1 /*
   2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_InstructionPrinter.hpp"
  27 #include "c1/c1_LIR.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciInstance.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 Register LIR_OprDesc::as_register() const {
  34   return FrameMap::cpu_rnr2reg(cpu_regnr());
  35 }
  36 
  37 Register LIR_OprDesc::as_register_lo() const {
  38   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  39 }
  40 
  41 Register LIR_OprDesc::as_register_hi() const {
  42   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  43 }
  44 
  45 #if defined(X86)
  46 
  47 XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
  48   return FrameMap::nr2xmmreg(xmm_regnr());
  49 }
  50 
  51 XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
  52   assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
  53   return FrameMap::nr2xmmreg(xmm_regnrLo());
  54 }
  55 
  56 #endif // X86
  57 
  58 #if defined(SPARC) || defined(PPC)
  59 
  60 FloatRegister LIR_OprDesc::as_float_reg() const {
  61   return FrameMap::nr2floatreg(fpu_regnr());
  62 }
  63 
  64 FloatRegister LIR_OprDesc::as_double_reg() const {
  65   return FrameMap::nr2floatreg(fpu_regnrHi());
  66 }
  67 
  68 #endif
  69 
  70 #ifdef ARM
  71 
  72 FloatRegister LIR_OprDesc::as_float_reg() const {
  73   return as_FloatRegister(fpu_regnr());
  74 }
  75 
  76 FloatRegister LIR_OprDesc::as_double_reg() const {
  77   return as_FloatRegister(fpu_regnrLo());
  78 }
  79 
  80 #endif
  81 
  82 
  83 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  84 
  85 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  86   ValueTag tag = type->tag();
  87   switch (tag) {
  88   case objectTag : {
  89     ClassConstant* c = type->as_ClassConstant();
  90     if (c != NULL && !c->value()->is_loaded()) {
  91       return LIR_OprFact::oopConst(NULL);
  92     } else {
  93       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
  94     }
  95   }
  96   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
  97   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
  98   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
  99   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
 100   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
 101   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 102   }
 103 }
 104 
 105 
 106 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
 107   switch (type->tag()) {
 108     case objectTag: return LIR_OprFact::oopConst(NULL);
 109     case addressTag:return LIR_OprFact::addressConst(0);
 110     case intTag:    return LIR_OprFact::intConst(0);
 111     case floatTag:  return LIR_OprFact::floatConst(0.0);
 112     case longTag:   return LIR_OprFact::longConst(0);
 113     case doubleTag: return LIR_OprFact::doubleConst(0.0);
 114     default:        ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 115   }
 116   return illegalOpr;
 117 }
 118 
 119 
 120 
 121 //---------------------------------------------------
 122 
 123 
 124 LIR_Address::Scale LIR_Address::scale(BasicType type) {
 125   int elem_size = type2aelembytes(type);
 126   switch (elem_size) {
 127   case 1: return LIR_Address::times_1;
 128   case 2: return LIR_Address::times_2;
 129   case 4: return LIR_Address::times_4;
 130   case 8: return LIR_Address::times_8;
 131   }
 132   ShouldNotReachHere();
 133   return LIR_Address::times_1;
 134 }
 135 
 136 
 137 #ifndef PRODUCT
 138 void LIR_Address::verify() const {
 139 #if defined(SPARC) || defined(PPC)
 140   assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
 141   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 142 #endif
 143 #ifdef ARM
 144   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 145   // Note: offsets higher than 4096 must not be rejected here. They can
 146   // be handled by the back-end or will be rejected if not.
 147 #endif
 148 #ifdef _LP64
 149   assert(base()->is_cpu_register(), "wrong base operand");
 150   assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
 151   assert(base()->type() == T_OBJECT || base()->type() == T_LONG,
 152          "wrong type for addresses");
 153 #else
 154   assert(base()->is_single_cpu(), "wrong base operand");
 155   assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
 156   assert(base()->type() == T_OBJECT || base()->type() == T_INT,
 157          "wrong type for addresses");
 158 #endif
 159 }
 160 #endif
 161 
 162 
 163 //---------------------------------------------------
 164 
 165 char LIR_OprDesc::type_char(BasicType t) {
 166   switch (t) {
 167     case T_ARRAY:
 168       t = T_OBJECT;
 169     case T_BOOLEAN:
 170     case T_CHAR:
 171     case T_FLOAT:
 172     case T_DOUBLE:
 173     case T_BYTE:
 174     case T_SHORT:
 175     case T_INT:
 176     case T_LONG:
 177     case T_OBJECT:
 178     case T_ADDRESS:
 179     case T_VOID:
 180       return ::type2char(t);
 181 
 182     case T_ILLEGAL:
 183       return '?';
 184 
 185     default:
 186       ShouldNotReachHere();
 187       return '?';
 188   }
 189 }
 190 
 191 #ifndef PRODUCT
 192 void LIR_OprDesc::validate_type() const {
 193 
 194 #ifdef ASSERT
 195   if (!is_pointer() && !is_illegal()) {
 196     switch (as_BasicType(type_field())) {
 197     case T_LONG:
 198       assert((kind_field() == cpu_register || kind_field() == stack_value) &&
 199              size_field() == double_size, "must match");
 200       break;
 201     case T_FLOAT:
 202       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 203       assert((kind_field() == fpu_register || kind_field() == stack_value
 204              ARM_ONLY(|| kind_field() == cpu_register)
 205              PPC_ONLY(|| kind_field() == cpu_register) ) &&
 206              size_field() == single_size, "must match");
 207       break;
 208     case T_DOUBLE:
 209       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 210       assert((kind_field() == fpu_register || kind_field() == stack_value
 211              ARM_ONLY(|| kind_field() == cpu_register)
 212              PPC_ONLY(|| kind_field() == cpu_register) ) &&
 213              size_field() == double_size, "must match");
 214       break;
 215     case T_BOOLEAN:
 216     case T_CHAR:
 217     case T_BYTE:
 218     case T_SHORT:
 219     case T_INT:
 220     case T_ADDRESS:
 221     case T_OBJECT:
 222     case T_ARRAY:
 223       assert((kind_field() == cpu_register || kind_field() == stack_value) &&
 224              size_field() == single_size, "must match");
 225       break;
 226 
 227     case T_ILLEGAL:
 228       // XXX TKR also means unknown right now
 229       // assert(is_illegal(), "must match");
 230       break;
 231 
 232     default:
 233       ShouldNotReachHere();
 234     }
 235   }
 236 #endif
 237 
 238 }
 239 #endif // PRODUCT
 240 
 241 
 242 bool LIR_OprDesc::is_oop() const {
 243   if (is_pointer()) {
 244     return pointer()->is_oop_pointer();
 245   } else {
 246     OprType t= type_field();
 247     assert(t != unknown_type, "not set");
 248     return t == object_type;
 249   }
 250 }
 251 
 252 
 253 
 254 void LIR_Op2::verify() const {
 255 #ifdef ASSERT
 256   switch (code()) {
 257     case lir_cmove:
 258       break;
 259 
 260     default:
 261       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 262              "can't produce oops from arith");
 263   }
 264 
 265   if (TwoOperandLIRForm) {
 266     switch (code()) {
 267     case lir_add:
 268     case lir_sub:
 269     case lir_mul:
 270     case lir_mul_strictfp:
 271     case lir_div:
 272     case lir_div_strictfp:
 273     case lir_rem:
 274     case lir_logic_and:
 275     case lir_logic_or:
 276     case lir_logic_xor:
 277     case lir_shl:
 278     case lir_shr:
 279       assert(in_opr1() == result_opr(), "opr1 and result must match");
 280       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 281       break;
 282 
 283     // special handling for lir_ushr because of write barriers
 284     case lir_ushr:
 285       assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
 286       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 287       break;
 288 
 289     }
 290   }
 291 #endif
 292 }
 293 
 294 
 295 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
 296   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 297   , _cond(cond)
 298   , _type(type)
 299   , _label(block->label())
 300   , _block(block)
 301   , _ublock(NULL)
 302   , _stub(NULL) {
 303 }
 304 
 305 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
 306   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 307   , _cond(cond)
 308   , _type(type)
 309   , _label(stub->entry())
 310   , _block(NULL)
 311   , _ublock(NULL)
 312   , _stub(stub) {
 313 }
 314 
 315 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
 316   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 317   , _cond(cond)
 318   , _type(type)
 319   , _label(block->label())
 320   , _block(block)
 321   , _ublock(ublock)
 322   , _stub(NULL)
 323 {
 324 }
 325 
 326 void LIR_OpBranch::change_block(BlockBegin* b) {
 327   assert(_block != NULL, "must have old block");
 328   assert(_block->label() == label(), "must be equal");
 329 
 330   _block = b;
 331   _label = b->label();
 332 }
 333 
 334 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 335   assert(_ublock != NULL, "must have old block");
 336   _ublock = b;
 337 }
 338 
 339 void LIR_OpBranch::negate_cond() {
 340   switch (_cond) {
 341     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 342     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 343     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 344     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 345     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 346     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 347     default: ShouldNotReachHere();
 348   }
 349 }
 350 
 351 
 352 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 353                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 354                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 355                                  CodeStub* stub)
 356 
 357   : LIR_Op(code, result, NULL)
 358   , _object(object)
 359   , _array(LIR_OprFact::illegalOpr)
 360   , _klass(klass)
 361   , _tmp1(tmp1)
 362   , _tmp2(tmp2)
 363   , _tmp3(tmp3)
 364   , _fast_check(fast_check)
 365   , _stub(stub)
 366   , _info_for_patch(info_for_patch)
 367   , _info_for_exception(info_for_exception)
 368   , _profiled_method(NULL)
 369   , _profiled_bci(-1)
 370   , _should_profile(false)
 371 {
 372   if (code == lir_checkcast) {
 373     assert(info_for_exception != NULL, "checkcast throws exceptions");
 374   } else if (code == lir_instanceof) {
 375     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 376   } else {
 377     ShouldNotReachHere();
 378   }
 379 }
 380 
 381 
 382 
 383 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 384   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 385   , _object(object)
 386   , _array(array)
 387   , _klass(NULL)
 388   , _tmp1(tmp1)
 389   , _tmp2(tmp2)
 390   , _tmp3(tmp3)
 391   , _fast_check(false)
 392   , _stub(NULL)
 393   , _info_for_patch(NULL)
 394   , _info_for_exception(info_for_exception)
 395   , _profiled_method(NULL)
 396   , _profiled_bci(-1)
 397   , _should_profile(false)
 398 {
 399   if (code == lir_store_check) {
 400     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 401     assert(info_for_exception != NULL, "store_check throws exceptions");
 402   } else {
 403     ShouldNotReachHere();
 404   }
 405 }
 406 
 407 
 408 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 409                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 410   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 411   , _tmp(tmp)
 412   , _src(src)
 413   , _src_pos(src_pos)
 414   , _dst(dst)
 415   , _dst_pos(dst_pos)
 416   , _flags(flags)
 417   , _expected_type(expected_type)
 418   , _length(length) {
 419   _stub = new ArrayCopyStub(this);
 420 }
 421 
 422 
 423 //-------------------verify--------------------------
 424 
 425 void LIR_Op1::verify() const {
 426   switch(code()) {
 427   case lir_move:
 428     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 429     break;
 430   case lir_null_check:
 431     assert(in_opr()->is_register(), "must be");
 432     break;
 433   case lir_return:
 434     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 435     break;
 436   }
 437 }
 438 
 439 void LIR_OpRTCall::verify() const {
 440   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 441 }
 442 
 443 //-------------------visits--------------------------
 444 
 445 // complete rework of LIR instruction visitor.
 446 // The virtual calls for each instruction type is replaced by a big
 447 // switch that adds the operands for each instruction
 448 
 449 void LIR_OpVisitState::visit(LIR_Op* op) {
 450   // copy information from the LIR_Op
 451   reset();
 452   set_op(op);
 453 
 454   switch (op->code()) {
 455 
 456 // LIR_Op0
 457     case lir_word_align:               // result and info always invalid
 458     case lir_backwardbranch_target:    // result and info always invalid
 459     case lir_build_frame:              // result and info always invalid
 460     case lir_fpop_raw:                 // result and info always invalid
 461     case lir_24bit_FPU:                // result and info always invalid
 462     case lir_reset_FPU:                // result and info always invalid
 463     case lir_breakpoint:               // result and info always invalid
 464     case lir_membar:                   // result and info always invalid
 465     case lir_membar_acquire:           // result and info always invalid
 466     case lir_membar_release:           // result and info always invalid
 467     {
 468       assert(op->as_Op0() != NULL, "must be");
 469       assert(op->_info == NULL, "info not used by this instruction");
 470       assert(op->_result->is_illegal(), "not used");
 471       break;
 472     }
 473 
 474     case lir_nop:                      // may have info, result always invalid
 475     case lir_std_entry:                // may have result, info always invalid
 476     case lir_osr_entry:                // may have result, info always invalid
 477     case lir_get_thread:               // may have result, info always invalid
 478     {
 479       assert(op->as_Op0() != NULL, "must be");
 480       if (op->_info != NULL)           do_info(op->_info);
 481       if (op->_result->is_valid())     do_output(op->_result);
 482       break;
 483     }
 484 
 485 
 486 // LIR_OpLabel
 487     case lir_label:                    // result and info always invalid
 488     {
 489       assert(op->as_OpLabel() != NULL, "must be");
 490       assert(op->_info == NULL, "info not used by this instruction");
 491       assert(op->_result->is_illegal(), "not used");
 492       break;
 493     }
 494 
 495 
 496 // LIR_Op1
 497     case lir_fxch:           // input always valid, result and info always invalid
 498     case lir_fld:            // input always valid, result and info always invalid
 499     case lir_ffree:          // input always valid, result and info always invalid
 500     case lir_push:           // input always valid, result and info always invalid
 501     case lir_pop:            // input always valid, result and info always invalid
 502     case lir_return:         // input always valid, result and info always invalid
 503     case lir_leal:           // input and result always valid, info always invalid
 504     case lir_neg:            // input and result always valid, info always invalid
 505     case lir_monaddr:        // input and result always valid, info always invalid
 506     case lir_null_check:     // input and info always valid, result always invalid
 507     case lir_move:           // input and result always valid, may have info
 508     case lir_pack64:         // input and result always valid
 509     case lir_unpack64:       // input and result always valid
 510     case lir_prefetchr:      // input always valid, result and info always invalid
 511     case lir_prefetchw:      // input always valid, result and info always invalid
 512     {
 513       assert(op->as_Op1() != NULL, "must be");
 514       LIR_Op1* op1 = (LIR_Op1*)op;
 515 
 516       if (op1->_info)                  do_info(op1->_info);
 517       if (op1->_opr->is_valid())       do_input(op1->_opr);
 518       if (op1->_result->is_valid())    do_output(op1->_result);
 519 
 520       break;
 521     }
 522 
 523     case lir_safepoint:
 524     {
 525       assert(op->as_Op1() != NULL, "must be");
 526       LIR_Op1* op1 = (LIR_Op1*)op;
 527 
 528       assert(op1->_info != NULL, "");  do_info(op1->_info);
 529       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 530       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 531 
 532       break;
 533     }
 534 
 535 // LIR_OpConvert;
 536     case lir_convert:        // input and result always valid, info always invalid
 537     {
 538       assert(op->as_OpConvert() != NULL, "must be");
 539       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 540 
 541       assert(opConvert->_info == NULL, "must be");
 542       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 543       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 544 #ifdef PPC
 545       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
 546       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
 547 #endif
 548       do_stub(opConvert->_stub);
 549 
 550       break;
 551     }
 552 
 553 // LIR_OpBranch;
 554     case lir_branch:                   // may have info, input and result register always invalid
 555     case lir_cond_float_branch:        // may have info, input and result register always invalid
 556     {
 557       assert(op->as_OpBranch() != NULL, "must be");
 558       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 559 
 560       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 561       assert(opBranch->_result->is_illegal(), "not used");
 562       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 563 
 564       break;
 565     }
 566 
 567 
 568 // LIR_OpAllocObj
 569     case lir_alloc_object:
 570     {
 571       assert(op->as_OpAllocObj() != NULL, "must be");
 572       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 573 
 574       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 575       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 576                                                  do_temp(opAllocObj->_opr);
 577                                         }
 578       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 579       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 580       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 581       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 582       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 583                                                  do_stub(opAllocObj->_stub);
 584       break;
 585     }
 586 
 587 
 588 // LIR_OpRoundFP;
 589     case lir_roundfp: {
 590       assert(op->as_OpRoundFP() != NULL, "must be");
 591       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 592 
 593       assert(op->_info == NULL, "info not used by this instruction");
 594       assert(opRoundFP->_tmp->is_illegal(), "not used");
 595       do_input(opRoundFP->_opr);
 596       do_output(opRoundFP->_result);
 597 
 598       break;
 599     }
 600 
 601 
 602 // LIR_Op2
 603     case lir_cmp:
 604     case lir_cmp_l2i:
 605     case lir_ucmp_fd2i:
 606     case lir_cmp_fd2i:
 607     case lir_add:
 608     case lir_sub:
 609     case lir_mul:
 610     case lir_div:
 611     case lir_rem:
 612     case lir_sqrt:
 613     case lir_abs:
 614     case lir_logic_and:
 615     case lir_logic_or:
 616     case lir_logic_xor:
 617     case lir_shl:
 618     case lir_shr:
 619     case lir_ushr:
 620     {
 621       assert(op->as_Op2() != NULL, "must be");
 622       LIR_Op2* op2 = (LIR_Op2*)op;
 623 
 624       if (op2->_info)                     do_info(op2->_info);
 625       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 626       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 627       if (op2->_tmp->is_valid())          do_temp(op2->_tmp);
 628       if (op2->_result->is_valid())       do_output(op2->_result);
 629 
 630       break;
 631     }
 632 
 633     // special handling for cmove: right input operand must not be equal
 634     // to the result operand, otherwise the backend fails
 635     case lir_cmove:
 636     {
 637       assert(op->as_Op2() != NULL, "must be");
 638       LIR_Op2* op2 = (LIR_Op2*)op;
 639 
 640       assert(op2->_info == NULL && op2->_tmp->is_illegal(), "not used");
 641       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 642 
 643       do_input(op2->_opr1);
 644       do_input(op2->_opr2);
 645       do_temp(op2->_opr2);
 646       do_output(op2->_result);
 647 
 648       break;
 649     }
 650 
 651     // vspecial handling for strict operations: register input operands
 652     // as temp to guarantee that they do not overlap with other
 653     // registers
 654     case lir_mul_strictfp:
 655     case lir_div_strictfp:
 656     {
 657       assert(op->as_Op2() != NULL, "must be");
 658       LIR_Op2* op2 = (LIR_Op2*)op;
 659 
 660       assert(op2->_info == NULL, "not used");
 661       assert(op2->_opr1->is_valid(), "used");
 662       assert(op2->_opr2->is_valid(), "used");
 663       assert(op2->_result->is_valid(), "used");
 664 
 665       do_input(op2->_opr1); do_temp(op2->_opr1);
 666       do_input(op2->_opr2); do_temp(op2->_opr2);
 667       if (op2->_tmp->is_valid()) do_temp(op2->_tmp);
 668       do_output(op2->_result);
 669 
 670       break;
 671     }
 672 
 673     case lir_throw: {
 674       assert(op->as_Op2() != NULL, "must be");
 675       LIR_Op2* op2 = (LIR_Op2*)op;
 676 
 677       if (op2->_info)                     do_info(op2->_info);
 678       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 679       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 680       assert(op2->_result->is_illegal(), "no result");
 681 
 682       break;
 683     }
 684 
 685     case lir_unwind: {
 686       assert(op->as_Op1() != NULL, "must be");
 687       LIR_Op1* op1 = (LIR_Op1*)op;
 688 
 689       assert(op1->_info == NULL, "no info");
 690       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 691       assert(op1->_result->is_illegal(), "no result");
 692 
 693       break;
 694     }
 695 
 696 
 697     case lir_tan:
 698     case lir_sin:
 699     case lir_cos:
 700     case lir_log:
 701     case lir_log10: {
 702       assert(op->as_Op2() != NULL, "must be");
 703       LIR_Op2* op2 = (LIR_Op2*)op;
 704 
 705       // On x86 tan/sin/cos need two temporary fpu stack slots and
 706       // log/log10 need one so handle opr2 and tmp as temp inputs.
 707       // Register input operand as temp to guarantee that it doesn't
 708       // overlap with the input.
 709       assert(op2->_info == NULL, "not used");
 710       assert(op2->_opr1->is_valid(), "used");
 711       do_input(op2->_opr1); do_temp(op2->_opr1);
 712 
 713       if (op2->_opr2->is_valid())         do_temp(op2->_opr2);
 714       if (op2->_tmp->is_valid())          do_temp(op2->_tmp);
 715       if (op2->_result->is_valid())       do_output(op2->_result);
 716 
 717       break;
 718     }
 719 
 720 
 721 // LIR_Op3
 722     case lir_idiv:
 723     case lir_irem: {
 724       assert(op->as_Op3() != NULL, "must be");
 725       LIR_Op3* op3= (LIR_Op3*)op;
 726 
 727       if (op3->_info)                     do_info(op3->_info);
 728       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 729 
 730       // second operand is input and temp, so ensure that second operand
 731       // and third operand get not the same register
 732       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 733       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 734       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 735 
 736       if (op3->_result->is_valid())       do_output(op3->_result);
 737 
 738       break;
 739     }
 740 
 741 
 742 // LIR_OpJavaCall
 743     case lir_static_call:
 744     case lir_optvirtual_call:
 745     case lir_icvirtual_call:
 746     case lir_virtual_call:
 747     case lir_dynamic_call: {
 748       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 749       assert(opJavaCall != NULL, "must be");
 750 
 751       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 752 
 753       // only visit register parameters
 754       int n = opJavaCall->_arguments->length();
 755       for (int i = 0; i < n; i++) {
 756         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 757           do_input(*opJavaCall->_arguments->adr_at(i));
 758         }
 759       }
 760 
 761       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 762       if (opJavaCall->is_method_handle_invoke()) {
 763         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 764         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 765       }
 766       do_call();
 767       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 768 
 769       break;
 770     }
 771 
 772 
 773 // LIR_OpRTCall
 774     case lir_rtcall: {
 775       assert(op->as_OpRTCall() != NULL, "must be");
 776       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 777 
 778       // only visit register parameters
 779       int n = opRTCall->_arguments->length();
 780       for (int i = 0; i < n; i++) {
 781         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 782           do_input(*opRTCall->_arguments->adr_at(i));
 783         }
 784       }
 785       if (opRTCall->_info)                     do_info(opRTCall->_info);
 786       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 787       do_call();
 788       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 789 
 790       break;
 791     }
 792 
 793 
 794 // LIR_OpArrayCopy
 795     case lir_arraycopy: {
 796       assert(op->as_OpArrayCopy() != NULL, "must be");
 797       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 798 
 799       assert(opArrayCopy->_result->is_illegal(), "unused");
 800       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 801       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 802       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 803       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 804       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 805       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 806       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 807 
 808       // the implementation of arraycopy always has a call into the runtime
 809       do_call();
 810 
 811       break;
 812     }
 813 
 814 
 815 // LIR_OpLock
 816     case lir_lock:
 817     case lir_unlock: {
 818       assert(op->as_OpLock() != NULL, "must be");
 819       LIR_OpLock* opLock = (LIR_OpLock*)op;
 820 
 821       if (opLock->_info)                          do_info(opLock->_info);
 822 
 823       // TODO: check if these operands really have to be temp
 824       // (or if input is sufficient). This may have influence on the oop map!
 825       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 826       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 827       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 828 
 829       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 830       assert(opLock->_result->is_illegal(), "unused");
 831 
 832       do_stub(opLock->_stub);
 833 
 834       break;
 835     }
 836 
 837 
 838 // LIR_OpDelay
 839     case lir_delay_slot: {
 840       assert(op->as_OpDelay() != NULL, "must be");
 841       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 842 
 843       visit(opDelay->delay_op());
 844       break;
 845     }
 846 
 847 // LIR_OpTypeCheck
 848     case lir_instanceof:
 849     case lir_checkcast:
 850     case lir_store_check: {
 851       assert(op->as_OpTypeCheck() != NULL, "must be");
 852       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 853 
 854       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 855       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 856       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 857       if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
 858         do_temp(opTypeCheck->_object);
 859       }
 860       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 861       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 862       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 863       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 864       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 865                                                   do_stub(opTypeCheck->_stub);
 866       break;
 867     }
 868 
 869 // LIR_OpCompareAndSwap
 870     case lir_cas_long:
 871     case lir_cas_obj:
 872     case lir_cas_int: {
 873       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 874       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 875 
 876       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 877       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 878       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 879       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 880                                                       do_input(opCompareAndSwap->_addr);
 881                                                       do_temp(opCompareAndSwap->_addr);
 882                                                       do_input(opCompareAndSwap->_cmp_value);
 883                                                       do_temp(opCompareAndSwap->_cmp_value);
 884                                                       do_input(opCompareAndSwap->_new_value);
 885                                                       do_temp(opCompareAndSwap->_new_value);
 886       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 887       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 888       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 889 
 890       break;
 891     }
 892 
 893 
 894 // LIR_OpAllocArray;
 895     case lir_alloc_array: {
 896       assert(op->as_OpAllocArray() != NULL, "must be");
 897       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 898 
 899       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 900       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 901       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 902       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 903       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 904       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 905       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 906       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 907                                                       do_stub(opAllocArray->_stub);
 908       break;
 909     }
 910 
 911 // LIR_OpProfileCall:
 912     case lir_profile_call: {
 913       assert(op->as_OpProfileCall() != NULL, "must be");
 914       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 915 
 916       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 917       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 918       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
 919       break;
 920     }
 921   default:
 922     ShouldNotReachHere();
 923   }
 924 }
 925 
 926 
 927 void LIR_OpVisitState::do_stub(CodeStub* stub) {
 928   if (stub != NULL) {
 929     stub->visit(this);
 930   }
 931 }
 932 
 933 XHandlers* LIR_OpVisitState::all_xhandler() {
 934   XHandlers* result = NULL;
 935 
 936   int i;
 937   for (i = 0; i < info_count(); i++) {
 938     if (info_at(i)->exception_handlers() != NULL) {
 939       result = info_at(i)->exception_handlers();
 940       break;
 941     }
 942   }
 943 
 944 #ifdef ASSERT
 945   for (i = 0; i < info_count(); i++) {
 946     assert(info_at(i)->exception_handlers() == NULL ||
 947            info_at(i)->exception_handlers() == result,
 948            "only one xhandler list allowed per LIR-operation");
 949   }
 950 #endif
 951 
 952   if (result != NULL) {
 953     return result;
 954   } else {
 955     return new XHandlers();
 956   }
 957 
 958   return result;
 959 }
 960 
 961 
 962 #ifdef ASSERT
 963 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
 964   visit(op);
 965 
 966   return opr_count(inputMode) == 0 &&
 967          opr_count(outputMode) == 0 &&
 968          opr_count(tempMode) == 0 &&
 969          info_count() == 0 &&
 970          !has_call() &&
 971          !has_slow_case();
 972 }
 973 #endif
 974 
 975 //---------------------------------------------------
 976 
 977 
 978 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
 979   masm->emit_call(this);
 980 }
 981 
 982 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
 983   masm->emit_rtcall(this);
 984 }
 985 
 986 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
 987   masm->emit_opLabel(this);
 988 }
 989 
 990 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
 991   masm->emit_arraycopy(this);
 992   masm->emit_code_stub(stub());
 993 }
 994 
 995 void LIR_Op0::emit_code(LIR_Assembler* masm) {
 996   masm->emit_op0(this);
 997 }
 998 
 999 void LIR_Op1::emit_code(LIR_Assembler* masm) {
1000   masm->emit_op1(this);
1001 }
1002 
1003 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1004   masm->emit_alloc_obj(this);
1005   masm->emit_code_stub(stub());
1006 }
1007 
1008 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1009   masm->emit_opBranch(this);
1010   if (stub()) {
1011     masm->emit_code_stub(stub());
1012   }
1013 }
1014 
1015 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1016   masm->emit_opConvert(this);
1017   if (stub() != NULL) {
1018     masm->emit_code_stub(stub());
1019   }
1020 }
1021 
1022 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1023   masm->emit_op2(this);
1024 }
1025 
1026 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1027   masm->emit_alloc_array(this);
1028   masm->emit_code_stub(stub());
1029 }
1030 
1031 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1032   masm->emit_opTypeCheck(this);
1033   if (stub()) {
1034     masm->emit_code_stub(stub());
1035   }
1036 }
1037 
1038 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1039   masm->emit_compare_and_swap(this);
1040 }
1041 
1042 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1043   masm->emit_op3(this);
1044 }
1045 
1046 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1047   masm->emit_lock(this);
1048   if (stub()) {
1049     masm->emit_code_stub(stub());
1050   }
1051 }
1052 
1053 
1054 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1055   masm->emit_delay(this);
1056 }
1057 
1058 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1059   masm->emit_profile_call(this);
1060 }
1061 
1062 // LIR_List
1063 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1064   : _operations(8)
1065   , _compilation(compilation)
1066 #ifndef PRODUCT
1067   , _block(block)
1068 #endif
1069 #ifdef ASSERT
1070   , _file(NULL)
1071   , _line(0)
1072 #endif
1073 { }
1074 
1075 
1076 #ifdef ASSERT
1077 void LIR_List::set_file_and_line(const char * file, int line) {
1078   const char * f = strrchr(file, '/');
1079   if (f == NULL) f = strrchr(file, '\\');
1080   if (f == NULL) {
1081     f = file;
1082   } else {
1083     f++;
1084   }
1085   _file = f;
1086   _line = line;
1087 }
1088 #endif
1089 
1090 
1091 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1092   assert(this == buffer->lir_list(), "wrong lir list");
1093   const int n = _operations.length();
1094 
1095   if (buffer->number_of_ops() > 0) {
1096     // increase size of instructions list
1097     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1098     // insert ops from buffer into instructions list
1099     int op_index = buffer->number_of_ops() - 1;
1100     int ip_index = buffer->number_of_insertion_points() - 1;
1101     int from_index = n - 1;
1102     int to_index = _operations.length() - 1;
1103     for (; ip_index >= 0; ip_index --) {
1104       int index = buffer->index_at(ip_index);
1105       // make room after insertion point
1106       while (index < from_index) {
1107         _operations.at_put(to_index --, _operations.at(from_index --));
1108       }
1109       // insert ops from buffer
1110       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1111         _operations.at_put(to_index --, buffer->op_at(op_index --));
1112       }
1113     }
1114   }
1115 
1116   buffer->finish();
1117 }
1118 
1119 
1120 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1121   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1122 }
1123 
1124 
1125 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1126   append(new LIR_Op1(
1127             lir_move,
1128             LIR_OprFact::address(addr),
1129             src,
1130             addr->type(),
1131             patch_code,
1132             info));
1133 }
1134 
1135 
1136 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1137   append(new LIR_Op1(
1138             lir_move,
1139             LIR_OprFact::address(address),
1140             dst,
1141             address->type(),
1142             patch_code,
1143             info, lir_move_volatile));
1144 }
1145 
1146 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1147   append(new LIR_Op1(
1148             lir_move,
1149             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1150             dst,
1151             type,
1152             patch_code,
1153             info, lir_move_volatile));
1154 }
1155 
1156 
1157 void LIR_List::prefetch(LIR_Address* addr, bool is_store) {
1158   append(new LIR_Op1(
1159             is_store ? lir_prefetchw : lir_prefetchr,
1160             LIR_OprFact::address(addr)));
1161 }
1162 
1163 
1164 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1165   append(new LIR_Op1(
1166             lir_move,
1167             LIR_OprFact::intConst(v),
1168             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1169             type,
1170             patch_code,
1171             info));
1172 }
1173 
1174 
1175 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1176   append(new LIR_Op1(
1177             lir_move,
1178             LIR_OprFact::oopConst(o),
1179             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1180             type,
1181             patch_code,
1182             info));
1183 }
1184 
1185 
1186 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1187   append(new LIR_Op1(
1188             lir_move,
1189             src,
1190             LIR_OprFact::address(addr),
1191             addr->type(),
1192             patch_code,
1193             info));
1194 }
1195 
1196 
1197 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1198   append(new LIR_Op1(
1199             lir_move,
1200             src,
1201             LIR_OprFact::address(addr),
1202             addr->type(),
1203             patch_code,
1204             info,
1205             lir_move_volatile));
1206 }
1207 
1208 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1209   append(new LIR_Op1(
1210             lir_move,
1211             src,
1212             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1213             type,
1214             patch_code,
1215             info, lir_move_volatile));
1216 }
1217 
1218 
1219 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1220   append(new LIR_Op3(
1221                     lir_idiv,
1222                     left,
1223                     right,
1224                     tmp,
1225                     res,
1226                     info));
1227 }
1228 
1229 
1230 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1231   append(new LIR_Op3(
1232                     lir_idiv,
1233                     left,
1234                     LIR_OprFact::intConst(right),
1235                     tmp,
1236                     res,
1237                     info));
1238 }
1239 
1240 
1241 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1242   append(new LIR_Op3(
1243                     lir_irem,
1244                     left,
1245                     right,
1246                     tmp,
1247                     res,
1248                     info));
1249 }
1250 
1251 
1252 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1253   append(new LIR_Op3(
1254                     lir_irem,
1255                     left,
1256                     LIR_OprFact::intConst(right),
1257                     tmp,
1258                     res,
1259                     info));
1260 }
1261 
1262 
1263 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1264   append(new LIR_Op2(
1265                     lir_cmp,
1266                     condition,
1267                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1268                     LIR_OprFact::intConst(c),
1269                     info));
1270 }
1271 
1272 
1273 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1274   append(new LIR_Op2(
1275                     lir_cmp,
1276                     condition,
1277                     reg,
1278                     LIR_OprFact::address(addr),
1279                     info));
1280 }
1281 
1282 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1283                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1284   append(new LIR_OpAllocObj(
1285                            klass,
1286                            dst,
1287                            t1,
1288                            t2,
1289                            t3,
1290                            t4,
1291                            header_size,
1292                            object_size,
1293                            init_check,
1294                            stub));
1295 }
1296 
1297 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1298   append(new LIR_OpAllocArray(
1299                            klass,
1300                            len,
1301                            dst,
1302                            t1,
1303                            t2,
1304                            t3,
1305                            t4,
1306                            type,
1307                            stub));
1308 }
1309 
1310 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1311  append(new LIR_Op2(
1312                     lir_shl,
1313                     value,
1314                     count,
1315                     dst,
1316                     tmp));
1317 }
1318 
1319 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1320  append(new LIR_Op2(
1321                     lir_shr,
1322                     value,
1323                     count,
1324                     dst,
1325                     tmp));
1326 }
1327 
1328 
1329 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1330  append(new LIR_Op2(
1331                     lir_ushr,
1332                     value,
1333                     count,
1334                     dst,
1335                     tmp));
1336 }
1337 
1338 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1339   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1340                      left,
1341                      right,
1342                      dst));
1343 }
1344 
1345 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1346   append(new LIR_OpLock(
1347                     lir_lock,
1348                     hdr,
1349                     obj,
1350                     lock,
1351                     scratch,
1352                     stub,
1353                     info));
1354 }
1355 
1356 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1357   append(new LIR_OpLock(
1358                     lir_unlock,
1359                     hdr,
1360                     obj,
1361                     lock,
1362                     scratch,
1363                     stub,
1364                     NULL));
1365 }
1366 
1367 
1368 void check_LIR() {
1369   // cannot do the proper checking as PRODUCT and other modes return different results
1370   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1371 }
1372 
1373 
1374 
1375 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1376                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1377                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1378                           ciMethod* profiled_method, int profiled_bci) {
1379   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1380                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1381   if (profiled_method != NULL) {
1382     c->set_profiled_method(profiled_method);
1383     c->set_profiled_bci(profiled_bci);
1384     c->set_should_profile(true);
1385   }
1386   append(c);
1387 }
1388 
1389 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1390   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1391   if (profiled_method != NULL) {
1392     c->set_profiled_method(profiled_method);
1393     c->set_profiled_bci(profiled_bci);
1394     c->set_should_profile(true);
1395   }
1396   append(c);
1397 }
1398 
1399 
1400 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1401                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1402   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1403   if (profiled_method != NULL) {
1404     c->set_profiled_method(profiled_method);
1405     c->set_profiled_bci(profiled_bci);
1406     c->set_should_profile(true);
1407   }
1408   append(c);
1409 }
1410 
1411 
1412 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1413                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1414   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1415 }
1416 
1417 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1418                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1419   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1420 }
1421 
1422 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1423                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1424   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1425 }
1426 
1427 
1428 #ifdef PRODUCT
1429 
1430 void print_LIR(BlockList* blocks) {
1431 }
1432 
1433 #else
1434 // LIR_OprDesc
1435 void LIR_OprDesc::print() const {
1436   print(tty);
1437 }
1438 
1439 void LIR_OprDesc::print(outputStream* out) const {
1440   if (is_illegal()) {
1441     return;
1442   }
1443 
1444   out->print("[");
1445   if (is_pointer()) {
1446     pointer()->print_value_on(out);
1447   } else if (is_single_stack()) {
1448     out->print("stack:%d", single_stack_ix());
1449   } else if (is_double_stack()) {
1450     out->print("dbl_stack:%d",double_stack_ix());
1451   } else if (is_virtual()) {
1452     out->print("R%d", vreg_number());
1453   } else if (is_single_cpu()) {
1454     out->print(as_register()->name());
1455   } else if (is_double_cpu()) {
1456     out->print(as_register_hi()->name());
1457     out->print(as_register_lo()->name());
1458 #if defined(X86)
1459   } else if (is_single_xmm()) {
1460     out->print(as_xmm_float_reg()->name());
1461   } else if (is_double_xmm()) {
1462     out->print(as_xmm_double_reg()->name());
1463   } else if (is_single_fpu()) {
1464     out->print("fpu%d", fpu_regnr());
1465   } else if (is_double_fpu()) {
1466     out->print("fpu%d", fpu_regnrLo());
1467 #elif defined(ARM)
1468   } else if (is_single_fpu()) {
1469     out->print("s%d", fpu_regnr());
1470   } else if (is_double_fpu()) {
1471     out->print("d%d", fpu_regnrLo() >> 1);
1472 #else
1473   } else if (is_single_fpu()) {
1474     out->print(as_float_reg()->name());
1475   } else if (is_double_fpu()) {
1476     out->print(as_double_reg()->name());
1477 #endif
1478 
1479   } else if (is_illegal()) {
1480     out->print("-");
1481   } else {
1482     out->print("Unknown Operand");
1483   }
1484   if (!is_illegal()) {
1485     out->print("|%c", type_char());
1486   }
1487   if (is_register() && is_last_use()) {
1488     out->print("(last_use)");
1489   }
1490   out->print("]");
1491 }
1492 
1493 
1494 // LIR_Address
1495 void LIR_Const::print_value_on(outputStream* out) const {
1496   switch (type()) {
1497     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1498     case T_INT:    out->print("int:%d",   as_jint());           break;
1499     case T_LONG:   out->print("lng:%lld", as_jlong());          break;
1500     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1501     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1502     case T_OBJECT: out->print("obj:0x%x", as_jobject());        break;
1503     default:       out->print("%3d:0x%x",type(), as_jdouble()); break;
1504   }
1505 }
1506 
1507 // LIR_Address
1508 void LIR_Address::print_value_on(outputStream* out) const {
1509   out->print("Base:"); _base->print(out);
1510   if (!_index->is_illegal()) {
1511     out->print(" Index:"); _index->print(out);
1512     switch (scale()) {
1513     case times_1: break;
1514     case times_2: out->print(" * 2"); break;
1515     case times_4: out->print(" * 4"); break;
1516     case times_8: out->print(" * 8"); break;
1517     }
1518   }
1519   out->print(" Disp: %d", _disp);
1520 }
1521 
1522 // debug output of block header without InstructionPrinter
1523 //       (because phi functions are not necessary for LIR)
1524 static void print_block(BlockBegin* x) {
1525   // print block id
1526   BlockEnd* end = x->end();
1527   tty->print("B%d ", x->block_id());
1528 
1529   // print flags
1530   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1531   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1532   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1533   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1534   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1535   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1536   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1537 
1538   // print block bci range
1539   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1540 
1541   // print predecessors and successors
1542   if (x->number_of_preds() > 0) {
1543     tty->print("preds: ");
1544     for (int i = 0; i < x->number_of_preds(); i ++) {
1545       tty->print("B%d ", x->pred_at(i)->block_id());
1546     }
1547   }
1548 
1549   if (x->number_of_sux() > 0) {
1550     tty->print("sux: ");
1551     for (int i = 0; i < x->number_of_sux(); i ++) {
1552       tty->print("B%d ", x->sux_at(i)->block_id());
1553     }
1554   }
1555 
1556   // print exception handlers
1557   if (x->number_of_exception_handlers() > 0) {
1558     tty->print("xhandler: ");
1559     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1560       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1561     }
1562   }
1563 
1564   tty->cr();
1565 }
1566 
1567 void print_LIR(BlockList* blocks) {
1568   tty->print_cr("LIR:");
1569   int i;
1570   for (i = 0; i < blocks->length(); i++) {
1571     BlockBegin* bb = blocks->at(i);
1572     print_block(bb);
1573     tty->print("__id_Instruction___________________________________________"); tty->cr();
1574     bb->lir()->print_instructions();
1575   }
1576 }
1577 
1578 void LIR_List::print_instructions() {
1579   for (int i = 0; i < _operations.length(); i++) {
1580     _operations.at(i)->print(); tty->cr();
1581   }
1582   tty->cr();
1583 }
1584 
1585 // LIR_Ops printing routines
1586 // LIR_Op
1587 void LIR_Op::print_on(outputStream* out) const {
1588   if (id() != -1 || PrintCFGToFile) {
1589     out->print("%4d ", id());
1590   } else {
1591     out->print("     ");
1592   }
1593   out->print(name()); out->print(" ");
1594   print_instr(out);
1595   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1596 #ifdef ASSERT
1597   if (Verbose && _file != NULL) {
1598     out->print(" (%s:%d)", _file, _line);
1599   }
1600 #endif
1601 }
1602 
1603 const char * LIR_Op::name() const {
1604   const char* s = NULL;
1605   switch(code()) {
1606      // LIR_Op0
1607      case lir_membar:                s = "membar";        break;
1608      case lir_membar_acquire:        s = "membar_acquire"; break;
1609      case lir_membar_release:        s = "membar_release"; break;
1610      case lir_word_align:            s = "word_align";    break;
1611      case lir_label:                 s = "label";         break;
1612      case lir_nop:                   s = "nop";           break;
1613      case lir_backwardbranch_target: s = "backbranch";    break;
1614      case lir_std_entry:             s = "std_entry";     break;
1615      case lir_osr_entry:             s = "osr_entry";     break;
1616      case lir_build_frame:           s = "build_frm";     break;
1617      case lir_fpop_raw:              s = "fpop_raw";      break;
1618      case lir_24bit_FPU:             s = "24bit_FPU";     break;
1619      case lir_reset_FPU:             s = "reset_FPU";     break;
1620      case lir_breakpoint:            s = "breakpoint";    break;
1621      case lir_get_thread:            s = "get_thread";    break;
1622      // LIR_Op1
1623      case lir_fxch:                  s = "fxch";          break;
1624      case lir_fld:                   s = "fld";           break;
1625      case lir_ffree:                 s = "ffree";         break;
1626      case lir_push:                  s = "push";          break;
1627      case lir_pop:                   s = "pop";           break;
1628      case lir_null_check:            s = "null_check";    break;
1629      case lir_return:                s = "return";        break;
1630      case lir_safepoint:             s = "safepoint";     break;
1631      case lir_neg:                   s = "neg";           break;
1632      case lir_leal:                  s = "leal";          break;
1633      case lir_branch:                s = "branch";        break;
1634      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1635      case lir_move:                  s = "move";          break;
1636      case lir_roundfp:               s = "roundfp";       break;
1637      case lir_rtcall:                s = "rtcall";        break;
1638      case lir_throw:                 s = "throw";         break;
1639      case lir_unwind:                s = "unwind";        break;
1640      case lir_convert:               s = "convert";       break;
1641      case lir_alloc_object:          s = "alloc_obj";     break;
1642      case lir_monaddr:               s = "mon_addr";      break;
1643      case lir_pack64:                s = "pack64";        break;
1644      case lir_unpack64:              s = "unpack64";      break;
1645      // LIR_Op2
1646      case lir_cmp:                   s = "cmp";           break;
1647      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1648      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1649      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1650      case lir_cmove:                 s = "cmove";         break;
1651      case lir_add:                   s = "add";           break;
1652      case lir_sub:                   s = "sub";           break;
1653      case lir_mul:                   s = "mul";           break;
1654      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1655      case lir_div:                   s = "div";           break;
1656      case lir_div_strictfp:          s = "div_strictfp";  break;
1657      case lir_rem:                   s = "rem";           break;
1658      case lir_abs:                   s = "abs";           break;
1659      case lir_sqrt:                  s = "sqrt";          break;
1660      case lir_sin:                   s = "sin";           break;
1661      case lir_cos:                   s = "cos";           break;
1662      case lir_tan:                   s = "tan";           break;
1663      case lir_log:                   s = "log";           break;
1664      case lir_log10:                 s = "log10";         break;
1665      case lir_logic_and:             s = "logic_and";     break;
1666      case lir_logic_or:              s = "logic_or";      break;
1667      case lir_logic_xor:             s = "logic_xor";     break;
1668      case lir_shl:                   s = "shift_left";    break;
1669      case lir_shr:                   s = "shift_right";   break;
1670      case lir_ushr:                  s = "ushift_right";  break;
1671      case lir_alloc_array:           s = "alloc_array";   break;
1672      // LIR_Op3
1673      case lir_idiv:                  s = "idiv";          break;
1674      case lir_irem:                  s = "irem";          break;
1675      // LIR_OpJavaCall
1676      case lir_static_call:           s = "static";        break;
1677      case lir_optvirtual_call:       s = "optvirtual";    break;
1678      case lir_icvirtual_call:        s = "icvirtual";     break;
1679      case lir_virtual_call:          s = "virtual";       break;
1680      case lir_dynamic_call:          s = "dynamic";       break;
1681      // LIR_OpArrayCopy
1682      case lir_arraycopy:             s = "arraycopy";     break;
1683      // LIR_OpLock
1684      case lir_lock:                  s = "lock";          break;
1685      case lir_unlock:                s = "unlock";        break;
1686      // LIR_OpDelay
1687      case lir_delay_slot:            s = "delay";         break;
1688      // LIR_OpTypeCheck
1689      case lir_instanceof:            s = "instanceof";    break;
1690      case lir_checkcast:             s = "checkcast";     break;
1691      case lir_store_check:           s = "store_check";   break;
1692      // LIR_OpCompareAndSwap
1693      case lir_cas_long:              s = "cas_long";      break;
1694      case lir_cas_obj:               s = "cas_obj";      break;
1695      case lir_cas_int:               s = "cas_int";      break;
1696      // LIR_OpProfileCall
1697      case lir_profile_call:          s = "profile_call";  break;
1698      case lir_none:                  ShouldNotReachHere();break;
1699     default:                         s = "illegal_op";    break;
1700   }
1701   return s;
1702 }
1703 
1704 // LIR_OpJavaCall
1705 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1706   out->print("call: ");
1707   out->print("[addr: 0x%x]", address());
1708   if (receiver()->is_valid()) {
1709     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1710   }
1711   if (result_opr()->is_valid()) {
1712     out->print(" [result: "); result_opr()->print(out); out->print("]");
1713   }
1714 }
1715 
1716 // LIR_OpLabel
1717 void LIR_OpLabel::print_instr(outputStream* out) const {
1718   out->print("[label:0x%x]", _label);
1719 }
1720 
1721 // LIR_OpArrayCopy
1722 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1723   src()->print(out);     out->print(" ");
1724   src_pos()->print(out); out->print(" ");
1725   dst()->print(out);     out->print(" ");
1726   dst_pos()->print(out); out->print(" ");
1727   length()->print(out);  out->print(" ");
1728   tmp()->print(out);     out->print(" ");
1729 }
1730 
1731 // LIR_OpCompareAndSwap
1732 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1733   addr()->print(out);      out->print(" ");
1734   cmp_value()->print(out); out->print(" ");
1735   new_value()->print(out); out->print(" ");
1736   tmp1()->print(out);      out->print(" ");
1737   tmp2()->print(out);      out->print(" ");
1738 
1739 }
1740 
1741 // LIR_Op0
1742 void LIR_Op0::print_instr(outputStream* out) const {
1743   result_opr()->print(out);
1744 }
1745 
1746 // LIR_Op1
1747 const char * LIR_Op1::name() const {
1748   if (code() == lir_move) {
1749     switch (move_kind()) {
1750     case lir_move_normal:
1751       return "move";
1752     case lir_move_unaligned:
1753       return "unaligned move";
1754     case lir_move_volatile:
1755       return "volatile_move";
1756     case lir_move_wide:
1757       return "wide_move";
1758     default:
1759       ShouldNotReachHere();
1760     return "illegal_op";
1761     }
1762   } else {
1763     return LIR_Op::name();
1764   }
1765 }
1766 
1767 
1768 void LIR_Op1::print_instr(outputStream* out) const {
1769   _opr->print(out);         out->print(" ");
1770   result_opr()->print(out); out->print(" ");
1771   print_patch_code(out, patch_code());
1772 }
1773 
1774 
1775 // LIR_Op1
1776 void LIR_OpRTCall::print_instr(outputStream* out) const {
1777   intx a = (intx)addr();
1778   out->print(Runtime1::name_for_address(addr()));
1779   out->print(" ");
1780   tmp()->print(out);
1781 }
1782 
1783 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1784   switch(code) {
1785     case lir_patch_none:                                 break;
1786     case lir_patch_low:    out->print("[patch_low]");    break;
1787     case lir_patch_high:   out->print("[patch_high]");   break;
1788     case lir_patch_normal: out->print("[patch_normal]"); break;
1789     default: ShouldNotReachHere();
1790   }
1791 }
1792 
1793 // LIR_OpBranch
1794 void LIR_OpBranch::print_instr(outputStream* out) const {
1795   print_condition(out, cond());             out->print(" ");
1796   if (block() != NULL) {
1797     out->print("[B%d] ", block()->block_id());
1798   } else if (stub() != NULL) {
1799     out->print("[");
1800     stub()->print_name(out);
1801     out->print(": 0x%x]", stub());
1802     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1803   } else {
1804     out->print("[label:0x%x] ", label());
1805   }
1806   if (ublock() != NULL) {
1807     out->print("unordered: [B%d] ", ublock()->block_id());
1808   }
1809 }
1810 
1811 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1812   switch(cond) {
1813     case lir_cond_equal:           out->print("[EQ]");      break;
1814     case lir_cond_notEqual:        out->print("[NE]");      break;
1815     case lir_cond_less:            out->print("[LT]");      break;
1816     case lir_cond_lessEqual:       out->print("[LE]");      break;
1817     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1818     case lir_cond_greater:         out->print("[GT]");      break;
1819     case lir_cond_belowEqual:      out->print("[BE]");      break;
1820     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1821     case lir_cond_always:          out->print("[AL]");      break;
1822     default:                       out->print("[%d]",cond); break;
1823   }
1824 }
1825 
1826 // LIR_OpConvert
1827 void LIR_OpConvert::print_instr(outputStream* out) const {
1828   print_bytecode(out, bytecode());
1829   in_opr()->print(out);                  out->print(" ");
1830   result_opr()->print(out);              out->print(" ");
1831 #ifdef PPC
1832   if(tmp1()->is_valid()) {
1833     tmp1()->print(out); out->print(" ");
1834     tmp2()->print(out); out->print(" ");
1835   }
1836 #endif
1837 }
1838 
1839 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1840   switch(code) {
1841     case Bytecodes::_d2f: out->print("[d2f] "); break;
1842     case Bytecodes::_d2i: out->print("[d2i] "); break;
1843     case Bytecodes::_d2l: out->print("[d2l] "); break;
1844     case Bytecodes::_f2d: out->print("[f2d] "); break;
1845     case Bytecodes::_f2i: out->print("[f2i] "); break;
1846     case Bytecodes::_f2l: out->print("[f2l] "); break;
1847     case Bytecodes::_i2b: out->print("[i2b] "); break;
1848     case Bytecodes::_i2c: out->print("[i2c] "); break;
1849     case Bytecodes::_i2d: out->print("[i2d] "); break;
1850     case Bytecodes::_i2f: out->print("[i2f] "); break;
1851     case Bytecodes::_i2l: out->print("[i2l] "); break;
1852     case Bytecodes::_i2s: out->print("[i2s] "); break;
1853     case Bytecodes::_l2i: out->print("[l2i] "); break;
1854     case Bytecodes::_l2f: out->print("[l2f] "); break;
1855     case Bytecodes::_l2d: out->print("[l2d] "); break;
1856     default:
1857       out->print("[?%d]",code);
1858     break;
1859   }
1860 }
1861 
1862 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1863   klass()->print(out);                      out->print(" ");
1864   obj()->print(out);                        out->print(" ");
1865   tmp1()->print(out);                       out->print(" ");
1866   tmp2()->print(out);                       out->print(" ");
1867   tmp3()->print(out);                       out->print(" ");
1868   tmp4()->print(out);                       out->print(" ");
1869   out->print("[hdr:%d]", header_size()); out->print(" ");
1870   out->print("[obj:%d]", object_size()); out->print(" ");
1871   out->print("[lbl:0x%x]", stub()->entry());
1872 }
1873 
1874 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1875   _opr->print(out);         out->print(" ");
1876   tmp()->print(out);        out->print(" ");
1877   result_opr()->print(out); out->print(" ");
1878 }
1879 
1880 // LIR_Op2
1881 void LIR_Op2::print_instr(outputStream* out) const {
1882   if (code() == lir_cmove) {
1883     print_condition(out, condition());         out->print(" ");
1884   }
1885   in_opr1()->print(out);    out->print(" ");
1886   in_opr2()->print(out);    out->print(" ");
1887   if (tmp_opr()->is_valid()) { tmp_opr()->print(out);    out->print(" "); }
1888   result_opr()->print(out);
1889 }
1890 
1891 void LIR_OpAllocArray::print_instr(outputStream* out) const {
1892   klass()->print(out);                   out->print(" ");
1893   len()->print(out);                     out->print(" ");
1894   obj()->print(out);                     out->print(" ");
1895   tmp1()->print(out);                    out->print(" ");
1896   tmp2()->print(out);                    out->print(" ");
1897   tmp3()->print(out);                    out->print(" ");
1898   tmp4()->print(out);                    out->print(" ");
1899   out->print("[type:0x%x]", type());     out->print(" ");
1900   out->print("[label:0x%x]", stub()->entry());
1901 }
1902 
1903 
1904 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
1905   object()->print(out);                  out->print(" ");
1906   if (code() == lir_store_check) {
1907     array()->print(out);                 out->print(" ");
1908   }
1909   if (code() != lir_store_check) {
1910     klass()->print_name_on(out);         out->print(" ");
1911     if (fast_check())                 out->print("fast_check ");
1912   }
1913   tmp1()->print(out);                    out->print(" ");
1914   tmp2()->print(out);                    out->print(" ");
1915   tmp3()->print(out);                    out->print(" ");
1916   result_opr()->print(out);              out->print(" ");
1917   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
1918 }
1919 
1920 
1921 // LIR_Op3
1922 void LIR_Op3::print_instr(outputStream* out) const {
1923   in_opr1()->print(out);    out->print(" ");
1924   in_opr2()->print(out);    out->print(" ");
1925   in_opr3()->print(out);    out->print(" ");
1926   result_opr()->print(out);
1927 }
1928 
1929 
1930 void LIR_OpLock::print_instr(outputStream* out) const {
1931   hdr_opr()->print(out);   out->print(" ");
1932   obj_opr()->print(out);   out->print(" ");
1933   lock_opr()->print(out);  out->print(" ");
1934   if (_scratch->is_valid()) {
1935     _scratch->print(out);  out->print(" ");
1936   }
1937   out->print("[lbl:0x%x]", stub()->entry());
1938 }
1939 
1940 
1941 void LIR_OpDelay::print_instr(outputStream* out) const {
1942   _op->print_on(out);
1943 }
1944 
1945 
1946 // LIR_OpProfileCall
1947 void LIR_OpProfileCall::print_instr(outputStream* out) const {
1948   profiled_method()->name()->print_symbol_on(out);
1949   out->print(".");
1950   profiled_method()->holder()->name()->print_symbol_on(out);
1951   out->print(" @ %d ", profiled_bci());
1952   mdo()->print(out);           out->print(" ");
1953   recv()->print(out);          out->print(" ");
1954   tmp1()->print(out);          out->print(" ");
1955 }
1956 
1957 #endif // PRODUCT
1958 
1959 // Implementation of LIR_InsertionBuffer
1960 
1961 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
1962   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
1963 
1964   int i = number_of_insertion_points() - 1;
1965   if (i < 0 || index_at(i) < index) {
1966     append_new(index, 1);
1967   } else {
1968     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
1969     assert(count_at(i) > 0, "check");
1970     set_count_at(i, count_at(i) + 1);
1971   }
1972   _ops.push(op);
1973 
1974   DEBUG_ONLY(verify());
1975 }
1976 
1977 #ifdef ASSERT
1978 void LIR_InsertionBuffer::verify() {
1979   int sum = 0;
1980   int prev_idx = -1;
1981 
1982   for (int i = 0; i < number_of_insertion_points(); i++) {
1983     assert(prev_idx < index_at(i), "index must be ordered ascending");
1984     sum += count_at(i);
1985   }
1986   assert(sum == number_of_ops(), "wrong total sum");
1987 }
1988 #endif