1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.lang.model.element.ElementKind;
  31 import javax.tools.JavaFileObject;
  32 
  33 import com.sun.source.tree.IdentifierTree;
  34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  35 import com.sun.source.tree.MemberSelectTree;
  36 import com.sun.source.tree.TreeVisitor;
  37 import com.sun.source.util.SimpleTreeVisitor;
  38 import com.sun.tools.javac.code.*;
  39 import com.sun.tools.javac.code.Lint.LintCategory;
  40 import com.sun.tools.javac.code.Scope.WriteableScope;
  41 import com.sun.tools.javac.code.Symbol.*;
  42 import com.sun.tools.javac.code.Type.*;
  43 import com.sun.tools.javac.code.TypeMetadata.Annotations;
  44 import com.sun.tools.javac.comp.Check.CheckContext;
  45 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  46 import com.sun.tools.javac.comp.Infer.InferenceContext;
  47 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
  48 import com.sun.tools.javac.jvm.*;
  49 import com.sun.tools.javac.tree.*;
  50 import com.sun.tools.javac.tree.JCTree.*;
  51 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  52 import com.sun.tools.javac.util.*;
  53 import com.sun.tools.javac.util.DefinedBy.Api;
  54 import com.sun.tools.javac.util.Dependencies.AttributionKind;
  55 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  56 import com.sun.tools.javac.util.List;
  57 import static com.sun.tools.javac.code.Flags.*;
  58 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  59 import static com.sun.tools.javac.code.Flags.BLOCK;
  60 import static com.sun.tools.javac.code.Kinds.*;
  61 import static com.sun.tools.javac.code.Kinds.Kind.*;
  62 import static com.sun.tools.javac.code.TypeTag.*;
  63 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  64 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  65 
  66 /** This is the main context-dependent analysis phase in GJC. It
  67  *  encompasses name resolution, type checking and constant folding as
  68  *  subtasks. Some subtasks involve auxiliary classes.
  69  *  @see Check
  70  *  @see Resolve
  71  *  @see ConstFold
  72  *  @see Infer
  73  *
  74  *  <p><b>This is NOT part of any supported API.
  75  *  If you write code that depends on this, you do so at your own risk.
  76  *  This code and its internal interfaces are subject to change or
  77  *  deletion without notice.</b>
  78  */
  79 public class Attr extends JCTree.Visitor {
  80     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  81 
  82     final Names names;
  83     final Log log;
  84     final Symtab syms;
  85     final Resolve rs;
  86     final Operators operators;
  87     final Infer infer;
  88     final Analyzer analyzer;
  89     final DeferredAttr deferredAttr;
  90     final Check chk;
  91     final Flow flow;
  92     final MemberEnter memberEnter;
  93     final TypeEnter typeEnter;
  94     final TreeMaker make;
  95     final ConstFold cfolder;
  96     final Enter enter;
  97     final Target target;
  98     final Types types;
  99     final JCDiagnostic.Factory diags;
 100     final TypeAnnotations typeAnnotations;
 101     final DeferredLintHandler deferredLintHandler;
 102     final TypeEnvs typeEnvs;
 103     final Dependencies dependencies;
 104     final Annotate annotate;
 105 
 106     public static Attr instance(Context context) {
 107         Attr instance = context.get(attrKey);
 108         if (instance == null)
 109             instance = new Attr(context);
 110         return instance;
 111     }
 112 
 113     protected Attr(Context context) {
 114         context.put(attrKey, this);
 115 
 116         names = Names.instance(context);
 117         log = Log.instance(context);
 118         syms = Symtab.instance(context);
 119         rs = Resolve.instance(context);
 120         operators = Operators.instance(context);
 121         chk = Check.instance(context);
 122         flow = Flow.instance(context);
 123         memberEnter = MemberEnter.instance(context);
 124         typeEnter = TypeEnter.instance(context);
 125         make = TreeMaker.instance(context);
 126         enter = Enter.instance(context);
 127         infer = Infer.instance(context);
 128         analyzer = Analyzer.instance(context);
 129         deferredAttr = DeferredAttr.instance(context);
 130         cfolder = ConstFold.instance(context);
 131         target = Target.instance(context);
 132         types = Types.instance(context);
 133         diags = JCDiagnostic.Factory.instance(context);
 134         annotate = Annotate.instance(context);
 135         typeAnnotations = TypeAnnotations.instance(context);
 136         deferredLintHandler = DeferredLintHandler.instance(context);
 137         typeEnvs = TypeEnvs.instance(context);
 138         dependencies = Dependencies.instance(context);
 139 
 140         Options options = Options.instance(context);
 141 
 142         Source source = Source.instance(context);
 143         allowStringsInSwitch = source.allowStringsInSwitch();
 144         allowPoly = source.allowPoly();
 145         allowTypeAnnos = source.allowTypeAnnotations();
 146         allowLambda = source.allowLambda();
 147         allowDefaultMethods = source.allowDefaultMethods();
 148         allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
 149         sourceName = source.name;
 150         relax = (options.isSet("-retrofit") ||
 151                 options.isSet("-relax"));
 152         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 153 
 154         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 155         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 156         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 157         unknownAnyPolyInfo = new ResultInfo(KindSelector.VAL, Infer.anyPoly);
 158         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 159         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 160         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 161 
 162         noCheckTree = make.at(-1).Skip();
 163     }
 164 
 165     /** Switch: relax some constraints for retrofit mode.
 166      */
 167     boolean relax;
 168 
 169     /** Switch: support target-typing inference
 170      */
 171     boolean allowPoly;
 172 
 173     /** Switch: support type annotations.
 174      */
 175     boolean allowTypeAnnos;
 176 
 177     /** Switch: support lambda expressions ?
 178      */
 179     boolean allowLambda;
 180 
 181     /** Switch: support default methods ?
 182      */
 183     boolean allowDefaultMethods;
 184 
 185     /** Switch: static interface methods enabled?
 186      */
 187     boolean allowStaticInterfaceMethods;
 188 
 189     /**
 190      * Switch: warn about use of variable before declaration?
 191      * RFE: 6425594
 192      */
 193     boolean useBeforeDeclarationWarning;
 194 
 195     /**
 196      * Switch: allow strings in switch?
 197      */
 198     boolean allowStringsInSwitch;
 199 
 200     /**
 201      * Switch: name of source level; used for error reporting.
 202      */
 203     String sourceName;
 204 
 205     /** Check kind and type of given tree against protokind and prototype.
 206      *  If check succeeds, store type in tree and return it.
 207      *  If check fails, store errType in tree and return it.
 208      *  No checks are performed if the prototype is a method type.
 209      *  It is not necessary in this case since we know that kind and type
 210      *  are correct.
 211      *
 212      *  @param tree     The tree whose kind and type is checked
 213      *  @param found    The computed type of the tree
 214      *  @param ownkind  The computed kind of the tree
 215      *  @param resultInfo  The expected result of the tree
 216      */
 217     Type check(final JCTree tree,
 218                final Type found,
 219                final KindSelector ownkind,
 220                final ResultInfo resultInfo) {
 221         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 222         Type owntype;
 223         boolean shouldCheck = !found.hasTag(ERROR) &&
 224                 !resultInfo.pt.hasTag(METHOD) &&
 225                 !resultInfo.pt.hasTag(FORALL);
 226         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 227             log.error(tree.pos(), "unexpected.type",
 228             resultInfo.pkind.kindNames(),
 229             ownkind.kindNames());
 230             owntype = types.createErrorType(found);
 231         } else if (allowPoly && inferenceContext.free(found)) {
 232             //delay the check if there are inference variables in the found type
 233             //this means we are dealing with a partially inferred poly expression
 234             owntype = shouldCheck ? resultInfo.pt : found;
 235             inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt),
 236                     instantiatedContext -> {
 237                         ResultInfo pendingResult =
 238                                 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 239                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 240                     });
 241         } else {
 242             owntype = shouldCheck ?
 243             resultInfo.check(tree, found) :
 244             found;
 245         }
 246         if (tree != noCheckTree) {
 247             tree.type = owntype;
 248         }
 249         return owntype;
 250     }
 251 
 252     /** Is given blank final variable assignable, i.e. in a scope where it
 253      *  may be assigned to even though it is final?
 254      *  @param v      The blank final variable.
 255      *  @param env    The current environment.
 256      */
 257     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 258         Symbol owner = env.info.scope.owner;
 259            // owner refers to the innermost variable, method or
 260            // initializer block declaration at this point.
 261         return
 262             v.owner == owner
 263             ||
 264             ((owner.name == names.init ||    // i.e. we are in a constructor
 265               owner.kind == VAR ||           // i.e. we are in a variable initializer
 266               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 267              &&
 268              v.owner == owner.owner
 269              &&
 270              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 271     }
 272 
 273     /** Check that variable can be assigned to.
 274      *  @param pos    The current source code position.
 275      *  @param v      The assigned varaible
 276      *  @param base   If the variable is referred to in a Select, the part
 277      *                to the left of the `.', null otherwise.
 278      *  @param env    The current environment.
 279      */
 280     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 281         if ((v.flags() & FINAL) != 0 &&
 282             ((v.flags() & HASINIT) != 0
 283              ||
 284              !((base == null ||
 285                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
 286                isAssignableAsBlankFinal(v, env)))) {
 287             if (v.isResourceVariable()) { //TWR resource
 288                 log.error(pos, "try.resource.may.not.be.assigned", v);
 289             } else {
 290                 log.error(pos, "cant.assign.val.to.final.var", v);
 291             }
 292         }
 293     }
 294 
 295     /** Does tree represent a static reference to an identifier?
 296      *  It is assumed that tree is either a SELECT or an IDENT.
 297      *  We have to weed out selects from non-type names here.
 298      *  @param tree    The candidate tree.
 299      */
 300     boolean isStaticReference(JCTree tree) {
 301         if (tree.hasTag(SELECT)) {
 302             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 303             if (lsym == null || lsym.kind != TYP) {
 304                 return false;
 305             }
 306         }
 307         return true;
 308     }
 309 
 310     /** Is this symbol a type?
 311      */
 312     static boolean isType(Symbol sym) {
 313         return sym != null && sym.kind == TYP;
 314     }
 315 
 316     /** The current `this' symbol.
 317      *  @param env    The current environment.
 318      */
 319     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 320         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 321     }
 322 
 323     /** Attribute a parsed identifier.
 324      * @param tree Parsed identifier name
 325      * @param topLevel The toplevel to use
 326      */
 327     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 328         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 329         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 330                                            syms.errSymbol.name,
 331                                            null, null, null, null);
 332         localEnv.enclClass.sym = syms.errSymbol;
 333         return tree.accept(identAttributer, localEnv);
 334     }
 335     // where
 336         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 337         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 338             @Override @DefinedBy(Api.COMPILER_TREE)
 339             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 340                 Symbol site = visit(node.getExpression(), env);
 341                 if (site.kind == ERR || site.kind == ABSENT_TYP)
 342                     return site;
 343                 Name name = (Name)node.getIdentifier();
 344                 if (site.kind == PCK) {
 345                     env.toplevel.packge = (PackageSymbol)site;
 346                     return rs.findIdentInPackage(env, (TypeSymbol)site, name,
 347                             KindSelector.TYP_PCK);
 348                 } else {
 349                     env.enclClass.sym = (ClassSymbol)site;
 350                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 351                 }
 352             }
 353 
 354             @Override @DefinedBy(Api.COMPILER_TREE)
 355             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 356                 return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
 357             }
 358         }
 359 
 360     public Type coerce(Type etype, Type ttype) {
 361         return cfolder.coerce(etype, ttype);
 362     }
 363 
 364     public Type attribType(JCTree node, TypeSymbol sym) {
 365         Env<AttrContext> env = typeEnvs.get(sym);
 366         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 367         return attribTree(node, localEnv, unknownTypeInfo);
 368     }
 369 
 370     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 371         // Attribute qualifying package or class.
 372         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 373         return attribTree(s.selected, env,
 374                           new ResultInfo(tree.staticImport ?
 375                                          KindSelector.TYP : KindSelector.TYP_PCK,
 376                        Type.noType));
 377     }
 378 
 379     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 380         breakTree = tree;
 381         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 382         try {
 383             attribExpr(expr, env);
 384         } catch (BreakAttr b) {
 385             return b.env;
 386         } catch (AssertionError ae) {
 387             if (ae.getCause() instanceof BreakAttr) {
 388                 return ((BreakAttr)(ae.getCause())).env;
 389             } else {
 390                 throw ae;
 391             }
 392         } finally {
 393             breakTree = null;
 394             log.useSource(prev);
 395         }
 396         return env;
 397     }
 398 
 399     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 400         breakTree = tree;
 401         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 402         try {
 403             attribStat(stmt, env);
 404         } catch (BreakAttr b) {
 405             return b.env;
 406         } catch (AssertionError ae) {
 407             if (ae.getCause() instanceof BreakAttr) {
 408                 return ((BreakAttr)(ae.getCause())).env;
 409             } else {
 410                 throw ae;
 411             }
 412         } finally {
 413             breakTree = null;
 414             log.useSource(prev);
 415         }
 416         return env;
 417     }
 418 
 419     private JCTree breakTree = null;
 420 
 421     private static class BreakAttr extends RuntimeException {
 422         static final long serialVersionUID = -6924771130405446405L;
 423         private Env<AttrContext> env;
 424         private BreakAttr(Env<AttrContext> env) {
 425             this.env = env;
 426         }
 427     }
 428 
 429     class ResultInfo {
 430         final KindSelector pkind;
 431         final Type pt;
 432         final CheckContext checkContext;
 433 
 434         ResultInfo(KindSelector pkind, Type pt) {
 435             this(pkind, pt, chk.basicHandler);
 436         }
 437 
 438         protected ResultInfo(KindSelector pkind,
 439                              Type pt, CheckContext checkContext) {
 440             this.pkind = pkind;
 441             this.pt = pt;
 442             this.checkContext = checkContext;
 443         }
 444 
 445         protected Type check(final DiagnosticPosition pos, final Type found) {
 446             return chk.checkType(pos, found, pt, checkContext);
 447         }
 448 
 449         protected ResultInfo dup(Type newPt) {
 450             return new ResultInfo(pkind, newPt, checkContext);
 451         }
 452 
 453         protected ResultInfo dup(CheckContext newContext) {
 454             return new ResultInfo(pkind, pt, newContext);
 455         }
 456 
 457         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 458             return new ResultInfo(pkind, newPt, newContext);
 459         }
 460 
 461         @Override
 462         public String toString() {
 463             if (pt != null) {
 464                 return pt.toString();
 465             } else {
 466                 return "";
 467             }
 468         }
 469     }
 470 
 471     class RecoveryInfo extends ResultInfo {
 472 
 473         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 474             super(KindSelector.VAL, Type.recoveryType,
 475                   new Check.NestedCheckContext(chk.basicHandler) {
 476                 @Override
 477                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 478                     return deferredAttrContext;
 479                 }
 480                 @Override
 481                 public boolean compatible(Type found, Type req, Warner warn) {
 482                     return true;
 483                 }
 484                 @Override
 485                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 486                     chk.basicHandler.report(pos, details);
 487                 }
 488             });
 489         }
 490     }
 491 
 492     final ResultInfo statInfo;
 493     final ResultInfo varAssignmentInfo;
 494     final ResultInfo unknownAnyPolyInfo;
 495     final ResultInfo unknownExprInfo;
 496     final ResultInfo unknownTypeInfo;
 497     final ResultInfo unknownTypeExprInfo;
 498     final ResultInfo recoveryInfo;
 499 
 500     Type pt() {
 501         return resultInfo.pt;
 502     }
 503 
 504     KindSelector pkind() {
 505         return resultInfo.pkind;
 506     }
 507 
 508 /* ************************************************************************
 509  * Visitor methods
 510  *************************************************************************/
 511 
 512     /** Visitor argument: the current environment.
 513      */
 514     Env<AttrContext> env;
 515 
 516     /** Visitor argument: the currently expected attribution result.
 517      */
 518     ResultInfo resultInfo;
 519 
 520     /** Visitor result: the computed type.
 521      */
 522     Type result;
 523 
 524     /** Synthetic tree to be used during 'fake' checks.
 525      */
 526     JCTree noCheckTree;
 527 
 528     /** Visitor method: attribute a tree, catching any completion failure
 529      *  exceptions. Return the tree's type.
 530      *
 531      *  @param tree    The tree to be visited.
 532      *  @param env     The environment visitor argument.
 533      *  @param resultInfo   The result info visitor argument.
 534      */
 535     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 536         Env<AttrContext> prevEnv = this.env;
 537         ResultInfo prevResult = this.resultInfo;
 538         try {
 539             this.env = env;
 540             this.resultInfo = resultInfo;
 541             tree.accept(this);
 542             if (tree == breakTree &&
 543                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 544                 throw new BreakAttr(copyEnv(env));
 545             }
 546             return result;
 547         } catch (CompletionFailure ex) {
 548             tree.type = syms.errType;
 549             return chk.completionError(tree.pos(), ex);
 550         } finally {
 551             this.env = prevEnv;
 552             this.resultInfo = prevResult;
 553         }
 554     }
 555 
 556     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 557         Env<AttrContext> newEnv =
 558                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 559         if (newEnv.outer != null) {
 560             newEnv.outer = copyEnv(newEnv.outer);
 561         }
 562         return newEnv;
 563     }
 564 
 565     WriteableScope copyScope(WriteableScope sc) {
 566         WriteableScope newScope = WriteableScope.create(sc.owner);
 567         List<Symbol> elemsList = List.nil();
 568         for (Symbol sym : sc.getSymbols()) {
 569             elemsList = elemsList.prepend(sym);
 570         }
 571         for (Symbol s : elemsList) {
 572             newScope.enter(s);
 573         }
 574         return newScope;
 575     }
 576 
 577     /** Derived visitor method: attribute an expression tree.
 578      */
 579     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 580         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 581     }
 582 
 583     /** Derived visitor method: attribute an expression tree with
 584      *  no constraints on the computed type.
 585      */
 586     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 587         return attribTree(tree, env, unknownExprInfo);
 588     }
 589 
 590     /** Derived visitor method: attribute a type tree.
 591      */
 592     public Type attribType(JCTree tree, Env<AttrContext> env) {
 593         Type result = attribType(tree, env, Type.noType);
 594         return result;
 595     }
 596 
 597     /** Derived visitor method: attribute a type tree.
 598      */
 599     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 600         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 601         return result;
 602     }
 603 
 604     /** Derived visitor method: attribute a statement or definition tree.
 605      */
 606     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 607         Env<AttrContext> analyzeEnv =
 608                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
 609         try {
 610             return attribTree(tree, env, statInfo);
 611         } finally {
 612             analyzer.analyzeIfNeeded(tree, analyzeEnv);
 613         }
 614     }
 615 
 616     /** Attribute a list of expressions, returning a list of types.
 617      */
 618     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 619         ListBuffer<Type> ts = new ListBuffer<>();
 620         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 621             ts.append(attribExpr(l.head, env, pt));
 622         return ts.toList();
 623     }
 624 
 625     /** Attribute a list of statements, returning nothing.
 626      */
 627     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 628         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 629             attribStat(l.head, env);
 630     }
 631 
 632     /** Attribute the arguments in a method call, returning the method kind.
 633      */
 634     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 635         KindSelector kind = initialKind;
 636         for (JCExpression arg : trees) {
 637             Type argtype;
 638             if (allowPoly && deferredAttr.isDeferred(env, arg)) {
 639                 argtype = deferredAttr.new DeferredType(arg, env);
 640                 kind = KindSelector.of(KindSelector.POLY, kind);
 641             } else {
 642                 argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
 643             }
 644             argtypes.append(argtype);
 645         }
 646         return kind;
 647     }
 648 
 649     /** Attribute a type argument list, returning a list of types.
 650      *  Caller is responsible for calling checkRefTypes.
 651      */
 652     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 653         ListBuffer<Type> argtypes = new ListBuffer<>();
 654         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 655             argtypes.append(attribType(l.head, env));
 656         return argtypes.toList();
 657     }
 658 
 659     /** Attribute a type argument list, returning a list of types.
 660      *  Check that all the types are references.
 661      */
 662     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 663         List<Type> types = attribAnyTypes(trees, env);
 664         return chk.checkRefTypes(trees, types);
 665     }
 666 
 667     /**
 668      * Attribute type variables (of generic classes or methods).
 669      * Compound types are attributed later in attribBounds.
 670      * @param typarams the type variables to enter
 671      * @param env      the current environment
 672      */
 673     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 674         for (JCTypeParameter tvar : typarams) {
 675             dependencies.push(AttributionKind.TVAR, tvar);
 676             TypeVar a = (TypeVar)tvar.type;
 677             a.tsym.flags_field |= UNATTRIBUTED;
 678             a.bound = Type.noType;
 679             if (!tvar.bounds.isEmpty()) {
 680                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 681                 for (JCExpression bound : tvar.bounds.tail)
 682                     bounds = bounds.prepend(attribType(bound, env));
 683                 types.setBounds(a, bounds.reverse());
 684             } else {
 685                 // if no bounds are given, assume a single bound of
 686                 // java.lang.Object.
 687                 types.setBounds(a, List.of(syms.objectType));
 688             }
 689             a.tsym.flags_field &= ~UNATTRIBUTED;
 690             dependencies.pop();
 691         }
 692         for (JCTypeParameter tvar : typarams) {
 693             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 694         }
 695     }
 696 
 697     /**
 698      * Attribute the type references in a list of annotations.
 699      */
 700     void attribAnnotationTypes(List<JCAnnotation> annotations,
 701                                Env<AttrContext> env) {
 702         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 703             JCAnnotation a = al.head;
 704             attribType(a.annotationType, env);
 705         }
 706     }
 707 
 708     /**
 709      * Attribute a "lazy constant value".
 710      *  @param env         The env for the const value
 711      *  @param initializer The initializer for the const value
 712      *  @param type        The expected type, or null
 713      *  @see VarSymbol#setLazyConstValue
 714      */
 715     public Object attribLazyConstantValue(Env<AttrContext> env,
 716                                       JCVariableDecl variable,
 717                                       Type type) {
 718 
 719         DiagnosticPosition prevLintPos
 720                 = deferredLintHandler.setPos(variable.pos());
 721 
 722         try {
 723             Type itype = attribExpr(variable.init, env, type);
 724             if (itype.constValue() != null) {
 725                 return coerce(itype, type).constValue();
 726             } else {
 727                 return null;
 728             }
 729         } finally {
 730             deferredLintHandler.setPos(prevLintPos);
 731         }
 732     }
 733 
 734     /** Attribute type reference in an `extends' or `implements' clause.
 735      *  Supertypes of anonymous inner classes are usually already attributed.
 736      *
 737      *  @param tree              The tree making up the type reference.
 738      *  @param env               The environment current at the reference.
 739      *  @param classExpected     true if only a class is expected here.
 740      *  @param interfaceExpected true if only an interface is expected here.
 741      */
 742     Type attribBase(JCTree tree,
 743                     Env<AttrContext> env,
 744                     boolean classExpected,
 745                     boolean interfaceExpected,
 746                     boolean checkExtensible) {
 747         Type t = tree.type != null ?
 748             tree.type :
 749             attribType(tree, env);
 750         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 751     }
 752     Type checkBase(Type t,
 753                    JCTree tree,
 754                    Env<AttrContext> env,
 755                    boolean classExpected,
 756                    boolean interfaceExpected,
 757                    boolean checkExtensible) {
 758         if (t.tsym.isAnonymous()) {
 759             log.error(tree.pos(), "cant.inherit.from.anon");
 760             return types.createErrorType(t);
 761         }
 762         if (t.isErroneous())
 763             return t;
 764         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 765             // check that type variable is already visible
 766             if (t.getUpperBound() == null) {
 767                 log.error(tree.pos(), "illegal.forward.ref");
 768                 return types.createErrorType(t);
 769             }
 770         } else {
 771             t = chk.checkClassType(tree.pos(), t, checkExtensible);
 772         }
 773         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 774             log.error(tree.pos(), "intf.expected.here");
 775             // return errType is necessary since otherwise there might
 776             // be undetected cycles which cause attribution to loop
 777             return types.createErrorType(t);
 778         } else if (checkExtensible &&
 779                    classExpected &&
 780                    (t.tsym.flags() & INTERFACE) != 0) {
 781             log.error(tree.pos(), "no.intf.expected.here");
 782             return types.createErrorType(t);
 783         }
 784         if (checkExtensible &&
 785             ((t.tsym.flags() & FINAL) != 0)) {
 786             log.error(tree.pos(),
 787                       "cant.inherit.from.final", t.tsym);
 788         }
 789         chk.checkNonCyclic(tree.pos(), t);
 790         return t;
 791     }
 792 
 793     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 794         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 795         id.type = env.info.scope.owner.enclClass().type;
 796         id.sym = env.info.scope.owner.enclClass();
 797         return id.type;
 798     }
 799 
 800     public void visitClassDef(JCClassDecl tree) {
 801         // Local and anonymous classes have not been entered yet, so we need to
 802         // do it now.
 803         if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 804             enter.classEnter(tree, env);
 805         } else {
 806             // If this class declaration is part of a class level annotation,
 807             // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 808             // order to simplify later steps and allow for sensible error
 809             // messages.
 810             if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 811                 enter.classEnter(tree, env);
 812         }
 813 
 814         ClassSymbol c = tree.sym;
 815         if (c == null) {
 816             // exit in case something drastic went wrong during enter.
 817             result = null;
 818         } else {
 819             // make sure class has been completed:
 820             c.complete();
 821 
 822             // If this class appears as an anonymous class
 823             // in a superclass constructor call where
 824             // no explicit outer instance is given,
 825             // disable implicit outer instance from being passed.
 826             // (This would be an illegal access to "this before super").
 827             if (env.info.isSelfCall &&
 828                 env.tree.hasTag(NEWCLASS) &&
 829                 ((JCNewClass) env.tree).encl == null)
 830             {
 831                 c.flags_field |= NOOUTERTHIS;
 832             }
 833             attribClass(tree.pos(), c);
 834             result = tree.type = c.type;
 835         }
 836     }
 837 
 838     public void visitMethodDef(JCMethodDecl tree) {
 839         MethodSymbol m = tree.sym;
 840         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 841 
 842         Lint lint = env.info.lint.augment(m);
 843         Lint prevLint = chk.setLint(lint);
 844         MethodSymbol prevMethod = chk.setMethod(m);
 845         try {
 846             deferredLintHandler.flush(tree.pos());
 847             chk.checkDeprecatedAnnotation(tree.pos(), m);
 848 
 849 
 850             // Create a new environment with local scope
 851             // for attributing the method.
 852             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 853             localEnv.info.lint = lint;
 854 
 855             attribStats(tree.typarams, localEnv);
 856 
 857             // If we override any other methods, check that we do so properly.
 858             // JLS ???
 859             if (m.isStatic()) {
 860                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 861             } else {
 862                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 863             }
 864             chk.checkOverride(tree, m);
 865 
 866             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
 867                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
 868             }
 869 
 870             // Enter all type parameters into the local method scope.
 871             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
 872                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
 873 
 874             ClassSymbol owner = env.enclClass.sym;
 875             if ((owner.flags() & ANNOTATION) != 0 &&
 876                     tree.params.nonEmpty())
 877                 log.error(tree.params.head.pos(),
 878                         "intf.annotation.members.cant.have.params");
 879 
 880             // Attribute all value parameters.
 881             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 882                 attribStat(l.head, localEnv);
 883             }
 884 
 885             chk.checkVarargsMethodDecl(localEnv, tree);
 886 
 887             // Check that type parameters are well-formed.
 888             chk.validate(tree.typarams, localEnv);
 889 
 890             // Check that result type is well-formed.
 891             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
 892                 chk.validate(tree.restype, localEnv);
 893 
 894             // Check that receiver type is well-formed.
 895             if (tree.recvparam != null) {
 896                 // Use a new environment to check the receiver parameter.
 897                 // Otherwise I get "might not have been initialized" errors.
 898                 // Is there a better way?
 899                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
 900                 attribType(tree.recvparam, newEnv);
 901                 chk.validate(tree.recvparam, newEnv);
 902             }
 903 
 904             // annotation method checks
 905             if ((owner.flags() & ANNOTATION) != 0) {
 906                 // annotation method cannot have throws clause
 907                 if (tree.thrown.nonEmpty()) {
 908                     log.error(tree.thrown.head.pos(),
 909                             "throws.not.allowed.in.intf.annotation");
 910                 }
 911                 // annotation method cannot declare type-parameters
 912                 if (tree.typarams.nonEmpty()) {
 913                     log.error(tree.typarams.head.pos(),
 914                             "intf.annotation.members.cant.have.type.params");
 915                 }
 916                 // validate annotation method's return type (could be an annotation type)
 917                 chk.validateAnnotationType(tree.restype);
 918                 // ensure that annotation method does not clash with members of Object/Annotation
 919                 chk.validateAnnotationMethod(tree.pos(), m);
 920             }
 921 
 922             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
 923                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
 924 
 925             if (tree.body == null) {
 926                 // Empty bodies are only allowed for
 927                 // abstract, native, or interface methods, or for methods
 928                 // in a retrofit signature class.
 929                 if (tree.defaultValue != null) {
 930                     if ((owner.flags() & ANNOTATION) == 0)
 931                         log.error(tree.pos(),
 932                                   "default.allowed.in.intf.annotation.member");
 933                 }
 934                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
 935                     !relax)
 936                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
 937             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
 938                 if ((owner.flags() & INTERFACE) != 0) {
 939                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
 940                 } else {
 941                     log.error(tree.pos(), "abstract.meth.cant.have.body");
 942                 }
 943             } else if ((tree.mods.flags & NATIVE) != 0) {
 944                 log.error(tree.pos(), "native.meth.cant.have.body");
 945             } else {
 946                 // Add an implicit super() call unless an explicit call to
 947                 // super(...) or this(...) is given
 948                 // or we are compiling class java.lang.Object.
 949                 if (tree.name == names.init && owner.type != syms.objectType) {
 950                     JCBlock body = tree.body;
 951                     if (body.stats.isEmpty() ||
 952                             !TreeInfo.isSelfCall(body.stats.head)) {
 953                         body.stats = body.stats.
 954                                 prepend(typeEnter.SuperCall(make.at(body.pos),
 955                                         List.<Type>nil(),
 956                                         List.<JCVariableDecl>nil(),
 957                                         false));
 958                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
 959                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
 960                             TreeInfo.isSuperCall(body.stats.head)) {
 961                         // enum constructors are not allowed to call super
 962                         // directly, so make sure there aren't any super calls
 963                         // in enum constructors, except in the compiler
 964                         // generated one.
 965                         log.error(tree.body.stats.head.pos(),
 966                                 "call.to.super.not.allowed.in.enum.ctor",
 967                                 env.enclClass.sym);
 968                     }
 969                 }
 970 
 971                 // Attribute all type annotations in the body
 972                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
 973                 annotate.flush();
 974 
 975                 // Attribute method body.
 976                 attribStat(tree.body, localEnv);
 977             }
 978 
 979             localEnv.info.scope.leave();
 980             result = tree.type = m.type;
 981         } finally {
 982             chk.setLint(prevLint);
 983             chk.setMethod(prevMethod);
 984         }
 985     }
 986 
 987     public void visitVarDef(JCVariableDecl tree) {
 988         // Local variables have not been entered yet, so we need to do it now:
 989         if (env.info.scope.owner.kind == MTH) {
 990             if (tree.sym != null) {
 991                 // parameters have already been entered
 992                 env.info.scope.enter(tree.sym);
 993             } else {
 994                 try {
 995                     enter.enterStart();
 996                     memberEnter.memberEnter(tree, env);
 997                 } finally {
 998                     enter.enterDone();
 999                 }
1000             }
1001         } else {
1002             if (tree.init != null) {
1003                 // Field initializer expression need to be entered.
1004                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1005                 annotate.flush();
1006             }
1007         }
1008 
1009         VarSymbol v = tree.sym;
1010         Lint lint = env.info.lint.augment(v);
1011         Lint prevLint = chk.setLint(lint);
1012 
1013         // Check that the variable's declared type is well-formed.
1014         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1015                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1016                 (tree.sym.flags() & PARAMETER) != 0;
1017         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1018 
1019         try {
1020             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1021             deferredLintHandler.flush(tree.pos());
1022             chk.checkDeprecatedAnnotation(tree.pos(), v);
1023 
1024             if (tree.init != null) {
1025                 if ((v.flags_field & FINAL) == 0 ||
1026                     !memberEnter.needsLazyConstValue(tree.init)) {
1027                     // Not a compile-time constant
1028                     // Attribute initializer in a new environment
1029                     // with the declared variable as owner.
1030                     // Check that initializer conforms to variable's declared type.
1031                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1032                     initEnv.info.lint = lint;
1033                     // In order to catch self-references, we set the variable's
1034                     // declaration position to maximal possible value, effectively
1035                     // marking the variable as undefined.
1036                     initEnv.info.enclVar = v;
1037                     attribExpr(tree.init, initEnv, v.type);
1038                 }
1039             }
1040             result = tree.type = v.type;
1041         }
1042         finally {
1043             chk.setLint(prevLint);
1044         }
1045     }
1046 
1047     public void visitSkip(JCSkip tree) {
1048         result = null;
1049     }
1050 
1051     public void visitBlock(JCBlock tree) {
1052         if (env.info.scope.owner.kind == TYP) {
1053             // Block is a static or instance initializer;
1054             // let the owner of the environment be a freshly
1055             // created BLOCK-method.
1056             Symbol fakeOwner =
1057                 new MethodSymbol(tree.flags | BLOCK |
1058                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1059                     env.info.scope.owner);
1060             final Env<AttrContext> localEnv =
1061                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1062 
1063             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1064             // Attribute all type annotations in the block
1065             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1066             annotate.flush();
1067             attribStats(tree.stats, localEnv);
1068 
1069             {
1070                 // Store init and clinit type annotations with the ClassSymbol
1071                 // to allow output in Gen.normalizeDefs.
1072                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1073                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1074                 if ((tree.flags & STATIC) != 0) {
1075                     cs.appendClassInitTypeAttributes(tas);
1076                 } else {
1077                     cs.appendInitTypeAttributes(tas);
1078                 }
1079             }
1080         } else {
1081             // Create a new local environment with a local scope.
1082             Env<AttrContext> localEnv =
1083                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1084             try {
1085                 attribStats(tree.stats, localEnv);
1086             } finally {
1087                 localEnv.info.scope.leave();
1088             }
1089         }
1090         result = null;
1091     }
1092 
1093     public void visitDoLoop(JCDoWhileLoop tree) {
1094         attribStat(tree.body, env.dup(tree));
1095         attribExpr(tree.cond, env, syms.booleanType);
1096         result = null;
1097     }
1098 
1099     public void visitWhileLoop(JCWhileLoop tree) {
1100         attribExpr(tree.cond, env, syms.booleanType);
1101         attribStat(tree.body, env.dup(tree));
1102         result = null;
1103     }
1104 
1105     public void visitForLoop(JCForLoop tree) {
1106         Env<AttrContext> loopEnv =
1107             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1108         try {
1109             attribStats(tree.init, loopEnv);
1110             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1111             loopEnv.tree = tree; // before, we were not in loop!
1112             attribStats(tree.step, loopEnv);
1113             attribStat(tree.body, loopEnv);
1114             result = null;
1115         }
1116         finally {
1117             loopEnv.info.scope.leave();
1118         }
1119     }
1120 
1121     public void visitForeachLoop(JCEnhancedForLoop tree) {
1122         Env<AttrContext> loopEnv =
1123             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1124         try {
1125             //the Formal Parameter of a for-each loop is not in the scope when
1126             //attributing the for-each expression; we mimick this by attributing
1127             //the for-each expression first (against original scope).
1128             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1129             attribStat(tree.var, loopEnv);
1130             chk.checkNonVoid(tree.pos(), exprType);
1131             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1132             if (elemtype == null) {
1133                 // or perhaps expr implements Iterable<T>?
1134                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1135                 if (base == null) {
1136                     log.error(tree.expr.pos(),
1137                             "foreach.not.applicable.to.type",
1138                             exprType,
1139                             diags.fragment("type.req.array.or.iterable"));
1140                     elemtype = types.createErrorType(exprType);
1141                 } else {
1142                     List<Type> iterableParams = base.allparams();
1143                     elemtype = iterableParams.isEmpty()
1144                         ? syms.objectType
1145                         : types.wildUpperBound(iterableParams.head);
1146                 }
1147             }
1148             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1149             loopEnv.tree = tree; // before, we were not in loop!
1150             attribStat(tree.body, loopEnv);
1151             result = null;
1152         }
1153         finally {
1154             loopEnv.info.scope.leave();
1155         }
1156     }
1157 
1158     public void visitLabelled(JCLabeledStatement tree) {
1159         // Check that label is not used in an enclosing statement
1160         Env<AttrContext> env1 = env;
1161         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1162             if (env1.tree.hasTag(LABELLED) &&
1163                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1164                 log.error(tree.pos(), "label.already.in.use",
1165                           tree.label);
1166                 break;
1167             }
1168             env1 = env1.next;
1169         }
1170 
1171         attribStat(tree.body, env.dup(tree));
1172         result = null;
1173     }
1174 
1175     public void visitSwitch(JCSwitch tree) {
1176         Type seltype = attribExpr(tree.selector, env);
1177 
1178         Env<AttrContext> switchEnv =
1179             env.dup(tree, env.info.dup(env.info.scope.dup()));
1180 
1181         try {
1182 
1183             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1184             boolean stringSwitch = false;
1185             if (types.isSameType(seltype, syms.stringType)) {
1186                 if (allowStringsInSwitch) {
1187                     stringSwitch = true;
1188                 } else {
1189                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1190                 }
1191             }
1192             if (!enumSwitch && !stringSwitch)
1193                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1194 
1195             // Attribute all cases and
1196             // check that there are no duplicate case labels or default clauses.
1197             Set<Object> labels = new HashSet<>(); // The set of case labels.
1198             boolean hasDefault = false;      // Is there a default label?
1199             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1200                 JCCase c = l.head;
1201                 if (c.pat != null) {
1202                     if (enumSwitch) {
1203                         Symbol sym = enumConstant(c.pat, seltype);
1204                         if (sym == null) {
1205                             log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1206                         } else if (!labels.add(sym)) {
1207                             log.error(c.pos(), "duplicate.case.label");
1208                         }
1209                     } else {
1210                         Type pattype = attribExpr(c.pat, switchEnv, seltype);
1211                         if (!pattype.hasTag(ERROR)) {
1212                             if (pattype.constValue() == null) {
1213                                 log.error(c.pat.pos(),
1214                                           (stringSwitch ? "string.const.req" : "const.expr.req"));
1215                             } else if (labels.contains(pattype.constValue())) {
1216                                 log.error(c.pos(), "duplicate.case.label");
1217                             } else {
1218                                 labels.add(pattype.constValue());
1219                             }
1220                         }
1221                     }
1222                 } else if (hasDefault) {
1223                     log.error(c.pos(), "duplicate.default.label");
1224                 } else {
1225                     hasDefault = true;
1226                 }
1227                 Env<AttrContext> caseEnv =
1228                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1229                 try {
1230                     attribStats(c.stats, caseEnv);
1231                 } finally {
1232                     caseEnv.info.scope.leave();
1233                     addVars(c.stats, switchEnv.info.scope);
1234                 }
1235             }
1236 
1237             result = null;
1238         }
1239         finally {
1240             switchEnv.info.scope.leave();
1241         }
1242     }
1243     // where
1244         /** Add any variables defined in stats to the switch scope. */
1245         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1246             for (;stats.nonEmpty(); stats = stats.tail) {
1247                 JCTree stat = stats.head;
1248                 if (stat.hasTag(VARDEF))
1249                     switchScope.enter(((JCVariableDecl) stat).sym);
1250             }
1251         }
1252     // where
1253     /** Return the selected enumeration constant symbol, or null. */
1254     private Symbol enumConstant(JCTree tree, Type enumType) {
1255         if (!tree.hasTag(IDENT)) {
1256             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
1257             return syms.errSymbol;
1258         }
1259         JCIdent ident = (JCIdent)tree;
1260         Name name = ident.name;
1261         for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1262             if (sym.kind == VAR) {
1263                 Symbol s = ident.sym = sym;
1264                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1265                 ident.type = s.type;
1266                 return ((s.flags_field & Flags.ENUM) == 0)
1267                     ? null : s;
1268             }
1269         }
1270         return null;
1271     }
1272 
1273     public void visitSynchronized(JCSynchronized tree) {
1274         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1275         attribStat(tree.body, env);
1276         result = null;
1277     }
1278 
1279     public void visitTry(JCTry tree) {
1280         // Create a new local environment with a local
1281         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1282         try {
1283             boolean isTryWithResource = tree.resources.nonEmpty();
1284             // Create a nested environment for attributing the try block if needed
1285             Env<AttrContext> tryEnv = isTryWithResource ?
1286                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1287                 localEnv;
1288             try {
1289                 // Attribute resource declarations
1290                 for (JCTree resource : tree.resources) {
1291                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1292                         @Override
1293                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1294                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1295                         }
1296                     };
1297                     ResultInfo twrResult =
1298                         new ResultInfo(KindSelector.VAR,
1299                                        syms.autoCloseableType,
1300                                        twrContext);
1301                     if (resource.hasTag(VARDEF)) {
1302                         attribStat(resource, tryEnv);
1303                         twrResult.check(resource, resource.type);
1304 
1305                         //check that resource type cannot throw InterruptedException
1306                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1307 
1308                         VarSymbol var = ((JCVariableDecl) resource).sym;
1309                         var.setData(ElementKind.RESOURCE_VARIABLE);
1310                     } else {
1311                         attribTree(resource, tryEnv, twrResult);
1312                     }
1313                 }
1314                 // Attribute body
1315                 attribStat(tree.body, tryEnv);
1316             } finally {
1317                 if (isTryWithResource)
1318                     tryEnv.info.scope.leave();
1319             }
1320 
1321             // Attribute catch clauses
1322             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1323                 JCCatch c = l.head;
1324                 Env<AttrContext> catchEnv =
1325                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1326                 try {
1327                     Type ctype = attribStat(c.param, catchEnv);
1328                     if (TreeInfo.isMultiCatch(c)) {
1329                         //multi-catch parameter is implicitly marked as final
1330                         c.param.sym.flags_field |= FINAL | UNION;
1331                     }
1332                     if (c.param.sym.kind == VAR) {
1333                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1334                     }
1335                     chk.checkType(c.param.vartype.pos(),
1336                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1337                                   syms.throwableType);
1338                     attribStat(c.body, catchEnv);
1339                 } finally {
1340                     catchEnv.info.scope.leave();
1341                 }
1342             }
1343 
1344             // Attribute finalizer
1345             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1346             result = null;
1347         }
1348         finally {
1349             localEnv.info.scope.leave();
1350         }
1351     }
1352 
1353     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1354         if (!resource.isErroneous() &&
1355             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1356             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1357             Symbol close = syms.noSymbol;
1358             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1359             try {
1360                 close = rs.resolveQualifiedMethod(pos,
1361                         env,
1362                         resource,
1363                         names.close,
1364                         List.<Type>nil(),
1365                         List.<Type>nil());
1366             }
1367             finally {
1368                 log.popDiagnosticHandler(discardHandler);
1369             }
1370             if (close.kind == MTH &&
1371                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1372                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1373                     env.info.lint.isEnabled(LintCategory.TRY)) {
1374                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1375             }
1376         }
1377     }
1378 
1379     public void visitConditional(JCConditional tree) {
1380         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1381 
1382         tree.polyKind = (!allowPoly ||
1383                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
1384                 isBooleanOrNumeric(env, tree)) ?
1385                 PolyKind.STANDALONE : PolyKind.POLY;
1386 
1387         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1388             //cannot get here (i.e. it means we are returning from void method - which is already an error)
1389             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1390             result = tree.type = types.createErrorType(resultInfo.pt);
1391             return;
1392         }
1393 
1394         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1395                 unknownExprInfo :
1396                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1397                     //this will use enclosing check context to check compatibility of
1398                     //subexpression against target type; if we are in a method check context,
1399                     //depending on whether boxing is allowed, we could have incompatibilities
1400                     @Override
1401                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
1402                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1403                     }
1404                 });
1405 
1406         Type truetype = attribTree(tree.truepart, env, condInfo);
1407         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1408 
1409         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1410         if (condtype.constValue() != null &&
1411                 truetype.constValue() != null &&
1412                 falsetype.constValue() != null &&
1413                 !owntype.hasTag(NONE)) {
1414             //constant folding
1415             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1416         }
1417         result = check(tree, owntype, KindSelector.VAL, resultInfo);
1418     }
1419     //where
1420         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1421             switch (tree.getTag()) {
1422                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1423                               ((JCLiteral)tree).typetag == BOOLEAN ||
1424                               ((JCLiteral)tree).typetag == BOT;
1425                 case LAMBDA: case REFERENCE: return false;
1426                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1427                 case CONDEXPR:
1428                     JCConditional condTree = (JCConditional)tree;
1429                     return isBooleanOrNumeric(env, condTree.truepart) &&
1430                             isBooleanOrNumeric(env, condTree.falsepart);
1431                 case APPLY:
1432                     JCMethodInvocation speculativeMethodTree =
1433                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1434                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1435                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1436                             env.enclClass.type :
1437                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1438                     Type owntype = types.memberType(receiverType, msym).getReturnType();
1439                     return primitiveOrBoxed(owntype);
1440                 case NEWCLASS:
1441                     JCExpression className =
1442                             removeClassParams.translate(((JCNewClass)tree).clazz);
1443                     JCExpression speculativeNewClassTree =
1444                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1445                     return primitiveOrBoxed(speculativeNewClassTree.type);
1446                 default:
1447                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1448                     return primitiveOrBoxed(speculativeType);
1449             }
1450         }
1451         //where
1452             boolean primitiveOrBoxed(Type t) {
1453                 return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1454             }
1455 
1456             TreeTranslator removeClassParams = new TreeTranslator() {
1457                 @Override
1458                 public void visitTypeApply(JCTypeApply tree) {
1459                     result = translate(tree.clazz);
1460                 }
1461             };
1462 
1463         /** Compute the type of a conditional expression, after
1464          *  checking that it exists.  See JLS 15.25. Does not take into
1465          *  account the special case where condition and both arms
1466          *  are constants.
1467          *
1468          *  @param pos      The source position to be used for error
1469          *                  diagnostics.
1470          *  @param thentype The type of the expression's then-part.
1471          *  @param elsetype The type of the expression's else-part.
1472          */
1473         Type condType(DiagnosticPosition pos,
1474                                Type thentype, Type elsetype) {
1475             // If same type, that is the result
1476             if (types.isSameType(thentype, elsetype))
1477                 return thentype.baseType();
1478 
1479             Type thenUnboxed = (thentype.isPrimitive())
1480                 ? thentype : types.unboxedType(thentype);
1481             Type elseUnboxed = (elsetype.isPrimitive())
1482                 ? elsetype : types.unboxedType(elsetype);
1483 
1484             // Otherwise, if both arms can be converted to a numeric
1485             // type, return the least numeric type that fits both arms
1486             // (i.e. return larger of the two, or return int if one
1487             // arm is short, the other is char).
1488             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1489                 // If one arm has an integer subrange type (i.e., byte,
1490                 // short, or char), and the other is an integer constant
1491                 // that fits into the subrange, return the subrange type.
1492                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1493                     elseUnboxed.hasTag(INT) &&
1494                     types.isAssignable(elseUnboxed, thenUnboxed)) {
1495                     return thenUnboxed.baseType();
1496                 }
1497                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1498                     thenUnboxed.hasTag(INT) &&
1499                     types.isAssignable(thenUnboxed, elseUnboxed)) {
1500                     return elseUnboxed.baseType();
1501                 }
1502 
1503                 for (TypeTag tag : primitiveTags) {
1504                     Type candidate = syms.typeOfTag[tag.ordinal()];
1505                     if (types.isSubtype(thenUnboxed, candidate) &&
1506                         types.isSubtype(elseUnboxed, candidate)) {
1507                         return candidate;
1508                     }
1509                 }
1510             }
1511 
1512             // Those were all the cases that could result in a primitive
1513             if (thentype.isPrimitive())
1514                 thentype = types.boxedClass(thentype).type;
1515             if (elsetype.isPrimitive())
1516                 elsetype = types.boxedClass(elsetype).type;
1517 
1518             if (types.isSubtype(thentype, elsetype))
1519                 return elsetype.baseType();
1520             if (types.isSubtype(elsetype, thentype))
1521                 return thentype.baseType();
1522 
1523             if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1524                 log.error(pos, "neither.conditional.subtype",
1525                           thentype, elsetype);
1526                 return thentype.baseType();
1527             }
1528 
1529             // both are known to be reference types.  The result is
1530             // lub(thentype,elsetype). This cannot fail, as it will
1531             // always be possible to infer "Object" if nothing better.
1532             return types.lub(thentype.baseType(), elsetype.baseType());
1533         }
1534 
1535     final static TypeTag[] primitiveTags = new TypeTag[]{
1536         BYTE,
1537         CHAR,
1538         SHORT,
1539         INT,
1540         LONG,
1541         FLOAT,
1542         DOUBLE,
1543         BOOLEAN,
1544     };
1545 
1546     public void visitIf(JCIf tree) {
1547         attribExpr(tree.cond, env, syms.booleanType);
1548         attribStat(tree.thenpart, env);
1549         if (tree.elsepart != null)
1550             attribStat(tree.elsepart, env);
1551         chk.checkEmptyIf(tree);
1552         result = null;
1553     }
1554 
1555     public void visitExec(JCExpressionStatement tree) {
1556         //a fresh environment is required for 292 inference to work properly ---
1557         //see Infer.instantiatePolymorphicSignatureInstance()
1558         Env<AttrContext> localEnv = env.dup(tree);
1559         attribExpr(tree.expr, localEnv);
1560         result = null;
1561     }
1562 
1563     public void visitBreak(JCBreak tree) {
1564         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1565         result = null;
1566     }
1567 
1568     public void visitContinue(JCContinue tree) {
1569         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1570         result = null;
1571     }
1572     //where
1573         /** Return the target of a break or continue statement, if it exists,
1574          *  report an error if not.
1575          *  Note: The target of a labelled break or continue is the
1576          *  (non-labelled) statement tree referred to by the label,
1577          *  not the tree representing the labelled statement itself.
1578          *
1579          *  @param pos     The position to be used for error diagnostics
1580          *  @param tag     The tag of the jump statement. This is either
1581          *                 Tree.BREAK or Tree.CONTINUE.
1582          *  @param label   The label of the jump statement, or null if no
1583          *                 label is given.
1584          *  @param env     The environment current at the jump statement.
1585          */
1586         private JCTree findJumpTarget(DiagnosticPosition pos,
1587                                     JCTree.Tag tag,
1588                                     Name label,
1589                                     Env<AttrContext> env) {
1590             // Search environments outwards from the point of jump.
1591             Env<AttrContext> env1 = env;
1592             LOOP:
1593             while (env1 != null) {
1594                 switch (env1.tree.getTag()) {
1595                     case LABELLED:
1596                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1597                         if (label == labelled.label) {
1598                             // If jump is a continue, check that target is a loop.
1599                             if (tag == CONTINUE) {
1600                                 if (!labelled.body.hasTag(DOLOOP) &&
1601                                         !labelled.body.hasTag(WHILELOOP) &&
1602                                         !labelled.body.hasTag(FORLOOP) &&
1603                                         !labelled.body.hasTag(FOREACHLOOP))
1604                                     log.error(pos, "not.loop.label", label);
1605                                 // Found labelled statement target, now go inwards
1606                                 // to next non-labelled tree.
1607                                 return TreeInfo.referencedStatement(labelled);
1608                             } else {
1609                                 return labelled;
1610                             }
1611                         }
1612                         break;
1613                     case DOLOOP:
1614                     case WHILELOOP:
1615                     case FORLOOP:
1616                     case FOREACHLOOP:
1617                         if (label == null) return env1.tree;
1618                         break;
1619                     case SWITCH:
1620                         if (label == null && tag == BREAK) return env1.tree;
1621                         break;
1622                     case LAMBDA:
1623                     case METHODDEF:
1624                     case CLASSDEF:
1625                         break LOOP;
1626                     default:
1627                 }
1628                 env1 = env1.next;
1629             }
1630             if (label != null)
1631                 log.error(pos, "undef.label", label);
1632             else if (tag == CONTINUE)
1633                 log.error(pos, "cont.outside.loop");
1634             else
1635                 log.error(pos, "break.outside.switch.loop");
1636             return null;
1637         }
1638 
1639     public void visitReturn(JCReturn tree) {
1640         // Check that there is an enclosing method which is
1641         // nested within than the enclosing class.
1642         if (env.info.returnResult == null) {
1643             log.error(tree.pos(), "ret.outside.meth");
1644         } else {
1645             // Attribute return expression, if it exists, and check that
1646             // it conforms to result type of enclosing method.
1647             if (tree.expr != null) {
1648                 if (env.info.returnResult.pt.hasTag(VOID)) {
1649                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1650                               diags.fragment("unexpected.ret.val"));
1651                 }
1652                 attribTree(tree.expr, env, env.info.returnResult);
1653             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1654                     !env.info.returnResult.pt.hasTag(NONE)) {
1655                 env.info.returnResult.checkContext.report(tree.pos(),
1656                               diags.fragment("missing.ret.val"));
1657             }
1658         }
1659         result = null;
1660     }
1661 
1662     public void visitThrow(JCThrow tree) {
1663         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1664         if (allowPoly) {
1665             chk.checkType(tree, owntype, syms.throwableType);
1666         }
1667         result = null;
1668     }
1669 
1670     public void visitAssert(JCAssert tree) {
1671         attribExpr(tree.cond, env, syms.booleanType);
1672         if (tree.detail != null) {
1673             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1674         }
1675         result = null;
1676     }
1677 
1678      /** Visitor method for method invocations.
1679      *  NOTE: The method part of an application will have in its type field
1680      *        the return type of the method, not the method's type itself!
1681      */
1682     public void visitApply(JCMethodInvocation tree) {
1683         // The local environment of a method application is
1684         // a new environment nested in the current one.
1685         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1686 
1687         // The types of the actual method arguments.
1688         List<Type> argtypes;
1689 
1690         // The types of the actual method type arguments.
1691         List<Type> typeargtypes = null;
1692 
1693         Name methName = TreeInfo.name(tree.meth);
1694 
1695         boolean isConstructorCall =
1696             methName == names._this || methName == names._super;
1697 
1698         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1699         if (isConstructorCall) {
1700             // We are seeing a ...this(...) or ...super(...) call.
1701             // Check that this is the first statement in a constructor.
1702             if (checkFirstConstructorStat(tree, env)) {
1703 
1704                 // Record the fact
1705                 // that this is a constructor call (using isSelfCall).
1706                 localEnv.info.isSelfCall = true;
1707 
1708                 // Attribute arguments, yielding list of argument types.
1709                 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1710                 argtypes = argtypesBuf.toList();
1711                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1712 
1713                 // Variable `site' points to the class in which the called
1714                 // constructor is defined.
1715                 Type site = env.enclClass.sym.type;
1716                 if (methName == names._super) {
1717                     if (site == syms.objectType) {
1718                         log.error(tree.meth.pos(), "no.superclass", site);
1719                         site = types.createErrorType(syms.objectType);
1720                     } else {
1721                         site = types.supertype(site);
1722                     }
1723                 }
1724 
1725                 if (site.hasTag(CLASS)) {
1726                     Type encl = site.getEnclosingType();
1727                     while (encl != null && encl.hasTag(TYPEVAR))
1728                         encl = encl.getUpperBound();
1729                     if (encl.hasTag(CLASS)) {
1730                         // we are calling a nested class
1731 
1732                         if (tree.meth.hasTag(SELECT)) {
1733                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1734 
1735                             // We are seeing a prefixed call, of the form
1736                             //     <expr>.super(...).
1737                             // Check that the prefix expression conforms
1738                             // to the outer instance type of the class.
1739                             chk.checkRefType(qualifier.pos(),
1740                                              attribExpr(qualifier, localEnv,
1741                                                         encl));
1742                         } else if (methName == names._super) {
1743                             // qualifier omitted; check for existence
1744                             // of an appropriate implicit qualifier.
1745                             rs.resolveImplicitThis(tree.meth.pos(),
1746                                                    localEnv, site, true);
1747                         }
1748                     } else if (tree.meth.hasTag(SELECT)) {
1749                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
1750                                   site.tsym);
1751                     }
1752 
1753                     // if we're calling a java.lang.Enum constructor,
1754                     // prefix the implicit String and int parameters
1755                     if (site.tsym == syms.enumSym)
1756                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1757 
1758                     // Resolve the called constructor under the assumption
1759                     // that we are referring to a superclass instance of the
1760                     // current instance (JLS ???).
1761                     boolean selectSuperPrev = localEnv.info.selectSuper;
1762                     localEnv.info.selectSuper = true;
1763                     localEnv.info.pendingResolutionPhase = null;
1764                     Symbol sym = rs.resolveConstructor(
1765                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1766                     localEnv.info.selectSuper = selectSuperPrev;
1767 
1768                     // Set method symbol to resolved constructor...
1769                     TreeInfo.setSymbol(tree.meth, sym);
1770 
1771                     // ...and check that it is legal in the current context.
1772                     // (this will also set the tree's type)
1773                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1774                     checkId(tree.meth, site, sym, localEnv,
1775                             new ResultInfo(kind, mpt));
1776                 }
1777                 // Otherwise, `site' is an error type and we do nothing
1778             }
1779             result = tree.type = syms.voidType;
1780         } else {
1781             // Otherwise, we are seeing a regular method call.
1782             // Attribute the arguments, yielding list of argument types, ...
1783             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1784             argtypes = argtypesBuf.toList();
1785             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1786 
1787             // ... and attribute the method using as a prototype a methodtype
1788             // whose formal argument types is exactly the list of actual
1789             // arguments (this will also set the method symbol).
1790             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1791             localEnv.info.pendingResolutionPhase = null;
1792             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1793 
1794             // Compute the result type.
1795             Type restype = mtype.getReturnType();
1796             if (restype.hasTag(WILDCARD))
1797                 throw new AssertionError(mtype);
1798 
1799             Type qualifier = (tree.meth.hasTag(SELECT))
1800                     ? ((JCFieldAccess) tree.meth).selected.type
1801                     : env.enclClass.sym.type;
1802             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1803 
1804             chk.checkRefTypes(tree.typeargs, typeargtypes);
1805 
1806             // Check that value of resulting type is admissible in the
1807             // current context.  Also, capture the return type
1808             result = check(tree, capture(restype), KindSelector.VAL, resultInfo);
1809         }
1810         chk.validate(tree.typeargs, localEnv);
1811     }
1812     //where
1813         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1814             if (methodName == names.clone && types.isArray(qualifierType)) {
1815                 // as a special case, array.clone() has a result that is
1816                 // the same as static type of the array being cloned
1817                 return qualifierType;
1818             } else if (methodName == names.getClass && argtypes.isEmpty()) {
1819                 // as a special case, x.getClass() has type Class<? extends |X|>
1820                 return new ClassType(restype.getEnclosingType(),
1821                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
1822                                                                BoundKind.EXTENDS,
1823                                                              syms.boundClass)),
1824                                      restype.tsym,
1825                                      restype.getMetadata());
1826             } else {
1827                 return restype;
1828             }
1829         }
1830 
1831         /** Check that given application node appears as first statement
1832          *  in a constructor call.
1833          *  @param tree   The application node
1834          *  @param env    The environment current at the application.
1835          */
1836         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1837             JCMethodDecl enclMethod = env.enclMethod;
1838             if (enclMethod != null && enclMethod.name == names.init) {
1839                 JCBlock body = enclMethod.body;
1840                 if (body.stats.head.hasTag(EXEC) &&
1841                     ((JCExpressionStatement) body.stats.head).expr == tree)
1842                     return true;
1843             }
1844             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1845                       TreeInfo.name(tree.meth));
1846             return false;
1847         }
1848 
1849         /** Obtain a method type with given argument types.
1850          */
1851         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1852             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1853             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1854         }
1855 
1856     public void visitNewClass(final JCNewClass tree) {
1857         Type owntype = types.createErrorType(tree.type);
1858 
1859         // The local environment of a class creation is
1860         // a new environment nested in the current one.
1861         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1862 
1863         // The anonymous inner class definition of the new expression,
1864         // if one is defined by it.
1865         JCClassDecl cdef = tree.def;
1866 
1867         // If enclosing class is given, attribute it, and
1868         // complete class name to be fully qualified
1869         JCExpression clazz = tree.clazz; // Class field following new
1870         JCExpression clazzid;            // Identifier in class field
1871         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1872         annoclazzid = null;
1873 
1874         if (clazz.hasTag(TYPEAPPLY)) {
1875             clazzid = ((JCTypeApply) clazz).clazz;
1876             if (clazzid.hasTag(ANNOTATED_TYPE)) {
1877                 annoclazzid = (JCAnnotatedType) clazzid;
1878                 clazzid = annoclazzid.underlyingType;
1879             }
1880         } else {
1881             if (clazz.hasTag(ANNOTATED_TYPE)) {
1882                 annoclazzid = (JCAnnotatedType) clazz;
1883                 clazzid = annoclazzid.underlyingType;
1884             } else {
1885                 clazzid = clazz;
1886             }
1887         }
1888 
1889         JCExpression clazzid1 = clazzid; // The same in fully qualified form
1890 
1891         if (tree.encl != null) {
1892             // We are seeing a qualified new, of the form
1893             //    <expr>.new C <...> (...) ...
1894             // In this case, we let clazz stand for the name of the
1895             // allocated class C prefixed with the type of the qualifier
1896             // expression, so that we can
1897             // resolve it with standard techniques later. I.e., if
1898             // <expr> has type T, then <expr>.new C <...> (...)
1899             // yields a clazz T.C.
1900             Type encltype = chk.checkRefType(tree.encl.pos(),
1901                                              attribExpr(tree.encl, env));
1902             // TODO 308: in <expr>.new C, do we also want to add the type annotations
1903             // from expr to the combined type, or not? Yes, do this.
1904             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1905                                                  ((JCIdent) clazzid).name);
1906 
1907             EndPosTable endPosTable = this.env.toplevel.endPositions;
1908             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
1909             if (clazz.hasTag(ANNOTATED_TYPE)) {
1910                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
1911                 List<JCAnnotation> annos = annoType.annotations;
1912 
1913                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
1914                     clazzid1 = make.at(tree.pos).
1915                         TypeApply(clazzid1,
1916                                   ((JCTypeApply) clazz).arguments);
1917                 }
1918 
1919                 clazzid1 = make.at(tree.pos).
1920                     AnnotatedType(annos, clazzid1);
1921             } else if (clazz.hasTag(TYPEAPPLY)) {
1922                 clazzid1 = make.at(tree.pos).
1923                     TypeApply(clazzid1,
1924                               ((JCTypeApply) clazz).arguments);
1925             }
1926 
1927             clazz = clazzid1;
1928         }
1929 
1930         // Attribute clazz expression and store
1931         // symbol + type back into the attributed tree.
1932         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
1933             attribIdentAsEnumType(env, (JCIdent)clazz) :
1934             attribType(clazz, env);
1935 
1936         clazztype = chk.checkDiamond(tree, clazztype);
1937         chk.validate(clazz, localEnv);
1938         if (tree.encl != null) {
1939             // We have to work in this case to store
1940             // symbol + type back into the attributed tree.
1941             tree.clazz.type = clazztype;
1942             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1943             clazzid.type = ((JCIdent) clazzid).sym.type;
1944             if (annoclazzid != null) {
1945                 annoclazzid.type = clazzid.type;
1946             }
1947             if (!clazztype.isErroneous()) {
1948                 if (cdef != null && clazztype.tsym.isInterface()) {
1949                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1950                 } else if (clazztype.tsym.isStatic()) {
1951                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1952                 }
1953             }
1954         } else if (!clazztype.tsym.isInterface() &&
1955                    clazztype.getEnclosingType().hasTag(CLASS)) {
1956             // Check for the existence of an apropos outer instance
1957             rs.resolveImplicitThis(tree.pos(), env, clazztype);
1958         }
1959 
1960         // Attribute constructor arguments.
1961         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1962         final KindSelector pkind =
1963             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1964         List<Type> argtypes = argtypesBuf.toList();
1965         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
1966 
1967         // If we have made no mistakes in the class type...
1968         if (clazztype.hasTag(CLASS)) {
1969             // Enums may not be instantiated except implicitly
1970             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
1971                 (!env.tree.hasTag(VARDEF) ||
1972                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
1973                  ((JCVariableDecl) env.tree).init != tree))
1974                 log.error(tree.pos(), "enum.cant.be.instantiated");
1975             // Check that class is not abstract
1976             if (cdef == null &&
1977                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
1978                 log.error(tree.pos(), "abstract.cant.be.instantiated",
1979                           clazztype.tsym);
1980             } else if (cdef != null && clazztype.tsym.isInterface()) {
1981                 // Check that no constructor arguments are given to
1982                 // anonymous classes implementing an interface
1983                 if (!argtypes.isEmpty())
1984                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
1985 
1986                 if (!typeargtypes.isEmpty())
1987                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
1988 
1989                 // Error recovery: pretend no arguments were supplied.
1990                 argtypes = List.nil();
1991                 typeargtypes = List.nil();
1992             } else if (TreeInfo.isDiamond(tree)) {
1993                 ClassType site = new ClassType(clazztype.getEnclosingType(),
1994                             clazztype.tsym.type.getTypeArguments(),
1995                                                clazztype.tsym,
1996                                                clazztype.getMetadata());
1997 
1998                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
1999                 diamondEnv.info.selectSuper = cdef != null;
2000                 diamondEnv.info.pendingResolutionPhase = null;
2001 
2002                 //if the type of the instance creation expression is a class type
2003                 //apply method resolution inference (JLS 15.12.2.7). The return type
2004                 //of the resolved constructor will be a partially instantiated type
2005                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2006                             diamondEnv,
2007                             site,
2008                             argtypes,
2009                             typeargtypes);
2010                 tree.constructor = constructor.baseSymbol();
2011 
2012                 final TypeSymbol csym = clazztype.tsym;
2013                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
2014                     @Override
2015                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2016                         enclosingContext.report(tree.clazz,
2017                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
2018                     }
2019                 });
2020                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2021                 constructorType = checkId(noCheckTree, site,
2022                         constructor,
2023                         diamondEnv,
2024                         diamondResult);
2025 
2026                 tree.clazz.type = types.createErrorType(clazztype);
2027                 if (!constructorType.isErroneous()) {
2028                     tree.clazz.type = clazztype = constructorType.getReturnType();
2029                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2030                 }
2031                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2032             }
2033 
2034             // Resolve the called constructor under the assumption
2035             // that we are referring to a superclass instance of the
2036             // current instance (JLS ???).
2037             else {
2038                 //the following code alters some of the fields in the current
2039                 //AttrContext - hence, the current context must be dup'ed in
2040                 //order to avoid downstream failures
2041                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2042                 rsEnv.info.selectSuper = cdef != null;
2043                 rsEnv.info.pendingResolutionPhase = null;
2044                 tree.constructor = rs.resolveConstructor(
2045                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2046                 if (cdef == null) { //do not check twice!
2047                     tree.constructorType = checkId(noCheckTree,
2048                             clazztype,
2049                             tree.constructor,
2050                             rsEnv,
2051                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2052                     if (rsEnv.info.lastResolveVarargs())
2053                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2054                 }
2055             }
2056 
2057             if (cdef != null) {
2058                 // We are seeing an anonymous class instance creation.
2059                 // In this case, the class instance creation
2060                 // expression
2061                 //
2062                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2063                 //
2064                 // is represented internally as
2065                 //
2066                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2067                 //
2068                 // This expression is then *transformed* as follows:
2069                 //
2070                 // (1) add an extends or implements clause
2071                 // (2) add a constructor.
2072                 //
2073                 // For instance, if C is a class, and ET is the type of E,
2074                 // the expression
2075                 //
2076                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2077                 //
2078                 // is translated to (where X is a fresh name and typarams is the
2079                 // parameter list of the super constructor):
2080                 //
2081                 //   new <typeargs1>X(<*nullchk*>E, args) where
2082                 //     X extends C<typargs2> {
2083                 //       <typarams> X(ET e, args) {
2084                 //         e.<typeargs1>super(args)
2085                 //       }
2086                 //       ...
2087                 //     }
2088 
2089                 if (clazztype.tsym.isInterface()) {
2090                     cdef.implementing = List.of(clazz);
2091                 } else {
2092                     cdef.extending = clazz;
2093                 }
2094 
2095                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2096                     isSerializable(clazztype)) {
2097                     localEnv.info.isSerializable = true;
2098                 }
2099 
2100                 attribStat(cdef, localEnv);
2101 
2102                 // If an outer instance is given,
2103                 // prefix it to the constructor arguments
2104                 // and delete it from the new expression
2105                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2106                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2107                     argtypes = argtypes.prepend(tree.encl.type);
2108                     tree.encl = null;
2109                 }
2110 
2111                 // Reassign clazztype and recompute constructor.
2112                 clazztype = cdef.sym.type;
2113                 Symbol sym = tree.constructor = rs.resolveConstructor(
2114                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
2115                 Assert.check(!sym.kind.isOverloadError());
2116                 tree.constructor = sym;
2117                 tree.constructorType = checkId(noCheckTree,
2118                     clazztype,
2119                     tree.constructor,
2120                     localEnv,
2121                     new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2122             }
2123 
2124             if (tree.constructor != null && tree.constructor.kind == MTH)
2125                 owntype = clazztype;
2126         }
2127         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2128         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2129         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2130             //we need to wait for inference to finish and then replace inference vars in the constructor type
2131             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2132                     instantiatedContext -> {
2133                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2134                     });
2135         }
2136         chk.validate(tree.typeargs, localEnv);
2137     }
2138 
2139     /** Make an attributed null check tree.
2140      */
2141     public JCExpression makeNullCheck(JCExpression arg) {
2142         // optimization: X.this is never null; skip null check
2143         Name name = TreeInfo.name(arg);
2144         if (name == names._this || name == names._super) return arg;
2145 
2146         JCTree.Tag optag = NULLCHK;
2147         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2148         tree.operator = operators.resolveUnary(arg, optag, arg.type);
2149         tree.type = arg.type;
2150         return tree;
2151     }
2152 
2153     public void visitNewArray(JCNewArray tree) {
2154         Type owntype = types.createErrorType(tree.type);
2155         Env<AttrContext> localEnv = env.dup(tree);
2156         Type elemtype;
2157         if (tree.elemtype != null) {
2158             elemtype = attribType(tree.elemtype, localEnv);
2159             chk.validate(tree.elemtype, localEnv);
2160             owntype = elemtype;
2161             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2162                 attribExpr(l.head, localEnv, syms.intType);
2163                 owntype = new ArrayType(owntype, syms.arrayClass);
2164             }
2165         } else {
2166             // we are seeing an untyped aggregate { ... }
2167             // this is allowed only if the prototype is an array
2168             if (pt().hasTag(ARRAY)) {
2169                 elemtype = types.elemtype(pt());
2170             } else {
2171                 if (!pt().hasTag(ERROR)) {
2172                     log.error(tree.pos(), "illegal.initializer.for.type",
2173                               pt());
2174                 }
2175                 elemtype = types.createErrorType(pt());
2176             }
2177         }
2178         if (tree.elems != null) {
2179             attribExprs(tree.elems, localEnv, elemtype);
2180             owntype = new ArrayType(elemtype, syms.arrayClass);
2181         }
2182         if (!types.isReifiable(elemtype))
2183             log.error(tree.pos(), "generic.array.creation");
2184         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2185     }
2186 
2187     /*
2188      * A lambda expression can only be attributed when a target-type is available.
2189      * In addition, if the target-type is that of a functional interface whose
2190      * descriptor contains inference variables in argument position the lambda expression
2191      * is 'stuck' (see DeferredAttr).
2192      */
2193     @Override
2194     public void visitLambda(final JCLambda that) {
2195         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2196             if (pt().hasTag(NONE)) {
2197                 //lambda only allowed in assignment or method invocation/cast context
2198                 log.error(that.pos(), "unexpected.lambda");
2199             }
2200             result = that.type = types.createErrorType(pt());
2201             return;
2202         }
2203         //create an environment for attribution of the lambda expression
2204         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2205         boolean needsRecovery =
2206                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2207         try {
2208             Type currentTarget = pt();
2209             if (needsRecovery && isSerializable(currentTarget)) {
2210                 localEnv.info.isSerializable = true;
2211             }
2212             List<Type> explicitParamTypes = null;
2213             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2214                 //attribute lambda parameters
2215                 attribStats(that.params, localEnv);
2216                 explicitParamTypes = TreeInfo.types(that.params);
2217             }
2218 
2219             Type lambdaType;
2220             if (pt() != Type.recoveryType) {
2221                 /* We need to adjust the target. If the target is an
2222                  * intersection type, for example: SAM & I1 & I2 ...
2223                  * the target will be updated to SAM
2224                  */
2225                 currentTarget = targetChecker.visit(currentTarget, that);
2226                 if (explicitParamTypes != null) {
2227                     currentTarget = infer.instantiateFunctionalInterface(that,
2228                             currentTarget, explicitParamTypes, resultInfo.checkContext);
2229                 }
2230                 currentTarget = types.removeWildcards(currentTarget);
2231                 lambdaType = types.findDescriptorType(currentTarget);
2232             } else {
2233                 currentTarget = Type.recoveryType;
2234                 lambdaType = fallbackDescriptorType(that);
2235             }
2236 
2237             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2238 
2239             if (lambdaType.hasTag(FORALL)) {
2240                 //lambda expression target desc cannot be a generic method
2241                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2242                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2243                 result = that.type = types.createErrorType(pt());
2244                 return;
2245             }
2246 
2247             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2248                 //add param type info in the AST
2249                 List<Type> actuals = lambdaType.getParameterTypes();
2250                 List<JCVariableDecl> params = that.params;
2251 
2252                 boolean arityMismatch = false;
2253 
2254                 while (params.nonEmpty()) {
2255                     if (actuals.isEmpty()) {
2256                         //not enough actuals to perform lambda parameter inference
2257                         arityMismatch = true;
2258                     }
2259                     //reset previously set info
2260                     Type argType = arityMismatch ?
2261                             syms.errType :
2262                             actuals.head;
2263                     params.head.vartype = make.at(params.head).Type(argType);
2264                     params.head.sym = null;
2265                     actuals = actuals.isEmpty() ?
2266                             actuals :
2267                             actuals.tail;
2268                     params = params.tail;
2269                 }
2270 
2271                 //attribute lambda parameters
2272                 attribStats(that.params, localEnv);
2273 
2274                 if (arityMismatch) {
2275                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2276                         result = that.type = types.createErrorType(currentTarget);
2277                         return;
2278                 }
2279             }
2280 
2281             //from this point on, no recovery is needed; if we are in assignment context
2282             //we will be able to attribute the whole lambda body, regardless of errors;
2283             //if we are in a 'check' method context, and the lambda is not compatible
2284             //with the target-type, it will be recovered anyway in Attr.checkId
2285             needsRecovery = false;
2286 
2287             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2288                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2289                     new FunctionalReturnContext(resultInfo.checkContext);
2290 
2291             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2292                 recoveryInfo :
2293                 new ResultInfo(KindSelector.VAL,
2294                                lambdaType.getReturnType(), funcContext);
2295             localEnv.info.returnResult = bodyResultInfo;
2296 
2297             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2298                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2299             } else {
2300                 JCBlock body = (JCBlock)that.body;
2301                 attribStats(body.stats, localEnv);
2302             }
2303 
2304             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2305 
2306             boolean isSpeculativeRound =
2307                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2308 
2309             preFlow(that);
2310             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2311 
2312             that.type = currentTarget; //avoids recovery at this stage
2313             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2314 
2315             if (!isSpeculativeRound) {
2316                 //add thrown types as bounds to the thrown types free variables if needed:
2317                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2318                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2319                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2320 
2321                     chk.unhandled(inferredThrownTypes, thrownTypes);
2322                 }
2323 
2324                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2325             }
2326             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2327         } catch (Types.FunctionDescriptorLookupError ex) {
2328             JCDiagnostic cause = ex.getDiagnostic();
2329             resultInfo.checkContext.report(that, cause);
2330             result = that.type = types.createErrorType(pt());
2331             return;
2332         } finally {
2333             localEnv.info.scope.leave();
2334             if (needsRecovery) {
2335                 attribTree(that, env, recoveryInfo);
2336             }
2337         }
2338     }
2339     //where
2340         void preFlow(JCLambda tree) {
2341             new PostAttrAnalyzer() {
2342                 @Override
2343                 public void scan(JCTree tree) {
2344                     if (tree == null ||
2345                             (tree.type != null &&
2346                             tree.type == Type.stuckType)) {
2347                         //don't touch stuck expressions!
2348                         return;
2349                     }
2350                     super.scan(tree);
2351                 }
2352             }.scan(tree);
2353         }
2354 
2355         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2356 
2357             @Override
2358             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2359                 return t.isCompound() ?
2360                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2361             }
2362 
2363             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2364                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2365                 Type target = null;
2366                 for (Type bound : ict.getExplicitComponents()) {
2367                     TypeSymbol boundSym = bound.tsym;
2368                     if (types.isFunctionalInterface(boundSym) &&
2369                             types.findDescriptorSymbol(boundSym) == desc) {
2370                         target = bound;
2371                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2372                         //bound must be an interface
2373                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
2374                     }
2375                 }
2376                 return target != null ?
2377                         target :
2378                         ict.getExplicitComponents().head; //error recovery
2379             }
2380 
2381             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2382                 ListBuffer<Type> targs = new ListBuffer<>();
2383                 ListBuffer<Type> supertypes = new ListBuffer<>();
2384                 for (Type i : ict.interfaces_field) {
2385                     if (i.isParameterized()) {
2386                         targs.appendList(i.tsym.type.allparams());
2387                     }
2388                     supertypes.append(i.tsym.type);
2389                 }
2390                 IntersectionClassType notionalIntf =
2391                         (IntersectionClassType)types.makeCompoundType(supertypes.toList());
2392                 notionalIntf.allparams_field = targs.toList();
2393                 notionalIntf.tsym.flags_field |= INTERFACE;
2394                 return notionalIntf.tsym;
2395             }
2396 
2397             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2398                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2399                         diags.fragment(key, args)));
2400             }
2401         };
2402 
2403         private Type fallbackDescriptorType(JCExpression tree) {
2404             switch (tree.getTag()) {
2405                 case LAMBDA:
2406                     JCLambda lambda = (JCLambda)tree;
2407                     List<Type> argtypes = List.nil();
2408                     for (JCVariableDecl param : lambda.params) {
2409                         argtypes = param.vartype != null ?
2410                                 argtypes.append(param.vartype.type) :
2411                                 argtypes.append(syms.errType);
2412                     }
2413                     return new MethodType(argtypes, Type.recoveryType,
2414                             List.of(syms.throwableType), syms.methodClass);
2415                 case REFERENCE:
2416                     return new MethodType(List.<Type>nil(), Type.recoveryType,
2417                             List.of(syms.throwableType), syms.methodClass);
2418                 default:
2419                     Assert.error("Cannot get here!");
2420             }
2421             return null;
2422         }
2423 
2424         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2425                 final InferenceContext inferenceContext, final Type... ts) {
2426             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2427         }
2428 
2429         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2430                 final InferenceContext inferenceContext, final List<Type> ts) {
2431             if (inferenceContext.free(ts)) {
2432                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2433                     @Override
2434                     public void typesInferred(InferenceContext inferenceContext) {
2435                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2436                     }
2437                 });
2438             } else {
2439                 for (Type t : ts) {
2440                     rs.checkAccessibleType(env, t);
2441                 }
2442             }
2443         }
2444 
2445         /**
2446          * Lambda/method reference have a special check context that ensures
2447          * that i.e. a lambda return type is compatible with the expected
2448          * type according to both the inherited context and the assignment
2449          * context.
2450          */
2451         class FunctionalReturnContext extends Check.NestedCheckContext {
2452 
2453             FunctionalReturnContext(CheckContext enclosingContext) {
2454                 super(enclosingContext);
2455             }
2456 
2457             @Override
2458             public boolean compatible(Type found, Type req, Warner warn) {
2459                 //return type must be compatible in both current context and assignment context
2460                 return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
2461             }
2462 
2463             @Override
2464             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2465                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2466             }
2467         }
2468 
2469         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2470 
2471             JCExpression expr;
2472 
2473             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2474                 super(enclosingContext);
2475                 this.expr = expr;
2476             }
2477 
2478             @Override
2479             public boolean compatible(Type found, Type req, Warner warn) {
2480                 //a void return is compatible with an expression statement lambda
2481                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2482                         super.compatible(found, req, warn);
2483             }
2484         }
2485 
2486         /**
2487         * Lambda compatibility. Check that given return types, thrown types, parameter types
2488         * are compatible with the expected functional interface descriptor. This means that:
2489         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2490         * types must be compatible with the return type of the expected descriptor.
2491         */
2492         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2493             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2494 
2495             //return values have already been checked - but if lambda has no return
2496             //values, we must ensure that void/value compatibility is correct;
2497             //this amounts at checking that, if a lambda body can complete normally,
2498             //the descriptor's return type must be void
2499             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2500                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2501                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2502                         diags.fragment("missing.ret.val", returnType)));
2503             }
2504 
2505             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2506             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2507                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2508             }
2509         }
2510 
2511         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2512          * static field and that lambda has type annotations, these annotations will
2513          * also be stored at these fake clinit methods.
2514          *
2515          * LambdaToMethod also use fake clinit methods so they can be reused.
2516          * Also as LTM is a phase subsequent to attribution, the methods from
2517          * clinits can be safely removed by LTM to save memory.
2518          */
2519         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2520 
2521         public MethodSymbol removeClinit(ClassSymbol sym) {
2522             return clinits.remove(sym);
2523         }
2524 
2525         /* This method returns an environment to be used to attribute a lambda
2526          * expression.
2527          *
2528          * The owner of this environment is a method symbol. If the current owner
2529          * is not a method, for example if the lambda is used to initialize
2530          * a field, then if the field is:
2531          *
2532          * - an instance field, we use the first constructor.
2533          * - a static field, we create a fake clinit method.
2534          */
2535         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2536             Env<AttrContext> lambdaEnv;
2537             Symbol owner = env.info.scope.owner;
2538             if (owner.kind == VAR && owner.owner.kind == TYP) {
2539                 //field initializer
2540                 ClassSymbol enclClass = owner.enclClass();
2541                 Symbol newScopeOwner = env.info.scope.owner;
2542                 /* if the field isn't static, then we can get the first constructor
2543                  * and use it as the owner of the environment. This is what
2544                  * LTM code is doing to look for type annotations so we are fine.
2545                  */
2546                 if ((owner.flags() & STATIC) == 0) {
2547                     for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2548                         newScopeOwner = s;
2549                         break;
2550                     }
2551                 } else {
2552                     /* if the field is static then we need to create a fake clinit
2553                      * method, this method can later be reused by LTM.
2554                      */
2555                     MethodSymbol clinit = clinits.get(enclClass);
2556                     if (clinit == null) {
2557                         Type clinitType = new MethodType(List.<Type>nil(),
2558                                 syms.voidType, List.<Type>nil(), syms.methodClass);
2559                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2560                                 names.clinit, clinitType, enclClass);
2561                         clinit.params = List.<VarSymbol>nil();
2562                         clinits.put(enclClass, clinit);
2563                     }
2564                     newScopeOwner = clinit;
2565                 }
2566                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2567             } else {
2568                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2569             }
2570             return lambdaEnv;
2571         }
2572 
2573     @Override
2574     public void visitReference(final JCMemberReference that) {
2575         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2576             if (pt().hasTag(NONE)) {
2577                 //method reference only allowed in assignment or method invocation/cast context
2578                 log.error(that.pos(), "unexpected.mref");
2579             }
2580             result = that.type = types.createErrorType(pt());
2581             return;
2582         }
2583         final Env<AttrContext> localEnv = env.dup(that);
2584         try {
2585             //attribute member reference qualifier - if this is a constructor
2586             //reference, the expected kind must be a type
2587             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2588 
2589             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2590                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2591                 if (!exprType.isErroneous() &&
2592                     exprType.isRaw() &&
2593                     that.typeargs != null) {
2594                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2595                         diags.fragment("mref.infer.and.explicit.params"));
2596                     exprType = types.createErrorType(exprType);
2597                 }
2598             }
2599 
2600             if (exprType.isErroneous()) {
2601                 //if the qualifier expression contains problems,
2602                 //give up attribution of method reference
2603                 result = that.type = exprType;
2604                 return;
2605             }
2606 
2607             if (TreeInfo.isStaticSelector(that.expr, names)) {
2608                 //if the qualifier is a type, validate it; raw warning check is
2609                 //omitted as we don't know at this stage as to whether this is a
2610                 //raw selector (because of inference)
2611                 chk.validate(that.expr, env, false);
2612             }
2613 
2614             //attrib type-arguments
2615             List<Type> typeargtypes = List.nil();
2616             if (that.typeargs != null) {
2617                 typeargtypes = attribTypes(that.typeargs, localEnv);
2618             }
2619 
2620             Type desc;
2621             Type currentTarget = pt();
2622             boolean isTargetSerializable =
2623                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2624                     isSerializable(currentTarget);
2625             if (currentTarget != Type.recoveryType) {
2626                 currentTarget = types.removeWildcards(targetChecker.visit(currentTarget, that));
2627                 desc = types.findDescriptorType(currentTarget);
2628             } else {
2629                 currentTarget = Type.recoveryType;
2630                 desc = fallbackDescriptorType(that);
2631             }
2632 
2633             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2634             List<Type> argtypes = desc.getParameterTypes();
2635             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2636 
2637             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2638                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2639             }
2640 
2641             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2642             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2643             try {
2644                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2645                         that.name, argtypes, typeargtypes, referenceCheck,
2646                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
2647             } finally {
2648                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2649             }
2650 
2651             Symbol refSym = refResult.fst;
2652             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2653 
2654             if (refSym.kind != MTH) {
2655                 boolean targetError;
2656                 switch (refSym.kind) {
2657                     case ABSENT_MTH:
2658                         targetError = false;
2659                         break;
2660                     case WRONG_MTH:
2661                     case WRONG_MTHS:
2662                     case AMBIGUOUS:
2663                     case HIDDEN:
2664                     case MISSING_ENCL:
2665                     case STATICERR:
2666                         targetError = true;
2667                         break;
2668                     default:
2669                         Assert.error("unexpected result kind " + refSym.kind);
2670                         targetError = false;
2671                 }
2672 
2673                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2674                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2675 
2676                 JCDiagnostic.DiagnosticType diagKind = targetError ?
2677                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2678 
2679                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2680                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2681 
2682                 if (targetError && currentTarget == Type.recoveryType) {
2683                     //a target error doesn't make sense during recovery stage
2684                     //as we don't know what actual parameter types are
2685                     result = that.type = currentTarget;
2686                     return;
2687                 } else {
2688                     if (targetError) {
2689                         resultInfo.checkContext.report(that, diag);
2690                     } else {
2691                         log.report(diag);
2692                     }
2693                     result = that.type = types.createErrorType(currentTarget);
2694                     return;
2695                 }
2696             }
2697 
2698             that.sym = refSym.baseSymbol();
2699             that.kind = lookupHelper.referenceKind(that.sym);
2700             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2701 
2702             if (desc.getReturnType() == Type.recoveryType) {
2703                 // stop here
2704                 result = that.type = currentTarget;
2705                 return;
2706             }
2707 
2708             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2709 
2710                 if (that.getMode() == ReferenceMode.INVOKE &&
2711                         TreeInfo.isStaticSelector(that.expr, names) &&
2712                         that.kind.isUnbound() &&
2713                         !desc.getParameterTypes().head.isParameterized()) {
2714                     chk.checkRaw(that.expr, localEnv);
2715                 }
2716 
2717                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2718                         exprType.getTypeArguments().nonEmpty()) {
2719                     //static ref with class type-args
2720                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2721                             diags.fragment("static.mref.with.targs"));
2722                     result = that.type = types.createErrorType(currentTarget);
2723                     return;
2724                 }
2725 
2726                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2727                     // Check that super-qualified symbols are not abstract (JLS)
2728                     rs.checkNonAbstract(that.pos(), that.sym);
2729                 }
2730 
2731                 if (isTargetSerializable) {
2732                     chk.checkElemAccessFromSerializableLambda(that);
2733                 }
2734             }
2735 
2736             ResultInfo checkInfo =
2737                     resultInfo.dup(newMethodTemplate(
2738                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2739                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
2740                         new FunctionalReturnContext(resultInfo.checkContext));
2741 
2742             Type refType = checkId(noCheckTree, lookupHelper.site, refSym, localEnv, checkInfo);
2743 
2744             if (that.kind.isUnbound() &&
2745                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2746                 //re-generate inference constraints for unbound receiver
2747                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
2748                     //cannot happen as this has already been checked - we just need
2749                     //to regenerate the inference constraints, as that has been lost
2750                     //as a result of the call to inferenceContext.save()
2751                     Assert.error("Can't get here");
2752                 }
2753             }
2754 
2755             if (!refType.isErroneous()) {
2756                 refType = types.createMethodTypeWithReturn(refType,
2757                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2758             }
2759 
2760             //go ahead with standard method reference compatibility check - note that param check
2761             //is a no-op (as this has been taken care during method applicability)
2762             boolean isSpeculativeRound =
2763                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2764 
2765             that.type = currentTarget; //avoids recovery at this stage
2766             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2767             if (!isSpeculativeRound) {
2768                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
2769             }
2770             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2771         } catch (Types.FunctionDescriptorLookupError ex) {
2772             JCDiagnostic cause = ex.getDiagnostic();
2773             resultInfo.checkContext.report(that, cause);
2774             result = that.type = types.createErrorType(pt());
2775             return;
2776         }
2777     }
2778     //where
2779         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2780             //if this is a constructor reference, the expected kind must be a type
2781             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
2782                                   KindSelector.VAL_TYP : KindSelector.TYP,
2783                                   Type.noType);
2784         }
2785 
2786 
2787     @SuppressWarnings("fallthrough")
2788     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2789         InferenceContext inferenceContext = checkContext.inferenceContext();
2790         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
2791 
2792         Type resType;
2793         switch (tree.getMode()) {
2794             case NEW:
2795                 if (!tree.expr.type.isRaw()) {
2796                     resType = tree.expr.type;
2797                     break;
2798                 }
2799             default:
2800                 resType = refType.getReturnType();
2801         }
2802 
2803         Type incompatibleReturnType = resType;
2804 
2805         if (returnType.hasTag(VOID)) {
2806             incompatibleReturnType = null;
2807         }
2808 
2809         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2810             if (resType.isErroneous() ||
2811                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2812                 incompatibleReturnType = null;
2813             }
2814         }
2815 
2816         if (incompatibleReturnType != null) {
2817             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2818                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2819         } else {
2820             if (inferenceContext.free(refType)) {
2821                 // we need to wait for inference to finish and then replace inference vars in the referent type
2822                 inferenceContext.addFreeTypeListener(List.of(refType),
2823                         instantiatedContext -> {
2824                             tree.referentType = instantiatedContext.asInstType(refType);
2825                         });
2826             } else {
2827                 tree.referentType = refType;
2828             }
2829         }
2830 
2831         if (!speculativeAttr) {
2832             List<Type> thrownTypes = inferenceContext.asUndetVars(descriptor.getThrownTypes());
2833             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2834                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2835             }
2836         }
2837     }
2838 
2839     /**
2840      * Set functional type info on the underlying AST. Note: as the target descriptor
2841      * might contain inference variables, we might need to register an hook in the
2842      * current inference context.
2843      */
2844     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
2845             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
2846         if (checkContext.inferenceContext().free(descriptorType)) {
2847             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
2848                 public void typesInferred(InferenceContext inferenceContext) {
2849                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
2850                             inferenceContext.asInstType(primaryTarget), checkContext);
2851                 }
2852             });
2853         } else {
2854             ListBuffer<Type> targets = new ListBuffer<>();
2855             if (pt.hasTag(CLASS)) {
2856                 if (pt.isCompound()) {
2857                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
2858                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
2859                         if (t != primaryTarget) {
2860                             targets.append(types.removeWildcards(t));
2861                         }
2862                     }
2863                 } else {
2864                     targets.append(types.removeWildcards(primaryTarget));
2865                 }
2866             }
2867             fExpr.targets = targets.toList();
2868             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2869                     pt != Type.recoveryType) {
2870                 //check that functional interface class is well-formed
2871                 try {
2872                     /* Types.makeFunctionalInterfaceClass() may throw an exception
2873                      * when it's executed post-inference. See the listener code
2874                      * above.
2875                      */
2876                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
2877                             names.empty, List.of(fExpr.targets.head), ABSTRACT);
2878                     if (csym != null) {
2879                         chk.checkImplementations(env.tree, csym, csym);
2880                     }
2881                 } catch (Types.FunctionDescriptorLookupError ex) {
2882                     JCDiagnostic cause = ex.getDiagnostic();
2883                     resultInfo.checkContext.report(env.tree, cause);
2884                 }
2885             }
2886         }
2887     }
2888 
2889     public void visitParens(JCParens tree) {
2890         Type owntype = attribTree(tree.expr, env, resultInfo);
2891         result = check(tree, owntype, pkind(), resultInfo);
2892         Symbol sym = TreeInfo.symbol(tree);
2893         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
2894             log.error(tree.pos(), "illegal.start.of.type");
2895     }
2896 
2897     public void visitAssign(JCAssign tree) {
2898         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
2899         Type capturedType = capture(owntype);
2900         attribExpr(tree.rhs, env, owntype);
2901         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
2902     }
2903 
2904     public void visitAssignop(JCAssignOp tree) {
2905         // Attribute arguments.
2906         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
2907         Type operand = attribExpr(tree.rhs, env);
2908         // Find operator.
2909         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
2910         if (operator.kind == MTH &&
2911                 !owntype.isErroneous() &&
2912                 !operand.isErroneous()) {
2913             chk.checkDivZero(tree.rhs.pos(), operator, operand);
2914             chk.checkCastable(tree.rhs.pos(),
2915                               operator.type.getReturnType(),
2916                               owntype);
2917         }
2918         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2919     }
2920 
2921     public void visitUnary(JCUnary tree) {
2922         // Attribute arguments.
2923         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
2924             ? attribTree(tree.arg, env, varAssignmentInfo)
2925             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
2926 
2927         // Find operator.
2928         Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
2929         Type owntype = types.createErrorType(tree.type);
2930         if (operator.kind == MTH &&
2931                 !argtype.isErroneous()) {
2932             owntype = (tree.getTag().isIncOrDecUnaryOp())
2933                 ? tree.arg.type
2934                 : operator.type.getReturnType();
2935             int opc = ((OperatorSymbol)operator).opcode;
2936 
2937             // If the argument is constant, fold it.
2938             if (argtype.constValue() != null) {
2939                 Type ctype = cfolder.fold1(opc, argtype);
2940                 if (ctype != null) {
2941                     owntype = cfolder.coerce(ctype, owntype);
2942                 }
2943             }
2944         }
2945         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2946     }
2947 
2948     public void visitBinary(JCBinary tree) {
2949         // Attribute arguments.
2950         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
2951         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
2952         // Find operator.
2953         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
2954         Type owntype = types.createErrorType(tree.type);
2955         if (operator.kind == MTH &&
2956                 !left.isErroneous() &&
2957                 !right.isErroneous()) {
2958             owntype = operator.type.getReturnType();
2959             int opc = ((OperatorSymbol)operator).opcode;
2960             // If both arguments are constants, fold them.
2961             if (left.constValue() != null && right.constValue() != null) {
2962                 Type ctype = cfolder.fold2(opc, left, right);
2963                 if (ctype != null) {
2964                     owntype = cfolder.coerce(ctype, owntype);
2965                 }
2966             }
2967 
2968             // Check that argument types of a reference ==, != are
2969             // castable to each other, (JLS 15.21).  Note: unboxing
2970             // comparisons will not have an acmp* opc at this point.
2971             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
2972                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
2973                     log.error(tree.pos(), "incomparable.types", left, right);
2974                 }
2975             }
2976 
2977             chk.checkDivZero(tree.rhs.pos(), operator, right);
2978         }
2979         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2980     }
2981 
2982     public void visitTypeCast(final JCTypeCast tree) {
2983         Type clazztype = attribType(tree.clazz, env);
2984         chk.validate(tree.clazz, env, false);
2985         //a fresh environment is required for 292 inference to work properly ---
2986         //see Infer.instantiatePolymorphicSignatureInstance()
2987         Env<AttrContext> localEnv = env.dup(tree);
2988         //should we propagate the target type?
2989         final ResultInfo castInfo;
2990         JCExpression expr = TreeInfo.skipParens(tree.expr);
2991         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
2992         if (isPoly) {
2993             //expression is a poly - we need to propagate target type info
2994             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
2995                                       new Check.NestedCheckContext(resultInfo.checkContext) {
2996                 @Override
2997                 public boolean compatible(Type found, Type req, Warner warn) {
2998                     return types.isCastable(found, req, warn);
2999                 }
3000             });
3001         } else {
3002             //standalone cast - target-type info is not propagated
3003             castInfo = unknownExprInfo;
3004         }
3005         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3006         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3007         if (exprtype.constValue() != null)
3008             owntype = cfolder.coerce(exprtype, owntype);
3009         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3010         if (!isPoly)
3011             chk.checkRedundantCast(localEnv, tree);
3012     }
3013 
3014     public void visitTypeTest(JCInstanceOf tree) {
3015         Type exprtype = chk.checkNullOrRefType(
3016                 tree.expr.pos(), attribExpr(tree.expr, env));
3017         Type clazztype = attribType(tree.clazz, env);
3018         if (!clazztype.hasTag(TYPEVAR)) {
3019             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3020         }
3021         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3022             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3023             clazztype = types.createErrorType(clazztype);
3024         }
3025         chk.validate(tree.clazz, env, false);
3026         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3027         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3028     }
3029 
3030     public void visitIndexed(JCArrayAccess tree) {
3031         Type owntype = types.createErrorType(tree.type);
3032         Type atype = attribExpr(tree.indexed, env);
3033         attribExpr(tree.index, env, syms.intType);
3034         if (types.isArray(atype))
3035             owntype = types.elemtype(atype);
3036         else if (!atype.hasTag(ERROR))
3037             log.error(tree.pos(), "array.req.but.found", atype);
3038         if (!pkind().contains(KindSelector.VAL))
3039             owntype = capture(owntype);
3040         result = check(tree, owntype, KindSelector.VAR, resultInfo);
3041     }
3042 
3043     public void visitIdent(JCIdent tree) {
3044         Symbol sym;
3045 
3046         // Find symbol
3047         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3048             // If we are looking for a method, the prototype `pt' will be a
3049             // method type with the type of the call's arguments as parameters.
3050             env.info.pendingResolutionPhase = null;
3051             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3052         } else if (tree.sym != null && tree.sym.kind != VAR) {
3053             sym = tree.sym;
3054         } else {
3055             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3056         }
3057         tree.sym = sym;
3058 
3059         // (1) Also find the environment current for the class where
3060         //     sym is defined (`symEnv').
3061         // Only for pre-tiger versions (1.4 and earlier):
3062         // (2) Also determine whether we access symbol out of an anonymous
3063         //     class in a this or super call.  This is illegal for instance
3064         //     members since such classes don't carry a this$n link.
3065         //     (`noOuterThisPath').
3066         Env<AttrContext> symEnv = env;
3067         boolean noOuterThisPath = false;
3068         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3069             sym.kind.matches(KindSelector.VAL_MTH) &&
3070             sym.owner.kind == TYP &&
3071             tree.name != names._this && tree.name != names._super) {
3072 
3073             // Find environment in which identifier is defined.
3074             while (symEnv.outer != null &&
3075                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3076                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3077                     noOuterThisPath = false;
3078                 symEnv = symEnv.outer;
3079             }
3080         }
3081 
3082         // If symbol is a variable, ...
3083         if (sym.kind == VAR) {
3084             VarSymbol v = (VarSymbol)sym;
3085 
3086             // ..., evaluate its initializer, if it has one, and check for
3087             // illegal forward reference.
3088             checkInit(tree, env, v, false);
3089 
3090             // If we are expecting a variable (as opposed to a value), check
3091             // that the variable is assignable in the current environment.
3092             if (KindSelector.ASG.subset(pkind()))
3093                 checkAssignable(tree.pos(), v, null, env);
3094         }
3095 
3096         // In a constructor body,
3097         // if symbol is a field or instance method, check that it is
3098         // not accessed before the supertype constructor is called.
3099         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3100             sym.kind.matches(KindSelector.VAL_MTH) &&
3101             sym.owner.kind == TYP &&
3102             (sym.flags() & STATIC) == 0) {
3103             chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3104                                           sym : thisSym(tree.pos(), env));
3105         }
3106         Env<AttrContext> env1 = env;
3107         if (sym.kind != ERR && sym.kind != TYP &&
3108             sym.owner != null && sym.owner != env1.enclClass.sym) {
3109             // If the found symbol is inaccessible, then it is
3110             // accessed through an enclosing instance.  Locate this
3111             // enclosing instance:
3112             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3113                 env1 = env1.outer;
3114         }
3115 
3116         if (env.info.isSerializable) {
3117             chk.checkElemAccessFromSerializableLambda(tree);
3118         }
3119 
3120         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3121     }
3122 
3123     public void visitSelect(JCFieldAccess tree) {
3124         // Determine the expected kind of the qualifier expression.
3125         KindSelector skind = KindSelector.NIL;
3126         if (tree.name == names._this || tree.name == names._super ||
3127                 tree.name == names._class)
3128         {
3129             skind = KindSelector.TYP;
3130         } else {
3131             if (pkind().contains(KindSelector.PCK))
3132                 skind = KindSelector.of(skind, KindSelector.PCK);
3133             if (pkind().contains(KindSelector.TYP))
3134                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3135             if (pkind().contains(KindSelector.VAL_MTH))
3136                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3137         }
3138 
3139         // Attribute the qualifier expression, and determine its symbol (if any).
3140         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
3141         if (!pkind().contains(KindSelector.TYP_PCK))
3142             site = capture(site); // Capture field access
3143 
3144         // don't allow T.class T[].class, etc
3145         if (skind == KindSelector.TYP) {
3146             Type elt = site;
3147             while (elt.hasTag(ARRAY))
3148                 elt = ((ArrayType)elt).elemtype;
3149             if (elt.hasTag(TYPEVAR)) {
3150                 log.error(tree.pos(), "type.var.cant.be.deref");
3151                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3152                 tree.sym = tree.type.tsym;
3153                 return ;
3154             }
3155         }
3156 
3157         // If qualifier symbol is a type or `super', assert `selectSuper'
3158         // for the selection. This is relevant for determining whether
3159         // protected symbols are accessible.
3160         Symbol sitesym = TreeInfo.symbol(tree.selected);
3161         boolean selectSuperPrev = env.info.selectSuper;
3162         env.info.selectSuper =
3163             sitesym != null &&
3164             sitesym.name == names._super;
3165 
3166         // Determine the symbol represented by the selection.
3167         env.info.pendingResolutionPhase = null;
3168         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3169         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3170             log.error(tree.selected.pos(), "not.encl.class", site.tsym);
3171             sym = syms.errSymbol;
3172         }
3173         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3174             site = capture(site);
3175             sym = selectSym(tree, sitesym, site, env, resultInfo);
3176         }
3177         boolean varArgs = env.info.lastResolveVarargs();
3178         tree.sym = sym;
3179 
3180         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3181             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
3182             site = capture(site);
3183         }
3184 
3185         // If that symbol is a variable, ...
3186         if (sym.kind == VAR) {
3187             VarSymbol v = (VarSymbol)sym;
3188 
3189             // ..., evaluate its initializer, if it has one, and check for
3190             // illegal forward reference.
3191             checkInit(tree, env, v, true);
3192 
3193             // If we are expecting a variable (as opposed to a value), check
3194             // that the variable is assignable in the current environment.
3195             if (KindSelector.ASG.subset(pkind()))
3196                 checkAssignable(tree.pos(), v, tree.selected, env);
3197         }
3198 
3199         if (sitesym != null &&
3200                 sitesym.kind == VAR &&
3201                 ((VarSymbol)sitesym).isResourceVariable() &&
3202                 sym.kind == MTH &&
3203                 sym.name.equals(names.close) &&
3204                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3205                 env.info.lint.isEnabled(LintCategory.TRY)) {
3206             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3207         }
3208 
3209         // Disallow selecting a type from an expression
3210         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3211             tree.type = check(tree.selected, pt(),
3212                               sitesym == null ?
3213                                       KindSelector.VAL : sitesym.kind.toSelector(),
3214                               new ResultInfo(KindSelector.TYP_PCK, pt()));
3215         }
3216 
3217         if (isType(sitesym)) {
3218             if (sym.name == names._this) {
3219                 // If `C' is the currently compiled class, check that
3220                 // C.this' does not appear in a call to a super(...)
3221                 if (env.info.isSelfCall &&
3222                     site.tsym == env.enclClass.sym) {
3223                     chk.earlyRefError(tree.pos(), sym);
3224                 }
3225             } else {
3226                 // Check if type-qualified fields or methods are static (JLS)
3227                 if ((sym.flags() & STATIC) == 0 &&
3228                     !env.next.tree.hasTag(REFERENCE) &&
3229                     sym.name != names._super &&
3230                     (sym.kind == VAR || sym.kind == MTH)) {
3231                     rs.accessBase(rs.new StaticError(sym),
3232                               tree.pos(), site, sym.name, true);
3233                 }
3234             }
3235             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3236                     sym.isStatic() && sym.kind == MTH) {
3237                 log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
3238             }
3239         } else if (sym.kind != ERR &&
3240                    (sym.flags() & STATIC) != 0 &&
3241                    sym.name != names._class) {
3242             // If the qualified item is not a type and the selected item is static, report
3243             // a warning. Make allowance for the class of an array type e.g. Object[].class)
3244             chk.warnStatic(tree, "static.not.qualified.by.type",
3245                            sym.kind.kindName(), sym.owner);
3246         }
3247 
3248         // If we are selecting an instance member via a `super', ...
3249         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3250 
3251             // Check that super-qualified symbols are not abstract (JLS)
3252             rs.checkNonAbstract(tree.pos(), sym);
3253 
3254             if (site.isRaw()) {
3255                 // Determine argument types for site.
3256                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3257                 if (site1 != null) site = site1;
3258             }
3259         }
3260 
3261         if (env.info.isSerializable) {
3262             chk.checkElemAccessFromSerializableLambda(tree);
3263         }
3264 
3265         env.info.selectSuper = selectSuperPrev;
3266         result = checkId(tree, site, sym, env, resultInfo);
3267     }
3268     //where
3269         /** Determine symbol referenced by a Select expression,
3270          *
3271          *  @param tree   The select tree.
3272          *  @param site   The type of the selected expression,
3273          *  @param env    The current environment.
3274          *  @param resultInfo The current result.
3275          */
3276         private Symbol selectSym(JCFieldAccess tree,
3277                                  Symbol location,
3278                                  Type site,
3279                                  Env<AttrContext> env,
3280                                  ResultInfo resultInfo) {
3281             DiagnosticPosition pos = tree.pos();
3282             Name name = tree.name;
3283             switch (site.getTag()) {
3284             case PACKAGE:
3285                 return rs.accessBase(
3286                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3287                     pos, location, site, name, true);
3288             case ARRAY:
3289             case CLASS:
3290                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3291                     return rs.resolveQualifiedMethod(
3292                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3293                 } else if (name == names._this || name == names._super) {
3294                     return rs.resolveSelf(pos, env, site.tsym, name);
3295                 } else if (name == names._class) {
3296                     // In this case, we have already made sure in
3297                     // visitSelect that qualifier expression is a type.
3298                     Type t = syms.classType;
3299                     List<Type> typeargs = List.of(types.erasure(site));
3300                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3301                     return new VarSymbol(
3302                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3303                 } else {
3304                     // We are seeing a plain identifier as selector.
3305                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3306                         sym = rs.accessBase(sym, pos, location, site, name, true);
3307                     return sym;
3308                 }
3309             case WILDCARD:
3310                 throw new AssertionError(tree);
3311             case TYPEVAR:
3312                 // Normally, site.getUpperBound() shouldn't be null.
3313                 // It should only happen during memberEnter/attribBase
3314                 // when determining the super type which *must* beac
3315                 // done before attributing the type variables.  In
3316                 // other words, we are seeing this illegal program:
3317                 // class B<T> extends A<T.foo> {}
3318                 Symbol sym = (site.getUpperBound() != null)
3319                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3320                     : null;
3321                 if (sym == null) {
3322                     log.error(pos, "type.var.cant.be.deref");
3323                     return syms.errSymbol;
3324                 } else {
3325                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3326                         rs.new AccessError(env, site, sym) :
3327                                 sym;
3328                     rs.accessBase(sym2, pos, location, site, name, true);
3329                     return sym;
3330                 }
3331             case ERROR:
3332                 // preserve identifier names through errors
3333                 return types.createErrorType(name, site.tsym, site).tsym;
3334             default:
3335                 // The qualifier expression is of a primitive type -- only
3336                 // .class is allowed for these.
3337                 if (name == names._class) {
3338                     // In this case, we have already made sure in Select that
3339                     // qualifier expression is a type.
3340                     Type t = syms.classType;
3341                     Type arg = types.boxedClass(site).type;
3342                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3343                     return new VarSymbol(
3344                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3345                 } else {
3346                     log.error(pos, "cant.deref", site);
3347                     return syms.errSymbol;
3348                 }
3349             }
3350         }
3351 
3352         /** Determine type of identifier or select expression and check that
3353          *  (1) the referenced symbol is not deprecated
3354          *  (2) the symbol's type is safe (@see checkSafe)
3355          *  (3) if symbol is a variable, check that its type and kind are
3356          *      compatible with the prototype and protokind.
3357          *  (4) if symbol is an instance field of a raw type,
3358          *      which is being assigned to, issue an unchecked warning if its
3359          *      type changes under erasure.
3360          *  (5) if symbol is an instance method of a raw type, issue an
3361          *      unchecked warning if its argument types change under erasure.
3362          *  If checks succeed:
3363          *    If symbol is a constant, return its constant type
3364          *    else if symbol is a method, return its result type
3365          *    otherwise return its type.
3366          *  Otherwise return errType.
3367          *
3368          *  @param tree       The syntax tree representing the identifier
3369          *  @param site       If this is a select, the type of the selected
3370          *                    expression, otherwise the type of the current class.
3371          *  @param sym        The symbol representing the identifier.
3372          *  @param env        The current environment.
3373          *  @param resultInfo    The expected result
3374          */
3375         Type checkId(JCTree tree,
3376                      Type site,
3377                      Symbol sym,
3378                      Env<AttrContext> env,
3379                      ResultInfo resultInfo) {
3380             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3381                     checkMethodId(tree, site, sym, env, resultInfo) :
3382                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3383         }
3384 
3385         Type checkMethodId(JCTree tree,
3386                      Type site,
3387                      Symbol sym,
3388                      Env<AttrContext> env,
3389                      ResultInfo resultInfo) {
3390             boolean isPolymorhicSignature =
3391                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3392             return isPolymorhicSignature ?
3393                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3394                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
3395         }
3396 
3397         Type checkSigPolyMethodId(JCTree tree,
3398                      Type site,
3399                      Symbol sym,
3400                      Env<AttrContext> env,
3401                      ResultInfo resultInfo) {
3402             //recover original symbol for signature polymorphic methods
3403             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3404             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3405             return sym.type;
3406         }
3407 
3408         Type checkMethodIdInternal(JCTree tree,
3409                      Type site,
3410                      Symbol sym,
3411                      Env<AttrContext> env,
3412                      ResultInfo resultInfo) {
3413             if (resultInfo.pkind.contains(KindSelector.POLY)) {
3414                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3415                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3416                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3417                 return owntype;
3418             } else {
3419                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3420             }
3421         }
3422 
3423         Type checkIdInternal(JCTree tree,
3424                      Type site,
3425                      Symbol sym,
3426                      Type pt,
3427                      Env<AttrContext> env,
3428                      ResultInfo resultInfo) {
3429             if (pt.isErroneous()) {
3430                 return types.createErrorType(site);
3431             }
3432             Type owntype; // The computed type of this identifier occurrence.
3433             switch (sym.kind) {
3434             case TYP:
3435                 // For types, the computed type equals the symbol's type,
3436                 // except for two situations:
3437                 owntype = sym.type;
3438                 if (owntype.hasTag(CLASS)) {
3439                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3440                     Type ownOuter = owntype.getEnclosingType();
3441 
3442                     // (a) If the symbol's type is parameterized, erase it
3443                     // because no type parameters were given.
3444                     // We recover generic outer type later in visitTypeApply.
3445                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3446                         owntype = types.erasure(owntype);
3447                     }
3448 
3449                     // (b) If the symbol's type is an inner class, then
3450                     // we have to interpret its outer type as a superclass
3451                     // of the site type. Example:
3452                     //
3453                     // class Tree<A> { class Visitor { ... } }
3454                     // class PointTree extends Tree<Point> { ... }
3455                     // ...PointTree.Visitor...
3456                     //
3457                     // Then the type of the last expression above is
3458                     // Tree<Point>.Visitor.
3459                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3460                         Type normOuter = site;
3461                         if (normOuter.hasTag(CLASS)) {
3462                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3463                         }
3464                         if (normOuter == null) // perhaps from an import
3465                             normOuter = types.erasure(ownOuter);
3466                         if (normOuter != ownOuter)
3467                             owntype = new ClassType(
3468                                 normOuter, List.<Type>nil(), owntype.tsym,
3469                                 owntype.getMetadata());
3470                     }
3471                 }
3472                 break;
3473             case VAR:
3474                 VarSymbol v = (VarSymbol)sym;
3475                 // Test (4): if symbol is an instance field of a raw type,
3476                 // which is being assigned to, issue an unchecked warning if
3477                 // its type changes under erasure.
3478                 if (KindSelector.ASG.subset(pkind()) &&
3479                     v.owner.kind == TYP &&
3480                     (v.flags() & STATIC) == 0 &&
3481                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3482                     Type s = types.asOuterSuper(site, v.owner);
3483                     if (s != null &&
3484                         s.isRaw() &&
3485                         !types.isSameType(v.type, v.erasure(types))) {
3486                         chk.warnUnchecked(tree.pos(),
3487                                           "unchecked.assign.to.var",
3488                                           v, s);
3489                     }
3490                 }
3491                 // The computed type of a variable is the type of the
3492                 // variable symbol, taken as a member of the site type.
3493                 owntype = (sym.owner.kind == TYP &&
3494                            sym.name != names._this && sym.name != names._super)
3495                     ? types.memberType(site, sym)
3496                     : sym.type;
3497 
3498                 // If the variable is a constant, record constant value in
3499                 // computed type.
3500                 if (v.getConstValue() != null && isStaticReference(tree))
3501                     owntype = owntype.constType(v.getConstValue());
3502 
3503                 if (resultInfo.pkind == KindSelector.VAL) {
3504                     owntype = capture(owntype); // capture "names as expressions"
3505                 }
3506                 break;
3507             case MTH: {
3508                 owntype = checkMethod(site, sym,
3509                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3510                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3511                         resultInfo.pt.getTypeArguments());
3512                 break;
3513             }
3514             case PCK: case ERR:
3515                 owntype = sym.type;
3516                 break;
3517             default:
3518                 throw new AssertionError("unexpected kind: " + sym.kind +
3519                                          " in tree " + tree);
3520             }
3521 
3522             // Test (1): emit a `deprecation' warning if symbol is deprecated.
3523             // (for constructors, the error was given when the constructor was
3524             // resolved)
3525 
3526             if (sym.name != names.init) {
3527                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3528                 chk.checkSunAPI(tree.pos(), sym);
3529                 chk.checkProfile(tree.pos(), sym);
3530             }
3531 
3532             // Test (3): if symbol is a variable, check that its type and
3533             // kind are compatible with the prototype and protokind.
3534             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3535         }
3536 
3537         /** Check that variable is initialized and evaluate the variable's
3538          *  initializer, if not yet done. Also check that variable is not
3539          *  referenced before it is defined.
3540          *  @param tree    The tree making up the variable reference.
3541          *  @param env     The current environment.
3542          *  @param v       The variable's symbol.
3543          */
3544         private void checkInit(JCTree tree,
3545                                Env<AttrContext> env,
3546                                VarSymbol v,
3547                                boolean onlyWarning) {
3548 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3549 //                             tree.pos + " " + v.pos + " " +
3550 //                             Resolve.isStatic(env));//DEBUG
3551 
3552             // A forward reference is diagnosed if the declaration position
3553             // of the variable is greater than the current tree position
3554             // and the tree and variable definition occur in the same class
3555             // definition.  Note that writes don't count as references.
3556             // This check applies only to class and instance
3557             // variables.  Local variables follow different scope rules,
3558             // and are subject to definite assignment checking.
3559             if ((env.info.enclVar == v || v.pos > tree.pos) &&
3560                 v.owner.kind == TYP &&
3561                 enclosingInitEnv(env) != null &&
3562                 v.owner == env.info.scope.owner.enclClass() &&
3563                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3564                 (!env.tree.hasTag(ASSIGN) ||
3565                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3566                 String suffix = (env.info.enclVar == v) ?
3567                                 "self.ref" : "forward.ref";
3568                 if (!onlyWarning || isStaticEnumField(v)) {
3569                     log.error(tree.pos(), "illegal." + suffix);
3570                 } else if (useBeforeDeclarationWarning) {
3571                     log.warning(tree.pos(), suffix, v);
3572                 }
3573             }
3574 
3575             v.getConstValue(); // ensure initializer is evaluated
3576 
3577             checkEnumInitializer(tree, env, v);
3578         }
3579 
3580         /**
3581          * Returns the enclosing init environment associated with this env (if any). An init env
3582          * can be either a field declaration env or a static/instance initializer env.
3583          */
3584         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3585             while (true) {
3586                 switch (env.tree.getTag()) {
3587                     case VARDEF:
3588                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3589                         if (vdecl.sym.owner.kind == TYP) {
3590                             //field
3591                             return env;
3592                         }
3593                         break;
3594                     case BLOCK:
3595                         if (env.next.tree.hasTag(CLASSDEF)) {
3596                             //instance/static initializer
3597                             return env;
3598                         }
3599                         break;
3600                     case METHODDEF:
3601                     case CLASSDEF:
3602                     case TOPLEVEL:
3603                         return null;
3604                 }
3605                 Assert.checkNonNull(env.next);
3606                 env = env.next;
3607             }
3608         }
3609 
3610         /**
3611          * Check for illegal references to static members of enum.  In
3612          * an enum type, constructors and initializers may not
3613          * reference its static members unless they are constant.
3614          *
3615          * @param tree    The tree making up the variable reference.
3616          * @param env     The current environment.
3617          * @param v       The variable's symbol.
3618          * @jls  section 8.9 Enums
3619          */
3620         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3621             // JLS:
3622             //
3623             // "It is a compile-time error to reference a static field
3624             // of an enum type that is not a compile-time constant
3625             // (15.28) from constructors, instance initializer blocks,
3626             // or instance variable initializer expressions of that
3627             // type. It is a compile-time error for the constructors,
3628             // instance initializer blocks, or instance variable
3629             // initializer expressions of an enum constant e to refer
3630             // to itself or to an enum constant of the same type that
3631             // is declared to the right of e."
3632             if (isStaticEnumField(v)) {
3633                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
3634 
3635                 if (enclClass == null || enclClass.owner == null)
3636                     return;
3637 
3638                 // See if the enclosing class is the enum (or a
3639                 // subclass thereof) declaring v.  If not, this
3640                 // reference is OK.
3641                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3642                     return;
3643 
3644                 // If the reference isn't from an initializer, then
3645                 // the reference is OK.
3646                 if (!Resolve.isInitializer(env))
3647                     return;
3648 
3649                 log.error(tree.pos(), "illegal.enum.static.ref");
3650             }
3651         }
3652 
3653         /** Is the given symbol a static, non-constant field of an Enum?
3654          *  Note: enum literals should not be regarded as such
3655          */
3656         private boolean isStaticEnumField(VarSymbol v) {
3657             return Flags.isEnum(v.owner) &&
3658                    Flags.isStatic(v) &&
3659                    !Flags.isConstant(v) &&
3660                    v.name != names._class;
3661         }
3662 
3663     Warner noteWarner = new Warner();
3664 
3665     /**
3666      * Check that method arguments conform to its instantiation.
3667      **/
3668     public Type checkMethod(Type site,
3669                             final Symbol sym,
3670                             ResultInfo resultInfo,
3671                             Env<AttrContext> env,
3672                             final List<JCExpression> argtrees,
3673                             List<Type> argtypes,
3674                             List<Type> typeargtypes) {
3675         // Test (5): if symbol is an instance method of a raw type, issue
3676         // an unchecked warning if its argument types change under erasure.
3677         if ((sym.flags() & STATIC) == 0 &&
3678             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3679             Type s = types.asOuterSuper(site, sym.owner);
3680             if (s != null && s.isRaw() &&
3681                 !types.isSameTypes(sym.type.getParameterTypes(),
3682                                    sym.erasure(types).getParameterTypes())) {
3683                 chk.warnUnchecked(env.tree.pos(),
3684                                   "unchecked.call.mbr.of.raw.type",
3685                                   sym, s);
3686             }
3687         }
3688 
3689         if (env.info.defaultSuperCallSite != null) {
3690             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3691                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3692                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3693                 List<MethodSymbol> icand_sup =
3694                         types.interfaceCandidates(sup, (MethodSymbol)sym);
3695                 if (icand_sup.nonEmpty() &&
3696                         icand_sup.head != sym &&
3697                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3698                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3699                         diags.fragment("overridden.default", sym, sup));
3700                     break;
3701                 }
3702             }
3703             env.info.defaultSuperCallSite = null;
3704         }
3705 
3706         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3707             JCMethodInvocation app = (JCMethodInvocation)env.tree;
3708             if (app.meth.hasTag(SELECT) &&
3709                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3710                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3711             }
3712         }
3713 
3714         // Compute the identifier's instantiated type.
3715         // For methods, we need to compute the instance type by
3716         // Resolve.instantiate from the symbol's type as well as
3717         // any type arguments and value arguments.
3718         noteWarner.clear();
3719         try {
3720             Type owntype = rs.checkMethod(
3721                     env,
3722                     site,
3723                     sym,
3724                     resultInfo,
3725                     argtypes,
3726                     typeargtypes,
3727                     noteWarner);
3728 
3729             DeferredAttr.DeferredTypeMap checkDeferredMap =
3730                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3731 
3732             argtypes = Type.map(argtypes, checkDeferredMap);
3733 
3734             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3735                 chk.warnUnchecked(env.tree.pos(),
3736                         "unchecked.meth.invocation.applied",
3737                         kindName(sym),
3738                         sym.name,
3739                         rs.methodArguments(sym.type.getParameterTypes()),
3740                         rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
3741                         kindName(sym.location()),
3742                         sym.location());
3743                owntype = new MethodType(owntype.getParameterTypes(),
3744                        types.erasure(owntype.getReturnType()),
3745                        types.erasure(owntype.getThrownTypes()),
3746                        syms.methodClass);
3747             }
3748 
3749             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3750                     resultInfo.checkContext.inferenceContext());
3751         } catch (Infer.InferenceException ex) {
3752             //invalid target type - propagate exception outwards or report error
3753             //depending on the current check context
3754             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3755             return types.createErrorType(site);
3756         } catch (Resolve.InapplicableMethodException ex) {
3757             final JCDiagnostic diag = ex.getDiagnostic();
3758             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
3759                 @Override
3760                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
3761                     return new Pair<>(sym, diag);
3762                 }
3763             };
3764             List<Type> argtypes2 = Type.map(argtypes,
3765                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3766             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3767                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
3768             log.report(errDiag);
3769             return types.createErrorType(site);
3770         }
3771     }
3772 
3773     public void visitLiteral(JCLiteral tree) {
3774         result = check(tree, litType(tree.typetag).constType(tree.value),
3775                 KindSelector.VAL, resultInfo);
3776     }
3777     //where
3778     /** Return the type of a literal with given type tag.
3779      */
3780     Type litType(TypeTag tag) {
3781         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3782     }
3783 
3784     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3785         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
3786     }
3787 
3788     public void visitTypeArray(JCArrayTypeTree tree) {
3789         Type etype = attribType(tree.elemtype, env);
3790         Type type = new ArrayType(etype, syms.arrayClass);
3791         result = check(tree, type, KindSelector.TYP, resultInfo);
3792     }
3793 
3794     /** Visitor method for parameterized types.
3795      *  Bound checking is left until later, since types are attributed
3796      *  before supertype structure is completely known
3797      */
3798     public void visitTypeApply(JCTypeApply tree) {
3799         Type owntype = types.createErrorType(tree.type);
3800 
3801         // Attribute functor part of application and make sure it's a class.
3802         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3803 
3804         // Attribute type parameters
3805         List<Type> actuals = attribTypes(tree.arguments, env);
3806 
3807         if (clazztype.hasTag(CLASS)) {
3808             List<Type> formals = clazztype.tsym.type.getTypeArguments();
3809             if (actuals.isEmpty()) //diamond
3810                 actuals = formals;
3811 
3812             if (actuals.length() == formals.length()) {
3813                 List<Type> a = actuals;
3814                 List<Type> f = formals;
3815                 while (a.nonEmpty()) {
3816                     a.head = a.head.withTypeVar(f.head);
3817                     a = a.tail;
3818                     f = f.tail;
3819                 }
3820                 // Compute the proper generic outer
3821                 Type clazzOuter = clazztype.getEnclosingType();
3822                 if (clazzOuter.hasTag(CLASS)) {
3823                     Type site;
3824                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3825                     if (clazz.hasTag(IDENT)) {
3826                         site = env.enclClass.sym.type;
3827                     } else if (clazz.hasTag(SELECT)) {
3828                         site = ((JCFieldAccess) clazz).selected.type;
3829                     } else throw new AssertionError(""+tree);
3830                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3831                         if (site.hasTag(CLASS))
3832                             site = types.asOuterSuper(site, clazzOuter.tsym);
3833                         if (site == null)
3834                             site = types.erasure(clazzOuter);
3835                         clazzOuter = site;
3836                     }
3837                 }
3838                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
3839                                         clazztype.getMetadata());
3840             } else {
3841                 if (formals.length() != 0) {
3842                     log.error(tree.pos(), "wrong.number.type.args",
3843                               Integer.toString(formals.length()));
3844                 } else {
3845                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3846                 }
3847                 owntype = types.createErrorType(tree.type);
3848             }
3849         }
3850         result = check(tree, owntype, KindSelector.TYP, resultInfo);
3851     }
3852 
3853     public void visitTypeUnion(JCTypeUnion tree) {
3854         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
3855         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3856         for (JCExpression typeTree : tree.alternatives) {
3857             Type ctype = attribType(typeTree, env);
3858             ctype = chk.checkType(typeTree.pos(),
3859                           chk.checkClassType(typeTree.pos(), ctype),
3860                           syms.throwableType);
3861             if (!ctype.isErroneous()) {
3862                 //check that alternatives of a union type are pairwise
3863                 //unrelated w.r.t. subtyping
3864                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
3865                     for (Type t : multicatchTypes) {
3866                         boolean sub = types.isSubtype(ctype, t);
3867                         boolean sup = types.isSubtype(t, ctype);
3868                         if (sub || sup) {
3869                             //assume 'a' <: 'b'
3870                             Type a = sub ? ctype : t;
3871                             Type b = sub ? t : ctype;
3872                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
3873                         }
3874                     }
3875                 }
3876                 multicatchTypes.append(ctype);
3877                 if (all_multicatchTypes != null)
3878                     all_multicatchTypes.append(ctype);
3879             } else {
3880                 if (all_multicatchTypes == null) {
3881                     all_multicatchTypes = new ListBuffer<>();
3882                     all_multicatchTypes.appendList(multicatchTypes);
3883                 }
3884                 all_multicatchTypes.append(ctype);
3885             }
3886         }
3887         Type t = check(noCheckTree, types.lub(multicatchTypes.toList()),
3888                 KindSelector.TYP, resultInfo);
3889         if (t.hasTag(CLASS)) {
3890             List<Type> alternatives =
3891                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
3892             t = new UnionClassType((ClassType) t, alternatives);
3893         }
3894         tree.type = result = t;
3895     }
3896 
3897     public void visitTypeIntersection(JCTypeIntersection tree) {
3898         attribTypes(tree.bounds, env);
3899         tree.type = result = checkIntersection(tree, tree.bounds);
3900     }
3901 
3902     public void visitTypeParameter(JCTypeParameter tree) {
3903         TypeVar typeVar = (TypeVar) tree.type;
3904 
3905         if (tree.annotations != null && tree.annotations.nonEmpty()) {
3906             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
3907         }
3908 
3909         if (!typeVar.bound.isErroneous()) {
3910             //fixup type-parameter bound computed in 'attribTypeVariables'
3911             typeVar.bound = checkIntersection(tree, tree.bounds);
3912         }
3913     }
3914 
3915     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
3916         Set<Type> boundSet = new HashSet<>();
3917         if (bounds.nonEmpty()) {
3918             // accept class or interface or typevar as first bound.
3919             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
3920             boundSet.add(types.erasure(bounds.head.type));
3921             if (bounds.head.type.isErroneous()) {
3922                 return bounds.head.type;
3923             }
3924             else if (bounds.head.type.hasTag(TYPEVAR)) {
3925                 // if first bound was a typevar, do not accept further bounds.
3926                 if (bounds.tail.nonEmpty()) {
3927                     log.error(bounds.tail.head.pos(),
3928                               "type.var.may.not.be.followed.by.other.bounds");
3929                     return bounds.head.type;
3930                 }
3931             } else {
3932                 // if first bound was a class or interface, accept only interfaces
3933                 // as further bounds.
3934                 for (JCExpression bound : bounds.tail) {
3935                     bound.type = checkBase(bound.type, bound, env, false, true, false);
3936                     if (bound.type.isErroneous()) {
3937                         bounds = List.of(bound);
3938                     }
3939                     else if (bound.type.hasTag(CLASS)) {
3940                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
3941                     }
3942                 }
3943             }
3944         }
3945 
3946         if (bounds.length() == 0) {
3947             return syms.objectType;
3948         } else if (bounds.length() == 1) {
3949             return bounds.head.type;
3950         } else {
3951             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
3952             // ... the variable's bound is a class type flagged COMPOUND
3953             // (see comment for TypeVar.bound).
3954             // In this case, generate a class tree that represents the
3955             // bound class, ...
3956             JCExpression extending;
3957             List<JCExpression> implementing;
3958             if (!bounds.head.type.isInterface()) {
3959                 extending = bounds.head;
3960                 implementing = bounds.tail;
3961             } else {
3962                 extending = null;
3963                 implementing = bounds;
3964             }
3965             JCClassDecl cd = make.at(tree).ClassDef(
3966                 make.Modifiers(PUBLIC | ABSTRACT),
3967                 names.empty, List.<JCTypeParameter>nil(),
3968                 extending, implementing, List.<JCTree>nil());
3969 
3970             ClassSymbol c = (ClassSymbol)owntype.tsym;
3971             Assert.check((c.flags() & COMPOUND) != 0);
3972             cd.sym = c;
3973             c.sourcefile = env.toplevel.sourcefile;
3974 
3975             // ... and attribute the bound class
3976             c.flags_field |= UNATTRIBUTED;
3977             Env<AttrContext> cenv = enter.classEnv(cd, env);
3978             typeEnvs.put(c, cenv);
3979             attribClass(c);
3980             return owntype;
3981         }
3982     }
3983 
3984     public void visitWildcard(JCWildcard tree) {
3985         //- System.err.println("visitWildcard("+tree+");");//DEBUG
3986         Type type = (tree.kind.kind == BoundKind.UNBOUND)
3987             ? syms.objectType
3988             : attribType(tree.inner, env);
3989         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
3990                                               tree.kind.kind,
3991                                               syms.boundClass),
3992                 KindSelector.TYP, resultInfo);
3993     }
3994 
3995     public void visitAnnotation(JCAnnotation tree) {
3996         Assert.error("should be handled in annotate");
3997     }
3998 
3999     public void visitAnnotatedType(JCAnnotatedType tree) {
4000         attribAnnotationTypes(tree.annotations, env);
4001         Type underlyingType = attribType(tree.underlyingType, env);
4002         Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4003 
4004         annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4005         result = tree.type = annotatedType;
4006     }
4007 
4008     public void visitErroneous(JCErroneous tree) {
4009         if (tree.errs != null)
4010             for (JCTree err : tree.errs)
4011                 attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4012         result = tree.type = syms.errType;
4013     }
4014 
4015     /** Default visitor method for all other trees.
4016      */
4017     public void visitTree(JCTree tree) {
4018         throw new AssertionError();
4019     }
4020 
4021     /**
4022      * Attribute an env for either a top level tree or class declaration.
4023      */
4024     public void attrib(Env<AttrContext> env) {
4025         if (env.tree.hasTag(TOPLEVEL))
4026             attribTopLevel(env);
4027         else
4028             attribClass(env.tree.pos(), env.enclClass.sym);
4029     }
4030 
4031     /**
4032      * Attribute a top level tree. These trees are encountered when the
4033      * package declaration has annotations.
4034      */
4035     public void attribTopLevel(Env<AttrContext> env) {
4036         JCCompilationUnit toplevel = env.toplevel;
4037         try {
4038             annotate.flush();
4039         } catch (CompletionFailure ex) {
4040             chk.completionError(toplevel.pos(), ex);
4041         }
4042     }
4043 
4044     /** Main method: attribute class definition associated with given class symbol.
4045      *  reporting completion failures at the given position.
4046      *  @param pos The source position at which completion errors are to be
4047      *             reported.
4048      *  @param c   The class symbol whose definition will be attributed.
4049      */
4050     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4051         try {
4052             annotate.flush();
4053             attribClass(c);
4054         } catch (CompletionFailure ex) {
4055             chk.completionError(pos, ex);
4056         }
4057     }
4058 
4059     /** Attribute class definition associated with given class symbol.
4060      *  @param c   The class symbol whose definition will be attributed.
4061      */
4062     void attribClass(ClassSymbol c) throws CompletionFailure {
4063         if (c.type.hasTag(ERROR)) return;
4064 
4065         // Check for cycles in the inheritance graph, which can arise from
4066         // ill-formed class files.
4067         chk.checkNonCyclic(null, c.type);
4068 
4069         Type st = types.supertype(c.type);
4070         if ((c.flags_field & Flags.COMPOUND) == 0) {
4071             // First, attribute superclass.
4072             if (st.hasTag(CLASS))
4073                 attribClass((ClassSymbol)st.tsym);
4074 
4075             // Next attribute owner, if it is a class.
4076             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4077                 attribClass((ClassSymbol)c.owner);
4078         }
4079 
4080         // The previous operations might have attributed the current class
4081         // if there was a cycle. So we test first whether the class is still
4082         // UNATTRIBUTED.
4083         if ((c.flags_field & UNATTRIBUTED) != 0) {
4084             c.flags_field &= ~UNATTRIBUTED;
4085 
4086             // Get environment current at the point of class definition.
4087             Env<AttrContext> env = typeEnvs.get(c);
4088 
4089             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4090             // because the annotations were not available at the time the env was created. Therefore,
4091             // we look up the environment chain for the first enclosing environment for which the
4092             // lint value is set. Typically, this is the parent env, but might be further if there
4093             // are any envs created as a result of TypeParameter nodes.
4094             Env<AttrContext> lintEnv = env;
4095             while (lintEnv.info.lint == null)
4096                 lintEnv = lintEnv.next;
4097 
4098             // Having found the enclosing lint value, we can initialize the lint value for this class
4099             env.info.lint = lintEnv.info.lint.augment(c);
4100 
4101             Lint prevLint = chk.setLint(env.info.lint);
4102             JavaFileObject prev = log.useSource(c.sourcefile);
4103             ResultInfo prevReturnRes = env.info.returnResult;
4104 
4105             try {
4106                 deferredLintHandler.flush(env.tree);
4107                 env.info.returnResult = null;
4108                 // java.lang.Enum may not be subclassed by a non-enum
4109                 if (st.tsym == syms.enumSym &&
4110                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4111                     log.error(env.tree.pos(), "enum.no.subclassing");
4112 
4113                 // Enums may not be extended by source-level classes
4114                 if (st.tsym != null &&
4115                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4116                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4117                     log.error(env.tree.pos(), "enum.types.not.extensible");
4118                 }
4119 
4120                 if (isSerializable(c.type)) {
4121                     env.info.isSerializable = true;
4122                 }
4123 
4124                 attribClassBody(env, c);
4125 
4126                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4127                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4128                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4129             } finally {
4130                 env.info.returnResult = prevReturnRes;
4131                 log.useSource(prev);
4132                 chk.setLint(prevLint);
4133             }
4134 
4135         }
4136     }
4137 
4138     public void visitImport(JCImport tree) {
4139         // nothing to do
4140     }
4141 
4142     /** Finish the attribution of a class. */
4143     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4144         JCClassDecl tree = (JCClassDecl)env.tree;
4145         Assert.check(c == tree.sym);
4146 
4147         // Validate type parameters, supertype and interfaces.
4148         attribStats(tree.typarams, env);
4149         if (!c.isAnonymous()) {
4150             //already checked if anonymous
4151             chk.validate(tree.typarams, env);
4152             chk.validate(tree.extending, env);
4153             chk.validate(tree.implementing, env);
4154         }
4155 
4156         c.markAbstractIfNeeded(types);
4157 
4158         // If this is a non-abstract class, check that it has no abstract
4159         // methods or unimplemented methods of an implemented interface.
4160         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4161             if (!relax)
4162                 chk.checkAllDefined(tree.pos(), c);
4163         }
4164 
4165         if ((c.flags() & ANNOTATION) != 0) {
4166             if (tree.implementing.nonEmpty())
4167                 log.error(tree.implementing.head.pos(),
4168                           "cant.extend.intf.annotation");
4169             if (tree.typarams.nonEmpty())
4170                 log.error(tree.typarams.head.pos(),
4171                           "intf.annotation.cant.have.type.params");
4172 
4173             // If this annotation type has a @Repeatable, validate
4174             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4175             // If this annotation type has a @Repeatable, validate
4176             if (repeatable != null) {
4177                 // get diagnostic position for error reporting
4178                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4179                 Assert.checkNonNull(cbPos);
4180 
4181                 chk.validateRepeatable(c, repeatable, cbPos);
4182             }
4183         } else {
4184             // Check that all extended classes and interfaces
4185             // are compatible (i.e. no two define methods with same arguments
4186             // yet different return types).  (JLS 8.4.6.3)
4187             chk.checkCompatibleSupertypes(tree.pos(), c.type);
4188             if (allowDefaultMethods) {
4189                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
4190             }
4191         }
4192 
4193         // Check that class does not import the same parameterized interface
4194         // with two different argument lists.
4195         chk.checkClassBounds(tree.pos(), c.type);
4196 
4197         tree.type = c.type;
4198 
4199         for (List<JCTypeParameter> l = tree.typarams;
4200              l.nonEmpty(); l = l.tail) {
4201              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4202         }
4203 
4204         // Check that a generic class doesn't extend Throwable
4205         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4206             log.error(tree.extending.pos(), "generic.throwable");
4207 
4208         // Check that all methods which implement some
4209         // method conform to the method they implement.
4210         chk.checkImplementations(tree);
4211 
4212         //check that a resource implementing AutoCloseable cannot throw InterruptedException
4213         checkAutoCloseable(tree.pos(), env, c.type);
4214 
4215         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4216             // Attribute declaration
4217             attribStat(l.head, env);
4218             // Check that declarations in inner classes are not static (JLS 8.1.2)
4219             // Make an exception for static constants.
4220             if (c.owner.kind != PCK &&
4221                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4222                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4223                 Symbol sym = null;
4224                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4225                 if (sym == null ||
4226                     sym.kind != VAR ||
4227                     ((VarSymbol) sym).getConstValue() == null)
4228                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4229             }
4230         }
4231 
4232         // Check for cycles among non-initial constructors.
4233         chk.checkCyclicConstructors(tree);
4234 
4235         // Check for cycles among annotation elements.
4236         chk.checkNonCyclicElements(tree);
4237 
4238         // Check for proper use of serialVersionUID
4239         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4240             isSerializable(c.type) &&
4241             (c.flags() & Flags.ENUM) == 0 &&
4242             checkForSerial(c)) {
4243             checkSerialVersionUID(tree, c);
4244         }
4245         if (allowTypeAnnos) {
4246             // Correctly organize the postions of the type annotations
4247             typeAnnotations.organizeTypeAnnotationsBodies(tree);
4248 
4249             // Check type annotations applicability rules
4250             validateTypeAnnotations(tree, false);
4251         }
4252     }
4253         // where
4254         boolean checkForSerial(ClassSymbol c) {
4255             if ((c.flags() & ABSTRACT) == 0) {
4256                 return true;
4257             } else {
4258                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4259             }
4260         }
4261 
4262         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4263             @Override
4264             public boolean accepts(Symbol s) {
4265                 return s.kind == MTH &&
4266                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4267             }
4268         };
4269 
4270         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4271         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4272             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4273                 if (types.isSameType(al.head.annotationType.type, t))
4274                     return al.head.pos();
4275             }
4276 
4277             return null;
4278         }
4279 
4280         /** check if a type is a subtype of Serializable, if that is available. */
4281         boolean isSerializable(Type t) {
4282             try {
4283                 syms.serializableType.complete();
4284             }
4285             catch (CompletionFailure e) {
4286                 return false;
4287             }
4288             return types.isSubtype(t, syms.serializableType);
4289         }
4290 
4291         /** Check that an appropriate serialVersionUID member is defined. */
4292         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4293 
4294             // check for presence of serialVersionUID
4295             VarSymbol svuid = null;
4296             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4297                 if (sym.kind == VAR) {
4298                     svuid = (VarSymbol)sym;
4299                     break;
4300                 }
4301             }
4302 
4303             if (svuid == null) {
4304                 log.warning(LintCategory.SERIAL,
4305                         tree.pos(), "missing.SVUID", c);
4306                 return;
4307             }
4308 
4309             // check that it is static final
4310             if ((svuid.flags() & (STATIC | FINAL)) !=
4311                 (STATIC | FINAL))
4312                 log.warning(LintCategory.SERIAL,
4313                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4314 
4315             // check that it is long
4316             else if (!svuid.type.hasTag(LONG))
4317                 log.warning(LintCategory.SERIAL,
4318                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4319 
4320             // check constant
4321             else if (svuid.getConstValue() == null)
4322                 log.warning(LintCategory.SERIAL,
4323                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4324         }
4325 
4326     private Type capture(Type type) {
4327         return types.capture(type);
4328     }
4329 
4330     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4331         tree.accept(new TypeAnnotationsValidator(sigOnly));
4332     }
4333     //where
4334     private final class TypeAnnotationsValidator extends TreeScanner {
4335 
4336         private final boolean sigOnly;
4337         public TypeAnnotationsValidator(boolean sigOnly) {
4338             this.sigOnly = sigOnly;
4339         }
4340 
4341         public void visitAnnotation(JCAnnotation tree) {
4342             chk.validateTypeAnnotation(tree, false);
4343             super.visitAnnotation(tree);
4344         }
4345         public void visitAnnotatedType(JCAnnotatedType tree) {
4346             if (!tree.underlyingType.type.isErroneous()) {
4347                 super.visitAnnotatedType(tree);
4348             }
4349         }
4350         public void visitTypeParameter(JCTypeParameter tree) {
4351             chk.validateTypeAnnotations(tree.annotations, true);
4352             scan(tree.bounds);
4353             // Don't call super.
4354             // This is needed because above we call validateTypeAnnotation with
4355             // false, which would forbid annotations on type parameters.
4356             // super.visitTypeParameter(tree);
4357         }
4358         public void visitMethodDef(JCMethodDecl tree) {
4359             if (tree.recvparam != null &&
4360                     !tree.recvparam.vartype.type.isErroneous()) {
4361                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4362                         tree.recvparam.vartype.type.tsym);
4363             }
4364             if (tree.restype != null && tree.restype.type != null) {
4365                 validateAnnotatedType(tree.restype, tree.restype.type);
4366             }
4367             if (sigOnly) {
4368                 scan(tree.mods);
4369                 scan(tree.restype);
4370                 scan(tree.typarams);
4371                 scan(tree.recvparam);
4372                 scan(tree.params);
4373                 scan(tree.thrown);
4374             } else {
4375                 scan(tree.defaultValue);
4376                 scan(tree.body);
4377             }
4378         }
4379         public void visitVarDef(final JCVariableDecl tree) {
4380             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4381             if (tree.sym != null && tree.sym.type != null)
4382                 validateAnnotatedType(tree.vartype, tree.sym.type);
4383             scan(tree.mods);
4384             scan(tree.vartype);
4385             if (!sigOnly) {
4386                 scan(tree.init);
4387             }
4388         }
4389         public void visitTypeCast(JCTypeCast tree) {
4390             if (tree.clazz != null && tree.clazz.type != null)
4391                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4392             super.visitTypeCast(tree);
4393         }
4394         public void visitTypeTest(JCInstanceOf tree) {
4395             if (tree.clazz != null && tree.clazz.type != null)
4396                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4397             super.visitTypeTest(tree);
4398         }
4399         public void visitNewClass(JCNewClass tree) {
4400             if (tree.clazz != null && tree.clazz.type != null) {
4401                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4402                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4403                             tree.clazz.type.tsym);
4404                 }
4405                 if (tree.def != null) {
4406                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4407                 }
4408 
4409                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4410             }
4411             super.visitNewClass(tree);
4412         }
4413         public void visitNewArray(JCNewArray tree) {
4414             if (tree.elemtype != null && tree.elemtype.type != null) {
4415                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4416                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4417                             tree.elemtype.type.tsym);
4418                 }
4419                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4420             }
4421             super.visitNewArray(tree);
4422         }
4423         public void visitClassDef(JCClassDecl tree) {
4424             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4425             if (sigOnly) {
4426                 scan(tree.mods);
4427                 scan(tree.typarams);
4428                 scan(tree.extending);
4429                 scan(tree.implementing);
4430             }
4431             for (JCTree member : tree.defs) {
4432                 if (member.hasTag(Tag.CLASSDEF)) {
4433                     continue;
4434                 }
4435                 scan(member);
4436             }
4437         }
4438         public void visitBlock(JCBlock tree) {
4439             if (!sigOnly) {
4440                 scan(tree.stats);
4441             }
4442         }
4443 
4444         /* I would want to model this after
4445          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4446          * and override visitSelect and visitTypeApply.
4447          * However, we only set the annotated type in the top-level type
4448          * of the symbol.
4449          * Therefore, we need to override each individual location where a type
4450          * can occur.
4451          */
4452         private void validateAnnotatedType(final JCTree errtree, final Type type) {
4453             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4454 
4455             if (type.isPrimitiveOrVoid()) {
4456                 return;
4457             }
4458 
4459             JCTree enclTr = errtree;
4460             Type enclTy = type;
4461 
4462             boolean repeat = true;
4463             while (repeat) {
4464                 if (enclTr.hasTag(TYPEAPPLY)) {
4465                     List<Type> tyargs = enclTy.getTypeArguments();
4466                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4467                     if (trargs.length() > 0) {
4468                         // Nothing to do for diamonds
4469                         if (tyargs.length() == trargs.length()) {
4470                             for (int i = 0; i < tyargs.length(); ++i) {
4471                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
4472                             }
4473                         }
4474                         // If the lengths don't match, it's either a diamond
4475                         // or some nested type that redundantly provides
4476                         // type arguments in the tree.
4477                     }
4478 
4479                     // Look at the clazz part of a generic type
4480                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4481                 }
4482 
4483                 if (enclTr.hasTag(SELECT)) {
4484                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4485                     if (enclTy != null &&
4486                             !enclTy.hasTag(NONE)) {
4487                         enclTy = enclTy.getEnclosingType();
4488                     }
4489                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4490                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4491                     if (enclTy == null || enclTy.hasTag(NONE)) {
4492                         if (at.getAnnotations().size() == 1) {
4493                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4494                         } else {
4495                             ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4496                             for (JCAnnotation an : at.getAnnotations()) {
4497                                 comps.add(an.attribute);
4498                             }
4499                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4500                         }
4501                         repeat = false;
4502                     }
4503                     enclTr = at.underlyingType;
4504                     // enclTy doesn't need to be changed
4505                 } else if (enclTr.hasTag(IDENT)) {
4506                     repeat = false;
4507                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4508                     JCWildcard wc = (JCWildcard) enclTr;
4509                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4510                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4511                     } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4512                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4513                     } else {
4514                         // Nothing to do for UNBOUND
4515                     }
4516                     repeat = false;
4517                 } else if (enclTr.hasTag(TYPEARRAY)) {
4518                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4519                     validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4520                     repeat = false;
4521                 } else if (enclTr.hasTag(TYPEUNION)) {
4522                     JCTypeUnion ut = (JCTypeUnion) enclTr;
4523                     for (JCTree t : ut.getTypeAlternatives()) {
4524                         validateAnnotatedType(t, t.type);
4525                     }
4526                     repeat = false;
4527                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4528                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
4529                     for (JCTree t : it.getBounds()) {
4530                         validateAnnotatedType(t, t.type);
4531                     }
4532                     repeat = false;
4533                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4534                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4535                     repeat = false;
4536                 } else {
4537                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4538                             " within: "+ errtree + " with kind: " + errtree.getKind());
4539                 }
4540             }
4541         }
4542 
4543         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4544                 Symbol sym) {
4545             // Ensure that no declaration annotations are present.
4546             // Note that a tree type might be an AnnotatedType with
4547             // empty annotations, if only declaration annotations were given.
4548             // This method will raise an error for such a type.
4549             for (JCAnnotation ai : annotations) {
4550                 if (!ai.type.isErroneous() &&
4551                         typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4552                     log.error(ai.pos(), "annotation.type.not.applicable");
4553                 }
4554             }
4555         }
4556     }
4557 
4558     // <editor-fold desc="post-attribution visitor">
4559 
4560     /**
4561      * Handle missing types/symbols in an AST. This routine is useful when
4562      * the compiler has encountered some errors (which might have ended up
4563      * terminating attribution abruptly); if the compiler is used in fail-over
4564      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4565      * prevents NPE to be progagated during subsequent compilation steps.
4566      */
4567     public void postAttr(JCTree tree) {
4568         new PostAttrAnalyzer().scan(tree);
4569     }
4570 
4571     class PostAttrAnalyzer extends TreeScanner {
4572 
4573         private void initTypeIfNeeded(JCTree that) {
4574             if (that.type == null) {
4575                 if (that.hasTag(METHODDEF)) {
4576                     that.type = dummyMethodType((JCMethodDecl)that);
4577                 } else {
4578                     that.type = syms.unknownType;
4579                 }
4580             }
4581         }
4582 
4583         /* Construct a dummy method type. If we have a method declaration,
4584          * and the declared return type is void, then use that return type
4585          * instead of UNKNOWN to avoid spurious error messages in lambda
4586          * bodies (see:JDK-8041704).
4587          */
4588         private Type dummyMethodType(JCMethodDecl md) {
4589             Type restype = syms.unknownType;
4590             if (md != null && md.restype.hasTag(TYPEIDENT)) {
4591                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4592                 if (prim.typetag == VOID)
4593                     restype = syms.voidType;
4594             }
4595             return new MethodType(List.<Type>nil(), restype,
4596                                   List.<Type>nil(), syms.methodClass);
4597         }
4598         private Type dummyMethodType() {
4599             return dummyMethodType(null);
4600         }
4601 
4602         @Override
4603         public void scan(JCTree tree) {
4604             if (tree == null) return;
4605             if (tree instanceof JCExpression) {
4606                 initTypeIfNeeded(tree);
4607             }
4608             super.scan(tree);
4609         }
4610 
4611         @Override
4612         public void visitIdent(JCIdent that) {
4613             if (that.sym == null) {
4614                 that.sym = syms.unknownSymbol;
4615             }
4616         }
4617 
4618         @Override
4619         public void visitSelect(JCFieldAccess that) {
4620             if (that.sym == null) {
4621                 that.sym = syms.unknownSymbol;
4622             }
4623             super.visitSelect(that);
4624         }
4625 
4626         @Override
4627         public void visitClassDef(JCClassDecl that) {
4628             initTypeIfNeeded(that);
4629             if (that.sym == null) {
4630                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4631             }
4632             super.visitClassDef(that);
4633         }
4634 
4635         @Override
4636         public void visitMethodDef(JCMethodDecl that) {
4637             initTypeIfNeeded(that);
4638             if (that.sym == null) {
4639                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4640             }
4641             super.visitMethodDef(that);
4642         }
4643 
4644         @Override
4645         public void visitVarDef(JCVariableDecl that) {
4646             initTypeIfNeeded(that);
4647             if (that.sym == null) {
4648                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4649                 that.sym.adr = 0;
4650             }
4651             super.visitVarDef(that);
4652         }
4653 
4654         @Override
4655         public void visitNewClass(JCNewClass that) {
4656             if (that.constructor == null) {
4657                 that.constructor = new MethodSymbol(0, names.init,
4658                         dummyMethodType(), syms.noSymbol);
4659             }
4660             if (that.constructorType == null) {
4661                 that.constructorType = syms.unknownType;
4662             }
4663             super.visitNewClass(that);
4664         }
4665 
4666         @Override
4667         public void visitAssignop(JCAssignOp that) {
4668             if (that.operator == null) {
4669                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4670                         -1, syms.noSymbol);
4671             }
4672             super.visitAssignop(that);
4673         }
4674 
4675         @Override
4676         public void visitBinary(JCBinary that) {
4677             if (that.operator == null) {
4678                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4679                         -1, syms.noSymbol);
4680             }
4681             super.visitBinary(that);
4682         }
4683 
4684         @Override
4685         public void visitUnary(JCUnary that) {
4686             if (that.operator == null) {
4687                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4688                         -1, syms.noSymbol);
4689             }
4690             super.visitUnary(that);
4691         }
4692 
4693         @Override
4694         public void visitLambda(JCLambda that) {
4695             super.visitLambda(that);
4696             if (that.targets == null) {
4697                 that.targets = List.nil();
4698             }
4699         }
4700 
4701         @Override
4702         public void visitReference(JCMemberReference that) {
4703             super.visitReference(that);
4704             if (that.sym == null) {
4705                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4706                         syms.noSymbol);
4707             }
4708             if (that.targets == null) {
4709                 that.targets = List.nil();
4710             }
4711         }
4712     }
4713     // </editor-fold>
4714 }