1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.tools.JavaFileManager;
  31 
  32 import com.sun.tools.javac.code.*;
  33 import com.sun.tools.javac.code.Attribute.Compound;
  34 import com.sun.tools.javac.jvm.*;
  35 import com.sun.tools.javac.tree.*;
  36 import com.sun.tools.javac.util.*;
  37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  38 import com.sun.tools.javac.util.List;
  39 
  40 import com.sun.tools.javac.code.Lint;
  41 import com.sun.tools.javac.code.Lint.LintCategory;
  42 import com.sun.tools.javac.code.Scope.CompoundScope;
  43 import com.sun.tools.javac.code.Scope.NamedImportScope;
  44 import com.sun.tools.javac.code.Scope.WriteableScope;
  45 import com.sun.tools.javac.code.Type.*;
  46 import com.sun.tools.javac.code.Symbol.*;
  47 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  48 import com.sun.tools.javac.comp.Infer.InferenceContext;
  49 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
  50 import com.sun.tools.javac.tree.JCTree.*;
  51 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  52 
  53 import static com.sun.tools.javac.code.Flags.*;
  54 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  55 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  56 import static com.sun.tools.javac.code.Kinds.*;
  57 import static com.sun.tools.javac.code.Kinds.Kind.*;
  58 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  59 import static com.sun.tools.javac.code.TypeTag.*;
  60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  61 
  62 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  63 
  64 /** Type checking helper class for the attribution phase.
  65  *
  66  *  <p><b>This is NOT part of any supported API.
  67  *  If you write code that depends on this, you do so at your own risk.
  68  *  This code and its internal interfaces are subject to change or
  69  *  deletion without notice.</b>
  70  */
  71 public class Check {
  72     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  73 
  74     private final Names names;
  75     private final Log log;
  76     private final Resolve rs;
  77     private final Symtab syms;
  78     private final Enter enter;
  79     private final DeferredAttr deferredAttr;
  80     private final Infer infer;
  81     private final Types types;
  82     private final JCDiagnostic.Factory diags;
  83     private boolean warnOnSyntheticConflicts;
  84     private boolean suppressAbortOnBadClassFile;
  85     private boolean enableSunApiLintControl;
  86     private final JavaFileManager fileManager;
  87     private final Profile profile;
  88     private final boolean warnOnAccessToSensitiveMembers;
  89 
  90     // The set of lint options currently in effect. It is initialized
  91     // from the context, and then is set/reset as needed by Attr as it
  92     // visits all the various parts of the trees during attribution.
  93     private Lint lint;
  94 
  95     // The method being analyzed in Attr - it is set/reset as needed by
  96     // Attr as it visits new method declarations.
  97     private MethodSymbol method;
  98 
  99     public static Check instance(Context context) {
 100         Check instance = context.get(checkKey);
 101         if (instance == null)
 102             instance = new Check(context);
 103         return instance;
 104     }
 105 
 106     protected Check(Context context) {
 107         context.put(checkKey, this);
 108 
 109         names = Names.instance(context);
 110         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
 111             names.FIELD, names.METHOD, names.CONSTRUCTOR,
 112             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
 113         log = Log.instance(context);
 114         rs = Resolve.instance(context);
 115         syms = Symtab.instance(context);
 116         enter = Enter.instance(context);
 117         deferredAttr = DeferredAttr.instance(context);
 118         infer = Infer.instance(context);
 119         types = Types.instance(context);
 120         diags = JCDiagnostic.Factory.instance(context);
 121         Options options = Options.instance(context);
 122         lint = Lint.instance(context);
 123         fileManager = context.get(JavaFileManager.class);
 124 
 125         Source source = Source.instance(context);
 126         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
 127         allowDefaultMethods = source.allowDefaultMethods();
 128         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
 129         allowPrivateSafeVarargs = source.allowPrivateSafeVarargs();
 130         complexInference = options.isSet("complexinference");
 131         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
 132         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
 133         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
 134         warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
 135 
 136         Target target = Target.instance(context);
 137         syntheticNameChar = target.syntheticNameChar();
 138 
 139         profile = Profile.instance(context);
 140 
 141         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 142         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 143         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
 144         boolean enforceMandatoryWarnings = true;
 145 
 146         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
 147                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
 148         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
 149                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
 150         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
 151                 enforceMandatoryWarnings, "sunapi", null);
 152 
 153         deferredLintHandler = DeferredLintHandler.instance(context);
 154     }
 155 
 156     /** Switch: simplified varargs enabled?
 157      */
 158     boolean allowSimplifiedVarargs;
 159 
 160     /** Switch: default methods enabled?
 161      */
 162     boolean allowDefaultMethods;
 163 
 164     /** Switch: should unrelated return types trigger a method clash?
 165      */
 166     boolean allowStrictMethodClashCheck;
 167 
 168     /** Switch: can the @SafeVarargs annotation be applied to private methods?
 169      */
 170     boolean allowPrivateSafeVarargs;
 171 
 172     /** Switch: -complexinference option set?
 173      */
 174     boolean complexInference;
 175 
 176     /** Character for synthetic names
 177      */
 178     char syntheticNameChar;
 179 
 180     /** A table mapping flat names of all compiled classes in this run to their
 181      *  symbols; maintained from outside.
 182      */
 183     public Map<Name,ClassSymbol> compiled = new HashMap<>();
 184 
 185     /** A handler for messages about deprecated usage.
 186      */
 187     private MandatoryWarningHandler deprecationHandler;
 188 
 189     /** A handler for messages about unchecked or unsafe usage.
 190      */
 191     private MandatoryWarningHandler uncheckedHandler;
 192 
 193     /** A handler for messages about using proprietary API.
 194      */
 195     private MandatoryWarningHandler sunApiHandler;
 196 
 197     /** A handler for deferred lint warnings.
 198      */
 199     private DeferredLintHandler deferredLintHandler;
 200 
 201 /* *************************************************************************
 202  * Errors and Warnings
 203  **************************************************************************/
 204 
 205     Lint setLint(Lint newLint) {
 206         Lint prev = lint;
 207         lint = newLint;
 208         return prev;
 209     }
 210 
 211     MethodSymbol setMethod(MethodSymbol newMethod) {
 212         MethodSymbol prev = method;
 213         method = newMethod;
 214         return prev;
 215     }
 216 
 217     /** Warn about deprecated symbol.
 218      *  @param pos        Position to be used for error reporting.
 219      *  @param sym        The deprecated symbol.
 220      */
 221     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 222         if (!lint.isSuppressed(LintCategory.DEPRECATION))
 223             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
 224     }
 225 
 226     /** Warn about unchecked operation.
 227      *  @param pos        Position to be used for error reporting.
 228      *  @param msg        A string describing the problem.
 229      */
 230     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
 231         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 232             uncheckedHandler.report(pos, msg, args);
 233     }
 234 
 235     /** Warn about unsafe vararg method decl.
 236      *  @param pos        Position to be used for error reporting.
 237      */
 238     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
 239         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
 240             log.warning(LintCategory.VARARGS, pos, key, args);
 241     }
 242 
 243     /** Warn about using proprietary API.
 244      *  @param pos        Position to be used for error reporting.
 245      *  @param msg        A string describing the problem.
 246      */
 247     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
 248         if (!lint.isSuppressed(LintCategory.SUNAPI))
 249             sunApiHandler.report(pos, msg, args);
 250     }
 251 
 252     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
 253         if (lint.isEnabled(LintCategory.STATIC))
 254             log.warning(LintCategory.STATIC, pos, msg, args);
 255     }
 256 
 257     /** Warn about division by integer constant zero.
 258      *  @param pos        Position to be used for error reporting.
 259      */
 260     void warnDivZero(DiagnosticPosition pos) {
 261         if (lint.isEnabled(LintCategory.DIVZERO))
 262             log.warning(LintCategory.DIVZERO, pos, "div.zero");
 263     }
 264 
 265     /**
 266      * Report any deferred diagnostics.
 267      */
 268     public void reportDeferredDiagnostics() {
 269         deprecationHandler.reportDeferredDiagnostic();
 270         uncheckedHandler.reportDeferredDiagnostic();
 271         sunApiHandler.reportDeferredDiagnostic();
 272     }
 273 
 274 
 275     /** Report a failure to complete a class.
 276      *  @param pos        Position to be used for error reporting.
 277      *  @param ex         The failure to report.
 278      */
 279     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 280         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
 281         if (ex instanceof ClassFinder.BadClassFile
 282                 && !suppressAbortOnBadClassFile) throw new Abort();
 283         else return syms.errType;
 284     }
 285 
 286     /** Report an error that wrong type tag was found.
 287      *  @param pos        Position to be used for error reporting.
 288      *  @param required   An internationalized string describing the type tag
 289      *                    required.
 290      *  @param found      The type that was found.
 291      */
 292     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
 293         // this error used to be raised by the parser,
 294         // but has been delayed to this point:
 295         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
 296             log.error(pos, "illegal.start.of.type");
 297             return syms.errType;
 298         }
 299         log.error(pos, "type.found.req", found, required);
 300         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
 301     }
 302 
 303     /** Report an error that symbol cannot be referenced before super
 304      *  has been called.
 305      *  @param pos        Position to be used for error reporting.
 306      *  @param sym        The referenced symbol.
 307      */
 308     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
 309         log.error(pos, "cant.ref.before.ctor.called", sym);
 310     }
 311 
 312     /** Report duplicate declaration error.
 313      */
 314     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 315         if (!sym.type.isErroneous()) {
 316             Symbol location = sym.location();
 317             if (location.kind == MTH &&
 318                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 319                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
 320                         kindName(sym.location()), kindName(sym.location().enclClass()),
 321                         sym.location().enclClass());
 322             } else {
 323                 log.error(pos, "already.defined", kindName(sym), sym,
 324                         kindName(sym.location()), sym.location());
 325             }
 326         }
 327     }
 328 
 329     /** Report array/varargs duplicate declaration
 330      */
 331     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 332         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 333             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
 334         }
 335     }
 336 
 337 /* ************************************************************************
 338  * duplicate declaration checking
 339  *************************************************************************/
 340 
 341     /** Check that variable does not hide variable with same name in
 342      *  immediately enclosing local scope.
 343      *  @param pos           Position for error reporting.
 344      *  @param v             The symbol.
 345      *  @param s             The scope.
 346      */
 347     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 348         for (Symbol sym : s.getSymbolsByName(v.name)) {
 349             if (sym.owner != v.owner) break;
 350             if (sym.kind == VAR &&
 351                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 352                 v.name != names.error) {
 353                 duplicateError(pos, sym);
 354                 return;
 355             }
 356         }
 357     }
 358 
 359     /** Check that a class or interface does not hide a class or
 360      *  interface with same name in immediately enclosing local scope.
 361      *  @param pos           Position for error reporting.
 362      *  @param c             The symbol.
 363      *  @param s             The scope.
 364      */
 365     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 366         for (Symbol sym : s.getSymbolsByName(c.name)) {
 367             if (sym.owner != c.owner) break;
 368             if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
 369                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 370                 c.name != names.error) {
 371                 duplicateError(pos, sym);
 372                 return;
 373             }
 374         }
 375     }
 376 
 377     /** Check that class does not have the same name as one of
 378      *  its enclosing classes, or as a class defined in its enclosing scope.
 379      *  return true if class is unique in its enclosing scope.
 380      *  @param pos           Position for error reporting.
 381      *  @param name          The class name.
 382      *  @param s             The enclosing scope.
 383      */
 384     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 385         for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
 386             if (sym.kind == TYP && sym.name != names.error) {
 387                 duplicateError(pos, sym);
 388                 return false;
 389             }
 390         }
 391         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 392             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
 393                 duplicateError(pos, sym);
 394                 return true;
 395             }
 396         }
 397         return true;
 398     }
 399 
 400 /* *************************************************************************
 401  * Class name generation
 402  **************************************************************************/
 403 
 404     /** Return name of local class.
 405      *  This is of the form   {@code <enclClass> $ n <classname> }
 406      *  where
 407      *    enclClass is the flat name of the enclosing class,
 408      *    classname is the simple name of the local class
 409      */
 410     Name localClassName(ClassSymbol c) {
 411         for (int i=1; ; i++) {
 412             Name flatname = names.
 413                 fromString("" + c.owner.enclClass().flatname +
 414                            syntheticNameChar + i +
 415                            c.name);
 416             if (compiled.get(flatname) == null) return flatname;
 417         }
 418     }
 419 
 420     public void newRound() {
 421         compiled.clear();
 422     }
 423 
 424 /* *************************************************************************
 425  * Type Checking
 426  **************************************************************************/
 427 
 428     /**
 429      * A check context is an object that can be used to perform compatibility
 430      * checks - depending on the check context, meaning of 'compatibility' might
 431      * vary significantly.
 432      */
 433     public interface CheckContext {
 434         /**
 435          * Is type 'found' compatible with type 'req' in given context
 436          */
 437         boolean compatible(Type found, Type req, Warner warn);
 438         /**
 439          * Report a check error
 440          */
 441         void report(DiagnosticPosition pos, JCDiagnostic details);
 442         /**
 443          * Obtain a warner for this check context
 444          */
 445         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 446 
 447         public Infer.InferenceContext inferenceContext();
 448 
 449         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 450     }
 451 
 452     /**
 453      * This class represent a check context that is nested within another check
 454      * context - useful to check sub-expressions. The default behavior simply
 455      * redirects all method calls to the enclosing check context leveraging
 456      * the forwarding pattern.
 457      */
 458     static class NestedCheckContext implements CheckContext {
 459         CheckContext enclosingContext;
 460 
 461         NestedCheckContext(CheckContext enclosingContext) {
 462             this.enclosingContext = enclosingContext;
 463         }
 464 
 465         public boolean compatible(Type found, Type req, Warner warn) {
 466             return enclosingContext.compatible(found, req, warn);
 467         }
 468 
 469         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 470             enclosingContext.report(pos, details);
 471         }
 472 
 473         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 474             return enclosingContext.checkWarner(pos, found, req);
 475         }
 476 
 477         public Infer.InferenceContext inferenceContext() {
 478             return enclosingContext.inferenceContext();
 479         }
 480 
 481         public DeferredAttrContext deferredAttrContext() {
 482             return enclosingContext.deferredAttrContext();
 483         }
 484     }
 485 
 486     /**
 487      * Check context to be used when evaluating assignment/return statements
 488      */
 489     CheckContext basicHandler = new CheckContext() {
 490         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 491             log.error(pos, "prob.found.req", details);
 492         }
 493         public boolean compatible(Type found, Type req, Warner warn) {
 494             return types.isAssignable(found, req, warn);
 495         }
 496 
 497         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 498             return convertWarner(pos, found, req);
 499         }
 500 
 501         public InferenceContext inferenceContext() {
 502             return infer.emptyContext;
 503         }
 504 
 505         public DeferredAttrContext deferredAttrContext() {
 506             return deferredAttr.emptyDeferredAttrContext;
 507         }
 508 
 509         @Override
 510         public String toString() {
 511             return "CheckContext: basicHandler";
 512         }
 513     };
 514 
 515     /** Check that a given type is assignable to a given proto-type.
 516      *  If it is, return the type, otherwise return errType.
 517      *  @param pos        Position to be used for error reporting.
 518      *  @param found      The type that was found.
 519      *  @param req        The type that was required.
 520      */
 521     Type checkType(DiagnosticPosition pos, Type found, Type req) {
 522         return checkType(pos, found, req, basicHandler);
 523     }
 524 
 525     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 526         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
 527         if (inferenceContext.free(req) || inferenceContext.free(found)) {
 528             inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
 529                 @Override
 530                 public void typesInferred(InferenceContext inferenceContext) {
 531                     checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
 532                 }
 533             });
 534         }
 535         if (req.hasTag(ERROR))
 536             return req;
 537         if (req.hasTag(NONE))
 538             return found;
 539         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 540             return found;
 541         } else {
 542             if (found.isNumeric() && req.isNumeric()) {
 543                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
 544                 return types.createErrorType(found);
 545             }
 546             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
 547             return types.createErrorType(found);
 548         }
 549     }
 550 
 551     /** Check that a given type can be cast to a given target type.
 552      *  Return the result of the cast.
 553      *  @param pos        Position to be used for error reporting.
 554      *  @param found      The type that is being cast.
 555      *  @param req        The target type of the cast.
 556      */
 557     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 558         return checkCastable(pos, found, req, basicHandler);
 559     }
 560     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 561         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 562             return req;
 563         } else {
 564             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
 565             return types.createErrorType(found);
 566         }
 567     }
 568 
 569     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 570      * The problem should only be reported for non-292 cast
 571      */
 572     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 573         if (!tree.type.isErroneous()
 574                 && types.isSameType(tree.expr.type, tree.clazz.type)
 575                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 576                 && !is292targetTypeCast(tree)) {
 577             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
 578                 @Override
 579                 public void report() {
 580                     if (lint.isEnabled(Lint.LintCategory.CAST))
 581                         log.warning(Lint.LintCategory.CAST,
 582                                 tree.pos(), "redundant.cast", tree.expr.type);
 583                 }
 584             });
 585         }
 586     }
 587     //where
 588         private boolean is292targetTypeCast(JCTypeCast tree) {
 589             boolean is292targetTypeCast = false;
 590             JCExpression expr = TreeInfo.skipParens(tree.expr);
 591             if (expr.hasTag(APPLY)) {
 592                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 593                 Symbol sym = TreeInfo.symbol(apply.meth);
 594                 is292targetTypeCast = sym != null &&
 595                     sym.kind == MTH &&
 596                     (sym.flags() & HYPOTHETICAL) != 0;
 597             }
 598             return is292targetTypeCast;
 599         }
 600 
 601         private static final boolean ignoreAnnotatedCasts = true;
 602 
 603     /** Check that a type is within some bounds.
 604      *
 605      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 606      *  type argument.
 607      *  @param a             The type that should be bounded by bs.
 608      *  @param bound         The bound.
 609      */
 610     private boolean checkExtends(Type a, Type bound) {
 611          if (a.isUnbound()) {
 612              return true;
 613          } else if (!a.hasTag(WILDCARD)) {
 614              a = types.cvarUpperBound(a);
 615              return types.isSubtype(a, bound);
 616          } else if (a.isExtendsBound()) {
 617              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 618          } else if (a.isSuperBound()) {
 619              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 620          }
 621          return true;
 622      }
 623 
 624     /** Check that type is different from 'void'.
 625      *  @param pos           Position to be used for error reporting.
 626      *  @param t             The type to be checked.
 627      */
 628     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 629         if (t.hasTag(VOID)) {
 630             log.error(pos, "void.not.allowed.here");
 631             return types.createErrorType(t);
 632         } else {
 633             return t;
 634         }
 635     }
 636 
 637     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 638         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 639             return typeTagError(pos,
 640                                 diags.fragment("type.req.class.array"),
 641                                 asTypeParam(t));
 642         } else {
 643             return t;
 644         }
 645     }
 646 
 647     /** Check that type is a class or interface type.
 648      *  @param pos           Position to be used for error reporting.
 649      *  @param t             The type to be checked.
 650      */
 651     Type checkClassType(DiagnosticPosition pos, Type t) {
 652         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 653             return typeTagError(pos,
 654                                 diags.fragment("type.req.class"),
 655                                 asTypeParam(t));
 656         } else {
 657             return t;
 658         }
 659     }
 660     //where
 661         private Object asTypeParam(Type t) {
 662             return (t.hasTag(TYPEVAR))
 663                                     ? diags.fragment("type.parameter", t)
 664                                     : t;
 665         }
 666 
 667     /** Check that type is a valid qualifier for a constructor reference expression
 668      */
 669     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 670         t = checkClassOrArrayType(pos, t);
 671         if (t.hasTag(CLASS)) {
 672             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 673                 log.error(pos, "abstract.cant.be.instantiated", t.tsym);
 674                 t = types.createErrorType(t);
 675             } else if ((t.tsym.flags() & ENUM) != 0) {
 676                 log.error(pos, "enum.cant.be.instantiated");
 677                 t = types.createErrorType(t);
 678             } else {
 679                 t = checkClassType(pos, t, true);
 680             }
 681         } else if (t.hasTag(ARRAY)) {
 682             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 683                 log.error(pos, "generic.array.creation");
 684                 t = types.createErrorType(t);
 685             }
 686         }
 687         return t;
 688     }
 689 
 690     /** Check that type is a class or interface type.
 691      *  @param pos           Position to be used for error reporting.
 692      *  @param t             The type to be checked.
 693      *  @param noBounds    True if type bounds are illegal here.
 694      */
 695     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 696         t = checkClassType(pos, t);
 697         if (noBounds && t.isParameterized()) {
 698             List<Type> args = t.getTypeArguments();
 699             while (args.nonEmpty()) {
 700                 if (args.head.hasTag(WILDCARD))
 701                     return typeTagError(pos,
 702                                         diags.fragment("type.req.exact"),
 703                                         args.head);
 704                 args = args.tail;
 705             }
 706         }
 707         return t;
 708     }
 709 
 710     /** Check that type is a reference type, i.e. a class, interface or array type
 711      *  or a type variable.
 712      *  @param pos           Position to be used for error reporting.
 713      *  @param t             The type to be checked.
 714      */
 715     Type checkRefType(DiagnosticPosition pos, Type t) {
 716         if (t.isReference())
 717             return t;
 718         else
 719             return typeTagError(pos,
 720                                 diags.fragment("type.req.ref"),
 721                                 t);
 722     }
 723 
 724     /** Check that each type is a reference type, i.e. a class, interface or array type
 725      *  or a type variable.
 726      *  @param trees         Original trees, used for error reporting.
 727      *  @param types         The types to be checked.
 728      */
 729     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 730         List<JCExpression> tl = trees;
 731         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 732             l.head = checkRefType(tl.head.pos(), l.head);
 733             tl = tl.tail;
 734         }
 735         return types;
 736     }
 737 
 738     /** Check that type is a null or reference type.
 739      *  @param pos           Position to be used for error reporting.
 740      *  @param t             The type to be checked.
 741      */
 742     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 743         if (t.isReference() || t.hasTag(BOT))
 744             return t;
 745         else
 746             return typeTagError(pos,
 747                                 diags.fragment("type.req.ref"),
 748                                 t);
 749     }
 750 
 751     /** Check that flag set does not contain elements of two conflicting sets. s
 752      *  Return true if it doesn't.
 753      *  @param pos           Position to be used for error reporting.
 754      *  @param flags         The set of flags to be checked.
 755      *  @param set1          Conflicting flags set #1.
 756      *  @param set2          Conflicting flags set #2.
 757      */
 758     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 759         if ((flags & set1) != 0 && (flags & set2) != 0) {
 760             log.error(pos,
 761                       "illegal.combination.of.modifiers",
 762                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
 763                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
 764             return false;
 765         } else
 766             return true;
 767     }
 768 
 769     /** Check that usage of diamond operator is correct (i.e. diamond should not
 770      * be used with non-generic classes or in anonymous class creation expressions)
 771      */
 772     Type checkDiamond(JCNewClass tree, Type t) {
 773         if (!TreeInfo.isDiamond(tree) ||
 774                 t.isErroneous()) {
 775             return checkClassType(tree.clazz.pos(), t, true);
 776         } else if (tree.def != null) {
 777             log.error(tree.clazz.pos(),
 778                     "cant.apply.diamond.1",
 779                     t, diags.fragment("diamond.and.anon.class", t));
 780             return types.createErrorType(t);
 781         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
 782             log.error(tree.clazz.pos(),
 783                 "cant.apply.diamond.1",
 784                 t, diags.fragment("diamond.non.generic", t));
 785             return types.createErrorType(t);
 786         } else if (tree.typeargs != null &&
 787                 tree.typeargs.nonEmpty()) {
 788             log.error(tree.clazz.pos(),
 789                 "cant.apply.diamond.1",
 790                 t, diags.fragment("diamond.and.explicit.params", t));
 791             return types.createErrorType(t);
 792         } else {
 793             return t;
 794         }
 795     }
 796 
 797     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
 798         MethodSymbol m = tree.sym;
 799         if (!allowSimplifiedVarargs) return;
 800         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
 801         Type varargElemType = null;
 802         if (m.isVarArgs()) {
 803             varargElemType = types.elemtype(tree.params.last().type);
 804         }
 805         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
 806             if (varargElemType != null) {
 807                 log.error(tree,
 808                         "varargs.invalid.trustme.anno",
 809                           syms.trustMeType.tsym,
 810                           allowPrivateSafeVarargs ?
 811                           diags.fragment("varargs.trustme.on.virtual.varargs", m) :
 812                           diags.fragment("varargs.trustme.on.virtual.varargs.final.only", m));
 813             } else {
 814                 log.error(tree,
 815                             "varargs.invalid.trustme.anno",
 816                             syms.trustMeType.tsym,
 817                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
 818             }
 819         } else if (hasTrustMeAnno && varargElemType != null &&
 820                             types.isReifiable(varargElemType)) {
 821             warnUnsafeVararg(tree,
 822                             "varargs.redundant.trustme.anno",
 823                             syms.trustMeType.tsym,
 824                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
 825         }
 826         else if (!hasTrustMeAnno && varargElemType != null &&
 827                 !types.isReifiable(varargElemType)) {
 828             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
 829         }
 830     }
 831     //where
 832         private boolean isTrustMeAllowedOnMethod(Symbol s) {
 833             return (s.flags() & VARARGS) != 0 &&
 834                 (s.isConstructor() ||
 835                     (s.flags() & (STATIC | FINAL |
 836                                   (allowPrivateSafeVarargs ? PRIVATE : 0) )) != 0);
 837         }
 838 
 839     Type checkMethod(final Type mtype,
 840             final Symbol sym,
 841             final Env<AttrContext> env,
 842             final List<JCExpression> argtrees,
 843             final List<Type> argtypes,
 844             final boolean useVarargs,
 845             InferenceContext inferenceContext) {
 846         // System.out.println("call   : " + env.tree);
 847         // System.out.println("method : " + owntype);
 848         // System.out.println("actuals: " + argtypes);
 849         if (inferenceContext.free(mtype)) {
 850             inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
 851                 public void typesInferred(InferenceContext inferenceContext) {
 852                     checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
 853                 }
 854             });
 855             return mtype;
 856         }
 857         Type owntype = mtype;
 858         List<Type> formals = owntype.getParameterTypes();
 859         List<Type> nonInferred = sym.type.getParameterTypes();
 860         if (nonInferred.length() != formals.length()) nonInferred = formals;
 861         Type last = useVarargs ? formals.last() : null;
 862         if (sym.name == names.init && sym.owner == syms.enumSym) {
 863             formals = formals.tail.tail;
 864             nonInferred = nonInferred.tail.tail;
 865         }
 866         List<JCExpression> args = argtrees;
 867         if (args != null) {
 868             //this is null when type-checking a method reference
 869             while (formals.head != last) {
 870                 JCTree arg = args.head;
 871                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
 872                 assertConvertible(arg, arg.type, formals.head, warn);
 873                 args = args.tail;
 874                 formals = formals.tail;
 875                 nonInferred = nonInferred.tail;
 876             }
 877             if (useVarargs) {
 878                 Type varArg = types.elemtype(last);
 879                 while (args.tail != null) {
 880                     JCTree arg = args.head;
 881                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
 882                     assertConvertible(arg, arg.type, varArg, warn);
 883                     args = args.tail;
 884                 }
 885             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
 886                 // non-varargs call to varargs method
 887                 Type varParam = owntype.getParameterTypes().last();
 888                 Type lastArg = argtypes.last();
 889                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
 890                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
 891                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
 892                                 types.elemtype(varParam), varParam);
 893             }
 894         }
 895         if (useVarargs) {
 896             Type argtype = owntype.getParameterTypes().last();
 897             if (!types.isReifiable(argtype) &&
 898                 (!allowSimplifiedVarargs ||
 899                  sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
 900                  !isTrustMeAllowedOnMethod(sym))) {
 901                 warnUnchecked(env.tree.pos(),
 902                                   "unchecked.generic.array.creation",
 903                                   argtype);
 904             }
 905             if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
 906                 TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
 907             }
 908          }
 909          PolyKind pkind = (sym.type.hasTag(FORALL) &&
 910                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
 911                  PolyKind.POLY : PolyKind.STANDALONE;
 912          TreeInfo.setPolyKind(env.tree, pkind);
 913          return owntype;
 914     }
 915     //where
 916     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
 917         if (types.isConvertible(actual, formal, warn))
 918             return;
 919 
 920         if (formal.isCompound()
 921             && types.isSubtype(actual, types.supertype(formal))
 922             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
 923             return;
 924     }
 925 
 926     /**
 927      * Check that type 't' is a valid instantiation of a generic class
 928      * (see JLS 4.5)
 929      *
 930      * @param t class type to be checked
 931      * @return true if 't' is well-formed
 932      */
 933     public boolean checkValidGenericType(Type t) {
 934         return firstIncompatibleTypeArg(t) == null;
 935     }
 936     //WHERE
 937         private Type firstIncompatibleTypeArg(Type type) {
 938             List<Type> formals = type.tsym.type.allparams();
 939             List<Type> actuals = type.allparams();
 940             List<Type> args = type.getTypeArguments();
 941             List<Type> forms = type.tsym.type.getTypeArguments();
 942             ListBuffer<Type> bounds_buf = new ListBuffer<>();
 943 
 944             // For matching pairs of actual argument types `a' and
 945             // formal type parameters with declared bound `b' ...
 946             while (args.nonEmpty() && forms.nonEmpty()) {
 947                 // exact type arguments needs to know their
 948                 // bounds (for upper and lower bound
 949                 // calculations).  So we create new bounds where
 950                 // type-parameters are replaced with actuals argument types.
 951                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
 952                 args = args.tail;
 953                 forms = forms.tail;
 954             }
 955 
 956             args = type.getTypeArguments();
 957             List<Type> tvars_cap = types.substBounds(formals,
 958                                       formals,
 959                                       types.capture(type).allparams());
 960             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
 961                 // Let the actual arguments know their bound
 962                 args.head.withTypeVar((TypeVar)tvars_cap.head);
 963                 args = args.tail;
 964                 tvars_cap = tvars_cap.tail;
 965             }
 966 
 967             args = type.getTypeArguments();
 968             List<Type> bounds = bounds_buf.toList();
 969 
 970             while (args.nonEmpty() && bounds.nonEmpty()) {
 971                 Type actual = args.head;
 972                 if (!isTypeArgErroneous(actual) &&
 973                         !bounds.head.isErroneous() &&
 974                         !checkExtends(actual, bounds.head)) {
 975                     return args.head;
 976                 }
 977                 args = args.tail;
 978                 bounds = bounds.tail;
 979             }
 980 
 981             args = type.getTypeArguments();
 982             bounds = bounds_buf.toList();
 983 
 984             for (Type arg : types.capture(type).getTypeArguments()) {
 985                 if (arg.hasTag(TYPEVAR) &&
 986                         arg.getUpperBound().isErroneous() &&
 987                         !bounds.head.isErroneous() &&
 988                         !isTypeArgErroneous(args.head)) {
 989                     return args.head;
 990                 }
 991                 bounds = bounds.tail;
 992                 args = args.tail;
 993             }
 994 
 995             return null;
 996         }
 997         //where
 998         boolean isTypeArgErroneous(Type t) {
 999             return isTypeArgErroneous.visit(t);
1000         }
1001 
1002         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1003             public Boolean visitType(Type t, Void s) {
1004                 return t.isErroneous();
1005             }
1006             @Override
1007             public Boolean visitTypeVar(TypeVar t, Void s) {
1008                 return visit(t.getUpperBound());
1009             }
1010             @Override
1011             public Boolean visitCapturedType(CapturedType t, Void s) {
1012                 return visit(t.getUpperBound()) ||
1013                         visit(t.getLowerBound());
1014             }
1015             @Override
1016             public Boolean visitWildcardType(WildcardType t, Void s) {
1017                 return visit(t.type);
1018             }
1019         };
1020 
1021     /** Check that given modifiers are legal for given symbol and
1022      *  return modifiers together with any implicit modifiers for that symbol.
1023      *  Warning: we can't use flags() here since this method
1024      *  is called during class enter, when flags() would cause a premature
1025      *  completion.
1026      *  @param pos           Position to be used for error reporting.
1027      *  @param flags         The set of modifiers given in a definition.
1028      *  @param sym           The defined symbol.
1029      */
1030     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1031         long mask;
1032         long implicit = 0;
1033 
1034         switch (sym.kind) {
1035         case VAR:
1036             if (TreeInfo.isReceiverParam(tree))
1037                 mask = ReceiverParamFlags;
1038             else if (sym.owner.kind != TYP)
1039                 mask = LocalVarFlags;
1040             else if ((sym.owner.flags_field & INTERFACE) != 0)
1041                 mask = implicit = InterfaceVarFlags;
1042             else
1043                 mask = VarFlags;
1044             break;
1045         case MTH:
1046             if (sym.name == names.init) {
1047                 if ((sym.owner.flags_field & ENUM) != 0) {
1048                     // enum constructors cannot be declared public or
1049                     // protected and must be implicitly or explicitly
1050                     // private
1051                     implicit = PRIVATE;
1052                     mask = PRIVATE;
1053                 } else
1054                     mask = ConstructorFlags;
1055             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1056                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1057                     mask = AnnotationTypeElementMask;
1058                     implicit = PUBLIC | ABSTRACT;
1059                 } else if ((flags & (DEFAULT | STATIC)) != 0) {
1060                     mask = InterfaceMethodMask;
1061                     implicit = PUBLIC;
1062                     if ((flags & DEFAULT) != 0) {
1063                         implicit |= ABSTRACT;
1064                     }
1065                 } else {
1066                     mask = implicit = InterfaceMethodFlags;
1067                 }
1068             } else {
1069                 mask = MethodFlags;
1070             }
1071             // Imply STRICTFP if owner has STRICTFP set.
1072             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1073                 ((flags) & Flags.DEFAULT) != 0)
1074                 implicit |= sym.owner.flags_field & STRICTFP;
1075             break;
1076         case TYP:
1077             if (sym.isLocal()) {
1078                 mask = LocalClassFlags;
1079                 if (sym.name.isEmpty()) { // Anonymous class
1080                     // JLS: Anonymous classes are final.
1081                     implicit |= FINAL;
1082                 }
1083                 if ((sym.owner.flags_field & STATIC) == 0 &&
1084                     (flags & ENUM) != 0)
1085                     log.error(pos, "enums.must.be.static");
1086             } else if (sym.owner.kind == TYP) {
1087                 mask = MemberClassFlags;
1088                 if (sym.owner.owner.kind == PCK ||
1089                     (sym.owner.flags_field & STATIC) != 0)
1090                     mask |= STATIC;
1091                 else if ((flags & ENUM) != 0)
1092                     log.error(pos, "enums.must.be.static");
1093                 // Nested interfaces and enums are always STATIC (Spec ???)
1094                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1095             } else {
1096                 mask = ClassFlags;
1097             }
1098             // Interfaces are always ABSTRACT
1099             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1100 
1101             if ((flags & ENUM) != 0) {
1102                 // enums can't be declared abstract or final
1103                 mask &= ~(ABSTRACT | FINAL);
1104                 implicit |= implicitEnumFinalFlag(tree);
1105             }
1106             // Imply STRICTFP if owner has STRICTFP set.
1107             implicit |= sym.owner.flags_field & STRICTFP;
1108             break;
1109         default:
1110             throw new AssertionError();
1111         }
1112         long illegal = flags & ExtendedStandardFlags & ~mask;
1113         if (illegal != 0) {
1114             if ((illegal & INTERFACE) != 0) {
1115                 log.error(pos, "intf.not.allowed.here");
1116                 mask |= INTERFACE;
1117             }
1118             else {
1119                 log.error(pos,
1120                           "mod.not.allowed.here", asFlagSet(illegal));
1121             }
1122         }
1123         else if ((sym.kind == TYP ||
1124                   // ISSUE: Disallowing abstract&private is no longer appropriate
1125                   // in the presence of inner classes. Should it be deleted here?
1126                   checkDisjoint(pos, flags,
1127                                 ABSTRACT,
1128                                 PRIVATE | STATIC | DEFAULT))
1129                  &&
1130                  checkDisjoint(pos, flags,
1131                                 STATIC,
1132                                 DEFAULT)
1133                  &&
1134                  checkDisjoint(pos, flags,
1135                                ABSTRACT | INTERFACE,
1136                                FINAL | NATIVE | SYNCHRONIZED)
1137                  &&
1138                  checkDisjoint(pos, flags,
1139                                PUBLIC,
1140                                PRIVATE | PROTECTED)
1141                  &&
1142                  checkDisjoint(pos, flags,
1143                                PRIVATE,
1144                                PUBLIC | PROTECTED)
1145                  &&
1146                  checkDisjoint(pos, flags,
1147                                FINAL,
1148                                VOLATILE)
1149                  &&
1150                  (sym.kind == TYP ||
1151                   checkDisjoint(pos, flags,
1152                                 ABSTRACT | NATIVE,
1153                                 STRICTFP))) {
1154             // skip
1155         }
1156         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1157     }
1158 
1159 
1160     /** Determine if this enum should be implicitly final.
1161      *
1162      *  If the enum has no specialized enum contants, it is final.
1163      *
1164      *  If the enum does have specialized enum contants, it is
1165      *  <i>not</i> final.
1166      */
1167     private long implicitEnumFinalFlag(JCTree tree) {
1168         if (!tree.hasTag(CLASSDEF)) return 0;
1169         class SpecialTreeVisitor extends JCTree.Visitor {
1170             boolean specialized;
1171             SpecialTreeVisitor() {
1172                 this.specialized = false;
1173             }
1174 
1175             @Override
1176             public void visitTree(JCTree tree) { /* no-op */ }
1177 
1178             @Override
1179             public void visitVarDef(JCVariableDecl tree) {
1180                 if ((tree.mods.flags & ENUM) != 0) {
1181                     if (tree.init instanceof JCNewClass &&
1182                         ((JCNewClass) tree.init).def != null) {
1183                         specialized = true;
1184                     }
1185                 }
1186             }
1187         }
1188 
1189         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1190         JCClassDecl cdef = (JCClassDecl) tree;
1191         for (JCTree defs: cdef.defs) {
1192             defs.accept(sts);
1193             if (sts.specialized) return 0;
1194         }
1195         return FINAL;
1196     }
1197 
1198 /* *************************************************************************
1199  * Type Validation
1200  **************************************************************************/
1201 
1202     /** Validate a type expression. That is,
1203      *  check that all type arguments of a parametric type are within
1204      *  their bounds. This must be done in a second phase after type attribution
1205      *  since a class might have a subclass as type parameter bound. E.g:
1206      *
1207      *  <pre>{@code
1208      *  class B<A extends C> { ... }
1209      *  class C extends B<C> { ... }
1210      *  }</pre>
1211      *
1212      *  and we can't make sure that the bound is already attributed because
1213      *  of possible cycles.
1214      *
1215      * Visitor method: Validate a type expression, if it is not null, catching
1216      *  and reporting any completion failures.
1217      */
1218     void validate(JCTree tree, Env<AttrContext> env) {
1219         validate(tree, env, true);
1220     }
1221     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1222         new Validator(env).validateTree(tree, checkRaw, true);
1223     }
1224 
1225     /** Visitor method: Validate a list of type expressions.
1226      */
1227     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1228         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1229             validate(l.head, env);
1230     }
1231 
1232     /** A visitor class for type validation.
1233      */
1234     class Validator extends JCTree.Visitor {
1235 
1236         boolean checkRaw;
1237         boolean isOuter;
1238         Env<AttrContext> env;
1239 
1240         Validator(Env<AttrContext> env) {
1241             this.env = env;
1242         }
1243 
1244         @Override
1245         public void visitTypeArray(JCArrayTypeTree tree) {
1246             validateTree(tree.elemtype, checkRaw, isOuter);
1247         }
1248 
1249         @Override
1250         public void visitTypeApply(JCTypeApply tree) {
1251             if (tree.type.hasTag(CLASS)) {
1252                 List<JCExpression> args = tree.arguments;
1253                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1254 
1255                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1256                 if (incompatibleArg != null) {
1257                     for (JCTree arg : tree.arguments) {
1258                         if (arg.type == incompatibleArg) {
1259                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1260                         }
1261                         forms = forms.tail;
1262                      }
1263                  }
1264 
1265                 forms = tree.type.tsym.type.getTypeArguments();
1266 
1267                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1268 
1269                 // For matching pairs of actual argument types `a' and
1270                 // formal type parameters with declared bound `b' ...
1271                 while (args.nonEmpty() && forms.nonEmpty()) {
1272                     validateTree(args.head,
1273                             !(isOuter && is_java_lang_Class),
1274                             false);
1275                     args = args.tail;
1276                     forms = forms.tail;
1277                 }
1278 
1279                 // Check that this type is either fully parameterized, or
1280                 // not parameterized at all.
1281                 if (tree.type.getEnclosingType().isRaw())
1282                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1283                 if (tree.clazz.hasTag(SELECT))
1284                     visitSelectInternal((JCFieldAccess)tree.clazz);
1285             }
1286         }
1287 
1288         @Override
1289         public void visitTypeParameter(JCTypeParameter tree) {
1290             validateTrees(tree.bounds, true, isOuter);
1291             checkClassBounds(tree.pos(), tree.type);
1292         }
1293 
1294         @Override
1295         public void visitWildcard(JCWildcard tree) {
1296             if (tree.inner != null)
1297                 validateTree(tree.inner, true, isOuter);
1298         }
1299 
1300         @Override
1301         public void visitSelect(JCFieldAccess tree) {
1302             if (tree.type.hasTag(CLASS)) {
1303                 visitSelectInternal(tree);
1304 
1305                 // Check that this type is either fully parameterized, or
1306                 // not parameterized at all.
1307                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1308                     log.error(tree.pos(), "improperly.formed.type.param.missing");
1309             }
1310         }
1311 
1312         public void visitSelectInternal(JCFieldAccess tree) {
1313             if (tree.type.tsym.isStatic() &&
1314                 tree.selected.type.isParameterized()) {
1315                 // The enclosing type is not a class, so we are
1316                 // looking at a static member type.  However, the
1317                 // qualifying expression is parameterized.
1318                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
1319             } else {
1320                 // otherwise validate the rest of the expression
1321                 tree.selected.accept(this);
1322             }
1323         }
1324 
1325         @Override
1326         public void visitAnnotatedType(JCAnnotatedType tree) {
1327             tree.underlyingType.accept(this);
1328         }
1329 
1330         @Override
1331         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1332             if (that.type.hasTag(TypeTag.VOID)) {
1333                 log.error(that.pos(), "void.not.allowed.here");
1334             }
1335             super.visitTypeIdent(that);
1336         }
1337 
1338         /** Default visitor method: do nothing.
1339          */
1340         @Override
1341         public void visitTree(JCTree tree) {
1342         }
1343 
1344         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1345             if (tree != null) {
1346                 boolean prevCheckRaw = this.checkRaw;
1347                 this.checkRaw = checkRaw;
1348                 this.isOuter = isOuter;
1349 
1350                 try {
1351                     tree.accept(this);
1352                     if (checkRaw)
1353                         checkRaw(tree, env);
1354                 } catch (CompletionFailure ex) {
1355                     completionError(tree.pos(), ex);
1356                 } finally {
1357                     this.checkRaw = prevCheckRaw;
1358                 }
1359             }
1360         }
1361 
1362         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1363             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1364                 validateTree(l.head, checkRaw, isOuter);
1365         }
1366     }
1367 
1368     void checkRaw(JCTree tree, Env<AttrContext> env) {
1369         if (lint.isEnabled(LintCategory.RAW) &&
1370             tree.type.hasTag(CLASS) &&
1371             !TreeInfo.isDiamond(tree) &&
1372             !withinAnonConstr(env) &&
1373             tree.type.isRaw()) {
1374             log.warning(LintCategory.RAW,
1375                     tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1376         }
1377     }
1378     //where
1379         private boolean withinAnonConstr(Env<AttrContext> env) {
1380             return env.enclClass.name.isEmpty() &&
1381                     env.enclMethod != null && env.enclMethod.name == names.init;
1382         }
1383 
1384 /* *************************************************************************
1385  * Exception checking
1386  **************************************************************************/
1387 
1388     /* The following methods treat classes as sets that contain
1389      * the class itself and all their subclasses
1390      */
1391 
1392     /** Is given type a subtype of some of the types in given list?
1393      */
1394     boolean subset(Type t, List<Type> ts) {
1395         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1396             if (types.isSubtype(t, l.head)) return true;
1397         return false;
1398     }
1399 
1400     /** Is given type a subtype or supertype of
1401      *  some of the types in given list?
1402      */
1403     boolean intersects(Type t, List<Type> ts) {
1404         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1405             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1406         return false;
1407     }
1408 
1409     /** Add type set to given type list, unless it is a subclass of some class
1410      *  in the list.
1411      */
1412     List<Type> incl(Type t, List<Type> ts) {
1413         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1414     }
1415 
1416     /** Remove type set from type set list.
1417      */
1418     List<Type> excl(Type t, List<Type> ts) {
1419         if (ts.isEmpty()) {
1420             return ts;
1421         } else {
1422             List<Type> ts1 = excl(t, ts.tail);
1423             if (types.isSubtype(ts.head, t)) return ts1;
1424             else if (ts1 == ts.tail) return ts;
1425             else return ts1.prepend(ts.head);
1426         }
1427     }
1428 
1429     /** Form the union of two type set lists.
1430      */
1431     List<Type> union(List<Type> ts1, List<Type> ts2) {
1432         List<Type> ts = ts1;
1433         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1434             ts = incl(l.head, ts);
1435         return ts;
1436     }
1437 
1438     /** Form the difference of two type lists.
1439      */
1440     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1441         List<Type> ts = ts1;
1442         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1443             ts = excl(l.head, ts);
1444         return ts;
1445     }
1446 
1447     /** Form the intersection of two type lists.
1448      */
1449     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1450         List<Type> ts = List.nil();
1451         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1452             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1453         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1454             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1455         return ts;
1456     }
1457 
1458     /** Is exc an exception symbol that need not be declared?
1459      */
1460     boolean isUnchecked(ClassSymbol exc) {
1461         return
1462             exc.kind == ERR ||
1463             exc.isSubClass(syms.errorType.tsym, types) ||
1464             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1465     }
1466 
1467     /** Is exc an exception type that need not be declared?
1468      */
1469     boolean isUnchecked(Type exc) {
1470         return
1471             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1472             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1473             exc.hasTag(BOT);
1474     }
1475 
1476     /** Same, but handling completion failures.
1477      */
1478     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1479         try {
1480             return isUnchecked(exc);
1481         } catch (CompletionFailure ex) {
1482             completionError(pos, ex);
1483             return true;
1484         }
1485     }
1486 
1487     /** Is exc handled by given exception list?
1488      */
1489     boolean isHandled(Type exc, List<Type> handled) {
1490         return isUnchecked(exc) || subset(exc, handled);
1491     }
1492 
1493     /** Return all exceptions in thrown list that are not in handled list.
1494      *  @param thrown     The list of thrown exceptions.
1495      *  @param handled    The list of handled exceptions.
1496      */
1497     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1498         List<Type> unhandled = List.nil();
1499         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1500             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1501         return unhandled;
1502     }
1503 
1504 /* *************************************************************************
1505  * Overriding/Implementation checking
1506  **************************************************************************/
1507 
1508     /** The level of access protection given by a flag set,
1509      *  where PRIVATE is highest and PUBLIC is lowest.
1510      */
1511     static int protection(long flags) {
1512         switch ((short)(flags & AccessFlags)) {
1513         case PRIVATE: return 3;
1514         case PROTECTED: return 1;
1515         default:
1516         case PUBLIC: return 0;
1517         case 0: return 2;
1518         }
1519     }
1520 
1521     /** A customized "cannot override" error message.
1522      *  @param m      The overriding method.
1523      *  @param other  The overridden method.
1524      *  @return       An internationalized string.
1525      */
1526     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1527         String key;
1528         if ((other.owner.flags() & INTERFACE) == 0)
1529             key = "cant.override";
1530         else if ((m.owner.flags() & INTERFACE) == 0)
1531             key = "cant.implement";
1532         else
1533             key = "clashes.with";
1534         return diags.fragment(key, m, m.location(), other, other.location());
1535     }
1536 
1537     /** A customized "override" warning message.
1538      *  @param m      The overriding method.
1539      *  @param other  The overridden method.
1540      *  @return       An internationalized string.
1541      */
1542     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1543         String key;
1544         if ((other.owner.flags() & INTERFACE) == 0)
1545             key = "unchecked.override";
1546         else if ((m.owner.flags() & INTERFACE) == 0)
1547             key = "unchecked.implement";
1548         else
1549             key = "unchecked.clash.with";
1550         return diags.fragment(key, m, m.location(), other, other.location());
1551     }
1552 
1553     /** A customized "override" warning message.
1554      *  @param m      The overriding method.
1555      *  @param other  The overridden method.
1556      *  @return       An internationalized string.
1557      */
1558     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1559         String key;
1560         if ((other.owner.flags() & INTERFACE) == 0)
1561             key = "varargs.override";
1562         else  if ((m.owner.flags() & INTERFACE) == 0)
1563             key = "varargs.implement";
1564         else
1565             key = "varargs.clash.with";
1566         return diags.fragment(key, m, m.location(), other, other.location());
1567     }
1568 
1569     /** Check that this method conforms with overridden method 'other'.
1570      *  where `origin' is the class where checking started.
1571      *  Complications:
1572      *  (1) Do not check overriding of synthetic methods
1573      *      (reason: they might be final).
1574      *      todo: check whether this is still necessary.
1575      *  (2) Admit the case where an interface proxy throws fewer exceptions
1576      *      than the method it implements. Augment the proxy methods with the
1577      *      undeclared exceptions in this case.
1578      *  (3) When generics are enabled, admit the case where an interface proxy
1579      *      has a result type
1580      *      extended by the result type of the method it implements.
1581      *      Change the proxies result type to the smaller type in this case.
1582      *
1583      *  @param tree         The tree from which positions
1584      *                      are extracted for errors.
1585      *  @param m            The overriding method.
1586      *  @param other        The overridden method.
1587      *  @param origin       The class of which the overriding method
1588      *                      is a member.
1589      */
1590     void checkOverride(JCTree tree,
1591                        MethodSymbol m,
1592                        MethodSymbol other,
1593                        ClassSymbol origin) {
1594         // Don't check overriding of synthetic methods or by bridge methods.
1595         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1596             return;
1597         }
1598 
1599         // Error if static method overrides instance method (JLS 8.4.6.2).
1600         if ((m.flags() & STATIC) != 0 &&
1601                    (other.flags() & STATIC) == 0) {
1602             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1603                       cannotOverride(m, other));
1604             m.flags_field |= BAD_OVERRIDE;
1605             return;
1606         }
1607 
1608         // Error if instance method overrides static or final
1609         // method (JLS 8.4.6.1).
1610         if ((other.flags() & FINAL) != 0 ||
1611                  (m.flags() & STATIC) == 0 &&
1612                  (other.flags() & STATIC) != 0) {
1613             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1614                       cannotOverride(m, other),
1615                       asFlagSet(other.flags() & (FINAL | STATIC)));
1616             m.flags_field |= BAD_OVERRIDE;
1617             return;
1618         }
1619 
1620         if ((m.owner.flags() & ANNOTATION) != 0) {
1621             // handled in validateAnnotationMethod
1622             return;
1623         }
1624 
1625         // Error if overriding method has weaker access (JLS 8.4.6.3).
1626         if ((origin.flags() & INTERFACE) == 0 &&
1627                  protection(m.flags()) > protection(other.flags())) {
1628             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1629                       cannotOverride(m, other),
1630                       (other.flags() & AccessFlags) == 0 ?
1631                           "package" :
1632                           asFlagSet(other.flags() & AccessFlags));
1633             m.flags_field |= BAD_OVERRIDE;
1634             return;
1635         }
1636 
1637         Type mt = types.memberType(origin.type, m);
1638         Type ot = types.memberType(origin.type, other);
1639         // Error if overriding result type is different
1640         // (or, in the case of generics mode, not a subtype) of
1641         // overridden result type. We have to rename any type parameters
1642         // before comparing types.
1643         List<Type> mtvars = mt.getTypeArguments();
1644         List<Type> otvars = ot.getTypeArguments();
1645         Type mtres = mt.getReturnType();
1646         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1647 
1648         overrideWarner.clear();
1649         boolean resultTypesOK =
1650             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1651         if (!resultTypesOK) {
1652             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1653                       "override.incompatible.ret",
1654                       cannotOverride(m, other),
1655                       mtres, otres);
1656             m.flags_field |= BAD_OVERRIDE;
1657             return;
1658         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1659             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1660                     "override.unchecked.ret",
1661                     uncheckedOverrides(m, other),
1662                     mtres, otres);
1663         }
1664 
1665         // Error if overriding method throws an exception not reported
1666         // by overridden method.
1667         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1668         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1669         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1670         if (unhandledErased.nonEmpty()) {
1671             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1672                       "override.meth.doesnt.throw",
1673                       cannotOverride(m, other),
1674                       unhandledUnerased.head);
1675             m.flags_field |= BAD_OVERRIDE;
1676             return;
1677         }
1678         else if (unhandledUnerased.nonEmpty()) {
1679             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1680                           "override.unchecked.thrown",
1681                          cannotOverride(m, other),
1682                          unhandledUnerased.head);
1683             return;
1684         }
1685 
1686         // Optional warning if varargs don't agree
1687         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1688             && lint.isEnabled(LintCategory.OVERRIDES)) {
1689             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1690                         ((m.flags() & Flags.VARARGS) != 0)
1691                         ? "override.varargs.missing"
1692                         : "override.varargs.extra",
1693                         varargsOverrides(m, other));
1694         }
1695 
1696         // Warn if instance method overrides bridge method (compiler spec ??)
1697         if ((other.flags() & BRIDGE) != 0) {
1698             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1699                         uncheckedOverrides(m, other));
1700         }
1701 
1702         // Warn if a deprecated method overridden by a non-deprecated one.
1703         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1704             Lint prevLint = setLint(lint.augment(m));
1705             try {
1706                 checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1707             } finally {
1708                 setLint(prevLint);
1709             }
1710         }
1711     }
1712     // where
1713         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1714             // If the method, m, is defined in an interface, then ignore the issue if the method
1715             // is only inherited via a supertype and also implemented in the supertype,
1716             // because in that case, we will rediscover the issue when examining the method
1717             // in the supertype.
1718             // If the method, m, is not defined in an interface, then the only time we need to
1719             // address the issue is when the method is the supertype implemementation: any other
1720             // case, we will have dealt with when examining the supertype classes
1721             ClassSymbol mc = m.enclClass();
1722             Type st = types.supertype(origin.type);
1723             if (!st.hasTag(CLASS))
1724                 return true;
1725             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1726 
1727             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1728                 List<Type> intfs = types.interfaces(origin.type);
1729                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1730             }
1731             else
1732                 return (stimpl != m);
1733         }
1734 
1735 
1736     // used to check if there were any unchecked conversions
1737     Warner overrideWarner = new Warner();
1738 
1739     /** Check that a class does not inherit two concrete methods
1740      *  with the same signature.
1741      *  @param pos          Position to be used for error reporting.
1742      *  @param site         The class type to be checked.
1743      */
1744     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1745         Type sup = types.supertype(site);
1746         if (!sup.hasTag(CLASS)) return;
1747 
1748         for (Type t1 = sup;
1749              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1750              t1 = types.supertype(t1)) {
1751             for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1752                 if (s1.kind != MTH ||
1753                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1754                     !s1.isInheritedIn(site.tsym, types) ||
1755                     ((MethodSymbol)s1).implementation(site.tsym,
1756                                                       types,
1757                                                       true) != s1)
1758                     continue;
1759                 Type st1 = types.memberType(t1, s1);
1760                 int s1ArgsLength = st1.getParameterTypes().length();
1761                 if (st1 == s1.type) continue;
1762 
1763                 for (Type t2 = sup;
1764                      t2.hasTag(CLASS);
1765                      t2 = types.supertype(t2)) {
1766                     for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1767                         if (s2 == s1 ||
1768                             s2.kind != MTH ||
1769                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1770                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1771                             !s2.isInheritedIn(site.tsym, types) ||
1772                             ((MethodSymbol)s2).implementation(site.tsym,
1773                                                               types,
1774                                                               true) != s2)
1775                             continue;
1776                         Type st2 = types.memberType(t2, s2);
1777                         if (types.overrideEquivalent(st1, st2))
1778                             log.error(pos, "concrete.inheritance.conflict",
1779                                       s1, t1, s2, t2, sup);
1780                     }
1781                 }
1782             }
1783         }
1784     }
1785 
1786     /** Check that classes (or interfaces) do not each define an abstract
1787      *  method with same name and arguments but incompatible return types.
1788      *  @param pos          Position to be used for error reporting.
1789      *  @param t1           The first argument type.
1790      *  @param t2           The second argument type.
1791      */
1792     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1793                                             Type t1,
1794                                             Type t2,
1795                                             Type site) {
1796         if ((site.tsym.flags() & COMPOUND) != 0) {
1797             // special case for intersections: need to eliminate wildcards in supertypes
1798             t1 = types.capture(t1);
1799             t2 = types.capture(t2);
1800         }
1801         return firstIncompatibility(pos, t1, t2, site) == null;
1802     }
1803 
1804     /** Return the first method which is defined with same args
1805      *  but different return types in two given interfaces, or null if none
1806      *  exists.
1807      *  @param t1     The first type.
1808      *  @param t2     The second type.
1809      *  @param site   The most derived type.
1810      *  @returns symbol from t2 that conflicts with one in t1.
1811      */
1812     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1813         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1814         closure(t1, interfaces1);
1815         Map<TypeSymbol,Type> interfaces2;
1816         if (t1 == t2)
1817             interfaces2 = interfaces1;
1818         else
1819             closure(t2, interfaces1, interfaces2 = new HashMap<>());
1820 
1821         for (Type t3 : interfaces1.values()) {
1822             for (Type t4 : interfaces2.values()) {
1823                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1824                 if (s != null) return s;
1825             }
1826         }
1827         return null;
1828     }
1829 
1830     /** Compute all the supertypes of t, indexed by type symbol. */
1831     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1832         if (!t.hasTag(CLASS)) return;
1833         if (typeMap.put(t.tsym, t) == null) {
1834             closure(types.supertype(t), typeMap);
1835             for (Type i : types.interfaces(t))
1836                 closure(i, typeMap);
1837         }
1838     }
1839 
1840     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1841     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1842         if (!t.hasTag(CLASS)) return;
1843         if (typesSkip.get(t.tsym) != null) return;
1844         if (typeMap.put(t.tsym, t) == null) {
1845             closure(types.supertype(t), typesSkip, typeMap);
1846             for (Type i : types.interfaces(t))
1847                 closure(i, typesSkip, typeMap);
1848         }
1849     }
1850 
1851     /** Return the first method in t2 that conflicts with a method from t1. */
1852     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1853         for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1854             Type st1 = null;
1855             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1856                     (s1.flags() & SYNTHETIC) != 0) continue;
1857             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1858             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1859             for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1860                 if (s1 == s2) continue;
1861                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1862                         (s2.flags() & SYNTHETIC) != 0) continue;
1863                 if (st1 == null) st1 = types.memberType(t1, s1);
1864                 Type st2 = types.memberType(t2, s2);
1865                 if (types.overrideEquivalent(st1, st2)) {
1866                     List<Type> tvars1 = st1.getTypeArguments();
1867                     List<Type> tvars2 = st2.getTypeArguments();
1868                     Type rt1 = st1.getReturnType();
1869                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1870                     boolean compat =
1871                         types.isSameType(rt1, rt2) ||
1872                         !rt1.isPrimitiveOrVoid() &&
1873                         !rt2.isPrimitiveOrVoid() &&
1874                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1875                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1876                          checkCommonOverriderIn(s1,s2,site);
1877                     if (!compat) {
1878                         log.error(pos, "types.incompatible.diff.ret",
1879                             t1, t2, s2.name +
1880                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1881                         return s2;
1882                     }
1883                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1884                         !checkCommonOverriderIn(s1, s2, site)) {
1885                     log.error(pos,
1886                             "name.clash.same.erasure.no.override",
1887                             s1, s1.location(),
1888                             s2, s2.location());
1889                     return s2;
1890                 }
1891             }
1892         }
1893         return null;
1894     }
1895     //WHERE
1896     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1897         Map<TypeSymbol,Type> supertypes = new HashMap<>();
1898         Type st1 = types.memberType(site, s1);
1899         Type st2 = types.memberType(site, s2);
1900         closure(site, supertypes);
1901         for (Type t : supertypes.values()) {
1902             for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
1903                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1904                 Type st3 = types.memberType(site,s3);
1905                 if (types.overrideEquivalent(st3, st1) &&
1906                         types.overrideEquivalent(st3, st2) &&
1907                         types.returnTypeSubstitutable(st3, st1) &&
1908                         types.returnTypeSubstitutable(st3, st2)) {
1909                     return true;
1910                 }
1911             }
1912         }
1913         return false;
1914     }
1915 
1916     /** Check that a given method conforms with any method it overrides.
1917      *  @param tree         The tree from which positions are extracted
1918      *                      for errors.
1919      *  @param m            The overriding method.
1920      */
1921     void checkOverride(JCMethodDecl tree, MethodSymbol m) {
1922         ClassSymbol origin = (ClassSymbol)m.owner;
1923         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1924             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1925                 log.error(tree.pos(), "enum.no.finalize");
1926                 return;
1927             }
1928         for (Type t = origin.type; t.hasTag(CLASS);
1929              t = types.supertype(t)) {
1930             if (t != origin.type) {
1931                 checkOverride(tree, t, origin, m);
1932             }
1933             for (Type t2 : types.interfaces(t)) {
1934                 checkOverride(tree, t2, origin, m);
1935             }
1936         }
1937 
1938         if (m.attribute(syms.overrideType.tsym) != null && !isOverrider(m)) {
1939             DiagnosticPosition pos = tree.pos();
1940             for (JCAnnotation a : tree.getModifiers().annotations) {
1941                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
1942                     pos = a.pos();
1943                     break;
1944                 }
1945             }
1946             log.error(pos, "method.does.not.override.superclass");
1947         }
1948     }
1949 
1950     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
1951         TypeSymbol c = site.tsym;
1952         for (Symbol sym : c.members().getSymbolsByName(m.name)) {
1953             if (m.overrides(sym, origin, types, false)) {
1954                 if ((sym.flags() & ABSTRACT) == 0) {
1955                     checkOverride(tree, m, (MethodSymbol)sym, origin);
1956                 }
1957             }
1958         }
1959     }
1960 
1961     private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
1962         public boolean accepts(Symbol s) {
1963             return MethodSymbol.implementation_filter.accepts(s) &&
1964                     (s.flags() & BAD_OVERRIDE) == 0;
1965 
1966         }
1967     };
1968 
1969     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
1970             ClassSymbol someClass) {
1971         /* At present, annotations cannot possibly have a method that is override
1972          * equivalent with Object.equals(Object) but in any case the condition is
1973          * fine for completeness.
1974          */
1975         if (someClass == (ClassSymbol)syms.objectType.tsym ||
1976             someClass.isInterface() || someClass.isEnum() ||
1977             (someClass.flags() & ANNOTATION) != 0 ||
1978             (someClass.flags() & ABSTRACT) != 0) return;
1979         //anonymous inner classes implementing interfaces need especial treatment
1980         if (someClass.isAnonymous()) {
1981             List<Type> interfaces =  types.interfaces(someClass.type);
1982             if (interfaces != null && !interfaces.isEmpty() &&
1983                 interfaces.head.tsym == syms.comparatorType.tsym) return;
1984         }
1985         checkClassOverrideEqualsAndHash(pos, someClass);
1986     }
1987 
1988     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
1989             ClassSymbol someClass) {
1990         if (lint.isEnabled(LintCategory.OVERRIDES)) {
1991             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
1992                     .tsym.members().findFirst(names.equals);
1993             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
1994                     .tsym.members().findFirst(names.hashCode);
1995             boolean overridesEquals = types.implementation(equalsAtObject,
1996                 someClass, false, equalsHasCodeFilter).owner == someClass;
1997             boolean overridesHashCode = types.implementation(hashCodeAtObject,
1998                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
1999 
2000             if (overridesEquals && !overridesHashCode) {
2001                 log.warning(LintCategory.OVERRIDES, pos,
2002                         "override.equals.but.not.hashcode", someClass);
2003             }
2004         }
2005     }
2006 
2007     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2008         ClashFilter cf = new ClashFilter(origin.type);
2009         return (cf.accepts(s1) &&
2010                 cf.accepts(s2) &&
2011                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2012     }
2013 
2014 
2015     /** Check that all abstract members of given class have definitions.
2016      *  @param pos          Position to be used for error reporting.
2017      *  @param c            The class.
2018      */
2019     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2020         MethodSymbol undef = types.firstUnimplementedAbstract(c);
2021         if (undef != null) {
2022             MethodSymbol undef1 =
2023                 new MethodSymbol(undef.flags(), undef.name,
2024                                  types.memberType(c.type, undef), undef.owner);
2025             log.error(pos, "does.not.override.abstract",
2026                       c, undef1, undef1.location());
2027         }
2028     }
2029 
2030     void checkNonCyclicDecl(JCClassDecl tree) {
2031         CycleChecker cc = new CycleChecker();
2032         cc.scan(tree);
2033         if (!cc.errorFound && !cc.partialCheck) {
2034             tree.sym.flags_field |= ACYCLIC;
2035         }
2036     }
2037 
2038     class CycleChecker extends TreeScanner {
2039 
2040         List<Symbol> seenClasses = List.nil();
2041         boolean errorFound = false;
2042         boolean partialCheck = false;
2043 
2044         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2045             if (sym != null && sym.kind == TYP) {
2046                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2047                 if (classEnv != null) {
2048                     DiagnosticSource prevSource = log.currentSource();
2049                     try {
2050                         log.useSource(classEnv.toplevel.sourcefile);
2051                         scan(classEnv.tree);
2052                     }
2053                     finally {
2054                         log.useSource(prevSource.getFile());
2055                     }
2056                 } else if (sym.kind == TYP) {
2057                     checkClass(pos, sym, List.<JCTree>nil());
2058                 }
2059             } else {
2060                 //not completed yet
2061                 partialCheck = true;
2062             }
2063         }
2064 
2065         @Override
2066         public void visitSelect(JCFieldAccess tree) {
2067             super.visitSelect(tree);
2068             checkSymbol(tree.pos(), tree.sym);
2069         }
2070 
2071         @Override
2072         public void visitIdent(JCIdent tree) {
2073             checkSymbol(tree.pos(), tree.sym);
2074         }
2075 
2076         @Override
2077         public void visitTypeApply(JCTypeApply tree) {
2078             scan(tree.clazz);
2079         }
2080 
2081         @Override
2082         public void visitTypeArray(JCArrayTypeTree tree) {
2083             scan(tree.elemtype);
2084         }
2085 
2086         @Override
2087         public void visitClassDef(JCClassDecl tree) {
2088             List<JCTree> supertypes = List.nil();
2089             if (tree.getExtendsClause() != null) {
2090                 supertypes = supertypes.prepend(tree.getExtendsClause());
2091             }
2092             if (tree.getImplementsClause() != null) {
2093                 for (JCTree intf : tree.getImplementsClause()) {
2094                     supertypes = supertypes.prepend(intf);
2095                 }
2096             }
2097             checkClass(tree.pos(), tree.sym, supertypes);
2098         }
2099 
2100         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2101             if ((c.flags_field & ACYCLIC) != 0)
2102                 return;
2103             if (seenClasses.contains(c)) {
2104                 errorFound = true;
2105                 noteCyclic(pos, (ClassSymbol)c);
2106             } else if (!c.type.isErroneous()) {
2107                 try {
2108                     seenClasses = seenClasses.prepend(c);
2109                     if (c.type.hasTag(CLASS)) {
2110                         if (supertypes.nonEmpty()) {
2111                             scan(supertypes);
2112                         }
2113                         else {
2114                             ClassType ct = (ClassType)c.type;
2115                             if (ct.supertype_field == null ||
2116                                     ct.interfaces_field == null) {
2117                                 //not completed yet
2118                                 partialCheck = true;
2119                                 return;
2120                             }
2121                             checkSymbol(pos, ct.supertype_field.tsym);
2122                             for (Type intf : ct.interfaces_field) {
2123                                 checkSymbol(pos, intf.tsym);
2124                             }
2125                         }
2126                         if (c.owner.kind == TYP) {
2127                             checkSymbol(pos, c.owner);
2128                         }
2129                     }
2130                 } finally {
2131                     seenClasses = seenClasses.tail;
2132                 }
2133             }
2134         }
2135     }
2136 
2137     /** Check for cyclic references. Issue an error if the
2138      *  symbol of the type referred to has a LOCKED flag set.
2139      *
2140      *  @param pos      Position to be used for error reporting.
2141      *  @param t        The type referred to.
2142      */
2143     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2144         checkNonCyclicInternal(pos, t);
2145     }
2146 
2147 
2148     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2149         checkNonCyclic1(pos, t, List.<TypeVar>nil());
2150     }
2151 
2152     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2153         final TypeVar tv;
2154         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2155             return;
2156         if (seen.contains(t)) {
2157             tv = (TypeVar)t;
2158             tv.bound = types.createErrorType(t);
2159             log.error(pos, "cyclic.inheritance", t);
2160         } else if (t.hasTag(TYPEVAR)) {
2161             tv = (TypeVar)t;
2162             seen = seen.prepend(tv);
2163             for (Type b : types.getBounds(tv))
2164                 checkNonCyclic1(pos, b, seen);
2165         }
2166     }
2167 
2168     /** Check for cyclic references. Issue an error if the
2169      *  symbol of the type referred to has a LOCKED flag set.
2170      *
2171      *  @param pos      Position to be used for error reporting.
2172      *  @param t        The type referred to.
2173      *  @returns        True if the check completed on all attributed classes
2174      */
2175     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2176         boolean complete = true; // was the check complete?
2177         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2178         Symbol c = t.tsym;
2179         if ((c.flags_field & ACYCLIC) != 0) return true;
2180 
2181         if ((c.flags_field & LOCKED) != 0) {
2182             noteCyclic(pos, (ClassSymbol)c);
2183         } else if (!c.type.isErroneous()) {
2184             try {
2185                 c.flags_field |= LOCKED;
2186                 if (c.type.hasTag(CLASS)) {
2187                     ClassType clazz = (ClassType)c.type;
2188                     if (clazz.interfaces_field != null)
2189                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2190                             complete &= checkNonCyclicInternal(pos, l.head);
2191                     if (clazz.supertype_field != null) {
2192                         Type st = clazz.supertype_field;
2193                         if (st != null && st.hasTag(CLASS))
2194                             complete &= checkNonCyclicInternal(pos, st);
2195                     }
2196                     if (c.owner.kind == TYP)
2197                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2198                 }
2199             } finally {
2200                 c.flags_field &= ~LOCKED;
2201             }
2202         }
2203         if (complete)
2204             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
2205         if (complete) c.flags_field |= ACYCLIC;
2206         return complete;
2207     }
2208 
2209     /** Note that we found an inheritance cycle. */
2210     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2211         log.error(pos, "cyclic.inheritance", c);
2212         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2213             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2214         Type st = types.supertype(c.type);
2215         if (st.hasTag(CLASS))
2216             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2217         c.type = types.createErrorType(c, c.type);
2218         c.flags_field |= ACYCLIC;
2219     }
2220 
2221     /** Check that all methods which implement some
2222      *  method conform to the method they implement.
2223      *  @param tree         The class definition whose members are checked.
2224      */
2225     void checkImplementations(JCClassDecl tree) {
2226         checkImplementations(tree, tree.sym, tree.sym);
2227     }
2228     //where
2229         /** Check that all methods which implement some
2230          *  method in `ic' conform to the method they implement.
2231          */
2232         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2233             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2234                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2235                 if ((lc.flags() & ABSTRACT) != 0) {
2236                     for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2237                         if (sym.kind == MTH &&
2238                             (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2239                             MethodSymbol absmeth = (MethodSymbol)sym;
2240                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2241                             if (implmeth != null && implmeth != absmeth &&
2242                                 (implmeth.owner.flags() & INTERFACE) ==
2243                                 (origin.flags() & INTERFACE)) {
2244                                 // don't check if implmeth is in a class, yet
2245                                 // origin is an interface. This case arises only
2246                                 // if implmeth is declared in Object. The reason is
2247                                 // that interfaces really don't inherit from
2248                                 // Object it's just that the compiler represents
2249                                 // things that way.
2250                                 checkOverride(tree, implmeth, absmeth, origin);
2251                             }
2252                         }
2253                     }
2254                 }
2255             }
2256         }
2257 
2258     /** Check that all abstract methods implemented by a class are
2259      *  mutually compatible.
2260      *  @param pos          Position to be used for error reporting.
2261      *  @param c            The class whose interfaces are checked.
2262      */
2263     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2264         List<Type> supertypes = types.interfaces(c);
2265         Type supertype = types.supertype(c);
2266         if (supertype.hasTag(CLASS) &&
2267             (supertype.tsym.flags() & ABSTRACT) != 0)
2268             supertypes = supertypes.prepend(supertype);
2269         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2270             if (!l.head.getTypeArguments().isEmpty() &&
2271                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2272                 return;
2273             for (List<Type> m = supertypes; m != l; m = m.tail)
2274                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2275                     return;
2276         }
2277         checkCompatibleConcretes(pos, c);
2278     }
2279 
2280     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2281         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2282             for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
2283                 // VM allows methods and variables with differing types
2284                 if (sym.kind == sym2.kind &&
2285                     types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
2286                     sym != sym2 &&
2287                     (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
2288                     (sym.flags() & IPROXY) == 0 && (sym2.flags() & IPROXY) == 0 &&
2289                     (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
2290                     syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
2291                     return;
2292                 }
2293             }
2294         }
2295     }
2296 
2297     /** Check that all non-override equivalent methods accessible from 'site'
2298      *  are mutually compatible (JLS 8.4.8/9.4.1).
2299      *
2300      *  @param pos  Position to be used for error reporting.
2301      *  @param site The class whose methods are checked.
2302      *  @param sym  The method symbol to be checked.
2303      */
2304     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2305          ClashFilter cf = new ClashFilter(site);
2306         //for each method m1 that is overridden (directly or indirectly)
2307         //by method 'sym' in 'site'...
2308 
2309         List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2310         boolean overridesAny = false;
2311         for (Symbol m1 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2312             if (!sym.overrides(m1, site.tsym, types, false)) {
2313                 if (m1 == sym) {
2314                     continue;
2315                 }
2316 
2317                 if (!overridesAny) {
2318                     potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2319                 }
2320                 continue;
2321             }
2322 
2323             if (m1 != sym) {
2324                 overridesAny = true;
2325                 potentiallyAmbiguousList = List.nil();
2326             }
2327 
2328             //...check each method m2 that is a member of 'site'
2329             for (Symbol m2 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2330                 if (m2 == m1) continue;
2331                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2332                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2333                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2334                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2335                     sym.flags_field |= CLASH;
2336                     String key = m1 == sym ?
2337                             "name.clash.same.erasure.no.override" :
2338                             "name.clash.same.erasure.no.override.1";
2339                     log.error(pos,
2340                             key,
2341                             sym, sym.location(),
2342                             m2, m2.location(),
2343                             m1, m1.location());
2344                     return;
2345                 }
2346             }
2347         }
2348 
2349         if (!overridesAny) {
2350             for (MethodSymbol m: potentiallyAmbiguousList) {
2351                 checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2352             }
2353         }
2354     }
2355 
2356     /** Check that all static methods accessible from 'site' are
2357      *  mutually compatible (JLS 8.4.8).
2358      *
2359      *  @param pos  Position to be used for error reporting.
2360      *  @param site The class whose methods are checked.
2361      *  @param sym  The method symbol to be checked.
2362      */
2363     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2364         ClashFilter cf = new ClashFilter(site);
2365         //for each method m1 that is a member of 'site'...
2366         for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2367             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2368             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2369             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2370                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2371                     log.error(pos,
2372                             "name.clash.same.erasure.no.hide",
2373                             sym, sym.location(),
2374                             s, s.location());
2375                     return;
2376                 } else {
2377                     checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2378                 }
2379             }
2380          }
2381      }
2382 
2383      //where
2384      private class ClashFilter implements Filter<Symbol> {
2385 
2386          Type site;
2387 
2388          ClashFilter(Type site) {
2389              this.site = site;
2390          }
2391 
2392          boolean shouldSkip(Symbol s) {
2393              return (s.flags() & CLASH) != 0 &&
2394                 s.owner == site.tsym;
2395          }
2396 
2397          public boolean accepts(Symbol s) {
2398              return s.kind == MTH &&
2399                      (s.flags() & SYNTHETIC) == 0 &&
2400                      !shouldSkip(s) &&
2401                      s.isInheritedIn(site.tsym, types) &&
2402                      !s.isConstructor();
2403          }
2404      }
2405 
2406     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2407         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2408         for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2409             Assert.check(m.kind == MTH);
2410             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2411             if (prov.size() > 1) {
2412                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2413                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2414                 for (MethodSymbol provSym : prov) {
2415                     if ((provSym.flags() & DEFAULT) != 0) {
2416                         defaults = defaults.append(provSym);
2417                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2418                         abstracts = abstracts.append(provSym);
2419                     }
2420                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2421                         //strong semantics - issue an error if two sibling interfaces
2422                         //have two override-equivalent defaults - or if one is abstract
2423                         //and the other is default
2424                         String errKey;
2425                         Symbol s1 = defaults.first();
2426                         Symbol s2;
2427                         if (defaults.size() > 1) {
2428                             errKey = "types.incompatible.unrelated.defaults";
2429                             s2 = defaults.toList().tail.head;
2430                         } else {
2431                             errKey = "types.incompatible.abstract.default";
2432                             s2 = abstracts.first();
2433                         }
2434                         log.error(pos, errKey,
2435                                 Kinds.kindName(site.tsym), site,
2436                                 m.name, types.memberType(site, m).getParameterTypes(),
2437                                 s1.location(), s2.location());
2438                         break;
2439                     }
2440                 }
2441             }
2442         }
2443     }
2444 
2445     //where
2446      private class DefaultMethodClashFilter implements Filter<Symbol> {
2447 
2448          Type site;
2449 
2450          DefaultMethodClashFilter(Type site) {
2451              this.site = site;
2452          }
2453 
2454          public boolean accepts(Symbol s) {
2455              return s.kind == MTH &&
2456                      (s.flags() & DEFAULT) != 0 &&
2457                      s.isInheritedIn(site.tsym, types) &&
2458                      !s.isConstructor();
2459          }
2460      }
2461 
2462     /**
2463       * Report warnings for potentially ambiguous method declarations. Two declarations
2464       * are potentially ambiguous if they feature two unrelated functional interface
2465       * in same argument position (in which case, a call site passing an implicit
2466       * lambda would be ambiguous).
2467       */
2468     void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2469             MethodSymbol msym1, MethodSymbol msym2) {
2470         if (msym1 != msym2 &&
2471                 allowDefaultMethods &&
2472                 lint.isEnabled(LintCategory.OVERLOADS) &&
2473                 (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2474                 (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2475             Type mt1 = types.memberType(site, msym1);
2476             Type mt2 = types.memberType(site, msym2);
2477             //if both generic methods, adjust type variables
2478             if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2479                     types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2480                 mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2481             }
2482             //expand varargs methods if needed
2483             int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2484             List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2485             List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2486             //if arities don't match, exit
2487             if (args1.length() != args2.length()) return;
2488             boolean potentiallyAmbiguous = false;
2489             while (args1.nonEmpty() && args2.nonEmpty()) {
2490                 Type s = args1.head;
2491                 Type t = args2.head;
2492                 if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2493                     if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2494                             types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2495                             types.findDescriptorType(s).getParameterTypes().length() ==
2496                             types.findDescriptorType(t).getParameterTypes().length()) {
2497                         potentiallyAmbiguous = true;
2498                     } else {
2499                         break;
2500                     }
2501                 }
2502                 args1 = args1.tail;
2503                 args2 = args2.tail;
2504             }
2505             if (potentiallyAmbiguous) {
2506                 //we found two incompatible functional interfaces with same arity
2507                 //this means a call site passing an implicit lambda would be ambigiuous
2508                 msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2509                 msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2510                 log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2511                             msym1, msym1.location(),
2512                             msym2, msym2.location());
2513                 return;
2514             }
2515         }
2516     }
2517 
2518     void checkElemAccessFromSerializableLambda(final JCTree tree) {
2519         if (warnOnAccessToSensitiveMembers) {
2520             Symbol sym = TreeInfo.symbol(tree);
2521             if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2522                 return;
2523             }
2524 
2525             if (sym.kind == VAR) {
2526                 if ((sym.flags() & PARAMETER) != 0 ||
2527                     sym.isLocal() ||
2528                     sym.name == names._this ||
2529                     sym.name == names._super) {
2530                     return;
2531                 }
2532             }
2533 
2534             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2535                     isEffectivelyNonPublic(sym)) {
2536                 log.warning(tree.pos(),
2537                         "access.to.sensitive.member.from.serializable.element", sym);
2538             }
2539         }
2540     }
2541 
2542     private boolean isEffectivelyNonPublic(Symbol sym) {
2543         if (sym.packge() == syms.rootPackage) {
2544             return false;
2545         }
2546 
2547         while (sym.kind != PCK) {
2548             if ((sym.flags() & PUBLIC) == 0) {
2549                 return true;
2550             }
2551             sym = sym.owner;
2552         }
2553         return false;
2554     }
2555 
2556     /** Report a conflict between a user symbol and a synthetic symbol.
2557      */
2558     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2559         if (!sym.type.isErroneous()) {
2560             if (warnOnSyntheticConflicts) {
2561                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
2562             }
2563             else {
2564                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
2565             }
2566         }
2567     }
2568 
2569     /** Check that class c does not implement directly or indirectly
2570      *  the same parameterized interface with two different argument lists.
2571      *  @param pos          Position to be used for error reporting.
2572      *  @param type         The type whose interfaces are checked.
2573      */
2574     void checkClassBounds(DiagnosticPosition pos, Type type) {
2575         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2576     }
2577 //where
2578         /** Enter all interfaces of type `type' into the hash table `seensofar'
2579          *  with their class symbol as key and their type as value. Make
2580          *  sure no class is entered with two different types.
2581          */
2582         void checkClassBounds(DiagnosticPosition pos,
2583                               Map<TypeSymbol,Type> seensofar,
2584                               Type type) {
2585             if (type.isErroneous()) return;
2586             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2587                 Type it = l.head;
2588                 Type oldit = seensofar.put(it.tsym, it);
2589                 if (oldit != null) {
2590                     List<Type> oldparams = oldit.allparams();
2591                     List<Type> newparams = it.allparams();
2592                     if (!types.containsTypeEquivalent(oldparams, newparams))
2593                         log.error(pos, "cant.inherit.diff.arg",
2594                                   it.tsym, Type.toString(oldparams),
2595                                   Type.toString(newparams));
2596                 }
2597                 checkClassBounds(pos, seensofar, it);
2598             }
2599             Type st = types.supertype(type);
2600             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2601         }
2602 
2603     /** Enter interface into into set.
2604      *  If it existed already, issue a "repeated interface" error.
2605      */
2606     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2607         if (its.contains(it))
2608             log.error(pos, "repeated.interface");
2609         else {
2610             its.add(it);
2611         }
2612     }
2613 
2614 /* *************************************************************************
2615  * Check annotations
2616  **************************************************************************/
2617 
2618     /**
2619      * Recursively validate annotations values
2620      */
2621     void validateAnnotationTree(JCTree tree) {
2622         class AnnotationValidator extends TreeScanner {
2623             @Override
2624             public void visitAnnotation(JCAnnotation tree) {
2625                 if (!tree.type.isErroneous()) {
2626                     super.visitAnnotation(tree);
2627                     validateAnnotation(tree);
2628                 }
2629             }
2630         }
2631         tree.accept(new AnnotationValidator());
2632     }
2633 
2634     /**
2635      *  {@literal
2636      *  Annotation types are restricted to primitives, String, an
2637      *  enum, an annotation, Class, Class<?>, Class<? extends
2638      *  Anything>, arrays of the preceding.
2639      *  }
2640      */
2641     void validateAnnotationType(JCTree restype) {
2642         // restype may be null if an error occurred, so don't bother validating it
2643         if (restype != null) {
2644             validateAnnotationType(restype.pos(), restype.type);
2645         }
2646     }
2647 
2648     void validateAnnotationType(DiagnosticPosition pos, Type type) {
2649         if (type.isPrimitive()) return;
2650         if (types.isSameType(type, syms.stringType)) return;
2651         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2652         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2653         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2654         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2655             validateAnnotationType(pos, types.elemtype(type));
2656             return;
2657         }
2658         log.error(pos, "invalid.annotation.member.type");
2659     }
2660 
2661     /**
2662      * "It is also a compile-time error if any method declared in an
2663      * annotation type has a signature that is override-equivalent to
2664      * that of any public or protected method declared in class Object
2665      * or in the interface annotation.Annotation."
2666      *
2667      * @jls 9.6 Annotation Types
2668      */
2669     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2670         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2671             Scope s = sup.tsym.members();
2672             for (Symbol sym : s.getSymbolsByName(m.name)) {
2673                 if (sym.kind == MTH &&
2674                     (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2675                     types.overrideEquivalent(m.type, sym.type))
2676                     log.error(pos, "intf.annotation.member.clash", sym, sup);
2677             }
2678         }
2679     }
2680 
2681     /** Check the annotations of a symbol.
2682      */
2683     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2684         for (JCAnnotation a : annotations)
2685             validateAnnotation(a, s);
2686     }
2687 
2688     /** Check the type annotations.
2689      */
2690     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2691         for (JCAnnotation a : annotations)
2692             validateTypeAnnotation(a, isTypeParameter);
2693     }
2694 
2695     /** Check an annotation of a symbol.
2696      */
2697     private void validateAnnotation(JCAnnotation a, Symbol s) {
2698         validateAnnotationTree(a);
2699 
2700         if (!annotationApplicable(a, s))
2701             log.error(a.pos(), "annotation.type.not.applicable");
2702 
2703         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2704             if (s.kind != TYP) {
2705                 log.error(a.pos(), "bad.functional.intf.anno");
2706             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2707                 log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2708             }
2709         }
2710     }
2711 
2712     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2713         Assert.checkNonNull(a.type);
2714         validateAnnotationTree(a);
2715 
2716         if (a.hasTag(TYPE_ANNOTATION) &&
2717                 !a.annotationType.type.isErroneous() &&
2718                 !isTypeAnnotation(a, isTypeParameter)) {
2719             log.error(a.pos(), "annotation.type.not.applicable");
2720         }
2721     }
2722 
2723     /**
2724      * Validate the proposed container 'repeatable' on the
2725      * annotation type symbol 's'. Report errors at position
2726      * 'pos'.
2727      *
2728      * @param s The (annotation)type declaration annotated with a @Repeatable
2729      * @param repeatable the @Repeatable on 's'
2730      * @param pos where to report errors
2731      */
2732     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2733         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2734 
2735         Type t = null;
2736         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2737         if (!l.isEmpty()) {
2738             Assert.check(l.head.fst.name == names.value);
2739             t = ((Attribute.Class)l.head.snd).getValue();
2740         }
2741 
2742         if (t == null) {
2743             // errors should already have been reported during Annotate
2744             return;
2745         }
2746 
2747         validateValue(t.tsym, s, pos);
2748         validateRetention(t.tsym, s, pos);
2749         validateDocumented(t.tsym, s, pos);
2750         validateInherited(t.tsym, s, pos);
2751         validateTarget(t.tsym, s, pos);
2752         validateDefault(t.tsym, pos);
2753     }
2754 
2755     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2756         Symbol sym = container.members().findFirst(names.value);
2757         if (sym != null && sym.kind == MTH) {
2758             MethodSymbol m = (MethodSymbol) sym;
2759             Type ret = m.getReturnType();
2760             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2761                 log.error(pos, "invalid.repeatable.annotation.value.return",
2762                         container, ret, types.makeArrayType(contained.type));
2763             }
2764         } else {
2765             log.error(pos, "invalid.repeatable.annotation.no.value", container);
2766         }
2767     }
2768 
2769     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
2770         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2771         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2772 
2773         boolean error = false;
2774         switch (containedRetention) {
2775         case RUNTIME:
2776             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2777                 error = true;
2778             }
2779             break;
2780         case CLASS:
2781             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2782                 error = true;
2783             }
2784         }
2785         if (error ) {
2786             log.error(pos, "invalid.repeatable.annotation.retention",
2787                       container, containerRetention,
2788                       contained, containedRetention);
2789         }
2790     }
2791 
2792     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2793         if (contained.attribute(syms.documentedType.tsym) != null) {
2794             if (container.attribute(syms.documentedType.tsym) == null) {
2795                 log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2796             }
2797         }
2798     }
2799 
2800     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2801         if (contained.attribute(syms.inheritedType.tsym) != null) {
2802             if (container.attribute(syms.inheritedType.tsym) == null) {
2803                 log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2804             }
2805         }
2806     }
2807 
2808     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
2809         // The set of targets the container is applicable to must be a subset
2810         // (with respect to annotation target semantics) of the set of targets
2811         // the contained is applicable to. The target sets may be implicit or
2812         // explicit.
2813 
2814         Set<Name> containerTargets;
2815         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2816         if (containerTarget == null) {
2817             containerTargets = getDefaultTargetSet();
2818         } else {
2819             containerTargets = new HashSet<>();
2820             for (Attribute app : containerTarget.values) {
2821                 if (!(app instanceof Attribute.Enum)) {
2822                     continue; // recovery
2823                 }
2824                 Attribute.Enum e = (Attribute.Enum)app;
2825                 containerTargets.add(e.value.name);
2826             }
2827         }
2828 
2829         Set<Name> containedTargets;
2830         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2831         if (containedTarget == null) {
2832             containedTargets = getDefaultTargetSet();
2833         } else {
2834             containedTargets = new HashSet<>();
2835             for (Attribute app : containedTarget.values) {
2836                 if (!(app instanceof Attribute.Enum)) {
2837                     continue; // recovery
2838                 }
2839                 Attribute.Enum e = (Attribute.Enum)app;
2840                 containedTargets.add(e.value.name);
2841             }
2842         }
2843 
2844         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2845             log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2846         }
2847     }
2848 
2849     /* get a set of names for the default target */
2850     private Set<Name> getDefaultTargetSet() {
2851         if (defaultTargets == null) {
2852             Set<Name> targets = new HashSet<>();
2853             targets.add(names.ANNOTATION_TYPE);
2854             targets.add(names.CONSTRUCTOR);
2855             targets.add(names.FIELD);
2856             targets.add(names.LOCAL_VARIABLE);
2857             targets.add(names.METHOD);
2858             targets.add(names.PACKAGE);
2859             targets.add(names.PARAMETER);
2860             targets.add(names.TYPE);
2861 
2862             defaultTargets = java.util.Collections.unmodifiableSet(targets);
2863         }
2864 
2865         return defaultTargets;
2866     }
2867     private Set<Name> defaultTargets;
2868 
2869 
2870     /** Checks that s is a subset of t, with respect to ElementType
2871      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2872      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2873      * TYPE_PARAMETER}.
2874      */
2875     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2876         // Check that all elements in s are present in t
2877         for (Name n2 : s) {
2878             boolean currentElementOk = false;
2879             for (Name n1 : t) {
2880                 if (n1 == n2) {
2881                     currentElementOk = true;
2882                     break;
2883                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2884                     currentElementOk = true;
2885                     break;
2886                 } else if (n1 == names.TYPE_USE &&
2887                         (n2 == names.TYPE ||
2888                          n2 == names.ANNOTATION_TYPE ||
2889                          n2 == names.TYPE_PARAMETER)) {
2890                     currentElementOk = true;
2891                     break;
2892                 }
2893             }
2894             if (!currentElementOk)
2895                 return false;
2896         }
2897         return true;
2898     }
2899 
2900     private void validateDefault(Symbol container, DiagnosticPosition pos) {
2901         // validate that all other elements of containing type has defaults
2902         Scope scope = container.members();
2903         for(Symbol elm : scope.getSymbols()) {
2904             if (elm.name != names.value &&
2905                 elm.kind == MTH &&
2906                 ((MethodSymbol)elm).defaultValue == null) {
2907                 log.error(pos,
2908                           "invalid.repeatable.annotation.elem.nondefault",
2909                           container,
2910                           elm);
2911             }
2912         }
2913     }
2914 
2915     /** Is s a method symbol that overrides a method in a superclass? */
2916     boolean isOverrider(Symbol s) {
2917         if (s.kind != MTH || s.isStatic())
2918             return false;
2919         MethodSymbol m = (MethodSymbol)s;
2920         TypeSymbol owner = (TypeSymbol)m.owner;
2921         for (Type sup : types.closure(owner.type)) {
2922             if (sup == owner.type)
2923                 continue; // skip "this"
2924             Scope scope = sup.tsym.members();
2925             for (Symbol sym : scope.getSymbolsByName(m.name)) {
2926                 if (!sym.isStatic() && m.overrides(sym, owner, types, true))
2927                     return true;
2928             }
2929         }
2930         return false;
2931     }
2932 
2933     /** Is the annotation applicable to types? */
2934     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2935         Attribute.Compound atTarget =
2936             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
2937         if (atTarget == null) {
2938             // An annotation without @Target is not a type annotation.
2939             return false;
2940         }
2941 
2942         Attribute atValue = atTarget.member(names.value);
2943         if (!(atValue instanceof Attribute.Array)) {
2944             return false; // error recovery
2945         }
2946 
2947         Attribute.Array arr = (Attribute.Array) atValue;
2948         for (Attribute app : arr.values) {
2949             if (!(app instanceof Attribute.Enum)) {
2950                 return false; // recovery
2951             }
2952             Attribute.Enum e = (Attribute.Enum) app;
2953 
2954             if (e.value.name == names.TYPE_USE)
2955                 return true;
2956             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
2957                 return true;
2958         }
2959         return false;
2960     }
2961 
2962     /** Is the annotation applicable to the symbol? */
2963     boolean annotationApplicable(JCAnnotation a, Symbol s) {
2964         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
2965         Name[] targets;
2966 
2967         if (arr == null) {
2968             targets = defaultTargetMetaInfo(a, s);
2969         } else {
2970             // TODO: can we optimize this?
2971             targets = new Name[arr.values.length];
2972             for (int i=0; i<arr.values.length; ++i) {
2973                 Attribute app = arr.values[i];
2974                 if (!(app instanceof Attribute.Enum)) {
2975                     return true; // recovery
2976                 }
2977                 Attribute.Enum e = (Attribute.Enum) app;
2978                 targets[i] = e.value.name;
2979             }
2980         }
2981         for (Name target : targets) {
2982             if (target == names.TYPE)
2983                 { if (s.kind == TYP) return true; }
2984             else if (target == names.FIELD)
2985                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
2986             else if (target == names.METHOD)
2987                 { if (s.kind == MTH && !s.isConstructor()) return true; }
2988             else if (target == names.PARAMETER)
2989                 { if (s.kind == VAR && s.owner.kind == MTH &&
2990                       (s.flags() & PARAMETER) != 0)
2991                     return true;
2992                 }
2993             else if (target == names.CONSTRUCTOR)
2994                 { if (s.kind == MTH && s.isConstructor()) return true; }
2995             else if (target == names.LOCAL_VARIABLE)
2996                 { if (s.kind == VAR && s.owner.kind == MTH &&
2997                       (s.flags() & PARAMETER) == 0)
2998                     return true;
2999                 }
3000             else if (target == names.ANNOTATION_TYPE)
3001                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
3002                     return true;
3003                 }
3004             else if (target == names.PACKAGE)
3005                 { if (s.kind == PCK) return true; }
3006             else if (target == names.TYPE_USE)
3007                 { if (s.kind == TYP || s.kind == VAR ||
3008                       (s.kind == MTH && !s.isConstructor() &&
3009                       !s.type.getReturnType().hasTag(VOID)) ||
3010                       (s.kind == MTH && s.isConstructor()))
3011                     return true;
3012                 }
3013             else if (target == names.TYPE_PARAMETER)
3014                 { if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3015                     return true;
3016                 }
3017             else
3018                 return true; // recovery
3019         }
3020         return false;
3021     }
3022 
3023 
3024     Attribute.Array getAttributeTargetAttribute(Symbol s) {
3025         Attribute.Compound atTarget =
3026             s.attribute(syms.annotationTargetType.tsym);
3027         if (atTarget == null) return null; // ok, is applicable
3028         Attribute atValue = atTarget.member(names.value);
3029         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3030         return (Attribute.Array) atValue;
3031     }
3032 
3033     private final Name[] dfltTargetMeta;
3034     private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3035         return dfltTargetMeta;
3036     }
3037 
3038     /** Check an annotation value.
3039      *
3040      * @param a The annotation tree to check
3041      * @return true if this annotation tree is valid, otherwise false
3042      */
3043     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3044         boolean res = false;
3045         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3046         try {
3047             res = validateAnnotation(a);
3048         } finally {
3049             log.popDiagnosticHandler(diagHandler);
3050         }
3051         return res;
3052     }
3053 
3054     private boolean validateAnnotation(JCAnnotation a) {
3055         boolean isValid = true;
3056         // collect an inventory of the annotation elements
3057         Set<MethodSymbol> members = new LinkedHashSet<>();
3058         for (Symbol sym : a.annotationType.type.tsym.members().getSymbols(NON_RECURSIVE))
3059             if (sym.kind == MTH && sym.name != names.clinit &&
3060                     (sym.flags() & SYNTHETIC) == 0)
3061                 members.add((MethodSymbol) sym);
3062 
3063         // remove the ones that are assigned values
3064         for (JCTree arg : a.args) {
3065             if (!arg.hasTag(ASSIGN)) continue; // recovery
3066             JCAssign assign = (JCAssign) arg;
3067             Symbol m = TreeInfo.symbol(assign.lhs);
3068             if (m == null || m.type.isErroneous()) continue;
3069             if (!members.remove(m)) {
3070                 isValid = false;
3071                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3072                           m.name, a.type);
3073             }
3074         }
3075 
3076         // all the remaining ones better have default values
3077         List<Name> missingDefaults = List.nil();
3078         for (MethodSymbol m : members) {
3079             if (m.defaultValue == null && !m.type.isErroneous()) {
3080                 missingDefaults = missingDefaults.append(m.name);
3081             }
3082         }
3083         missingDefaults = missingDefaults.reverse();
3084         if (missingDefaults.nonEmpty()) {
3085             isValid = false;
3086             String key = (missingDefaults.size() > 1)
3087                     ? "annotation.missing.default.value.1"
3088                     : "annotation.missing.default.value";
3089             log.error(a.pos(), key, a.type, missingDefaults);
3090         }
3091 
3092         // special case: java.lang.annotation.Target must not have
3093         // repeated values in its value member
3094         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3095             a.args.tail == null)
3096             return isValid;
3097 
3098         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3099         JCAssign assign = (JCAssign) a.args.head;
3100         Symbol m = TreeInfo.symbol(assign.lhs);
3101         if (m.name != names.value) return false;
3102         JCTree rhs = assign.rhs;
3103         if (!rhs.hasTag(NEWARRAY)) return false;
3104         JCNewArray na = (JCNewArray) rhs;
3105         Set<Symbol> targets = new HashSet<>();
3106         for (JCTree elem : na.elems) {
3107             if (!targets.add(TreeInfo.symbol(elem))) {
3108                 isValid = false;
3109                 log.error(elem.pos(), "repeated.annotation.target");
3110             }
3111         }
3112         return isValid;
3113     }
3114 
3115     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3116         if (lint.isEnabled(LintCategory.DEP_ANN) &&
3117             (s.flags() & DEPRECATED) != 0 &&
3118             !syms.deprecatedType.isErroneous() &&
3119             s.attribute(syms.deprecatedType.tsym) == null) {
3120             log.warning(LintCategory.DEP_ANN,
3121                     pos, "missing.deprecated.annotation");
3122         }
3123     }
3124 
3125     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3126         if ((s.flags() & DEPRECATED) != 0 &&
3127                 (other.flags() & DEPRECATED) == 0 &&
3128                 s.outermostClass() != other.outermostClass()) {
3129             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3130                 @Override
3131                 public void report() {
3132                     warnDeprecated(pos, s);
3133                 }
3134             });
3135         }
3136     }
3137 
3138     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3139         if ((s.flags() & PROPRIETARY) != 0) {
3140             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3141                 public void report() {
3142                     if (enableSunApiLintControl)
3143                       warnSunApi(pos, "sun.proprietary", s);
3144                     else
3145                       log.mandatoryWarning(pos, "sun.proprietary", s);
3146                 }
3147             });
3148         }
3149     }
3150 
3151     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3152         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3153             log.error(pos, "not.in.profile", s, profile);
3154         }
3155     }
3156 
3157 /* *************************************************************************
3158  * Check for recursive annotation elements.
3159  **************************************************************************/
3160 
3161     /** Check for cycles in the graph of annotation elements.
3162      */
3163     void checkNonCyclicElements(JCClassDecl tree) {
3164         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3165         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3166         try {
3167             tree.sym.flags_field |= LOCKED;
3168             for (JCTree def : tree.defs) {
3169                 if (!def.hasTag(METHODDEF)) continue;
3170                 JCMethodDecl meth = (JCMethodDecl)def;
3171                 checkAnnotationResType(meth.pos(), meth.restype.type);
3172             }
3173         } finally {
3174             tree.sym.flags_field &= ~LOCKED;
3175             tree.sym.flags_field |= ACYCLIC_ANN;
3176         }
3177     }
3178 
3179     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3180         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3181             return;
3182         if ((tsym.flags_field & LOCKED) != 0) {
3183             log.error(pos, "cyclic.annotation.element");
3184             return;
3185         }
3186         try {
3187             tsym.flags_field |= LOCKED;
3188             for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3189                 if (s.kind != MTH)
3190                     continue;
3191                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3192             }
3193         } finally {
3194             tsym.flags_field &= ~LOCKED;
3195             tsym.flags_field |= ACYCLIC_ANN;
3196         }
3197     }
3198 
3199     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3200         switch (type.getTag()) {
3201         case CLASS:
3202             if ((type.tsym.flags() & ANNOTATION) != 0)
3203                 checkNonCyclicElementsInternal(pos, type.tsym);
3204             break;
3205         case ARRAY:
3206             checkAnnotationResType(pos, types.elemtype(type));
3207             break;
3208         default:
3209             break; // int etc
3210         }
3211     }
3212 
3213 /* *************************************************************************
3214  * Check for cycles in the constructor call graph.
3215  **************************************************************************/
3216 
3217     /** Check for cycles in the graph of constructors calling other
3218      *  constructors.
3219      */
3220     void checkCyclicConstructors(JCClassDecl tree) {
3221         Map<Symbol,Symbol> callMap = new HashMap<>();
3222 
3223         // enter each constructor this-call into the map
3224         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3225             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3226             if (app == null) continue;
3227             JCMethodDecl meth = (JCMethodDecl) l.head;
3228             if (TreeInfo.name(app.meth) == names._this) {
3229                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3230             } else {
3231                 meth.sym.flags_field |= ACYCLIC;
3232             }
3233         }
3234 
3235         // Check for cycles in the map
3236         Symbol[] ctors = new Symbol[0];
3237         ctors = callMap.keySet().toArray(ctors);
3238         for (Symbol caller : ctors) {
3239             checkCyclicConstructor(tree, caller, callMap);
3240         }
3241     }
3242 
3243     /** Look in the map to see if the given constructor is part of a
3244      *  call cycle.
3245      */
3246     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3247                                         Map<Symbol,Symbol> callMap) {
3248         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3249             if ((ctor.flags_field & LOCKED) != 0) {
3250                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3251                           "recursive.ctor.invocation");
3252             } else {
3253                 ctor.flags_field |= LOCKED;
3254                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3255                 ctor.flags_field &= ~LOCKED;
3256             }
3257             ctor.flags_field |= ACYCLIC;
3258         }
3259     }
3260 
3261 /* *************************************************************************
3262  * Miscellaneous
3263  **************************************************************************/
3264 
3265     /**
3266      *  Check for division by integer constant zero
3267      *  @param pos           Position for error reporting.
3268      *  @param operator      The operator for the expression
3269      *  @param operand       The right hand operand for the expression
3270      */
3271     void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3272         if (operand.constValue() != null
3273             && operand.getTag().isSubRangeOf(LONG)
3274             && ((Number) (operand.constValue())).longValue() == 0) {
3275             int opc = ((OperatorSymbol)operator).opcode;
3276             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3277                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3278                 deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3279                     @Override
3280                     public void report() {
3281                         warnDivZero(pos);
3282                     }
3283                 });
3284             }
3285         }
3286     }
3287 
3288     /**
3289      * Check for empty statements after if
3290      */
3291     void checkEmptyIf(JCIf tree) {
3292         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3293                 lint.isEnabled(LintCategory.EMPTY))
3294             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3295     }
3296 
3297     /** Check that symbol is unique in given scope.
3298      *  @param pos           Position for error reporting.
3299      *  @param sym           The symbol.
3300      *  @param s             The scope.
3301      */
3302     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3303         if (sym.type.isErroneous())
3304             return true;
3305         if (sym.owner.name == names.any) return false;
3306         for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3307             if (sym != byName &&
3308                     (byName.flags() & CLASH) == 0 &&
3309                     sym.kind == byName.kind &&
3310                     sym.name != names.error &&
3311                     (sym.kind != MTH ||
3312                      types.hasSameArgs(sym.type, byName.type) ||
3313                      types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3314                 if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3315                     varargsDuplicateError(pos, sym, byName);
3316                     return true;
3317                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3318                     duplicateErasureError(pos, sym, byName);
3319                     sym.flags_field |= CLASH;
3320                     return true;
3321                 } else {
3322                     duplicateError(pos, byName);
3323                     return false;
3324                 }
3325             }
3326         }
3327         return true;
3328     }
3329 
3330     /** Report duplicate declaration error.
3331      */
3332     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3333         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3334             log.error(pos, "name.clash.same.erasure", sym1, sym2);
3335         }
3336     }
3337 
3338     /**Check that types imported through the ordinary imports don't clash with types imported
3339      * by other (static or ordinary) imports. Note that two static imports may import two clashing
3340      * types without an error on the imports.
3341      * @param toplevel       The toplevel tree for which the test should be performed.
3342      */
3343     void checkImportsUnique(JCCompilationUnit toplevel) {
3344         WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3345         WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3346         WriteableScope topLevelScope = toplevel.toplevelScope;
3347 
3348         for (JCTree def : toplevel.defs) {
3349             if (!def.hasTag(IMPORT))
3350                 continue;
3351 
3352             JCImport imp = (JCImport) def;
3353 
3354             if (imp.importScope == null)
3355                 continue;
3356 
3357             for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3358                 if (imp.isStatic()) {
3359                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3360                     staticallyImportedSoFar.enter(sym);
3361                 } else {
3362                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3363                     ordinallyImportedSoFar.enter(sym);
3364                 }
3365             }
3366 
3367             imp.importScope = null;
3368         }
3369     }
3370 
3371     /** Check that single-type import is not already imported or top-level defined,
3372      *  but make an exception for two single-type imports which denote the same type.
3373      *  @param pos                     Position for error reporting.
3374      *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3375      *                                 ordinary imports.
3376      *  @param staticallyImportedSoFar A Scope containing types imported so far through
3377      *                                 static imports.
3378      *  @param topLevelScope           The current file's top-level Scope
3379      *  @param sym                     The symbol.
3380      *  @param staticImport            Whether or not this was a static import
3381      */
3382     private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3383                                       Scope staticallyImportedSoFar, Scope topLevelScope,
3384                                       Symbol sym, boolean staticImport) {
3385         Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3386         Symbol clashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3387         if (clashing == null && !staticImport) {
3388             clashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3389         }
3390         if (clashing != null) {
3391             if (staticImport)
3392                 log.error(pos, "already.defined.static.single.import", clashing);
3393             else
3394                 log.error(pos, "already.defined.single.import", clashing);
3395             return false;
3396         }
3397         clashing = topLevelScope.findFirst(sym.name, duplicates);
3398         if (clashing != null) {
3399             log.error(pos, "already.defined.this.unit", clashing);
3400             return false;
3401         }
3402         return true;
3403     }
3404 
3405     /** Check that a qualified name is in canonical form (for import decls).
3406      */
3407     public void checkCanonical(JCTree tree) {
3408         if (!isCanonical(tree))
3409             log.error(tree.pos(), "import.requires.canonical",
3410                       TreeInfo.symbol(tree));
3411     }
3412         // where
3413         private boolean isCanonical(JCTree tree) {
3414             while (tree.hasTag(SELECT)) {
3415                 JCFieldAccess s = (JCFieldAccess) tree;
3416                 if (s.sym.owner != TreeInfo.symbol(s.selected))
3417                     return false;
3418                 tree = s.selected;
3419             }
3420             return true;
3421         }
3422 
3423     /** Check that an auxiliary class is not accessed from any other file than its own.
3424      */
3425     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3426         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3427             (c.flags() & AUXILIARY) != 0 &&
3428             rs.isAccessible(env, c) &&
3429             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3430         {
3431             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3432                         c, c.sourcefile);
3433         }
3434     }
3435 
3436     private class ConversionWarner extends Warner {
3437         final String uncheckedKey;
3438         final Type found;
3439         final Type expected;
3440         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3441             super(pos);
3442             this.uncheckedKey = uncheckedKey;
3443             this.found = found;
3444             this.expected = expected;
3445         }
3446 
3447         @Override
3448         public void warn(LintCategory lint) {
3449             boolean warned = this.warned;
3450             super.warn(lint);
3451             if (warned) return; // suppress redundant diagnostics
3452             switch (lint) {
3453                 case UNCHECKED:
3454                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3455                     break;
3456                 case VARARGS:
3457                     if (method != null &&
3458                             method.attribute(syms.trustMeType.tsym) != null &&
3459                             isTrustMeAllowedOnMethod(method) &&
3460                             !types.isReifiable(method.type.getParameterTypes().last())) {
3461                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3462                     }
3463                     break;
3464                 default:
3465                     throw new AssertionError("Unexpected lint: " + lint);
3466             }
3467         }
3468     }
3469 
3470     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3471         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3472     }
3473 
3474     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3475         return new ConversionWarner(pos, "unchecked.assign", found, expected);
3476     }
3477 
3478     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3479         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3480 
3481         if (functionalType != null) {
3482             try {
3483                 types.findDescriptorSymbol((TypeSymbol)cs);
3484             } catch (Types.FunctionDescriptorLookupError ex) {
3485                 DiagnosticPosition pos = tree.pos();
3486                 for (JCAnnotation a : tree.getModifiers().annotations) {
3487                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3488                         pos = a.pos();
3489                         break;
3490                     }
3491                 }
3492                 log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3493             }
3494         }
3495     }
3496 
3497     public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3498         for (final JCImport imp : toplevel.getImports()) {
3499             if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3500                 continue;
3501             final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3502             final Symbol origin;
3503             if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3504                 continue;
3505 
3506             TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3507             if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3508                 log.error(imp.pos(), "cant.resolve.location",
3509                           KindName.STATIC,
3510                           select.name, List.<Type>nil(), List.<Type>nil(),
3511                           Kinds.typeKindName(TreeInfo.symbol(select.selected).type),
3512                           TreeInfo.symbol(select.selected).type);
3513             }
3514         }
3515     }
3516 
3517     private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3518         if (tsym == null || !processed.add(tsym))
3519             return false;
3520 
3521             // also search through inherited names
3522         if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3523             return true;
3524 
3525         for (Type t : types.interfaces(tsym.type))
3526             if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3527                 return true;
3528 
3529         for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3530             if (sym.isStatic() &&
3531                 staticImportAccessible(sym, packge) &&
3532                 sym.isMemberOf(origin, types)) {
3533                 return true;
3534             }
3535         }
3536 
3537         return false;
3538     }
3539 
3540     // is the sym accessible everywhere in packge?
3541     public boolean staticImportAccessible(Symbol sym, PackageSymbol packge) {
3542         int flags = (int)(sym.flags() & AccessFlags);
3543         switch (flags) {
3544         default:
3545         case PUBLIC:
3546             return true;
3547         case PRIVATE:
3548             return false;
3549         case 0:
3550         case PROTECTED:
3551             return sym.packge() == packge;
3552         }
3553     }
3554 
3555 }