1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/bytecodeStream.hpp"
  27 #include "oops/generateOopMap.hpp"
  28 #include "oops/oop.inline.hpp"
  29 #include "oops/symbol.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/java.hpp"
  32 #include "runtime/relocator.hpp"
  33 #include "utilities/bitMap.inline.hpp"
  34 
  35 //
  36 //
  37 // Compute stack layouts for each instruction in method.
  38 //
  39 //  Problems:
  40 //  - What to do about jsr with different types of local vars?
  41 //  Need maps that are conditional on jsr path?
  42 //  - Jsr and exceptions should be done more efficiently (the retAddr stuff)
  43 //
  44 //  Alternative:
  45 //  - Could extend verifier to provide this information.
  46 //    For: one fewer abstract interpreter to maintain. Against: the verifier
  47 //    solves a bigger problem so slower (undesirable to force verification of
  48 //    everything?).
  49 //
  50 //  Algorithm:
  51 //    Partition bytecodes into basic blocks
  52 //    For each basic block: store entry state (vars, stack). For instructions
  53 //    inside basic blocks we do not store any state (instead we recompute it
  54 //    from state produced by previous instruction).
  55 //
  56 //    Perform abstract interpretation of bytecodes over this lattice:
  57 //
  58 //                _--'#'--_
  59 //               /  /  \   \
  60 //             /   /     \   \
  61 //            /    |     |     \
  62 //          'r'   'v'   'p'   ' '
  63 //           \     |     |     /
  64 //            \    \     /    /
  65 //              \   \   /    /
  66 //                -- '@' --
  67 //
  68 //    '#'  top, result of conflict merge
  69 //    'r'  reference type
  70 //    'v'  value type
  71 //    'p'  pc type for jsr/ret
  72 //    ' '  uninitialized; never occurs on operand stack in Java
  73 //    '@'  bottom/unexecuted; initial state each bytecode.
  74 //
  75 //    Basic block headers are the only merge points. We use this iteration to
  76 //    compute the information:
  77 //
  78 //    find basic blocks;
  79 //    initialize them with uninitialized state;
  80 //    initialize first BB according to method signature;
  81 //    mark first BB changed
  82 //    while (some BB is changed) do {
  83 //      perform abstract interpration of all bytecodes in BB;
  84 //      merge exit state of BB into entry state of all successor BBs,
  85 //      noting if any of these change;
  86 //    }
  87 //
  88 //  One additional complication is necessary. The jsr instruction pushes
  89 //  a return PC on the stack (a 'p' type in the abstract interpretation).
  90 //  To be able to process "ret" bytecodes, we keep track of these return
  91 //  PC's in a 'retAddrs' structure in abstract interpreter context (when
  92 //  processing a "ret" bytecodes, it is not sufficient to know that it gets
  93 //  an argument of the right type 'p'; we need to know which address it
  94 //  returns to).
  95 //
  96 // (Note this comment is borrowed form the original author of the algorithm)
  97 
  98 // ComputeCallStack
  99 //
 100 // Specialization of SignatureIterator - compute the effects of a call
 101 //
 102 class ComputeCallStack : public SignatureIterator {
 103   CellTypeState *_effect;
 104   int _idx;
 105 
 106   void setup();
 107   void set(CellTypeState state)         { _effect[_idx++] = state; }
 108   int  length()                         { return _idx; };
 109 
 110   virtual void do_bool  ()              { set(CellTypeState::value); };
 111   virtual void do_char  ()              { set(CellTypeState::value); };
 112   virtual void do_float ()              { set(CellTypeState::value); };
 113   virtual void do_byte  ()              { set(CellTypeState::value); };
 114   virtual void do_short ()              { set(CellTypeState::value); };
 115   virtual void do_int   ()              { set(CellTypeState::value); };
 116   virtual void do_void  ()              { set(CellTypeState::bottom);};
 117   virtual void do_object(int begin, int end)  { set(CellTypeState::ref); };
 118   virtual void do_array (int begin, int end)  { set(CellTypeState::ref); };
 119 
 120   void do_double()                      { set(CellTypeState::value);
 121                                           set(CellTypeState::value); }
 122   void do_long  ()                      { set(CellTypeState::value);
 123                                            set(CellTypeState::value); }
 124 
 125 public:
 126   ComputeCallStack(Symbol* signature) : SignatureIterator(signature) {};
 127 
 128   // Compute methods
 129   int compute_for_parameters(bool is_static, CellTypeState *effect) {
 130     _idx    = 0;
 131     _effect = effect;
 132 
 133     if (!is_static)
 134       effect[_idx++] = CellTypeState::ref;
 135 
 136     iterate_parameters();
 137 
 138     return length();
 139   };
 140 
 141   int compute_for_returntype(CellTypeState *effect) {
 142     _idx    = 0;
 143     _effect = effect;
 144     iterate_returntype();
 145     set(CellTypeState::bottom);  // Always terminate with a bottom state, so ppush works
 146 
 147     return length();
 148   }
 149 };
 150 
 151 //=========================================================================================
 152 // ComputeEntryStack
 153 //
 154 // Specialization of SignatureIterator - in order to set up first stack frame
 155 //
 156 class ComputeEntryStack : public SignatureIterator {
 157   CellTypeState *_effect;
 158   int _idx;
 159 
 160   void setup();
 161   void set(CellTypeState state)         { _effect[_idx++] = state; }
 162   int  length()                         { return _idx; };
 163 
 164   virtual void do_bool  ()              { set(CellTypeState::value); };
 165   virtual void do_char  ()              { set(CellTypeState::value); };
 166   virtual void do_float ()              { set(CellTypeState::value); };
 167   virtual void do_byte  ()              { set(CellTypeState::value); };
 168   virtual void do_short ()              { set(CellTypeState::value); };
 169   virtual void do_int   ()              { set(CellTypeState::value); };
 170   virtual void do_void  ()              { set(CellTypeState::bottom);};
 171   virtual void do_object(int begin, int end)  { set(CellTypeState::make_slot_ref(_idx)); }
 172   virtual void do_array (int begin, int end)  { set(CellTypeState::make_slot_ref(_idx)); }
 173 
 174   void do_double()                      { set(CellTypeState::value);
 175                                           set(CellTypeState::value); }
 176   void do_long  ()                      { set(CellTypeState::value);
 177                                           set(CellTypeState::value); }
 178 
 179 public:
 180   ComputeEntryStack(Symbol* signature) : SignatureIterator(signature) {};
 181 
 182   // Compute methods
 183   int compute_for_parameters(bool is_static, CellTypeState *effect) {
 184     _idx    = 0;
 185     _effect = effect;
 186 
 187     if (!is_static)
 188       effect[_idx++] = CellTypeState::make_slot_ref(0);
 189 
 190     iterate_parameters();
 191 
 192     return length();
 193   };
 194 
 195   int compute_for_returntype(CellTypeState *effect) {
 196     _idx    = 0;
 197     _effect = effect;
 198     iterate_returntype();
 199     set(CellTypeState::bottom);  // Always terminate with a bottom state, so ppush works
 200 
 201     return length();
 202   }
 203 };
 204 
 205 //=====================================================================================
 206 //
 207 // Implementation of RetTable/RetTableEntry
 208 //
 209 // Contains function to itereate through all bytecodes
 210 // and find all return entry points
 211 //
 212 int RetTable::_init_nof_entries = 10;
 213 int RetTableEntry::_init_nof_jsrs = 5;
 214 
 215 void RetTableEntry::add_delta(int bci, int delta) {
 216   if (_target_bci > bci) _target_bci += delta;
 217 
 218   for (int k = 0; k < _jsrs->length(); k++) {
 219     int jsr = _jsrs->at(k);
 220     if (jsr > bci) _jsrs->at_put(k, jsr+delta);
 221   }
 222 }
 223 
 224 void RetTable::compute_ret_table(methodHandle method) {
 225   BytecodeStream i(method);
 226   Bytecodes::Code bytecode;
 227 
 228   while( (bytecode = i.next()) >= 0) {
 229     switch (bytecode) {
 230       case Bytecodes::_jsr:
 231         add_jsr(i.next_bci(), i.dest());
 232         break;
 233       case Bytecodes::_jsr_w:
 234         add_jsr(i.next_bci(), i.dest_w());
 235         break;
 236     }
 237   }
 238 }
 239 
 240 void RetTable::add_jsr(int return_bci, int target_bci) {
 241   RetTableEntry* entry = _first;
 242 
 243   // Scan table for entry
 244   for (;entry && entry->target_bci() != target_bci; entry = entry->next());
 245 
 246   if (!entry) {
 247     // Allocate new entry and put in list
 248     entry = new RetTableEntry(target_bci, _first);
 249     _first = entry;
 250   }
 251 
 252   // Now "entry" is set.  Make sure that the entry is initialized
 253   // and has room for the new jsr.
 254   entry->add_jsr(return_bci);
 255 }
 256 
 257 RetTableEntry* RetTable::find_jsrs_for_target(int targBci) {
 258   RetTableEntry *cur = _first;
 259 
 260   while(cur) {
 261     assert(cur->target_bci() != -1, "sanity check");
 262     if (cur->target_bci() == targBci)  return cur;
 263     cur = cur->next();
 264   }
 265   ShouldNotReachHere();
 266   return NULL;
 267 }
 268 
 269 // The instruction at bci is changing size by "delta".  Update the return map.
 270 void RetTable::update_ret_table(int bci, int delta) {
 271   RetTableEntry *cur = _first;
 272   while(cur) {
 273     cur->add_delta(bci, delta);
 274     cur = cur->next();
 275   }
 276 }
 277 
 278 //
 279 // Celltype state
 280 //
 281 
 282 CellTypeState CellTypeState::bottom      = CellTypeState::make_bottom();
 283 CellTypeState CellTypeState::uninit      = CellTypeState::make_any(uninit_value);
 284 CellTypeState CellTypeState::ref         = CellTypeState::make_any(ref_conflict);
 285 CellTypeState CellTypeState::value       = CellTypeState::make_any(val_value);
 286 CellTypeState CellTypeState::refUninit   = CellTypeState::make_any(ref_conflict | uninit_value);
 287 CellTypeState CellTypeState::top         = CellTypeState::make_top();
 288 CellTypeState CellTypeState::addr        = CellTypeState::make_any(addr_conflict);
 289 
 290 // Commonly used constants
 291 static CellTypeState epsilonCTS[1] = { CellTypeState::bottom };
 292 static CellTypeState   refCTS   = CellTypeState::ref;
 293 static CellTypeState   valCTS   = CellTypeState::value;
 294 static CellTypeState    vCTS[2] = { CellTypeState::value, CellTypeState::bottom };
 295 static CellTypeState    rCTS[2] = { CellTypeState::ref,   CellTypeState::bottom };
 296 static CellTypeState   rrCTS[3] = { CellTypeState::ref,   CellTypeState::ref,   CellTypeState::bottom };
 297 static CellTypeState   vrCTS[3] = { CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
 298 static CellTypeState   vvCTS[3] = { CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
 299 static CellTypeState  rvrCTS[4] = { CellTypeState::ref,   CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
 300 static CellTypeState  vvrCTS[4] = { CellTypeState::value, CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
 301 static CellTypeState  vvvCTS[4] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
 302 static CellTypeState vvvrCTS[5] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
 303 static CellTypeState vvvvCTS[5] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
 304 
 305 char CellTypeState::to_char() const {
 306   if (can_be_reference()) {
 307     if (can_be_value() || can_be_address())
 308       return '#';    // Conflict that needs to be rewritten
 309     else
 310       return 'r';
 311   } else if (can_be_value())
 312     return 'v';
 313   else if (can_be_address())
 314     return 'p';
 315   else if (can_be_uninit())
 316     return ' ';
 317   else
 318     return '@';
 319 }
 320 
 321 
 322 // Print a detailed CellTypeState.  Indicate all bits that are set.  If
 323 // the CellTypeState represents an address or a reference, print the
 324 // value of the additional information.
 325 void CellTypeState::print(outputStream *os) {
 326   if (can_be_address()) {
 327     os->print("(p");
 328   } else {
 329     os->print("( ");
 330   }
 331   if (can_be_reference()) {
 332     os->print("r");
 333   } else {
 334     os->print(" ");
 335   }
 336   if (can_be_value()) {
 337     os->print("v");
 338   } else {
 339     os->print(" ");
 340   }
 341   if (can_be_uninit()) {
 342     os->print("u|");
 343   } else {
 344     os->print(" |");
 345   }
 346   if (is_info_top()) {
 347     os->print("Top)");
 348   } else if (is_info_bottom()) {
 349     os->print("Bot)");
 350   } else {
 351     if (is_reference()) {
 352       int info = get_info();
 353       int data = info & ~(ref_not_lock_bit | ref_slot_bit);
 354       if (info & ref_not_lock_bit) {
 355         // Not a monitor lock reference.
 356         if (info & ref_slot_bit) {
 357           // slot
 358           os->print("slot%d)", data);
 359         } else {
 360           // line
 361           os->print("line%d)", data);
 362         }
 363       } else {
 364         // lock
 365         os->print("lock%d)", data);
 366       }
 367     } else {
 368       os->print("%d)", get_info());
 369     }
 370   }
 371 }
 372 
 373 //
 374 // Basicblock handling methods
 375 //
 376 
 377 void GenerateOopMap ::initialize_bb() {
 378   _gc_points = 0;
 379   _bb_count  = 0;
 380   _bb_hdr_bits.clear();
 381   _bb_hdr_bits.resize(method()->code_size());
 382 }
 383 
 384 void GenerateOopMap::bb_mark_fct(GenerateOopMap *c, int bci, int *data) {
 385   assert(bci>= 0 && bci < c->method()->code_size(), "index out of bounds");
 386   if (c->is_bb_header(bci))
 387      return;
 388 
 389   if (TraceNewOopMapGeneration) {
 390      tty->print_cr("Basicblock#%d begins at: %d", c->_bb_count, bci);
 391   }
 392   c->set_bbmark_bit(bci);
 393   c->_bb_count++;
 394 }
 395 
 396 
 397 void GenerateOopMap::mark_bbheaders_and_count_gc_points() {
 398   initialize_bb();
 399 
 400   bool fellThrough = false;  // False to get first BB marked.
 401 
 402   // First mark all exception handlers as start of a basic-block
 403   typeArrayOop excps = method()->exception_table();
 404   for(int i = 0; i < excps->length(); i += 4) {
 405     int handler_pc_idx = i+2;
 406     bb_mark_fct(this, excps->int_at(handler_pc_idx), NULL);
 407   }
 408 
 409   // Then iterate through the code
 410   BytecodeStream bcs(_method);
 411   Bytecodes::Code bytecode;
 412 
 413   while( (bytecode = bcs.next()) >= 0) {
 414     int bci = bcs.bci();
 415 
 416     if (!fellThrough)
 417         bb_mark_fct(this, bci, NULL);
 418 
 419     fellThrough = jump_targets_do(&bcs, &GenerateOopMap::bb_mark_fct, NULL);
 420 
 421      /* We will also mark successors of jsr's as basic block headers. */
 422     switch (bytecode) {
 423       case Bytecodes::_jsr:
 424         assert(!fellThrough, "should not happen");
 425         bb_mark_fct(this, bci + Bytecodes::length_for(bytecode), NULL);
 426         break;
 427       case Bytecodes::_jsr_w:
 428         assert(!fellThrough, "should not happen");
 429         bb_mark_fct(this, bci + Bytecodes::length_for(bytecode), NULL);
 430         break;
 431     }
 432 
 433     if (possible_gc_point(&bcs))
 434       _gc_points++;
 435   }
 436 }
 437 
 438 void GenerateOopMap::reachable_basicblock(GenerateOopMap *c, int bci, int *data) {
 439   assert(bci>= 0 && bci < c->method()->code_size(), "index out of bounds");
 440   BasicBlock* bb = c->get_basic_block_at(bci);
 441   if (bb->is_dead()) {
 442     bb->mark_as_alive();
 443     *data = 1; // Mark basicblock as changed
 444   }
 445 }
 446 
 447 
 448 void GenerateOopMap::mark_reachable_code() {
 449   int change = 1; // int to get function pointers to work
 450 
 451   // Mark entry basic block as alive and all exception handlers
 452   _basic_blocks[0].mark_as_alive();
 453   typeArrayOop excps = method()->exception_table();
 454   for(int i = 0; i < excps->length(); i += 4) {
 455     int handler_pc_idx = i+2;
 456     BasicBlock *bb = get_basic_block_at(excps->int_at(handler_pc_idx));
 457     // If block is not already alive (due to multiple exception handlers to same bb), then
 458     // make it alive
 459     if (bb->is_dead()) bb->mark_as_alive();
 460   }
 461 
 462   BytecodeStream bcs(_method);
 463 
 464   // Iterate through all basic blocks until we reach a fixpoint
 465   while (change) {
 466     change = 0;
 467 
 468     for (int i = 0; i < _bb_count; i++) {
 469       BasicBlock *bb = &_basic_blocks[i];
 470       if (bb->is_alive()) {
 471         // Position bytecodestream at last bytecode in basicblock
 472         bcs.set_start(bb->_end_bci);
 473         bcs.next();
 474         Bytecodes::Code bytecode = bcs.code();
 475         int bci = bcs.bci();
 476         assert(bci == bb->_end_bci, "wrong bci");
 477 
 478         bool fell_through = jump_targets_do(&bcs, &GenerateOopMap::reachable_basicblock, &change);
 479 
 480         // We will also mark successors of jsr's as alive.
 481         switch (bytecode) {
 482           case Bytecodes::_jsr:
 483           case Bytecodes::_jsr_w:
 484             assert(!fell_through, "should not happen");
 485             reachable_basicblock(this, bci + Bytecodes::length_for(bytecode), &change);
 486             break;
 487         }
 488         if (fell_through) {
 489           // Mark successor as alive
 490           if (bb[1].is_dead()) {
 491             bb[1].mark_as_alive();
 492             change = 1;
 493           }
 494         }
 495       }
 496     }
 497   }
 498 }
 499 
 500 /* If the current instruction in "c" has no effect on control flow,
 501    returns "true".  Otherwise, calls "jmpFct" one or more times, with
 502    "c", an appropriate "pcDelta", and "data" as arguments, then
 503    returns "false".  There is one exception: if the current
 504    instruction is a "ret", returns "false" without calling "jmpFct".
 505    Arrangements for tracking the control flow of a "ret" must be made
 506    externally. */
 507 bool GenerateOopMap::jump_targets_do(BytecodeStream *bcs, jmpFct_t jmpFct, int *data) {
 508   int bci = bcs->bci();
 509 
 510   switch (bcs->code()) {
 511     case Bytecodes::_ifeq:
 512     case Bytecodes::_ifne:
 513     case Bytecodes::_iflt:
 514     case Bytecodes::_ifge:
 515     case Bytecodes::_ifgt:
 516     case Bytecodes::_ifle:
 517     case Bytecodes::_if_icmpeq:
 518     case Bytecodes::_if_icmpne:
 519     case Bytecodes::_if_icmplt:
 520     case Bytecodes::_if_icmpge:
 521     case Bytecodes::_if_icmpgt:
 522     case Bytecodes::_if_icmple:
 523     case Bytecodes::_if_acmpeq:
 524     case Bytecodes::_if_acmpne:
 525     case Bytecodes::_ifnull:
 526     case Bytecodes::_ifnonnull:
 527       (*jmpFct)(this, bcs->dest(), data);
 528       (*jmpFct)(this, bci + 3, data);
 529       break;
 530 
 531     case Bytecodes::_goto:
 532       (*jmpFct)(this, bcs->dest(), data);
 533       break;
 534     case Bytecodes::_goto_w:
 535       (*jmpFct)(this, bcs->dest_w(), data);
 536       break;
 537     case Bytecodes::_tableswitch:
 538       { Bytecode_tableswitch tableswitch(method(), bcs->bcp());
 539         int len = tableswitch.length();
 540 
 541         (*jmpFct)(this, bci + tableswitch.default_offset(), data); /* Default. jump address */
 542         while (--len >= 0) {
 543           (*jmpFct)(this, bci + tableswitch.dest_offset_at(len), data);
 544         }
 545         break;
 546       }
 547 
 548     case Bytecodes::_lookupswitch:
 549       { Bytecode_lookupswitch lookupswitch(method(), bcs->bcp());
 550         int npairs = lookupswitch.number_of_pairs();
 551         (*jmpFct)(this, bci + lookupswitch.default_offset(), data); /* Default. */
 552         while(--npairs >= 0) {
 553           LookupswitchPair pair = lookupswitch.pair_at(npairs);
 554           (*jmpFct)(this, bci + pair.offset(), data);
 555         }
 556         break;
 557       }
 558     case Bytecodes::_jsr:
 559       assert(bcs->is_wide()==false, "sanity check");
 560       (*jmpFct)(this, bcs->dest(), data);
 561 
 562 
 563 
 564       break;
 565     case Bytecodes::_jsr_w:
 566       (*jmpFct)(this, bcs->dest_w(), data);
 567       break;
 568     case Bytecodes::_wide:
 569       ShouldNotReachHere();
 570       return true;
 571       break;
 572     case Bytecodes::_athrow:
 573     case Bytecodes::_ireturn:
 574     case Bytecodes::_lreturn:
 575     case Bytecodes::_freturn:
 576     case Bytecodes::_dreturn:
 577     case Bytecodes::_areturn:
 578     case Bytecodes::_return:
 579     case Bytecodes::_ret:
 580       break;
 581     default:
 582       return true;
 583   }
 584   return false;
 585 }
 586 
 587 /* Requires "pc" to be the head of a basic block; returns that basic
 588    block. */
 589 BasicBlock *GenerateOopMap::get_basic_block_at(int bci) const {
 590   BasicBlock* bb = get_basic_block_containing(bci);
 591   assert(bb->_bci == bci, "should have found BB");
 592   return bb;
 593 }
 594 
 595 // Requires "pc" to be the start of an instruction; returns the basic
 596 //   block containing that instruction. */
 597 BasicBlock  *GenerateOopMap::get_basic_block_containing(int bci) const {
 598   BasicBlock *bbs = _basic_blocks;
 599   int lo = 0, hi = _bb_count - 1;
 600 
 601   while (lo <= hi) {
 602     int m = (lo + hi) / 2;
 603     int mbci = bbs[m]._bci;
 604     int nbci;
 605 
 606     if ( m == _bb_count-1) {
 607       assert( bci >= mbci && bci < method()->code_size(), "sanity check failed");
 608       return bbs+m;
 609     } else {
 610       nbci = bbs[m+1]._bci;
 611     }
 612 
 613     if ( mbci <= bci && bci < nbci) {
 614       return bbs+m;
 615     } else if (mbci < bci) {
 616       lo = m + 1;
 617     } else {
 618       assert(mbci > bci, "sanity check");
 619       hi = m - 1;
 620     }
 621   }
 622 
 623   fatal("should have found BB");
 624   return NULL;
 625 }
 626 
 627 void GenerateOopMap::restore_state(BasicBlock *bb)
 628 {
 629   memcpy(_state, bb->_state, _state_len*sizeof(CellTypeState));
 630   _stack_top = bb->_stack_top;
 631   _monitor_top = bb->_monitor_top;
 632 }
 633 
 634 int GenerateOopMap::next_bb_start_pc(BasicBlock *bb) {
 635  int bbNum = bb - _basic_blocks + 1;
 636  if (bbNum == _bb_count)
 637     return method()->code_size();
 638 
 639  return _basic_blocks[bbNum]._bci;
 640 }
 641 
 642 //
 643 // CellType handling methods
 644 //
 645 
 646 void GenerateOopMap::init_state() {
 647   _state_len     = _max_locals + _max_stack + _max_monitors;
 648   _state         = NEW_RESOURCE_ARRAY(CellTypeState, _state_len);
 649   memset(_state, 0, _state_len * sizeof(CellTypeState));
 650   _state_vec_buf = NEW_RESOURCE_ARRAY(char, MAX3(_max_locals, _max_stack, _max_monitors) + 1/*for null terminator char */);
 651 }
 652 
 653 void GenerateOopMap::make_context_uninitialized() {
 654   CellTypeState* vs = vars();
 655 
 656   for (int i = 0; i < _max_locals; i++)
 657       vs[i] = CellTypeState::uninit;
 658 
 659   _stack_top = 0;
 660   _monitor_top = 0;
 661 }
 662 
 663 int GenerateOopMap::methodsig_to_effect(Symbol* signature, bool is_static, CellTypeState* effect) {
 664   ComputeEntryStack ces(signature);
 665   return ces.compute_for_parameters(is_static, effect);
 666 }
 667 
 668 // Return result of merging cts1 and cts2.
 669 CellTypeState CellTypeState::merge(CellTypeState cts, int slot) const {
 670   CellTypeState result;
 671 
 672   assert(!is_bottom() && !cts.is_bottom(),
 673          "merge of bottom values is handled elsewhere");
 674 
 675   result._state = _state | cts._state;
 676 
 677   // If the top bit is set, we don't need to do any more work.
 678   if (!result.is_info_top()) {
 679     assert((result.can_be_address() || result.can_be_reference()),
 680            "only addresses and references have non-top info");
 681 
 682     if (!equal(cts)) {
 683       // The two values being merged are different.  Raise to top.
 684       if (result.is_reference()) {
 685         result = CellTypeState::make_slot_ref(slot);
 686       } else {
 687         result._state |= info_conflict;
 688       }
 689     }
 690   }
 691   assert(result.is_valid_state(), "checking that CTS merge maintains legal state");
 692 
 693   return result;
 694 }
 695 
 696 // Merge the variable state for locals and stack from cts into bbts.
 697 bool GenerateOopMap::merge_local_state_vectors(CellTypeState* cts,
 698                                                CellTypeState* bbts) {
 699   int i;
 700   int len = _max_locals + _stack_top;
 701   bool change = false;
 702 
 703   for (i = len - 1; i >= 0; i--) {
 704     CellTypeState v = cts[i].merge(bbts[i], i);
 705     change = change || !v.equal(bbts[i]);
 706     bbts[i] = v;
 707   }
 708 
 709   return change;
 710 }
 711 
 712 // Merge the monitor stack state from cts into bbts.
 713 bool GenerateOopMap::merge_monitor_state_vectors(CellTypeState* cts,
 714                                                  CellTypeState* bbts) {
 715   bool change = false;
 716   if (_max_monitors > 0 && _monitor_top != bad_monitors) {
 717     // If there are no monitors in the program, or there has been
 718     // a monitor matching error before this point in the program,
 719     // then we do not merge in the monitor state.
 720 
 721     int base = _max_locals + _max_stack;
 722     int len = base + _monitor_top;
 723     for (int i = len - 1; i >= base; i--) {
 724       CellTypeState v = cts[i].merge(bbts[i], i);
 725 
 726       // Can we prove that, when there has been a change, it will already
 727       // have been detected at this point?  That would make this equal
 728       // check here unnecessary.
 729       change = change || !v.equal(bbts[i]);
 730       bbts[i] = v;
 731     }
 732   }
 733 
 734   return change;
 735 }
 736 
 737 void GenerateOopMap::copy_state(CellTypeState *dst, CellTypeState *src) {
 738   int len = _max_locals + _stack_top;
 739   for (int i = 0; i < len; i++) {
 740     if (src[i].is_nonlock_reference()) {
 741       dst[i] = CellTypeState::make_slot_ref(i);
 742     } else {
 743       dst[i] = src[i];
 744     }
 745   }
 746   if (_max_monitors > 0 && _monitor_top != bad_monitors) {
 747     int base = _max_locals + _max_stack;
 748     len = base + _monitor_top;
 749     for (int i = base; i < len; i++) {
 750       dst[i] = src[i];
 751     }
 752   }
 753 }
 754 
 755 
 756 // Merge the states for the current block and the next.  As long as a
 757 // block is reachable the locals and stack must be merged.  If the
 758 // stack heights don't match then this is a verification error and
 759 // it's impossible to interpret the code.  Simultaneously monitor
 760 // states are being check to see if they nest statically.  If monitor
 761 // depths match up then their states are merged.  Otherwise the
 762 // mismatch is simply recorded and interpretation continues since
 763 // monitor matching is purely informational and doesn't say anything
 764 // about the correctness of the code.
 765 void GenerateOopMap::merge_state_into_bb(BasicBlock *bb) {
 766   assert(bb->is_alive(), "merging state into a dead basicblock");
 767 
 768   if (_stack_top == bb->_stack_top) {
 769     // always merge local state even if monitors don't match.
 770     if (merge_local_state_vectors(_state, bb->_state)) {
 771       bb->set_changed(true);
 772     }
 773     if (_monitor_top == bb->_monitor_top) {
 774       // monitors still match so continue merging monitor states.
 775       if (merge_monitor_state_vectors(_state, bb->_state)) {
 776         bb->set_changed(true);
 777       }
 778     } else {
 779       if (TraceMonitorMismatch) {
 780         report_monitor_mismatch("monitor stack height merge conflict");
 781       }
 782       // When the monitor stacks are not matched, we set _monitor_top to
 783       // bad_monitors.  This signals that, from here on, the monitor stack cannot
 784       // be trusted.  In particular, monitorexit bytecodes may throw
 785       // exceptions.  We mark this block as changed so that the change
 786       // propagates properly.
 787       bb->_monitor_top = bad_monitors;
 788       bb->set_changed(true);
 789       _monitor_safe = false;
 790     }
 791   } else if (!bb->is_reachable()) {
 792     // First time we look at this  BB
 793     copy_state(bb->_state, _state);
 794     bb->_stack_top = _stack_top;
 795     bb->_monitor_top = _monitor_top;
 796     bb->set_changed(true);
 797   } else {
 798     verify_error("stack height conflict: %d vs. %d",  _stack_top, bb->_stack_top);
 799   }
 800 }
 801 
 802 void GenerateOopMap::merge_state(GenerateOopMap *gom, int bci, int* data) {
 803    gom->merge_state_into_bb(gom->get_basic_block_at(bci));
 804 }
 805 
 806 void GenerateOopMap::set_var(int localNo, CellTypeState cts) {
 807   assert(cts.is_reference() || cts.is_value() || cts.is_address(),
 808          "wrong celltypestate");
 809   if (localNo < 0 || localNo > _max_locals) {
 810     verify_error("variable write error: r%d", localNo);
 811     return;
 812   }
 813   vars()[localNo] = cts;
 814 }
 815 
 816 CellTypeState GenerateOopMap::get_var(int localNo) {
 817   assert(localNo < _max_locals + _nof_refval_conflicts, "variable read error");
 818   if (localNo < 0 || localNo > _max_locals) {
 819     verify_error("variable read error: r%d", localNo);
 820     return valCTS; // just to pick something;
 821   }
 822   return vars()[localNo];
 823 }
 824 
 825 CellTypeState GenerateOopMap::pop() {
 826   if ( _stack_top <= 0) {
 827     verify_error("stack underflow");
 828     return valCTS; // just to pick something
 829   }
 830   return  stack()[--_stack_top];
 831 }
 832 
 833 void GenerateOopMap::push(CellTypeState cts) {
 834   if ( _stack_top >= _max_stack) {
 835     verify_error("stack overflow");
 836     return;
 837   }
 838   stack()[_stack_top++] = cts;
 839 }
 840 
 841 CellTypeState GenerateOopMap::monitor_pop() {
 842   assert(_monitor_top != bad_monitors, "monitor_pop called on error monitor stack");
 843   if (_monitor_top == 0) {
 844     // We have detected a pop of an empty monitor stack.
 845     _monitor_safe = false;
 846      _monitor_top = bad_monitors;
 847 
 848     if (TraceMonitorMismatch) {
 849       report_monitor_mismatch("monitor stack underflow");
 850     }
 851     return CellTypeState::ref; // just to keep the analysis going.
 852   }
 853   return  monitors()[--_monitor_top];
 854 }
 855 
 856 void GenerateOopMap::monitor_push(CellTypeState cts) {
 857   assert(_monitor_top != bad_monitors, "monitor_push called on error monitor stack");
 858   if (_monitor_top >= _max_monitors) {
 859     // Some monitorenter is being executed more than once.
 860     // This means that the monitor stack cannot be simulated.
 861     _monitor_safe = false;
 862     _monitor_top = bad_monitors;
 863 
 864     if (TraceMonitorMismatch) {
 865       report_monitor_mismatch("monitor stack overflow");
 866     }
 867     return;
 868   }
 869   monitors()[_monitor_top++] = cts;
 870 }
 871 
 872 //
 873 // Interpretation handling methods
 874 //
 875 
 876 void GenerateOopMap::do_interpretation()
 877 {
 878   // "i" is just for debugging, so we can detect cases where this loop is
 879   // iterated more than once.
 880   int i = 0;
 881   do {
 882 #ifndef PRODUCT
 883     if (TraceNewOopMapGeneration) {
 884       tty->print("\n\nIteration #%d of do_interpretation loop, method:\n", i);
 885       method()->print_name(tty);
 886       tty->print("\n\n");
 887     }
 888 #endif
 889     _conflict = false;
 890     _monitor_safe = true;
 891     // init_state is now called from init_basic_blocks.  The length of a
 892     // state vector cannot be determined until we have made a pass through
 893     // the bytecodes counting the possible monitor entries.
 894     if (!_got_error) init_basic_blocks();
 895     if (!_got_error) setup_method_entry_state();
 896     if (!_got_error) interp_all();
 897     if (!_got_error) rewrite_refval_conflicts();
 898     i++;
 899   } while (_conflict && !_got_error);
 900 }
 901 
 902 void GenerateOopMap::init_basic_blocks() {
 903   // Note: Could consider reserving only the needed space for each BB's state
 904   // (entry stack may not be of maximal height for every basic block).
 905   // But cumbersome since we don't know the stack heights yet.  (Nor the
 906   // monitor stack heights...)
 907 
 908   _basic_blocks = NEW_RESOURCE_ARRAY(BasicBlock, _bb_count);
 909 
 910   // Make a pass through the bytecodes.  Count the number of monitorenters.
 911   // This can be used an upper bound on the monitor stack depth in programs
 912   // which obey stack discipline with their monitor usage.  Initialize the
 913   // known information about basic blocks.
 914   BytecodeStream j(_method);
 915   Bytecodes::Code bytecode;
 916 
 917   int bbNo = 0;
 918   int monitor_count = 0;
 919   int prev_bci = -1;
 920   while( (bytecode = j.next()) >= 0) {
 921     if (j.code() == Bytecodes::_monitorenter) {
 922       monitor_count++;
 923     }
 924 
 925     int bci = j.bci();
 926     if (is_bb_header(bci)) {
 927       // Initialize the basicblock structure
 928       BasicBlock *bb   = _basic_blocks + bbNo;
 929       bb->_bci         = bci;
 930       bb->_max_locals  = _max_locals;
 931       bb->_max_stack   = _max_stack;
 932       bb->set_changed(false);
 933       bb->_stack_top   = BasicBlock::_dead_basic_block; // Initialize all basicblocks are dead.
 934       bb->_monitor_top = bad_monitors;
 935 
 936       if (bbNo > 0) {
 937         _basic_blocks[bbNo - 1]._end_bci = prev_bci;
 938       }
 939 
 940       bbNo++;
 941     }
 942     // Remember prevous bci.
 943     prev_bci = bci;
 944   }
 945   // Set
 946   _basic_blocks[bbNo-1]._end_bci = prev_bci;
 947 
 948 
 949   // Check that the correct number of basicblocks was found
 950   if (bbNo !=_bb_count) {
 951     if (bbNo < _bb_count) {
 952       verify_error("jump into the middle of instruction?");
 953       return;
 954     } else {
 955       verify_error("extra basic blocks - should not happen?");
 956       return;
 957     }
 958   }
 959 
 960   _max_monitors = monitor_count;
 961 
 962   // Now that we have a bound on the depth of the monitor stack, we can
 963   // initialize the CellTypeState-related information.
 964   init_state();
 965 
 966   // We allocate space for all state-vectors for all basicblocks in one huge
 967   // chunk.  Then in the next part of the code, we set a pointer in each
 968   // _basic_block that points to each piece.
 969 
 970   // The product of bbNo and _state_len can get large if there are lots of
 971   // basic blocks and stack/locals/monitors.  Need to check to make sure
 972   // we don't overflow the capacity of a pointer.
 973   if ((unsigned)bbNo > UINTPTR_MAX / sizeof(CellTypeState) / _state_len) {
 974     report_error("The amount of memory required to analyze this method "
 975                  "exceeds addressable range");
 976     return;
 977   }
 978 
 979   CellTypeState *basicBlockState =
 980       NEW_RESOURCE_ARRAY(CellTypeState, bbNo * _state_len);
 981   memset(basicBlockState, 0, bbNo * _state_len * sizeof(CellTypeState));
 982 
 983   // Make a pass over the basicblocks and assign their state vectors.
 984   for (int blockNum=0; blockNum < bbNo; blockNum++) {
 985     BasicBlock *bb = _basic_blocks + blockNum;
 986     bb->_state = basicBlockState + blockNum * _state_len;
 987 
 988 #ifdef ASSERT
 989     if (blockNum + 1 < bbNo) {
 990       address bcp = _method->bcp_from(bb->_end_bci);
 991       int bc_len = Bytecodes::java_length_at(_method(), bcp);
 992       assert(bb->_end_bci + bc_len == bb[1]._bci, "unmatched bci info in basicblock");
 993     }
 994 #endif
 995   }
 996 #ifdef ASSERT
 997   { BasicBlock *bb = &_basic_blocks[bbNo-1];
 998     address bcp = _method->bcp_from(bb->_end_bci);
 999     int bc_len = Bytecodes::java_length_at(_method(), bcp);
1000     assert(bb->_end_bci + bc_len == _method->code_size(), "wrong end bci");
1001   }
1002 #endif
1003 
1004   // Mark all alive blocks
1005   mark_reachable_code();
1006 }
1007 
1008 void GenerateOopMap::setup_method_entry_state() {
1009 
1010     // Initialize all locals to 'uninit' and set stack-height to 0
1011     make_context_uninitialized();
1012 
1013     // Initialize CellState type of arguments
1014     methodsig_to_effect(method()->signature(), method()->is_static(), vars());
1015 
1016     // If some references must be pre-assigned to null, then set that up
1017     initialize_vars();
1018 
1019     // This is the start state
1020     merge_state_into_bb(&_basic_blocks[0]);
1021 
1022     assert(_basic_blocks[0].changed(), "we are not getting off the ground");
1023 }
1024 
1025 // The instruction at bci is changing size by "delta".  Update the basic blocks.
1026 void GenerateOopMap::update_basic_blocks(int bci, int delta,
1027                                          int new_method_size) {
1028   assert(new_method_size >= method()->code_size() + delta,
1029          "new method size is too small");
1030 
1031   BitMap::bm_word_t* new_bb_hdr_bits =
1032     NEW_RESOURCE_ARRAY(BitMap::bm_word_t,
1033                        BitMap::word_align_up(new_method_size));
1034   _bb_hdr_bits.set_map(new_bb_hdr_bits);
1035   _bb_hdr_bits.set_size(new_method_size);
1036   _bb_hdr_bits.clear();
1037 
1038 
1039   for(int k = 0; k < _bb_count; k++) {
1040     if (_basic_blocks[k]._bci > bci) {
1041       _basic_blocks[k]._bci     += delta;
1042       _basic_blocks[k]._end_bci += delta;
1043     }
1044     _bb_hdr_bits.at_put(_basic_blocks[k]._bci, true);
1045   }
1046 }
1047 
1048 //
1049 // Initvars handling
1050 //
1051 
1052 void GenerateOopMap::initialize_vars() {
1053   for (int k = 0; k < _init_vars->length(); k++)
1054     _state[_init_vars->at(k)] = CellTypeState::make_slot_ref(k);
1055 }
1056 
1057 void GenerateOopMap::add_to_ref_init_set(int localNo) {
1058 
1059   if (TraceNewOopMapGeneration)
1060     tty->print_cr("Added init vars: %d", localNo);
1061 
1062   // Is it already in the set?
1063   if (_init_vars->contains(localNo) )
1064     return;
1065 
1066    _init_vars->append(localNo);
1067 }
1068 
1069 //
1070 // Interpreration code
1071 //
1072 
1073 void GenerateOopMap::interp_all() {
1074   bool change = true;
1075 
1076   while (change && !_got_error) {
1077     change = false;
1078     for (int i = 0; i < _bb_count && !_got_error; i++) {
1079       BasicBlock *bb = &_basic_blocks[i];
1080       if (bb->changed()) {
1081          if (_got_error) return;
1082          change = true;
1083          bb->set_changed(false);
1084          interp_bb(bb);
1085       }
1086     }
1087   }
1088 }
1089 
1090 void GenerateOopMap::interp_bb(BasicBlock *bb) {
1091 
1092   // We do not want to do anything in case the basic-block has not been initialized. This
1093   // will happen in the case where there is dead-code hang around in a method.
1094   assert(bb->is_reachable(), "should be reachable or deadcode exist");
1095   restore_state(bb);
1096 
1097   BytecodeStream itr(_method);
1098 
1099   // Set iterator interval to be the current basicblock
1100   int lim_bci = next_bb_start_pc(bb);
1101   itr.set_interval(bb->_bci, lim_bci);
1102   assert(lim_bci != bb->_bci, "must be at least one instruction in a basicblock");
1103   itr.next(); // read first instruction
1104 
1105   // Iterates through all bytecodes except the last in a basic block.
1106   // We handle the last one special, since there is controlflow change.
1107   while(itr.next_bci() < lim_bci && !_got_error) {
1108     if (_has_exceptions || _monitor_top != 0) {
1109       // We do not need to interpret the results of exceptional
1110       // continuation from this instruction when the method has no
1111       // exception handlers and the monitor stack is currently
1112       // empty.
1113       do_exception_edge(&itr);
1114     }
1115     interp1(&itr);
1116     itr.next();
1117   }
1118 
1119   // Handle last instruction.
1120   if (!_got_error) {
1121     assert(itr.next_bci() == lim_bci, "must point to end");
1122     if (_has_exceptions || _monitor_top != 0) {
1123       do_exception_edge(&itr);
1124     }
1125     interp1(&itr);
1126 
1127     bool fall_through = jump_targets_do(&itr, GenerateOopMap::merge_state, NULL);
1128     if (_got_error)  return;
1129 
1130     if (itr.code() == Bytecodes::_ret) {
1131       assert(!fall_through, "cannot be set if ret instruction");
1132       // Automatically handles 'wide' ret indicies
1133       ret_jump_targets_do(&itr, GenerateOopMap::merge_state, itr.get_index(), NULL);
1134     } else if (fall_through) {
1135      // Hit end of BB, but the instr. was a fall-through instruction,
1136      // so perform transition as if the BB ended in a "jump".
1137      if (lim_bci != bb[1]._bci) {
1138        verify_error("bytecodes fell through last instruction");
1139        return;
1140      }
1141      merge_state_into_bb(bb + 1);
1142     }
1143   }
1144 }
1145 
1146 void GenerateOopMap::do_exception_edge(BytecodeStream* itr) {
1147   // Only check exception edge, if bytecode can trap
1148   if (!Bytecodes::can_trap(itr->code())) return;
1149   switch (itr->code()) {
1150     case Bytecodes::_aload_0:
1151       // These bytecodes can trap for rewriting.  We need to assume that
1152       // they do not throw exceptions to make the monitor analysis work.
1153       return;
1154 
1155     case Bytecodes::_ireturn:
1156     case Bytecodes::_lreturn:
1157     case Bytecodes::_freturn:
1158     case Bytecodes::_dreturn:
1159     case Bytecodes::_areturn:
1160     case Bytecodes::_return:
1161       // If the monitor stack height is not zero when we leave the method,
1162       // then we are either exiting with a non-empty stack or we have
1163       // found monitor trouble earlier in our analysis.  In either case,
1164       // assume an exception could be taken here.
1165       if (_monitor_top == 0) {
1166         return;
1167       }
1168       break;
1169 
1170     case Bytecodes::_monitorexit:
1171       // If the monitor stack height is bad_monitors, then we have detected a
1172       // monitor matching problem earlier in the analysis.  If the
1173       // monitor stack height is 0, we are about to pop a monitor
1174       // off of an empty stack.  In either case, the bytecode
1175       // could throw an exception.
1176       if (_monitor_top != bad_monitors && _monitor_top != 0) {
1177         return;
1178       }
1179       break;
1180   }
1181 
1182   if (_has_exceptions) {
1183     int bci = itr->bci();
1184     typeArrayOop exct  = method()->exception_table();
1185     for(int i = 0; i< exct->length(); i+=4) {
1186       int start_pc   = exct->int_at(i);
1187       int end_pc     = exct->int_at(i+1);
1188       int handler_pc = exct->int_at(i+2);
1189       int catch_type = exct->int_at(i+3);
1190 
1191       if (start_pc <= bci && bci < end_pc) {
1192         BasicBlock *excBB = get_basic_block_at(handler_pc);
1193         CellTypeState *excStk = excBB->stack();
1194         CellTypeState *cOpStck = stack();
1195         CellTypeState cOpStck_0 = cOpStck[0];
1196         int cOpStackTop = _stack_top;
1197 
1198         // Exception stacks are always the same.
1199         assert(method()->max_stack() > 0, "sanity check");
1200 
1201         // We remembered the size and first element of "cOpStck"
1202         // above; now we temporarily set them to the appropriate
1203         // values for an exception handler. */
1204         cOpStck[0] = CellTypeState::make_slot_ref(_max_locals);
1205         _stack_top = 1;
1206 
1207         merge_state_into_bb(excBB);
1208 
1209         // Now undo the temporary change.
1210         cOpStck[0] = cOpStck_0;
1211         _stack_top = cOpStackTop;
1212 
1213         // If this is a "catch all" handler, then we do not need to
1214         // consider any additional handlers.
1215         if (catch_type == 0) {
1216           return;
1217         }
1218       }
1219     }
1220   }
1221 
1222   // It is possible that none of the exception handlers would have caught
1223   // the exception.  In this case, we will exit the method.  We must
1224   // ensure that the monitor stack is empty in this case.
1225   if (_monitor_top == 0) {
1226     return;
1227   }
1228 
1229   // We pessimistically assume that this exception can escape the
1230   // method. (It is possible that it will always be caught, but
1231   // we don't care to analyse the types of the catch clauses.)
1232 
1233   // We don't set _monitor_top to bad_monitors because there are no successors
1234   // to this exceptional exit.
1235 
1236   if (TraceMonitorMismatch && _monitor_safe) {
1237     // We check _monitor_safe so that we only report the first mismatched
1238     // exceptional exit.
1239     report_monitor_mismatch("non-empty monitor stack at exceptional exit");
1240   }
1241   _monitor_safe = false;
1242 
1243 }
1244 
1245 void GenerateOopMap::report_monitor_mismatch(const char *msg) {
1246 #ifndef PRODUCT
1247   tty->print("    Monitor mismatch in method ");
1248   method()->print_short_name(tty);
1249   tty->print_cr(": %s", msg);
1250 #endif
1251 }
1252 
1253 void GenerateOopMap::print_states(outputStream *os,
1254                                   CellTypeState* vec, int num) {
1255   for (int i = 0; i < num; i++) {
1256     vec[i].print(tty);
1257   }
1258 }
1259 
1260 // Print the state values at the current bytecode.
1261 void GenerateOopMap::print_current_state(outputStream   *os,
1262                                          BytecodeStream *currentBC,
1263                                          bool            detailed) {
1264 
1265   if (detailed) {
1266     os->print("     %4d vars     = ", currentBC->bci());
1267     print_states(os, vars(), _max_locals);
1268     os->print("    %s", Bytecodes::name(currentBC->code()));
1269     switch(currentBC->code()) {
1270       case Bytecodes::_invokevirtual:
1271       case Bytecodes::_invokespecial:
1272       case Bytecodes::_invokestatic:
1273       case Bytecodes::_invokedynamic:
1274       case Bytecodes::_invokeinterface:
1275         int idx = currentBC->has_index_u4() ? currentBC->get_index_u4() : currentBC->get_index_u2_cpcache();
1276         constantPoolOop cp    = method()->constants();
1277         int nameAndTypeIdx    = cp->name_and_type_ref_index_at(idx);
1278         int signatureIdx      = cp->signature_ref_index_at(nameAndTypeIdx);
1279         Symbol* signature     = cp->symbol_at(signatureIdx);
1280         os->print("%s", signature->as_C_string());
1281     }
1282     os->cr();
1283     os->print("          stack    = ");
1284     print_states(os, stack(), _stack_top);
1285     os->cr();
1286     if (_monitor_top != bad_monitors) {
1287       os->print("          monitors = ");
1288       print_states(os, monitors(), _monitor_top);
1289     } else {
1290       os->print("          [bad monitor stack]");
1291     }
1292     os->cr();
1293   } else {
1294     os->print("    %4d  vars = '%s' ", currentBC->bci(),  state_vec_to_string(vars(), _max_locals));
1295     os->print("     stack = '%s' ", state_vec_to_string(stack(), _stack_top));
1296     if (_monitor_top != bad_monitors) {
1297       os->print("  monitors = '%s'  \t%s", state_vec_to_string(monitors(), _monitor_top), Bytecodes::name(currentBC->code()));
1298     } else {
1299       os->print("  [bad monitor stack]");
1300     }
1301     switch(currentBC->code()) {
1302       case Bytecodes::_invokevirtual:
1303       case Bytecodes::_invokespecial:
1304       case Bytecodes::_invokestatic:
1305       case Bytecodes::_invokedynamic:
1306       case Bytecodes::_invokeinterface:
1307         int idx = currentBC->has_index_u4() ? currentBC->get_index_u4() : currentBC->get_index_u2_cpcache();
1308         constantPoolOop cp    = method()->constants();
1309         int nameAndTypeIdx    = cp->name_and_type_ref_index_at(idx);
1310         int signatureIdx      = cp->signature_ref_index_at(nameAndTypeIdx);
1311         Symbol* signature     = cp->symbol_at(signatureIdx);
1312         os->print("%s", signature->as_C_string());
1313     }
1314     os->cr();
1315   }
1316 }
1317 
1318 // Sets the current state to be the state after executing the
1319 // current instruction, starting in the current state.
1320 void GenerateOopMap::interp1(BytecodeStream *itr) {
1321   if (TraceNewOopMapGeneration) {
1322     print_current_state(tty, itr, TraceNewOopMapGenerationDetailed);
1323   }
1324 
1325   // Should we report the results? Result is reported *before* the instruction at the current bci is executed.
1326   // However, not for calls. For calls we do not want to include the arguments, so we postpone the reporting until
1327   // they have been popped (in method ppl).
1328   if (_report_result == true) {
1329     switch(itr->code()) {
1330       case Bytecodes::_invokevirtual:
1331       case Bytecodes::_invokespecial:
1332       case Bytecodes::_invokestatic:
1333       case Bytecodes::_invokedynamic:
1334       case Bytecodes::_invokeinterface:
1335         _itr_send = itr;
1336         _report_result_for_send = true;
1337         break;
1338       default:
1339        fill_stackmap_for_opcodes(itr, vars(), stack(), _stack_top);
1340        break;
1341     }
1342   }
1343 
1344   // abstract interpretation of current opcode
1345   switch(itr->code()) {
1346     case Bytecodes::_nop:                                           break;
1347     case Bytecodes::_goto:                                          break;
1348     case Bytecodes::_goto_w:                                        break;
1349     case Bytecodes::_iinc:                                          break;
1350     case Bytecodes::_return:            do_return_monitor_check();
1351                                         break;
1352 
1353     case Bytecodes::_aconst_null:
1354     case Bytecodes::_new:               ppush1(CellTypeState::make_line_ref(itr->bci()));
1355                                         break;
1356 
1357     case Bytecodes::_iconst_m1:
1358     case Bytecodes::_iconst_0:
1359     case Bytecodes::_iconst_1:
1360     case Bytecodes::_iconst_2:
1361     case Bytecodes::_iconst_3:
1362     case Bytecodes::_iconst_4:
1363     case Bytecodes::_iconst_5:
1364     case Bytecodes::_fconst_0:
1365     case Bytecodes::_fconst_1:
1366     case Bytecodes::_fconst_2:
1367     case Bytecodes::_bipush:
1368     case Bytecodes::_sipush:            ppush1(valCTS);             break;
1369 
1370     case Bytecodes::_lconst_0:
1371     case Bytecodes::_lconst_1:
1372     case Bytecodes::_dconst_0:
1373     case Bytecodes::_dconst_1:          ppush(vvCTS);               break;
1374 
1375     case Bytecodes::_ldc2_w:            ppush(vvCTS);               break;
1376 
1377     case Bytecodes::_ldc:               // fall through:
1378     case Bytecodes::_ldc_w:             do_ldc(itr->bci());         break;
1379 
1380     case Bytecodes::_iload:
1381     case Bytecodes::_fload:             ppload(vCTS, itr->get_index()); break;
1382 
1383     case Bytecodes::_lload:
1384     case Bytecodes::_dload:             ppload(vvCTS,itr->get_index()); break;
1385 
1386     case Bytecodes::_aload:             ppload(rCTS, itr->get_index()); break;
1387 
1388     case Bytecodes::_iload_0:
1389     case Bytecodes::_fload_0:           ppload(vCTS, 0);            break;
1390     case Bytecodes::_iload_1:
1391     case Bytecodes::_fload_1:           ppload(vCTS, 1);            break;
1392     case Bytecodes::_iload_2:
1393     case Bytecodes::_fload_2:           ppload(vCTS, 2);            break;
1394     case Bytecodes::_iload_3:
1395     case Bytecodes::_fload_3:           ppload(vCTS, 3);            break;
1396 
1397     case Bytecodes::_lload_0:
1398     case Bytecodes::_dload_0:           ppload(vvCTS, 0);           break;
1399     case Bytecodes::_lload_1:
1400     case Bytecodes::_dload_1:           ppload(vvCTS, 1);           break;
1401     case Bytecodes::_lload_2:
1402     case Bytecodes::_dload_2:           ppload(vvCTS, 2);           break;
1403     case Bytecodes::_lload_3:
1404     case Bytecodes::_dload_3:           ppload(vvCTS, 3);           break;
1405 
1406     case Bytecodes::_aload_0:           ppload(rCTS, 0);            break;
1407     case Bytecodes::_aload_1:           ppload(rCTS, 1);            break;
1408     case Bytecodes::_aload_2:           ppload(rCTS, 2);            break;
1409     case Bytecodes::_aload_3:           ppload(rCTS, 3);            break;
1410 
1411     case Bytecodes::_iaload:
1412     case Bytecodes::_faload:
1413     case Bytecodes::_baload:
1414     case Bytecodes::_caload:
1415     case Bytecodes::_saload:            pp(vrCTS, vCTS); break;
1416 
1417     case Bytecodes::_laload:            pp(vrCTS, vvCTS);  break;
1418     case Bytecodes::_daload:            pp(vrCTS, vvCTS); break;
1419 
1420     case Bytecodes::_aaload:            pp_new_ref(vrCTS, itr->bci()); break;
1421 
1422     case Bytecodes::_istore:
1423     case Bytecodes::_fstore:            ppstore(vCTS, itr->get_index()); break;
1424 
1425     case Bytecodes::_lstore:
1426     case Bytecodes::_dstore:            ppstore(vvCTS, itr->get_index()); break;
1427 
1428     case Bytecodes::_astore:            do_astore(itr->get_index());     break;
1429 
1430     case Bytecodes::_istore_0:
1431     case Bytecodes::_fstore_0:          ppstore(vCTS, 0);           break;
1432     case Bytecodes::_istore_1:
1433     case Bytecodes::_fstore_1:          ppstore(vCTS, 1);           break;
1434     case Bytecodes::_istore_2:
1435     case Bytecodes::_fstore_2:          ppstore(vCTS, 2);           break;
1436     case Bytecodes::_istore_3:
1437     case Bytecodes::_fstore_3:          ppstore(vCTS, 3);           break;
1438 
1439     case Bytecodes::_lstore_0:
1440     case Bytecodes::_dstore_0:          ppstore(vvCTS, 0);          break;
1441     case Bytecodes::_lstore_1:
1442     case Bytecodes::_dstore_1:          ppstore(vvCTS, 1);          break;
1443     case Bytecodes::_lstore_2:
1444     case Bytecodes::_dstore_2:          ppstore(vvCTS, 2);          break;
1445     case Bytecodes::_lstore_3:
1446     case Bytecodes::_dstore_3:          ppstore(vvCTS, 3);          break;
1447 
1448     case Bytecodes::_astore_0:          do_astore(0);               break;
1449     case Bytecodes::_astore_1:          do_astore(1);               break;
1450     case Bytecodes::_astore_2:          do_astore(2);               break;
1451     case Bytecodes::_astore_3:          do_astore(3);               break;
1452 
1453     case Bytecodes::_iastore:
1454     case Bytecodes::_fastore:
1455     case Bytecodes::_bastore:
1456     case Bytecodes::_castore:
1457     case Bytecodes::_sastore:           ppop(vvrCTS);               break;
1458     case Bytecodes::_lastore:
1459     case Bytecodes::_dastore:           ppop(vvvrCTS);              break;
1460     case Bytecodes::_aastore:           ppop(rvrCTS);               break;
1461 
1462     case Bytecodes::_pop:               ppop_any(1);                break;
1463     case Bytecodes::_pop2:              ppop_any(2);                break;
1464 
1465     case Bytecodes::_dup:               ppdupswap(1, "11");         break;
1466     case Bytecodes::_dup_x1:            ppdupswap(2, "121");        break;
1467     case Bytecodes::_dup_x2:            ppdupswap(3, "1321");       break;
1468     case Bytecodes::_dup2:              ppdupswap(2, "2121");       break;
1469     case Bytecodes::_dup2_x1:           ppdupswap(3, "21321");      break;
1470     case Bytecodes::_dup2_x2:           ppdupswap(4, "214321");     break;
1471     case Bytecodes::_swap:              ppdupswap(2, "12");         break;
1472 
1473     case Bytecodes::_iadd:
1474     case Bytecodes::_fadd:
1475     case Bytecodes::_isub:
1476     case Bytecodes::_fsub:
1477     case Bytecodes::_imul:
1478     case Bytecodes::_fmul:
1479     case Bytecodes::_idiv:
1480     case Bytecodes::_fdiv:
1481     case Bytecodes::_irem:
1482     case Bytecodes::_frem:
1483     case Bytecodes::_ishl:
1484     case Bytecodes::_ishr:
1485     case Bytecodes::_iushr:
1486     case Bytecodes::_iand:
1487     case Bytecodes::_ior:
1488     case Bytecodes::_ixor:
1489     case Bytecodes::_l2f:
1490     case Bytecodes::_l2i:
1491     case Bytecodes::_d2f:
1492     case Bytecodes::_d2i:
1493     case Bytecodes::_fcmpl:
1494     case Bytecodes::_fcmpg:             pp(vvCTS, vCTS); break;
1495 
1496     case Bytecodes::_ladd:
1497     case Bytecodes::_dadd:
1498     case Bytecodes::_lsub:
1499     case Bytecodes::_dsub:
1500     case Bytecodes::_lmul:
1501     case Bytecodes::_dmul:
1502     case Bytecodes::_ldiv:
1503     case Bytecodes::_ddiv:
1504     case Bytecodes::_lrem:
1505     case Bytecodes::_drem:
1506     case Bytecodes::_land:
1507     case Bytecodes::_lor:
1508     case Bytecodes::_lxor:              pp(vvvvCTS, vvCTS); break;
1509 
1510     case Bytecodes::_ineg:
1511     case Bytecodes::_fneg:
1512     case Bytecodes::_i2f:
1513     case Bytecodes::_f2i:
1514     case Bytecodes::_i2c:
1515     case Bytecodes::_i2s:
1516     case Bytecodes::_i2b:               pp(vCTS, vCTS); break;
1517 
1518     case Bytecodes::_lneg:
1519     case Bytecodes::_dneg:
1520     case Bytecodes::_l2d:
1521     case Bytecodes::_d2l:               pp(vvCTS, vvCTS); break;
1522 
1523     case Bytecodes::_lshl:
1524     case Bytecodes::_lshr:
1525     case Bytecodes::_lushr:             pp(vvvCTS, vvCTS); break;
1526 
1527     case Bytecodes::_i2l:
1528     case Bytecodes::_i2d:
1529     case Bytecodes::_f2l:
1530     case Bytecodes::_f2d:               pp(vCTS, vvCTS); break;
1531 
1532     case Bytecodes::_lcmp:              pp(vvvvCTS, vCTS); break;
1533     case Bytecodes::_dcmpl:
1534     case Bytecodes::_dcmpg:             pp(vvvvCTS, vCTS); break;
1535 
1536     case Bytecodes::_ifeq:
1537     case Bytecodes::_ifne:
1538     case Bytecodes::_iflt:
1539     case Bytecodes::_ifge:
1540     case Bytecodes::_ifgt:
1541     case Bytecodes::_ifle:
1542     case Bytecodes::_tableswitch:       ppop1(valCTS);
1543                                         break;
1544     case Bytecodes::_ireturn:
1545     case Bytecodes::_freturn:           do_return_monitor_check();
1546                                         ppop1(valCTS);
1547                                         break;
1548     case Bytecodes::_if_icmpeq:
1549     case Bytecodes::_if_icmpne:
1550     case Bytecodes::_if_icmplt:
1551     case Bytecodes::_if_icmpge:
1552     case Bytecodes::_if_icmpgt:
1553     case Bytecodes::_if_icmple:         ppop(vvCTS);
1554                                         break;
1555 
1556     case Bytecodes::_lreturn:           do_return_monitor_check();
1557                                         ppop(vvCTS);
1558                                         break;
1559 
1560     case Bytecodes::_dreturn:           do_return_monitor_check();
1561                                         ppop(vvCTS);
1562                                         break;
1563 
1564     case Bytecodes::_if_acmpeq:
1565     case Bytecodes::_if_acmpne:         ppop(rrCTS);                 break;
1566 
1567     case Bytecodes::_jsr:               do_jsr(itr->dest());         break;
1568     case Bytecodes::_jsr_w:             do_jsr(itr->dest_w());       break;
1569 
1570     case Bytecodes::_getstatic:         do_field(true,  true,  itr->get_index_u2_cpcache(), itr->bci()); break;
1571     case Bytecodes::_putstatic:         do_field(false, true,  itr->get_index_u2_cpcache(), itr->bci()); break;
1572     case Bytecodes::_getfield:          do_field(true,  false, itr->get_index_u2_cpcache(), itr->bci()); break;
1573     case Bytecodes::_putfield:          do_field(false, false, itr->get_index_u2_cpcache(), itr->bci()); break;
1574 
1575     case Bytecodes::_invokevirtual:
1576     case Bytecodes::_invokespecial:     do_method(false, false, itr->get_index_u2_cpcache(), itr->bci()); break;
1577     case Bytecodes::_invokestatic:      do_method(true,  false, itr->get_index_u2_cpcache(), itr->bci()); break;
1578     case Bytecodes::_invokedynamic:     do_method(true,  false, itr->get_index_u4(),         itr->bci()); break;
1579     case Bytecodes::_invokeinterface:   do_method(false, true,  itr->get_index_u2_cpcache(), itr->bci()); break;
1580     case Bytecodes::_newarray:
1581     case Bytecodes::_anewarray:         pp_new_ref(vCTS, itr->bci()); break;
1582     case Bytecodes::_checkcast:         do_checkcast(); break;
1583     case Bytecodes::_arraylength:
1584     case Bytecodes::_instanceof:        pp(rCTS, vCTS); break;
1585     case Bytecodes::_monitorenter:      do_monitorenter(itr->bci()); break;
1586     case Bytecodes::_monitorexit:       do_monitorexit(itr->bci()); break;
1587 
1588     case Bytecodes::_athrow:            // handled by do_exception_edge() BUT ...
1589                                         // vlh(apple): do_exception_edge() does not get
1590                                         // called if method has no exception handlers
1591                                         if ((!_has_exceptions) && (_monitor_top > 0)) {
1592                                           _monitor_safe = false;
1593                                         }
1594                                         break;
1595 
1596     case Bytecodes::_areturn:           do_return_monitor_check();
1597                                         ppop1(refCTS);
1598                                         break;
1599     case Bytecodes::_ifnull:
1600     case Bytecodes::_ifnonnull:         ppop1(refCTS); break;
1601     case Bytecodes::_multianewarray:    do_multianewarray(*(itr->bcp()+3), itr->bci()); break;
1602 
1603     case Bytecodes::_wide:              fatal("Iterator should skip this bytecode"); break;
1604     case Bytecodes::_ret:                                           break;
1605 
1606     // Java opcodes
1607     case Bytecodes::_lookupswitch:      ppop1(valCTS);             break;
1608 
1609     default:
1610          tty->print("unexpected opcode: %d\n", itr->code());
1611          ShouldNotReachHere();
1612     break;
1613   }
1614 }
1615 
1616 void GenerateOopMap::check_type(CellTypeState expected, CellTypeState actual) {
1617   if (!expected.equal_kind(actual)) {
1618     verify_error("wrong type on stack (found: %c expected: %c)", actual.to_char(), expected.to_char());
1619   }
1620 }
1621 
1622 void GenerateOopMap::ppstore(CellTypeState *in, int loc_no) {
1623   while(!(*in).is_bottom()) {
1624     CellTypeState expected =*in++;
1625     CellTypeState actual   = pop();
1626     check_type(expected, actual);
1627     assert(loc_no >= 0, "sanity check");
1628     set_var(loc_no++, actual);
1629   }
1630 }
1631 
1632 void GenerateOopMap::ppload(CellTypeState *out, int loc_no) {
1633   while(!(*out).is_bottom()) {
1634     CellTypeState out1 = *out++;
1635     CellTypeState vcts = get_var(loc_no);
1636     assert(out1.can_be_reference() || out1.can_be_value(),
1637            "can only load refs. and values.");
1638     if (out1.is_reference()) {
1639       assert(loc_no>=0, "sanity check");
1640       if (!vcts.is_reference()) {
1641         // We were asked to push a reference, but the type of the
1642         // variable can be something else
1643         _conflict = true;
1644         if (vcts.can_be_uninit()) {
1645           // It is a ref-uninit conflict (at least). If there are other
1646           // problems, we'll get them in the next round
1647           add_to_ref_init_set(loc_no);
1648           vcts = out1;
1649         } else {
1650           // It wasn't a ref-uninit conflict. So must be a
1651           // ref-val or ref-pc conflict. Split the variable.
1652           record_refval_conflict(loc_no);
1653           vcts = out1;
1654         }
1655         push(out1); // recover...
1656       } else {
1657         push(vcts); // preserve reference.
1658       }
1659       // Otherwise it is a conflict, but one that verification would
1660       // have caught if illegal. In particular, it can't be a topCTS
1661       // resulting from mergeing two difference pcCTS's since the verifier
1662       // would have rejected any use of such a merge.
1663     } else {
1664       push(out1); // handle val/init conflict
1665     }
1666     loc_no++;
1667   }
1668 }
1669 
1670 void GenerateOopMap::ppdupswap(int poplen, const char *out) {
1671   CellTypeState actual[5];
1672   assert(poplen < 5, "this must be less than length of actual vector");
1673 
1674   // pop all arguments
1675   for(int i = 0; i < poplen; i++) actual[i] = pop();
1676 
1677   // put them back
1678   char push_ch = *out++;
1679   while (push_ch != '\0') {
1680     int idx = push_ch - '1';
1681     assert(idx >= 0 && idx < poplen, "wrong arguments");
1682     push(actual[idx]);
1683     push_ch = *out++;
1684   }
1685 }
1686 
1687 void GenerateOopMap::ppop1(CellTypeState out) {
1688   CellTypeState actual = pop();
1689   check_type(out, actual);
1690 }
1691 
1692 void GenerateOopMap::ppop(CellTypeState *out) {
1693   while (!(*out).is_bottom()) {
1694     ppop1(*out++);
1695   }
1696 }
1697 
1698 void GenerateOopMap::ppush1(CellTypeState in) {
1699   assert(in.is_reference() | in.is_value(), "sanity check");
1700   push(in);
1701 }
1702 
1703 void GenerateOopMap::ppush(CellTypeState *in) {
1704   while (!(*in).is_bottom()) {
1705     ppush1(*in++);
1706   }
1707 }
1708 
1709 void GenerateOopMap::pp(CellTypeState *in, CellTypeState *out) {
1710   ppop(in);
1711   ppush(out);
1712 }
1713 
1714 void GenerateOopMap::pp_new_ref(CellTypeState *in, int bci) {
1715   ppop(in);
1716   ppush1(CellTypeState::make_line_ref(bci));
1717 }
1718 
1719 void GenerateOopMap::ppop_any(int poplen) {
1720   if (_stack_top >= poplen) {
1721     _stack_top -= poplen;
1722   } else {
1723     verify_error("stack underflow");
1724   }
1725 }
1726 
1727 // Replace all occurences of the state 'match' with the state 'replace'
1728 // in our current state vector.
1729 void GenerateOopMap::replace_all_CTS_matches(CellTypeState match,
1730                                              CellTypeState replace) {
1731   int i;
1732   int len = _max_locals + _stack_top;
1733   bool change = false;
1734 
1735   for (i = len - 1; i >= 0; i--) {
1736     if (match.equal(_state[i])) {
1737       _state[i] = replace;
1738     }
1739   }
1740 
1741   if (_monitor_top > 0) {
1742     int base = _max_locals + _max_stack;
1743     len = base + _monitor_top;
1744     for (i = len - 1; i >= base; i--) {
1745       if (match.equal(_state[i])) {
1746         _state[i] = replace;
1747       }
1748     }
1749   }
1750 }
1751 
1752 void GenerateOopMap::do_checkcast() {
1753   CellTypeState actual = pop();
1754   check_type(refCTS, actual);
1755   push(actual);
1756 }
1757 
1758 void GenerateOopMap::do_monitorenter(int bci) {
1759   CellTypeState actual = pop();
1760   if (_monitor_top == bad_monitors) {
1761     return;
1762   }
1763 
1764   // Bail out when we get repeated locks on an identical monitor.  This case
1765   // isn't too hard to handle and can be made to work if supporting nested
1766   // redundant synchronized statements becomes a priority.
1767   //
1768   // See also "Note" in do_monitorexit(), below.
1769   if (actual.is_lock_reference()) {
1770     _monitor_top = bad_monitors;
1771     _monitor_safe = false;
1772 
1773     if (TraceMonitorMismatch) {
1774       report_monitor_mismatch("nested redundant lock -- bailout...");
1775     }
1776     return;
1777   }
1778 
1779   CellTypeState lock = CellTypeState::make_lock_ref(bci);
1780   check_type(refCTS, actual);
1781   if (!actual.is_info_top()) {
1782     replace_all_CTS_matches(actual, lock);
1783     monitor_push(lock);
1784   }
1785 }
1786 
1787 void GenerateOopMap::do_monitorexit(int bci) {
1788   CellTypeState actual = pop();
1789   if (_monitor_top == bad_monitors) {
1790     return;
1791   }
1792   check_type(refCTS, actual);
1793   CellTypeState expected = monitor_pop();
1794   if (!actual.is_lock_reference() || !expected.equal(actual)) {
1795     // The monitor we are exiting is not verifiably the one
1796     // on the top of our monitor stack.  This causes a monitor
1797     // mismatch.
1798     _monitor_top = bad_monitors;
1799     _monitor_safe = false;
1800 
1801     // We need to mark this basic block as changed so that
1802     // this monitorexit will be visited again.  We need to
1803     // do this to ensure that we have accounted for the
1804     // possibility that this bytecode will throw an
1805     // exception.
1806     BasicBlock* bb = get_basic_block_containing(bci);
1807     bb->set_changed(true);
1808     bb->_monitor_top = bad_monitors;
1809 
1810     if (TraceMonitorMismatch) {
1811       report_monitor_mismatch("improper monitor pair");
1812     }
1813   } else {
1814     // This code is a fix for the case where we have repeated
1815     // locking of the same object in straightline code.  We clear
1816     // out the lock when it is popped from the monitor stack
1817     // and replace it with an unobtrusive reference value that can
1818     // be locked again.
1819     //
1820     // Note: when generateOopMap is fixed to properly handle repeated,
1821     //       nested, redundant locks on the same object, then this
1822     //       fix will need to be removed at that time.
1823     replace_all_CTS_matches(actual, CellTypeState::make_line_ref(bci));
1824   }
1825 }
1826 
1827 void GenerateOopMap::do_return_monitor_check() {
1828   if (_monitor_top > 0) {
1829     // The monitor stack must be empty when we leave the method
1830     // for the monitors to be properly matched.
1831     _monitor_safe = false;
1832 
1833     // Since there are no successors to the *return bytecode, it
1834     // isn't necessary to set _monitor_top to bad_monitors.
1835 
1836     if (TraceMonitorMismatch) {
1837       report_monitor_mismatch("non-empty monitor stack at return");
1838     }
1839   }
1840 }
1841 
1842 void GenerateOopMap::do_jsr(int targ_bci) {
1843   push(CellTypeState::make_addr(targ_bci));
1844 }
1845 
1846 
1847 
1848 void GenerateOopMap::do_ldc(int bci) {
1849   Bytecode_loadconstant ldc(method(), bci);
1850   constantPoolOop cp  = method()->constants();
1851   BasicType       bt  = ldc.result_type();
1852   CellTypeState   cts = (bt == T_OBJECT) ? CellTypeState::make_line_ref(bci) : valCTS;
1853   // Make sure bt==T_OBJECT is the same as old code (is_pointer_entry).
1854   // Note that CONSTANT_MethodHandle entries are u2 index pairs, not pointer-entries,
1855   // and they are processed by _fast_aldc and the CP cache.
1856   assert((ldc.has_cache_index() || cp->is_object_entry(ldc.pool_index()))
1857          ? (bt == T_OBJECT) : true, "expected object type");
1858   ppush1(cts);
1859 }
1860 
1861 void GenerateOopMap::do_multianewarray(int dims, int bci) {
1862   assert(dims >= 1, "sanity check");
1863   for(int i = dims -1; i >=0; i--) {
1864     ppop1(valCTS);
1865   }
1866   ppush1(CellTypeState::make_line_ref(bci));
1867 }
1868 
1869 void GenerateOopMap::do_astore(int idx) {
1870   CellTypeState r_or_p = pop();
1871   if (!r_or_p.is_address() && !r_or_p.is_reference()) {
1872     // We actually expected ref or pc, but we only report that we expected a ref. It does not
1873     // really matter (at least for now)
1874     verify_error("wrong type on stack (found: %c, expected: {pr})", r_or_p.to_char());
1875     return;
1876   }
1877   set_var(idx, r_or_p);
1878 }
1879 
1880 // Copies bottom/zero terminated CTS string from "src" into "dst".
1881 //   Does NOT terminate with a bottom. Returns the number of cells copied.
1882 int GenerateOopMap::copy_cts(CellTypeState *dst, CellTypeState *src) {
1883   int idx = 0;
1884   while (!src[idx].is_bottom()) {
1885     dst[idx] = src[idx];
1886     idx++;
1887   }
1888   return idx;
1889 }
1890 
1891 void GenerateOopMap::do_field(int is_get, int is_static, int idx, int bci) {
1892   // Dig up signature for field in constant pool
1893   constantPoolOop cp     = method()->constants();
1894   int nameAndTypeIdx     = cp->name_and_type_ref_index_at(idx);
1895   int signatureIdx       = cp->signature_ref_index_at(nameAndTypeIdx);
1896   Symbol* signature      = cp->symbol_at(signatureIdx);
1897 
1898   // Parse signature (espcially simple for fields)
1899   assert(signature->utf8_length() > 0, "field signatures cannot have zero length");
1900   // The signature is UFT8 encoded, but the first char is always ASCII for signatures.
1901   char sigch = (char)*(signature->base());
1902   CellTypeState temp[4];
1903   CellTypeState *eff  = sigchar_to_effect(sigch, bci, temp);
1904 
1905   CellTypeState in[4];
1906   CellTypeState *out;
1907   int i =  0;
1908 
1909   if (is_get) {
1910     out = eff;
1911   } else {
1912     out = epsilonCTS;
1913     i   = copy_cts(in, eff);
1914   }
1915   if (!is_static) in[i++] = CellTypeState::ref;
1916   in[i] = CellTypeState::bottom;
1917   assert(i<=3, "sanity check");
1918   pp(in, out);
1919 }
1920 
1921 void GenerateOopMap::do_method(int is_static, int is_interface, int idx, int bci) {
1922  // Dig up signature for field in constant pool
1923   constantPoolOop cp  = _method->constants();
1924   Symbol* signature   = cp->signature_ref_at(idx);
1925 
1926   // Parse method signature
1927   CellTypeState out[4];
1928   CellTypeState in[MAXARGSIZE+1];   // Includes result
1929   ComputeCallStack cse(signature);
1930 
1931   // Compute return type
1932   int res_length=  cse.compute_for_returntype(out);
1933 
1934   // Temporary hack.
1935   if (out[0].equal(CellTypeState::ref) && out[1].equal(CellTypeState::bottom)) {
1936     out[0] = CellTypeState::make_line_ref(bci);
1937   }
1938 
1939   assert(res_length<=4, "max value should be vv");
1940 
1941   // Compute arguments
1942   int arg_length = cse.compute_for_parameters(is_static != 0, in);
1943   assert(arg_length<=MAXARGSIZE, "too many locals");
1944 
1945   // Pop arguments
1946   for (int i = arg_length - 1; i >= 0; i--) ppop1(in[i]);// Do args in reverse order.
1947 
1948   // Report results
1949   if (_report_result_for_send == true) {
1950      fill_stackmap_for_opcodes(_itr_send, vars(), stack(), _stack_top);
1951      _report_result_for_send = false;
1952   }
1953 
1954   // Push return address
1955   ppush(out);
1956 }
1957 
1958 // This is used to parse the signature for fields, since they are very simple...
1959 CellTypeState *GenerateOopMap::sigchar_to_effect(char sigch, int bci, CellTypeState *out) {
1960   // Object and array
1961   if (sigch=='L' || sigch=='[') {
1962     out[0] = CellTypeState::make_line_ref(bci);
1963     out[1] = CellTypeState::bottom;
1964     return out;
1965   }
1966   if (sigch == 'J' || sigch == 'D' ) return vvCTS;  // Long and Double
1967   if (sigch == 'V' ) return epsilonCTS;             // Void
1968   return vCTS;                                      // Otherwise
1969 }
1970 
1971 long GenerateOopMap::_total_byte_count = 0;
1972 elapsedTimer GenerateOopMap::_total_oopmap_time;
1973 
1974 // This function assumes "bcs" is at a "ret" instruction and that the vars
1975 // state is valid for that instruction. Furthermore, the ret instruction
1976 // must be the last instruction in "bb" (we store information about the
1977 // "ret" in "bb").
1978 void GenerateOopMap::ret_jump_targets_do(BytecodeStream *bcs, jmpFct_t jmpFct, int varNo, int *data) {
1979   CellTypeState ra = vars()[varNo];
1980   if (!ra.is_good_address()) {
1981     verify_error("ret returns from two jsr subroutines?");
1982     return;
1983   }
1984   int target = ra.get_info();
1985 
1986   RetTableEntry* rtEnt = _rt.find_jsrs_for_target(target);
1987   int bci = bcs->bci();
1988   for (int i = 0; i < rtEnt->nof_jsrs(); i++) {
1989     int target_bci = rtEnt->jsrs(i);
1990     // Make sure a jrtRet does not set the changed bit for dead basicblock.
1991     BasicBlock* jsr_bb    = get_basic_block_containing(target_bci - 1);
1992     debug_only(BasicBlock* target_bb = &jsr_bb[1];)
1993     assert(target_bb  == get_basic_block_at(target_bci), "wrong calc. of successor basicblock");
1994     bool alive = jsr_bb->is_alive();
1995     if (TraceNewOopMapGeneration) {
1996       tty->print("pc = %d, ret -> %d alive: %s\n", bci, target_bci, alive ? "true" : "false");
1997     }
1998     if (alive) jmpFct(this, target_bci, data);
1999   }
2000 }
2001 
2002 //
2003 // Debug method
2004 //
2005 char* GenerateOopMap::state_vec_to_string(CellTypeState* vec, int len) {
2006 #ifdef ASSERT
2007   int checklen = MAX3(_max_locals, _max_stack, _max_monitors) + 1;
2008   assert(len < checklen, "state_vec_buf overflow");
2009 #endif
2010   for (int i = 0; i < len; i++) _state_vec_buf[i] = vec[i].to_char();
2011   _state_vec_buf[len] = 0;
2012   return _state_vec_buf;
2013 }
2014 
2015 void GenerateOopMap::print_time() {
2016   tty->print_cr ("Accumulated oopmap times:");
2017   tty->print_cr ("---------------------------");
2018   tty->print_cr ("  Total : %3.3f sec.", GenerateOopMap::_total_oopmap_time.seconds());
2019   tty->print_cr ("  (%3.0f bytecodes per sec) ",
2020   GenerateOopMap::_total_byte_count / GenerateOopMap::_total_oopmap_time.seconds());
2021 }
2022 
2023 //
2024 //  ============ Main Entry Point ===========
2025 //
2026 GenerateOopMap::GenerateOopMap(methodHandle method) {
2027   // We have to initialize all variables here, that can be queried directly
2028   _method = method;
2029   _max_locals=0;
2030   _init_vars = NULL;
2031 
2032 #ifndef PRODUCT
2033   // If we are doing a detailed trace, include the regular trace information.
2034   if (TraceNewOopMapGenerationDetailed) {
2035     TraceNewOopMapGeneration = true;
2036   }
2037 #endif
2038 }
2039 
2040 void GenerateOopMap::compute_map(TRAPS) {
2041 #ifndef PRODUCT
2042   if (TimeOopMap2) {
2043     method()->print_short_name(tty);
2044     tty->print("  ");
2045   }
2046   if (TimeOopMap) {
2047     _total_byte_count += method()->code_size();
2048   }
2049 #endif
2050   TraceTime t_single("oopmap time", TimeOopMap2);
2051   TraceTime t_all(NULL, &_total_oopmap_time, TimeOopMap);
2052 
2053   // Initialize values
2054   _got_error      = false;
2055   _conflict       = false;
2056   _max_locals     = method()->max_locals();
2057   _max_stack      = method()->max_stack();
2058   _has_exceptions = (method()->exception_table()->length() > 0);
2059   _nof_refval_conflicts = 0;
2060   _init_vars      = new GrowableArray<intptr_t>(5);  // There are seldom more than 5 init_vars
2061   _report_result  = false;
2062   _report_result_for_send = false;
2063   _new_var_map    = NULL;
2064   _ret_adr_tos    = new GrowableArray<intptr_t>(5);  // 5 seems like a good number;
2065   _did_rewriting  = false;
2066   _did_relocation = false;
2067 
2068   if (TraceNewOopMapGeneration) {
2069     tty->print("Method name: %s\n", method()->name()->as_C_string());
2070     if (Verbose) {
2071       _method->print_codes();
2072       tty->print_cr("Exception table:");
2073       typeArrayOop excps = method()->exception_table();
2074       for(int i = 0; i < excps->length(); i += 4) {
2075         tty->print_cr("[%d - %d] -> %d", excps->int_at(i + 0), excps->int_at(i + 1), excps->int_at(i + 2));
2076       }
2077     }
2078   }
2079 
2080   // if no code - do nothing
2081   // compiler needs info
2082   if (method()->code_size() == 0 || _max_locals + method()->max_stack() == 0) {
2083     fill_stackmap_prolog(0);
2084     fill_stackmap_epilog();
2085     return;
2086   }
2087   // Step 1: Compute all jump targets and their return value
2088   if (!_got_error)
2089     _rt.compute_ret_table(_method);
2090 
2091   // Step 2: Find all basic blocks and count GC points
2092   if (!_got_error)
2093     mark_bbheaders_and_count_gc_points();
2094 
2095   // Step 3: Calculate stack maps
2096   if (!_got_error)
2097     do_interpretation();
2098 
2099   // Step 4:Return results
2100   if (!_got_error && report_results())
2101      report_result();
2102 
2103   if (_got_error) {
2104     THROW_HANDLE(_exception);
2105   }
2106 }
2107 
2108 // Error handling methods
2109 // These methods create an exception for the current thread which is thrown
2110 // at the bottom of the call stack, when it returns to compute_map().  The
2111 // _got_error flag controls execution.  NOT TODO: The VM exception propagation
2112 // mechanism using TRAPS/CHECKs could be used here instead but it would need
2113 // to be added as a parameter to every function and checked for every call.
2114 // The tons of extra code it would generate didn't seem worth the change.
2115 //
2116 void GenerateOopMap::error_work(const char *format, va_list ap) {
2117   _got_error = true;
2118   char msg_buffer[512];
2119   vsnprintf(msg_buffer, sizeof(msg_buffer), format, ap);
2120   // Append method name
2121   char msg_buffer2[512];
2122   jio_snprintf(msg_buffer2, sizeof(msg_buffer2), "%s in method %s", msg_buffer, method()->name()->as_C_string());
2123   _exception = Exceptions::new_exception(Thread::current(),
2124                 vmSymbols::java_lang_LinkageError(), msg_buffer2);
2125 }
2126 
2127 void GenerateOopMap::report_error(const char *format, ...) {
2128   va_list ap;
2129   va_start(ap, format);
2130   error_work(format, ap);
2131 }
2132 
2133 void GenerateOopMap::verify_error(const char *format, ...) {
2134   // We do not distinguish between different types of errors for verification
2135   // errors.  Let the verifier give a better message.
2136   const char *msg = "Illegal class file encountered. Try running with -Xverify:all";
2137   _got_error = true;
2138   // Append method name
2139   char msg_buffer2[512];
2140   jio_snprintf(msg_buffer2, sizeof(msg_buffer2), "%s in method %s", msg,
2141                method()->name()->as_C_string());
2142   _exception = Exceptions::new_exception(Thread::current(),
2143                 vmSymbols::java_lang_LinkageError(), msg_buffer2);
2144 }
2145 
2146 //
2147 // Report result opcodes
2148 //
2149 void GenerateOopMap::report_result() {
2150 
2151   if (TraceNewOopMapGeneration) tty->print_cr("Report result pass");
2152 
2153   // We now want to report the result of the parse
2154   _report_result = true;
2155 
2156   // Prolog code
2157   fill_stackmap_prolog(_gc_points);
2158 
2159    // Mark everything changed, then do one interpretation pass.
2160   for (int i = 0; i<_bb_count; i++) {
2161     if (_basic_blocks[i].is_reachable()) {
2162       _basic_blocks[i].set_changed(true);
2163       interp_bb(&_basic_blocks[i]);
2164     }
2165   }
2166 
2167   // Note: Since we are skipping dead-code when we are reporting results, then
2168   // the no. of encountered gc-points might be fewer than the previously number
2169   // we have counted. (dead-code is a pain - it should be removed before we get here)
2170   fill_stackmap_epilog();
2171 
2172   // Report initvars
2173   fill_init_vars(_init_vars);
2174 
2175   _report_result = false;
2176 }
2177 
2178 void GenerateOopMap::result_for_basicblock(int bci) {
2179  if (TraceNewOopMapGeneration) tty->print_cr("Report result pass for basicblock");
2180 
2181   // We now want to report the result of the parse
2182   _report_result = true;
2183 
2184   // Find basicblock and report results
2185   BasicBlock* bb = get_basic_block_containing(bci);
2186   assert(bb->is_reachable(), "getting result from unreachable basicblock");
2187   bb->set_changed(true);
2188   interp_bb(bb);
2189 }
2190 
2191 //
2192 // Conflict handling code
2193 //
2194 
2195 void GenerateOopMap::record_refval_conflict(int varNo) {
2196   assert(varNo>=0 && varNo< _max_locals, "index out of range");
2197 
2198   if (TraceOopMapRewrites) {
2199      tty->print("### Conflict detected (local no: %d)\n", varNo);
2200   }
2201 
2202   if (!_new_var_map) {
2203     _new_var_map = NEW_RESOURCE_ARRAY(int, _max_locals);
2204     for (int k = 0; k < _max_locals; k++)  _new_var_map[k] = k;
2205   }
2206 
2207   if ( _new_var_map[varNo] == varNo) {
2208     // Check if max. number of locals has been reached
2209     if (_max_locals + _nof_refval_conflicts >= MAX_LOCAL_VARS) {
2210       report_error("Rewriting exceeded local variable limit");
2211       return;
2212     }
2213     _new_var_map[varNo] = _max_locals + _nof_refval_conflicts;
2214     _nof_refval_conflicts++;
2215   }
2216 }
2217 
2218 void GenerateOopMap::rewrite_refval_conflicts()
2219 {
2220   // We can get here two ways: Either a rewrite conflict was detected, or
2221   // an uninitialize reference was detected. In the second case, we do not
2222   // do any rewriting, we just want to recompute the reference set with the
2223   // new information
2224 
2225   int nof_conflicts = 0;              // Used for debugging only
2226 
2227   if ( _nof_refval_conflicts == 0 )
2228      return;
2229 
2230   // Check if rewrites are allowed in this parse.
2231   if (!allow_rewrites() && !IgnoreRewrites) {
2232     fatal("Rewriting method not allowed at this stage");
2233   }
2234 
2235 
2236   // This following flag is to tempoary supress rewrites. The locals that might conflict will
2237   // all be set to contain values. This is UNSAFE - however, until the rewriting has been completely
2238   // tested it is nice to have.
2239   if (IgnoreRewrites) {
2240     if (Verbose) {
2241        tty->print("rewrites suppressed for local no. ");
2242        for (int l = 0; l < _max_locals; l++) {
2243          if (_new_var_map[l] != l) {
2244            tty->print("%d ", l);
2245            vars()[l] = CellTypeState::value;
2246          }
2247        }
2248        tty->cr();
2249     }
2250 
2251     // That was that...
2252     _new_var_map = NULL;
2253     _nof_refval_conflicts = 0;
2254     _conflict = false;
2255 
2256     return;
2257   }
2258 
2259   // Tracing flag
2260   _did_rewriting = true;
2261 
2262   if (TraceOopMapRewrites) {
2263     tty->print_cr("ref/value conflict for method %s - bytecodes are getting rewritten", method()->name()->as_C_string());
2264     method()->print();
2265     method()->print_codes();
2266   }
2267 
2268   assert(_new_var_map!=NULL, "nothing to rewrite");
2269   assert(_conflict==true, "We should not be here");
2270 
2271   compute_ret_adr_at_TOS();
2272   if (!_got_error) {
2273     for (int k = 0; k < _max_locals && !_got_error; k++) {
2274       if (_new_var_map[k] != k) {
2275         if (TraceOopMapRewrites) {
2276           tty->print_cr("Rewriting: %d -> %d", k, _new_var_map[k]);
2277         }
2278         rewrite_refval_conflict(k, _new_var_map[k]);
2279         if (_got_error) return;
2280         nof_conflicts++;
2281       }
2282     }
2283   }
2284 
2285   assert(nof_conflicts == _nof_refval_conflicts, "sanity check");
2286 
2287   // Adjust the number of locals
2288   method()->set_max_locals(_max_locals+_nof_refval_conflicts);
2289   _max_locals += _nof_refval_conflicts;
2290 
2291   // That was that...
2292   _new_var_map = NULL;
2293   _nof_refval_conflicts = 0;
2294 }
2295 
2296 void GenerateOopMap::rewrite_refval_conflict(int from, int to) {
2297   bool startOver;
2298   do {
2299     // Make sure that the BytecodeStream is constructed in the loop, since
2300     // during rewriting a new method oop is going to be used, and the next time
2301     // around we want to use that.
2302     BytecodeStream bcs(_method);
2303     startOver = false;
2304 
2305     while( bcs.next() >=0 && !startOver && !_got_error) {
2306       startOver = rewrite_refval_conflict_inst(&bcs, from, to);
2307     }
2308   } while (startOver && !_got_error);
2309 }
2310 
2311 /* If the current instruction is one that uses local variable "from"
2312    in a ref way, change it to use "to". There's a subtle reason why we
2313    renumber the ref uses and not the non-ref uses: non-ref uses may be
2314    2 slots wide (double, long) which would necessitate keeping track of
2315    whether we should add one or two variables to the method. If the change
2316    affected the width of some instruction, returns "TRUE"; otherwise, returns "FALSE".
2317    Another reason for moving ref's value is for solving (addr, ref) conflicts, which
2318    both uses aload/astore methods.
2319 */
2320 bool GenerateOopMap::rewrite_refval_conflict_inst(BytecodeStream *itr, int from, int to) {
2321   Bytecodes::Code bc = itr->code();
2322   int index;
2323   int bci = itr->bci();
2324 
2325   if (is_aload(itr, &index) && index == from) {
2326     if (TraceOopMapRewrites) {
2327       tty->print_cr("Rewriting aload at bci: %d", bci);
2328     }
2329     return rewrite_load_or_store(itr, Bytecodes::_aload, Bytecodes::_aload_0, to);
2330   }
2331 
2332   if (is_astore(itr, &index) && index == from) {
2333     if (!stack_top_holds_ret_addr(bci)) {
2334       if (TraceOopMapRewrites) {
2335         tty->print_cr("Rewriting astore at bci: %d", bci);
2336       }
2337       return rewrite_load_or_store(itr, Bytecodes::_astore, Bytecodes::_astore_0, to);
2338     } else {
2339       if (TraceOopMapRewrites) {
2340         tty->print_cr("Supress rewriting of astore at bci: %d", bci);
2341       }
2342     }
2343   }
2344 
2345   return false;
2346 }
2347 
2348 // The argument to this method is:
2349 // bc : Current bytecode
2350 // bcN : either _aload or _astore
2351 // bc0 : either _aload_0 or _astore_0
2352 bool GenerateOopMap::rewrite_load_or_store(BytecodeStream *bcs, Bytecodes::Code bcN, Bytecodes::Code bc0, unsigned int varNo) {
2353   assert(bcN == Bytecodes::_astore   || bcN == Bytecodes::_aload,   "wrong argument (bcN)");
2354   assert(bc0 == Bytecodes::_astore_0 || bc0 == Bytecodes::_aload_0, "wrong argument (bc0)");
2355   int ilen = Bytecodes::length_at(_method(), bcs->bcp());
2356   int newIlen;
2357 
2358   if (ilen == 4) {
2359     // Original instruction was wide; keep it wide for simplicity
2360     newIlen = 4;
2361   } else if (varNo < 4)
2362      newIlen = 1;
2363   else if (varNo >= 256)
2364      newIlen = 4;
2365   else
2366      newIlen = 2;
2367 
2368   // If we need to relocate in order to patch the byte, we
2369   // do the patching in a temp. buffer, that is passed to the reloc.
2370   // The patching of the bytecode stream is then done by the Relocator.
2371   // This is neccesary, since relocating the instruction at a certain bci, might
2372   // also relocate that instruction, e.g., if a _goto before it gets widen to a _goto_w.
2373   // Hence, we do not know which bci to patch after relocation.
2374 
2375   assert(newIlen <= 4, "sanity check");
2376   u_char inst_buffer[4]; // Max. instruction size is 4.
2377   address bcp;
2378 
2379   if (newIlen != ilen) {
2380     // Relocation needed do patching in temp. buffer
2381     bcp = (address)inst_buffer;
2382   } else {
2383     bcp = _method->bcp_from(bcs->bci());
2384   }
2385 
2386   // Patch either directly in methodOop or in temp. buffer
2387   if (newIlen == 1) {
2388     assert(varNo < 4, "varNo too large");
2389     *bcp = bc0 + varNo;
2390   } else if (newIlen == 2) {
2391     assert(varNo < 256, "2-byte index needed!");
2392     *(bcp + 0) = bcN;
2393     *(bcp + 1) = varNo;
2394   } else {
2395     assert(newIlen == 4, "Wrong instruction length");
2396     *(bcp + 0) = Bytecodes::_wide;
2397     *(bcp + 1) = bcN;
2398     Bytes::put_Java_u2(bcp+2, varNo);
2399   }
2400 
2401   if (newIlen != ilen) {
2402     expand_current_instr(bcs->bci(), ilen, newIlen, inst_buffer);
2403   }
2404 
2405 
2406   return (newIlen != ilen);
2407 }
2408 
2409 class RelocCallback : public RelocatorListener {
2410  private:
2411   GenerateOopMap* _gom;
2412  public:
2413    RelocCallback(GenerateOopMap* gom) { _gom = gom; };
2414 
2415   // Callback method
2416   virtual void relocated(int bci, int delta, int new_code_length) {
2417     _gom->update_basic_blocks  (bci, delta, new_code_length);
2418     _gom->update_ret_adr_at_TOS(bci, delta);
2419     _gom->_rt.update_ret_table (bci, delta);
2420   }
2421 };
2422 
2423 // Returns true if expanding was succesful. Otherwise, reports an error and
2424 // returns false.
2425 void GenerateOopMap::expand_current_instr(int bci, int ilen, int newIlen, u_char inst_buffer[]) {
2426   Thread *THREAD = Thread::current();  // Could really have TRAPS argument.
2427   RelocCallback rcb(this);
2428   Relocator rc(_method, &rcb);
2429   methodHandle m= rc.insert_space_at(bci, newIlen, inst_buffer, THREAD);
2430   if (m.is_null() || HAS_PENDING_EXCEPTION) {
2431     report_error("could not rewrite method - exception occurred or bytecode buffer overflow");
2432     return;
2433   }
2434 
2435   // Relocator returns a new method oop.
2436   _did_relocation = true;
2437   _method = m;
2438 }
2439 
2440 
2441 bool GenerateOopMap::is_astore(BytecodeStream *itr, int *index) {
2442   Bytecodes::Code bc = itr->code();
2443   switch(bc) {
2444     case Bytecodes::_astore_0:
2445     case Bytecodes::_astore_1:
2446     case Bytecodes::_astore_2:
2447     case Bytecodes::_astore_3:
2448       *index = bc - Bytecodes::_astore_0;
2449       return true;
2450     case Bytecodes::_astore:
2451       *index = itr->get_index();
2452       return true;
2453   }
2454   return false;
2455 }
2456 
2457 bool GenerateOopMap::is_aload(BytecodeStream *itr, int *index) {
2458   Bytecodes::Code bc = itr->code();
2459   switch(bc) {
2460     case Bytecodes::_aload_0:
2461     case Bytecodes::_aload_1:
2462     case Bytecodes::_aload_2:
2463     case Bytecodes::_aload_3:
2464       *index = bc - Bytecodes::_aload_0;
2465       return true;
2466 
2467     case Bytecodes::_aload:
2468       *index = itr->get_index();
2469       return true;
2470   }
2471   return false;
2472 }
2473 
2474 
2475 // Return true iff the top of the operand stack holds a return address at
2476 // the current instruction
2477 bool GenerateOopMap::stack_top_holds_ret_addr(int bci) {
2478   for(int i = 0; i < _ret_adr_tos->length(); i++) {
2479     if (_ret_adr_tos->at(i) == bci)
2480       return true;
2481   }
2482 
2483   return false;
2484 }
2485 
2486 void GenerateOopMap::compute_ret_adr_at_TOS() {
2487   assert(_ret_adr_tos != NULL, "must be initialized");
2488   _ret_adr_tos->clear();
2489 
2490   for (int i = 0; i < bb_count(); i++) {
2491     BasicBlock* bb = &_basic_blocks[i];
2492 
2493     // Make sure to only check basicblocks that are reachable
2494     if (bb->is_reachable()) {
2495 
2496       // For each Basic block we check all instructions
2497       BytecodeStream bcs(_method);
2498       bcs.set_interval(bb->_bci, next_bb_start_pc(bb));
2499 
2500       restore_state(bb);
2501 
2502       while (bcs.next()>=0 && !_got_error) {
2503         // TDT: should this be is_good_address() ?
2504         if (_stack_top > 0 && stack()[_stack_top-1].is_address()) {
2505           _ret_adr_tos->append(bcs.bci());
2506           if (TraceNewOopMapGeneration) {
2507             tty->print_cr("Ret_adr TOS at bci: %d", bcs.bci());
2508           }
2509         }
2510         interp1(&bcs);
2511       }
2512     }
2513   }
2514 }
2515 
2516 void GenerateOopMap::update_ret_adr_at_TOS(int bci, int delta) {
2517   for(int i = 0; i < _ret_adr_tos->length(); i++) {
2518     int v = _ret_adr_tos->at(i);
2519     if (v > bci)  _ret_adr_tos->at_put(i, v + delta);
2520   }
2521 }
2522 
2523 // ===================================================================
2524 
2525 #ifndef PRODUCT
2526 int ResolveOopMapConflicts::_nof_invocations  = 0;
2527 int ResolveOopMapConflicts::_nof_rewrites     = 0;
2528 int ResolveOopMapConflicts::_nof_relocations  = 0;
2529 #endif
2530 
2531 methodHandle ResolveOopMapConflicts::do_potential_rewrite(TRAPS) {
2532   compute_map(CHECK_(methodHandle()));
2533 
2534 #ifndef PRODUCT
2535   // Tracking and statistics
2536   if (PrintRewrites) {
2537     _nof_invocations++;
2538     if (did_rewriting()) {
2539       _nof_rewrites++;
2540       if (did_relocation()) _nof_relocations++;
2541       tty->print("Method was rewritten %s: ", (did_relocation()) ? "and relocated" : "");
2542       method()->print_value(); tty->cr();
2543       tty->print_cr("Cand.: %d rewrts: %d (%d%%) reloc.: %d (%d%%)",
2544           _nof_invocations,
2545           _nof_rewrites,    (_nof_rewrites    * 100) / _nof_invocations,
2546           _nof_relocations, (_nof_relocations * 100) / _nof_invocations);
2547     }
2548   }
2549 #endif
2550   return methodHandle(THREAD, method());
2551 }