1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.inline.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 enum CoredumpFilterBit {
 132   FILE_BACKED_PVT_BIT = 1 << 2,
 133   LARGEPAGES_BIT = 1 << 6,
 134   DAX_SHARED_BIT = 1 << 8
 135 };
 136 
 137 ////////////////////////////////////////////////////////////////////////////////
 138 // global variables
 139 julong os::Linux::_physical_memory = 0;
 140 
 141 address   os::Linux::_initial_thread_stack_bottom = NULL;
 142 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 143 
 144 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 145 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 146 Mutex* os::Linux::_createThread_lock = NULL;
 147 pthread_t os::Linux::_main_thread;
 148 int os::Linux::_page_size = -1;
 149 bool os::Linux::_supports_fast_thread_cpu_time = false;
 150 uint32_t os::Linux::_os_version = 0;
 151 const char * os::Linux::_glibc_version = NULL;
 152 const char * os::Linux::_libpthread_version = NULL;
 153 
 154 static jlong initial_time_count=0;
 155 
 156 static int clock_tics_per_sec = 100;
 157 
 158 // If the VM might have been created on the primordial thread, we need to resolve the
 159 // primordial thread stack bounds and check if the current thread might be the
 160 // primordial thread in places. If we know that the primordial thread is never used,
 161 // such as when the VM was created by one of the standard java launchers, we can
 162 // avoid this
 163 static bool suppress_primordial_thread_resolution = false;
 164 
 165 // For diagnostics to print a message once. see run_periodic_checks
 166 static sigset_t check_signal_done;
 167 static bool check_signals = true;
 168 
 169 // Signal number used to suspend/resume a thread
 170 
 171 // do not use any signal number less than SIGSEGV, see 4355769
 172 static int SR_signum = SIGUSR2;
 173 sigset_t SR_sigset;
 174 
 175 // utility functions
 176 
 177 static int SR_initialize();
 178 
 179 julong os::available_memory() {
 180   return Linux::available_memory();
 181 }
 182 
 183 julong os::Linux::available_memory() {
 184   // values in struct sysinfo are "unsigned long"
 185   struct sysinfo si;
 186   julong avail_mem;
 187 
 188   if (OSContainer::is_containerized()) {
 189     jlong mem_limit, mem_usage;
 190     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 191       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 192                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 193     }
 194     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 195       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 196     }
 197     if (mem_limit > 0 && mem_usage > 0 ) {
 198       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 199       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 200       return avail_mem;
 201     }
 202   }
 203 
 204   sysinfo(&si);
 205   avail_mem = (julong)si.freeram * si.mem_unit;
 206   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 207   return avail_mem;
 208 }
 209 
 210 julong os::physical_memory() {
 211   jlong phys_mem = 0;
 212   if (OSContainer::is_containerized()) {
 213     jlong mem_limit;
 214     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 215       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 216       return mem_limit;
 217     }
 218     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 219                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 220   }
 221 
 222   phys_mem = Linux::physical_memory();
 223   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 224   return phys_mem;
 225 }
 226 
 227 // Return true if user is running as root.
 228 
 229 bool os::have_special_privileges() {
 230   static bool init = false;
 231   static bool privileges = false;
 232   if (!init) {
 233     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 234     init = true;
 235   }
 236   return privileges;
 237 }
 238 
 239 
 240 #ifndef SYS_gettid
 241 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 242   #ifdef __ia64__
 243     #define SYS_gettid 1105
 244   #else
 245     #ifdef __i386__
 246       #define SYS_gettid 224
 247     #else
 248       #ifdef __amd64__
 249         #define SYS_gettid 186
 250       #else
 251         #ifdef __sparc__
 252           #define SYS_gettid 143
 253         #else
 254           #error define gettid for the arch
 255         #endif
 256       #endif
 257     #endif
 258   #endif
 259 #endif
 260 
 261 
 262 // pid_t gettid()
 263 //
 264 // Returns the kernel thread id of the currently running thread. Kernel
 265 // thread id is used to access /proc.
 266 pid_t os::Linux::gettid() {
 267   int rslt = syscall(SYS_gettid);
 268   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 269   return (pid_t)rslt;
 270 }
 271 
 272 // Most versions of linux have a bug where the number of processors are
 273 // determined by looking at the /proc file system.  In a chroot environment,
 274 // the system call returns 1.
 275 static bool unsafe_chroot_detected = false;
 276 static const char *unstable_chroot_error = "/proc file system not found.\n"
 277                      "Java may be unstable running multithreaded in a chroot "
 278                      "environment on Linux when /proc filesystem is not mounted.";
 279 
 280 void os::Linux::initialize_system_info() {
 281   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 282   if (processor_count() == 1) {
 283     pid_t pid = os::Linux::gettid();
 284     char fname[32];
 285     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 286     FILE *fp = fopen(fname, "r");
 287     if (fp == NULL) {
 288       unsafe_chroot_detected = true;
 289     } else {
 290       fclose(fp);
 291     }
 292   }
 293   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 294   assert(processor_count() > 0, "linux error");
 295 }
 296 
 297 void os::init_system_properties_values() {
 298   // The next steps are taken in the product version:
 299   //
 300   // Obtain the JAVA_HOME value from the location of libjvm.so.
 301   // This library should be located at:
 302   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 303   //
 304   // If "/jre/lib/" appears at the right place in the path, then we
 305   // assume libjvm.so is installed in a JDK and we use this path.
 306   //
 307   // Otherwise exit with message: "Could not create the Java virtual machine."
 308   //
 309   // The following extra steps are taken in the debugging version:
 310   //
 311   // If "/jre/lib/" does NOT appear at the right place in the path
 312   // instead of exit check for $JAVA_HOME environment variable.
 313   //
 314   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 315   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 316   // it looks like libjvm.so is installed there
 317   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 318   //
 319   // Otherwise exit.
 320   //
 321   // Important note: if the location of libjvm.so changes this
 322   // code needs to be changed accordingly.
 323 
 324   // See ld(1):
 325   //      The linker uses the following search paths to locate required
 326   //      shared libraries:
 327   //        1: ...
 328   //        ...
 329   //        7: The default directories, normally /lib and /usr/lib.
 330 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 331   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 332 #else
 333   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 334 #endif
 335 
 336 // Base path of extensions installed on the system.
 337 #define SYS_EXT_DIR     "/usr/java/packages"
 338 #define EXTENSIONS_DIR  "/lib/ext"
 339 
 340   // Buffer that fits several sprintfs.
 341   // Note that the space for the colon and the trailing null are provided
 342   // by the nulls included by the sizeof operator.
 343   const size_t bufsize =
 344     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 345          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 346   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 347 
 348   // sysclasspath, java_home, dll_dir
 349   {
 350     char *pslash;
 351     os::jvm_path(buf, bufsize);
 352 
 353     // Found the full path to libjvm.so.
 354     // Now cut the path to <java_home>/jre if we can.
 355     pslash = strrchr(buf, '/');
 356     if (pslash != NULL) {
 357       *pslash = '\0';            // Get rid of /libjvm.so.
 358     }
 359     pslash = strrchr(buf, '/');
 360     if (pslash != NULL) {
 361       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 362     }
 363     Arguments::set_dll_dir(buf);
 364 
 365     if (pslash != NULL) {
 366       pslash = strrchr(buf, '/');
 367       if (pslash != NULL) {
 368         *pslash = '\0';        // Get rid of /lib.
 369       }
 370     }
 371     Arguments::set_java_home(buf);
 372     if (!set_boot_path('/', ':')) {
 373       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 374     }
 375   }
 376 
 377   // Where to look for native libraries.
 378   //
 379   // Note: Due to a legacy implementation, most of the library path
 380   // is set in the launcher. This was to accomodate linking restrictions
 381   // on legacy Linux implementations (which are no longer supported).
 382   // Eventually, all the library path setting will be done here.
 383   //
 384   // However, to prevent the proliferation of improperly built native
 385   // libraries, the new path component /usr/java/packages is added here.
 386   // Eventually, all the library path setting will be done here.
 387   {
 388     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 389     // should always exist (until the legacy problem cited above is
 390     // addressed).
 391     const char *v = ::getenv("LD_LIBRARY_PATH");
 392     const char *v_colon = ":";
 393     if (v == NULL) { v = ""; v_colon = ""; }
 394     // That's +1 for the colon and +1 for the trailing '\0'.
 395     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 396                                                      strlen(v) + 1 +
 397                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 398                                                      mtInternal);
 399     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 400     Arguments::set_library_path(ld_library_path);
 401     FREE_C_HEAP_ARRAY(char, ld_library_path);
 402   }
 403 
 404   // Extensions directories.
 405   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 406   Arguments::set_ext_dirs(buf);
 407 
 408   FREE_C_HEAP_ARRAY(char, buf);
 409 
 410 #undef DEFAULT_LIBPATH
 411 #undef SYS_EXT_DIR
 412 #undef EXTENSIONS_DIR
 413 }
 414 
 415 ////////////////////////////////////////////////////////////////////////////////
 416 // breakpoint support
 417 
 418 void os::breakpoint() {
 419   BREAKPOINT;
 420 }
 421 
 422 extern "C" void breakpoint() {
 423   // use debugger to set breakpoint here
 424 }
 425 
 426 ////////////////////////////////////////////////////////////////////////////////
 427 // signal support
 428 
 429 debug_only(static bool signal_sets_initialized = false);
 430 static sigset_t unblocked_sigs, vm_sigs;
 431 
 432 void os::Linux::signal_sets_init() {
 433   // Should also have an assertion stating we are still single-threaded.
 434   assert(!signal_sets_initialized, "Already initialized");
 435   // Fill in signals that are necessarily unblocked for all threads in
 436   // the VM. Currently, we unblock the following signals:
 437   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 438   //                         by -Xrs (=ReduceSignalUsage));
 439   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 440   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 441   // the dispositions or masks wrt these signals.
 442   // Programs embedding the VM that want to use the above signals for their
 443   // own purposes must, at this time, use the "-Xrs" option to prevent
 444   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 445   // (See bug 4345157, and other related bugs).
 446   // In reality, though, unblocking these signals is really a nop, since
 447   // these signals are not blocked by default.
 448   sigemptyset(&unblocked_sigs);
 449   sigaddset(&unblocked_sigs, SIGILL);
 450   sigaddset(&unblocked_sigs, SIGSEGV);
 451   sigaddset(&unblocked_sigs, SIGBUS);
 452   sigaddset(&unblocked_sigs, SIGFPE);
 453 #if defined(PPC64)
 454   sigaddset(&unblocked_sigs, SIGTRAP);
 455 #endif
 456   sigaddset(&unblocked_sigs, SR_signum);
 457 
 458   if (!ReduceSignalUsage) {
 459     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 460       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 461     }
 462     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 463       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 464     }
 465     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 466       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 467     }
 468   }
 469   // Fill in signals that are blocked by all but the VM thread.
 470   sigemptyset(&vm_sigs);
 471   if (!ReduceSignalUsage) {
 472     sigaddset(&vm_sigs, BREAK_SIGNAL);
 473   }
 474   debug_only(signal_sets_initialized = true);
 475 
 476 }
 477 
 478 // These are signals that are unblocked while a thread is running Java.
 479 // (For some reason, they get blocked by default.)
 480 sigset_t* os::Linux::unblocked_signals() {
 481   assert(signal_sets_initialized, "Not initialized");
 482   return &unblocked_sigs;
 483 }
 484 
 485 // These are the signals that are blocked while a (non-VM) thread is
 486 // running Java. Only the VM thread handles these signals.
 487 sigset_t* os::Linux::vm_signals() {
 488   assert(signal_sets_initialized, "Not initialized");
 489   return &vm_sigs;
 490 }
 491 
 492 void os::Linux::hotspot_sigmask(Thread* thread) {
 493 
 494   //Save caller's signal mask before setting VM signal mask
 495   sigset_t caller_sigmask;
 496   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 497 
 498   OSThread* osthread = thread->osthread();
 499   osthread->set_caller_sigmask(caller_sigmask);
 500 
 501   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 502 
 503   if (!ReduceSignalUsage) {
 504     if (thread->is_VM_thread()) {
 505       // Only the VM thread handles BREAK_SIGNAL ...
 506       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 507     } else {
 508       // ... all other threads block BREAK_SIGNAL
 509       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 510     }
 511   }
 512 }
 513 
 514 //////////////////////////////////////////////////////////////////////////////
 515 // detecting pthread library
 516 
 517 void os::Linux::libpthread_init() {
 518   // Save glibc and pthread version strings.
 519 #if !defined(_CS_GNU_LIBC_VERSION) || \
 520     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 521   #error "glibc too old (< 2.3.2)"
 522 #endif
 523 
 524   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 525   assert(n > 0, "cannot retrieve glibc version");
 526   char *str = (char *)malloc(n, mtInternal);
 527   confstr(_CS_GNU_LIBC_VERSION, str, n);
 528   os::Linux::set_glibc_version(str);
 529 
 530   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 531   assert(n > 0, "cannot retrieve pthread version");
 532   str = (char *)malloc(n, mtInternal);
 533   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 534   os::Linux::set_libpthread_version(str);
 535 }
 536 
 537 /////////////////////////////////////////////////////////////////////////////
 538 // thread stack expansion
 539 
 540 // os::Linux::manually_expand_stack() takes care of expanding the thread
 541 // stack. Note that this is normally not needed: pthread stacks allocate
 542 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 543 // committed. Therefore it is not necessary to expand the stack manually.
 544 //
 545 // Manually expanding the stack was historically needed on LinuxThreads
 546 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 547 // it is kept to deal with very rare corner cases:
 548 //
 549 // For one, user may run the VM on an own implementation of threads
 550 // whose stacks are - like the old LinuxThreads - implemented using
 551 // mmap(MAP_GROWSDOWN).
 552 //
 553 // Also, this coding may be needed if the VM is running on the primordial
 554 // thread. Normally we avoid running on the primordial thread; however,
 555 // user may still invoke the VM on the primordial thread.
 556 //
 557 // The following historical comment describes the details about running
 558 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 559 
 560 
 561 // Force Linux kernel to expand current thread stack. If "bottom" is close
 562 // to the stack guard, caller should block all signals.
 563 //
 564 // MAP_GROWSDOWN:
 565 //   A special mmap() flag that is used to implement thread stacks. It tells
 566 //   kernel that the memory region should extend downwards when needed. This
 567 //   allows early versions of LinuxThreads to only mmap the first few pages
 568 //   when creating a new thread. Linux kernel will automatically expand thread
 569 //   stack as needed (on page faults).
 570 //
 571 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 572 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 573 //   region, it's hard to tell if the fault is due to a legitimate stack
 574 //   access or because of reading/writing non-exist memory (e.g. buffer
 575 //   overrun). As a rule, if the fault happens below current stack pointer,
 576 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 577 //   application (see Linux kernel fault.c).
 578 //
 579 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 580 //   stack overflow detection.
 581 //
 582 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 583 //   not use MAP_GROWSDOWN.
 584 //
 585 // To get around the problem and allow stack banging on Linux, we need to
 586 // manually expand thread stack after receiving the SIGSEGV.
 587 //
 588 // There are two ways to expand thread stack to address "bottom", we used
 589 // both of them in JVM before 1.5:
 590 //   1. adjust stack pointer first so that it is below "bottom", and then
 591 //      touch "bottom"
 592 //   2. mmap() the page in question
 593 //
 594 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 595 // if current sp is already near the lower end of page 101, and we need to
 596 // call mmap() to map page 100, it is possible that part of the mmap() frame
 597 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 598 // That will destroy the mmap() frame and cause VM to crash.
 599 //
 600 // The following code works by adjusting sp first, then accessing the "bottom"
 601 // page to force a page fault. Linux kernel will then automatically expand the
 602 // stack mapping.
 603 //
 604 // _expand_stack_to() assumes its frame size is less than page size, which
 605 // should always be true if the function is not inlined.
 606 
 607 static void NOINLINE _expand_stack_to(address bottom) {
 608   address sp;
 609   size_t size;
 610   volatile char *p;
 611 
 612   // Adjust bottom to point to the largest address within the same page, it
 613   // gives us a one-page buffer if alloca() allocates slightly more memory.
 614   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 615   bottom += os::Linux::page_size() - 1;
 616 
 617   // sp might be slightly above current stack pointer; if that's the case, we
 618   // will alloca() a little more space than necessary, which is OK. Don't use
 619   // os::current_stack_pointer(), as its result can be slightly below current
 620   // stack pointer, causing us to not alloca enough to reach "bottom".
 621   sp = (address)&sp;
 622 
 623   if (sp > bottom) {
 624     size = sp - bottom;
 625     p = (volatile char *)alloca(size);
 626     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 627     p[0] = '\0';
 628   }
 629 }
 630 
 631 void os::Linux::expand_stack_to(address bottom) {
 632   _expand_stack_to(bottom);
 633 }
 634 
 635 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 636   assert(t!=NULL, "just checking");
 637   assert(t->osthread()->expanding_stack(), "expand should be set");
 638   assert(t->stack_base() != NULL, "stack_base was not initialized");
 639 
 640   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 641     sigset_t mask_all, old_sigset;
 642     sigfillset(&mask_all);
 643     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 644     _expand_stack_to(addr);
 645     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 646     return true;
 647   }
 648   return false;
 649 }
 650 
 651 //////////////////////////////////////////////////////////////////////////////
 652 // create new thread
 653 
 654 // Thread start routine for all newly created threads
 655 static void *thread_native_entry(Thread *thread) {
 656   // Try to randomize the cache line index of hot stack frames.
 657   // This helps when threads of the same stack traces evict each other's
 658   // cache lines. The threads can be either from the same JVM instance, or
 659   // from different JVM instances. The benefit is especially true for
 660   // processors with hyperthreading technology.
 661   static int counter = 0;
 662   int pid = os::current_process_id();
 663   alloca(((pid ^ counter++) & 7) * 128);
 664 
 665   thread->initialize_thread_current();
 666 
 667   OSThread* osthread = thread->osthread();
 668   Monitor* sync = osthread->startThread_lock();
 669 
 670   osthread->set_thread_id(os::current_thread_id());
 671 
 672   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 673     os::current_thread_id(), (uintx) pthread_self());
 674 
 675   if (UseNUMA) {
 676     int lgrp_id = os::numa_get_group_id();
 677     if (lgrp_id != -1) {
 678       thread->set_lgrp_id(lgrp_id);
 679     }
 680   }
 681   // initialize signal mask for this thread
 682   os::Linux::hotspot_sigmask(thread);
 683 
 684   // initialize floating point control register
 685   os::Linux::init_thread_fpu_state();
 686 
 687   // handshaking with parent thread
 688   {
 689     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 690 
 691     // notify parent thread
 692     osthread->set_state(INITIALIZED);
 693     sync->notify_all();
 694 
 695     // wait until os::start_thread()
 696     while (osthread->get_state() == INITIALIZED) {
 697       sync->wait(Mutex::_no_safepoint_check_flag);
 698     }
 699   }
 700 
 701   // call one more level start routine
 702   thread->run();
 703 
 704   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 705     os::current_thread_id(), (uintx) pthread_self());
 706 
 707   // If a thread has not deleted itself ("delete this") as part of its
 708   // termination sequence, we have to ensure thread-local-storage is
 709   // cleared before we actually terminate. No threads should ever be
 710   // deleted asynchronously with respect to their termination.
 711   if (Thread::current_or_null_safe() != NULL) {
 712     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 713     thread->clear_thread_current();
 714   }
 715 
 716   return 0;
 717 }
 718 
 719 bool os::create_thread(Thread* thread, ThreadType thr_type,
 720                        size_t req_stack_size) {
 721   assert(thread->osthread() == NULL, "caller responsible");
 722 
 723   // Allocate the OSThread object
 724   OSThread* osthread = new OSThread(NULL, NULL);
 725   if (osthread == NULL) {
 726     return false;
 727   }
 728 
 729   // set the correct thread state
 730   osthread->set_thread_type(thr_type);
 731 
 732   // Initial state is ALLOCATED but not INITIALIZED
 733   osthread->set_state(ALLOCATED);
 734 
 735   thread->set_osthread(osthread);
 736 
 737   // init thread attributes
 738   pthread_attr_t attr;
 739   pthread_attr_init(&attr);
 740   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 741 
 742   // Calculate stack size if it's not specified by caller.
 743   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 744   // In the Linux NPTL pthread implementation the guard size mechanism
 745   // is not implemented properly. The posix standard requires adding
 746   // the size of the guard pages to the stack size, instead Linux
 747   // takes the space out of 'stacksize'. Thus we adapt the requested
 748   // stack_size by the size of the guard pages to mimick proper
 749   // behaviour. However, be careful not to end up with a size
 750   // of zero due to overflow. Don't add the guard page in that case.
 751   size_t guard_size = os::Linux::default_guard_size(thr_type);
 752   if (stack_size <= SIZE_MAX - guard_size) {
 753     stack_size += guard_size;
 754   }
 755   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 756 
 757   int status = pthread_attr_setstacksize(&attr, stack_size);
 758   assert_status(status == 0, status, "pthread_attr_setstacksize");
 759 
 760   // Configure glibc guard page.
 761   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 762 
 763   ThreadState state;
 764 
 765   {
 766     pthread_t tid;
 767     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 768 
 769     char buf[64];
 770     if (ret == 0) {
 771       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 772         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 773     } else {
 774       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 775         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 776     }
 777 
 778     pthread_attr_destroy(&attr);
 779 
 780     if (ret != 0) {
 781       // Need to clean up stuff we've allocated so far
 782       thread->set_osthread(NULL);
 783       delete osthread;
 784       return false;
 785     }
 786 
 787     // Store pthread info into the OSThread
 788     osthread->set_pthread_id(tid);
 789 
 790     // Wait until child thread is either initialized or aborted
 791     {
 792       Monitor* sync_with_child = osthread->startThread_lock();
 793       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 794       while ((state = osthread->get_state()) == ALLOCATED) {
 795         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 796       }
 797     }
 798   }
 799 
 800   // Aborted due to thread limit being reached
 801   if (state == ZOMBIE) {
 802     thread->set_osthread(NULL);
 803     delete osthread;
 804     return false;
 805   }
 806 
 807   // The thread is returned suspended (in state INITIALIZED),
 808   // and is started higher up in the call chain
 809   assert(state == INITIALIZED, "race condition");
 810   return true;
 811 }
 812 
 813 /////////////////////////////////////////////////////////////////////////////
 814 // attach existing thread
 815 
 816 // bootstrap the main thread
 817 bool os::create_main_thread(JavaThread* thread) {
 818   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 819   return create_attached_thread(thread);
 820 }
 821 
 822 bool os::create_attached_thread(JavaThread* thread) {
 823 #ifdef ASSERT
 824   thread->verify_not_published();
 825 #endif
 826 
 827   // Allocate the OSThread object
 828   OSThread* osthread = new OSThread(NULL, NULL);
 829 
 830   if (osthread == NULL) {
 831     return false;
 832   }
 833 
 834   // Store pthread info into the OSThread
 835   osthread->set_thread_id(os::Linux::gettid());
 836   osthread->set_pthread_id(::pthread_self());
 837 
 838   // initialize floating point control register
 839   os::Linux::init_thread_fpu_state();
 840 
 841   // Initial thread state is RUNNABLE
 842   osthread->set_state(RUNNABLE);
 843 
 844   thread->set_osthread(osthread);
 845 
 846   if (UseNUMA) {
 847     int lgrp_id = os::numa_get_group_id();
 848     if (lgrp_id != -1) {
 849       thread->set_lgrp_id(lgrp_id);
 850     }
 851   }
 852 
 853   if (os::is_primordial_thread()) {
 854     // If current thread is primordial thread, its stack is mapped on demand,
 855     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 856     // the entire stack region to avoid SEGV in stack banging.
 857     // It is also useful to get around the heap-stack-gap problem on SuSE
 858     // kernel (see 4821821 for details). We first expand stack to the top
 859     // of yellow zone, then enable stack yellow zone (order is significant,
 860     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 861     // is no gap between the last two virtual memory regions.
 862 
 863     JavaThread *jt = (JavaThread *)thread;
 864     address addr = jt->stack_reserved_zone_base();
 865     assert(addr != NULL, "initialization problem?");
 866     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 867 
 868     osthread->set_expanding_stack();
 869     os::Linux::manually_expand_stack(jt, addr);
 870     osthread->clear_expanding_stack();
 871   }
 872 
 873   // initialize signal mask for this thread
 874   // and save the caller's signal mask
 875   os::Linux::hotspot_sigmask(thread);
 876 
 877   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 878     os::current_thread_id(), (uintx) pthread_self());
 879 
 880   return true;
 881 }
 882 
 883 void os::pd_start_thread(Thread* thread) {
 884   OSThread * osthread = thread->osthread();
 885   assert(osthread->get_state() != INITIALIZED, "just checking");
 886   Monitor* sync_with_child = osthread->startThread_lock();
 887   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 888   sync_with_child->notify();
 889 }
 890 
 891 // Free Linux resources related to the OSThread
 892 void os::free_thread(OSThread* osthread) {
 893   assert(osthread != NULL, "osthread not set");
 894 
 895   // We are told to free resources of the argument thread,
 896   // but we can only really operate on the current thread.
 897   assert(Thread::current()->osthread() == osthread,
 898          "os::free_thread but not current thread");
 899 
 900 #ifdef ASSERT
 901   sigset_t current;
 902   sigemptyset(&current);
 903   pthread_sigmask(SIG_SETMASK, NULL, &current);
 904   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 905 #endif
 906 
 907   // Restore caller's signal mask
 908   sigset_t sigmask = osthread->caller_sigmask();
 909   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 910 
 911   delete osthread;
 912 }
 913 
 914 //////////////////////////////////////////////////////////////////////////////
 915 // primordial thread
 916 
 917 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 918 bool os::is_primordial_thread(void) {
 919   if (suppress_primordial_thread_resolution) {
 920     return false;
 921   }
 922   char dummy;
 923   // If called before init complete, thread stack bottom will be null.
 924   // Can be called if fatal error occurs before initialization.
 925   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 926   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 927          os::Linux::initial_thread_stack_size()   != 0,
 928          "os::init did not locate primordial thread's stack region");
 929   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 930       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 931                         os::Linux::initial_thread_stack_size()) {
 932     return true;
 933   } else {
 934     return false;
 935   }
 936 }
 937 
 938 // Find the virtual memory area that contains addr
 939 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 940   FILE *fp = fopen("/proc/self/maps", "r");
 941   if (fp) {
 942     address low, high;
 943     while (!feof(fp)) {
 944       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 945         if (low <= addr && addr < high) {
 946           if (vma_low)  *vma_low  = low;
 947           if (vma_high) *vma_high = high;
 948           fclose(fp);
 949           return true;
 950         }
 951       }
 952       for (;;) {
 953         int ch = fgetc(fp);
 954         if (ch == EOF || ch == (int)'\n') break;
 955       }
 956     }
 957     fclose(fp);
 958   }
 959   return false;
 960 }
 961 
 962 // Locate primordial thread stack. This special handling of primordial thread stack
 963 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 964 // bogus value for the primordial process thread. While the launcher has created
 965 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 966 // JNI invocation API from a primordial thread.
 967 void os::Linux::capture_initial_stack(size_t max_size) {
 968 
 969   // max_size is either 0 (which means accept OS default for thread stacks) or
 970   // a user-specified value known to be at least the minimum needed. If we
 971   // are actually on the primordial thread we can make it appear that we have a
 972   // smaller max_size stack by inserting the guard pages at that location. But we
 973   // cannot do anything to emulate a larger stack than what has been provided by
 974   // the OS or threading library. In fact if we try to use a stack greater than
 975   // what is set by rlimit then we will crash the hosting process.
 976 
 977   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 978   // If this is "unlimited" then it will be a huge value.
 979   struct rlimit rlim;
 980   getrlimit(RLIMIT_STACK, &rlim);
 981   size_t stack_size = rlim.rlim_cur;
 982 
 983   // 6308388: a bug in ld.so will relocate its own .data section to the
 984   //   lower end of primordial stack; reduce ulimit -s value a little bit
 985   //   so we won't install guard page on ld.so's data section.
 986   //   But ensure we don't underflow the stack size - allow 1 page spare
 987   if (stack_size >= (size_t)(3 * page_size())) {
 988     stack_size -= 2 * page_size();
 989   }
 990 
 991   // Try to figure out where the stack base (top) is. This is harder.
 992   //
 993   // When an application is started, glibc saves the initial stack pointer in
 994   // a global variable "__libc_stack_end", which is then used by system
 995   // libraries. __libc_stack_end should be pretty close to stack top. The
 996   // variable is available since the very early days. However, because it is
 997   // a private interface, it could disappear in the future.
 998   //
 999   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1000   // to __libc_stack_end, it is very close to stack top, but isn't the real
1001   // stack top. Note that /proc may not exist if VM is running as a chroot
1002   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1003   // /proc/<pid>/stat could change in the future (though unlikely).
1004   //
1005   // We try __libc_stack_end first. If that doesn't work, look for
1006   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1007   // as a hint, which should work well in most cases.
1008 
1009   uintptr_t stack_start;
1010 
1011   // try __libc_stack_end first
1012   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1013   if (p && *p) {
1014     stack_start = *p;
1015   } else {
1016     // see if we can get the start_stack field from /proc/self/stat
1017     FILE *fp;
1018     int pid;
1019     char state;
1020     int ppid;
1021     int pgrp;
1022     int session;
1023     int nr;
1024     int tpgrp;
1025     unsigned long flags;
1026     unsigned long minflt;
1027     unsigned long cminflt;
1028     unsigned long majflt;
1029     unsigned long cmajflt;
1030     unsigned long utime;
1031     unsigned long stime;
1032     long cutime;
1033     long cstime;
1034     long prio;
1035     long nice;
1036     long junk;
1037     long it_real;
1038     uintptr_t start;
1039     uintptr_t vsize;
1040     intptr_t rss;
1041     uintptr_t rsslim;
1042     uintptr_t scodes;
1043     uintptr_t ecode;
1044     int i;
1045 
1046     // Figure what the primordial thread stack base is. Code is inspired
1047     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1048     // followed by command name surrounded by parentheses, state, etc.
1049     char stat[2048];
1050     int statlen;
1051 
1052     fp = fopen("/proc/self/stat", "r");
1053     if (fp) {
1054       statlen = fread(stat, 1, 2047, fp);
1055       stat[statlen] = '\0';
1056       fclose(fp);
1057 
1058       // Skip pid and the command string. Note that we could be dealing with
1059       // weird command names, e.g. user could decide to rename java launcher
1060       // to "java 1.4.2 :)", then the stat file would look like
1061       //                1234 (java 1.4.2 :)) R ... ...
1062       // We don't really need to know the command string, just find the last
1063       // occurrence of ")" and then start parsing from there. See bug 4726580.
1064       char * s = strrchr(stat, ')');
1065 
1066       i = 0;
1067       if (s) {
1068         // Skip blank chars
1069         do { s++; } while (s && isspace(*s));
1070 
1071 #define _UFM UINTX_FORMAT
1072 #define _DFM INTX_FORMAT
1073 
1074         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1075         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1076         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1077                    &state,          // 3  %c
1078                    &ppid,           // 4  %d
1079                    &pgrp,           // 5  %d
1080                    &session,        // 6  %d
1081                    &nr,             // 7  %d
1082                    &tpgrp,          // 8  %d
1083                    &flags,          // 9  %lu
1084                    &minflt,         // 10 %lu
1085                    &cminflt,        // 11 %lu
1086                    &majflt,         // 12 %lu
1087                    &cmajflt,        // 13 %lu
1088                    &utime,          // 14 %lu
1089                    &stime,          // 15 %lu
1090                    &cutime,         // 16 %ld
1091                    &cstime,         // 17 %ld
1092                    &prio,           // 18 %ld
1093                    &nice,           // 19 %ld
1094                    &junk,           // 20 %ld
1095                    &it_real,        // 21 %ld
1096                    &start,          // 22 UINTX_FORMAT
1097                    &vsize,          // 23 UINTX_FORMAT
1098                    &rss,            // 24 INTX_FORMAT
1099                    &rsslim,         // 25 UINTX_FORMAT
1100                    &scodes,         // 26 UINTX_FORMAT
1101                    &ecode,          // 27 UINTX_FORMAT
1102                    &stack_start);   // 28 UINTX_FORMAT
1103       }
1104 
1105 #undef _UFM
1106 #undef _DFM
1107 
1108       if (i != 28 - 2) {
1109         assert(false, "Bad conversion from /proc/self/stat");
1110         // product mode - assume we are the primordial thread, good luck in the
1111         // embedded case.
1112         warning("Can't detect primordial thread stack location - bad conversion");
1113         stack_start = (uintptr_t) &rlim;
1114       }
1115     } else {
1116       // For some reason we can't open /proc/self/stat (for example, running on
1117       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1118       // most cases, so don't abort:
1119       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1120       stack_start = (uintptr_t) &rlim;
1121     }
1122   }
1123 
1124   // Now we have a pointer (stack_start) very close to the stack top, the
1125   // next thing to do is to figure out the exact location of stack top. We
1126   // can find out the virtual memory area that contains stack_start by
1127   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1128   // and its upper limit is the real stack top. (again, this would fail if
1129   // running inside chroot, because /proc may not exist.)
1130 
1131   uintptr_t stack_top;
1132   address low, high;
1133   if (find_vma((address)stack_start, &low, &high)) {
1134     // success, "high" is the true stack top. (ignore "low", because initial
1135     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1136     stack_top = (uintptr_t)high;
1137   } else {
1138     // failed, likely because /proc/self/maps does not exist
1139     warning("Can't detect primordial thread stack location - find_vma failed");
1140     // best effort: stack_start is normally within a few pages below the real
1141     // stack top, use it as stack top, and reduce stack size so we won't put
1142     // guard page outside stack.
1143     stack_top = stack_start;
1144     stack_size -= 16 * page_size();
1145   }
1146 
1147   // stack_top could be partially down the page so align it
1148   stack_top = align_up(stack_top, page_size());
1149 
1150   // Allowed stack value is minimum of max_size and what we derived from rlimit
1151   if (max_size > 0) {
1152     _initial_thread_stack_size = MIN2(max_size, stack_size);
1153   } else {
1154     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1155     // clamp it at 8MB as we do on Solaris
1156     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1157   }
1158   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1159   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1160 
1161   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1162 
1163   if (log_is_enabled(Info, os, thread)) {
1164     // See if we seem to be on primordial process thread
1165     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1166                       uintptr_t(&rlim) < stack_top;
1167 
1168     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1169                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1170                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1171                          stack_top, intptr_t(_initial_thread_stack_bottom));
1172   }
1173 }
1174 
1175 ////////////////////////////////////////////////////////////////////////////////
1176 // time support
1177 
1178 #ifndef SUPPORTS_CLOCK_MONOTONIC
1179 #error "Build platform doesn't support clock_gettime and related functionality"
1180 #endif
1181 
1182 // Time since start-up in seconds to a fine granularity.
1183 // Used by VMSelfDestructTimer and the MemProfiler.
1184 double os::elapsedTime() {
1185 
1186   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1187 }
1188 
1189 jlong os::elapsed_counter() {
1190   return javaTimeNanos() - initial_time_count;
1191 }
1192 
1193 jlong os::elapsed_frequency() {
1194   return NANOSECS_PER_SEC; // nanosecond resolution
1195 }
1196 
1197 bool os::supports_vtime() { return true; }
1198 bool os::enable_vtime()   { return false; }
1199 bool os::vtime_enabled()  { return false; }
1200 
1201 double os::elapsedVTime() {
1202   struct rusage usage;
1203   int retval = getrusage(RUSAGE_THREAD, &usage);
1204   if (retval == 0) {
1205     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1206   } else {
1207     // better than nothing, but not much
1208     return elapsedTime();
1209   }
1210 }
1211 
1212 jlong os::javaTimeMillis() {
1213   timeval time;
1214   int status = gettimeofday(&time, NULL);
1215   assert(status != -1, "linux error");
1216   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1217 }
1218 
1219 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1220   timeval time;
1221   int status = gettimeofday(&time, NULL);
1222   assert(status != -1, "linux error");
1223   seconds = jlong(time.tv_sec);
1224   nanos = jlong(time.tv_usec) * 1000;
1225 }
1226 
1227 void os::Linux::fast_thread_clock_init() {
1228   if (!UseLinuxPosixThreadCPUClocks) {
1229     return;
1230   }
1231   clockid_t clockid;
1232   struct timespec tp;
1233   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1234       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1235 
1236   // Switch to using fast clocks for thread cpu time if
1237   // the clock_getres() returns 0 error code.
1238   // Note, that some kernels may support the current thread
1239   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1240   // returned by the pthread_getcpuclockid().
1241   // If the fast Posix clocks are supported then the clock_getres()
1242   // must return at least tp.tv_sec == 0 which means a resolution
1243   // better than 1 sec. This is extra check for reliability.
1244 
1245   if (pthread_getcpuclockid_func &&
1246       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1247       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1248     _supports_fast_thread_cpu_time = true;
1249     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1250   }
1251 }
1252 
1253 jlong os::javaTimeNanos() {
1254   if (os::supports_monotonic_clock()) {
1255     struct timespec tp;
1256     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1257     assert(status == 0, "gettime error");
1258     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1259     return result;
1260   } else {
1261     timeval time;
1262     int status = gettimeofday(&time, NULL);
1263     assert(status != -1, "linux error");
1264     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1265     return 1000 * usecs;
1266   }
1267 }
1268 
1269 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1270   if (os::supports_monotonic_clock()) {
1271     info_ptr->max_value = ALL_64_BITS;
1272 
1273     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1274     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1275     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1276   } else {
1277     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1278     info_ptr->max_value = ALL_64_BITS;
1279 
1280     // gettimeofday is a real time clock so it skips
1281     info_ptr->may_skip_backward = true;
1282     info_ptr->may_skip_forward = true;
1283   }
1284 
1285   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1286 }
1287 
1288 // Return the real, user, and system times in seconds from an
1289 // arbitrary fixed point in the past.
1290 bool os::getTimesSecs(double* process_real_time,
1291                       double* process_user_time,
1292                       double* process_system_time) {
1293   struct tms ticks;
1294   clock_t real_ticks = times(&ticks);
1295 
1296   if (real_ticks == (clock_t) (-1)) {
1297     return false;
1298   } else {
1299     double ticks_per_second = (double) clock_tics_per_sec;
1300     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1301     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1302     *process_real_time = ((double) real_ticks) / ticks_per_second;
1303 
1304     return true;
1305   }
1306 }
1307 
1308 
1309 char * os::local_time_string(char *buf, size_t buflen) {
1310   struct tm t;
1311   time_t long_time;
1312   time(&long_time);
1313   localtime_r(&long_time, &t);
1314   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1315                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1316                t.tm_hour, t.tm_min, t.tm_sec);
1317   return buf;
1318 }
1319 
1320 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1321   return localtime_r(clock, res);
1322 }
1323 
1324 ////////////////////////////////////////////////////////////////////////////////
1325 // runtime exit support
1326 
1327 // Note: os::shutdown() might be called very early during initialization, or
1328 // called from signal handler. Before adding something to os::shutdown(), make
1329 // sure it is async-safe and can handle partially initialized VM.
1330 void os::shutdown() {
1331 
1332   // allow PerfMemory to attempt cleanup of any persistent resources
1333   perfMemory_exit();
1334 
1335   // needs to remove object in file system
1336   AttachListener::abort();
1337 
1338   // flush buffered output, finish log files
1339   ostream_abort();
1340 
1341   // Check for abort hook
1342   abort_hook_t abort_hook = Arguments::abort_hook();
1343   if (abort_hook != NULL) {
1344     abort_hook();
1345   }
1346 
1347 }
1348 
1349 // Note: os::abort() might be called very early during initialization, or
1350 // called from signal handler. Before adding something to os::abort(), make
1351 // sure it is async-safe and can handle partially initialized VM.
1352 void os::abort(bool dump_core, void* siginfo, const void* context) {
1353   os::shutdown();
1354   if (dump_core) {
1355 #ifndef PRODUCT
1356     fdStream out(defaultStream::output_fd());
1357     out.print_raw("Current thread is ");
1358     char buf[16];
1359     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1360     out.print_raw_cr(buf);
1361     out.print_raw_cr("Dumping core ...");
1362 #endif
1363     ::abort(); // dump core
1364   }
1365 
1366   ::exit(1);
1367 }
1368 
1369 // Die immediately, no exit hook, no abort hook, no cleanup.
1370 void os::die() {
1371   ::abort();
1372 }
1373 
1374 // thread_id is kernel thread id (similar to Solaris LWP id)
1375 intx os::current_thread_id() { return os::Linux::gettid(); }
1376 int os::current_process_id() {
1377   return ::getpid();
1378 }
1379 
1380 // DLL functions
1381 
1382 const char* os::dll_file_extension() { return ".so"; }
1383 
1384 // This must be hard coded because it's the system's temporary
1385 // directory not the java application's temp directory, ala java.io.tmpdir.
1386 const char* os::get_temp_directory() { return "/tmp"; }
1387 
1388 static bool file_exists(const char* filename) {
1389   struct stat statbuf;
1390   if (filename == NULL || strlen(filename) == 0) {
1391     return false;
1392   }
1393   return os::stat(filename, &statbuf) == 0;
1394 }
1395 
1396 // check if addr is inside libjvm.so
1397 bool os::address_is_in_vm(address addr) {
1398   static address libjvm_base_addr;
1399   Dl_info dlinfo;
1400 
1401   if (libjvm_base_addr == NULL) {
1402     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1403       libjvm_base_addr = (address)dlinfo.dli_fbase;
1404     }
1405     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1406   }
1407 
1408   if (dladdr((void *)addr, &dlinfo) != 0) {
1409     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1410   }
1411 
1412   return false;
1413 }
1414 
1415 bool os::dll_address_to_function_name(address addr, char *buf,
1416                                       int buflen, int *offset,
1417                                       bool demangle) {
1418   // buf is not optional, but offset is optional
1419   assert(buf != NULL, "sanity check");
1420 
1421   Dl_info dlinfo;
1422 
1423   if (dladdr((void*)addr, &dlinfo) != 0) {
1424     // see if we have a matching symbol
1425     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1426       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1427         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1428       }
1429       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1430       return true;
1431     }
1432     // no matching symbol so try for just file info
1433     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1434       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1435                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1436         return true;
1437       }
1438     }
1439   }
1440 
1441   buf[0] = '\0';
1442   if (offset != NULL) *offset = -1;
1443   return false;
1444 }
1445 
1446 struct _address_to_library_name {
1447   address addr;          // input : memory address
1448   size_t  buflen;        //         size of fname
1449   char*   fname;         // output: library name
1450   address base;          //         library base addr
1451 };
1452 
1453 static int address_to_library_name_callback(struct dl_phdr_info *info,
1454                                             size_t size, void *data) {
1455   int i;
1456   bool found = false;
1457   address libbase = NULL;
1458   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1459 
1460   // iterate through all loadable segments
1461   for (i = 0; i < info->dlpi_phnum; i++) {
1462     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1463     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1464       // base address of a library is the lowest address of its loaded
1465       // segments.
1466       if (libbase == NULL || libbase > segbase) {
1467         libbase = segbase;
1468       }
1469       // see if 'addr' is within current segment
1470       if (segbase <= d->addr &&
1471           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1472         found = true;
1473       }
1474     }
1475   }
1476 
1477   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1478   // so dll_address_to_library_name() can fall through to use dladdr() which
1479   // can figure out executable name from argv[0].
1480   if (found && info->dlpi_name && info->dlpi_name[0]) {
1481     d->base = libbase;
1482     if (d->fname) {
1483       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1484     }
1485     return 1;
1486   }
1487   return 0;
1488 }
1489 
1490 bool os::dll_address_to_library_name(address addr, char* buf,
1491                                      int buflen, int* offset) {
1492   // buf is not optional, but offset is optional
1493   assert(buf != NULL, "sanity check");
1494 
1495   Dl_info dlinfo;
1496   struct _address_to_library_name data;
1497 
1498   // There is a bug in old glibc dladdr() implementation that it could resolve
1499   // to wrong library name if the .so file has a base address != NULL. Here
1500   // we iterate through the program headers of all loaded libraries to find
1501   // out which library 'addr' really belongs to. This workaround can be
1502   // removed once the minimum requirement for glibc is moved to 2.3.x.
1503   data.addr = addr;
1504   data.fname = buf;
1505   data.buflen = buflen;
1506   data.base = NULL;
1507   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1508 
1509   if (rslt) {
1510     // buf already contains library name
1511     if (offset) *offset = addr - data.base;
1512     return true;
1513   }
1514   if (dladdr((void*)addr, &dlinfo) != 0) {
1515     if (dlinfo.dli_fname != NULL) {
1516       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1517     }
1518     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1519       *offset = addr - (address)dlinfo.dli_fbase;
1520     }
1521     return true;
1522   }
1523 
1524   buf[0] = '\0';
1525   if (offset) *offset = -1;
1526   return false;
1527 }
1528 
1529 // Loads .dll/.so and
1530 // in case of error it checks if .dll/.so was built for the
1531 // same architecture as Hotspot is running on
1532 
1533 
1534 // Remember the stack's state. The Linux dynamic linker will change
1535 // the stack to 'executable' at most once, so we must safepoint only once.
1536 bool os::Linux::_stack_is_executable = false;
1537 
1538 // VM operation that loads a library.  This is necessary if stack protection
1539 // of the Java stacks can be lost during loading the library.  If we
1540 // do not stop the Java threads, they can stack overflow before the stacks
1541 // are protected again.
1542 class VM_LinuxDllLoad: public VM_Operation {
1543  private:
1544   const char *_filename;
1545   char *_ebuf;
1546   int _ebuflen;
1547   void *_lib;
1548  public:
1549   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1550     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1551   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1552   void doit() {
1553     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1554     os::Linux::_stack_is_executable = true;
1555   }
1556   void* loaded_library() { return _lib; }
1557 };
1558 
1559 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1560   void * result = NULL;
1561   bool load_attempted = false;
1562 
1563   // Check whether the library to load might change execution rights
1564   // of the stack. If they are changed, the protection of the stack
1565   // guard pages will be lost. We need a safepoint to fix this.
1566   //
1567   // See Linux man page execstack(8) for more info.
1568   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1569     if (!ElfFile::specifies_noexecstack(filename)) {
1570       if (!is_init_completed()) {
1571         os::Linux::_stack_is_executable = true;
1572         // This is OK - No Java threads have been created yet, and hence no
1573         // stack guard pages to fix.
1574         //
1575         // Dynamic loader will make all stacks executable after
1576         // this function returns, and will not do that again.
1577         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1578       } else {
1579         warning("You have loaded library %s which might have disabled stack guard. "
1580                 "The VM will try to fix the stack guard now.\n"
1581                 "It's highly recommended that you fix the library with "
1582                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1583                 filename);
1584 
1585         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1586         JavaThread *jt = JavaThread::current();
1587         if (jt->thread_state() != _thread_in_native) {
1588           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1589           // that requires ExecStack. Cannot enter safe point. Let's give up.
1590           warning("Unable to fix stack guard. Giving up.");
1591         } else {
1592           if (!LoadExecStackDllInVMThread) {
1593             // This is for the case where the DLL has an static
1594             // constructor function that executes JNI code. We cannot
1595             // load such DLLs in the VMThread.
1596             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1597           }
1598 
1599           ThreadInVMfromNative tiv(jt);
1600           debug_only(VMNativeEntryWrapper vew;)
1601 
1602           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1603           VMThread::execute(&op);
1604           if (LoadExecStackDllInVMThread) {
1605             result = op.loaded_library();
1606           }
1607           load_attempted = true;
1608         }
1609       }
1610     }
1611   }
1612 
1613   if (!load_attempted) {
1614     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1615   }
1616 
1617   if (result != NULL) {
1618     // Successful loading
1619     return result;
1620   }
1621 
1622   Elf32_Ehdr elf_head;
1623   int diag_msg_max_length=ebuflen-strlen(ebuf);
1624   char* diag_msg_buf=ebuf+strlen(ebuf);
1625 
1626   if (diag_msg_max_length==0) {
1627     // No more space in ebuf for additional diagnostics message
1628     return NULL;
1629   }
1630 
1631 
1632   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1633 
1634   if (file_descriptor < 0) {
1635     // Can't open library, report dlerror() message
1636     return NULL;
1637   }
1638 
1639   bool failed_to_read_elf_head=
1640     (sizeof(elf_head)!=
1641      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1642 
1643   ::close(file_descriptor);
1644   if (failed_to_read_elf_head) {
1645     // file i/o error - report dlerror() msg
1646     return NULL;
1647   }
1648 
1649   typedef struct {
1650     Elf32_Half    code;         // Actual value as defined in elf.h
1651     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1652     unsigned char elf_class;    // 32 or 64 bit
1653     unsigned char endianess;    // MSB or LSB
1654     char*         name;         // String representation
1655   } arch_t;
1656 
1657 #ifndef EM_486
1658   #define EM_486          6               /* Intel 80486 */
1659 #endif
1660 #ifndef EM_AARCH64
1661   #define EM_AARCH64    183               /* ARM AARCH64 */
1662 #endif
1663 
1664   static const arch_t arch_array[]={
1665     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1666     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1667     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1668     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1669     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1670     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1671     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1672     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1673 #if defined(VM_LITTLE_ENDIAN)
1674     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1675     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1676 #else
1677     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1678     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1679 #endif
1680     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1681     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1682     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1683     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1684     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1685     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1686     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1687     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1688   };
1689 
1690 #if  (defined IA32)
1691   static  Elf32_Half running_arch_code=EM_386;
1692 #elif   (defined AMD64) || (defined X32)
1693   static  Elf32_Half running_arch_code=EM_X86_64;
1694 #elif  (defined IA64)
1695   static  Elf32_Half running_arch_code=EM_IA_64;
1696 #elif  (defined __sparc) && (defined _LP64)
1697   static  Elf32_Half running_arch_code=EM_SPARCV9;
1698 #elif  (defined __sparc) && (!defined _LP64)
1699   static  Elf32_Half running_arch_code=EM_SPARC;
1700 #elif  (defined __powerpc64__)
1701   static  Elf32_Half running_arch_code=EM_PPC64;
1702 #elif  (defined __powerpc__)
1703   static  Elf32_Half running_arch_code=EM_PPC;
1704 #elif  (defined AARCH64)
1705   static  Elf32_Half running_arch_code=EM_AARCH64;
1706 #elif  (defined ARM)
1707   static  Elf32_Half running_arch_code=EM_ARM;
1708 #elif  (defined S390)
1709   static  Elf32_Half running_arch_code=EM_S390;
1710 #elif  (defined ALPHA)
1711   static  Elf32_Half running_arch_code=EM_ALPHA;
1712 #elif  (defined MIPSEL)
1713   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1714 #elif  (defined PARISC)
1715   static  Elf32_Half running_arch_code=EM_PARISC;
1716 #elif  (defined MIPS)
1717   static  Elf32_Half running_arch_code=EM_MIPS;
1718 #elif  (defined M68K)
1719   static  Elf32_Half running_arch_code=EM_68K;
1720 #elif  (defined SH)
1721   static  Elf32_Half running_arch_code=EM_SH;
1722 #else
1723     #error Method os::dll_load requires that one of following is defined:\
1724         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1725 #endif
1726 
1727   // Identify compatability class for VM's architecture and library's architecture
1728   // Obtain string descriptions for architectures
1729 
1730   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1731   int running_arch_index=-1;
1732 
1733   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1734     if (running_arch_code == arch_array[i].code) {
1735       running_arch_index    = i;
1736     }
1737     if (lib_arch.code == arch_array[i].code) {
1738       lib_arch.compat_class = arch_array[i].compat_class;
1739       lib_arch.name         = arch_array[i].name;
1740     }
1741   }
1742 
1743   assert(running_arch_index != -1,
1744          "Didn't find running architecture code (running_arch_code) in arch_array");
1745   if (running_arch_index == -1) {
1746     // Even though running architecture detection failed
1747     // we may still continue with reporting dlerror() message
1748     return NULL;
1749   }
1750 
1751   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1752     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1753     return NULL;
1754   }
1755 
1756 #ifndef S390
1757   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1758     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1759     return NULL;
1760   }
1761 #endif // !S390
1762 
1763   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1764     if (lib_arch.name!=NULL) {
1765       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1766                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1767                  lib_arch.name, arch_array[running_arch_index].name);
1768     } else {
1769       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1770                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1771                  lib_arch.code,
1772                  arch_array[running_arch_index].name);
1773     }
1774   }
1775 
1776   return NULL;
1777 }
1778 
1779 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1780                                 int ebuflen) {
1781   void * result = ::dlopen(filename, RTLD_LAZY);
1782   if (result == NULL) {
1783     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1784     ebuf[ebuflen-1] = '\0';
1785   }
1786   return result;
1787 }
1788 
1789 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1790                                        int ebuflen) {
1791   void * result = NULL;
1792   if (LoadExecStackDllInVMThread) {
1793     result = dlopen_helper(filename, ebuf, ebuflen);
1794   }
1795 
1796   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1797   // library that requires an executable stack, or which does not have this
1798   // stack attribute set, dlopen changes the stack attribute to executable. The
1799   // read protection of the guard pages gets lost.
1800   //
1801   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1802   // may have been queued at the same time.
1803 
1804   if (!_stack_is_executable) {
1805     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1806       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1807           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1808         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1809           warning("Attempt to reguard stack yellow zone failed.");
1810         }
1811       }
1812     }
1813   }
1814 
1815   return result;
1816 }
1817 
1818 void* os::dll_lookup(void* handle, const char* name) {
1819   void* res = dlsym(handle, name);
1820   return res;
1821 }
1822 
1823 void* os::get_default_process_handle() {
1824   return (void*)::dlopen(NULL, RTLD_LAZY);
1825 }
1826 
1827 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
1828   int fd = ::open(filename, O_RDONLY);
1829   if (fd == -1) {
1830     return false;
1831   }
1832 
1833   if (hdr != NULL) {
1834     st->print_cr("%s", hdr);
1835   }
1836 
1837   char buf[33];
1838   int bytes;
1839   buf[32] = '\0';
1840   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1841     st->print_raw(buf, bytes);
1842   }
1843 
1844   ::close(fd);
1845 
1846   return true;
1847 }
1848 
1849 void os::print_dll_info(outputStream *st) {
1850   st->print_cr("Dynamic libraries:");
1851 
1852   char fname[32];
1853   pid_t pid = os::Linux::gettid();
1854 
1855   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1856 
1857   if (!_print_ascii_file(fname, st)) {
1858     st->print("Can not get library information for pid = %d\n", pid);
1859   }
1860 }
1861 
1862 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1863   FILE *procmapsFile = NULL;
1864 
1865   // Open the procfs maps file for the current process
1866   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1867     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1868     char line[PATH_MAX + 100];
1869 
1870     // Read line by line from 'file'
1871     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1872       u8 base, top, offset, inode;
1873       char permissions[5];
1874       char device[6];
1875       char name[PATH_MAX + 1];
1876 
1877       // Parse fields from line
1878       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1879              &base, &top, permissions, &offset, device, &inode, name);
1880 
1881       // Filter by device id '00:00' so that we only get file system mapped files.
1882       if (strcmp(device, "00:00") != 0) {
1883 
1884         // Call callback with the fields of interest
1885         if(callback(name, (address)base, (address)top, param)) {
1886           // Oops abort, callback aborted
1887           fclose(procmapsFile);
1888           return 1;
1889         }
1890       }
1891     }
1892     fclose(procmapsFile);
1893   }
1894   return 0;
1895 }
1896 
1897 void os::print_os_info_brief(outputStream* st) {
1898   os::Linux::print_distro_info(st);
1899 
1900   os::Posix::print_uname_info(st);
1901 
1902   os::Linux::print_libversion_info(st);
1903 
1904 }
1905 
1906 void os::print_os_info(outputStream* st) {
1907   st->print("OS:");
1908 
1909   os::Linux::print_distro_info(st);
1910 
1911   os::Posix::print_uname_info(st);
1912 
1913   // Print warning if unsafe chroot environment detected
1914   if (unsafe_chroot_detected) {
1915     st->print("WARNING!! ");
1916     st->print_cr("%s", unstable_chroot_error);
1917   }
1918 
1919   os::Linux::print_libversion_info(st);
1920 
1921   os::Posix::print_rlimit_info(st);
1922 
1923   os::Posix::print_load_average(st);
1924 
1925   os::Linux::print_full_memory_info(st);
1926 
1927   os::Linux::print_proc_sys_info(st);
1928 
1929   os::Linux::print_ld_preload_file(st);
1930 
1931   os::Linux::print_container_info(st);
1932 }
1933 
1934 // Try to identify popular distros.
1935 // Most Linux distributions have a /etc/XXX-release file, which contains
1936 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1937 // file that also contains the OS version string. Some have more than one
1938 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1939 // /etc/redhat-release.), so the order is important.
1940 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1941 // their own specific XXX-release file as well as a redhat-release file.
1942 // Because of this the XXX-release file needs to be searched for before the
1943 // redhat-release file.
1944 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1945 // search for redhat-release / SuSE-release needs to be before lsb-release.
1946 // Since the lsb-release file is the new standard it needs to be searched
1947 // before the older style release files.
1948 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1949 // next to last resort.  The os-release file is a new standard that contains
1950 // distribution information and the system-release file seems to be an old
1951 // standard that has been replaced by the lsb-release and os-release files.
1952 // Searching for the debian_version file is the last resort.  It contains
1953 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1954 // "Debian " is printed before the contents of the debian_version file.
1955 
1956 const char* distro_files[] = {
1957   "/etc/oracle-release",
1958   "/etc/mandriva-release",
1959   "/etc/mandrake-release",
1960   "/etc/sun-release",
1961   "/etc/redhat-release",
1962   "/etc/SuSE-release",
1963   "/etc/lsb-release",
1964   "/etc/turbolinux-release",
1965   "/etc/gentoo-release",
1966   "/etc/ltib-release",
1967   "/etc/angstrom-version",
1968   "/etc/system-release",
1969   "/etc/os-release",
1970   NULL };
1971 
1972 void os::Linux::print_distro_info(outputStream* st) {
1973   for (int i = 0;; i++) {
1974     const char* file = distro_files[i];
1975     if (file == NULL) {
1976       break;  // done
1977     }
1978     // If file prints, we found it.
1979     if (_print_ascii_file(file, st)) {
1980       return;
1981     }
1982   }
1983 
1984   if (file_exists("/etc/debian_version")) {
1985     st->print("Debian ");
1986     _print_ascii_file("/etc/debian_version", st);
1987   } else {
1988     st->print("Linux");
1989   }
1990   st->cr();
1991 }
1992 
1993 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
1994   char buf[256];
1995   while (fgets(buf, sizeof(buf), fp)) {
1996     // Edit out extra stuff in expected format
1997     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
1998       char* ptr = strstr(buf, "\"");  // the name is in quotes
1999       if (ptr != NULL) {
2000         ptr++; // go beyond first quote
2001         char* nl = strchr(ptr, '\"');
2002         if (nl != NULL) *nl = '\0';
2003         strncpy(distro, ptr, length);
2004       } else {
2005         ptr = strstr(buf, "=");
2006         ptr++; // go beyond equals then
2007         char* nl = strchr(ptr, '\n');
2008         if (nl != NULL) *nl = '\0';
2009         strncpy(distro, ptr, length);
2010       }
2011       return;
2012     } else if (get_first_line) {
2013       char* nl = strchr(buf, '\n');
2014       if (nl != NULL) *nl = '\0';
2015       strncpy(distro, buf, length);
2016       return;
2017     }
2018   }
2019   // print last line and close
2020   char* nl = strchr(buf, '\n');
2021   if (nl != NULL) *nl = '\0';
2022   strncpy(distro, buf, length);
2023 }
2024 
2025 static void parse_os_info(char* distro, size_t length, const char* file) {
2026   FILE* fp = fopen(file, "r");
2027   if (fp != NULL) {
2028     // if suse format, print out first line
2029     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2030     parse_os_info_helper(fp, distro, length, get_first_line);
2031     fclose(fp);
2032   }
2033 }
2034 
2035 void os::get_summary_os_info(char* buf, size_t buflen) {
2036   for (int i = 0;; i++) {
2037     const char* file = distro_files[i];
2038     if (file == NULL) {
2039       break; // ran out of distro_files
2040     }
2041     if (file_exists(file)) {
2042       parse_os_info(buf, buflen, file);
2043       return;
2044     }
2045   }
2046   // special case for debian
2047   if (file_exists("/etc/debian_version")) {
2048     strncpy(buf, "Debian ", buflen);
2049     if (buflen > 7) {
2050       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2051     }
2052   } else {
2053     strncpy(buf, "Linux", buflen);
2054   }
2055 }
2056 
2057 void os::Linux::print_libversion_info(outputStream* st) {
2058   // libc, pthread
2059   st->print("libc:");
2060   st->print("%s ", os::Linux::glibc_version());
2061   st->print("%s ", os::Linux::libpthread_version());
2062   st->cr();
2063 }
2064 
2065 void os::Linux::print_proc_sys_info(outputStream* st) {
2066   st->cr();
2067   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2068   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2069   st->cr();
2070   st->cr();
2071 
2072   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2073   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2074   st->cr();
2075   st->cr();
2076 
2077   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2078   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2079   st->cr();
2080   st->cr();
2081 }
2082 
2083 void os::Linux::print_full_memory_info(outputStream* st) {
2084   st->print("\n/proc/meminfo:\n");
2085   _print_ascii_file("/proc/meminfo", st);
2086   st->cr();
2087 }
2088 
2089 void os::Linux::print_ld_preload_file(outputStream* st) {
2090   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2091   st->cr();
2092 }
2093 
2094 void os::Linux::print_container_info(outputStream* st) {
2095   if (!OSContainer::is_containerized()) {
2096     return;
2097   }
2098 
2099   st->print("container (cgroup) information:\n");
2100 
2101   const char *p_ct = OSContainer::container_type();
2102   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2103 
2104   char *p = OSContainer::cpu_cpuset_cpus();
2105   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2106   free(p);
2107 
2108   p = OSContainer::cpu_cpuset_memory_nodes();
2109   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2110   free(p);
2111 
2112   int i = OSContainer::active_processor_count();
2113   if (i > 0) {
2114     st->print("active_processor_count: %d\n", i);
2115   } else {
2116     st->print("active_processor_count: failed\n");
2117   }
2118 
2119   i = OSContainer::cpu_quota();
2120   st->print("cpu_quota: %d\n", i);
2121 
2122   i = OSContainer::cpu_period();
2123   st->print("cpu_period: %d\n", i);
2124 
2125   i = OSContainer::cpu_shares();
2126   st->print("cpu_shares: %d\n", i);
2127 
2128   jlong j = OSContainer::memory_limit_in_bytes();
2129   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2130 
2131   j = OSContainer::memory_and_swap_limit_in_bytes();
2132   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2133 
2134   j = OSContainer::memory_soft_limit_in_bytes();
2135   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2136 
2137   j = OSContainer::OSContainer::memory_usage_in_bytes();
2138   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2139 
2140   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2141   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2142   st->cr();
2143 }
2144 
2145 void os::print_memory_info(outputStream* st) {
2146 
2147   st->print("Memory:");
2148   st->print(" %dk page", os::vm_page_size()>>10);
2149 
2150   // values in struct sysinfo are "unsigned long"
2151   struct sysinfo si;
2152   sysinfo(&si);
2153 
2154   st->print(", physical " UINT64_FORMAT "k",
2155             os::physical_memory() >> 10);
2156   st->print("(" UINT64_FORMAT "k free)",
2157             os::available_memory() >> 10);
2158   st->print(", swap " UINT64_FORMAT "k",
2159             ((jlong)si.totalswap * si.mem_unit) >> 10);
2160   st->print("(" UINT64_FORMAT "k free)",
2161             ((jlong)si.freeswap * si.mem_unit) >> 10);
2162   st->cr();
2163 }
2164 
2165 // Print the first "model name" line and the first "flags" line
2166 // that we find and nothing more. We assume "model name" comes
2167 // before "flags" so if we find a second "model name", then the
2168 // "flags" field is considered missing.
2169 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2170 #if defined(IA32) || defined(AMD64)
2171   // Other platforms have less repetitive cpuinfo files
2172   FILE *fp = fopen("/proc/cpuinfo", "r");
2173   if (fp) {
2174     while (!feof(fp)) {
2175       if (fgets(buf, buflen, fp)) {
2176         // Assume model name comes before flags
2177         bool model_name_printed = false;
2178         if (strstr(buf, "model name") != NULL) {
2179           if (!model_name_printed) {
2180             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2181             st->print_raw(buf);
2182             model_name_printed = true;
2183           } else {
2184             // model name printed but not flags?  Odd, just return
2185             fclose(fp);
2186             return true;
2187           }
2188         }
2189         // print the flags line too
2190         if (strstr(buf, "flags") != NULL) {
2191           st->print_raw(buf);
2192           fclose(fp);
2193           return true;
2194         }
2195       }
2196     }
2197     fclose(fp);
2198   }
2199 #endif // x86 platforms
2200   return false;
2201 }
2202 
2203 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2204   // Only print the model name if the platform provides this as a summary
2205   if (!print_model_name_and_flags(st, buf, buflen)) {
2206     st->print("\n/proc/cpuinfo:\n");
2207     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2208       st->print_cr("  <Not Available>");
2209     }
2210   }
2211 }
2212 
2213 #if defined(AMD64) || defined(IA32) || defined(X32)
2214 const char* search_string = "model name";
2215 #elif defined(M68K)
2216 const char* search_string = "CPU";
2217 #elif defined(PPC64)
2218 const char* search_string = "cpu";
2219 #elif defined(S390)
2220 const char* search_string = "processor";
2221 #elif defined(SPARC)
2222 const char* search_string = "cpu";
2223 #else
2224 const char* search_string = "Processor";
2225 #endif
2226 
2227 // Parses the cpuinfo file for string representing the model name.
2228 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2229   FILE* fp = fopen("/proc/cpuinfo", "r");
2230   if (fp != NULL) {
2231     while (!feof(fp)) {
2232       char buf[256];
2233       if (fgets(buf, sizeof(buf), fp)) {
2234         char* start = strstr(buf, search_string);
2235         if (start != NULL) {
2236           char *ptr = start + strlen(search_string);
2237           char *end = buf + strlen(buf);
2238           while (ptr != end) {
2239              // skip whitespace and colon for the rest of the name.
2240              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2241                break;
2242              }
2243              ptr++;
2244           }
2245           if (ptr != end) {
2246             // reasonable string, get rid of newline and keep the rest
2247             char* nl = strchr(buf, '\n');
2248             if (nl != NULL) *nl = '\0';
2249             strncpy(cpuinfo, ptr, length);
2250             fclose(fp);
2251             return;
2252           }
2253         }
2254       }
2255     }
2256     fclose(fp);
2257   }
2258   // cpuinfo not found or parsing failed, just print generic string.  The entire
2259   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2260 #if   defined(AARCH64)
2261   strncpy(cpuinfo, "AArch64", length);
2262 #elif defined(AMD64)
2263   strncpy(cpuinfo, "x86_64", length);
2264 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2265   strncpy(cpuinfo, "ARM", length);
2266 #elif defined(IA32)
2267   strncpy(cpuinfo, "x86_32", length);
2268 #elif defined(IA64)
2269   strncpy(cpuinfo, "IA64", length);
2270 #elif defined(PPC)
2271   strncpy(cpuinfo, "PPC64", length);
2272 #elif defined(S390)
2273   strncpy(cpuinfo, "S390", length);
2274 #elif defined(SPARC)
2275   strncpy(cpuinfo, "sparcv9", length);
2276 #elif defined(ZERO_LIBARCH)
2277   strncpy(cpuinfo, ZERO_LIBARCH, length);
2278 #else
2279   strncpy(cpuinfo, "unknown", length);
2280 #endif
2281 }
2282 
2283 static void print_signal_handler(outputStream* st, int sig,
2284                                  char* buf, size_t buflen);
2285 
2286 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2287   st->print_cr("Signal Handlers:");
2288   print_signal_handler(st, SIGSEGV, buf, buflen);
2289   print_signal_handler(st, SIGBUS , buf, buflen);
2290   print_signal_handler(st, SIGFPE , buf, buflen);
2291   print_signal_handler(st, SIGPIPE, buf, buflen);
2292   print_signal_handler(st, SIGXFSZ, buf, buflen);
2293   print_signal_handler(st, SIGILL , buf, buflen);
2294   print_signal_handler(st, SR_signum, buf, buflen);
2295   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2296   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2297   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2298   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2299 #if defined(PPC64)
2300   print_signal_handler(st, SIGTRAP, buf, buflen);
2301 #endif
2302 }
2303 
2304 static char saved_jvm_path[MAXPATHLEN] = {0};
2305 
2306 // Find the full path to the current module, libjvm.so
2307 void os::jvm_path(char *buf, jint buflen) {
2308   // Error checking.
2309   if (buflen < MAXPATHLEN) {
2310     assert(false, "must use a large-enough buffer");
2311     buf[0] = '\0';
2312     return;
2313   }
2314   // Lazy resolve the path to current module.
2315   if (saved_jvm_path[0] != 0) {
2316     strcpy(buf, saved_jvm_path);
2317     return;
2318   }
2319 
2320   char dli_fname[MAXPATHLEN];
2321   bool ret = dll_address_to_library_name(
2322                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2323                                          dli_fname, sizeof(dli_fname), NULL);
2324   assert(ret, "cannot locate libjvm");
2325   char *rp = NULL;
2326   if (ret && dli_fname[0] != '\0') {
2327     rp = os::Posix::realpath(dli_fname, buf, buflen);
2328   }
2329   if (rp == NULL) {
2330     return;
2331   }
2332 
2333   if (Arguments::sun_java_launcher_is_altjvm()) {
2334     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2335     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2336     // If "/jre/lib/" appears at the right place in the string, then
2337     // assume we are installed in a JDK and we're done. Otherwise, check
2338     // for a JAVA_HOME environment variable and fix up the path so it
2339     // looks like libjvm.so is installed there (append a fake suffix
2340     // hotspot/libjvm.so).
2341     const char *p = buf + strlen(buf) - 1;
2342     for (int count = 0; p > buf && count < 5; ++count) {
2343       for (--p; p > buf && *p != '/'; --p)
2344         /* empty */ ;
2345     }
2346 
2347     if (strncmp(p, "/jre/lib/", 9) != 0) {
2348       // Look for JAVA_HOME in the environment.
2349       char* java_home_var = ::getenv("JAVA_HOME");
2350       if (java_home_var != NULL && java_home_var[0] != 0) {
2351         char* jrelib_p;
2352         int len;
2353 
2354         // Check the current module name "libjvm.so".
2355         p = strrchr(buf, '/');
2356         if (p == NULL) {
2357           return;
2358         }
2359         assert(strstr(p, "/libjvm") == p, "invalid library name");
2360 
2361         rp = os::Posix::realpath(java_home_var, buf, buflen);
2362         if (rp == NULL) {
2363           return;
2364         }
2365 
2366         // determine if this is a legacy image or modules image
2367         // modules image doesn't have "jre" subdirectory
2368         len = strlen(buf);
2369         assert(len < buflen, "Ran out of buffer room");
2370         jrelib_p = buf + len;
2371         snprintf(jrelib_p, buflen-len, "/jre/lib");
2372         if (0 != access(buf, F_OK)) {
2373           snprintf(jrelib_p, buflen-len, "/lib");
2374         }
2375 
2376         if (0 == access(buf, F_OK)) {
2377           // Use current module name "libjvm.so"
2378           len = strlen(buf);
2379           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2380         } else {
2381           // Go back to path of .so
2382           rp = os::Posix::realpath(dli_fname, buf, buflen);
2383           if (rp == NULL) {
2384             return;
2385           }
2386         }
2387       }
2388     }
2389   }
2390 
2391   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2392   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2393 }
2394 
2395 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2396   // no prefix required, not even "_"
2397 }
2398 
2399 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2400   // no suffix required
2401 }
2402 
2403 ////////////////////////////////////////////////////////////////////////////////
2404 // sun.misc.Signal support
2405 
2406 static volatile jint sigint_count = 0;
2407 
2408 static void UserHandler(int sig, void *siginfo, void *context) {
2409   // 4511530 - sem_post is serialized and handled by the manager thread. When
2410   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2411   // don't want to flood the manager thread with sem_post requests.
2412   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2413     return;
2414   }
2415 
2416   // Ctrl-C is pressed during error reporting, likely because the error
2417   // handler fails to abort. Let VM die immediately.
2418   if (sig == SIGINT && VMError::is_error_reported()) {
2419     os::die();
2420   }
2421 
2422   os::signal_notify(sig);
2423 }
2424 
2425 void* os::user_handler() {
2426   return CAST_FROM_FN_PTR(void*, UserHandler);
2427 }
2428 
2429 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2430   struct timespec ts;
2431   // Semaphore's are always associated with CLOCK_REALTIME
2432   os::Posix::clock_gettime(CLOCK_REALTIME, &ts);
2433   // see os_posix.cpp for discussion on overflow checking
2434   if (sec >= MAX_SECS) {
2435     ts.tv_sec += MAX_SECS;
2436     ts.tv_nsec = 0;
2437   } else {
2438     ts.tv_sec += sec;
2439     ts.tv_nsec += nsec;
2440     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2441       ts.tv_nsec -= NANOSECS_PER_SEC;
2442       ++ts.tv_sec; // note: this must be <= max_secs
2443     }
2444   }
2445 
2446   return ts;
2447 }
2448 
2449 extern "C" {
2450   typedef void (*sa_handler_t)(int);
2451   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2452 }
2453 
2454 void* os::signal(int signal_number, void* handler) {
2455   struct sigaction sigAct, oldSigAct;
2456 
2457   sigfillset(&(sigAct.sa_mask));
2458   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2459   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2460 
2461   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2462     // -1 means registration failed
2463     return (void *)-1;
2464   }
2465 
2466   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2467 }
2468 
2469 void os::signal_raise(int signal_number) {
2470   ::raise(signal_number);
2471 }
2472 
2473 // The following code is moved from os.cpp for making this
2474 // code platform specific, which it is by its very nature.
2475 
2476 // Will be modified when max signal is changed to be dynamic
2477 int os::sigexitnum_pd() {
2478   return NSIG;
2479 }
2480 
2481 // a counter for each possible signal value
2482 static volatile jint pending_signals[NSIG+1] = { 0 };
2483 
2484 // Linux(POSIX) specific hand shaking semaphore.
2485 static Semaphore* sig_sem = NULL;
2486 static PosixSemaphore sr_semaphore;
2487 
2488 static void jdk_misc_signal_init() {
2489   // Initialize signal structures
2490   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2491 
2492   // Initialize signal semaphore
2493   sig_sem = new Semaphore();
2494 }
2495 
2496 void os::signal_notify(int sig) {
2497   if (sig_sem != NULL) {
2498     Atomic::inc(&pending_signals[sig]);
2499     sig_sem->signal();
2500   } else {
2501     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2502     // initialization isn't called.
2503     assert(ReduceSignalUsage, "signal semaphore should be created");
2504   }
2505 }
2506 
2507 static int check_pending_signals() {
2508   Atomic::store(0, &sigint_count);
2509   for (;;) {
2510     for (int i = 0; i < NSIG + 1; i++) {
2511       jint n = pending_signals[i];
2512       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2513         return i;
2514       }
2515     }
2516     JavaThread *thread = JavaThread::current();
2517     ThreadBlockInVM tbivm(thread);
2518 
2519     bool threadIsSuspended;
2520     do {
2521       thread->set_suspend_equivalent();
2522       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2523       sig_sem->wait();
2524 
2525       // were we externally suspended while we were waiting?
2526       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2527       if (threadIsSuspended) {
2528         // The semaphore has been incremented, but while we were waiting
2529         // another thread suspended us. We don't want to continue running
2530         // while suspended because that would surprise the thread that
2531         // suspended us.
2532         sig_sem->signal();
2533 
2534         thread->java_suspend_self();
2535       }
2536     } while (threadIsSuspended);
2537   }
2538 }
2539 
2540 int os::signal_wait() {
2541   return check_pending_signals();
2542 }
2543 
2544 ////////////////////////////////////////////////////////////////////////////////
2545 // Virtual Memory
2546 
2547 int os::vm_page_size() {
2548   // Seems redundant as all get out
2549   assert(os::Linux::page_size() != -1, "must call os::init");
2550   return os::Linux::page_size();
2551 }
2552 
2553 // Solaris allocates memory by pages.
2554 int os::vm_allocation_granularity() {
2555   assert(os::Linux::page_size() != -1, "must call os::init");
2556   return os::Linux::page_size();
2557 }
2558 
2559 // Rationale behind this function:
2560 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2561 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2562 //  samples for JITted code. Here we create private executable mapping over the code cache
2563 //  and then we can use standard (well, almost, as mapping can change) way to provide
2564 //  info for the reporting script by storing timestamp and location of symbol
2565 void linux_wrap_code(char* base, size_t size) {
2566   static volatile jint cnt = 0;
2567 
2568   if (!UseOprofile) {
2569     return;
2570   }
2571 
2572   char buf[PATH_MAX+1];
2573   int num = Atomic::add(1, &cnt);
2574 
2575   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2576            os::get_temp_directory(), os::current_process_id(), num);
2577   unlink(buf);
2578 
2579   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2580 
2581   if (fd != -1) {
2582     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2583     if (rv != (off_t)-1) {
2584       if (::write(fd, "", 1) == 1) {
2585         mmap(base, size,
2586              PROT_READ|PROT_WRITE|PROT_EXEC,
2587              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2588       }
2589     }
2590     ::close(fd);
2591     unlink(buf);
2592   }
2593 }
2594 
2595 static bool recoverable_mmap_error(int err) {
2596   // See if the error is one we can let the caller handle. This
2597   // list of errno values comes from JBS-6843484. I can't find a
2598   // Linux man page that documents this specific set of errno
2599   // values so while this list currently matches Solaris, it may
2600   // change as we gain experience with this failure mode.
2601   switch (err) {
2602   case EBADF:
2603   case EINVAL:
2604   case ENOTSUP:
2605     // let the caller deal with these errors
2606     return true;
2607 
2608   default:
2609     // Any remaining errors on this OS can cause our reserved mapping
2610     // to be lost. That can cause confusion where different data
2611     // structures think they have the same memory mapped. The worst
2612     // scenario is if both the VM and a library think they have the
2613     // same memory mapped.
2614     return false;
2615   }
2616 }
2617 
2618 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2619                                     int err) {
2620   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2621           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2622           os::strerror(err), err);
2623 }
2624 
2625 static void warn_fail_commit_memory(char* addr, size_t size,
2626                                     size_t alignment_hint, bool exec,
2627                                     int err) {
2628   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2629           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2630           alignment_hint, exec, os::strerror(err), err);
2631 }
2632 
2633 // NOTE: Linux kernel does not really reserve the pages for us.
2634 //       All it does is to check if there are enough free pages
2635 //       left at the time of mmap(). This could be a potential
2636 //       problem.
2637 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2638   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2639   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2640                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2641   if (res != (uintptr_t) MAP_FAILED) {
2642     if (UseNUMAInterleaving) {
2643       numa_make_global(addr, size);
2644     }
2645     return 0;
2646   }
2647 
2648   int err = errno;  // save errno from mmap() call above
2649 
2650   if (!recoverable_mmap_error(err)) {
2651     warn_fail_commit_memory(addr, size, exec, err);
2652     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2653   }
2654 
2655   return err;
2656 }
2657 
2658 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2659   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2660 }
2661 
2662 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2663                                   const char* mesg) {
2664   assert(mesg != NULL, "mesg must be specified");
2665   int err = os::Linux::commit_memory_impl(addr, size, exec);
2666   if (err != 0) {
2667     // the caller wants all commit errors to exit with the specified mesg:
2668     warn_fail_commit_memory(addr, size, exec, err);
2669     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2670   }
2671 }
2672 
2673 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2674 #ifndef MAP_HUGETLB
2675   #define MAP_HUGETLB 0x40000
2676 #endif
2677 
2678 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2679 #ifndef MADV_HUGEPAGE
2680   #define MADV_HUGEPAGE 14
2681 #endif
2682 
2683 int os::Linux::commit_memory_impl(char* addr, size_t size,
2684                                   size_t alignment_hint, bool exec) {
2685   int err = os::Linux::commit_memory_impl(addr, size, exec);
2686   if (err == 0) {
2687     realign_memory(addr, size, alignment_hint);
2688   }
2689   return err;
2690 }
2691 
2692 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2693                           bool exec) {
2694   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2695 }
2696 
2697 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2698                                   size_t alignment_hint, bool exec,
2699                                   const char* mesg) {
2700   assert(mesg != NULL, "mesg must be specified");
2701   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2702   if (err != 0) {
2703     // the caller wants all commit errors to exit with the specified mesg:
2704     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2705     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2706   }
2707 }
2708 
2709 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2710   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2711     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2712     // be supported or the memory may already be backed by huge pages.
2713     ::madvise(addr, bytes, MADV_HUGEPAGE);
2714   }
2715 }
2716 
2717 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2718   // This method works by doing an mmap over an existing mmaping and effectively discarding
2719   // the existing pages. However it won't work for SHM-based large pages that cannot be
2720   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2721   // small pages on top of the SHM segment. This method always works for small pages, so we
2722   // allow that in any case.
2723   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2724     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2725   }
2726 }
2727 
2728 void os::numa_make_global(char *addr, size_t bytes) {
2729   Linux::numa_interleave_memory(addr, bytes);
2730 }
2731 
2732 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2733 // bind policy to MPOL_PREFERRED for the current thread.
2734 #define USE_MPOL_PREFERRED 0
2735 
2736 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2737   // To make NUMA and large pages more robust when both enabled, we need to ease
2738   // the requirements on where the memory should be allocated. MPOL_BIND is the
2739   // default policy and it will force memory to be allocated on the specified
2740   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2741   // the specified node, but will not force it. Using this policy will prevent
2742   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2743   // free large pages.
2744   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2745   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2746 }
2747 
2748 bool os::numa_topology_changed() { return false; }
2749 
2750 size_t os::numa_get_groups_num() {
2751   // Return just the number of nodes in which it's possible to allocate memory
2752   // (in numa terminology, configured nodes).
2753   return Linux::numa_num_configured_nodes();
2754 }
2755 
2756 int os::numa_get_group_id() {
2757   int cpu_id = Linux::sched_getcpu();
2758   if (cpu_id != -1) {
2759     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2760     if (lgrp_id != -1) {
2761       return lgrp_id;
2762     }
2763   }
2764   return 0;
2765 }
2766 
2767 int os::Linux::get_existing_num_nodes() {
2768   int node;
2769   int highest_node_number = Linux::numa_max_node();
2770   int num_nodes = 0;
2771 
2772   // Get the total number of nodes in the system including nodes without memory.
2773   for (node = 0; node <= highest_node_number; node++) {
2774     if (isnode_in_existing_nodes(node)) {
2775       num_nodes++;
2776     }
2777   }
2778   return num_nodes;
2779 }
2780 
2781 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2782   int highest_node_number = Linux::numa_max_node();
2783   size_t i = 0;
2784 
2785   // Map all node ids in which it is possible to allocate memory. Also nodes are
2786   // not always consecutively available, i.e. available from 0 to the highest
2787   // node number. If the nodes have been bound explicitly using numactl membind,
2788   // then allocate memory from those nodes only.
2789   for (int node = 0; node <= highest_node_number; node++) {
2790     if (Linux::isnode_in_bound_nodes((unsigned int)node)) {
2791       ids[i++] = node;
2792     }
2793   }
2794   return i;
2795 }
2796 
2797 bool os::get_page_info(char *start, page_info* info) {
2798   return false;
2799 }
2800 
2801 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2802                      page_info* page_found) {
2803   return end;
2804 }
2805 
2806 
2807 int os::Linux::sched_getcpu_syscall(void) {
2808   unsigned int cpu = 0;
2809   int retval = -1;
2810 
2811 #if defined(IA32)
2812   #ifndef SYS_getcpu
2813     #define SYS_getcpu 318
2814   #endif
2815   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2816 #elif defined(AMD64)
2817 // Unfortunately we have to bring all these macros here from vsyscall.h
2818 // to be able to compile on old linuxes.
2819   #define __NR_vgetcpu 2
2820   #define VSYSCALL_START (-10UL << 20)
2821   #define VSYSCALL_SIZE 1024
2822   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2823   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2824   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2825   retval = vgetcpu(&cpu, NULL, NULL);
2826 #endif
2827 
2828   return (retval == -1) ? retval : cpu;
2829 }
2830 
2831 void os::Linux::sched_getcpu_init() {
2832   // sched_getcpu() should be in libc.
2833   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2834                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2835 
2836   // If it's not, try a direct syscall.
2837   if (sched_getcpu() == -1) {
2838     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2839                                     (void*)&sched_getcpu_syscall));
2840   }
2841 
2842   if (sched_getcpu() == -1) {
2843     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
2844   }
2845 }
2846 
2847 // Something to do with the numa-aware allocator needs these symbols
2848 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2849 extern "C" JNIEXPORT void numa_error(char *where) { }
2850 
2851 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2852 // load symbol from base version instead.
2853 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2854   void *f = dlvsym(handle, name, "libnuma_1.1");
2855   if (f == NULL) {
2856     f = dlsym(handle, name);
2857   }
2858   return f;
2859 }
2860 
2861 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2862 // Return NULL if the symbol is not defined in this particular version.
2863 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2864   return dlvsym(handle, name, "libnuma_1.2");
2865 }
2866 
2867 bool os::Linux::libnuma_init() {
2868   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2869     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2870     if (handle != NULL) {
2871       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2872                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2873       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2874                                        libnuma_dlsym(handle, "numa_max_node")));
2875       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2876                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2877       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2878                                         libnuma_dlsym(handle, "numa_available")));
2879       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2880                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2881       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2882                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2883       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2884                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2885       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2886                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2887       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2888                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2889       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2890                                        libnuma_dlsym(handle, "numa_distance")));
2891       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
2892                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
2893 
2894       if (numa_available() != -1) {
2895         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2896         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2897         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2898         // Create an index -> node mapping, since nodes are not always consecutive
2899         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2900         rebuild_nindex_to_node_map();
2901         // Create a cpu -> node mapping
2902         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2903         rebuild_cpu_to_node_map();
2904         return true;
2905       }
2906     }
2907   }
2908   return false;
2909 }
2910 
2911 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2912   // Creating guard page is very expensive. Java thread has HotSpot
2913   // guard pages, only enable glibc guard page for non-Java threads.
2914   // (Remember: compiler thread is a Java thread, too!)
2915   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2916 }
2917 
2918 void os::Linux::rebuild_nindex_to_node_map() {
2919   int highest_node_number = Linux::numa_max_node();
2920 
2921   nindex_to_node()->clear();
2922   for (int node = 0; node <= highest_node_number; node++) {
2923     if (Linux::isnode_in_existing_nodes(node)) {
2924       nindex_to_node()->append(node);
2925     }
2926   }
2927 }
2928 
2929 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2930 // The table is later used in get_node_by_cpu().
2931 void os::Linux::rebuild_cpu_to_node_map() {
2932   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2933                               // in libnuma (possible values are starting from 16,
2934                               // and continuing up with every other power of 2, but less
2935                               // than the maximum number of CPUs supported by kernel), and
2936                               // is a subject to change (in libnuma version 2 the requirements
2937                               // are more reasonable) we'll just hardcode the number they use
2938                               // in the library.
2939   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2940 
2941   size_t cpu_num = processor_count();
2942   size_t cpu_map_size = NCPUS / BitsPerCLong;
2943   size_t cpu_map_valid_size =
2944     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2945 
2946   cpu_to_node()->clear();
2947   cpu_to_node()->at_grow(cpu_num - 1);
2948 
2949   size_t node_num = get_existing_num_nodes();
2950 
2951   int distance = 0;
2952   int closest_distance = INT_MAX;
2953   int closest_node = 0;
2954   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2955   for (size_t i = 0; i < node_num; i++) {
2956     // Check if node is configured (not a memory-less node). If it is not, find
2957     // the closest configured node. Check also if node is bound, i.e. it's allowed
2958     // to allocate memory from the node. If it's not allowed, map cpus in that node
2959     // to the closest node from which memory allocation is allowed.
2960     if (!isnode_in_configured_nodes(nindex_to_node()->at(i)) ||
2961         !isnode_in_bound_nodes(nindex_to_node()->at(i))) {
2962       closest_distance = INT_MAX;
2963       // Check distance from all remaining nodes in the system. Ignore distance
2964       // from itself, from another non-configured node, and from another non-bound
2965       // node.
2966       for (size_t m = 0; m < node_num; m++) {
2967         if (m != i &&
2968             isnode_in_configured_nodes(nindex_to_node()->at(m)) &&
2969             isnode_in_bound_nodes(nindex_to_node()->at(m))) {
2970           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2971           // If a closest node is found, update. There is always at least one
2972           // configured and bound node in the system so there is always at least
2973           // one node close.
2974           if (distance != 0 && distance < closest_distance) {
2975             closest_distance = distance;
2976             closest_node = nindex_to_node()->at(m);
2977           }
2978         }
2979       }
2980      } else {
2981        // Current node is already a configured node.
2982        closest_node = nindex_to_node()->at(i);
2983      }
2984 
2985     // Get cpus from the original node and map them to the closest node. If node
2986     // is a configured node (not a memory-less node), then original node and
2987     // closest node are the same.
2988     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2989       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2990         if (cpu_map[j] != 0) {
2991           for (size_t k = 0; k < BitsPerCLong; k++) {
2992             if (cpu_map[j] & (1UL << k)) {
2993               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2994             }
2995           }
2996         }
2997       }
2998     }
2999   }
3000   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3001 }
3002 
3003 int os::Linux::get_node_by_cpu(int cpu_id) {
3004   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3005     return cpu_to_node()->at(cpu_id);
3006   }
3007   return -1;
3008 }
3009 
3010 GrowableArray<int>* os::Linux::_cpu_to_node;
3011 GrowableArray<int>* os::Linux::_nindex_to_node;
3012 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3013 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3014 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3015 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3016 os::Linux::numa_available_func_t os::Linux::_numa_available;
3017 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3018 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3019 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3020 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3021 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3022 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3023 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3024 unsigned long* os::Linux::_numa_all_nodes;
3025 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3026 struct bitmask* os::Linux::_numa_nodes_ptr;
3027 
3028 bool os::pd_uncommit_memory(char* addr, size_t size) {
3029   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3030                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3031   return res  != (uintptr_t) MAP_FAILED;
3032 }
3033 
3034 static address get_stack_commited_bottom(address bottom, size_t size) {
3035   address nbot = bottom;
3036   address ntop = bottom + size;
3037 
3038   size_t page_sz = os::vm_page_size();
3039   unsigned pages = size / page_sz;
3040 
3041   unsigned char vec[1];
3042   unsigned imin = 1, imax = pages + 1, imid;
3043   int mincore_return_value = 0;
3044 
3045   assert(imin <= imax, "Unexpected page size");
3046 
3047   while (imin < imax) {
3048     imid = (imax + imin) / 2;
3049     nbot = ntop - (imid * page_sz);
3050 
3051     // Use a trick with mincore to check whether the page is mapped or not.
3052     // mincore sets vec to 1 if page resides in memory and to 0 if page
3053     // is swapped output but if page we are asking for is unmapped
3054     // it returns -1,ENOMEM
3055     mincore_return_value = mincore(nbot, page_sz, vec);
3056 
3057     if (mincore_return_value == -1) {
3058       // Page is not mapped go up
3059       // to find first mapped page
3060       if (errno != EAGAIN) {
3061         assert(errno == ENOMEM, "Unexpected mincore errno");
3062         imax = imid;
3063       }
3064     } else {
3065       // Page is mapped go down
3066       // to find first not mapped page
3067       imin = imid + 1;
3068     }
3069   }
3070 
3071   nbot = nbot + page_sz;
3072 
3073   // Adjust stack bottom one page up if last checked page is not mapped
3074   if (mincore_return_value == -1) {
3075     nbot = nbot + page_sz;
3076   }
3077 
3078   return nbot;
3079 }
3080 
3081 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3082   int mincore_return_value;
3083   const size_t stripe = 1024;  // query this many pages each time
3084   unsigned char vec[stripe + 1];
3085   // set a guard
3086   vec[stripe] = 'X';
3087 
3088   const size_t page_sz = os::vm_page_size();
3089   size_t pages = size / page_sz;
3090 
3091   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3092   assert(is_aligned(size, page_sz), "Size must be page aligned");
3093 
3094   committed_start = NULL;
3095 
3096   int loops = (pages + stripe - 1) / stripe;
3097   int committed_pages = 0;
3098   address loop_base = start;
3099   bool found_range = false;
3100 
3101   for (int index = 0; index < loops && !found_range; index ++) {
3102     assert(pages > 0, "Nothing to do");
3103     int pages_to_query = (pages >= stripe) ? stripe : pages;
3104     pages -= pages_to_query;
3105 
3106     // Get stable read
3107     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3108 
3109     // During shutdown, some memory goes away without properly notifying NMT,
3110     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3111     // Bailout and return as not committed for now.
3112     if (mincore_return_value == -1 && errno == ENOMEM) {
3113       return false;
3114     }
3115 
3116     assert(vec[stripe] == 'X', "overflow guard");
3117     assert(mincore_return_value == 0, "Range must be valid");
3118     // Process this stripe
3119     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3120       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3121         // End of current contiguous region
3122         if (committed_start != NULL) {
3123           found_range = true;
3124           break;
3125         }
3126       } else { // committed
3127         // Start of region
3128         if (committed_start == NULL) {
3129           committed_start = loop_base + page_sz * vecIdx;
3130         }
3131         committed_pages ++;
3132       }
3133     }
3134 
3135     loop_base += pages_to_query * page_sz;
3136   }
3137 
3138   if (committed_start != NULL) {
3139     assert(committed_pages > 0, "Must have committed region");
3140     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3141     assert(committed_start >= start && committed_start < start + size, "Out of range");
3142     committed_size = page_sz * committed_pages;
3143     return true;
3144   } else {
3145     assert(committed_pages == 0, "Should not have committed region");
3146     return false;
3147   }
3148 }
3149 
3150 
3151 // Linux uses a growable mapping for the stack, and if the mapping for
3152 // the stack guard pages is not removed when we detach a thread the
3153 // stack cannot grow beyond the pages where the stack guard was
3154 // mapped.  If at some point later in the process the stack expands to
3155 // that point, the Linux kernel cannot expand the stack any further
3156 // because the guard pages are in the way, and a segfault occurs.
3157 //
3158 // However, it's essential not to split the stack region by unmapping
3159 // a region (leaving a hole) that's already part of the stack mapping,
3160 // so if the stack mapping has already grown beyond the guard pages at
3161 // the time we create them, we have to truncate the stack mapping.
3162 // So, we need to know the extent of the stack mapping when
3163 // create_stack_guard_pages() is called.
3164 
3165 // We only need this for stacks that are growable: at the time of
3166 // writing thread stacks don't use growable mappings (i.e. those
3167 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3168 // only applies to the main thread.
3169 
3170 // If the (growable) stack mapping already extends beyond the point
3171 // where we're going to put our guard pages, truncate the mapping at
3172 // that point by munmap()ping it.  This ensures that when we later
3173 // munmap() the guard pages we don't leave a hole in the stack
3174 // mapping. This only affects the main/primordial thread
3175 
3176 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3177   if (os::is_primordial_thread()) {
3178     // As we manually grow stack up to bottom inside create_attached_thread(),
3179     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3180     // we don't need to do anything special.
3181     // Check it first, before calling heavy function.
3182     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3183     unsigned char vec[1];
3184 
3185     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3186       // Fallback to slow path on all errors, including EAGAIN
3187       stack_extent = (uintptr_t) get_stack_commited_bottom(
3188                                                            os::Linux::initial_thread_stack_bottom(),
3189                                                            (size_t)addr - stack_extent);
3190     }
3191 
3192     if (stack_extent < (uintptr_t)addr) {
3193       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3194     }
3195   }
3196 
3197   return os::commit_memory(addr, size, !ExecMem);
3198 }
3199 
3200 // If this is a growable mapping, remove the guard pages entirely by
3201 // munmap()ping them.  If not, just call uncommit_memory(). This only
3202 // affects the main/primordial thread, but guard against future OS changes.
3203 // It's safe to always unmap guard pages for primordial thread because we
3204 // always place it right after end of the mapped region.
3205 
3206 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3207   uintptr_t stack_extent, stack_base;
3208 
3209   if (os::is_primordial_thread()) {
3210     return ::munmap(addr, size) == 0;
3211   }
3212 
3213   return os::uncommit_memory(addr, size);
3214 }
3215 
3216 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3217 // at 'requested_addr'. If there are existing memory mappings at the same
3218 // location, however, they will be overwritten. If 'fixed' is false,
3219 // 'requested_addr' is only treated as a hint, the return value may or
3220 // may not start from the requested address. Unlike Linux mmap(), this
3221 // function returns NULL to indicate failure.
3222 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3223   char * addr;
3224   int flags;
3225 
3226   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3227   if (fixed) {
3228     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3229     flags |= MAP_FIXED;
3230   }
3231 
3232   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3233   // touch an uncommitted page. Otherwise, the read/write might
3234   // succeed if we have enough swap space to back the physical page.
3235   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3236                        flags, -1, 0);
3237 
3238   return addr == MAP_FAILED ? NULL : addr;
3239 }
3240 
3241 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3242 //   (req_addr != NULL) or with a given alignment.
3243 //  - bytes shall be a multiple of alignment.
3244 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3245 //  - alignment sets the alignment at which memory shall be allocated.
3246 //     It must be a multiple of allocation granularity.
3247 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3248 //  req_addr or NULL.
3249 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3250 
3251   size_t extra_size = bytes;
3252   if (req_addr == NULL && alignment > 0) {
3253     extra_size += alignment;
3254   }
3255 
3256   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3257     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3258     -1, 0);
3259   if (start == MAP_FAILED) {
3260     start = NULL;
3261   } else {
3262     if (req_addr != NULL) {
3263       if (start != req_addr) {
3264         ::munmap(start, extra_size);
3265         start = NULL;
3266       }
3267     } else {
3268       char* const start_aligned = align_up(start, alignment);
3269       char* const end_aligned = start_aligned + bytes;
3270       char* const end = start + extra_size;
3271       if (start_aligned > start) {
3272         ::munmap(start, start_aligned - start);
3273       }
3274       if (end_aligned < end) {
3275         ::munmap(end_aligned, end - end_aligned);
3276       }
3277       start = start_aligned;
3278     }
3279   }
3280   return start;
3281 }
3282 
3283 static int anon_munmap(char * addr, size_t size) {
3284   return ::munmap(addr, size) == 0;
3285 }
3286 
3287 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3288                             size_t alignment_hint) {
3289   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3290 }
3291 
3292 bool os::pd_release_memory(char* addr, size_t size) {
3293   return anon_munmap(addr, size);
3294 }
3295 
3296 static bool linux_mprotect(char* addr, size_t size, int prot) {
3297   // Linux wants the mprotect address argument to be page aligned.
3298   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3299 
3300   // According to SUSv3, mprotect() should only be used with mappings
3301   // established by mmap(), and mmap() always maps whole pages. Unaligned
3302   // 'addr' likely indicates problem in the VM (e.g. trying to change
3303   // protection of malloc'ed or statically allocated memory). Check the
3304   // caller if you hit this assert.
3305   assert(addr == bottom, "sanity check");
3306 
3307   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3308   return ::mprotect(bottom, size, prot) == 0;
3309 }
3310 
3311 // Set protections specified
3312 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3313                         bool is_committed) {
3314   unsigned int p = 0;
3315   switch (prot) {
3316   case MEM_PROT_NONE: p = PROT_NONE; break;
3317   case MEM_PROT_READ: p = PROT_READ; break;
3318   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3319   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3320   default:
3321     ShouldNotReachHere();
3322   }
3323   // is_committed is unused.
3324   return linux_mprotect(addr, bytes, p);
3325 }
3326 
3327 bool os::guard_memory(char* addr, size_t size) {
3328   return linux_mprotect(addr, size, PROT_NONE);
3329 }
3330 
3331 bool os::unguard_memory(char* addr, size_t size) {
3332   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3333 }
3334 
3335 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3336                                                     size_t page_size) {
3337   bool result = false;
3338   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3339                  MAP_ANONYMOUS|MAP_PRIVATE,
3340                  -1, 0);
3341   if (p != MAP_FAILED) {
3342     void *aligned_p = align_up(p, page_size);
3343 
3344     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3345 
3346     munmap(p, page_size * 2);
3347   }
3348 
3349   if (warn && !result) {
3350     warning("TransparentHugePages is not supported by the operating system.");
3351   }
3352 
3353   return result;
3354 }
3355 
3356 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3357   bool result = false;
3358   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3359                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3360                  -1, 0);
3361 
3362   if (p != MAP_FAILED) {
3363     // We don't know if this really is a huge page or not.
3364     FILE *fp = fopen("/proc/self/maps", "r");
3365     if (fp) {
3366       while (!feof(fp)) {
3367         char chars[257];
3368         long x = 0;
3369         if (fgets(chars, sizeof(chars), fp)) {
3370           if (sscanf(chars, "%lx-%*x", &x) == 1
3371               && x == (long)p) {
3372             if (strstr (chars, "hugepage")) {
3373               result = true;
3374               break;
3375             }
3376           }
3377         }
3378       }
3379       fclose(fp);
3380     }
3381     munmap(p, page_size);
3382   }
3383 
3384   if (warn && !result) {
3385     warning("HugeTLBFS is not supported by the operating system.");
3386   }
3387 
3388   return result;
3389 }
3390 
3391 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3392 //
3393 // From the coredump_filter documentation:
3394 //
3395 // - (bit 0) anonymous private memory
3396 // - (bit 1) anonymous shared memory
3397 // - (bit 2) file-backed private memory
3398 // - (bit 3) file-backed shared memory
3399 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3400 //           effective only if the bit 2 is cleared)
3401 // - (bit 5) hugetlb private memory
3402 // - (bit 6) hugetlb shared memory
3403 // - (bit 7) dax private memory
3404 // - (bit 8) dax shared memory
3405 //
3406 static void set_coredump_filter(CoredumpFilterBit bit) {
3407   FILE *f;
3408   long cdm;
3409 
3410   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3411     return;
3412   }
3413 
3414   if (fscanf(f, "%lx", &cdm) != 1) {
3415     fclose(f);
3416     return;
3417   }
3418 
3419   long saved_cdm = cdm;
3420   rewind(f);
3421   cdm |= bit;
3422 
3423   if (cdm != saved_cdm) {
3424     fprintf(f, "%#lx", cdm);
3425   }
3426 
3427   fclose(f);
3428 }
3429 
3430 // Large page support
3431 
3432 static size_t _large_page_size = 0;
3433 
3434 size_t os::Linux::find_large_page_size() {
3435   size_t large_page_size = 0;
3436 
3437   // large_page_size on Linux is used to round up heap size. x86 uses either
3438   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3439   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3440   // page as large as 256M.
3441   //
3442   // Here we try to figure out page size by parsing /proc/meminfo and looking
3443   // for a line with the following format:
3444   //    Hugepagesize:     2048 kB
3445   //
3446   // If we can't determine the value (e.g. /proc is not mounted, or the text
3447   // format has been changed), we'll use the largest page size supported by
3448   // the processor.
3449 
3450 #ifndef ZERO
3451   large_page_size =
3452     AARCH64_ONLY(2 * M)
3453     AMD64_ONLY(2 * M)
3454     ARM32_ONLY(2 * M)
3455     IA32_ONLY(4 * M)
3456     IA64_ONLY(256 * M)
3457     PPC_ONLY(4 * M)
3458     S390_ONLY(1 * M)
3459     SPARC_ONLY(4 * M);
3460 #endif // ZERO
3461 
3462   FILE *fp = fopen("/proc/meminfo", "r");
3463   if (fp) {
3464     while (!feof(fp)) {
3465       int x = 0;
3466       char buf[16];
3467       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3468         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3469           large_page_size = x * K;
3470           break;
3471         }
3472       } else {
3473         // skip to next line
3474         for (;;) {
3475           int ch = fgetc(fp);
3476           if (ch == EOF || ch == (int)'\n') break;
3477         }
3478       }
3479     }
3480     fclose(fp);
3481   }
3482 
3483   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3484     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3485             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3486             proper_unit_for_byte_size(large_page_size));
3487   }
3488 
3489   return large_page_size;
3490 }
3491 
3492 size_t os::Linux::setup_large_page_size() {
3493   _large_page_size = Linux::find_large_page_size();
3494   const size_t default_page_size = (size_t)Linux::page_size();
3495   if (_large_page_size > default_page_size) {
3496     _page_sizes[0] = _large_page_size;
3497     _page_sizes[1] = default_page_size;
3498     _page_sizes[2] = 0;
3499   }
3500 
3501   return _large_page_size;
3502 }
3503 
3504 bool os::Linux::setup_large_page_type(size_t page_size) {
3505   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3506       FLAG_IS_DEFAULT(UseSHM) &&
3507       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3508 
3509     // The type of large pages has not been specified by the user.
3510 
3511     // Try UseHugeTLBFS and then UseSHM.
3512     UseHugeTLBFS = UseSHM = true;
3513 
3514     // Don't try UseTransparentHugePages since there are known
3515     // performance issues with it turned on. This might change in the future.
3516     UseTransparentHugePages = false;
3517   }
3518 
3519   if (UseTransparentHugePages) {
3520     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3521     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3522       UseHugeTLBFS = false;
3523       UseSHM = false;
3524       return true;
3525     }
3526     UseTransparentHugePages = false;
3527   }
3528 
3529   if (UseHugeTLBFS) {
3530     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3531     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3532       UseSHM = false;
3533       return true;
3534     }
3535     UseHugeTLBFS = false;
3536   }
3537 
3538   return UseSHM;
3539 }
3540 
3541 void os::large_page_init() {
3542   if (!UseLargePages &&
3543       !UseTransparentHugePages &&
3544       !UseHugeTLBFS &&
3545       !UseSHM) {
3546     // Not using large pages.
3547     return;
3548   }
3549 
3550   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3551     // The user explicitly turned off large pages.
3552     // Ignore the rest of the large pages flags.
3553     UseTransparentHugePages = false;
3554     UseHugeTLBFS = false;
3555     UseSHM = false;
3556     return;
3557   }
3558 
3559   size_t large_page_size = Linux::setup_large_page_size();
3560   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3561 
3562   set_coredump_filter(LARGEPAGES_BIT);
3563 }
3564 
3565 #ifndef SHM_HUGETLB
3566   #define SHM_HUGETLB 04000
3567 #endif
3568 
3569 #define shm_warning_format(format, ...)              \
3570   do {                                               \
3571     if (UseLargePages &&                             \
3572         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3573          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3574          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3575       warning(format, __VA_ARGS__);                  \
3576     }                                                \
3577   } while (0)
3578 
3579 #define shm_warning(str) shm_warning_format("%s", str)
3580 
3581 #define shm_warning_with_errno(str)                \
3582   do {                                             \
3583     int err = errno;                               \
3584     shm_warning_format(str " (error = %d)", err);  \
3585   } while (0)
3586 
3587 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3588   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3589 
3590   if (!is_aligned(alignment, SHMLBA)) {
3591     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3592     return NULL;
3593   }
3594 
3595   // To ensure that we get 'alignment' aligned memory from shmat,
3596   // we pre-reserve aligned virtual memory and then attach to that.
3597 
3598   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3599   if (pre_reserved_addr == NULL) {
3600     // Couldn't pre-reserve aligned memory.
3601     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3602     return NULL;
3603   }
3604 
3605   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3606   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3607 
3608   if ((intptr_t)addr == -1) {
3609     int err = errno;
3610     shm_warning_with_errno("Failed to attach shared memory.");
3611 
3612     assert(err != EACCES, "Unexpected error");
3613     assert(err != EIDRM,  "Unexpected error");
3614     assert(err != EINVAL, "Unexpected error");
3615 
3616     // Since we don't know if the kernel unmapped the pre-reserved memory area
3617     // we can't unmap it, since that would potentially unmap memory that was
3618     // mapped from other threads.
3619     return NULL;
3620   }
3621 
3622   return addr;
3623 }
3624 
3625 static char* shmat_at_address(int shmid, char* req_addr) {
3626   if (!is_aligned(req_addr, SHMLBA)) {
3627     assert(false, "Requested address needs to be SHMLBA aligned");
3628     return NULL;
3629   }
3630 
3631   char* addr = (char*)shmat(shmid, req_addr, 0);
3632 
3633   if ((intptr_t)addr == -1) {
3634     shm_warning_with_errno("Failed to attach shared memory.");
3635     return NULL;
3636   }
3637 
3638   return addr;
3639 }
3640 
3641 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3642   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3643   if (req_addr != NULL) {
3644     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3645     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3646     return shmat_at_address(shmid, req_addr);
3647   }
3648 
3649   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3650   // return large page size aligned memory addresses when req_addr == NULL.
3651   // However, if the alignment is larger than the large page size, we have
3652   // to manually ensure that the memory returned is 'alignment' aligned.
3653   if (alignment > os::large_page_size()) {
3654     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3655     return shmat_with_alignment(shmid, bytes, alignment);
3656   } else {
3657     return shmat_at_address(shmid, NULL);
3658   }
3659 }
3660 
3661 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3662                                             char* req_addr, bool exec) {
3663   // "exec" is passed in but not used.  Creating the shared image for
3664   // the code cache doesn't have an SHM_X executable permission to check.
3665   assert(UseLargePages && UseSHM, "only for SHM large pages");
3666   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3667   assert(is_aligned(req_addr, alignment), "Unaligned address");
3668 
3669   if (!is_aligned(bytes, os::large_page_size())) {
3670     return NULL; // Fallback to small pages.
3671   }
3672 
3673   // Create a large shared memory region to attach to based on size.
3674   // Currently, size is the total size of the heap.
3675   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3676   if (shmid == -1) {
3677     // Possible reasons for shmget failure:
3678     // 1. shmmax is too small for Java heap.
3679     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3680     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3681     // 2. not enough large page memory.
3682     //    > check available large pages: cat /proc/meminfo
3683     //    > increase amount of large pages:
3684     //          echo new_value > /proc/sys/vm/nr_hugepages
3685     //      Note 1: different Linux may use different name for this property,
3686     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3687     //      Note 2: it's possible there's enough physical memory available but
3688     //            they are so fragmented after a long run that they can't
3689     //            coalesce into large pages. Try to reserve large pages when
3690     //            the system is still "fresh".
3691     shm_warning_with_errno("Failed to reserve shared memory.");
3692     return NULL;
3693   }
3694 
3695   // Attach to the region.
3696   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3697 
3698   // Remove shmid. If shmat() is successful, the actual shared memory segment
3699   // will be deleted when it's detached by shmdt() or when the process
3700   // terminates. If shmat() is not successful this will remove the shared
3701   // segment immediately.
3702   shmctl(shmid, IPC_RMID, NULL);
3703 
3704   return addr;
3705 }
3706 
3707 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3708                                         int error) {
3709   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3710 
3711   bool warn_on_failure = UseLargePages &&
3712       (!FLAG_IS_DEFAULT(UseLargePages) ||
3713        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3714        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3715 
3716   if (warn_on_failure) {
3717     char msg[128];
3718     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3719                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3720     warning("%s", msg);
3721   }
3722 }
3723 
3724 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3725                                                         char* req_addr,
3726                                                         bool exec) {
3727   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3728   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3729   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3730 
3731   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3732   char* addr = (char*)::mmap(req_addr, bytes, prot,
3733                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3734                              -1, 0);
3735 
3736   if (addr == MAP_FAILED) {
3737     warn_on_large_pages_failure(req_addr, bytes, errno);
3738     return NULL;
3739   }
3740 
3741   assert(is_aligned(addr, os::large_page_size()), "Must be");
3742 
3743   return addr;
3744 }
3745 
3746 // Reserve memory using mmap(MAP_HUGETLB).
3747 //  - bytes shall be a multiple of alignment.
3748 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3749 //  - alignment sets the alignment at which memory shall be allocated.
3750 //     It must be a multiple of allocation granularity.
3751 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3752 //  req_addr or NULL.
3753 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3754                                                          size_t alignment,
3755                                                          char* req_addr,
3756                                                          bool exec) {
3757   size_t large_page_size = os::large_page_size();
3758   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3759 
3760   assert(is_aligned(req_addr, alignment), "Must be");
3761   assert(is_aligned(bytes, alignment), "Must be");
3762 
3763   // First reserve - but not commit - the address range in small pages.
3764   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3765 
3766   if (start == NULL) {
3767     return NULL;
3768   }
3769 
3770   assert(is_aligned(start, alignment), "Must be");
3771 
3772   char* end = start + bytes;
3773 
3774   // Find the regions of the allocated chunk that can be promoted to large pages.
3775   char* lp_start = align_up(start, large_page_size);
3776   char* lp_end   = align_down(end, large_page_size);
3777 
3778   size_t lp_bytes = lp_end - lp_start;
3779 
3780   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3781 
3782   if (lp_bytes == 0) {
3783     // The mapped region doesn't even span the start and the end of a large page.
3784     // Fall back to allocate a non-special area.
3785     ::munmap(start, end - start);
3786     return NULL;
3787   }
3788 
3789   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3790 
3791   void* result;
3792 
3793   // Commit small-paged leading area.
3794   if (start != lp_start) {
3795     result = ::mmap(start, lp_start - start, prot,
3796                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3797                     -1, 0);
3798     if (result == MAP_FAILED) {
3799       ::munmap(lp_start, end - lp_start);
3800       return NULL;
3801     }
3802   }
3803 
3804   // Commit large-paged area.
3805   result = ::mmap(lp_start, lp_bytes, prot,
3806                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3807                   -1, 0);
3808   if (result == MAP_FAILED) {
3809     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3810     // If the mmap above fails, the large pages region will be unmapped and we
3811     // have regions before and after with small pages. Release these regions.
3812     //
3813     // |  mapped  |  unmapped  |  mapped  |
3814     // ^          ^            ^          ^
3815     // start      lp_start     lp_end     end
3816     //
3817     ::munmap(start, lp_start - start);
3818     ::munmap(lp_end, end - lp_end);
3819     return NULL;
3820   }
3821 
3822   // Commit small-paged trailing area.
3823   if (lp_end != end) {
3824     result = ::mmap(lp_end, end - lp_end, prot,
3825                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3826                     -1, 0);
3827     if (result == MAP_FAILED) {
3828       ::munmap(start, lp_end - start);
3829       return NULL;
3830     }
3831   }
3832 
3833   return start;
3834 }
3835 
3836 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3837                                                    size_t alignment,
3838                                                    char* req_addr,
3839                                                    bool exec) {
3840   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3841   assert(is_aligned(req_addr, alignment), "Must be");
3842   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3843   assert(is_power_of_2(os::large_page_size()), "Must be");
3844   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3845 
3846   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3847     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3848   } else {
3849     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3850   }
3851 }
3852 
3853 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3854                                  char* req_addr, bool exec) {
3855   assert(UseLargePages, "only for large pages");
3856 
3857   char* addr;
3858   if (UseSHM) {
3859     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3860   } else {
3861     assert(UseHugeTLBFS, "must be");
3862     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3863   }
3864 
3865   if (addr != NULL) {
3866     if (UseNUMAInterleaving) {
3867       numa_make_global(addr, bytes);
3868     }
3869 
3870     // The memory is committed
3871     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3872   }
3873 
3874   return addr;
3875 }
3876 
3877 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3878   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3879   return shmdt(base) == 0;
3880 }
3881 
3882 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3883   return pd_release_memory(base, bytes);
3884 }
3885 
3886 bool os::release_memory_special(char* base, size_t bytes) {
3887   bool res;
3888   if (MemTracker::tracking_level() > NMT_minimal) {
3889     Tracker tkr(Tracker::release);
3890     res = os::Linux::release_memory_special_impl(base, bytes);
3891     if (res) {
3892       tkr.record((address)base, bytes);
3893     }
3894 
3895   } else {
3896     res = os::Linux::release_memory_special_impl(base, bytes);
3897   }
3898   return res;
3899 }
3900 
3901 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3902   assert(UseLargePages, "only for large pages");
3903   bool res;
3904 
3905   if (UseSHM) {
3906     res = os::Linux::release_memory_special_shm(base, bytes);
3907   } else {
3908     assert(UseHugeTLBFS, "must be");
3909     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3910   }
3911   return res;
3912 }
3913 
3914 size_t os::large_page_size() {
3915   return _large_page_size;
3916 }
3917 
3918 // With SysV SHM the entire memory region must be allocated as shared
3919 // memory.
3920 // HugeTLBFS allows application to commit large page memory on demand.
3921 // However, when committing memory with HugeTLBFS fails, the region
3922 // that was supposed to be committed will lose the old reservation
3923 // and allow other threads to steal that memory region. Because of this
3924 // behavior we can't commit HugeTLBFS memory.
3925 bool os::can_commit_large_page_memory() {
3926   return UseTransparentHugePages;
3927 }
3928 
3929 bool os::can_execute_large_page_memory() {
3930   return UseTransparentHugePages || UseHugeTLBFS;
3931 }
3932 
3933 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3934   assert(file_desc >= 0, "file_desc is not valid");
3935   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3936   if (result != NULL) {
3937     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3938       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3939     }
3940   }
3941   return result;
3942 }
3943 
3944 // Reserve memory at an arbitrary address, only if that area is
3945 // available (and not reserved for something else).
3946 
3947 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3948   const int max_tries = 10;
3949   char* base[max_tries];
3950   size_t size[max_tries];
3951   const size_t gap = 0x000000;
3952 
3953   // Assert only that the size is a multiple of the page size, since
3954   // that's all that mmap requires, and since that's all we really know
3955   // about at this low abstraction level.  If we need higher alignment,
3956   // we can either pass an alignment to this method or verify alignment
3957   // in one of the methods further up the call chain.  See bug 5044738.
3958   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3959 
3960   // Repeatedly allocate blocks until the block is allocated at the
3961   // right spot.
3962 
3963   // Linux mmap allows caller to pass an address as hint; give it a try first,
3964   // if kernel honors the hint then we can return immediately.
3965   char * addr = anon_mmap(requested_addr, bytes, false);
3966   if (addr == requested_addr) {
3967     return requested_addr;
3968   }
3969 
3970   if (addr != NULL) {
3971     // mmap() is successful but it fails to reserve at the requested address
3972     anon_munmap(addr, bytes);
3973   }
3974 
3975   int i;
3976   for (i = 0; i < max_tries; ++i) {
3977     base[i] = reserve_memory(bytes);
3978 
3979     if (base[i] != NULL) {
3980       // Is this the block we wanted?
3981       if (base[i] == requested_addr) {
3982         size[i] = bytes;
3983         break;
3984       }
3985 
3986       // Does this overlap the block we wanted? Give back the overlapped
3987       // parts and try again.
3988 
3989       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3990       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3991         unmap_memory(base[i], top_overlap);
3992         base[i] += top_overlap;
3993         size[i] = bytes - top_overlap;
3994       } else {
3995         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3996         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3997           unmap_memory(requested_addr, bottom_overlap);
3998           size[i] = bytes - bottom_overlap;
3999         } else {
4000           size[i] = bytes;
4001         }
4002       }
4003     }
4004   }
4005 
4006   // Give back the unused reserved pieces.
4007 
4008   for (int j = 0; j < i; ++j) {
4009     if (base[j] != NULL) {
4010       unmap_memory(base[j], size[j]);
4011     }
4012   }
4013 
4014   if (i < max_tries) {
4015     return requested_addr;
4016   } else {
4017     return NULL;
4018   }
4019 }
4020 
4021 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4022   return ::read(fd, buf, nBytes);
4023 }
4024 
4025 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4026   return ::pread(fd, buf, nBytes, offset);
4027 }
4028 
4029 // Short sleep, direct OS call.
4030 //
4031 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4032 // sched_yield(2) will actually give up the CPU:
4033 //
4034 //   * Alone on this pariticular CPU, keeps running.
4035 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4036 //     (pre 2.6.39).
4037 //
4038 // So calling this with 0 is an alternative.
4039 //
4040 void os::naked_short_sleep(jlong ms) {
4041   struct timespec req;
4042 
4043   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4044   req.tv_sec = 0;
4045   if (ms > 0) {
4046     req.tv_nsec = (ms % 1000) * 1000000;
4047   } else {
4048     req.tv_nsec = 1;
4049   }
4050 
4051   nanosleep(&req, NULL);
4052 
4053   return;
4054 }
4055 
4056 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4057 void os::infinite_sleep() {
4058   while (true) {    // sleep forever ...
4059     ::sleep(100);   // ... 100 seconds at a time
4060   }
4061 }
4062 
4063 // Used to convert frequent JVM_Yield() to nops
4064 bool os::dont_yield() {
4065   return DontYieldALot;
4066 }
4067 
4068 void os::naked_yield() {
4069   sched_yield();
4070 }
4071 
4072 ////////////////////////////////////////////////////////////////////////////////
4073 // thread priority support
4074 
4075 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4076 // only supports dynamic priority, static priority must be zero. For real-time
4077 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4078 // However, for large multi-threaded applications, SCHED_RR is not only slower
4079 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4080 // of 5 runs - Sep 2005).
4081 //
4082 // The following code actually changes the niceness of kernel-thread/LWP. It
4083 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4084 // not the entire user process, and user level threads are 1:1 mapped to kernel
4085 // threads. It has always been the case, but could change in the future. For
4086 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4087 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4088 
4089 int os::java_to_os_priority[CriticalPriority + 1] = {
4090   19,              // 0 Entry should never be used
4091 
4092    4,              // 1 MinPriority
4093    3,              // 2
4094    2,              // 3
4095 
4096    1,              // 4
4097    0,              // 5 NormPriority
4098   -1,              // 6
4099 
4100   -2,              // 7
4101   -3,              // 8
4102   -4,              // 9 NearMaxPriority
4103 
4104   -5,              // 10 MaxPriority
4105 
4106   -5               // 11 CriticalPriority
4107 };
4108 
4109 static int prio_init() {
4110   if (ThreadPriorityPolicy == 1) {
4111     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4112     // if effective uid is not root. Perhaps, a more elegant way of doing
4113     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4114     if (geteuid() != 0) {
4115       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4116         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4117       }
4118       ThreadPriorityPolicy = 0;
4119     }
4120   }
4121   if (UseCriticalJavaThreadPriority) {
4122     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4123   }
4124   return 0;
4125 }
4126 
4127 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4128   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4129 
4130   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4131   return (ret == 0) ? OS_OK : OS_ERR;
4132 }
4133 
4134 OSReturn os::get_native_priority(const Thread* const thread,
4135                                  int *priority_ptr) {
4136   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4137     *priority_ptr = java_to_os_priority[NormPriority];
4138     return OS_OK;
4139   }
4140 
4141   errno = 0;
4142   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4143   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4144 }
4145 
4146 ////////////////////////////////////////////////////////////////////////////////
4147 // suspend/resume support
4148 
4149 //  The low-level signal-based suspend/resume support is a remnant from the
4150 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4151 //  within hotspot. Currently used by JFR's OSThreadSampler
4152 //
4153 //  The remaining code is greatly simplified from the more general suspension
4154 //  code that used to be used.
4155 //
4156 //  The protocol is quite simple:
4157 //  - suspend:
4158 //      - sends a signal to the target thread
4159 //      - polls the suspend state of the osthread using a yield loop
4160 //      - target thread signal handler (SR_handler) sets suspend state
4161 //        and blocks in sigsuspend until continued
4162 //  - resume:
4163 //      - sets target osthread state to continue
4164 //      - sends signal to end the sigsuspend loop in the SR_handler
4165 //
4166 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4167 //  but is checked for NULL in SR_handler as a thread termination indicator.
4168 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4169 //
4170 //  Note that resume_clear_context() and suspend_save_context() are needed
4171 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4172 //  which in part is used by:
4173 //    - Forte Analyzer: AsyncGetCallTrace()
4174 //    - StackBanging: get_frame_at_stack_banging_point()
4175 
4176 static void resume_clear_context(OSThread *osthread) {
4177   osthread->set_ucontext(NULL);
4178   osthread->set_siginfo(NULL);
4179 }
4180 
4181 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4182                                  ucontext_t* context) {
4183   osthread->set_ucontext(context);
4184   osthread->set_siginfo(siginfo);
4185 }
4186 
4187 // Handler function invoked when a thread's execution is suspended or
4188 // resumed. We have to be careful that only async-safe functions are
4189 // called here (Note: most pthread functions are not async safe and
4190 // should be avoided.)
4191 //
4192 // Note: sigwait() is a more natural fit than sigsuspend() from an
4193 // interface point of view, but sigwait() prevents the signal hander
4194 // from being run. libpthread would get very confused by not having
4195 // its signal handlers run and prevents sigwait()'s use with the
4196 // mutex granting granting signal.
4197 //
4198 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4199 //
4200 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4201   // Save and restore errno to avoid confusing native code with EINTR
4202   // after sigsuspend.
4203   int old_errno = errno;
4204 
4205   Thread* thread = Thread::current_or_null_safe();
4206   assert(thread != NULL, "Missing current thread in SR_handler");
4207 
4208   // On some systems we have seen signal delivery get "stuck" until the signal
4209   // mask is changed as part of thread termination. Check that the current thread
4210   // has not already terminated (via SR_lock()) - else the following assertion
4211   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4212   // destructor has completed.
4213 
4214   if (thread->SR_lock() == NULL) {
4215     return;
4216   }
4217 
4218   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4219 
4220   OSThread* osthread = thread->osthread();
4221 
4222   os::SuspendResume::State current = osthread->sr.state();
4223   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4224     suspend_save_context(osthread, siginfo, context);
4225 
4226     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4227     os::SuspendResume::State state = osthread->sr.suspended();
4228     if (state == os::SuspendResume::SR_SUSPENDED) {
4229       sigset_t suspend_set;  // signals for sigsuspend()
4230       sigemptyset(&suspend_set);
4231       // get current set of blocked signals and unblock resume signal
4232       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4233       sigdelset(&suspend_set, SR_signum);
4234 
4235       sr_semaphore.signal();
4236       // wait here until we are resumed
4237       while (1) {
4238         sigsuspend(&suspend_set);
4239 
4240         os::SuspendResume::State result = osthread->sr.running();
4241         if (result == os::SuspendResume::SR_RUNNING) {
4242           sr_semaphore.signal();
4243           break;
4244         }
4245       }
4246 
4247     } else if (state == os::SuspendResume::SR_RUNNING) {
4248       // request was cancelled, continue
4249     } else {
4250       ShouldNotReachHere();
4251     }
4252 
4253     resume_clear_context(osthread);
4254   } else if (current == os::SuspendResume::SR_RUNNING) {
4255     // request was cancelled, continue
4256   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4257     // ignore
4258   } else {
4259     // ignore
4260   }
4261 
4262   errno = old_errno;
4263 }
4264 
4265 static int SR_initialize() {
4266   struct sigaction act;
4267   char *s;
4268 
4269   // Get signal number to use for suspend/resume
4270   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4271     int sig = ::strtol(s, 0, 10);
4272     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4273         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4274       SR_signum = sig;
4275     } else {
4276       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4277               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4278     }
4279   }
4280 
4281   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4282          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4283 
4284   sigemptyset(&SR_sigset);
4285   sigaddset(&SR_sigset, SR_signum);
4286 
4287   // Set up signal handler for suspend/resume
4288   act.sa_flags = SA_RESTART|SA_SIGINFO;
4289   act.sa_handler = (void (*)(int)) SR_handler;
4290 
4291   // SR_signum is blocked by default.
4292   // 4528190 - We also need to block pthread restart signal (32 on all
4293   // supported Linux platforms). Note that LinuxThreads need to block
4294   // this signal for all threads to work properly. So we don't have
4295   // to use hard-coded signal number when setting up the mask.
4296   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4297 
4298   if (sigaction(SR_signum, &act, 0) == -1) {
4299     return -1;
4300   }
4301 
4302   // Save signal flag
4303   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4304   return 0;
4305 }
4306 
4307 static int sr_notify(OSThread* osthread) {
4308   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4309   assert_status(status == 0, status, "pthread_kill");
4310   return status;
4311 }
4312 
4313 // "Randomly" selected value for how long we want to spin
4314 // before bailing out on suspending a thread, also how often
4315 // we send a signal to a thread we want to resume
4316 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4317 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4318 
4319 // returns true on success and false on error - really an error is fatal
4320 // but this seems the normal response to library errors
4321 static bool do_suspend(OSThread* osthread) {
4322   assert(osthread->sr.is_running(), "thread should be running");
4323   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4324 
4325   // mark as suspended and send signal
4326   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4327     // failed to switch, state wasn't running?
4328     ShouldNotReachHere();
4329     return false;
4330   }
4331 
4332   if (sr_notify(osthread) != 0) {
4333     ShouldNotReachHere();
4334   }
4335 
4336   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4337   while (true) {
4338     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4339       break;
4340     } else {
4341       // timeout
4342       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4343       if (cancelled == os::SuspendResume::SR_RUNNING) {
4344         return false;
4345       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4346         // make sure that we consume the signal on the semaphore as well
4347         sr_semaphore.wait();
4348         break;
4349       } else {
4350         ShouldNotReachHere();
4351         return false;
4352       }
4353     }
4354   }
4355 
4356   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4357   return true;
4358 }
4359 
4360 static void do_resume(OSThread* osthread) {
4361   assert(osthread->sr.is_suspended(), "thread should be suspended");
4362   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4363 
4364   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4365     // failed to switch to WAKEUP_REQUEST
4366     ShouldNotReachHere();
4367     return;
4368   }
4369 
4370   while (true) {
4371     if (sr_notify(osthread) == 0) {
4372       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4373         if (osthread->sr.is_running()) {
4374           return;
4375         }
4376       }
4377     } else {
4378       ShouldNotReachHere();
4379     }
4380   }
4381 
4382   guarantee(osthread->sr.is_running(), "Must be running!");
4383 }
4384 
4385 ///////////////////////////////////////////////////////////////////////////////////
4386 // signal handling (except suspend/resume)
4387 
4388 // This routine may be used by user applications as a "hook" to catch signals.
4389 // The user-defined signal handler must pass unrecognized signals to this
4390 // routine, and if it returns true (non-zero), then the signal handler must
4391 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4392 // routine will never retun false (zero), but instead will execute a VM panic
4393 // routine kill the process.
4394 //
4395 // If this routine returns false, it is OK to call it again.  This allows
4396 // the user-defined signal handler to perform checks either before or after
4397 // the VM performs its own checks.  Naturally, the user code would be making
4398 // a serious error if it tried to handle an exception (such as a null check
4399 // or breakpoint) that the VM was generating for its own correct operation.
4400 //
4401 // This routine may recognize any of the following kinds of signals:
4402 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4403 // It should be consulted by handlers for any of those signals.
4404 //
4405 // The caller of this routine must pass in the three arguments supplied
4406 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4407 // field of the structure passed to sigaction().  This routine assumes that
4408 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4409 //
4410 // Note that the VM will print warnings if it detects conflicting signal
4411 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4412 //
4413 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4414                                                  siginfo_t* siginfo,
4415                                                  void* ucontext,
4416                                                  int abort_if_unrecognized);
4417 
4418 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4419   assert(info != NULL && uc != NULL, "it must be old kernel");
4420   int orig_errno = errno;  // Preserve errno value over signal handler.
4421   JVM_handle_linux_signal(sig, info, uc, true);
4422   errno = orig_errno;
4423 }
4424 
4425 
4426 // This boolean allows users to forward their own non-matching signals
4427 // to JVM_handle_linux_signal, harmlessly.
4428 bool os::Linux::signal_handlers_are_installed = false;
4429 
4430 // For signal-chaining
4431 struct sigaction sigact[NSIG];
4432 uint64_t sigs = 0;
4433 #if (64 < NSIG-1)
4434 #error "Not all signals can be encoded in sigs. Adapt its type!"
4435 #endif
4436 bool os::Linux::libjsig_is_loaded = false;
4437 typedef struct sigaction *(*get_signal_t)(int);
4438 get_signal_t os::Linux::get_signal_action = NULL;
4439 
4440 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4441   struct sigaction *actp = NULL;
4442 
4443   if (libjsig_is_loaded) {
4444     // Retrieve the old signal handler from libjsig
4445     actp = (*get_signal_action)(sig);
4446   }
4447   if (actp == NULL) {
4448     // Retrieve the preinstalled signal handler from jvm
4449     actp = get_preinstalled_handler(sig);
4450   }
4451 
4452   return actp;
4453 }
4454 
4455 static bool call_chained_handler(struct sigaction *actp, int sig,
4456                                  siginfo_t *siginfo, void *context) {
4457   // Call the old signal handler
4458   if (actp->sa_handler == SIG_DFL) {
4459     // It's more reasonable to let jvm treat it as an unexpected exception
4460     // instead of taking the default action.
4461     return false;
4462   } else if (actp->sa_handler != SIG_IGN) {
4463     if ((actp->sa_flags & SA_NODEFER) == 0) {
4464       // automaticlly block the signal
4465       sigaddset(&(actp->sa_mask), sig);
4466     }
4467 
4468     sa_handler_t hand = NULL;
4469     sa_sigaction_t sa = NULL;
4470     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4471     // retrieve the chained handler
4472     if (siginfo_flag_set) {
4473       sa = actp->sa_sigaction;
4474     } else {
4475       hand = actp->sa_handler;
4476     }
4477 
4478     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4479       actp->sa_handler = SIG_DFL;
4480     }
4481 
4482     // try to honor the signal mask
4483     sigset_t oset;
4484     sigemptyset(&oset);
4485     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4486 
4487     // call into the chained handler
4488     if (siginfo_flag_set) {
4489       (*sa)(sig, siginfo, context);
4490     } else {
4491       (*hand)(sig);
4492     }
4493 
4494     // restore the signal mask
4495     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4496   }
4497   // Tell jvm's signal handler the signal is taken care of.
4498   return true;
4499 }
4500 
4501 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4502   bool chained = false;
4503   // signal-chaining
4504   if (UseSignalChaining) {
4505     struct sigaction *actp = get_chained_signal_action(sig);
4506     if (actp != NULL) {
4507       chained = call_chained_handler(actp, sig, siginfo, context);
4508     }
4509   }
4510   return chained;
4511 }
4512 
4513 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4514   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4515     return &sigact[sig];
4516   }
4517   return NULL;
4518 }
4519 
4520 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4521   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4522   sigact[sig] = oldAct;
4523   sigs |= (uint64_t)1 << (sig-1);
4524 }
4525 
4526 // for diagnostic
4527 int sigflags[NSIG];
4528 
4529 int os::Linux::get_our_sigflags(int sig) {
4530   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4531   return sigflags[sig];
4532 }
4533 
4534 void os::Linux::set_our_sigflags(int sig, int flags) {
4535   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4536   if (sig > 0 && sig < NSIG) {
4537     sigflags[sig] = flags;
4538   }
4539 }
4540 
4541 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4542   // Check for overwrite.
4543   struct sigaction oldAct;
4544   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4545 
4546   void* oldhand = oldAct.sa_sigaction
4547                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4548                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4549   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4550       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4551       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4552     if (AllowUserSignalHandlers || !set_installed) {
4553       // Do not overwrite; user takes responsibility to forward to us.
4554       return;
4555     } else if (UseSignalChaining) {
4556       // save the old handler in jvm
4557       save_preinstalled_handler(sig, oldAct);
4558       // libjsig also interposes the sigaction() call below and saves the
4559       // old sigaction on it own.
4560     } else {
4561       fatal("Encountered unexpected pre-existing sigaction handler "
4562             "%#lx for signal %d.", (long)oldhand, sig);
4563     }
4564   }
4565 
4566   struct sigaction sigAct;
4567   sigfillset(&(sigAct.sa_mask));
4568   sigAct.sa_handler = SIG_DFL;
4569   if (!set_installed) {
4570     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4571   } else {
4572     sigAct.sa_sigaction = signalHandler;
4573     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4574   }
4575   // Save flags, which are set by ours
4576   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4577   sigflags[sig] = sigAct.sa_flags;
4578 
4579   int ret = sigaction(sig, &sigAct, &oldAct);
4580   assert(ret == 0, "check");
4581 
4582   void* oldhand2  = oldAct.sa_sigaction
4583                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4584                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4585   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4586 }
4587 
4588 // install signal handlers for signals that HotSpot needs to
4589 // handle in order to support Java-level exception handling.
4590 
4591 void os::Linux::install_signal_handlers() {
4592   if (!signal_handlers_are_installed) {
4593     signal_handlers_are_installed = true;
4594 
4595     // signal-chaining
4596     typedef void (*signal_setting_t)();
4597     signal_setting_t begin_signal_setting = NULL;
4598     signal_setting_t end_signal_setting = NULL;
4599     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4600                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4601     if (begin_signal_setting != NULL) {
4602       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4603                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4604       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4605                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4606       libjsig_is_loaded = true;
4607       assert(UseSignalChaining, "should enable signal-chaining");
4608     }
4609     if (libjsig_is_loaded) {
4610       // Tell libjsig jvm is setting signal handlers
4611       (*begin_signal_setting)();
4612     }
4613 
4614     set_signal_handler(SIGSEGV, true);
4615     set_signal_handler(SIGPIPE, true);
4616     set_signal_handler(SIGBUS, true);
4617     set_signal_handler(SIGILL, true);
4618     set_signal_handler(SIGFPE, true);
4619 #if defined(PPC64)
4620     set_signal_handler(SIGTRAP, true);
4621 #endif
4622     set_signal_handler(SIGXFSZ, true);
4623 
4624     if (libjsig_is_loaded) {
4625       // Tell libjsig jvm finishes setting signal handlers
4626       (*end_signal_setting)();
4627     }
4628 
4629     // We don't activate signal checker if libjsig is in place, we trust ourselves
4630     // and if UserSignalHandler is installed all bets are off.
4631     // Log that signal checking is off only if -verbose:jni is specified.
4632     if (CheckJNICalls) {
4633       if (libjsig_is_loaded) {
4634         if (PrintJNIResolving) {
4635           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4636         }
4637         check_signals = false;
4638       }
4639       if (AllowUserSignalHandlers) {
4640         if (PrintJNIResolving) {
4641           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4642         }
4643         check_signals = false;
4644       }
4645     }
4646   }
4647 }
4648 
4649 // This is the fastest way to get thread cpu time on Linux.
4650 // Returns cpu time (user+sys) for any thread, not only for current.
4651 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4652 // It might work on 2.6.10+ with a special kernel/glibc patch.
4653 // For reference, please, see IEEE Std 1003.1-2004:
4654 //   http://www.unix.org/single_unix_specification
4655 
4656 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4657   struct timespec tp;
4658   int rc = os::Posix::clock_gettime(clockid, &tp);
4659   assert(rc == 0, "clock_gettime is expected to return 0 code");
4660 
4661   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4662 }
4663 
4664 void os::Linux::initialize_os_info() {
4665   assert(_os_version == 0, "OS info already initialized");
4666 
4667   struct utsname _uname;
4668 
4669   uint32_t major;
4670   uint32_t minor;
4671   uint32_t fix;
4672 
4673   int rc;
4674 
4675   // Kernel version is unknown if
4676   // verification below fails.
4677   _os_version = 0x01000000;
4678 
4679   rc = uname(&_uname);
4680   if (rc != -1) {
4681 
4682     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4683     if (rc == 3) {
4684 
4685       if (major < 256 && minor < 256 && fix < 256) {
4686         // Kernel version format is as expected,
4687         // set it overriding unknown state.
4688         _os_version = (major << 16) |
4689                       (minor << 8 ) |
4690                       (fix   << 0 ) ;
4691       }
4692     }
4693   }
4694 }
4695 
4696 uint32_t os::Linux::os_version() {
4697   assert(_os_version != 0, "not initialized");
4698   return _os_version & 0x00FFFFFF;
4699 }
4700 
4701 bool os::Linux::os_version_is_known() {
4702   assert(_os_version != 0, "not initialized");
4703   return _os_version & 0x01000000 ? false : true;
4704 }
4705 
4706 /////
4707 // glibc on Linux platform uses non-documented flag
4708 // to indicate, that some special sort of signal
4709 // trampoline is used.
4710 // We will never set this flag, and we should
4711 // ignore this flag in our diagnostic
4712 #ifdef SIGNIFICANT_SIGNAL_MASK
4713   #undef SIGNIFICANT_SIGNAL_MASK
4714 #endif
4715 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4716 
4717 static const char* get_signal_handler_name(address handler,
4718                                            char* buf, int buflen) {
4719   int offset = 0;
4720   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4721   if (found) {
4722     // skip directory names
4723     const char *p1, *p2;
4724     p1 = buf;
4725     size_t len = strlen(os::file_separator());
4726     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4727     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4728   } else {
4729     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4730   }
4731   return buf;
4732 }
4733 
4734 static void print_signal_handler(outputStream* st, int sig,
4735                                  char* buf, size_t buflen) {
4736   struct sigaction sa;
4737 
4738   sigaction(sig, NULL, &sa);
4739 
4740   // See comment for SIGNIFICANT_SIGNAL_MASK define
4741   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4742 
4743   st->print("%s: ", os::exception_name(sig, buf, buflen));
4744 
4745   address handler = (sa.sa_flags & SA_SIGINFO)
4746     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4747     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4748 
4749   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4750     st->print("SIG_DFL");
4751   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4752     st->print("SIG_IGN");
4753   } else {
4754     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4755   }
4756 
4757   st->print(", sa_mask[0]=");
4758   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4759 
4760   address rh = VMError::get_resetted_sighandler(sig);
4761   // May be, handler was resetted by VMError?
4762   if (rh != NULL) {
4763     handler = rh;
4764     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4765   }
4766 
4767   st->print(", sa_flags=");
4768   os::Posix::print_sa_flags(st, sa.sa_flags);
4769 
4770   // Check: is it our handler?
4771   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4772       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4773     // It is our signal handler
4774     // check for flags, reset system-used one!
4775     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4776       st->print(
4777                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4778                 os::Linux::get_our_sigflags(sig));
4779     }
4780   }
4781   st->cr();
4782 }
4783 
4784 
4785 #define DO_SIGNAL_CHECK(sig)                      \
4786   do {                                            \
4787     if (!sigismember(&check_signal_done, sig)) {  \
4788       os::Linux::check_signal_handler(sig);       \
4789     }                                             \
4790   } while (0)
4791 
4792 // This method is a periodic task to check for misbehaving JNI applications
4793 // under CheckJNI, we can add any periodic checks here
4794 
4795 void os::run_periodic_checks() {
4796   if (check_signals == false) return;
4797 
4798   // SEGV and BUS if overridden could potentially prevent
4799   // generation of hs*.log in the event of a crash, debugging
4800   // such a case can be very challenging, so we absolutely
4801   // check the following for a good measure:
4802   DO_SIGNAL_CHECK(SIGSEGV);
4803   DO_SIGNAL_CHECK(SIGILL);
4804   DO_SIGNAL_CHECK(SIGFPE);
4805   DO_SIGNAL_CHECK(SIGBUS);
4806   DO_SIGNAL_CHECK(SIGPIPE);
4807   DO_SIGNAL_CHECK(SIGXFSZ);
4808 #if defined(PPC64)
4809   DO_SIGNAL_CHECK(SIGTRAP);
4810 #endif
4811 
4812   // ReduceSignalUsage allows the user to override these handlers
4813   // see comments at the very top and jvm_md.h
4814   if (!ReduceSignalUsage) {
4815     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4816     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4817     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4818     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4819   }
4820 
4821   DO_SIGNAL_CHECK(SR_signum);
4822 }
4823 
4824 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4825 
4826 static os_sigaction_t os_sigaction = NULL;
4827 
4828 void os::Linux::check_signal_handler(int sig) {
4829   char buf[O_BUFLEN];
4830   address jvmHandler = NULL;
4831 
4832 
4833   struct sigaction act;
4834   if (os_sigaction == NULL) {
4835     // only trust the default sigaction, in case it has been interposed
4836     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4837     if (os_sigaction == NULL) return;
4838   }
4839 
4840   os_sigaction(sig, (struct sigaction*)NULL, &act);
4841 
4842 
4843   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4844 
4845   address thisHandler = (act.sa_flags & SA_SIGINFO)
4846     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4847     : CAST_FROM_FN_PTR(address, act.sa_handler);
4848 
4849 
4850   switch (sig) {
4851   case SIGSEGV:
4852   case SIGBUS:
4853   case SIGFPE:
4854   case SIGPIPE:
4855   case SIGILL:
4856   case SIGXFSZ:
4857     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4858     break;
4859 
4860   case SHUTDOWN1_SIGNAL:
4861   case SHUTDOWN2_SIGNAL:
4862   case SHUTDOWN3_SIGNAL:
4863   case BREAK_SIGNAL:
4864     jvmHandler = (address)user_handler();
4865     break;
4866 
4867   default:
4868     if (sig == SR_signum) {
4869       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4870     } else {
4871       return;
4872     }
4873     break;
4874   }
4875 
4876   if (thisHandler != jvmHandler) {
4877     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4878     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4879     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4880     // No need to check this sig any longer
4881     sigaddset(&check_signal_done, sig);
4882     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4883     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4884       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4885                     exception_name(sig, buf, O_BUFLEN));
4886     }
4887   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4888     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4889     tty->print("expected:");
4890     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4891     tty->cr();
4892     tty->print("  found:");
4893     os::Posix::print_sa_flags(tty, act.sa_flags);
4894     tty->cr();
4895     // No need to check this sig any longer
4896     sigaddset(&check_signal_done, sig);
4897   }
4898 
4899   // Dump all the signal
4900   if (sigismember(&check_signal_done, sig)) {
4901     print_signal_handlers(tty, buf, O_BUFLEN);
4902   }
4903 }
4904 
4905 extern void report_error(char* file_name, int line_no, char* title,
4906                          char* format, ...);
4907 
4908 // this is called _before_ most of the global arguments have been parsed
4909 void os::init(void) {
4910   char dummy;   // used to get a guess on initial stack address
4911 
4912   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4913 
4914   init_random(1234567);
4915 
4916   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4917   if (Linux::page_size() == -1) {
4918     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4919           os::strerror(errno));
4920   }
4921   init_page_sizes((size_t) Linux::page_size());
4922 
4923   Linux::initialize_system_info();
4924 
4925   Linux::initialize_os_info();
4926 
4927   // _main_thread points to the thread that created/loaded the JVM.
4928   Linux::_main_thread = pthread_self();
4929 
4930   // retrieve entry point for pthread_setname_np
4931   Linux::_pthread_setname_np =
4932     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4933 
4934   os::Posix::init();
4935 
4936   initial_time_count = javaTimeNanos();
4937 
4938   // Always warn if no monotonic clock available
4939   if (!os::Posix::supports_monotonic_clock()) {
4940     warning("No monotonic clock was available - timed services may "    \
4941             "be adversely affected if the time-of-day clock changes");
4942   }
4943 }
4944 
4945 // To install functions for atexit system call
4946 extern "C" {
4947   static void perfMemory_exit_helper() {
4948     perfMemory_exit();
4949   }
4950 }
4951 
4952 void os::pd_init_container_support() {
4953   OSContainer::init();
4954 }
4955 
4956 // this is called _after_ the global arguments have been parsed
4957 jint os::init_2(void) {
4958 
4959   os::Posix::init_2();
4960 
4961   Linux::fast_thread_clock_init();
4962 
4963   // initialize suspend/resume support - must do this before signal_sets_init()
4964   if (SR_initialize() != 0) {
4965     perror("SR_initialize failed");
4966     return JNI_ERR;
4967   }
4968 
4969   Linux::signal_sets_init();
4970   Linux::install_signal_handlers();
4971   // Initialize data for jdk.internal.misc.Signal
4972   if (!ReduceSignalUsage) {
4973     jdk_misc_signal_init();
4974   }
4975 
4976   // Check and sets minimum stack sizes against command line options
4977   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4978     return JNI_ERR;
4979   }
4980 
4981   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
4982   if (!suppress_primordial_thread_resolution) {
4983     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4984   }
4985 
4986 #if defined(IA32)
4987   workaround_expand_exec_shield_cs_limit();
4988 #endif
4989 
4990   Linux::libpthread_init();
4991   Linux::sched_getcpu_init();
4992   log_info(os)("HotSpot is running with %s, %s",
4993                Linux::glibc_version(), Linux::libpthread_version());
4994 
4995   if (UseNUMA) {
4996     if (!Linux::libnuma_init()) {
4997       UseNUMA = false;
4998     } else {
4999       if ((Linux::numa_max_node() < 1) || Linux::isbound_to_single_node()) {
5000         // If there's only one node (they start from 0) or if the process
5001         // is bound explicitly to a single node using membind, disable NUMA.
5002         UseNUMA = false;
5003       }
5004     }
5005 
5006     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5007       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5008       // we can make the adaptive lgrp chunk resizing work. If the user specified both
5009       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5010       // and disable adaptive resizing.
5011       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5012         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5013                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5014         UseAdaptiveSizePolicy = false;
5015         UseAdaptiveNUMAChunkSizing = false;
5016       }
5017     }
5018 
5019     if (!UseNUMA && ForceNUMA) {
5020       UseNUMA = true;
5021     }
5022   }
5023 
5024   if (MaxFDLimit) {
5025     // set the number of file descriptors to max. print out error
5026     // if getrlimit/setrlimit fails but continue regardless.
5027     struct rlimit nbr_files;
5028     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5029     if (status != 0) {
5030       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5031     } else {
5032       nbr_files.rlim_cur = nbr_files.rlim_max;
5033       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5034       if (status != 0) {
5035         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5036       }
5037     }
5038   }
5039 
5040   // Initialize lock used to serialize thread creation (see os::create_thread)
5041   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5042 
5043   // at-exit methods are called in the reverse order of their registration.
5044   // atexit functions are called on return from main or as a result of a
5045   // call to exit(3C). There can be only 32 of these functions registered
5046   // and atexit() does not set errno.
5047 
5048   if (PerfAllowAtExitRegistration) {
5049     // only register atexit functions if PerfAllowAtExitRegistration is set.
5050     // atexit functions can be delayed until process exit time, which
5051     // can be problematic for embedded VM situations. Embedded VMs should
5052     // call DestroyJavaVM() to assure that VM resources are released.
5053 
5054     // note: perfMemory_exit_helper atexit function may be removed in
5055     // the future if the appropriate cleanup code can be added to the
5056     // VM_Exit VMOperation's doit method.
5057     if (atexit(perfMemory_exit_helper) != 0) {
5058       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5059     }
5060   }
5061 
5062   // initialize thread priority policy
5063   prio_init();
5064 
5065   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5066     set_coredump_filter(DAX_SHARED_BIT);
5067   }
5068 
5069   if (UseSharedSpaces) {
5070     set_coredump_filter(FILE_BACKED_PVT_BIT);
5071   }
5072 
5073   return JNI_OK;
5074 }
5075 
5076 // Mark the polling page as unreadable
5077 void os::make_polling_page_unreadable(void) {
5078   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5079     fatal("Could not disable polling page");
5080   }
5081 }
5082 
5083 // Mark the polling page as readable
5084 void os::make_polling_page_readable(void) {
5085   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5086     fatal("Could not enable polling page");
5087   }
5088 }
5089 
5090 // older glibc versions don't have this macro (which expands to
5091 // an optimized bit-counting function) so we have to roll our own
5092 #ifndef CPU_COUNT
5093 
5094 static int _cpu_count(const cpu_set_t* cpus) {
5095   int count = 0;
5096   // only look up to the number of configured processors
5097   for (int i = 0; i < os::processor_count(); i++) {
5098     if (CPU_ISSET(i, cpus)) {
5099       count++;
5100     }
5101   }
5102   return count;
5103 }
5104 
5105 #define CPU_COUNT(cpus) _cpu_count(cpus)
5106 
5107 #endif // CPU_COUNT
5108 
5109 // Get the current number of available processors for this process.
5110 // This value can change at any time during a process's lifetime.
5111 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5112 // If it appears there may be more than 1024 processors then we do a
5113 // dynamic check - see 6515172 for details.
5114 // If anything goes wrong we fallback to returning the number of online
5115 // processors - which can be greater than the number available to the process.
5116 int os::Linux::active_processor_count() {
5117   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5118   cpu_set_t* cpus_p = &cpus;
5119   int cpus_size = sizeof(cpu_set_t);
5120 
5121   int configured_cpus = os::processor_count();  // upper bound on available cpus
5122   int cpu_count = 0;
5123 
5124 // old build platforms may not support dynamic cpu sets
5125 #ifdef CPU_ALLOC
5126 
5127   // To enable easy testing of the dynamic path on different platforms we
5128   // introduce a diagnostic flag: UseCpuAllocPath
5129   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5130     // kernel may use a mask bigger than cpu_set_t
5131     log_trace(os)("active_processor_count: using dynamic path %s"
5132                   "- configured processors: %d",
5133                   UseCpuAllocPath ? "(forced) " : "",
5134                   configured_cpus);
5135     cpus_p = CPU_ALLOC(configured_cpus);
5136     if (cpus_p != NULL) {
5137       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5138       // zero it just to be safe
5139       CPU_ZERO_S(cpus_size, cpus_p);
5140     }
5141     else {
5142        // failed to allocate so fallback to online cpus
5143        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5144        log_trace(os)("active_processor_count: "
5145                      "CPU_ALLOC failed (%s) - using "
5146                      "online processor count: %d",
5147                      os::strerror(errno), online_cpus);
5148        return online_cpus;
5149     }
5150   }
5151   else {
5152     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5153                   configured_cpus);
5154   }
5155 #else // CPU_ALLOC
5156 // these stubs won't be executed
5157 #define CPU_COUNT_S(size, cpus) -1
5158 #define CPU_FREE(cpus)
5159 
5160   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5161                 configured_cpus);
5162 #endif // CPU_ALLOC
5163 
5164   // pid 0 means the current thread - which we have to assume represents the process
5165   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5166     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5167       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5168     }
5169     else {
5170       cpu_count = CPU_COUNT(cpus_p);
5171     }
5172     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5173   }
5174   else {
5175     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5176     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5177             "which may exceed available processors", os::strerror(errno), cpu_count);
5178   }
5179 
5180   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5181     CPU_FREE(cpus_p);
5182   }
5183 
5184   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5185   return cpu_count;
5186 }
5187 
5188 // Determine the active processor count from one of
5189 // three different sources:
5190 //
5191 // 1. User option -XX:ActiveProcessorCount
5192 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5193 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5194 //
5195 // Option 1, if specified, will always override.
5196 // If the cgroup subsystem is active and configured, we
5197 // will return the min of the cgroup and option 2 results.
5198 // This is required since tools, such as numactl, that
5199 // alter cpu affinity do not update cgroup subsystem
5200 // cpuset configuration files.
5201 int os::active_processor_count() {
5202   // User has overridden the number of active processors
5203   if (ActiveProcessorCount > 0) {
5204     log_trace(os)("active_processor_count: "
5205                   "active processor count set by user : %d",
5206                   ActiveProcessorCount);
5207     return ActiveProcessorCount;
5208   }
5209 
5210   int active_cpus;
5211   if (OSContainer::is_containerized()) {
5212     active_cpus = OSContainer::active_processor_count();
5213     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5214                    active_cpus);
5215   } else {
5216     active_cpus = os::Linux::active_processor_count();
5217   }
5218 
5219   return active_cpus;
5220 }
5221 
5222 uint os::processor_id() {
5223   const int id = Linux::sched_getcpu();
5224   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5225   return (uint)id;
5226 }
5227 
5228 void os::set_native_thread_name(const char *name) {
5229   if (Linux::_pthread_setname_np) {
5230     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5231     snprintf(buf, sizeof(buf), "%s", name);
5232     buf[sizeof(buf) - 1] = '\0';
5233     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5234     // ERANGE should not happen; all other errors should just be ignored.
5235     assert(rc != ERANGE, "pthread_setname_np failed");
5236   }
5237 }
5238 
5239 bool os::distribute_processes(uint length, uint* distribution) {
5240   // Not yet implemented.
5241   return false;
5242 }
5243 
5244 bool os::bind_to_processor(uint processor_id) {
5245   // Not yet implemented.
5246   return false;
5247 }
5248 
5249 ///
5250 
5251 void os::SuspendedThreadTask::internal_do_task() {
5252   if (do_suspend(_thread->osthread())) {
5253     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5254     do_task(context);
5255     do_resume(_thread->osthread());
5256   }
5257 }
5258 
5259 ////////////////////////////////////////////////////////////////////////////////
5260 // debug support
5261 
5262 bool os::find(address addr, outputStream* st) {
5263   Dl_info dlinfo;
5264   memset(&dlinfo, 0, sizeof(dlinfo));
5265   if (dladdr(addr, &dlinfo) != 0) {
5266     st->print(PTR_FORMAT ": ", p2i(addr));
5267     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5268       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5269                 p2i(addr) - p2i(dlinfo.dli_saddr));
5270     } else if (dlinfo.dli_fbase != NULL) {
5271       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5272     } else {
5273       st->print("<absolute address>");
5274     }
5275     if (dlinfo.dli_fname != NULL) {
5276       st->print(" in %s", dlinfo.dli_fname);
5277     }
5278     if (dlinfo.dli_fbase != NULL) {
5279       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5280     }
5281     st->cr();
5282 
5283     if (Verbose) {
5284       // decode some bytes around the PC
5285       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5286       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5287       address       lowest = (address) dlinfo.dli_sname;
5288       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5289       if (begin < lowest)  begin = lowest;
5290       Dl_info dlinfo2;
5291       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5292           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5293         end = (address) dlinfo2.dli_saddr;
5294       }
5295       Disassembler::decode(begin, end, st);
5296     }
5297     return true;
5298   }
5299   return false;
5300 }
5301 
5302 ////////////////////////////////////////////////////////////////////////////////
5303 // misc
5304 
5305 // This does not do anything on Linux. This is basically a hook for being
5306 // able to use structured exception handling (thread-local exception filters)
5307 // on, e.g., Win32.
5308 void
5309 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5310                          JavaCallArguments* args, Thread* thread) {
5311   f(value, method, args, thread);
5312 }
5313 
5314 void os::print_statistics() {
5315 }
5316 
5317 bool os::message_box(const char* title, const char* message) {
5318   int i;
5319   fdStream err(defaultStream::error_fd());
5320   for (i = 0; i < 78; i++) err.print_raw("=");
5321   err.cr();
5322   err.print_raw_cr(title);
5323   for (i = 0; i < 78; i++) err.print_raw("-");
5324   err.cr();
5325   err.print_raw_cr(message);
5326   for (i = 0; i < 78; i++) err.print_raw("=");
5327   err.cr();
5328 
5329   char buf[16];
5330   // Prevent process from exiting upon "read error" without consuming all CPU
5331   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5332 
5333   return buf[0] == 'y' || buf[0] == 'Y';
5334 }
5335 
5336 // Is a (classpath) directory empty?
5337 bool os::dir_is_empty(const char* path) {
5338   DIR *dir = NULL;
5339   struct dirent *ptr;
5340 
5341   dir = opendir(path);
5342   if (dir == NULL) return true;
5343 
5344   // Scan the directory
5345   bool result = true;
5346   while (result && (ptr = readdir(dir)) != NULL) {
5347     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5348       result = false;
5349     }
5350   }
5351   closedir(dir);
5352   return result;
5353 }
5354 
5355 // This code originates from JDK's sysOpen and open64_w
5356 // from src/solaris/hpi/src/system_md.c
5357 
5358 int os::open(const char *path, int oflag, int mode) {
5359   if (strlen(path) > MAX_PATH - 1) {
5360     errno = ENAMETOOLONG;
5361     return -1;
5362   }
5363 
5364   // All file descriptors that are opened in the Java process and not
5365   // specifically destined for a subprocess should have the close-on-exec
5366   // flag set.  If we don't set it, then careless 3rd party native code
5367   // might fork and exec without closing all appropriate file descriptors
5368   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5369   // turn might:
5370   //
5371   // - cause end-of-file to fail to be detected on some file
5372   //   descriptors, resulting in mysterious hangs, or
5373   //
5374   // - might cause an fopen in the subprocess to fail on a system
5375   //   suffering from bug 1085341.
5376   //
5377   // (Yes, the default setting of the close-on-exec flag is a Unix
5378   // design flaw)
5379   //
5380   // See:
5381   // 1085341: 32-bit stdio routines should support file descriptors >255
5382   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5383   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5384   //
5385   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5386   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5387   // because it saves a system call and removes a small window where the flag
5388   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5389   // and we fall back to using FD_CLOEXEC (see below).
5390 #ifdef O_CLOEXEC
5391   oflag |= O_CLOEXEC;
5392 #endif
5393 
5394   int fd = ::open64(path, oflag, mode);
5395   if (fd == -1) return -1;
5396 
5397   //If the open succeeded, the file might still be a directory
5398   {
5399     struct stat64 buf64;
5400     int ret = ::fstat64(fd, &buf64);
5401     int st_mode = buf64.st_mode;
5402 
5403     if (ret != -1) {
5404       if ((st_mode & S_IFMT) == S_IFDIR) {
5405         errno = EISDIR;
5406         ::close(fd);
5407         return -1;
5408       }
5409     } else {
5410       ::close(fd);
5411       return -1;
5412     }
5413   }
5414 
5415 #ifdef FD_CLOEXEC
5416   // Validate that the use of the O_CLOEXEC flag on open above worked.
5417   // With recent kernels, we will perform this check exactly once.
5418   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5419   if (!O_CLOEXEC_is_known_to_work) {
5420     int flags = ::fcntl(fd, F_GETFD);
5421     if (flags != -1) {
5422       if ((flags & FD_CLOEXEC) != 0)
5423         O_CLOEXEC_is_known_to_work = 1;
5424       else
5425         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5426     }
5427   }
5428 #endif
5429 
5430   return fd;
5431 }
5432 
5433 
5434 // create binary file, rewriting existing file if required
5435 int os::create_binary_file(const char* path, bool rewrite_existing) {
5436   int oflags = O_WRONLY | O_CREAT;
5437   if (!rewrite_existing) {
5438     oflags |= O_EXCL;
5439   }
5440   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5441 }
5442 
5443 // return current position of file pointer
5444 jlong os::current_file_offset(int fd) {
5445   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5446 }
5447 
5448 // move file pointer to the specified offset
5449 jlong os::seek_to_file_offset(int fd, jlong offset) {
5450   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5451 }
5452 
5453 // This code originates from JDK's sysAvailable
5454 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5455 
5456 int os::available(int fd, jlong *bytes) {
5457   jlong cur, end;
5458   int mode;
5459   struct stat64 buf64;
5460 
5461   if (::fstat64(fd, &buf64) >= 0) {
5462     mode = buf64.st_mode;
5463     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5464       int n;
5465       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5466         *bytes = n;
5467         return 1;
5468       }
5469     }
5470   }
5471   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5472     return 0;
5473   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5474     return 0;
5475   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5476     return 0;
5477   }
5478   *bytes = end - cur;
5479   return 1;
5480 }
5481 
5482 // Map a block of memory.
5483 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5484                         char *addr, size_t bytes, bool read_only,
5485                         bool allow_exec) {
5486   int prot;
5487   int flags = MAP_PRIVATE;
5488 
5489   if (read_only) {
5490     prot = PROT_READ;
5491   } else {
5492     prot = PROT_READ | PROT_WRITE;
5493   }
5494 
5495   if (allow_exec) {
5496     prot |= PROT_EXEC;
5497   }
5498 
5499   if (addr != NULL) {
5500     flags |= MAP_FIXED;
5501   }
5502 
5503   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5504                                      fd, file_offset);
5505   if (mapped_address == MAP_FAILED) {
5506     return NULL;
5507   }
5508   return mapped_address;
5509 }
5510 
5511 
5512 // Remap a block of memory.
5513 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5514                           char *addr, size_t bytes, bool read_only,
5515                           bool allow_exec) {
5516   // same as map_memory() on this OS
5517   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5518                         allow_exec);
5519 }
5520 
5521 
5522 // Unmap a block of memory.
5523 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5524   return munmap(addr, bytes) == 0;
5525 }
5526 
5527 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5528 
5529 static jlong fast_cpu_time(Thread *thread) {
5530     clockid_t clockid;
5531     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5532                                               &clockid);
5533     if (rc == 0) {
5534       return os::Linux::fast_thread_cpu_time(clockid);
5535     } else {
5536       // It's possible to encounter a terminated native thread that failed
5537       // to detach itself from the VM - which should result in ESRCH.
5538       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5539       return -1;
5540     }
5541 }
5542 
5543 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5544 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5545 // of a thread.
5546 //
5547 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5548 // the fast estimate available on the platform.
5549 
5550 jlong os::current_thread_cpu_time() {
5551   if (os::Linux::supports_fast_thread_cpu_time()) {
5552     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5553   } else {
5554     // return user + sys since the cost is the same
5555     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5556   }
5557 }
5558 
5559 jlong os::thread_cpu_time(Thread* thread) {
5560   // consistent with what current_thread_cpu_time() returns
5561   if (os::Linux::supports_fast_thread_cpu_time()) {
5562     return fast_cpu_time(thread);
5563   } else {
5564     return slow_thread_cpu_time(thread, true /* user + sys */);
5565   }
5566 }
5567 
5568 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5569   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5570     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5571   } else {
5572     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5573   }
5574 }
5575 
5576 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5577   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5578     return fast_cpu_time(thread);
5579   } else {
5580     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5581   }
5582 }
5583 
5584 //  -1 on error.
5585 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5586   pid_t  tid = thread->osthread()->thread_id();
5587   char *s;
5588   char stat[2048];
5589   int statlen;
5590   char proc_name[64];
5591   int count;
5592   long sys_time, user_time;
5593   char cdummy;
5594   int idummy;
5595   long ldummy;
5596   FILE *fp;
5597 
5598   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5599   fp = fopen(proc_name, "r");
5600   if (fp == NULL) return -1;
5601   statlen = fread(stat, 1, 2047, fp);
5602   stat[statlen] = '\0';
5603   fclose(fp);
5604 
5605   // Skip pid and the command string. Note that we could be dealing with
5606   // weird command names, e.g. user could decide to rename java launcher
5607   // to "java 1.4.2 :)", then the stat file would look like
5608   //                1234 (java 1.4.2 :)) R ... ...
5609   // We don't really need to know the command string, just find the last
5610   // occurrence of ")" and then start parsing from there. See bug 4726580.
5611   s = strrchr(stat, ')');
5612   if (s == NULL) return -1;
5613 
5614   // Skip blank chars
5615   do { s++; } while (s && isspace(*s));
5616 
5617   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5618                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5619                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5620                  &user_time, &sys_time);
5621   if (count != 13) return -1;
5622   if (user_sys_cpu_time) {
5623     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5624   } else {
5625     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5626   }
5627 }
5628 
5629 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5630   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5631   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5632   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5633   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5634 }
5635 
5636 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5637   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5638   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5639   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5640   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5641 }
5642 
5643 bool os::is_thread_cpu_time_supported() {
5644   return true;
5645 }
5646 
5647 // System loadavg support.  Returns -1 if load average cannot be obtained.
5648 // Linux doesn't yet have a (official) notion of processor sets,
5649 // so just return the system wide load average.
5650 int os::loadavg(double loadavg[], int nelem) {
5651   return ::getloadavg(loadavg, nelem);
5652 }
5653 
5654 void os::pause() {
5655   char filename[MAX_PATH];
5656   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5657     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5658   } else {
5659     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5660   }
5661 
5662   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5663   if (fd != -1) {
5664     struct stat buf;
5665     ::close(fd);
5666     while (::stat(filename, &buf) == 0) {
5667       (void)::poll(NULL, 0, 100);
5668     }
5669   } else {
5670     jio_fprintf(stderr,
5671                 "Could not open pause file '%s', continuing immediately.\n", filename);
5672   }
5673 }
5674 
5675 extern char** environ;
5676 
5677 // Run the specified command in a separate process. Return its exit value,
5678 // or -1 on failure (e.g. can't fork a new process).
5679 // Unlike system(), this function can be called from signal handler. It
5680 // doesn't block SIGINT et al.
5681 int os::fork_and_exec(char* cmd) {
5682   const char * argv[4] = {"sh", "-c", cmd, NULL};
5683 
5684   pid_t pid = fork();
5685 
5686   if (pid < 0) {
5687     // fork failed
5688     return -1;
5689 
5690   } else if (pid == 0) {
5691     // child process
5692 
5693     execve("/bin/sh", (char* const*)argv, environ);
5694 
5695     // execve failed
5696     _exit(-1);
5697 
5698   } else  {
5699     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5700     // care about the actual exit code, for now.
5701 
5702     int status;
5703 
5704     // Wait for the child process to exit.  This returns immediately if
5705     // the child has already exited. */
5706     while (waitpid(pid, &status, 0) < 0) {
5707       switch (errno) {
5708       case ECHILD: return 0;
5709       case EINTR: break;
5710       default: return -1;
5711       }
5712     }
5713 
5714     if (WIFEXITED(status)) {
5715       // The child exited normally; get its exit code.
5716       return WEXITSTATUS(status);
5717     } else if (WIFSIGNALED(status)) {
5718       // The child exited because of a signal
5719       // The best value to return is 0x80 + signal number,
5720       // because that is what all Unix shells do, and because
5721       // it allows callers to distinguish between process exit and
5722       // process death by signal.
5723       return 0x80 + WTERMSIG(status);
5724     } else {
5725       // Unknown exit code; pass it through
5726       return status;
5727     }
5728   }
5729 }
5730 
5731 // Get the default path to the core file
5732 // Returns the length of the string
5733 int os::get_core_path(char* buffer, size_t bufferSize) {
5734   /*
5735    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5736    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5737    */
5738   const int core_pattern_len = 129;
5739   char core_pattern[core_pattern_len] = {0};
5740 
5741   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5742   if (core_pattern_file == -1) {
5743     return -1;
5744   }
5745 
5746   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5747   ::close(core_pattern_file);
5748   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5749     return -1;
5750   }
5751   if (core_pattern[ret-1] == '\n') {
5752     core_pattern[ret-1] = '\0';
5753   } else {
5754     core_pattern[ret] = '\0';
5755   }
5756 
5757   // Replace the %p in the core pattern with the process id. NOTE: we do this
5758   // only if the pattern doesn't start with "|", and we support only one %p in
5759   // the pattern.
5760   char *pid_pos = strstr(core_pattern, "%p");
5761   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5762   int written;
5763 
5764   if (core_pattern[0] == '/') {
5765     if (pid_pos != NULL) {
5766       *pid_pos = '\0';
5767       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5768                              current_process_id(), tail);
5769     } else {
5770       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5771     }
5772   } else {
5773     char cwd[PATH_MAX];
5774 
5775     const char* p = get_current_directory(cwd, PATH_MAX);
5776     if (p == NULL) {
5777       return -1;
5778     }
5779 
5780     if (core_pattern[0] == '|') {
5781       written = jio_snprintf(buffer, bufferSize,
5782                              "\"%s\" (or dumping to %s/core.%d)",
5783                              &core_pattern[1], p, current_process_id());
5784     } else if (pid_pos != NULL) {
5785       *pid_pos = '\0';
5786       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5787                              current_process_id(), tail);
5788     } else {
5789       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5790     }
5791   }
5792 
5793   if (written < 0) {
5794     return -1;
5795   }
5796 
5797   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5798     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5799 
5800     if (core_uses_pid_file != -1) {
5801       char core_uses_pid = 0;
5802       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5803       ::close(core_uses_pid_file);
5804 
5805       if (core_uses_pid == '1') {
5806         jio_snprintf(buffer + written, bufferSize - written,
5807                                           ".%d", current_process_id());
5808       }
5809     }
5810   }
5811 
5812   return strlen(buffer);
5813 }
5814 
5815 bool os::start_debugging(char *buf, int buflen) {
5816   int len = (int)strlen(buf);
5817   char *p = &buf[len];
5818 
5819   jio_snprintf(p, buflen-len,
5820                "\n\n"
5821                "Do you want to debug the problem?\n\n"
5822                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5823                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5824                "Otherwise, press RETURN to abort...",
5825                os::current_process_id(), os::current_process_id(),
5826                os::current_thread_id(), os::current_thread_id());
5827 
5828   bool yes = os::message_box("Unexpected Error", buf);
5829 
5830   if (yes) {
5831     // yes, user asked VM to launch debugger
5832     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5833                  os::current_process_id(), os::current_process_id());
5834 
5835     os::fork_and_exec(buf);
5836     yes = false;
5837   }
5838   return yes;
5839 }
5840 
5841 
5842 // Java/Compiler thread:
5843 //
5844 //   Low memory addresses
5845 // P0 +------------------------+
5846 //    |                        |\  Java thread created by VM does not have glibc
5847 //    |    glibc guard page    | - guard page, attached Java thread usually has
5848 //    |                        |/  1 glibc guard page.
5849 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5850 //    |                        |\
5851 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5852 //    |                        |/
5853 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5854 //    |                        |\
5855 //    |      Normal Stack      | -
5856 //    |                        |/
5857 // P2 +------------------------+ Thread::stack_base()
5858 //
5859 // Non-Java thread:
5860 //
5861 //   Low memory addresses
5862 // P0 +------------------------+
5863 //    |                        |\
5864 //    |  glibc guard page      | - usually 1 page
5865 //    |                        |/
5866 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5867 //    |                        |\
5868 //    |      Normal Stack      | -
5869 //    |                        |/
5870 // P2 +------------------------+ Thread::stack_base()
5871 //
5872 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5873 //    returned from pthread_attr_getstack().
5874 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5875 //    of the stack size given in pthread_attr. We work around this for
5876 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5877 //
5878 #ifndef ZERO
5879 static void current_stack_region(address * bottom, size_t * size) {
5880   if (os::is_primordial_thread()) {
5881     // primordial thread needs special handling because pthread_getattr_np()
5882     // may return bogus value.
5883     *bottom = os::Linux::initial_thread_stack_bottom();
5884     *size   = os::Linux::initial_thread_stack_size();
5885   } else {
5886     pthread_attr_t attr;
5887 
5888     int rslt = pthread_getattr_np(pthread_self(), &attr);
5889 
5890     // JVM needs to know exact stack location, abort if it fails
5891     if (rslt != 0) {
5892       if (rslt == ENOMEM) {
5893         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5894       } else {
5895         fatal("pthread_getattr_np failed with error = %d", rslt);
5896       }
5897     }
5898 
5899     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5900       fatal("Cannot locate current stack attributes!");
5901     }
5902 
5903     // Work around NPTL stack guard error.
5904     size_t guard_size = 0;
5905     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5906     if (rslt != 0) {
5907       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5908     }
5909     *bottom += guard_size;
5910     *size   -= guard_size;
5911 
5912     pthread_attr_destroy(&attr);
5913 
5914   }
5915   assert(os::current_stack_pointer() >= *bottom &&
5916          os::current_stack_pointer() < *bottom + *size, "just checking");
5917 }
5918 
5919 address os::current_stack_base() {
5920   address bottom;
5921   size_t size;
5922   current_stack_region(&bottom, &size);
5923   return (bottom + size);
5924 }
5925 
5926 size_t os::current_stack_size() {
5927   // This stack size includes the usable stack and HotSpot guard pages
5928   // (for the threads that have Hotspot guard pages).
5929   address bottom;
5930   size_t size;
5931   current_stack_region(&bottom, &size);
5932   return size;
5933 }
5934 #endif
5935 
5936 static inline struct timespec get_mtime(const char* filename) {
5937   struct stat st;
5938   int ret = os::stat(filename, &st);
5939   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5940   return st.st_mtim;
5941 }
5942 
5943 int os::compare_file_modified_times(const char* file1, const char* file2) {
5944   struct timespec filetime1 = get_mtime(file1);
5945   struct timespec filetime2 = get_mtime(file2);
5946   int diff = filetime1.tv_sec - filetime2.tv_sec;
5947   if (diff == 0) {
5948     return filetime1.tv_nsec - filetime2.tv_nsec;
5949   }
5950   return diff;
5951 }
5952 
5953 /////////////// Unit tests ///////////////
5954 
5955 #ifndef PRODUCT
5956 
5957 #define test_log(...)              \
5958   do {                             \
5959     if (VerboseInternalVMTests) {  \
5960       tty->print_cr(__VA_ARGS__);  \
5961       tty->flush();                \
5962     }                              \
5963   } while (false)
5964 
5965 class TestReserveMemorySpecial : AllStatic {
5966  public:
5967   static void small_page_write(void* addr, size_t size) {
5968     size_t page_size = os::vm_page_size();
5969 
5970     char* end = (char*)addr + size;
5971     for (char* p = (char*)addr; p < end; p += page_size) {
5972       *p = 1;
5973     }
5974   }
5975 
5976   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5977     if (!UseHugeTLBFS) {
5978       return;
5979     }
5980 
5981     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5982 
5983     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5984 
5985     if (addr != NULL) {
5986       small_page_write(addr, size);
5987 
5988       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5989     }
5990   }
5991 
5992   static void test_reserve_memory_special_huge_tlbfs_only() {
5993     if (!UseHugeTLBFS) {
5994       return;
5995     }
5996 
5997     size_t lp = os::large_page_size();
5998 
5999     for (size_t size = lp; size <= lp * 10; size += lp) {
6000       test_reserve_memory_special_huge_tlbfs_only(size);
6001     }
6002   }
6003 
6004   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6005     size_t lp = os::large_page_size();
6006     size_t ag = os::vm_allocation_granularity();
6007 
6008     // sizes to test
6009     const size_t sizes[] = {
6010       lp, lp + ag, lp + lp / 2, lp * 2,
6011       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6012       lp * 10, lp * 10 + lp / 2
6013     };
6014     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6015 
6016     // For each size/alignment combination, we test three scenarios:
6017     // 1) with req_addr == NULL
6018     // 2) with a non-null req_addr at which we expect to successfully allocate
6019     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6020     //    expect the allocation to either fail or to ignore req_addr
6021 
6022     // Pre-allocate two areas; they shall be as large as the largest allocation
6023     //  and aligned to the largest alignment we will be testing.
6024     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6025     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6026       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6027       -1, 0);
6028     assert(mapping1 != MAP_FAILED, "should work");
6029 
6030     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6031       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6032       -1, 0);
6033     assert(mapping2 != MAP_FAILED, "should work");
6034 
6035     // Unmap the first mapping, but leave the second mapping intact: the first
6036     // mapping will serve as a value for a "good" req_addr (case 2). The second
6037     // mapping, still intact, as "bad" req_addr (case 3).
6038     ::munmap(mapping1, mapping_size);
6039 
6040     // Case 1
6041     test_log("%s, req_addr NULL:", __FUNCTION__);
6042     test_log("size            align           result");
6043 
6044     for (int i = 0; i < num_sizes; i++) {
6045       const size_t size = sizes[i];
6046       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6047         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6048         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6049                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6050         if (p != NULL) {
6051           assert(is_aligned(p, alignment), "must be");
6052           small_page_write(p, size);
6053           os::Linux::release_memory_special_huge_tlbfs(p, size);
6054         }
6055       }
6056     }
6057 
6058     // Case 2
6059     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6060     test_log("size            align           req_addr         result");
6061 
6062     for (int i = 0; i < num_sizes; i++) {
6063       const size_t size = sizes[i];
6064       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6065         char* const req_addr = align_up(mapping1, alignment);
6066         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6067         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6068                  size, alignment, p2i(req_addr), p2i(p),
6069                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6070         if (p != NULL) {
6071           assert(p == req_addr, "must be");
6072           small_page_write(p, size);
6073           os::Linux::release_memory_special_huge_tlbfs(p, size);
6074         }
6075       }
6076     }
6077 
6078     // Case 3
6079     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6080     test_log("size            align           req_addr         result");
6081 
6082     for (int i = 0; i < num_sizes; i++) {
6083       const size_t size = sizes[i];
6084       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6085         char* const req_addr = align_up(mapping2, alignment);
6086         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6087         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6088                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6089         // as the area around req_addr contains already existing mappings, the API should always
6090         // return NULL (as per contract, it cannot return another address)
6091         assert(p == NULL, "must be");
6092       }
6093     }
6094 
6095     ::munmap(mapping2, mapping_size);
6096 
6097   }
6098 
6099   static void test_reserve_memory_special_huge_tlbfs() {
6100     if (!UseHugeTLBFS) {
6101       return;
6102     }
6103 
6104     test_reserve_memory_special_huge_tlbfs_only();
6105     test_reserve_memory_special_huge_tlbfs_mixed();
6106   }
6107 
6108   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6109     if (!UseSHM) {
6110       return;
6111     }
6112 
6113     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6114 
6115     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6116 
6117     if (addr != NULL) {
6118       assert(is_aligned(addr, alignment), "Check");
6119       assert(is_aligned(addr, os::large_page_size()), "Check");
6120 
6121       small_page_write(addr, size);
6122 
6123       os::Linux::release_memory_special_shm(addr, size);
6124     }
6125   }
6126 
6127   static void test_reserve_memory_special_shm() {
6128     size_t lp = os::large_page_size();
6129     size_t ag = os::vm_allocation_granularity();
6130 
6131     for (size_t size = ag; size < lp * 3; size += ag) {
6132       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6133         test_reserve_memory_special_shm(size, alignment);
6134       }
6135     }
6136   }
6137 
6138   static void test() {
6139     test_reserve_memory_special_huge_tlbfs();
6140     test_reserve_memory_special_shm();
6141   }
6142 };
6143 
6144 void TestReserveMemorySpecial_test() {
6145   TestReserveMemorySpecial::test();
6146 }
6147 
6148 #endif