1 /*
   2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_LIRAssembler.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciArrayKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "memory/barrierSet.hpp"
  35 #include "memory/cardTableModRefBS.hpp"
  36 #include "nativeInst_sparc.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 #define __ _masm->
  41 
  42 
  43 //------------------------------------------------------------
  44 
  45 
  46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  47   if (opr->is_constant()) {
  48     LIR_Const* constant = opr->as_constant_ptr();
  49     switch (constant->type()) {
  50       case T_INT: {
  51         jint value = constant->as_jint();
  52         return Assembler::is_simm13(value);
  53       }
  54 
  55       default:
  56         return false;
  57     }
  58   }
  59   return false;
  60 }
  61 
  62 
  63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  64   switch (op->code()) {
  65     case lir_null_check:
  66     return true;
  67 
  68 
  69     case lir_add:
  70     case lir_ushr:
  71     case lir_shr:
  72     case lir_shl:
  73       // integer shifts and adds are always one instruction
  74       return op->result_opr()->is_single_cpu();
  75 
  76 
  77     case lir_move: {
  78       LIR_Op1* op1 = op->as_Op1();
  79       LIR_Opr src = op1->in_opr();
  80       LIR_Opr dst = op1->result_opr();
  81 
  82       if (src == dst) {
  83         NEEDS_CLEANUP;
  84         // this works around a problem where moves with the same src and dst
  85         // end up in the delay slot and then the assembler swallows the mov
  86         // since it has no effect and then it complains because the delay slot
  87         // is empty.  returning false stops the optimizer from putting this in
  88         // the delay slot
  89         return false;
  90       }
  91 
  92       // don't put moves involving oops into the delay slot since the VerifyOops code
  93       // will make it much larger than a single instruction.
  94       if (VerifyOops) {
  95         return false;
  96       }
  97 
  98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
  99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
 100         return false;
 101       }
 102 
 103       if (UseCompressedOops) {
 104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
 105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
 106       }
 107 
 108       if (dst->is_register()) {
 109         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
 110           return !PatchALot;
 111         } else if (src->is_single_stack()) {
 112           return true;
 113         }
 114       }
 115 
 116       if (src->is_register()) {
 117         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 118           return !PatchALot;
 119         } else if (dst->is_single_stack()) {
 120           return true;
 121         }
 122       }
 123 
 124       if (dst->is_register() &&
 125           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 126            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 127         return true;
 128       }
 129 
 130       return false;
 131     }
 132 
 133     default:
 134       return false;
 135   }
 136   ShouldNotReachHere();
 137 }
 138 
 139 
 140 LIR_Opr LIR_Assembler::receiverOpr() {
 141   return FrameMap::O0_oop_opr;
 142 }
 143 
 144 
 145 LIR_Opr LIR_Assembler::osrBufferPointer() {
 146   return FrameMap::I0_opr;
 147 }
 148 
 149 
 150 int LIR_Assembler::initial_frame_size_in_bytes() {
 151   return in_bytes(frame_map()->framesize_in_bytes());
 152 }
 153 
 154 
 155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 156 // we fetch the class of the receiver (O0) and compare it with the cached class.
 157 // If they do not match we jump to slow case.
 158 int LIR_Assembler::check_icache() {
 159   int offset = __ offset();
 160   __ inline_cache_check(O0, G5_inline_cache_reg);
 161   return offset;
 162 }
 163 
 164 
 165 void LIR_Assembler::osr_entry() {
 166   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 167   //
 168   //   1. Create a new compiled activation.
 169   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 170   //      at the osr_bci; it is not initialized.
 171   //   3. Jump to the continuation address in compiled code to resume execution.
 172 
 173   // OSR entry point
 174   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 175   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 176   ValueStack* entry_state = osr_entry->end()->state();
 177   int number_of_locks = entry_state->locks_size();
 178 
 179   // Create a frame for the compiled activation.
 180   __ build_frame(initial_frame_size_in_bytes());
 181 
 182   // OSR buffer is
 183   //
 184   // locals[nlocals-1..0]
 185   // monitors[number_of_locks-1..0]
 186   //
 187   // locals is a direct copy of the interpreter frame so in the osr buffer
 188   // so first slot in the local array is the last local from the interpreter
 189   // and last slot is local[0] (receiver) from the interpreter
 190   //
 191   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 192   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 193   // in the interpreter frame (the method lock if a sync method)
 194 
 195   // Initialize monitors in the compiled activation.
 196   //   I0: pointer to osr buffer
 197   //
 198   // All other registers are dead at this point and the locals will be
 199   // copied into place by code emitted in the IR.
 200 
 201   Register OSR_buf = osrBufferPointer()->as_register();
 202   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 203     int monitor_offset = BytesPerWord * method()->max_locals() +
 204       (2 * BytesPerWord) * (number_of_locks - 1);
 205     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 206     // the OSR buffer using 2 word entries: first the lock and then
 207     // the oop.
 208     for (int i = 0; i < number_of_locks; i++) {
 209       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 210 #ifdef ASSERT
 211       // verify the interpreter's monitor has a non-null object
 212       {
 213         Label L;
 214         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 215         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
 216         __ stop("locked object is NULL");
 217         __ bind(L);
 218       }
 219 #endif // ASSERT
 220       // Copy the lock field into the compiled activation.
 221       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 222       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 223       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 224       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 225     }
 226   }
 227 }
 228 
 229 
 230 // Optimized Library calls
 231 // This is the fast version of java.lang.String.compare; it has not
 232 // OSR-entry and therefore, we generate a slow version for OSR's
 233 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
 234   Register str0 = left->as_register();
 235   Register str1 = right->as_register();
 236 
 237   Label Ldone;
 238 
 239   Register result = dst->as_register();
 240   {
 241     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
 242     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
 243     // Also, get string0.count-string1.count in o7 and get the condition code set
 244     // Note: some instructions have been hoisted for better instruction scheduling
 245 
 246     Register tmp0 = L0;
 247     Register tmp1 = L1;
 248     Register tmp2 = L2;
 249 
 250     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
 251     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
 252     int  count_offset = java_lang_String:: count_offset_in_bytes();
 253 
 254     __ load_heap_oop(str0, value_offset, tmp0);
 255     __ ld(str0, offset_offset, tmp2);
 256     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
 257     __ ld(str0, count_offset, str0);
 258     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 259 
 260     // str1 may be null
 261     add_debug_info_for_null_check_here(info);
 262 
 263     __ load_heap_oop(str1, value_offset, tmp1);
 264     __ add(tmp0, tmp2, tmp0);
 265 
 266     __ ld(str1, offset_offset, tmp2);
 267     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
 268     __ ld(str1, count_offset, str1);
 269     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 270     __ subcc(str0, str1, O7);
 271     __ add(tmp1, tmp2, tmp1);
 272   }
 273 
 274   {
 275     // Compute the minimum of the string lengths, scale it and store it in limit
 276     Register count0 = I0;
 277     Register count1 = I1;
 278     Register limit  = L3;
 279 
 280     Label Lskip;
 281     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
 282     __ br(Assembler::greater, true, Assembler::pt, Lskip);
 283     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
 284     __ bind(Lskip);
 285 
 286     // If either string is empty (or both of them) the result is the difference in lengths
 287     __ cmp(limit, 0);
 288     __ br(Assembler::equal, true, Assembler::pn, Ldone);
 289     __ delayed()->mov(O7, result);  // result is difference in lengths
 290   }
 291 
 292   {
 293     // Neither string is empty
 294     Label Lloop;
 295 
 296     Register base0 = L0;
 297     Register base1 = L1;
 298     Register chr0  = I0;
 299     Register chr1  = I1;
 300     Register limit = L3;
 301 
 302     // Shift base0 and base1 to the end of the arrays, negate limit
 303     __ add(base0, limit, base0);
 304     __ add(base1, limit, base1);
 305     __ neg(limit);  // limit = -min{string0.count, strin1.count}
 306 
 307     __ lduh(base0, limit, chr0);
 308     __ bind(Lloop);
 309     __ lduh(base1, limit, chr1);
 310     __ subcc(chr0, chr1, chr0);
 311     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
 312     assert(chr0 == result, "result must be pre-placed");
 313     __ delayed()->inccc(limit, sizeof(jchar));
 314     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
 315     __ delayed()->lduh(base0, limit, chr0);
 316   }
 317 
 318   // If strings are equal up to min length, return the length difference.
 319   __ mov(O7, result);
 320 
 321   // Otherwise, return the difference between the first mismatched chars.
 322   __ bind(Ldone);
 323 }
 324 
 325 
 326 // --------------------------------------------------------------------------------------------
 327 
 328 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 329   if (!GenerateSynchronizationCode) return;
 330 
 331   Register obj_reg = obj_opr->as_register();
 332   Register lock_reg = lock_opr->as_register();
 333 
 334   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 335   Register reg = mon_addr.base();
 336   int offset = mon_addr.disp();
 337   // compute pointer to BasicLock
 338   if (mon_addr.is_simm13()) {
 339     __ add(reg, offset, lock_reg);
 340   }
 341   else {
 342     __ set(offset, lock_reg);
 343     __ add(reg, lock_reg, lock_reg);
 344   }
 345   // unlock object
 346   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 347   // _slow_case_stubs->append(slow_case);
 348   // temporary fix: must be created after exceptionhandler, therefore as call stub
 349   _slow_case_stubs->append(slow_case);
 350   if (UseFastLocking) {
 351     // try inlined fast unlocking first, revert to slow locking if it fails
 352     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 353     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 354     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 355   } else {
 356     // always do slow unlocking
 357     // note: the slow unlocking code could be inlined here, however if we use
 358     //       slow unlocking, speed doesn't matter anyway and this solution is
 359     //       simpler and requires less duplicated code - additionally, the
 360     //       slow unlocking code is the same in either case which simplifies
 361     //       debugging
 362     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 363     __ delayed()->nop();
 364   }
 365   // done
 366   __ bind(*slow_case->continuation());
 367 }
 368 
 369 
 370 int LIR_Assembler::emit_exception_handler() {
 371   // if the last instruction is a call (typically to do a throw which
 372   // is coming at the end after block reordering) the return address
 373   // must still point into the code area in order to avoid assertion
 374   // failures when searching for the corresponding bci => add a nop
 375   // (was bug 5/14/1999 - gri)
 376   __ nop();
 377 
 378   // generate code for exception handler
 379   ciMethod* method = compilation()->method();
 380 
 381   address handler_base = __ start_a_stub(exception_handler_size);
 382 
 383   if (handler_base == NULL) {
 384     // not enough space left for the handler
 385     bailout("exception handler overflow");
 386     return -1;
 387   }
 388 
 389   int offset = code_offset();
 390 
 391   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
 392   __ delayed()->nop();
 393   __ should_not_reach_here();
 394   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
 395   __ end_a_stub();
 396 
 397   return offset;
 398 }
 399 
 400 
 401 // Emit the code to remove the frame from the stack in the exception
 402 // unwind path.
 403 int LIR_Assembler::emit_unwind_handler() {
 404 #ifndef PRODUCT
 405   if (CommentedAssembly) {
 406     _masm->block_comment("Unwind handler");
 407   }
 408 #endif
 409 
 410   int offset = code_offset();
 411 
 412   // Fetch the exception from TLS and clear out exception related thread state
 413   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
 414   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
 415   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
 416 
 417   __ bind(_unwind_handler_entry);
 418   __ verify_not_null_oop(O0);
 419   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 420     __ mov(O0, I0);  // Preserve the exception
 421   }
 422 
 423   // Preform needed unlocking
 424   MonitorExitStub* stub = NULL;
 425   if (method()->is_synchronized()) {
 426     monitor_address(0, FrameMap::I1_opr);
 427     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
 428     __ unlock_object(I3, I2, I1, *stub->entry());
 429     __ bind(*stub->continuation());
 430   }
 431 
 432   if (compilation()->env()->dtrace_method_probes()) {
 433     __ mov(G2_thread, O0);
 434     jobject2reg(method()->constant_encoding(), O1);
 435     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
 436     __ delayed()->nop();
 437   }
 438 
 439   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 440     __ mov(I0, O0);  // Restore the exception
 441   }
 442 
 443   // dispatch to the unwind logic
 444   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
 445   __ delayed()->nop();
 446 
 447   // Emit the slow path assembly
 448   if (stub != NULL) {
 449     stub->emit_code(this);
 450   }
 451 
 452   return offset;
 453 }
 454 
 455 
 456 int LIR_Assembler::emit_deopt_handler() {
 457   // if the last instruction is a call (typically to do a throw which
 458   // is coming at the end after block reordering) the return address
 459   // must still point into the code area in order to avoid assertion
 460   // failures when searching for the corresponding bci => add a nop
 461   // (was bug 5/14/1999 - gri)
 462   __ nop();
 463 
 464   // generate code for deopt handler
 465   ciMethod* method = compilation()->method();
 466   address handler_base = __ start_a_stub(deopt_handler_size);
 467   if (handler_base == NULL) {
 468     // not enough space left for the handler
 469     bailout("deopt handler overflow");
 470     return -1;
 471   }
 472 
 473   int offset = code_offset();
 474   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 475   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 476   __ delayed()->nop();
 477   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
 478   __ end_a_stub();
 479 
 480   return offset;
 481 }
 482 
 483 
 484 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 485   if (o == NULL) {
 486     __ set(NULL_WORD, reg);
 487   } else {
 488     int oop_index = __ oop_recorder()->find_index(o);
 489     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 490     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 491   }
 492 }
 493 
 494 
 495 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 496   // Allocate a new index in oop table to hold the oop once it's been patched
 497   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
 498   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
 499 
 500   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 501   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 502   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 503   // NULL will be dynamically patched later and the patched value may be large.  We must
 504   // therefore generate the sethi/add as a placeholders
 505   __ patchable_set(addrlit, reg);
 506 
 507   patching_epilog(patch, lir_patch_normal, reg, info);
 508 }
 509 
 510 
 511 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 512   Register Rdividend = op->in_opr1()->as_register();
 513   Register Rdivisor  = noreg;
 514   Register Rscratch  = op->in_opr3()->as_register();
 515   Register Rresult   = op->result_opr()->as_register();
 516   int divisor = -1;
 517 
 518   if (op->in_opr2()->is_register()) {
 519     Rdivisor = op->in_opr2()->as_register();
 520   } else {
 521     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 522     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 523   }
 524 
 525   assert(Rdividend != Rscratch, "");
 526   assert(Rdivisor  != Rscratch, "");
 527   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 528 
 529   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 530     // convert division by a power of two into some shifts and logical operations
 531     if (op->code() == lir_idiv) {
 532       if (divisor == 2) {
 533         __ srl(Rdividend, 31, Rscratch);
 534       } else {
 535         __ sra(Rdividend, 31, Rscratch);
 536         __ and3(Rscratch, divisor - 1, Rscratch);
 537       }
 538       __ add(Rdividend, Rscratch, Rscratch);
 539       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 540       return;
 541     } else {
 542       if (divisor == 2) {
 543         __ srl(Rdividend, 31, Rscratch);
 544       } else {
 545         __ sra(Rdividend, 31, Rscratch);
 546         __ and3(Rscratch, divisor - 1,Rscratch);
 547       }
 548       __ add(Rdividend, Rscratch, Rscratch);
 549       __ andn(Rscratch, divisor - 1,Rscratch);
 550       __ sub(Rdividend, Rscratch, Rresult);
 551       return;
 552     }
 553   }
 554 
 555   __ sra(Rdividend, 31, Rscratch);
 556   __ wry(Rscratch);
 557   if (!VM_Version::v9_instructions_work()) {
 558     // v9 doesn't require these nops
 559     __ nop();
 560     __ nop();
 561     __ nop();
 562     __ nop();
 563   }
 564 
 565   add_debug_info_for_div0_here(op->info());
 566 
 567   if (Rdivisor != noreg) {
 568     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 569   } else {
 570     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 571     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 572   }
 573 
 574   Label skip;
 575   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 576   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 577   __ bind(skip);
 578 
 579   if (op->code() == lir_irem) {
 580     if (Rdivisor != noreg) {
 581       __ smul(Rscratch, Rdivisor, Rscratch);
 582     } else {
 583       __ smul(Rscratch, divisor, Rscratch);
 584     }
 585     __ sub(Rdividend, Rscratch, Rresult);
 586   }
 587 }
 588 
 589 
 590 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 591 #ifdef ASSERT
 592   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 593   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 594   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 595 #endif
 596   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 597 
 598   if (op->cond() == lir_cond_always) {
 599     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 600   } else if (op->code() == lir_cond_float_branch) {
 601     assert(op->ublock() != NULL, "must have unordered successor");
 602     bool is_unordered = (op->ublock() == op->block());
 603     Assembler::Condition acond;
 604     switch (op->cond()) {
 605       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 606       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 607       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 608       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 609       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 610       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 611       default :                         ShouldNotReachHere();
 612     };
 613 
 614     if (!VM_Version::v9_instructions_work()) {
 615       __ nop();
 616     }
 617     __ fb( acond, false, Assembler::pn, *(op->label()));
 618   } else {
 619     assert (op->code() == lir_branch, "just checking");
 620 
 621     Assembler::Condition acond;
 622     switch (op->cond()) {
 623       case lir_cond_equal:        acond = Assembler::equal;                break;
 624       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 625       case lir_cond_less:         acond = Assembler::less;                 break;
 626       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 627       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 628       case lir_cond_greater:      acond = Assembler::greater;              break;
 629       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 630       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 631       default:                         ShouldNotReachHere();
 632     };
 633 
 634     // sparc has different condition codes for testing 32-bit
 635     // vs. 64-bit values.  We could always test xcc is we could
 636     // guarantee that 32-bit loads always sign extended but that isn't
 637     // true and since sign extension isn't free, it would impose a
 638     // slight cost.
 639 #ifdef _LP64
 640     if  (op->type() == T_INT) {
 641       __ br(acond, false, Assembler::pn, *(op->label()));
 642     } else
 643 #endif
 644       __ brx(acond, false, Assembler::pn, *(op->label()));
 645   }
 646   // The peephole pass fills the delay slot
 647 }
 648 
 649 
 650 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 651   Bytecodes::Code code = op->bytecode();
 652   LIR_Opr dst = op->result_opr();
 653 
 654   switch(code) {
 655     case Bytecodes::_i2l: {
 656       Register rlo  = dst->as_register_lo();
 657       Register rhi  = dst->as_register_hi();
 658       Register rval = op->in_opr()->as_register();
 659 #ifdef _LP64
 660       __ sra(rval, 0, rlo);
 661 #else
 662       __ mov(rval, rlo);
 663       __ sra(rval, BitsPerInt-1, rhi);
 664 #endif
 665       break;
 666     }
 667     case Bytecodes::_i2d:
 668     case Bytecodes::_i2f: {
 669       bool is_double = (code == Bytecodes::_i2d);
 670       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 671       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 672       FloatRegister rsrc = op->in_opr()->as_float_reg();
 673       if (rsrc != rdst) {
 674         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 675       }
 676       __ fitof(w, rdst, rdst);
 677       break;
 678     }
 679     case Bytecodes::_f2i:{
 680       FloatRegister rsrc = op->in_opr()->as_float_reg();
 681       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 682       Label L;
 683       // result must be 0 if value is NaN; test by comparing value to itself
 684       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 685       if (!VM_Version::v9_instructions_work()) {
 686         __ nop();
 687       }
 688       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 689       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 690       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 691       // move integer result from float register to int register
 692       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 693       __ bind (L);
 694       break;
 695     }
 696     case Bytecodes::_l2i: {
 697       Register rlo  = op->in_opr()->as_register_lo();
 698       Register rhi  = op->in_opr()->as_register_hi();
 699       Register rdst = dst->as_register();
 700 #ifdef _LP64
 701       __ sra(rlo, 0, rdst);
 702 #else
 703       __ mov(rlo, rdst);
 704 #endif
 705       break;
 706     }
 707     case Bytecodes::_d2f:
 708     case Bytecodes::_f2d: {
 709       bool is_double = (code == Bytecodes::_f2d);
 710       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 711       LIR_Opr val = op->in_opr();
 712       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 713       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 714       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 715       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 716       __ ftof(vw, dw, rval, rdst);
 717       break;
 718     }
 719     case Bytecodes::_i2s:
 720     case Bytecodes::_i2b: {
 721       Register rval = op->in_opr()->as_register();
 722       Register rdst = dst->as_register();
 723       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 724       __ sll (rval, shift, rdst);
 725       __ sra (rdst, shift, rdst);
 726       break;
 727     }
 728     case Bytecodes::_i2c: {
 729       Register rval = op->in_opr()->as_register();
 730       Register rdst = dst->as_register();
 731       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 732       __ sll (rval, shift, rdst);
 733       __ srl (rdst, shift, rdst);
 734       break;
 735     }
 736 
 737     default: ShouldNotReachHere();
 738   }
 739 }
 740 
 741 
 742 void LIR_Assembler::align_call(LIR_Code) {
 743   // do nothing since all instructions are word aligned on sparc
 744 }
 745 
 746 
 747 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 748   __ call(op->addr(), rtype);
 749   // The peephole pass fills the delay slot, add_call_info is done in
 750   // LIR_Assembler::emit_delay.
 751 }
 752 
 753 
 754 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 755   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
 756   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
 757   __ relocate(rspec);
 758   __ call(op->addr(), relocInfo::none);
 759   // The peephole pass fills the delay slot, add_call_info is done in
 760   // LIR_Assembler::emit_delay.
 761 }
 762 
 763 
 764 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 765   add_debug_info_for_null_check_here(op->info());
 766   __ load_klass(O0, G3_scratch);
 767   if (Assembler::is_simm13(op->vtable_offset())) {
 768     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 769   } else {
 770     // This will generate 2 instructions
 771     __ set(op->vtable_offset(), G5_method);
 772     // ld_ptr, set_hi, set
 773     __ ld_ptr(G3_scratch, G5_method, G5_method);
 774   }
 775   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
 776   __ callr(G3_scratch, G0);
 777   // the peephole pass fills the delay slot
 778 }
 779 
 780 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
 781   int store_offset;
 782   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 783     assert(!unaligned, "can't handle this");
 784     // for offsets larger than a simm13 we setup the offset in O7
 785     __ set(offset, O7);
 786     store_offset = store(from_reg, base, O7, type, wide);
 787   } else {
 788     if (type == T_ARRAY || type == T_OBJECT) {
 789       __ verify_oop(from_reg->as_register());
 790     }
 791     store_offset = code_offset();
 792     switch (type) {
 793       case T_BOOLEAN: // fall through
 794       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 795       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 796       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 797       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 798       case T_LONG  :
 799 #ifdef _LP64
 800         if (unaligned || PatchALot) {
 801           __ srax(from_reg->as_register_lo(), 32, O7);
 802           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 803           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
 804         } else {
 805           __ stx(from_reg->as_register_lo(), base, offset);
 806         }
 807 #else
 808         assert(Assembler::is_simm13(offset + 4), "must be");
 809         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 810         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
 811 #endif
 812         break;
 813       case T_ADDRESS:
 814         __ st_ptr(from_reg->as_register(), base, offset);
 815         break;
 816       case T_ARRAY : // fall through
 817       case T_OBJECT:
 818         {
 819           if (UseCompressedOops && !wide) {
 820             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 821             store_offset = code_offset();
 822             __ stw(G3_scratch, base, offset);
 823           } else {
 824             __ st_ptr(from_reg->as_register(), base, offset);
 825           }
 826           break;
 827         }
 828 
 829       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 830       case T_DOUBLE:
 831         {
 832           FloatRegister reg = from_reg->as_double_reg();
 833           // split unaligned stores
 834           if (unaligned || PatchALot) {
 835             assert(Assembler::is_simm13(offset + 4), "must be");
 836             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 837             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 838           } else {
 839             __ stf(FloatRegisterImpl::D, reg, base, offset);
 840           }
 841           break;
 842         }
 843       default      : ShouldNotReachHere();
 844     }
 845   }
 846   return store_offset;
 847 }
 848 
 849 
 850 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
 851   if (type == T_ARRAY || type == T_OBJECT) {
 852     __ verify_oop(from_reg->as_register());
 853   }
 854   int store_offset = code_offset();
 855   switch (type) {
 856     case T_BOOLEAN: // fall through
 857     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 858     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 859     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 860     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 861     case T_LONG  :
 862 #ifdef _LP64
 863       __ stx(from_reg->as_register_lo(), base, disp);
 864 #else
 865       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
 866       __ std(from_reg->as_register_hi(), base, disp);
 867 #endif
 868       break;
 869     case T_ADDRESS:
 870       __ st_ptr(from_reg->as_register(), base, disp);
 871       break;
 872     case T_ARRAY : // fall through
 873     case T_OBJECT:
 874       {
 875         if (UseCompressedOops && !wide) {
 876           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 877           store_offset = code_offset();
 878           __ stw(G3_scratch, base, disp);
 879         } else {
 880           __ st_ptr(from_reg->as_register(), base, disp);
 881         }
 882         break;
 883       }
 884     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 885     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 886     default      : ShouldNotReachHere();
 887   }
 888   return store_offset;
 889 }
 890 
 891 
 892 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
 893   int load_offset;
 894   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 895     assert(base != O7, "destroying register");
 896     assert(!unaligned, "can't handle this");
 897     // for offsets larger than a simm13 we setup the offset in O7
 898     __ set(offset, O7);
 899     load_offset = load(base, O7, to_reg, type, wide);
 900   } else {
 901     load_offset = code_offset();
 902     switch(type) {
 903       case T_BOOLEAN: // fall through
 904       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 905       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 906       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 907       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 908       case T_LONG  :
 909         if (!unaligned) {
 910 #ifdef _LP64
 911           __ ldx(base, offset, to_reg->as_register_lo());
 912 #else
 913           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
 914                  "must be sequential");
 915           __ ldd(base, offset, to_reg->as_register_hi());
 916 #endif
 917         } else {
 918 #ifdef _LP64
 919           assert(base != to_reg->as_register_lo(), "can't handle this");
 920           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 921           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 922           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 923           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 924           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 925 #else
 926           if (base == to_reg->as_register_lo()) {
 927             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 928             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 929           } else {
 930             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 931             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 932           }
 933 #endif
 934         }
 935         break;
 936       case T_ADDRESS:  __ ld_ptr(base, offset, to_reg->as_register()); break;
 937       case T_ARRAY : // fall through
 938       case T_OBJECT:
 939         {
 940           if (UseCompressedOops && !wide) {
 941             __ lduw(base, offset, to_reg->as_register());
 942             __ decode_heap_oop(to_reg->as_register());
 943           } else {
 944             __ ld_ptr(base, offset, to_reg->as_register());
 945           }
 946           break;
 947         }
 948       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 949       case T_DOUBLE:
 950         {
 951           FloatRegister reg = to_reg->as_double_reg();
 952           // split unaligned loads
 953           if (unaligned || PatchALot) {
 954             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 955             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 956           } else {
 957             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 958           }
 959           break;
 960         }
 961       default      : ShouldNotReachHere();
 962     }
 963     if (type == T_ARRAY || type == T_OBJECT) {
 964       __ verify_oop(to_reg->as_register());
 965     }
 966   }
 967   return load_offset;
 968 }
 969 
 970 
 971 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
 972   int load_offset = code_offset();
 973   switch(type) {
 974     case T_BOOLEAN: // fall through
 975     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
 976     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
 977     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
 978     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
 979     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
 980     case T_ARRAY : // fall through
 981     case T_OBJECT:
 982       {
 983           if (UseCompressedOops && !wide) {
 984             __ lduw(base, disp, to_reg->as_register());
 985             __ decode_heap_oop(to_reg->as_register());
 986           } else {
 987             __ ld_ptr(base, disp, to_reg->as_register());
 988           }
 989           break;
 990       }
 991     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
 992     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
 993     case T_LONG  :
 994 #ifdef _LP64
 995       __ ldx(base, disp, to_reg->as_register_lo());
 996 #else
 997       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
 998              "must be sequential");
 999       __ ldd(base, disp, to_reg->as_register_hi());
1000 #endif
1001       break;
1002     default      : ShouldNotReachHere();
1003   }
1004   if (type == T_ARRAY || type == T_OBJECT) {
1005     __ verify_oop(to_reg->as_register());
1006   }
1007   return load_offset;
1008 }
1009 
1010 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1011   LIR_Const* c = src->as_constant_ptr();
1012   switch (c->type()) {
1013     case T_INT:
1014     case T_FLOAT: {
1015       Register src_reg = O7;
1016       int value = c->as_jint_bits();
1017       if (value == 0) {
1018         src_reg = G0;
1019       } else {
1020         __ set(value, O7);
1021       }
1022       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1023       __ stw(src_reg, addr.base(), addr.disp());
1024       break;
1025     }
1026     case T_ADDRESS: {
1027       Register src_reg = O7;
1028       int value = c->as_jint_bits();
1029       if (value == 0) {
1030         src_reg = G0;
1031       } else {
1032         __ set(value, O7);
1033       }
1034       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1035       __ st_ptr(src_reg, addr.base(), addr.disp());
1036       break;
1037     }
1038     case T_OBJECT: {
1039       Register src_reg = O7;
1040       jobject2reg(c->as_jobject(), src_reg);
1041       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1042       __ st_ptr(src_reg, addr.base(), addr.disp());
1043       break;
1044     }
1045     case T_LONG:
1046     case T_DOUBLE: {
1047       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1048 
1049       Register tmp = O7;
1050       int value_lo = c->as_jint_lo_bits();
1051       if (value_lo == 0) {
1052         tmp = G0;
1053       } else {
1054         __ set(value_lo, O7);
1055       }
1056       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1057       int value_hi = c->as_jint_hi_bits();
1058       if (value_hi == 0) {
1059         tmp = G0;
1060       } else {
1061         __ set(value_hi, O7);
1062       }
1063       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1064       break;
1065     }
1066     default:
1067       Unimplemented();
1068   }
1069 }
1070 
1071 
1072 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
1073   LIR_Const* c = src->as_constant_ptr();
1074   LIR_Address* addr     = dest->as_address_ptr();
1075   Register base = addr->base()->as_pointer_register();
1076   int offset = -1;
1077 
1078   switch (c->type()) {
1079     case T_INT:
1080     case T_FLOAT:
1081     case T_ADDRESS: {
1082       LIR_Opr tmp = FrameMap::O7_opr;
1083       int value = c->as_jint_bits();
1084       if (value == 0) {
1085         tmp = FrameMap::G0_opr;
1086       } else if (Assembler::is_simm13(value)) {
1087         __ set(value, O7);
1088       }
1089       if (addr->index()->is_valid()) {
1090         assert(addr->disp() == 0, "must be zero");
1091         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1092       } else {
1093         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1094         offset = store(tmp, base, addr->disp(), type, wide, false);
1095       }
1096       break;
1097     }
1098     case T_LONG:
1099     case T_DOUBLE: {
1100       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1101       assert(Assembler::is_simm13(addr->disp()) &&
1102              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1103 
1104       LIR_Opr tmp = FrameMap::O7_opr;
1105       int value_lo = c->as_jint_lo_bits();
1106       if (value_lo == 0) {
1107         tmp = FrameMap::G0_opr;
1108       } else {
1109         __ set(value_lo, O7);
1110       }
1111       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1112       int value_hi = c->as_jint_hi_bits();
1113       if (value_hi == 0) {
1114         tmp = FrameMap::G0_opr;
1115       } else {
1116         __ set(value_hi, O7);
1117       }
1118       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1119       break;
1120     }
1121     case T_OBJECT: {
1122       jobject obj = c->as_jobject();
1123       LIR_Opr tmp;
1124       if (obj == NULL) {
1125         tmp = FrameMap::G0_opr;
1126       } else {
1127         tmp = FrameMap::O7_opr;
1128         jobject2reg(c->as_jobject(), O7);
1129       }
1130       // handle either reg+reg or reg+disp address
1131       if (addr->index()->is_valid()) {
1132         assert(addr->disp() == 0, "must be zero");
1133         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1134       } else {
1135         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1136         offset = store(tmp, base, addr->disp(), type, wide, false);
1137       }
1138 
1139       break;
1140     }
1141     default:
1142       Unimplemented();
1143   }
1144   if (info != NULL) {
1145     assert(offset != -1, "offset should've been set");
1146     add_debug_info_for_null_check(offset, info);
1147   }
1148 }
1149 
1150 
1151 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1152   LIR_Const* c = src->as_constant_ptr();
1153   LIR_Opr to_reg = dest;
1154 
1155   switch (c->type()) {
1156     case T_INT:
1157     case T_ADDRESS:
1158       {
1159         jint con = c->as_jint();
1160         if (to_reg->is_single_cpu()) {
1161           assert(patch_code == lir_patch_none, "no patching handled here");
1162           __ set(con, to_reg->as_register());
1163         } else {
1164           ShouldNotReachHere();
1165           assert(to_reg->is_single_fpu(), "wrong register kind");
1166 
1167           __ set(con, O7);
1168           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1169           __ st(O7, temp_slot);
1170           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1171         }
1172       }
1173       break;
1174 
1175     case T_LONG:
1176       {
1177         jlong con = c->as_jlong();
1178 
1179         if (to_reg->is_double_cpu()) {
1180 #ifdef _LP64
1181           __ set(con,  to_reg->as_register_lo());
1182 #else
1183           __ set(low(con),  to_reg->as_register_lo());
1184           __ set(high(con), to_reg->as_register_hi());
1185 #endif
1186 #ifdef _LP64
1187         } else if (to_reg->is_single_cpu()) {
1188           __ set(con, to_reg->as_register());
1189 #endif
1190         } else {
1191           ShouldNotReachHere();
1192           assert(to_reg->is_double_fpu(), "wrong register kind");
1193           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1194           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1195           __ set(low(con),  O7);
1196           __ st(O7, temp_slot_lo);
1197           __ set(high(con), O7);
1198           __ st(O7, temp_slot_hi);
1199           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1200         }
1201       }
1202       break;
1203 
1204     case T_OBJECT:
1205       {
1206         if (patch_code == lir_patch_none) {
1207           jobject2reg(c->as_jobject(), to_reg->as_register());
1208         } else {
1209           jobject2reg_with_patching(to_reg->as_register(), info);
1210         }
1211       }
1212       break;
1213 
1214     case T_FLOAT:
1215       {
1216         address const_addr = __ float_constant(c->as_jfloat());
1217         if (const_addr == NULL) {
1218           bailout("const section overflow");
1219           break;
1220         }
1221         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1222         AddressLiteral const_addrlit(const_addr, rspec);
1223         if (to_reg->is_single_fpu()) {
1224           __ patchable_sethi(const_addrlit, O7);
1225           __ relocate(rspec);
1226           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1227 
1228         } else {
1229           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1230 
1231           __ set(const_addrlit, O7);
1232           __ ld(O7, 0, to_reg->as_register());
1233         }
1234       }
1235       break;
1236 
1237     case T_DOUBLE:
1238       {
1239         address const_addr = __ double_constant(c->as_jdouble());
1240         if (const_addr == NULL) {
1241           bailout("const section overflow");
1242           break;
1243         }
1244         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1245 
1246         if (to_reg->is_double_fpu()) {
1247           AddressLiteral const_addrlit(const_addr, rspec);
1248           __ patchable_sethi(const_addrlit, O7);
1249           __ relocate(rspec);
1250           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1251         } else {
1252           assert(to_reg->is_double_cpu(), "Must be a long register.");
1253 #ifdef _LP64
1254           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1255 #else
1256           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1257           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1258 #endif
1259         }
1260 
1261       }
1262       break;
1263 
1264     default:
1265       ShouldNotReachHere();
1266   }
1267 }
1268 
1269 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1270   Register reg = addr->base()->as_register();
1271   return Address(reg, addr->disp());
1272 }
1273 
1274 
1275 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1276   switch (type) {
1277     case T_INT:
1278     case T_FLOAT: {
1279       Register tmp = O7;
1280       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1281       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1282       __ lduw(from.base(), from.disp(), tmp);
1283       __ stw(tmp, to.base(), to.disp());
1284       break;
1285     }
1286     case T_OBJECT: {
1287       Register tmp = O7;
1288       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1289       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1290       __ ld_ptr(from.base(), from.disp(), tmp);
1291       __ st_ptr(tmp, to.base(), to.disp());
1292       break;
1293     }
1294     case T_LONG:
1295     case T_DOUBLE: {
1296       Register tmp = O7;
1297       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1298       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1299       __ lduw(from.base(), from.disp(), tmp);
1300       __ stw(tmp, to.base(), to.disp());
1301       __ lduw(from.base(), from.disp() + 4, tmp);
1302       __ stw(tmp, to.base(), to.disp() + 4);
1303       break;
1304     }
1305 
1306     default:
1307       ShouldNotReachHere();
1308   }
1309 }
1310 
1311 
1312 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1313   Address base = as_Address(addr);
1314   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1315 }
1316 
1317 
1318 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1319   Address base = as_Address(addr);
1320   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1321 }
1322 
1323 
1324 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1325                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1326 
1327   LIR_Address* addr = src_opr->as_address_ptr();
1328   LIR_Opr to_reg = dest;
1329 
1330   Register src = addr->base()->as_pointer_register();
1331   Register disp_reg = noreg;
1332   int disp_value = addr->disp();
1333   bool needs_patching = (patch_code != lir_patch_none);
1334 
1335   if (addr->base()->type() == T_OBJECT) {
1336     __ verify_oop(src);
1337   }
1338 
1339   PatchingStub* patch = NULL;
1340   if (needs_patching) {
1341     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1342     assert(!to_reg->is_double_cpu() ||
1343            patch_code == lir_patch_none ||
1344            patch_code == lir_patch_normal, "patching doesn't match register");
1345   }
1346 
1347   if (addr->index()->is_illegal()) {
1348     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1349       if (needs_patching) {
1350         __ patchable_set(0, O7);
1351       } else {
1352         __ set(disp_value, O7);
1353       }
1354       disp_reg = O7;
1355     }
1356   } else if (unaligned || PatchALot) {
1357     __ add(src, addr->index()->as_register(), O7);
1358     src = O7;
1359   } else {
1360     disp_reg = addr->index()->as_pointer_register();
1361     assert(disp_value == 0, "can't handle 3 operand addresses");
1362   }
1363 
1364   // remember the offset of the load.  The patching_epilog must be done
1365   // before the call to add_debug_info, otherwise the PcDescs don't get
1366   // entered in increasing order.
1367   int offset = code_offset();
1368 
1369   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1370   if (disp_reg == noreg) {
1371     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1372   } else {
1373     assert(!unaligned, "can't handle this");
1374     offset = load(src, disp_reg, to_reg, type, wide);
1375   }
1376 
1377   if (patch != NULL) {
1378     patching_epilog(patch, patch_code, src, info);
1379   }
1380   if (info != NULL) add_debug_info_for_null_check(offset, info);
1381 }
1382 
1383 
1384 void LIR_Assembler::prefetchr(LIR_Opr src) {
1385   LIR_Address* addr = src->as_address_ptr();
1386   Address from_addr = as_Address(addr);
1387 
1388   if (VM_Version::has_v9()) {
1389     __ prefetch(from_addr, Assembler::severalReads);
1390   }
1391 }
1392 
1393 
1394 void LIR_Assembler::prefetchw(LIR_Opr src) {
1395   LIR_Address* addr = src->as_address_ptr();
1396   Address from_addr = as_Address(addr);
1397 
1398   if (VM_Version::has_v9()) {
1399     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1400   }
1401 }
1402 
1403 
1404 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1405   Address addr;
1406   if (src->is_single_word()) {
1407     addr = frame_map()->address_for_slot(src->single_stack_ix());
1408   } else if (src->is_double_word())  {
1409     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1410   }
1411 
1412   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1413   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1414 }
1415 
1416 
1417 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1418   Address addr;
1419   if (dest->is_single_word()) {
1420     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1421   } else if (dest->is_double_word())  {
1422     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1423   }
1424   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1425   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1426 }
1427 
1428 
1429 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1430   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1431     if (from_reg->is_double_fpu()) {
1432       // double to double moves
1433       assert(to_reg->is_double_fpu(), "should match");
1434       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1435     } else {
1436       // float to float moves
1437       assert(to_reg->is_single_fpu(), "should match");
1438       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1439     }
1440   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1441     if (from_reg->is_double_cpu()) {
1442 #ifdef _LP64
1443       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1444 #else
1445       assert(to_reg->is_double_cpu() &&
1446              from_reg->as_register_hi() != to_reg->as_register_lo() &&
1447              from_reg->as_register_lo() != to_reg->as_register_hi(),
1448              "should both be long and not overlap");
1449       // long to long moves
1450       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1451       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1452 #endif
1453 #ifdef _LP64
1454     } else if (to_reg->is_double_cpu()) {
1455       // int to int moves
1456       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1457 #endif
1458     } else {
1459       // int to int moves
1460       __ mov(from_reg->as_register(), to_reg->as_register());
1461     }
1462   } else {
1463     ShouldNotReachHere();
1464   }
1465   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1466     __ verify_oop(to_reg->as_register());
1467   }
1468 }
1469 
1470 
1471 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1472                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1473                             bool wide, bool unaligned) {
1474   LIR_Address* addr = dest->as_address_ptr();
1475 
1476   Register src = addr->base()->as_pointer_register();
1477   Register disp_reg = noreg;
1478   int disp_value = addr->disp();
1479   bool needs_patching = (patch_code != lir_patch_none);
1480 
1481   if (addr->base()->is_oop_register()) {
1482     __ verify_oop(src);
1483   }
1484 
1485   PatchingStub* patch = NULL;
1486   if (needs_patching) {
1487     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1488     assert(!from_reg->is_double_cpu() ||
1489            patch_code == lir_patch_none ||
1490            patch_code == lir_patch_normal, "patching doesn't match register");
1491   }
1492 
1493   if (addr->index()->is_illegal()) {
1494     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1495       if (needs_patching) {
1496         __ patchable_set(0, O7);
1497       } else {
1498         __ set(disp_value, O7);
1499       }
1500       disp_reg = O7;
1501     }
1502   } else if (unaligned || PatchALot) {
1503     __ add(src, addr->index()->as_register(), O7);
1504     src = O7;
1505   } else {
1506     disp_reg = addr->index()->as_pointer_register();
1507     assert(disp_value == 0, "can't handle 3 operand addresses");
1508   }
1509 
1510   // remember the offset of the store.  The patching_epilog must be done
1511   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1512   // entered in increasing order.
1513   int offset;
1514 
1515   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1516   if (disp_reg == noreg) {
1517     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1518   } else {
1519     assert(!unaligned, "can't handle this");
1520     offset = store(from_reg, src, disp_reg, type, wide);
1521   }
1522 
1523   if (patch != NULL) {
1524     patching_epilog(patch, patch_code, src, info);
1525   }
1526 
1527   if (info != NULL) add_debug_info_for_null_check(offset, info);
1528 }
1529 
1530 
1531 void LIR_Assembler::return_op(LIR_Opr result) {
1532   // the poll may need a register so just pick one that isn't the return register
1533 #if defined(TIERED) && !defined(_LP64)
1534   if (result->type_field() == LIR_OprDesc::long_type) {
1535     // Must move the result to G1
1536     // Must leave proper result in O0,O1 and G1 (TIERED only)
1537     __ sllx(I0, 32, G1);          // Shift bits into high G1
1538     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1539     __ or3 (I1, G1, G1);          // OR 64 bits into G1
1540 #ifdef ASSERT
1541     // mangle it so any problems will show up
1542     __ set(0xdeadbeef, I0);
1543     __ set(0xdeadbeef, I1);
1544 #endif
1545   }
1546 #endif // TIERED
1547   __ set((intptr_t)os::get_polling_page(), L0);
1548   __ relocate(relocInfo::poll_return_type);
1549   __ ld_ptr(L0, 0, G0);
1550   __ ret();
1551   __ delayed()->restore();
1552 }
1553 
1554 
1555 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1556   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1557   if (info != NULL) {
1558     add_debug_info_for_branch(info);
1559   } else {
1560     __ relocate(relocInfo::poll_type);
1561   }
1562 
1563   int offset = __ offset();
1564   __ ld_ptr(tmp->as_register(), 0, G0);
1565 
1566   return offset;
1567 }
1568 
1569 
1570 void LIR_Assembler::emit_static_call_stub() {
1571   address call_pc = __ pc();
1572   address stub = __ start_a_stub(call_stub_size);
1573   if (stub == NULL) {
1574     bailout("static call stub overflow");
1575     return;
1576   }
1577 
1578   int start = __ offset();
1579   __ relocate(static_stub_Relocation::spec(call_pc));
1580 
1581   __ set_oop(NULL, G5);
1582   // must be set to -1 at code generation time
1583   AddressLiteral addrlit(-1);
1584   __ jump_to(addrlit, G3);
1585   __ delayed()->nop();
1586 
1587   assert(__ offset() - start <= call_stub_size, "stub too big");
1588   __ end_a_stub();
1589 }
1590 
1591 
1592 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1593   if (opr1->is_single_fpu()) {
1594     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1595   } else if (opr1->is_double_fpu()) {
1596     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1597   } else if (opr1->is_single_cpu()) {
1598     if (opr2->is_constant()) {
1599       switch (opr2->as_constant_ptr()->type()) {
1600         case T_INT:
1601           { jint con = opr2->as_constant_ptr()->as_jint();
1602             if (Assembler::is_simm13(con)) {
1603               __ cmp(opr1->as_register(), con);
1604             } else {
1605               __ set(con, O7);
1606               __ cmp(opr1->as_register(), O7);
1607             }
1608           }
1609           break;
1610 
1611         case T_OBJECT:
1612           // there are only equal/notequal comparisions on objects
1613           { jobject con = opr2->as_constant_ptr()->as_jobject();
1614             if (con == NULL) {
1615               __ cmp(opr1->as_register(), 0);
1616             } else {
1617               jobject2reg(con, O7);
1618               __ cmp(opr1->as_register(), O7);
1619             }
1620           }
1621           break;
1622 
1623         default:
1624           ShouldNotReachHere();
1625           break;
1626       }
1627     } else {
1628       if (opr2->is_address()) {
1629         LIR_Address * addr = opr2->as_address_ptr();
1630         BasicType type = addr->type();
1631         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1632         else                    __ ld(as_Address(addr), O7);
1633         __ cmp(opr1->as_register(), O7);
1634       } else {
1635         __ cmp(opr1->as_register(), opr2->as_register());
1636       }
1637     }
1638   } else if (opr1->is_double_cpu()) {
1639     Register xlo = opr1->as_register_lo();
1640     Register xhi = opr1->as_register_hi();
1641     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1642       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1643 #ifdef _LP64
1644       __ orcc(xhi, G0, G0);
1645 #else
1646       __ orcc(xhi, xlo, G0);
1647 #endif
1648     } else if (opr2->is_register()) {
1649       Register ylo = opr2->as_register_lo();
1650       Register yhi = opr2->as_register_hi();
1651 #ifdef _LP64
1652       __ cmp(xlo, ylo);
1653 #else
1654       __ subcc(xlo, ylo, xlo);
1655       __ subccc(xhi, yhi, xhi);
1656       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1657         __ orcc(xhi, xlo, G0);
1658       }
1659 #endif
1660     } else {
1661       ShouldNotReachHere();
1662     }
1663   } else if (opr1->is_address()) {
1664     LIR_Address * addr = opr1->as_address_ptr();
1665     BasicType type = addr->type();
1666     assert (opr2->is_constant(), "Checking");
1667     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1668     else                    __ ld(as_Address(addr), O7);
1669     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1670   } else {
1671     ShouldNotReachHere();
1672   }
1673 }
1674 
1675 
1676 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1677   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1678     bool is_unordered_less = (code == lir_ucmp_fd2i);
1679     if (left->is_single_fpu()) {
1680       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1681     } else if (left->is_double_fpu()) {
1682       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1683     } else {
1684       ShouldNotReachHere();
1685     }
1686   } else if (code == lir_cmp_l2i) {
1687 #ifdef _LP64
1688     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1689 #else
1690     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1691             right->as_register_hi(), right->as_register_lo(),
1692             dst->as_register());
1693 #endif
1694   } else {
1695     ShouldNotReachHere();
1696   }
1697 }
1698 
1699 
1700 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1701   Assembler::Condition acond;
1702   switch (condition) {
1703     case lir_cond_equal:        acond = Assembler::equal;        break;
1704     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1705     case lir_cond_less:         acond = Assembler::less;         break;
1706     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1707     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1708     case lir_cond_greater:      acond = Assembler::greater;      break;
1709     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1710     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1711     default:                         ShouldNotReachHere();
1712   };
1713 
1714   if (opr1->is_constant() && opr1->type() == T_INT) {
1715     Register dest = result->as_register();
1716     // load up first part of constant before branch
1717     // and do the rest in the delay slot.
1718     if (!Assembler::is_simm13(opr1->as_jint())) {
1719       __ sethi(opr1->as_jint(), dest);
1720     }
1721   } else if (opr1->is_constant()) {
1722     const2reg(opr1, result, lir_patch_none, NULL);
1723   } else if (opr1->is_register()) {
1724     reg2reg(opr1, result);
1725   } else if (opr1->is_stack()) {
1726     stack2reg(opr1, result, result->type());
1727   } else {
1728     ShouldNotReachHere();
1729   }
1730   Label skip;
1731 #ifdef _LP64
1732     if  (type == T_INT) {
1733       __ br(acond, false, Assembler::pt, skip);
1734     } else
1735 #endif
1736       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1737   if (opr1->is_constant() && opr1->type() == T_INT) {
1738     Register dest = result->as_register();
1739     if (Assembler::is_simm13(opr1->as_jint())) {
1740       __ delayed()->or3(G0, opr1->as_jint(), dest);
1741     } else {
1742       // the sethi has been done above, so just put in the low 10 bits
1743       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1744     }
1745   } else {
1746     // can't do anything useful in the delay slot
1747     __ delayed()->nop();
1748   }
1749   if (opr2->is_constant()) {
1750     const2reg(opr2, result, lir_patch_none, NULL);
1751   } else if (opr2->is_register()) {
1752     reg2reg(opr2, result);
1753   } else if (opr2->is_stack()) {
1754     stack2reg(opr2, result, result->type());
1755   } else {
1756     ShouldNotReachHere();
1757   }
1758   __ bind(skip);
1759 }
1760 
1761 
1762 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1763   assert(info == NULL, "unused on this code path");
1764   assert(left->is_register(), "wrong items state");
1765   assert(dest->is_register(), "wrong items state");
1766 
1767   if (right->is_register()) {
1768     if (dest->is_float_kind()) {
1769 
1770       FloatRegister lreg, rreg, res;
1771       FloatRegisterImpl::Width w;
1772       if (right->is_single_fpu()) {
1773         w = FloatRegisterImpl::S;
1774         lreg = left->as_float_reg();
1775         rreg = right->as_float_reg();
1776         res  = dest->as_float_reg();
1777       } else {
1778         w = FloatRegisterImpl::D;
1779         lreg = left->as_double_reg();
1780         rreg = right->as_double_reg();
1781         res  = dest->as_double_reg();
1782       }
1783 
1784       switch (code) {
1785         case lir_add: __ fadd(w, lreg, rreg, res); break;
1786         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1787         case lir_mul: // fall through
1788         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1789         case lir_div: // fall through
1790         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1791         default: ShouldNotReachHere();
1792       }
1793 
1794     } else if (dest->is_double_cpu()) {
1795 #ifdef _LP64
1796       Register dst_lo = dest->as_register_lo();
1797       Register op1_lo = left->as_pointer_register();
1798       Register op2_lo = right->as_pointer_register();
1799 
1800       switch (code) {
1801         case lir_add:
1802           __ add(op1_lo, op2_lo, dst_lo);
1803           break;
1804 
1805         case lir_sub:
1806           __ sub(op1_lo, op2_lo, dst_lo);
1807           break;
1808 
1809         default: ShouldNotReachHere();
1810       }
1811 #else
1812       Register op1_lo = left->as_register_lo();
1813       Register op1_hi = left->as_register_hi();
1814       Register op2_lo = right->as_register_lo();
1815       Register op2_hi = right->as_register_hi();
1816       Register dst_lo = dest->as_register_lo();
1817       Register dst_hi = dest->as_register_hi();
1818 
1819       switch (code) {
1820         case lir_add:
1821           __ addcc(op1_lo, op2_lo, dst_lo);
1822           __ addc (op1_hi, op2_hi, dst_hi);
1823           break;
1824 
1825         case lir_sub:
1826           __ subcc(op1_lo, op2_lo, dst_lo);
1827           __ subc (op1_hi, op2_hi, dst_hi);
1828           break;
1829 
1830         default: ShouldNotReachHere();
1831       }
1832 #endif
1833     } else {
1834       assert (right->is_single_cpu(), "Just Checking");
1835 
1836       Register lreg = left->as_register();
1837       Register res  = dest->as_register();
1838       Register rreg = right->as_register();
1839       switch (code) {
1840         case lir_add:  __ add  (lreg, rreg, res); break;
1841         case lir_sub:  __ sub  (lreg, rreg, res); break;
1842         case lir_mul:  __ mult (lreg, rreg, res); break;
1843         default: ShouldNotReachHere();
1844       }
1845     }
1846   } else {
1847     assert (right->is_constant(), "must be constant");
1848 
1849     if (dest->is_single_cpu()) {
1850       Register lreg = left->as_register();
1851       Register res  = dest->as_register();
1852       int    simm13 = right->as_constant_ptr()->as_jint();
1853 
1854       switch (code) {
1855         case lir_add:  __ add  (lreg, simm13, res); break;
1856         case lir_sub:  __ sub  (lreg, simm13, res); break;
1857         case lir_mul:  __ mult (lreg, simm13, res); break;
1858         default: ShouldNotReachHere();
1859       }
1860     } else {
1861       Register lreg = left->as_pointer_register();
1862       Register res  = dest->as_register_lo();
1863       long con = right->as_constant_ptr()->as_jlong();
1864       assert(Assembler::is_simm13(con), "must be simm13");
1865 
1866       switch (code) {
1867         case lir_add:  __ add  (lreg, (int)con, res); break;
1868         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1869         case lir_mul:  __ mult (lreg, (int)con, res); break;
1870         default: ShouldNotReachHere();
1871       }
1872     }
1873   }
1874 }
1875 
1876 
1877 void LIR_Assembler::fpop() {
1878   // do nothing
1879 }
1880 
1881 
1882 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1883   switch (code) {
1884     case lir_sin:
1885     case lir_tan:
1886     case lir_cos: {
1887       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1888       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1889       break;
1890     }
1891     case lir_sqrt: {
1892       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1893       FloatRegister src_reg = value->as_double_reg();
1894       FloatRegister dst_reg = dest->as_double_reg();
1895       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1896       break;
1897     }
1898     case lir_abs: {
1899       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1900       FloatRegister src_reg = value->as_double_reg();
1901       FloatRegister dst_reg = dest->as_double_reg();
1902       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1903       break;
1904     }
1905     default: {
1906       ShouldNotReachHere();
1907       break;
1908     }
1909   }
1910 }
1911 
1912 
1913 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1914   if (right->is_constant()) {
1915     if (dest->is_single_cpu()) {
1916       int simm13 = right->as_constant_ptr()->as_jint();
1917       switch (code) {
1918         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1919         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1920         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1921         default: ShouldNotReachHere();
1922       }
1923     } else {
1924       long c = right->as_constant_ptr()->as_jlong();
1925       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1926       int simm13 = (int)c;
1927       switch (code) {
1928         case lir_logic_and:
1929 #ifndef _LP64
1930           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
1931 #endif
1932           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1933           break;
1934 
1935         case lir_logic_or:
1936 #ifndef _LP64
1937           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
1938 #endif
1939           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1940           break;
1941 
1942         case lir_logic_xor:
1943 #ifndef _LP64
1944           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
1945 #endif
1946           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1947           break;
1948 
1949         default: ShouldNotReachHere();
1950       }
1951     }
1952   } else {
1953     assert(right->is_register(), "right should be in register");
1954 
1955     if (dest->is_single_cpu()) {
1956       switch (code) {
1957         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1958         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1959         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1960         default: ShouldNotReachHere();
1961       }
1962     } else {
1963 #ifdef _LP64
1964       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1965                                                                         left->as_register_lo();
1966       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1967                                                                           right->as_register_lo();
1968 
1969       switch (code) {
1970         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
1971         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
1972         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
1973         default: ShouldNotReachHere();
1974       }
1975 #else
1976       switch (code) {
1977         case lir_logic_and:
1978           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1979           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1980           break;
1981 
1982         case lir_logic_or:
1983           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1984           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1985           break;
1986 
1987         case lir_logic_xor:
1988           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1989           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1990           break;
1991 
1992         default: ShouldNotReachHere();
1993       }
1994 #endif
1995     }
1996   }
1997 }
1998 
1999 
2000 int LIR_Assembler::shift_amount(BasicType t) {
2001   int elem_size = type2aelembytes(t);
2002   switch (elem_size) {
2003     case 1 : return 0;
2004     case 2 : return 1;
2005     case 4 : return 2;
2006     case 8 : return 3;
2007   }
2008   ShouldNotReachHere();
2009   return -1;
2010 }
2011 
2012 
2013 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2014   assert(exceptionOop->as_register() == Oexception, "should match");
2015   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
2016 
2017   info->add_register_oop(exceptionOop);
2018 
2019   // reuse the debug info from the safepoint poll for the throw op itself
2020   address pc_for_athrow  = __ pc();
2021   int pc_for_athrow_offset = __ offset();
2022   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2023   __ set(pc_for_athrow, Oissuing_pc, rspec);
2024   add_call_info(pc_for_athrow_offset, info); // for exception handler
2025 
2026   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2027   __ delayed()->nop();
2028 }
2029 
2030 
2031 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2032   assert(exceptionOop->as_register() == Oexception, "should match");
2033 
2034   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
2035   __ delayed()->nop();
2036 }
2037 
2038 
2039 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2040   Register src = op->src()->as_register();
2041   Register dst = op->dst()->as_register();
2042   Register src_pos = op->src_pos()->as_register();
2043   Register dst_pos = op->dst_pos()->as_register();
2044   Register length  = op->length()->as_register();
2045   Register tmp = op->tmp()->as_register();
2046   Register tmp2 = O7;
2047 
2048   int flags = op->flags();
2049   ciArrayKlass* default_type = op->expected_type();
2050   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2051   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2052 
2053 #ifdef _LP64
2054   // higher 32bits must be null
2055   __ sra(dst_pos, 0, dst_pos);
2056   __ sra(src_pos, 0, src_pos);
2057   __ sra(length, 0, length);
2058 #endif
2059 
2060   // set up the arraycopy stub information
2061   ArrayCopyStub* stub = op->stub();
2062 
2063   // always do stub if no type information is available.  it's ok if
2064   // the known type isn't loaded since the code sanity checks
2065   // in debug mode and the type isn't required when we know the exact type
2066   // also check that the type is an array type.
2067   if (op->expected_type() == NULL) {
2068     __ mov(src,     O0);
2069     __ mov(src_pos, O1);
2070     __ mov(dst,     O2);
2071     __ mov(dst_pos, O3);
2072     __ mov(length,  O4);
2073     address copyfunc_addr = StubRoutines::generic_arraycopy();
2074 
2075     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
2076       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2077     } else {
2078 #ifndef PRODUCT
2079       if (PrintC1Statistics) {
2080         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
2081         __ inc_counter(counter, G1, G3);
2082       }
2083 #endif
2084       __ call_VM_leaf(tmp, copyfunc_addr);
2085     }
2086 
2087     if (copyfunc_addr != NULL) {
2088       __ xor3(O0, -1, tmp);
2089       __ sub(length, tmp, length);
2090       __ add(src_pos, tmp, src_pos);
2091       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2092       __ delayed()->add(dst_pos, tmp, dst_pos);
2093     } else {
2094       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2095       __ delayed()->nop();
2096     }
2097     __ bind(*stub->continuation());
2098     return;
2099   }
2100 
2101   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2102 
2103   // make sure src and dst are non-null and load array length
2104   if (flags & LIR_OpArrayCopy::src_null_check) {
2105     __ tst(src);
2106     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2107     __ delayed()->nop();
2108   }
2109 
2110   if (flags & LIR_OpArrayCopy::dst_null_check) {
2111     __ tst(dst);
2112     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2113     __ delayed()->nop();
2114   }
2115 
2116   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2117     // test src_pos register
2118     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
2119     __ delayed()->nop();
2120   }
2121 
2122   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2123     // test dst_pos register
2124     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
2125     __ delayed()->nop();
2126   }
2127 
2128   if (flags & LIR_OpArrayCopy::length_positive_check) {
2129     // make sure length isn't negative
2130     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
2131     __ delayed()->nop();
2132   }
2133 
2134   if (flags & LIR_OpArrayCopy::src_range_check) {
2135     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2136     __ add(length, src_pos, tmp);
2137     __ cmp(tmp2, tmp);
2138     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2139     __ delayed()->nop();
2140   }
2141 
2142   if (flags & LIR_OpArrayCopy::dst_range_check) {
2143     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2144     __ add(length, dst_pos, tmp);
2145     __ cmp(tmp2, tmp);
2146     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2147     __ delayed()->nop();
2148   }
2149 
2150   int shift = shift_amount(basic_type);
2151 
2152   if (flags & LIR_OpArrayCopy::type_check) {
2153     // We don't know the array types are compatible
2154     if (basic_type != T_OBJECT) {
2155       // Simple test for basic type arrays
2156       if (UseCompressedOops) {
2157         // We don't need decode because we just need to compare
2158         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
2159         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2160         __ cmp(tmp, tmp2);
2161         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2162       } else {
2163         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2164         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2165         __ cmp(tmp, tmp2);
2166         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2167       }
2168       __ delayed()->nop();
2169     } else {
2170       // For object arrays, if src is a sub class of dst then we can
2171       // safely do the copy.
2172       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2173 
2174       Label cont, slow;
2175       assert_different_registers(tmp, tmp2, G3, G1);
2176 
2177       __ load_klass(src, G3);
2178       __ load_klass(dst, G1);
2179 
2180       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2181 
2182       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2183       __ delayed()->nop();
2184 
2185       __ cmp(G3, 0);
2186       if (copyfunc_addr != NULL) { // use stub if available
2187         // src is not a sub class of dst so we have to do a
2188         // per-element check.
2189         __ br(Assembler::notEqual, false, Assembler::pt, cont);
2190         __ delayed()->nop();
2191 
2192         __ bind(slow);
2193 
2194         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2195         if ((flags & mask) != mask) {
2196           // Check that at least both of them object arrays.
2197           assert(flags & mask, "one of the two should be known to be an object array");
2198 
2199           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2200             __ load_klass(src, tmp);
2201           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2202             __ load_klass(dst, tmp);
2203           }
2204           int lh_offset = in_bytes(Klass::layout_helper_offset());
2205 
2206           __ lduw(tmp, lh_offset, tmp2);
2207 
2208           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2209           __ set(objArray_lh, tmp);
2210           __ cmp(tmp, tmp2);
2211           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2212           __ delayed()->nop();
2213         }
2214 
2215         Register src_ptr = O0;
2216         Register dst_ptr = O1;
2217         Register len     = O2;
2218         Register chk_off = O3;
2219         Register super_k = O4;
2220 
2221         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2222         if (shift == 0) {
2223           __ add(src_ptr, src_pos, src_ptr);
2224         } else {
2225           __ sll(src_pos, shift, tmp);
2226           __ add(src_ptr, tmp, src_ptr);
2227         }
2228 
2229         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2230         if (shift == 0) {
2231           __ add(dst_ptr, dst_pos, dst_ptr);
2232         } else {
2233           __ sll(dst_pos, shift, tmp);
2234           __ add(dst_ptr, tmp, dst_ptr);
2235         }
2236         __ mov(length, len);
2237         __ load_klass(dst, tmp);
2238 
2239         int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
2240         __ ld_ptr(tmp, ek_offset, super_k);
2241 
2242         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2243         __ lduw(super_k, sco_offset, chk_off);
2244 
2245         __ call_VM_leaf(tmp, copyfunc_addr);
2246 
2247 #ifndef PRODUCT
2248         if (PrintC1Statistics) {
2249           Label failed;
2250           __ br_notnull_short(O0, Assembler::pn, failed);
2251           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2252           __ bind(failed);
2253         }
2254 #endif
2255 
2256         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2257         __ delayed()->xor3(O0, -1, tmp);
2258 
2259 #ifndef PRODUCT
2260         if (PrintC1Statistics) {
2261           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2262         }
2263 #endif
2264 
2265         __ sub(length, tmp, length);
2266         __ add(src_pos, tmp, src_pos);
2267         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2268         __ delayed()->add(dst_pos, tmp, dst_pos);
2269 
2270         __ bind(cont);
2271       } else {
2272         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2273         __ delayed()->nop();
2274         __ bind(cont);
2275       }
2276     }
2277   }
2278 
2279 #ifdef ASSERT
2280   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2281     // Sanity check the known type with the incoming class.  For the
2282     // primitive case the types must match exactly with src.klass and
2283     // dst.klass each exactly matching the default type.  For the
2284     // object array case, if no type check is needed then either the
2285     // dst type is exactly the expected type and the src type is a
2286     // subtype which we can't check or src is the same array as dst
2287     // but not necessarily exactly of type default_type.
2288     Label known_ok, halt;
2289     jobject2reg(op->expected_type()->constant_encoding(), tmp);
2290     if (UseCompressedOops) {
2291       // tmp holds the default type. It currently comes uncompressed after the
2292       // load of a constant, so encode it.
2293       __ encode_heap_oop(tmp);
2294       // load the raw value of the dst klass, since we will be comparing
2295       // uncompressed values directly.
2296       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2297       if (basic_type != T_OBJECT) {
2298         __ cmp(tmp, tmp2);
2299         __ br(Assembler::notEqual, false, Assembler::pn, halt);
2300         // load the raw value of the src klass.
2301         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2302         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2303       } else {
2304         __ cmp(tmp, tmp2);
2305         __ br(Assembler::equal, false, Assembler::pn, known_ok);
2306         __ delayed()->cmp(src, dst);
2307         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2308         __ delayed()->nop();
2309       }
2310     } else {
2311       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2312       if (basic_type != T_OBJECT) {
2313         __ cmp(tmp, tmp2);
2314         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2315         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2316         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2317       } else {
2318         __ cmp(tmp, tmp2);
2319         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2320         __ delayed()->cmp(src, dst);
2321         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2322         __ delayed()->nop();
2323       }
2324     }
2325     __ bind(halt);
2326     __ stop("incorrect type information in arraycopy");
2327     __ bind(known_ok);
2328   }
2329 #endif
2330 
2331 #ifndef PRODUCT
2332   if (PrintC1Statistics) {
2333     address counter = Runtime1::arraycopy_count_address(basic_type);
2334     __ inc_counter(counter, G1, G3);
2335   }
2336 #endif
2337 
2338   Register src_ptr = O0;
2339   Register dst_ptr = O1;
2340   Register len     = O2;
2341 
2342   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2343   if (shift == 0) {
2344     __ add(src_ptr, src_pos, src_ptr);
2345   } else {
2346     __ sll(src_pos, shift, tmp);
2347     __ add(src_ptr, tmp, src_ptr);
2348   }
2349 
2350   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2351   if (shift == 0) {
2352     __ add(dst_ptr, dst_pos, dst_ptr);
2353   } else {
2354     __ sll(dst_pos, shift, tmp);
2355     __ add(dst_ptr, tmp, dst_ptr);
2356   }
2357 
2358   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2359   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2360   const char *name;
2361   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2362 
2363   // arraycopy stubs takes a length in number of elements, so don't scale it.
2364   __ mov(length, len);
2365   __ call_VM_leaf(tmp, entry);
2366 
2367   __ bind(*stub->continuation());
2368 }
2369 
2370 
2371 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2372   if (dest->is_single_cpu()) {
2373 #ifdef _LP64
2374     if (left->type() == T_OBJECT) {
2375       switch (code) {
2376         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2377         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2378         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2379         default: ShouldNotReachHere();
2380       }
2381     } else
2382 #endif
2383       switch (code) {
2384         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2385         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2386         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2387         default: ShouldNotReachHere();
2388       }
2389   } else {
2390 #ifdef _LP64
2391     switch (code) {
2392       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2393       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2394       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2395       default: ShouldNotReachHere();
2396     }
2397 #else
2398     switch (code) {
2399       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2400       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2401       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2402       default: ShouldNotReachHere();
2403     }
2404 #endif
2405   }
2406 }
2407 
2408 
2409 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2410 #ifdef _LP64
2411   if (left->type() == T_OBJECT) {
2412     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2413     Register l = left->as_register();
2414     Register d = dest->as_register_lo();
2415     switch (code) {
2416       case lir_shl:  __ sllx  (l, count, d); break;
2417       case lir_shr:  __ srax  (l, count, d); break;
2418       case lir_ushr: __ srlx  (l, count, d); break;
2419       default: ShouldNotReachHere();
2420     }
2421     return;
2422   }
2423 #endif
2424 
2425   if (dest->is_single_cpu()) {
2426     count = count & 0x1F; // Java spec
2427     switch (code) {
2428       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2429       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2430       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2431       default: ShouldNotReachHere();
2432     }
2433   } else if (dest->is_double_cpu()) {
2434     count = count & 63; // Java spec
2435     switch (code) {
2436       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2437       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2438       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2439       default: ShouldNotReachHere();
2440     }
2441   } else {
2442     ShouldNotReachHere();
2443   }
2444 }
2445 
2446 
2447 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2448   assert(op->tmp1()->as_register()  == G1 &&
2449          op->tmp2()->as_register()  == G3 &&
2450          op->tmp3()->as_register()  == G4 &&
2451          op->obj()->as_register()   == O0 &&
2452          op->klass()->as_register() == G5, "must be");
2453   if (op->init_check()) {
2454     __ ldub(op->klass()->as_register(),
2455           in_bytes(instanceKlass::init_state_offset()),
2456           op->tmp1()->as_register());
2457     add_debug_info_for_null_check_here(op->stub()->info());
2458     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2459     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2460     __ delayed()->nop();
2461   }
2462   __ allocate_object(op->obj()->as_register(),
2463                      op->tmp1()->as_register(),
2464                      op->tmp2()->as_register(),
2465                      op->tmp3()->as_register(),
2466                      op->header_size(),
2467                      op->object_size(),
2468                      op->klass()->as_register(),
2469                      *op->stub()->entry());
2470   __ bind(*op->stub()->continuation());
2471   __ verify_oop(op->obj()->as_register());
2472 }
2473 
2474 
2475 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2476   assert(op->tmp1()->as_register()  == G1 &&
2477          op->tmp2()->as_register()  == G3 &&
2478          op->tmp3()->as_register()  == G4 &&
2479          op->tmp4()->as_register()  == O1 &&
2480          op->klass()->as_register() == G5, "must be");
2481 
2482   LP64_ONLY( __ signx(op->len()->as_register()); )
2483   if (UseSlowPath ||
2484       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2485       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2486     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2487     __ delayed()->nop();
2488   } else {
2489     __ allocate_array(op->obj()->as_register(),
2490                       op->len()->as_register(),
2491                       op->tmp1()->as_register(),
2492                       op->tmp2()->as_register(),
2493                       op->tmp3()->as_register(),
2494                       arrayOopDesc::header_size(op->type()),
2495                       type2aelembytes(op->type()),
2496                       op->klass()->as_register(),
2497                       *op->stub()->entry());
2498   }
2499   __ bind(*op->stub()->continuation());
2500 }
2501 
2502 
2503 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2504                                         ciMethodData *md, ciProfileData *data,
2505                                         Register recv, Register tmp1, Label* update_done) {
2506   uint i;
2507   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2508     Label next_test;
2509     // See if the receiver is receiver[n].
2510     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2511                           mdo_offset_bias);
2512     __ ld_ptr(receiver_addr, tmp1);
2513     __ verify_oop(tmp1);
2514     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2515     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2516                       mdo_offset_bias);
2517     __ ld_ptr(data_addr, tmp1);
2518     __ add(tmp1, DataLayout::counter_increment, tmp1);
2519     __ st_ptr(tmp1, data_addr);
2520     __ ba(*update_done);
2521     __ delayed()->nop();
2522     __ bind(next_test);
2523   }
2524 
2525   // Didn't find receiver; find next empty slot and fill it in
2526   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2527     Label next_test;
2528     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2529                       mdo_offset_bias);
2530     __ ld_ptr(recv_addr, tmp1);
2531     __ br_notnull_short(tmp1, Assembler::pt, next_test);
2532     __ st_ptr(recv, recv_addr);
2533     __ set(DataLayout::counter_increment, tmp1);
2534     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2535               mdo_offset_bias);
2536     __ ba(*update_done);
2537     __ delayed()->nop();
2538     __ bind(next_test);
2539   }
2540 }
2541 
2542 
2543 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2544                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2545   md = method->method_data_or_null();
2546   assert(md != NULL, "Sanity");
2547   data = md->bci_to_data(bci);
2548   assert(data != NULL,       "need data for checkcast");
2549   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2550   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2551     // The offset is large so bias the mdo by the base of the slot so
2552     // that the ld can use simm13s to reference the slots of the data
2553     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2554   }
2555 }
2556 
2557 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2558   // we always need a stub for the failure case.
2559   CodeStub* stub = op->stub();
2560   Register obj = op->object()->as_register();
2561   Register k_RInfo = op->tmp1()->as_register();
2562   Register klass_RInfo = op->tmp2()->as_register();
2563   Register dst = op->result_opr()->as_register();
2564   Register Rtmp1 = op->tmp3()->as_register();
2565   ciKlass* k = op->klass();
2566 
2567 
2568   if (obj == k_RInfo) {
2569     k_RInfo = klass_RInfo;
2570     klass_RInfo = obj;
2571   }
2572 
2573   ciMethodData* md;
2574   ciProfileData* data;
2575   int mdo_offset_bias = 0;
2576   if (op->should_profile()) {
2577     ciMethod* method = op->profiled_method();
2578     assert(method != NULL, "Should have method");
2579     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2580 
2581     Label not_null;
2582     __ br_notnull_short(obj, Assembler::pn, not_null);
2583     Register mdo      = k_RInfo;
2584     Register data_val = Rtmp1;
2585     jobject2reg(md->constant_encoding(), mdo);
2586     if (mdo_offset_bias > 0) {
2587       __ set(mdo_offset_bias, data_val);
2588       __ add(mdo, data_val, mdo);
2589     }
2590     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2591     __ ldub(flags_addr, data_val);
2592     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2593     __ stb(data_val, flags_addr);
2594     __ ba(*obj_is_null);
2595     __ delayed()->nop();
2596     __ bind(not_null);
2597   } else {
2598     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2599     __ delayed()->nop();
2600   }
2601 
2602   Label profile_cast_failure, profile_cast_success;
2603   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2604   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2605 
2606   // patching may screw with our temporaries on sparc,
2607   // so let's do it before loading the class
2608   if (k->is_loaded()) {
2609     jobject2reg(k->constant_encoding(), k_RInfo);
2610   } else {
2611     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2612   }
2613   assert(obj != k_RInfo, "must be different");
2614 
2615   // get object class
2616   // not a safepoint as obj null check happens earlier
2617   __ load_klass(obj, klass_RInfo);
2618   if (op->fast_check()) {
2619     assert_different_registers(klass_RInfo, k_RInfo);
2620     __ cmp(k_RInfo, klass_RInfo);
2621     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2622     __ delayed()->nop();
2623   } else {
2624     bool need_slow_path = true;
2625     if (k->is_loaded()) {
2626       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
2627         need_slow_path = false;
2628       // perform the fast part of the checking logic
2629       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2630                                        (need_slow_path ? success_target : NULL),
2631                                        failure_target, NULL,
2632                                        RegisterOrConstant(k->super_check_offset()));
2633     } else {
2634       // perform the fast part of the checking logic
2635       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2636                                        failure_target, NULL);
2637     }
2638     if (need_slow_path) {
2639       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2640       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2641       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2642       __ delayed()->nop();
2643       __ cmp(G3, 0);
2644       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2645       __ delayed()->nop();
2646       // Fall through to success case
2647     }
2648   }
2649 
2650   if (op->should_profile()) {
2651     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2652     assert_different_registers(obj, mdo, recv, tmp1);
2653     __ bind(profile_cast_success);
2654     jobject2reg(md->constant_encoding(), mdo);
2655     if (mdo_offset_bias > 0) {
2656       __ set(mdo_offset_bias, tmp1);
2657       __ add(mdo, tmp1, mdo);
2658     }
2659     __ load_klass(obj, recv);
2660     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2661     // Jump over the failure case
2662     __ ba(*success);
2663     __ delayed()->nop();
2664     // Cast failure case
2665     __ bind(profile_cast_failure);
2666     jobject2reg(md->constant_encoding(), mdo);
2667     if (mdo_offset_bias > 0) {
2668       __ set(mdo_offset_bias, tmp1);
2669       __ add(mdo, tmp1, mdo);
2670     }
2671     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2672     __ ld_ptr(data_addr, tmp1);
2673     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2674     __ st_ptr(tmp1, data_addr);
2675     __ ba(*failure);
2676     __ delayed()->nop();
2677   }
2678   __ ba(*success);
2679   __ delayed()->nop();
2680 }
2681 
2682 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2683   LIR_Code code = op->code();
2684   if (code == lir_store_check) {
2685     Register value = op->object()->as_register();
2686     Register array = op->array()->as_register();
2687     Register k_RInfo = op->tmp1()->as_register();
2688     Register klass_RInfo = op->tmp2()->as_register();
2689     Register Rtmp1 = op->tmp3()->as_register();
2690 
2691     __ verify_oop(value);
2692     CodeStub* stub = op->stub();
2693     // check if it needs to be profiled
2694     ciMethodData* md;
2695     ciProfileData* data;
2696     int mdo_offset_bias = 0;
2697     if (op->should_profile()) {
2698       ciMethod* method = op->profiled_method();
2699       assert(method != NULL, "Should have method");
2700       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2701     }
2702     Label profile_cast_success, profile_cast_failure, done;
2703     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2704     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2705 
2706     if (op->should_profile()) {
2707       Label not_null;
2708       __ br_notnull_short(value, Assembler::pn, not_null);
2709       Register mdo      = k_RInfo;
2710       Register data_val = Rtmp1;
2711       jobject2reg(md->constant_encoding(), mdo);
2712       if (mdo_offset_bias > 0) {
2713         __ set(mdo_offset_bias, data_val);
2714         __ add(mdo, data_val, mdo);
2715       }
2716       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2717       __ ldub(flags_addr, data_val);
2718       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2719       __ stb(data_val, flags_addr);
2720       __ ba_short(done);
2721       __ bind(not_null);
2722     } else {
2723       __ br_null_short(value, Assembler::pn, done);
2724     }
2725     add_debug_info_for_null_check_here(op->info_for_exception());
2726     __ load_klass(array, k_RInfo);
2727     __ load_klass(value, klass_RInfo);
2728 
2729     // get instance klass
2730     __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset()), k_RInfo);
2731     // perform the fast part of the checking logic
2732     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2733 
2734     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2735     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2736     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2737     __ delayed()->nop();
2738     __ cmp(G3, 0);
2739     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2740     __ delayed()->nop();
2741     // fall through to the success case
2742 
2743     if (op->should_profile()) {
2744       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2745       assert_different_registers(value, mdo, recv, tmp1);
2746       __ bind(profile_cast_success);
2747       jobject2reg(md->constant_encoding(), mdo);
2748       if (mdo_offset_bias > 0) {
2749         __ set(mdo_offset_bias, tmp1);
2750         __ add(mdo, tmp1, mdo);
2751       }
2752       __ load_klass(value, recv);
2753       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2754       __ ba_short(done);
2755       // Cast failure case
2756       __ bind(profile_cast_failure);
2757       jobject2reg(md->constant_encoding(), mdo);
2758       if (mdo_offset_bias > 0) {
2759         __ set(mdo_offset_bias, tmp1);
2760         __ add(mdo, tmp1, mdo);
2761       }
2762       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2763       __ ld_ptr(data_addr, tmp1);
2764       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2765       __ st_ptr(tmp1, data_addr);
2766       __ ba(*stub->entry());
2767       __ delayed()->nop();
2768     }
2769     __ bind(done);
2770   } else if (code == lir_checkcast) {
2771     Register obj = op->object()->as_register();
2772     Register dst = op->result_opr()->as_register();
2773     Label success;
2774     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2775     __ bind(success);
2776     __ mov(obj, dst);
2777   } else if (code == lir_instanceof) {
2778     Register obj = op->object()->as_register();
2779     Register dst = op->result_opr()->as_register();
2780     Label success, failure, done;
2781     emit_typecheck_helper(op, &success, &failure, &failure);
2782     __ bind(failure);
2783     __ set(0, dst);
2784     __ ba_short(done);
2785     __ bind(success);
2786     __ set(1, dst);
2787     __ bind(done);
2788   } else {
2789     ShouldNotReachHere();
2790   }
2791 
2792 }
2793 
2794 
2795 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2796   if (op->code() == lir_cas_long) {
2797     assert(VM_Version::supports_cx8(), "wrong machine");
2798     Register addr = op->addr()->as_pointer_register();
2799     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2800     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2801     Register new_value_lo = op->new_value()->as_register_lo();
2802     Register new_value_hi = op->new_value()->as_register_hi();
2803     Register t1 = op->tmp1()->as_register();
2804     Register t2 = op->tmp2()->as_register();
2805 #ifdef _LP64
2806     __ mov(cmp_value_lo, t1);
2807     __ mov(new_value_lo, t2);
2808     // perform the compare and swap operation
2809     __ casx(addr, t1, t2);
2810     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2811     // overwritten with the original value in "addr" and will be equal to t1.
2812     __ cmp(t1, t2);
2813 #else
2814     // move high and low halves of long values into single registers
2815     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2816     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2817     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2818     __ sllx(new_value_hi, 32, t2);
2819     __ srl(new_value_lo, 0, new_value_lo);
2820     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2821     // perform the compare and swap operation
2822     __ casx(addr, t1, t2);
2823     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2824     // overwritten with the original value in "addr" and will be equal to t1.
2825     // Produce icc flag for 32bit.
2826     __ sub(t1, t2, t2);
2827     __ srlx(t2, 32, t1);
2828     __ orcc(t2, t1, G0);
2829 #endif
2830   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2831     Register addr = op->addr()->as_pointer_register();
2832     Register cmp_value = op->cmp_value()->as_register();
2833     Register new_value = op->new_value()->as_register();
2834     Register t1 = op->tmp1()->as_register();
2835     Register t2 = op->tmp2()->as_register();
2836     __ mov(cmp_value, t1);
2837     __ mov(new_value, t2);
2838     if (op->code() == lir_cas_obj) {
2839       if (UseCompressedOops) {
2840         __ encode_heap_oop(t1);
2841         __ encode_heap_oop(t2);
2842         __ cas(addr, t1, t2);
2843       } else {
2844         __ cas_ptr(addr, t1, t2);
2845       }
2846     } else {
2847       __ cas(addr, t1, t2);
2848     }
2849     __ cmp(t1, t2);
2850   } else {
2851     Unimplemented();
2852   }
2853 }
2854 
2855 void LIR_Assembler::set_24bit_FPU() {
2856   Unimplemented();
2857 }
2858 
2859 
2860 void LIR_Assembler::reset_FPU() {
2861   Unimplemented();
2862 }
2863 
2864 
2865 void LIR_Assembler::breakpoint() {
2866   __ breakpoint_trap();
2867 }
2868 
2869 
2870 void LIR_Assembler::push(LIR_Opr opr) {
2871   Unimplemented();
2872 }
2873 
2874 
2875 void LIR_Assembler::pop(LIR_Opr opr) {
2876   Unimplemented();
2877 }
2878 
2879 
2880 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2881   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2882   Register dst = dst_opr->as_register();
2883   Register reg = mon_addr.base();
2884   int offset = mon_addr.disp();
2885   // compute pointer to BasicLock
2886   if (mon_addr.is_simm13()) {
2887     __ add(reg, offset, dst);
2888   } else {
2889     __ set(offset, dst);
2890     __ add(dst, reg, dst);
2891   }
2892 }
2893 
2894 
2895 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2896   Register obj = op->obj_opr()->as_register();
2897   Register hdr = op->hdr_opr()->as_register();
2898   Register lock = op->lock_opr()->as_register();
2899 
2900   // obj may not be an oop
2901   if (op->code() == lir_lock) {
2902     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2903     if (UseFastLocking) {
2904       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2905       // add debug info for NullPointerException only if one is possible
2906       if (op->info() != NULL) {
2907         add_debug_info_for_null_check_here(op->info());
2908       }
2909       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2910     } else {
2911       // always do slow locking
2912       // note: the slow locking code could be inlined here, however if we use
2913       //       slow locking, speed doesn't matter anyway and this solution is
2914       //       simpler and requires less duplicated code - additionally, the
2915       //       slow locking code is the same in either case which simplifies
2916       //       debugging
2917       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2918       __ delayed()->nop();
2919     }
2920   } else {
2921     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2922     if (UseFastLocking) {
2923       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2924       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2925     } else {
2926       // always do slow unlocking
2927       // note: the slow unlocking code could be inlined here, however if we use
2928       //       slow unlocking, speed doesn't matter anyway and this solution is
2929       //       simpler and requires less duplicated code - additionally, the
2930       //       slow unlocking code is the same in either case which simplifies
2931       //       debugging
2932       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2933       __ delayed()->nop();
2934     }
2935   }
2936   __ bind(*op->stub()->continuation());
2937 }
2938 
2939 
2940 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2941   ciMethod* method = op->profiled_method();
2942   int bci          = op->profiled_bci();
2943 
2944   // Update counter for all call types
2945   ciMethodData* md = method->method_data_or_null();
2946   assert(md != NULL, "Sanity");
2947   ciProfileData* data = md->bci_to_data(bci);
2948   assert(data->is_CounterData(), "need CounterData for calls");
2949   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2950   Register mdo  = op->mdo()->as_register();
2951 #ifdef _LP64
2952   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2953   Register tmp1 = op->tmp1()->as_register_lo();
2954 #else
2955   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2956   Register tmp1 = op->tmp1()->as_register();
2957 #endif
2958   jobject2reg(md->constant_encoding(), mdo);
2959   int mdo_offset_bias = 0;
2960   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2961                             data->size_in_bytes())) {
2962     // The offset is large so bias the mdo by the base of the slot so
2963     // that the ld can use simm13s to reference the slots of the data
2964     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2965     __ set(mdo_offset_bias, O7);
2966     __ add(mdo, O7, mdo);
2967   }
2968 
2969   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2970   Bytecodes::Code bc = method->java_code_at_bci(bci);
2971   // Perform additional virtual call profiling for invokevirtual and
2972   // invokeinterface bytecodes
2973   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2974       C1ProfileVirtualCalls) {
2975     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2976     Register recv = op->recv()->as_register();
2977     assert_different_registers(mdo, tmp1, recv);
2978     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2979     ciKlass* known_klass = op->known_holder();
2980     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2981       // We know the type that will be seen at this call site; we can
2982       // statically update the methodDataOop rather than needing to do
2983       // dynamic tests on the receiver type
2984 
2985       // NOTE: we should probably put a lock around this search to
2986       // avoid collisions by concurrent compilations
2987       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2988       uint i;
2989       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2990         ciKlass* receiver = vc_data->receiver(i);
2991         if (known_klass->equals(receiver)) {
2992           Address data_addr(mdo, md->byte_offset_of_slot(data,
2993                                                          VirtualCallData::receiver_count_offset(i)) -
2994                             mdo_offset_bias);
2995           __ ld_ptr(data_addr, tmp1);
2996           __ add(tmp1, DataLayout::counter_increment, tmp1);
2997           __ st_ptr(tmp1, data_addr);
2998           return;
2999         }
3000       }
3001 
3002       // Receiver type not found in profile data; select an empty slot
3003 
3004       // Note that this is less efficient than it should be because it
3005       // always does a write to the receiver part of the
3006       // VirtualCallData rather than just the first time
3007       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3008         ciKlass* receiver = vc_data->receiver(i);
3009         if (receiver == NULL) {
3010           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
3011                             mdo_offset_bias);
3012           jobject2reg(known_klass->constant_encoding(), tmp1);
3013           __ st_ptr(tmp1, recv_addr);
3014           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
3015                             mdo_offset_bias);
3016           __ ld_ptr(data_addr, tmp1);
3017           __ add(tmp1, DataLayout::counter_increment, tmp1);
3018           __ st_ptr(tmp1, data_addr);
3019           return;
3020         }
3021       }
3022     } else {
3023       __ load_klass(recv, recv);
3024       Label update_done;
3025       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
3026       // Receiver did not match any saved receiver and there is no empty row for it.
3027       // Increment total counter to indicate polymorphic case.
3028       __ ld_ptr(counter_addr, tmp1);
3029       __ add(tmp1, DataLayout::counter_increment, tmp1);
3030       __ st_ptr(tmp1, counter_addr);
3031 
3032       __ bind(update_done);
3033     }
3034   } else {
3035     // Static call
3036     __ ld_ptr(counter_addr, tmp1);
3037     __ add(tmp1, DataLayout::counter_increment, tmp1);
3038     __ st_ptr(tmp1, counter_addr);
3039   }
3040 }
3041 
3042 void LIR_Assembler::align_backward_branch_target() {
3043   __ align(OptoLoopAlignment);
3044 }
3045 
3046 
3047 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
3048   // make sure we are expecting a delay
3049   // this has the side effect of clearing the delay state
3050   // so we can use _masm instead of _masm->delayed() to do the
3051   // code generation.
3052   __ delayed();
3053 
3054   // make sure we only emit one instruction
3055   int offset = code_offset();
3056   op->delay_op()->emit_code(this);
3057 #ifdef ASSERT
3058   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3059     op->delay_op()->print();
3060   }
3061   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3062          "only one instruction can go in a delay slot");
3063 #endif
3064 
3065   // we may also be emitting the call info for the instruction
3066   // which we are the delay slot of.
3067   CodeEmitInfo* call_info = op->call_info();
3068   if (call_info) {
3069     add_call_info(code_offset(), call_info);
3070   }
3071 
3072   if (VerifyStackAtCalls) {
3073     _masm->sub(FP, SP, O7);
3074     _masm->cmp(O7, initial_frame_size_in_bytes());
3075     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3076   }
3077 }
3078 
3079 
3080 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3081   assert(left->is_register(), "can only handle registers");
3082 
3083   if (left->is_single_cpu()) {
3084     __ neg(left->as_register(), dest->as_register());
3085   } else if (left->is_single_fpu()) {
3086     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3087   } else if (left->is_double_fpu()) {
3088     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3089   } else {
3090     assert (left->is_double_cpu(), "Must be a long");
3091     Register Rlow = left->as_register_lo();
3092     Register Rhi = left->as_register_hi();
3093 #ifdef _LP64
3094     __ sub(G0, Rlow, dest->as_register_lo());
3095 #else
3096     __ subcc(G0, Rlow, dest->as_register_lo());
3097     __ subc (G0, Rhi,  dest->as_register_hi());
3098 #endif
3099   }
3100 }
3101 
3102 
3103 void LIR_Assembler::fxch(int i) {
3104   Unimplemented();
3105 }
3106 
3107 void LIR_Assembler::fld(int i) {
3108   Unimplemented();
3109 }
3110 
3111 void LIR_Assembler::ffree(int i) {
3112   Unimplemented();
3113 }
3114 
3115 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3116                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3117 
3118   // if tmp is invalid, then the function being called doesn't destroy the thread
3119   if (tmp->is_valid()) {
3120     __ save_thread(tmp->as_register());
3121   }
3122   __ call(dest, relocInfo::runtime_call_type);
3123   __ delayed()->nop();
3124   if (info != NULL) {
3125     add_call_info_here(info);
3126   }
3127   if (tmp->is_valid()) {
3128     __ restore_thread(tmp->as_register());
3129   }
3130 
3131 #ifdef ASSERT
3132   __ verify_thread();
3133 #endif // ASSERT
3134 }
3135 
3136 
3137 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3138 #ifdef _LP64
3139   ShouldNotReachHere();
3140 #endif
3141 
3142   NEEDS_CLEANUP;
3143   if (type == T_LONG) {
3144     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3145 
3146     // (extended to allow indexed as well as constant displaced for JSR-166)
3147     Register idx = noreg; // contains either constant offset or index
3148 
3149     int disp = mem_addr->disp();
3150     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3151       if (!Assembler::is_simm13(disp)) {
3152         idx = O7;
3153         __ set(disp, idx);
3154       }
3155     } else {
3156       assert(disp == 0, "not both indexed and disp");
3157       idx = mem_addr->index()->as_register();
3158     }
3159 
3160     int null_check_offset = -1;
3161 
3162     Register base = mem_addr->base()->as_register();
3163     if (src->is_register() && dest->is_address()) {
3164       // G4 is high half, G5 is low half
3165       if (VM_Version::v9_instructions_work()) {
3166         // clear the top bits of G5, and scale up G4
3167         __ srl (src->as_register_lo(),  0, G5);
3168         __ sllx(src->as_register_hi(), 32, G4);
3169         // combine the two halves into the 64 bits of G4
3170         __ or3(G4, G5, G4);
3171         null_check_offset = __ offset();
3172         if (idx == noreg) {
3173           __ stx(G4, base, disp);
3174         } else {
3175           __ stx(G4, base, idx);
3176         }
3177       } else {
3178         __ mov (src->as_register_hi(), G4);
3179         __ mov (src->as_register_lo(), G5);
3180         null_check_offset = __ offset();
3181         if (idx == noreg) {
3182           __ std(G4, base, disp);
3183         } else {
3184           __ std(G4, base, idx);
3185         }
3186       }
3187     } else if (src->is_address() && dest->is_register()) {
3188       null_check_offset = __ offset();
3189       if (VM_Version::v9_instructions_work()) {
3190         if (idx == noreg) {
3191           __ ldx(base, disp, G5);
3192         } else {
3193           __ ldx(base, idx, G5);
3194         }
3195         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3196         __ mov (G5, dest->as_register_lo());     // copy low half into lo
3197       } else {
3198         if (idx == noreg) {
3199           __ ldd(base, disp, G4);
3200         } else {
3201           __ ldd(base, idx, G4);
3202         }
3203         // G4 is high half, G5 is low half
3204         __ mov (G4, dest->as_register_hi());
3205         __ mov (G5, dest->as_register_lo());
3206       }
3207     } else {
3208       Unimplemented();
3209     }
3210     if (info != NULL) {
3211       add_debug_info_for_null_check(null_check_offset, info);
3212     }
3213 
3214   } else {
3215     // use normal move for all other volatiles since they don't need
3216     // special handling to remain atomic.
3217     move_op(src, dest, type, lir_patch_none, info, false, false, false);
3218   }
3219 }
3220 
3221 void LIR_Assembler::membar() {
3222   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3223   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3224 }
3225 
3226 void LIR_Assembler::membar_acquire() {
3227   // no-op on TSO
3228 }
3229 
3230 void LIR_Assembler::membar_release() {
3231   // no-op on TSO
3232 }
3233 
3234 void LIR_Assembler::membar_loadload() {
3235   // no-op
3236   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3237 }
3238 
3239 void LIR_Assembler::membar_storestore() {
3240   // no-op
3241   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3242 }
3243 
3244 void LIR_Assembler::membar_loadstore() {
3245   // no-op
3246   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3247 }
3248 
3249 void LIR_Assembler::membar_storeload() {
3250   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3251 }
3252 
3253 
3254 // Pack two sequential registers containing 32 bit values
3255 // into a single 64 bit register.
3256 // src and src->successor() are packed into dst
3257 // src and dst may be the same register.
3258 // Note: src is destroyed
3259 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3260   Register rs = src->as_register();
3261   Register rd = dst->as_register_lo();
3262   __ sllx(rs, 32, rs);
3263   __ srl(rs->successor(), 0, rs->successor());
3264   __ or3(rs, rs->successor(), rd);
3265 }
3266 
3267 // Unpack a 64 bit value in a register into
3268 // two sequential registers.
3269 // src is unpacked into dst and dst->successor()
3270 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3271   Register rs = src->as_register_lo();
3272   Register rd = dst->as_register_hi();
3273   assert_different_registers(rs, rd, rd->successor());
3274   __ srlx(rs, 32, rd);
3275   __ srl (rs,  0, rd->successor());
3276 }
3277 
3278 
3279 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3280   LIR_Address* addr = addr_opr->as_address_ptr();
3281   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3282 
3283   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
3284 }
3285 
3286 
3287 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3288   assert(result_reg->is_register(), "check");
3289   __ mov(G2_thread, result_reg->as_register());
3290 }
3291 
3292 
3293 void LIR_Assembler::peephole(LIR_List* lir) {
3294   LIR_OpList* inst = lir->instructions_list();
3295   for (int i = 0; i < inst->length(); i++) {
3296     LIR_Op* op = inst->at(i);
3297     switch (op->code()) {
3298       case lir_cond_float_branch:
3299       case lir_branch: {
3300         LIR_OpBranch* branch = op->as_OpBranch();
3301         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3302         LIR_Op* delay_op = NULL;
3303         // we'd like to be able to pull following instructions into
3304         // this slot but we don't know enough to do it safely yet so
3305         // only optimize block to block control flow.
3306         if (LIRFillDelaySlots && branch->block()) {
3307           LIR_Op* prev = inst->at(i - 1);
3308           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3309             // swap previous instruction into delay slot
3310             inst->at_put(i - 1, op);
3311             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3312 #ifndef PRODUCT
3313             if (LIRTracePeephole) {
3314               tty->print_cr("delayed");
3315               inst->at(i - 1)->print();
3316               inst->at(i)->print();
3317               tty->cr();
3318             }
3319 #endif
3320             continue;
3321           }
3322         }
3323 
3324         if (!delay_op) {
3325           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3326         }
3327         inst->insert_before(i + 1, delay_op);
3328         break;
3329       }
3330       case lir_static_call:
3331       case lir_virtual_call:
3332       case lir_icvirtual_call:
3333       case lir_optvirtual_call:
3334       case lir_dynamic_call: {
3335         LIR_Op* prev = inst->at(i - 1);
3336         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3337             (op->code() != lir_virtual_call ||
3338              !prev->result_opr()->is_single_cpu() ||
3339              prev->result_opr()->as_register() != O0) &&
3340             LIR_Assembler::is_single_instruction(prev)) {
3341           // Only moves without info can be put into the delay slot.
3342           // Also don't allow the setup of the receiver in the delay
3343           // slot for vtable calls.
3344           inst->at_put(i - 1, op);
3345           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3346 #ifndef PRODUCT
3347           if (LIRTracePeephole) {
3348             tty->print_cr("delayed");
3349             inst->at(i - 1)->print();
3350             inst->at(i)->print();
3351             tty->cr();
3352           }
3353 #endif
3354         } else {
3355           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3356           inst->insert_before(i + 1, delay_op);
3357           i++;
3358         }
3359 
3360 #if defined(TIERED) && !defined(_LP64)
3361         // fixup the return value from G1 to O0/O1 for long returns.
3362         // It's done here instead of in LIRGenerator because there's
3363         // such a mismatch between the single reg and double reg
3364         // calling convention.
3365         LIR_OpJavaCall* callop = op->as_OpJavaCall();
3366         if (callop->result_opr() == FrameMap::out_long_opr) {
3367           LIR_OpJavaCall* call;
3368           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
3369           for (int a = 0; a < arguments->length(); a++) {
3370             arguments[a] = callop->arguments()[a];
3371           }
3372           if (op->code() == lir_virtual_call) {
3373             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3374                                       callop->vtable_offset(), arguments, callop->info());
3375           } else {
3376             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3377                                       callop->addr(), arguments, callop->info());
3378           }
3379           inst->at_put(i - 1, call);
3380           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
3381                                                  T_LONG, lir_patch_none, NULL));
3382         }
3383 #endif
3384         break;
3385       }
3386     }
3387   }
3388 }
3389 
3390 
3391 
3392 
3393 #undef __