
3993     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3994     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3995     return shmat_at_address(shmid, req_addr);
3996   }
3997 
3998   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3999   // return large page size aligned memory addresses when req_addr == NULL.
4000   // However, if the alignment is larger than the large page size, we have
4001   // to manually ensure that the memory returned is 'alignment' aligned.
4002   if (alignment > os::large_page_size()) {
4003     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
4004     return shmat_with_alignment(shmid, bytes, alignment);
4005   } else {
4006     return shmat_at_address(shmid, NULL);
4007   }
4008 }
4009 
4010 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
4011                                             char* req_addr, bool exec) {
4012   // "exec" is passed in but not used.  Creating the shared image for
4013   // the code cache doesn't have an SHM_X executable permission to check.
4014   assert(UseLargePages && UseSHM, "only for SHM large pages");
4015   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4016   assert(is_aligned(req_addr, alignment), "Unaligned address");
4017 
4018   if (!is_aligned(bytes, os::large_page_size())) {
4019     return NULL; // Fallback to small pages.
4020   }
4021 
4022   // Create a large shared memory region to attach to based on size.
4023   // Currently, size is the total size of the heap.
4024   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
4025   if (shmid == -1) {
4026     // Possible reasons for shmget failure:
4027     // 1. shmmax is too small for Java heap.
4028     //    > check shmmax value: cat /proc/sys/kernel/shmmax
4029     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
4030     // 2. not enough large page memory.
4031     //    > check available large pages: cat /proc/meminfo
4032     //    > increase amount of large pages:
4033     //          echo new_value > /proc/sys/vm/nr_hugepages
4034     //      Note 1: different Linux may use different name for this property,
4035     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
4036     //      Note 2: it's possible there's enough physical memory available but
4037     //            they are so fragmented after a long run that they can't
4038     //            coalesce into large pages. Try to reserve large pages when
4039     //            the system is still "fresh".
4040     shm_warning_with_errno("Failed to reserve shared memory.");
4041     return NULL;
4042   }
4043 
4044   // Attach to the region.
4045   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
4046 
4047   // Remove shmid. If shmat() is successful, the actual shared memory segment
4048   // will be deleted when it's detached by shmdt() or when the process
4049   // terminates. If shmat() is not successful this will remove the shared
4050   // segment immediately.
4051   shmctl(shmid, IPC_RMID, NULL);
4052 
4053   return addr;
4054 }
4055 
4056 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
4057                                         int error) {
4058   assert(error == ENOMEM, "Only expect to fail if no memory is available");
4059 
4060   bool warn_on_failure = UseLargePages &&
4061       (!FLAG_IS_DEFAULT(UseLargePages) ||
4062        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
4063        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
4064 
4065   if (warn_on_failure) {
4066     char msg[128];
4067     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
4068                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
4069     warning("%s", msg);
4070   }
4071 }
4072 
4073 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
4074                                                         char* req_addr,
4075                                                         bool exec) {
4076   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4077   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
4078   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4079 
4080   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4081   int flags = MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB;
4082 
4083   if (os::large_page_size() != default_large_page_size()) {
4084     flags |= (exact_log2(os::large_page_size()) << MAP_HUGE_SHIFT);
4085   }
4086   char* addr = (char*)::mmap(req_addr, bytes, prot, flags, -1, 0);
4087 
4088   if (addr == MAP_FAILED) {
4089     warn_on_large_pages_failure(req_addr, bytes, errno);
4090     return NULL;
4091   }
4092 
4093   assert(is_aligned(addr, os::large_page_size()), "Must be");
4094 
4095   return addr;
4096 }
4097 
4098 // Reserve memory using mmap(MAP_HUGETLB).
4099 //  - bytes shall be a multiple of alignment.
4100 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4101 //  - alignment sets the alignment at which memory shall be allocated.
4102 //     It must be a multiple of allocation granularity.
4103 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4104 //  req_addr or NULL.
4105 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4106                                                          size_t alignment,
4107                                                          char* req_addr,
4108                                                          bool exec) {
4109   size_t large_page_size = os::large_page_size();
4110   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4111 
4112   assert(is_aligned(req_addr, alignment), "Must be");
4113   assert(is_aligned(bytes, alignment), "Must be");
4114 
4115   // First reserve - but not commit - the address range in small pages.
4116   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4117 
4118   if (start == NULL) {
4119     return NULL;
4120   }
4121 
4122   assert(is_aligned(start, alignment), "Must be");
4123 
4124   char* end = start + bytes;
4125 
4126   // Find the regions of the allocated chunk that can be promoted to large pages.
4127   char* lp_start = align_up(start, large_page_size);
4128   char* lp_end   = align_down(end, large_page_size);
4129 
4130   size_t lp_bytes = lp_end - lp_start;
4131 
4132   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4133 
4134   if (lp_bytes == 0) {
4135     // The mapped region doesn't even span the start and the end of a large page.
4136     // Fall back to allocate a non-special area.
4137     ::munmap(start, end - start);
4138     return NULL;
4139   }
4140 
4141   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4142   int flags = MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED;
4143   void* result;
4144 
4145   // Commit small-paged leading area.
4146   if (start != lp_start) {
4147     result = ::mmap(start, lp_start - start, prot, flags, -1, 0);
4148     if (result == MAP_FAILED) {
4149       ::munmap(lp_start, end - lp_start);
4150       return NULL;
4151     }
4152   }
4153 
4154   // Commit large-paged area.
4155   flags |= MAP_HUGETLB;
4156 
4157   if (os::large_page_size() != default_large_page_size()) {
4158     flags |= (exact_log2(os::large_page_size()) << MAP_HUGE_SHIFT);
4159   }
4160 
4161   result = ::mmap(lp_start, lp_bytes, prot, flags, -1, 0);
4162   if (result == MAP_FAILED) {
4163     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4164     // If the mmap above fails, the large pages region will be unmapped and we
4165     // have regions before and after with small pages. Release these regions.
4166     //
4167     // |  mapped  |  unmapped  |  mapped  |
4168     // ^          ^            ^          ^
4169     // start      lp_start     lp_end     end
4170     //
4171     ::munmap(start, lp_start - start);
4172     ::munmap(lp_end, end - lp_end);
4173     return NULL;
4174   }
4175 
4176   // Commit small-paged trailing area.
4177   if (lp_end != end) {
4178     result = ::mmap(lp_end, end - lp_end, prot,
4179                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4180                     -1, 0);
4181     if (result == MAP_FAILED) {
4182       ::munmap(start, lp_end - start);
4183       return NULL;
4184     }
4185   }
4186 
4187   return start;
4188 }
4189 
4190 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4191                                                    size_t alignment,
4192                                                    char* req_addr,
4193                                                    bool exec) {
4194   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4195   assert(is_aligned(req_addr, alignment), "Must be");
4196   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4197   assert(is_power_of_2(os::large_page_size()), "Must be");
4198   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4199 
4200   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4201     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4202   } else {
4203     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4204   }
4205 }
4206 
4207 char* os::pd_reserve_memory_special(size_t bytes, size_t alignment,
4208                                     char* req_addr, bool exec) {
4209   assert(UseLargePages, "only for large pages");
4210 
4211   char* addr;
4212   if (UseSHM) {
4213     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4214   } else {
4215     assert(UseHugeTLBFS, "must be");
4216     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4217   }
4218 
4219   if (addr != NULL) {
4220     if (UseNUMAInterleaving) {
4221       numa_make_global(addr, bytes);
4222     }
4223   }
4224 
4225   return addr;
4226 }
4227 
4228 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4229   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4230   return shmdt(base) == 0;
4231 }
4232 
4233 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4234   return pd_release_memory(base, bytes);
4235 }
4236 
4237 bool os::pd_release_memory_special(char* base, size_t bytes) {
4238   assert(UseLargePages, "only for large pages");
4239   bool res;
4240 
4241   if (UseSHM) {
4242     res = os::Linux::release_memory_special_shm(base, bytes);
4243   } else {
4244     assert(UseHugeTLBFS, "must be");
4245     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4246   }
4247   return res;
4248 }
4249 
4250 size_t os::large_page_size() {
4251   return _large_page_size;
4252 }
4253 
4254 // With SysV SHM the entire memory region must be allocated as shared
4255 // memory.
4256 // HugeTLBFS allows application to commit large page memory on demand.
4257 // However, when committing memory with HugeTLBFS fails, the region
4258 // that was supposed to be committed will lose the old reservation
4259 // and allow other threads to steal that memory region. Because of this
4260 // behavior we can't commit HugeTLBFS memory.
4261 bool os::can_commit_large_page_memory() {
4262   return UseTransparentHugePages;
4263 }
4264 
4265 bool os::can_execute_large_page_memory() {
4266   return UseTransparentHugePages || UseHugeTLBFS;
4267 }
4268 
4269 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4270   assert(file_desc >= 0, "file_desc is not valid");
4271   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4272   if (result != NULL) {
4273     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4274       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4275     }
4276   }
4277   return result;
4278 }
4279 
4280 // Reserve memory at an arbitrary address, only if that area is
4281 // available (and not reserved for something else).
4282 
4283 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4284   // Assert only that the size is a multiple of the page size, since
4285   // that's all that mmap requires, and since that's all we really know
4286   // about at this low abstraction level.  If we need higher alignment,
4287   // we can either pass an alignment to this method or verify alignment
4288   // in one of the methods further up the call chain.  See bug 5044738.
4289   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4290 
4291   // Repeatedly allocate blocks until the block is allocated at the
4292   // right spot.
4293 
4294   // Linux mmap allows caller to pass an address as hint; give it a try first,
4295   // if kernel honors the hint then we can return immediately.
4296   char * addr = anon_mmap(requested_addr, bytes, false);
4297   if (addr == requested_addr) {
4298     return requested_addr;
4299   }
4300 
4301   if (addr != NULL) {
4302     // mmap() is successful but it fails to reserve at the requested address
4303     anon_munmap(addr, bytes);
4304   }
4305 
4306   return NULL;
4307 }
4308 
4309 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4310 void os::infinite_sleep() {
4311   while (true) {    // sleep forever ...
4312     ::sleep(100);   // ... 100 seconds at a time
4313   }
4314 }
4315 
4316 // Used to convert frequent JVM_Yield() to nops
4317 bool os::dont_yield() {
4318   return DontYieldALot;
4319 }
4320 
4321 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4322 // actually give up the CPU. Since skip buddy (v2.6.28):
4323 //
4324 // * Sets the yielding task as skip buddy for current CPU's run queue.
4325 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4326 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4327 //
4328 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4329 // getting re-scheduled immediately.
4330 //
4331 void os::naked_yield() {
4332   sched_yield();
4333 }
4334 
4335 ////////////////////////////////////////////////////////////////////////////////
4336 // thread priority support
4337 
4338 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4339 // only supports dynamic priority, static priority must be zero. For real-time
4340 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4341 // However, for large multi-threaded applications, SCHED_RR is not only slower
4342 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4343 // of 5 runs - Sep 2005).
4344 //
4345 // The following code actually changes the niceness of kernel-thread/LWP. It
4346 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4347 // not the entire user process, and user level threads are 1:1 mapped to kernel
4348 // threads. It has always been the case, but could change in the future. For
4349 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4350 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4351 // (e.g., root privilege or CAP_SYS_NICE capability).
4352 
4353 int os::java_to_os_priority[CriticalPriority + 1] = {
4354   19,              // 0 Entry should never be used
4355 
4356    4,              // 1 MinPriority
4357    3,              // 2
4358    2,              // 3
4359 
4360    1,              // 4
4361    0,              // 5 NormPriority
4362   -1,              // 6
4363 
4364   -2,              // 7
4365   -3,              // 8
4366   -4,              // 9 NearMaxPriority
4367 
4368   -5,              // 10 MaxPriority
4369 
4370   -5               // 11 CriticalPriority
4371 };
4372 
4373 static int prio_init() {
4374   if (ThreadPriorityPolicy == 1) {
4375     if (geteuid() != 0) {
4376       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy) && !FLAG_IS_JIMAGE_RESOURCE(ThreadPriorityPolicy)) {
4377         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4378                 "e.g., being the root user. If the necessary permission is not " \
4379                 "possessed, changes to priority will be silently ignored.");
4380       }
4381     }
4382   }
4383   if (UseCriticalJavaThreadPriority) {
4384     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4385   }
4386   return 0;
4387 }
4388 
4389 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4390   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4391 
4392   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4393   return (ret == 0) ? OS_OK : OS_ERR;
4394 }
4395 
4396 OSReturn os::get_native_priority(const Thread* const thread,
4397                                  int *priority_ptr) {
4398   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4399     *priority_ptr = java_to_os_priority[NormPriority];
4400     return OS_OK;
4401   }
4402 
4403   errno = 0;
4404   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4405   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4406 }
4407 
4408 ////////////////////////////////////////////////////////////////////////////////
4409 // suspend/resume support
4410 
4411 //  The low-level signal-based suspend/resume support is a remnant from the
4412 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4413 //  within hotspot. Currently used by JFR's OSThreadSampler
4414 //
4415 //  The remaining code is greatly simplified from the more general suspension
4416 //  code that used to be used.
4417 //
4418 //  The protocol is quite simple:
4419 //  - suspend:
4420 //      - sends a signal to the target thread
4421 //      - polls the suspend state of the osthread using a yield loop
4422 //      - target thread signal handler (SR_handler) sets suspend state
4423 //        and blocks in sigsuspend until continued
4424 //  - resume:
4425 //      - sets target osthread state to continue
4426 //      - sends signal to end the sigsuspend loop in the SR_handler
4427 //
4428 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4429 //  but is checked for NULL in SR_handler as a thread termination indicator.
4430 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4431 //
4432 //  Note that resume_clear_context() and suspend_save_context() are needed
4433 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4434 //  which in part is used by:
4435 //    - Forte Analyzer: AsyncGetCallTrace()
4436 //    - StackBanging: get_frame_at_stack_banging_point()
4437 
4438 static void resume_clear_context(OSThread *osthread) {
4439   osthread->set_ucontext(NULL);
4440   osthread->set_siginfo(NULL);
4441 }
4442 
4443 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4444                                  ucontext_t* context) {
4445   osthread->set_ucontext(context);
4446   osthread->set_siginfo(siginfo);
4447 }
4448 
4449 // Handler function invoked when a thread's execution is suspended or
4450 // resumed. We have to be careful that only async-safe functions are
4451 // called here (Note: most pthread functions are not async safe and
4452 // should be avoided.)
4453 //
4454 // Note: sigwait() is a more natural fit than sigsuspend() from an
4455 // interface point of view, but sigwait() prevents the signal hander
4456 // from being run. libpthread would get very confused by not having
4457 // its signal handlers run and prevents sigwait()'s use with the
4458 // mutex granting granting signal.
4459 //
4460 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4461 //
4462 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4463   // Save and restore errno to avoid confusing native code with EINTR
4464   // after sigsuspend.
4465   int old_errno = errno;
4466 
4467   Thread* thread = Thread::current_or_null_safe();
4468   assert(thread != NULL, "Missing current thread in SR_handler");
4469 
4470   // On some systems we have seen signal delivery get "stuck" until the signal
4471   // mask is changed as part of thread termination. Check that the current thread
4472   // has not already terminated (via SR_lock()) - else the following assertion
4473   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4474   // destructor has completed.
4475 
4476   if (thread->SR_lock() == NULL) {
4477     return;
4478   }
4479 
4480   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4481 
4482   OSThread* osthread = thread->osthread();
4483 
4484   os::SuspendResume::State current = osthread->sr.state();
4485   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4486     suspend_save_context(osthread, siginfo, context);
4487 
4488     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4489     os::SuspendResume::State state = osthread->sr.suspended();
4490     if (state == os::SuspendResume::SR_SUSPENDED) {
4491       sigset_t suspend_set;  // signals for sigsuspend()
4492       sigemptyset(&suspend_set);
4493       // get current set of blocked signals and unblock resume signal
4494       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4495       sigdelset(&suspend_set, SR_signum);
4496 
4497       sr_semaphore.signal();
4498       // wait here until we are resumed
4499       while (1) {
4500         sigsuspend(&suspend_set);
4501 
4502         os::SuspendResume::State result = osthread->sr.running();
4503         if (result == os::SuspendResume::SR_RUNNING) {
4504           sr_semaphore.signal();
4505           break;
4506         }
4507       }
4508 
4509     } else if (state == os::SuspendResume::SR_RUNNING) {
4510       // request was cancelled, continue
4511     } else {
4512       ShouldNotReachHere();
4513     }
4514 
4515     resume_clear_context(osthread);
4516   } else if (current == os::SuspendResume::SR_RUNNING) {
4517     // request was cancelled, continue
4518   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4519     // ignore
4520   } else {
4521     // ignore
4522   }
4523 
4524   errno = old_errno;
4525 }
4526 
4527 static int SR_initialize() {
4528   struct sigaction act;
4529   char *s;
4530 
4531   // Get signal number to use for suspend/resume
4532   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4533     int sig = ::strtol(s, 0, 10);
4534     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4535         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4536       SR_signum = sig;
4537     } else {
4538       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4539               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4540     }
4541   }
4542 
4543   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4544          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4545 
4546   sigemptyset(&SR_sigset);
4547   sigaddset(&SR_sigset, SR_signum);
4548 
4549   // Set up signal handler for suspend/resume
4550   act.sa_flags = SA_RESTART|SA_SIGINFO;
4551   act.sa_handler = (void (*)(int)) SR_handler;
4552 
4553   // SR_signum is blocked by default.
4554   // 4528190 - We also need to block pthread restart signal (32 on all
4555   // supported Linux platforms). Note that LinuxThreads need to block
4556   // this signal for all threads to work properly. So we don't have
4557   // to use hard-coded signal number when setting up the mask.
4558   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4559 
4560   if (sigaction(SR_signum, &act, 0) == -1) {
4561     return -1;
4562   }
4563 
4564   // Save signal flag
4565   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4566   return 0;
4567 }
4568 
4569 static int sr_notify(OSThread* osthread) {
4570   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4571   assert_status(status == 0, status, "pthread_kill");
4572   return status;
4573 }
4574 
4575 // "Randomly" selected value for how long we want to spin
4576 // before bailing out on suspending a thread, also how often
4577 // we send a signal to a thread we want to resume
4578 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4579 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4580 
4581 // returns true on success and false on error - really an error is fatal
4582 // but this seems the normal response to library errors
4583 static bool do_suspend(OSThread* osthread) {
4584   assert(osthread->sr.is_running(), "thread should be running");
4585   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4586 
4587   // mark as suspended and send signal
4588   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4589     // failed to switch, state wasn't running?
4590     ShouldNotReachHere();
4591     return false;
4592   }
4593 
4594   if (sr_notify(osthread) != 0) {
4595     ShouldNotReachHere();
4596   }
4597 
4598   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4599   while (true) {
4600     if (sr_semaphore.timedwait(2)) {
4601       break;
4602     } else {
4603       // timeout
4604       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4605       if (cancelled == os::SuspendResume::SR_RUNNING) {
4606         return false;
4607       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4608         // make sure that we consume the signal on the semaphore as well
4609         sr_semaphore.wait();
4610         break;
4611       } else {
4612         ShouldNotReachHere();
4613         return false;
4614       }
4615     }
4616   }
4617 
4618   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4619   return true;
4620 }
4621 
4622 static void do_resume(OSThread* osthread) {
4623   assert(osthread->sr.is_suspended(), "thread should be suspended");
4624   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4625 
4626   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4627     // failed to switch to WAKEUP_REQUEST
4628     ShouldNotReachHere();
4629     return;
4630   }
4631 
4632   while (true) {
4633     if (sr_notify(osthread) == 0) {
4634       if (sr_semaphore.timedwait(2)) {
4635         if (osthread->sr.is_running()) {
4636           return;
4637         }
4638       }
4639     } else {
4640       ShouldNotReachHere();
4641     }
4642   }
4643 
4644   guarantee(osthread->sr.is_running(), "Must be running!");
4645 }
4646 
4647 ///////////////////////////////////////////////////////////////////////////////////
4648 // signal handling (except suspend/resume)
4649 
4650 // This routine may be used by user applications as a "hook" to catch signals.
4651 // The user-defined signal handler must pass unrecognized signals to this
4652 // routine, and if it returns true (non-zero), then the signal handler must
4653 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4654 // routine will never retun false (zero), but instead will execute a VM panic
4655 // routine kill the process.
4656 //
4657 // If this routine returns false, it is OK to call it again.  This allows
4658 // the user-defined signal handler to perform checks either before or after
4659 // the VM performs its own checks.  Naturally, the user code would be making
4660 // a serious error if it tried to handle an exception (such as a null check
4661 // or breakpoint) that the VM was generating for its own correct operation.
4662 //
4663 // This routine may recognize any of the following kinds of signals:
4664 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4665 // It should be consulted by handlers for any of those signals.
4666 //
4667 // The caller of this routine must pass in the three arguments supplied
4668 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4669 // field of the structure passed to sigaction().  This routine assumes that
4670 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4671 //
4672 // Note that the VM will print warnings if it detects conflicting signal
4673 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4674 //
4675 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4676                                                  siginfo_t* siginfo,
4677                                                  void* ucontext,
4678                                                  int abort_if_unrecognized);
4679 
4680 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4681   assert(info != NULL && uc != NULL, "it must be old kernel");
4682   int orig_errno = errno;  // Preserve errno value over signal handler.
4683   JVM_handle_linux_signal(sig, info, uc, true);
4684   errno = orig_errno;
4685 }
4686 
4687 
4688 // This boolean allows users to forward their own non-matching signals
4689 // to JVM_handle_linux_signal, harmlessly.
4690 bool os::Linux::signal_handlers_are_installed = false;
4691 
4692 // For signal-chaining
4693 bool os::Linux::libjsig_is_loaded = false;
4694 typedef struct sigaction *(*get_signal_t)(int);
4695 get_signal_t os::Linux::get_signal_action = NULL;
4696 
4697 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4698   struct sigaction *actp = NULL;
4699 
4700   if (libjsig_is_loaded) {
4701     // Retrieve the old signal handler from libjsig
4702     actp = (*get_signal_action)(sig);
4703   }
4704   if (actp == NULL) {
4705     // Retrieve the preinstalled signal handler from jvm
4706     actp = os::Posix::get_preinstalled_handler(sig);
4707   }
4708 
4709   return actp;
4710 }
4711 
4712 static bool call_chained_handler(struct sigaction *actp, int sig,
4713                                  siginfo_t *siginfo, void *context) {
4714   // Call the old signal handler
4715   if (actp->sa_handler == SIG_DFL) {
4716     // It's more reasonable to let jvm treat it as an unexpected exception
4717     // instead of taking the default action.
4718     return false;
4719   } else if (actp->sa_handler != SIG_IGN) {
4720     if ((actp->sa_flags & SA_NODEFER) == 0) {
4721       // automaticlly block the signal
4722       sigaddset(&(actp->sa_mask), sig);
4723     }
4724 
4725     sa_handler_t hand = NULL;
4726     sa_sigaction_t sa = NULL;
4727     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4728     // retrieve the chained handler
4729     if (siginfo_flag_set) {
4730       sa = actp->sa_sigaction;
4731     } else {
4732       hand = actp->sa_handler;
4733     }
4734 
4735     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4736       actp->sa_handler = SIG_DFL;
4737     }
4738 
4739     // try to honor the signal mask
4740     sigset_t oset;
4741     sigemptyset(&oset);
4742     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4743 
4744     // call into the chained handler
4745     if (siginfo_flag_set) {
4746       (*sa)(sig, siginfo, context);
4747     } else {
4748       (*hand)(sig);
4749     }
4750 
4751     // restore the signal mask
4752     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4753   }
4754   // Tell jvm's signal handler the signal is taken care of.
4755   return true;
4756 }
4757 
4758 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4759   bool chained = false;
4760   // signal-chaining
4761   if (UseSignalChaining) {
4762     struct sigaction *actp = get_chained_signal_action(sig);
4763     if (actp != NULL) {
4764       chained = call_chained_handler(actp, sig, siginfo, context);
4765     }
4766   }
4767   return chained;
4768 }
4769 
4770 // for diagnostic
4771 int sigflags[NSIG];
4772 
4773 int os::Linux::get_our_sigflags(int sig) {
4774   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4775   return sigflags[sig];
4776 }
4777 
4778 void os::Linux::set_our_sigflags(int sig, int flags) {
4779   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4780   if (sig > 0 && sig < NSIG) {
4781     sigflags[sig] = flags;
4782   }
4783 }
4784 
4785 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4786   // Check for overwrite.
4787   struct sigaction oldAct;
4788   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4789 
4790   void* oldhand = oldAct.sa_sigaction
4791                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4792                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4793   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4794       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4795       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4796     if (AllowUserSignalHandlers || !set_installed) {
4797       // Do not overwrite; user takes responsibility to forward to us.
4798       return;
4799     } else if (UseSignalChaining) {
4800       // save the old handler in jvm
4801       os::Posix::save_preinstalled_handler(sig, oldAct);
4802       // libjsig also interposes the sigaction() call below and saves the
4803       // old sigaction on it own.
4804     } else {
4805       fatal("Encountered unexpected pre-existing sigaction handler "
4806             "%#lx for signal %d.", (long)oldhand, sig);
4807     }
4808   }
4809 
4810   struct sigaction sigAct;
4811   sigfillset(&(sigAct.sa_mask));
4812   sigAct.sa_handler = SIG_DFL;
4813   if (!set_installed) {
4814     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4815   } else {
4816     sigAct.sa_sigaction = signalHandler;
4817     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4818   }
4819   // Save flags, which are set by ours
4820   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4821   sigflags[sig] = sigAct.sa_flags;
4822 
4823   int ret = sigaction(sig, &sigAct, &oldAct);
4824   assert(ret == 0, "check");
4825 
4826   void* oldhand2  = oldAct.sa_sigaction
4827                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4828                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4829   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4830 }
4831 
4832 // install signal handlers for signals that HotSpot needs to
4833 // handle in order to support Java-level exception handling.
4834 
4835 void os::Linux::install_signal_handlers() {
4836   if (!signal_handlers_are_installed) {
4837     signal_handlers_are_installed = true;
4838 
4839     // signal-chaining
4840     typedef void (*signal_setting_t)();
4841     signal_setting_t begin_signal_setting = NULL;
4842     signal_setting_t end_signal_setting = NULL;
4843     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4844                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4845     if (begin_signal_setting != NULL) {
4846       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4847                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4848       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4849                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4850       libjsig_is_loaded = true;
4851       assert(UseSignalChaining, "should enable signal-chaining");
4852     }
4853     if (libjsig_is_loaded) {
4854       // Tell libjsig jvm is setting signal handlers
4855       (*begin_signal_setting)();
4856     }
4857 
4858     set_signal_handler(SIGSEGV, true);
4859     set_signal_handler(SIGPIPE, true);
4860     set_signal_handler(SIGBUS, true);
4861     set_signal_handler(SIGILL, true);
4862     set_signal_handler(SIGFPE, true);
4863 #if defined(PPC64)
4864     set_signal_handler(SIGTRAP, true);
4865 #endif
4866     set_signal_handler(SIGXFSZ, true);
4867 
4868     if (libjsig_is_loaded) {
4869       // Tell libjsig jvm finishes setting signal handlers
4870       (*end_signal_setting)();
4871     }
4872 
4873     // We don't activate signal checker if libjsig is in place, we trust ourselves
4874     // and if UserSignalHandler is installed all bets are off.
4875     // Log that signal checking is off only if -verbose:jni is specified.
4876     if (CheckJNICalls) {
4877       if (libjsig_is_loaded) {
4878         log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
4879         check_signals = false;
4880       }
4881       if (AllowUserSignalHandlers) {
4882         log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4883         check_signals = false;
4884       }
4885     }
4886   }
4887 }
4888 
4889 // This is the fastest way to get thread cpu time on Linux.
4890 // Returns cpu time (user+sys) for any thread, not only for current.
4891 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4892 // It might work on 2.6.10+ with a special kernel/glibc patch.
4893 // For reference, please, see IEEE Std 1003.1-2004:
4894 //   http://www.unix.org/single_unix_specification
4895 
4896 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4897   struct timespec tp;
4898   int rc = os::Posix::clock_gettime(clockid, &tp);
4899   assert(rc == 0, "clock_gettime is expected to return 0 code");
4900 
4901   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4902 }
4903 
4904 /////
4905 // glibc on Linux platform uses non-documented flag
4906 // to indicate, that some special sort of signal
4907 // trampoline is used.
4908 // We will never set this flag, and we should
4909 // ignore this flag in our diagnostic
4910 #ifdef SIGNIFICANT_SIGNAL_MASK
4911   #undef SIGNIFICANT_SIGNAL_MASK
4912 #endif
4913 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4914 
4915 static const char* get_signal_handler_name(address handler,
4916                                            char* buf, int buflen) {
4917   int offset = 0;
4918   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4919   if (found) {
4920     // skip directory names
4921     const char *p1, *p2;
4922     p1 = buf;
4923     size_t len = strlen(os::file_separator());
4924     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4925     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4926   } else {
4927     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4928   }
4929   return buf;
4930 }
4931 
4932 static void print_signal_handler(outputStream* st, int sig,
4933                                  char* buf, size_t buflen) {
4934   struct sigaction sa;
4935 
4936   sigaction(sig, NULL, &sa);
4937 
4938   // See comment for SIGNIFICANT_SIGNAL_MASK define
4939   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4940 
4941   st->print("%s: ", os::exception_name(sig, buf, buflen));
4942 
4943   address handler = (sa.sa_flags & SA_SIGINFO)
4944     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4945     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4946 
4947   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4948     st->print("SIG_DFL");
4949   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4950     st->print("SIG_IGN");
4951   } else {
4952     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4953   }
4954 
4955   st->print(", sa_mask[0]=");
4956   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4957 
4958   address rh = VMError::get_resetted_sighandler(sig);
4959   // May be, handler was resetted by VMError?
4960   if (rh != NULL) {
4961     handler = rh;
4962     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4963   }
4964 
4965   st->print(", sa_flags=");
4966   os::Posix::print_sa_flags(st, sa.sa_flags);
4967 
4968   // Check: is it our handler?
4969   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4970       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4971     // It is our signal handler
4972     // check for flags, reset system-used one!
4973     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4974       st->print(
4975                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4976                 os::Linux::get_our_sigflags(sig));
4977     }
4978   }
4979   st->cr();
4980 }
4981 
4982 
4983 #define DO_SIGNAL_CHECK(sig)                      \
4984   do {                                            \
4985     if (!sigismember(&check_signal_done, sig)) {  \
4986       os::Linux::check_signal_handler(sig);       \
4987     }                                             \
4988   } while (0)
4989 
4990 // This method is a periodic task to check for misbehaving JNI applications
4991 // under CheckJNI, we can add any periodic checks here
4992 
4993 void os::run_periodic_checks() {
4994   if (check_signals == false) return;
4995 
4996   // SEGV and BUS if overridden could potentially prevent
4997   // generation of hs*.log in the event of a crash, debugging
4998   // such a case can be very challenging, so we absolutely
4999   // check the following for a good measure:
5000   DO_SIGNAL_CHECK(SIGSEGV);
5001   DO_SIGNAL_CHECK(SIGILL);
5002   DO_SIGNAL_CHECK(SIGFPE);
5003   DO_SIGNAL_CHECK(SIGBUS);
5004   DO_SIGNAL_CHECK(SIGPIPE);
5005   DO_SIGNAL_CHECK(SIGXFSZ);
5006 #if defined(PPC64)
5007   DO_SIGNAL_CHECK(SIGTRAP);
5008 #endif
5009 
5010   // ReduceSignalUsage allows the user to override these handlers
5011   // see comments at the very top and jvm_md.h
5012   if (!ReduceSignalUsage) {
5013     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
5014     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
5015     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
5016     DO_SIGNAL_CHECK(BREAK_SIGNAL);
5017   }
5018 
5019   DO_SIGNAL_CHECK(SR_signum);
5020 }
5021 
5022 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
5023 
5024 static os_sigaction_t os_sigaction = NULL;
5025 
5026 void os::Linux::check_signal_handler(int sig) {
5027   char buf[O_BUFLEN];
5028   address jvmHandler = NULL;
5029 
5030 
5031   struct sigaction act;
5032   if (os_sigaction == NULL) {
5033     // only trust the default sigaction, in case it has been interposed
5034     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
5035     if (os_sigaction == NULL) return;
5036   }
5037 
5038   os_sigaction(sig, (struct sigaction*)NULL, &act);
5039 
5040 
5041   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
5042 
5043   address thisHandler = (act.sa_flags & SA_SIGINFO)
5044     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
5045     : CAST_FROM_FN_PTR(address, act.sa_handler);
5046 
5047 
5048   switch (sig) {
5049   case SIGSEGV:
5050   case SIGBUS:
5051   case SIGFPE:
5052   case SIGPIPE:
5053   case SIGILL:
5054   case SIGXFSZ:
5055     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5056     break;
5057 
5058   case SHUTDOWN1_SIGNAL:
5059   case SHUTDOWN2_SIGNAL:
5060   case SHUTDOWN3_SIGNAL:
5061   case BREAK_SIGNAL:
5062     jvmHandler = (address)user_handler();
5063     break;
5064 
5065   default:
5066     if (sig == SR_signum) {
5067       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5068     } else {
5069       return;
5070     }
5071     break;
5072   }
5073 
5074   if (thisHandler != jvmHandler) {
5075     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5076     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5077     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5078     // No need to check this sig any longer
5079     sigaddset(&check_signal_done, sig);
5080     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5081     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5082       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5083                     exception_name(sig, buf, O_BUFLEN));
5084     }
5085   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5086     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5087     tty->print("expected:");
5088     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5089     tty->cr();
5090     tty->print("  found:");
5091     os::Posix::print_sa_flags(tty, act.sa_flags);
5092     tty->cr();
5093     // No need to check this sig any longer
5094     sigaddset(&check_signal_done, sig);
5095   }
5096 
5097   // Dump all the signal
5098   if (sigismember(&check_signal_done, sig)) {
5099     print_signal_handlers(tty, buf, O_BUFLEN);
5100   }
5101 }
5102 
5103 extern void report_error(char* file_name, int line_no, char* title,
5104                          char* format, ...);
5105 
5106 // this is called _before_ most of the global arguments have been parsed
5107 void os::init(void) {
5108   char dummy;   // used to get a guess on initial stack address
5109 
5110   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5111 
5112   init_random(1234567);
5113 
5114   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5115   if (Linux::page_size() == -1) {
5116     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5117           os::strerror(errno));
5118   }
5119   init_page_sizes((size_t) Linux::page_size());
5120 
5121   Linux::initialize_system_info();
5122 
5123   os::Linux::CPUPerfTicks pticks;
5124   bool res = os::Linux::get_tick_information(&pticks, -1);
5125 
5126   if (res && pticks.has_steal_ticks) {
5127     has_initial_tick_info = true;
5128     initial_total_ticks = pticks.total;
5129     initial_steal_ticks = pticks.steal;
5130   }
5131 
5132   // _main_thread points to the thread that created/loaded the JVM.
5133   Linux::_main_thread = pthread_self();
5134 
5135   // retrieve entry point for pthread_setname_np
5136   Linux::_pthread_setname_np =
5137     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5138 
5139   os::Posix::init();
5140 
5141   initial_time_count = javaTimeNanos();
5142 
5143   // Always warn if no monotonic clock available
5144   if (!os::Posix::supports_monotonic_clock()) {
5145     warning("No monotonic clock was available - timed services may "    \
5146             "be adversely affected if the time-of-day clock changes");
5147   }
5148 }
5149 
5150 // To install functions for atexit system call
5151 extern "C" {
5152   static void perfMemory_exit_helper() {
5153     perfMemory_exit();
5154   }
5155 }
5156 
5157 void os::pd_init_container_support() {
5158   OSContainer::init();
5159 }
5160 
5161 void os::Linux::numa_init() {
5162 
5163   // Java can be invoked as
5164   // 1. Without numactl and heap will be allocated/configured on all nodes as
5165   //    per the system policy.
5166   // 2. With numactl --interleave:
5167   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5168   //      API for membind case bitmask is reset.
5169   //      Interleave is only hint and Kernel can fallback to other nodes if
5170   //      no memory is available on the target nodes.
5171   // 3. With numactl --membind:
5172   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5173   //      interleave case returns bitmask of all nodes.
5174   // numa_all_nodes_ptr holds bitmask of all nodes.
5175   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5176   // bitmask when externally configured to run on all or fewer nodes.
5177 
5178   if (!Linux::libnuma_init()) {
5179     UseNUMA = false;
5180   } else {
5181     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5182       // If there's only one node (they start from 0) or if the process
5183       // is bound explicitly to a single node using membind, disable NUMA unless
5184       // user explicilty forces NUMA optimizations on single-node/UMA systems
5185       UseNUMA = ForceNUMA;
5186     } else {
5187 
5188       LogTarget(Info,os) log;
5189       LogStream ls(log);
5190 
5191       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5192 
5193       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5194       const char* numa_mode = "membind";
5195 
5196       if (Linux::is_running_in_interleave_mode()) {
5197         bmp = Linux::_numa_interleave_bitmask;
5198         numa_mode = "interleave";
5199       }
5200 
5201       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5202                " Heap will be configured using NUMA memory nodes:", numa_mode);
5203 
5204       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5205         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5206           ls.print(" %d", node);
5207         }
5208       }
5209     }
5210   }
5211 
5212   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5213     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5214     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5215     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5216     // and disable adaptive resizing.
5217     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5218       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5219               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5220       UseAdaptiveSizePolicy = false;
5221       UseAdaptiveNUMAChunkSizing = false;
5222     }
5223   }
5224 }
5225 
5226 // this is called _after_ the global arguments have been parsed
5227 jint os::init_2(void) {
5228 
5229   // This could be set after os::Posix::init() but all platforms
5230   // have to set it the same so we have to mirror Solaris.
5231   DEBUG_ONLY(os::set_mutex_init_done();)
5232 
5233   os::Posix::init_2();
5234 
5235   Linux::fast_thread_clock_init();
5236 
5237   // initialize suspend/resume support - must do this before signal_sets_init()
5238   if (SR_initialize() != 0) {
5239     perror("SR_initialize failed");
5240     return JNI_ERR;
5241   }
5242 
5243   Linux::signal_sets_init();
5244   Linux::install_signal_handlers();
5245   // Initialize data for jdk.internal.misc.Signal
5246   if (!ReduceSignalUsage) {
5247     jdk_misc_signal_init();
5248   }
5249 
5250   if (AdjustStackSizeForTLS) {
5251     get_minstack_init();
5252   }
5253 
5254   // Check and sets minimum stack sizes against command line options
5255   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5256     return JNI_ERR;
5257   }
5258 
5259 #if defined(IA32)
5260   // Need to ensure we've determined the process's initial stack to
5261   // perform the workaround
5262   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5263   workaround_expand_exec_shield_cs_limit();
5264 #else
5265   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5266   if (!suppress_primordial_thread_resolution) {
5267     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5268   }
5269 #endif
5270 
5271   Linux::libpthread_init();
5272   Linux::sched_getcpu_init();
5273   log_info(os)("HotSpot is running with %s, %s",
5274                Linux::glibc_version(), Linux::libpthread_version());
5275 
5276   if (UseNUMA) {
5277     Linux::numa_init();
5278   }
5279 
5280   if (MaxFDLimit) {
5281     // set the number of file descriptors to max. print out error
5282     // if getrlimit/setrlimit fails but continue regardless.
5283     struct rlimit nbr_files;
5284     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5285     if (status != 0) {
5286       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5287     } else {
5288       nbr_files.rlim_cur = nbr_files.rlim_max;
5289       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5290       if (status != 0) {
5291         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5292       }
5293     }
5294   }
5295 
5296   // at-exit methods are called in the reverse order of their registration.
5297   // atexit functions are called on return from main or as a result of a
5298   // call to exit(3C). There can be only 32 of these functions registered
5299   // and atexit() does not set errno.
5300 
5301   if (PerfAllowAtExitRegistration) {
5302     // only register atexit functions if PerfAllowAtExitRegistration is set.
5303     // atexit functions can be delayed until process exit time, which
5304     // can be problematic for embedded VM situations. Embedded VMs should
5305     // call DestroyJavaVM() to assure that VM resources are released.
5306 
5307     // note: perfMemory_exit_helper atexit function may be removed in
5308     // the future if the appropriate cleanup code can be added to the
5309     // VM_Exit VMOperation's doit method.
5310     if (atexit(perfMemory_exit_helper) != 0) {
5311       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5312     }
5313   }
5314 
5315   // initialize thread priority policy
5316   prio_init();
5317 
5318   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5319     set_coredump_filter(DAX_SHARED_BIT);
5320   }
5321 
5322   if (DumpPrivateMappingsInCore) {
5323     set_coredump_filter(FILE_BACKED_PVT_BIT);
5324   }
5325 
5326   if (DumpSharedMappingsInCore) {
5327     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5328   }
5329 
5330   return JNI_OK;
5331 }
5332 
5333 // older glibc versions don't have this macro (which expands to
5334 // an optimized bit-counting function) so we have to roll our own
5335 #ifndef CPU_COUNT
5336 
5337 static int _cpu_count(const cpu_set_t* cpus) {
5338   int count = 0;
5339   // only look up to the number of configured processors
5340   for (int i = 0; i < os::processor_count(); i++) {
5341     if (CPU_ISSET(i, cpus)) {
5342       count++;
5343     }
5344   }
5345   return count;
5346 }
5347 
5348 #define CPU_COUNT(cpus) _cpu_count(cpus)
5349 
5350 #endif // CPU_COUNT
5351 
5352 // Get the current number of available processors for this process.
5353 // This value can change at any time during a process's lifetime.
5354 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5355 // If it appears there may be more than 1024 processors then we do a
5356 // dynamic check - see 6515172 for details.
5357 // If anything goes wrong we fallback to returning the number of online
5358 // processors - which can be greater than the number available to the process.
5359 int os::Linux::active_processor_count() {
5360   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5361   cpu_set_t* cpus_p = &cpus;
5362   int cpus_size = sizeof(cpu_set_t);
5363 
5364   int configured_cpus = os::processor_count();  // upper bound on available cpus
5365   int cpu_count = 0;
5366 
5367 // old build platforms may not support dynamic cpu sets
5368 #ifdef CPU_ALLOC
5369 
5370   // To enable easy testing of the dynamic path on different platforms we
5371   // introduce a diagnostic flag: UseCpuAllocPath
5372   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5373     // kernel may use a mask bigger than cpu_set_t
5374     log_trace(os)("active_processor_count: using dynamic path %s"
5375                   "- configured processors: %d",
5376                   UseCpuAllocPath ? "(forced) " : "",
5377                   configured_cpus);
5378     cpus_p = CPU_ALLOC(configured_cpus);
5379     if (cpus_p != NULL) {
5380       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5381       // zero it just to be safe
5382       CPU_ZERO_S(cpus_size, cpus_p);
5383     }
5384     else {
5385        // failed to allocate so fallback to online cpus
5386        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5387        log_trace(os)("active_processor_count: "
5388                      "CPU_ALLOC failed (%s) - using "
5389                      "online processor count: %d",
5390                      os::strerror(errno), online_cpus);
5391        return online_cpus;
5392     }
5393   }
5394   else {
5395     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5396                   configured_cpus);
5397   }
5398 #else // CPU_ALLOC
5399 // these stubs won't be executed
5400 #define CPU_COUNT_S(size, cpus) -1
5401 #define CPU_FREE(cpus)
5402 
5403   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5404                 configured_cpus);
5405 #endif // CPU_ALLOC
5406 
5407   // pid 0 means the current thread - which we have to assume represents the process
5408   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5409     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5410       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5411     }
5412     else {
5413       cpu_count = CPU_COUNT(cpus_p);
5414     }
5415     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5416   }
5417   else {
5418     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5419     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5420             "which may exceed available processors", os::strerror(errno), cpu_count);
5421   }
5422 
5423   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5424     CPU_FREE(cpus_p);
5425   }
5426 
5427   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5428   return cpu_count;
5429 }
5430 
5431 // Determine the active processor count from one of
5432 // three different sources:
5433 //
5434 // 1. User option -XX:ActiveProcessorCount
5435 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5436 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5437 //
5438 // Option 1, if specified, will always override.
5439 // If the cgroup subsystem is active and configured, we
5440 // will return the min of the cgroup and option 2 results.
5441 // This is required since tools, such as numactl, that
5442 // alter cpu affinity do not update cgroup subsystem
5443 // cpuset configuration files.
5444 int os::active_processor_count() {
5445   // User has overridden the number of active processors
5446   if (ActiveProcessorCount > 0) {
5447     log_trace(os)("active_processor_count: "
5448                   "active processor count set by user : %d",
5449                   ActiveProcessorCount);
5450     return ActiveProcessorCount;
5451   }
5452 
5453   int active_cpus;
5454   if (OSContainer::is_containerized()) {
5455     active_cpus = OSContainer::active_processor_count();
5456     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5457                    active_cpus);
5458   } else {
5459     active_cpus = os::Linux::active_processor_count();
5460   }
5461 
5462   return active_cpus;
5463 }
5464 
5465 uint os::processor_id() {
5466   const int id = Linux::sched_getcpu();
5467   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5468   return (uint)id;
5469 }
5470 
5471 void os::set_native_thread_name(const char *name) {
5472   if (Linux::_pthread_setname_np) {
5473     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5474     snprintf(buf, sizeof(buf), "%s", name);
5475     buf[sizeof(buf) - 1] = '\0';
5476     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5477     // ERANGE should not happen; all other errors should just be ignored.
5478     assert(rc != ERANGE, "pthread_setname_np failed");
5479   }
5480 }
5481 
5482 bool os::bind_to_processor(uint processor_id) {
5483   // Not yet implemented.
5484   return false;
5485 }
5486 
5487 ///
5488 
5489 void os::SuspendedThreadTask::internal_do_task() {
5490   if (do_suspend(_thread->osthread())) {
5491     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5492     do_task(context);
5493     do_resume(_thread->osthread());
5494   }
5495 }
5496 
5497 ////////////////////////////////////////////////////////////////////////////////
5498 // debug support
5499 
5500 bool os::find(address addr, outputStream* st) {
5501   Dl_info dlinfo;
5502   memset(&dlinfo, 0, sizeof(dlinfo));
5503   if (dladdr(addr, &dlinfo) != 0) {
5504     st->print(PTR_FORMAT ": ", p2i(addr));
5505     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5506       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5507                 p2i(addr) - p2i(dlinfo.dli_saddr));
5508     } else if (dlinfo.dli_fbase != NULL) {
5509       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5510     } else {
5511       st->print("<absolute address>");
5512     }
5513     if (dlinfo.dli_fname != NULL) {
5514       st->print(" in %s", dlinfo.dli_fname);
5515     }
5516     if (dlinfo.dli_fbase != NULL) {
5517       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5518     }
5519     st->cr();
5520 
5521     if (Verbose) {
5522       // decode some bytes around the PC
5523       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5524       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5525       address       lowest = (address) dlinfo.dli_sname;
5526       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5527       if (begin < lowest)  begin = lowest;
5528       Dl_info dlinfo2;
5529       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5530           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5531         end = (address) dlinfo2.dli_saddr;
5532       }
5533       Disassembler::decode(begin, end, st);
5534     }
5535     return true;
5536   }
5537   return false;
5538 }
5539 
5540 ////////////////////////////////////////////////////////////////////////////////
5541 // misc
5542 
5543 // This does not do anything on Linux. This is basically a hook for being
5544 // able to use structured exception handling (thread-local exception filters)
5545 // on, e.g., Win32.
5546 void
5547 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5548                          JavaCallArguments* args, Thread* thread) {
5549   f(value, method, args, thread);
5550 }
5551 
5552 void os::print_statistics() {
5553 }
5554 
5555 bool os::message_box(const char* title, const char* message) {
5556   int i;
5557   fdStream err(defaultStream::error_fd());
5558   for (i = 0; i < 78; i++) err.print_raw("=");
5559   err.cr();
5560   err.print_raw_cr(title);
5561   for (i = 0; i < 78; i++) err.print_raw("-");
5562   err.cr();
5563   err.print_raw_cr(message);
5564   for (i = 0; i < 78; i++) err.print_raw("=");
5565   err.cr();
5566 
5567   char buf[16];
5568   // Prevent process from exiting upon "read error" without consuming all CPU
5569   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5570 
5571   return buf[0] == 'y' || buf[0] == 'Y';
5572 }
5573 
5574 // Is a (classpath) directory empty?
5575 bool os::dir_is_empty(const char* path) {
5576   DIR *dir = NULL;
5577   struct dirent *ptr;
5578 
5579   dir = opendir(path);
5580   if (dir == NULL) return true;
5581 
5582   // Scan the directory
5583   bool result = true;
5584   while (result && (ptr = readdir(dir)) != NULL) {
5585     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5586       result = false;
5587     }
5588   }
5589   closedir(dir);
5590   return result;
5591 }
5592 
5593 // This code originates from JDK's sysOpen and open64_w
5594 // from src/solaris/hpi/src/system_md.c
5595 
5596 int os::open(const char *path, int oflag, int mode) {
5597   if (strlen(path) > MAX_PATH - 1) {
5598     errno = ENAMETOOLONG;
5599     return -1;
5600   }
5601 
5602   // All file descriptors that are opened in the Java process and not
5603   // specifically destined for a subprocess should have the close-on-exec
5604   // flag set.  If we don't set it, then careless 3rd party native code
5605   // might fork and exec without closing all appropriate file descriptors
5606   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5607   // turn might:
5608   //
5609   // - cause end-of-file to fail to be detected on some file
5610   //   descriptors, resulting in mysterious hangs, or
5611   //
5612   // - might cause an fopen in the subprocess to fail on a system
5613   //   suffering from bug 1085341.
5614   //
5615   // (Yes, the default setting of the close-on-exec flag is a Unix
5616   // design flaw)
5617   //
5618   // See:
5619   // 1085341: 32-bit stdio routines should support file descriptors >255
5620   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5621   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5622   //
5623   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5624   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5625   // because it saves a system call and removes a small window where the flag
5626   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5627   // and we fall back to using FD_CLOEXEC (see below).
5628 #ifdef O_CLOEXEC
5629   oflag |= O_CLOEXEC;
5630 #endif
5631 
5632   int fd = ::open64(path, oflag, mode);
5633   if (fd == -1) return -1;
5634 
5635   //If the open succeeded, the file might still be a directory
5636   {
5637     struct stat64 buf64;
5638     int ret = ::fstat64(fd, &buf64);
5639     int st_mode = buf64.st_mode;
5640 
5641     if (ret != -1) {
5642       if ((st_mode & S_IFMT) == S_IFDIR) {
5643         errno = EISDIR;
5644         ::close(fd);
5645         return -1;
5646       }
5647     } else {
5648       ::close(fd);
5649       return -1;
5650     }
5651   }
5652 
5653 #ifdef FD_CLOEXEC
5654   // Validate that the use of the O_CLOEXEC flag on open above worked.
5655   // With recent kernels, we will perform this check exactly once.
5656   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5657   if (!O_CLOEXEC_is_known_to_work) {
5658     int flags = ::fcntl(fd, F_GETFD);
5659     if (flags != -1) {
5660       if ((flags & FD_CLOEXEC) != 0)
5661         O_CLOEXEC_is_known_to_work = 1;
5662       else
5663         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5664     }
5665   }
5666 #endif
5667 
5668   return fd;
5669 }
5670 
5671 
5672 // create binary file, rewriting existing file if required
5673 int os::create_binary_file(const char* path, bool rewrite_existing) {
5674   int oflags = O_WRONLY | O_CREAT;
5675   if (!rewrite_existing) {
5676     oflags |= O_EXCL;
5677   }
5678   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5679 }
5680 
5681 // return current position of file pointer
5682 jlong os::current_file_offset(int fd) {
5683   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5684 }
5685 
5686 // move file pointer to the specified offset
5687 jlong os::seek_to_file_offset(int fd, jlong offset) {
5688   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5689 }
5690 
5691 // This code originates from JDK's sysAvailable
5692 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5693 
5694 int os::available(int fd, jlong *bytes) {
5695   jlong cur, end;
5696   int mode;
5697   struct stat64 buf64;
5698 
5699   if (::fstat64(fd, &buf64) >= 0) {
5700     mode = buf64.st_mode;
5701     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5702       int n;
5703       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5704         *bytes = n;
5705         return 1;
5706       }
5707     }
5708   }
5709   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5710     return 0;
5711   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5712     return 0;
5713   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5714     return 0;
5715   }
5716   *bytes = end - cur;
5717   return 1;
5718 }
5719 
5720 // Map a block of memory.
5721 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5722                         char *addr, size_t bytes, bool read_only,
5723                         bool allow_exec) {
5724   int prot;
5725   int flags = MAP_PRIVATE;
5726 
5727   if (read_only) {
5728     prot = PROT_READ;
5729   } else {
5730     prot = PROT_READ | PROT_WRITE;
5731   }
5732 
5733   if (allow_exec) {
5734     prot |= PROT_EXEC;
5735   }
5736 
5737   if (addr != NULL) {
5738     flags |= MAP_FIXED;
5739   }
5740 
5741   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5742                                      fd, file_offset);
5743   if (mapped_address == MAP_FAILED) {
5744     return NULL;
5745   }
5746   return mapped_address;
5747 }
5748 
5749 
5750 // Remap a block of memory.
5751 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5752                           char *addr, size_t bytes, bool read_only,
5753                           bool allow_exec) {
5754   // same as map_memory() on this OS
5755   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5756                         allow_exec);
5757 }
5758 
5759 
5760 // Unmap a block of memory.
5761 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5762   return munmap(addr, bytes) == 0;
5763 }
5764 
5765 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5766 
5767 static jlong fast_cpu_time(Thread *thread) {
5768     clockid_t clockid;
5769     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5770                                               &clockid);
5771     if (rc == 0) {
5772       return os::Linux::fast_thread_cpu_time(clockid);
5773     } else {
5774       // It's possible to encounter a terminated native thread that failed
5775       // to detach itself from the VM - which should result in ESRCH.
5776       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5777       return -1;
5778     }
5779 }
5780 
5781 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5782 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5783 // of a thread.
5784 //
5785 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5786 // the fast estimate available on the platform.
5787 
5788 jlong os::current_thread_cpu_time() {
5789   if (os::Linux::supports_fast_thread_cpu_time()) {
5790     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5791   } else {
5792     // return user + sys since the cost is the same
5793     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5794   }
5795 }
5796 
5797 jlong os::thread_cpu_time(Thread* thread) {
5798   // consistent with what current_thread_cpu_time() returns
5799   if (os::Linux::supports_fast_thread_cpu_time()) {
5800     return fast_cpu_time(thread);
5801   } else {
5802     return slow_thread_cpu_time(thread, true /* user + sys */);
5803   }
5804 }
5805 
5806 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5807   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5808     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5809   } else {
5810     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5811   }
5812 }
5813 
5814 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5815   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5816     return fast_cpu_time(thread);
5817   } else {
5818     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5819   }
5820 }
5821 
5822 //  -1 on error.
5823 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5824   pid_t  tid = thread->osthread()->thread_id();
5825   char *s;
5826   char stat[2048];
5827   int statlen;
5828   char proc_name[64];
5829   int count;
5830   long sys_time, user_time;
5831   char cdummy;
5832   int idummy;
5833   long ldummy;
5834   FILE *fp;
5835 
5836   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5837   fp = fopen(proc_name, "r");
5838   if (fp == NULL) return -1;
5839   statlen = fread(stat, 1, 2047, fp);
5840   stat[statlen] = '\0';
5841   fclose(fp);
5842 
5843   // Skip pid and the command string. Note that we could be dealing with
5844   // weird command names, e.g. user could decide to rename java launcher
5845   // to "java 1.4.2 :)", then the stat file would look like
5846   //                1234 (java 1.4.2 :)) R ... ...
5847   // We don't really need to know the command string, just find the last
5848   // occurrence of ")" and then start parsing from there. See bug 4726580.
5849   s = strrchr(stat, ')');
5850   if (s == NULL) return -1;
5851 
5852   // Skip blank chars
5853   do { s++; } while (s && isspace(*s));
5854 
5855   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5856                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5857                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5858                  &user_time, &sys_time);
5859   if (count != 13) return -1;
5860   if (user_sys_cpu_time) {
5861     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5862   } else {
5863     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5864   }
5865 }
5866 
5867 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5868   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5869   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5870   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5871   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5872 }
5873 
5874 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5875   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5876   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5877   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5878   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5879 }
5880 
5881 bool os::is_thread_cpu_time_supported() {
5882   return true;
5883 }
5884 
5885 // System loadavg support.  Returns -1 if load average cannot be obtained.
5886 // Linux doesn't yet have a (official) notion of processor sets,
5887 // so just return the system wide load average.
5888 int os::loadavg(double loadavg[], int nelem) {
5889   return ::getloadavg(loadavg, nelem);
5890 }
5891 
5892 void os::pause() {
5893   char filename[MAX_PATH];
5894   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5895     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5896   } else {
5897     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5898   }
5899 
5900   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5901   if (fd != -1) {
5902     struct stat buf;
5903     ::close(fd);
5904     while (::stat(filename, &buf) == 0) {
5905       (void)::poll(NULL, 0, 100);
5906     }
5907   } else {
5908     jio_fprintf(stderr,
5909                 "Could not open pause file '%s', continuing immediately.\n", filename);
5910   }
5911 }
5912 
5913 extern char** environ;
5914 
5915 // Run the specified command in a separate process. Return its exit value,
5916 // or -1 on failure (e.g. can't fork a new process).
5917 // Unlike system(), this function can be called from signal handler. It
5918 // doesn't block SIGINT et al.
5919 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5920   const char * argv[4] = {"sh", "-c", cmd, NULL};
5921 
5922   pid_t pid ;
5923 
5924   if (use_vfork_if_available) {
5925     pid = vfork();
5926   } else {
5927     pid = fork();
5928   }
5929 
5930   if (pid < 0) {
5931     // fork failed
5932     return -1;
5933 
5934   } else if (pid == 0) {
5935     // child process
5936 
5937     execve("/bin/sh", (char* const*)argv, environ);
5938 
5939     // execve failed
5940     _exit(-1);
5941 
5942   } else  {
5943     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5944     // care about the actual exit code, for now.
5945 
5946     int status;
5947 
5948     // Wait for the child process to exit.  This returns immediately if
5949     // the child has already exited. */
5950     while (waitpid(pid, &status, 0) < 0) {
5951       switch (errno) {
5952       case ECHILD: return 0;
5953       case EINTR: break;
5954       default: return -1;
5955       }
5956     }
5957 
5958     if (WIFEXITED(status)) {
5959       // The child exited normally; get its exit code.
5960       return WEXITSTATUS(status);
5961     } else if (WIFSIGNALED(status)) {
5962       // The child exited because of a signal
5963       // The best value to return is 0x80 + signal number,
5964       // because that is what all Unix shells do, and because
5965       // it allows callers to distinguish between process exit and
5966       // process death by signal.
5967       return 0x80 + WTERMSIG(status);
5968     } else {
5969       // Unknown exit code; pass it through
5970       return status;
5971     }
5972   }
5973 }
5974 
5975 // Get the default path to the core file
5976 // Returns the length of the string
5977 int os::get_core_path(char* buffer, size_t bufferSize) {
5978   /*
5979    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5980    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5981    */
5982   const int core_pattern_len = 129;
5983   char core_pattern[core_pattern_len] = {0};
5984 
5985   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5986   if (core_pattern_file == -1) {
5987     return -1;
5988   }
5989 
5990   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5991   ::close(core_pattern_file);
5992   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5993     return -1;
5994   }
5995   if (core_pattern[ret-1] == '\n') {
5996     core_pattern[ret-1] = '\0';
5997   } else {
5998     core_pattern[ret] = '\0';
5999   }
6000 
6001   // Replace the %p in the core pattern with the process id. NOTE: we do this
6002   // only if the pattern doesn't start with "|", and we support only one %p in
6003   // the pattern.
6004   char *pid_pos = strstr(core_pattern, "%p");
6005   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
6006   int written;
6007 
6008   if (core_pattern[0] == '/') {
6009     if (pid_pos != NULL) {
6010       *pid_pos = '\0';
6011       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
6012                              current_process_id(), tail);
6013     } else {
6014       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6015     }
6016   } else {
6017     char cwd[PATH_MAX];
6018 
6019     const char* p = get_current_directory(cwd, PATH_MAX);
6020     if (p == NULL) {
6021       return -1;
6022     }
6023 
6024     if (core_pattern[0] == '|') {
6025       written = jio_snprintf(buffer, bufferSize,
6026                              "\"%s\" (or dumping to %s/core.%d)",
6027                              &core_pattern[1], p, current_process_id());
6028     } else if (pid_pos != NULL) {
6029       *pid_pos = '\0';
6030       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
6031                              current_process_id(), tail);
6032     } else {
6033       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6034     }
6035   }
6036 
6037   if (written < 0) {
6038     return -1;
6039   }
6040 
6041   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6042     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6043 
6044     if (core_uses_pid_file != -1) {
6045       char core_uses_pid = 0;
6046       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6047       ::close(core_uses_pid_file);
6048 
6049       if (core_uses_pid == '1') {
6050         jio_snprintf(buffer + written, bufferSize - written,
6051                                           ".%d", current_process_id());
6052       }
6053     }
6054   }
6055 
6056   return strlen(buffer);
6057 }
6058 
6059 bool os::start_debugging(char *buf, int buflen) {
6060   int len = (int)strlen(buf);
6061   char *p = &buf[len];
6062 
6063   jio_snprintf(p, buflen-len,
6064                "\n\n"
6065                "Do you want to debug the problem?\n\n"
6066                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6067                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6068                "Otherwise, press RETURN to abort...",
6069                os::current_process_id(), os::current_process_id(),
6070                os::current_thread_id(), os::current_thread_id());
6071 
6072   bool yes = os::message_box("Unexpected Error", buf);
6073 
6074   if (yes) {
6075     // yes, user asked VM to launch debugger
6076     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6077                  os::current_process_id(), os::current_process_id());
6078 
6079     os::fork_and_exec(buf);
6080     yes = false;
6081   }
6082   return yes;
6083 }
6084 
6085 
6086 // Java/Compiler thread:
6087 //
6088 //   Low memory addresses
6089 // P0 +------------------------+
6090 //    |                        |\  Java thread created by VM does not have glibc
6091 //    |    glibc guard page    | - guard page, attached Java thread usually has
6092 //    |                        |/  1 glibc guard page.
6093 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6094 //    |                        |\
6095 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6096 //    |                        |/
6097 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6098 //    |                        |\
6099 //    |      Normal Stack      | -
6100 //    |                        |/
6101 // P2 +------------------------+ Thread::stack_base()
6102 //
6103 // Non-Java thread:
6104 //
6105 //   Low memory addresses
6106 // P0 +------------------------+
6107 //    |                        |\
6108 //    |  glibc guard page      | - usually 1 page
6109 //    |                        |/
6110 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6111 //    |                        |\
6112 //    |      Normal Stack      | -
6113 //    |                        |/
6114 // P2 +------------------------+ Thread::stack_base()
6115 //
6116 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6117 //    returned from pthread_attr_getstack().
6118 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6119 //    of the stack size given in pthread_attr. We work around this for
6120 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6121 //
6122 #ifndef ZERO
6123 static void current_stack_region(address * bottom, size_t * size) {
6124   if (os::is_primordial_thread()) {
6125     // primordial thread needs special handling because pthread_getattr_np()
6126     // may return bogus value.
6127     *bottom = os::Linux::initial_thread_stack_bottom();
6128     *size   = os::Linux::initial_thread_stack_size();
6129   } else {
6130     pthread_attr_t attr;
6131 
6132     int rslt = pthread_getattr_np(pthread_self(), &attr);
6133 
6134     // JVM needs to know exact stack location, abort if it fails
6135     if (rslt != 0) {
6136       if (rslt == ENOMEM) {
6137         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6138       } else {
6139         fatal("pthread_getattr_np failed with error = %d", rslt);
6140       }
6141     }
6142 
6143     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6144       fatal("Cannot locate current stack attributes!");
6145     }
6146 
6147     // Work around NPTL stack guard error.
6148     size_t guard_size = 0;
6149     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6150     if (rslt != 0) {
6151       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6152     }
6153     *bottom += guard_size;
6154     *size   -= guard_size;
6155 
6156     pthread_attr_destroy(&attr);
6157 
6158   }
6159   assert(os::current_stack_pointer() >= *bottom &&
6160          os::current_stack_pointer() < *bottom + *size, "just checking");
6161 }
6162 
6163 address os::current_stack_base() {
6164   address bottom;
6165   size_t size;
6166   current_stack_region(&bottom, &size);
6167   return (bottom + size);
6168 }
6169 
6170 size_t os::current_stack_size() {
6171   // This stack size includes the usable stack and HotSpot guard pages
6172   // (for the threads that have Hotspot guard pages).
6173   address bottom;
6174   size_t size;
6175   current_stack_region(&bottom, &size);
6176   return size;
6177 }
6178 #endif
6179 
6180 static inline struct timespec get_mtime(const char* filename) {
6181   struct stat st;
6182   int ret = os::stat(filename, &st);
6183   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6184   return st.st_mtim;
6185 }
6186 
6187 int os::compare_file_modified_times(const char* file1, const char* file2) {
6188   struct timespec filetime1 = get_mtime(file1);
6189   struct timespec filetime2 = get_mtime(file2);
6190   int diff = filetime1.tv_sec - filetime2.tv_sec;
6191   if (diff == 0) {
6192     return filetime1.tv_nsec - filetime2.tv_nsec;
6193   }
6194   return diff;
6195 }
6196 
6197 bool os::supports_map_sync() {
6198   return true;
6199 }
6200 
6201 /////////////// Unit tests ///////////////
6202 
6203 #ifndef PRODUCT
6204 
6205 class TestReserveMemorySpecial : AllStatic {
6206  public:
6207   static void small_page_write(void* addr, size_t size) {
6208     size_t page_size = os::vm_page_size();
6209 
6210     char* end = (char*)addr + size;
6211     for (char* p = (char*)addr; p < end; p += page_size) {
6212       *p = 1;
6213     }
6214   }
6215 
6216   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6217     if (!UseHugeTLBFS) {
6218       return;
6219     }
6220 
6221     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6222 
6223     if (addr != NULL) {
6224       small_page_write(addr, size);
6225 
6226       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6227     }
6228   }
6229 
6230   static void test_reserve_memory_special_huge_tlbfs_only() {
6231     if (!UseHugeTLBFS) {
6232       return;
6233     }
6234 
6235     size_t lp = os::large_page_size();
6236 
6237     for (size_t size = lp; size <= lp * 10; size += lp) {
6238       test_reserve_memory_special_huge_tlbfs_only(size);
6239     }
6240   }
6241 
6242   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6243     size_t lp = os::large_page_size();
6244     size_t ag = os::vm_allocation_granularity();
6245 
6246     // sizes to test
6247     const size_t sizes[] = {
6248       lp, lp + ag, lp + lp / 2, lp * 2,
6249       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6250       lp * 10, lp * 10 + lp / 2
6251     };
6252     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6253 
6254     // For each size/alignment combination, we test three scenarios:
6255     // 1) with req_addr == NULL
6256     // 2) with a non-null req_addr at which we expect to successfully allocate
6257     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6258     //    expect the allocation to either fail or to ignore req_addr
6259 
6260     // Pre-allocate two areas; they shall be as large as the largest allocation
6261     //  and aligned to the largest alignment we will be testing.
6262     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6263     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6264       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6265       -1, 0);
6266     assert(mapping1 != MAP_FAILED, "should work");
6267 
6268     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6269       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6270       -1, 0);
6271     assert(mapping2 != MAP_FAILED, "should work");
6272 
6273     // Unmap the first mapping, but leave the second mapping intact: the first
6274     // mapping will serve as a value for a "good" req_addr (case 2). The second
6275     // mapping, still intact, as "bad" req_addr (case 3).
6276     ::munmap(mapping1, mapping_size);
6277 
6278     // Case 1
6279     for (int i = 0; i < num_sizes; i++) {
6280       const size_t size = sizes[i];
6281       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6282         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6283         if (p != NULL) {
6284           assert(is_aligned(p, alignment), "must be");
6285           small_page_write(p, size);
6286           os::Linux::release_memory_special_huge_tlbfs(p, size);
6287         }
6288       }
6289     }
6290 
6291     // Case 2
6292     for (int i = 0; i < num_sizes; i++) {
6293       const size_t size = sizes[i];
6294       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6295         char* const req_addr = align_up(mapping1, alignment);
6296         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6297         if (p != NULL) {
6298           assert(p == req_addr, "must be");
6299           small_page_write(p, size);
6300           os::Linux::release_memory_special_huge_tlbfs(p, size);
6301         }
6302       }
6303     }
6304 
6305     // Case 3
6306     for (int i = 0; i < num_sizes; i++) {
6307       const size_t size = sizes[i];
6308       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6309         char* const req_addr = align_up(mapping2, alignment);
6310         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6311         // as the area around req_addr contains already existing mappings, the API should always
6312         // return NULL (as per contract, it cannot return another address)
6313         assert(p == NULL, "must be");
6314       }
6315     }
6316 
6317     ::munmap(mapping2, mapping_size);
6318 
6319   }
6320 
6321   static void test_reserve_memory_special_huge_tlbfs() {
6322     if (!UseHugeTLBFS) {
6323       return;
6324     }
6325 
6326     test_reserve_memory_special_huge_tlbfs_only();
6327     test_reserve_memory_special_huge_tlbfs_mixed();
6328   }
6329 
6330   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6331     if (!UseSHM) {
6332       return;
6333     }
6334 
6335     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6336 
6337     if (addr != NULL) {
6338       assert(is_aligned(addr, alignment), "Check");
6339       assert(is_aligned(addr, os::large_page_size()), "Check");
6340 
6341       small_page_write(addr, size);
6342 
6343       os::Linux::release_memory_special_shm(addr, size);
6344     }
6345   }
6346 
6347   static void test_reserve_memory_special_shm() {
6348     size_t lp = os::large_page_size();
6349     size_t ag = os::vm_allocation_granularity();
6350 
6351     for (size_t size = ag; size < lp * 3; size += ag) {
6352       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6353         test_reserve_memory_special_shm(size, alignment);
6354       }
6355     }
6356   }
6357 
6358   static void test() {
6359     test_reserve_memory_special_huge_tlbfs();
6360     test_reserve_memory_special_shm();
6361   }
6362 };
6363 
6364 void TestReserveMemorySpecial_test() {
6365   TestReserveMemorySpecial::test();
6366 }
6367 
6368 #endif