1 /*
   2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterGenerator.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/synchronizer.hpp"
  44 #include "runtime/timer.hpp"
  45 #include "runtime/vframeArray.hpp"
  46 #include "utilities/debug.hpp"
  47 
  48 #define __ _masm->
  49 
  50 #ifndef CC_INTERP
  51 
  52 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  53 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
  54 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
  55 
  56 //-----------------------------------------------------------------------------
  57 
  58 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  59   address entry = __ pc();
  60 
  61 #ifdef ASSERT
  62   {
  63     Label L;
  64     __ lea(rax, Address(rbp,
  65                         frame::interpreter_frame_monitor_block_top_offset *
  66                         wordSize));
  67     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
  68                          // grows negative)
  69     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
  70     __ stop ("interpreter frame not set up");
  71     __ bind(L);
  72   }
  73 #endif // ASSERT
  74   // Restore bcp under the assumption that the current frame is still
  75   // interpreted
  76   __ restore_bcp();
  77 
  78   // expression stack must be empty before entering the VM if an
  79   // exception happened
  80   __ empty_expression_stack();
  81   // throw exception
  82   __ call_VM(noreg,
  83              CAST_FROM_FN_PTR(address,
  84                               InterpreterRuntime::throw_StackOverflowError));
  85   return entry;
  86 }
  87 
  88 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
  89         const char* name) {
  90   address entry = __ pc();
  91   // expression stack must be empty before entering the VM if an
  92   // exception happened
  93   __ empty_expression_stack();
  94   // setup parameters
  95   // ??? convention: expect aberrant index in register ebx
  96   __ lea(c_rarg1, ExternalAddress((address)name));
  97   __ call_VM(noreg,
  98              CAST_FROM_FN_PTR(address,
  99                               InterpreterRuntime::
 100                               throw_ArrayIndexOutOfBoundsException),
 101              c_rarg1, rbx);
 102   return entry;
 103 }
 104 
 105 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 106   address entry = __ pc();
 107 
 108   // object is at TOS
 109   __ pop(c_rarg1);
 110 
 111   // expression stack must be empty before entering the VM if an
 112   // exception happened
 113   __ empty_expression_stack();
 114 
 115   __ call_VM(noreg,
 116              CAST_FROM_FN_PTR(address,
 117                               InterpreterRuntime::
 118                               throw_ClassCastException),
 119              c_rarg1);
 120   return entry;
 121 }
 122 
 123 address TemplateInterpreterGenerator::generate_exception_handler_common(
 124         const char* name, const char* message, bool pass_oop) {
 125   assert(!pass_oop || message == NULL, "either oop or message but not both");
 126   address entry = __ pc();
 127   if (pass_oop) {
 128     // object is at TOS
 129     __ pop(c_rarg2);
 130   }
 131   // expression stack must be empty before entering the VM if an
 132   // exception happened
 133   __ empty_expression_stack();
 134   // setup parameters
 135   __ lea(c_rarg1, ExternalAddress((address)name));
 136   if (pass_oop) {
 137     __ call_VM(rax, CAST_FROM_FN_PTR(address,
 138                                      InterpreterRuntime::
 139                                      create_klass_exception),
 140                c_rarg1, c_rarg2);
 141   } else {
 142     // kind of lame ExternalAddress can't take NULL because
 143     // external_word_Relocation will assert.
 144     if (message != NULL) {
 145       __ lea(c_rarg2, ExternalAddress((address)message));
 146     } else {
 147       __ movptr(c_rarg2, NULL_WORD);
 148     }
 149     __ call_VM(rax,
 150                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 151                c_rarg1, c_rarg2);
 152   }
 153   // throw exception
 154   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 155   return entry;
 156 }
 157 
 158 
 159 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 160   address entry = __ pc();
 161   // NULL last_sp until next java call
 162   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 163   __ dispatch_next(state);
 164   return entry;
 165 }
 166 
 167 
 168 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
 169   address entry = __ pc();
 170 
 171   // Restore stack bottom in case i2c adjusted stack
 172   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
 173   // and NULL it as marker that esp is now tos until next java call
 174   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 175 
 176   __ restore_bcp();
 177   __ restore_locals();
 178 
 179   Label L_got_cache, L_giant_index;
 180   if (EnableInvokeDynamic) {
 181     __ cmpb(Address(r13, 0), Bytecodes::_invokedynamic);
 182     __ jcc(Assembler::equal, L_giant_index);
 183   }
 184   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
 185   __ bind(L_got_cache);
 186   __ movl(rbx, Address(rbx, rcx,
 187                        Address::times_ptr,
 188                        in_bytes(ConstantPoolCache::base_offset()) +
 189                        3 * wordSize));
 190   __ andl(rbx, 0xFF);
 191   __ lea(rsp, Address(rsp, rbx, Address::times_8));
 192   __ dispatch_next(state, step);
 193 
 194   // out of the main line of code...
 195   if (EnableInvokeDynamic) {
 196     __ bind(L_giant_index);
 197     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
 198     __ jmp(L_got_cache);
 199   }
 200 
 201   return entry;
 202 }
 203 
 204 
 205 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 206                                                                int step) {
 207   address entry = __ pc();
 208   // NULL last_sp until next java call
 209   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 210   __ restore_bcp();
 211   __ restore_locals();
 212   // handle exceptions
 213   {
 214     Label L;
 215     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
 216     __ jcc(Assembler::zero, L);
 217     __ call_VM(noreg,
 218                CAST_FROM_FN_PTR(address,
 219                                 InterpreterRuntime::throw_pending_exception));
 220     __ should_not_reach_here();
 221     __ bind(L);
 222   }
 223   __ dispatch_next(state, step);
 224   return entry;
 225 }
 226 
 227 int AbstractInterpreter::BasicType_as_index(BasicType type) {
 228   int i = 0;
 229   switch (type) {
 230     case T_BOOLEAN: i = 0; break;
 231     case T_CHAR   : i = 1; break;
 232     case T_BYTE   : i = 2; break;
 233     case T_SHORT  : i = 3; break;
 234     case T_INT    : i = 4; break;
 235     case T_LONG   : i = 5; break;
 236     case T_VOID   : i = 6; break;
 237     case T_FLOAT  : i = 7; break;
 238     case T_DOUBLE : i = 8; break;
 239     case T_OBJECT : i = 9; break;
 240     case T_ARRAY  : i = 9; break;
 241     default       : ShouldNotReachHere();
 242   }
 243   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
 244          "index out of bounds");
 245   return i;
 246 }
 247 
 248 
 249 address TemplateInterpreterGenerator::generate_result_handler_for(
 250         BasicType type) {
 251   address entry = __ pc();
 252   switch (type) {
 253   case T_BOOLEAN: __ c2bool(rax);            break;
 254   case T_CHAR   : __ movzwl(rax, rax);       break;
 255   case T_BYTE   : __ sign_extend_byte(rax);  break;
 256   case T_SHORT  : __ sign_extend_short(rax); break;
 257   case T_INT    : /* nothing to do */        break;
 258   case T_LONG   : /* nothing to do */        break;
 259   case T_VOID   : /* nothing to do */        break;
 260   case T_FLOAT  : /* nothing to do */        break;
 261   case T_DOUBLE : /* nothing to do */        break;
 262   case T_OBJECT :
 263     // retrieve result from frame
 264     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
 265     // and verify it
 266     __ verify_oop(rax);
 267     break;
 268   default       : ShouldNotReachHere();
 269   }
 270   __ ret(0);                                   // return from result handler
 271   return entry;
 272 }
 273 
 274 address TemplateInterpreterGenerator::generate_safept_entry_for(
 275         TosState state,
 276         address runtime_entry) {
 277   address entry = __ pc();
 278   __ push(state);
 279   __ call_VM(noreg, runtime_entry);
 280   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 281   return entry;
 282 }
 283 
 284 
 285 
 286 // Helpers for commoning out cases in the various type of method entries.
 287 //
 288 
 289 
 290 // increment invocation count & check for overflow
 291 //
 292 // Note: checking for negative value instead of overflow
 293 //       so we have a 'sticky' overflow test
 294 //
 295 // rbx: method
 296 // ecx: invocation counter
 297 //
 298 void InterpreterGenerator::generate_counter_incr(
 299         Label* overflow,
 300         Label* profile_method,
 301         Label* profile_method_continue) {
 302   const Address invocation_counter(rbx, in_bytes(Method::invocation_counter_offset()) +
 303                                         in_bytes(InvocationCounter::counter_offset()));
 304   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 305   if (TieredCompilation) {
 306     int increment = InvocationCounter::count_increment;
 307     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
 308     Label no_mdo, done;
 309     if (ProfileInterpreter) {
 310       // Are we profiling?
 311       __ movptr(rax, Address(rbx, Method::method_data_offset()));
 312       __ testptr(rax, rax);
 313       __ jccb(Assembler::zero, no_mdo);
 314       // Increment counter in the MDO
 315       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
 316                                                 in_bytes(InvocationCounter::counter_offset()));
 317       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
 318       __ jmpb(done);
 319     }
 320     __ bind(no_mdo);
 321     // Increment counter in Method* (we don't need to load it, it's in ecx).
 322     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
 323     __ bind(done);
 324   } else {
 325     const Address backedge_counter(rbx,
 326                                    Method::backedge_counter_offset() +
 327                                    InvocationCounter::counter_offset());
 328 
 329     if (ProfileInterpreter) { // %%% Merge this into MethodData*
 330       __ incrementl(Address(rbx,
 331                             Method::interpreter_invocation_counter_offset()));
 332     }
 333     // Update standard invocation counters
 334     __ movl(rax, backedge_counter);   // load backedge counter
 335 
 336     __ incrementl(rcx, InvocationCounter::count_increment);
 337     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
 338 
 339     __ movl(invocation_counter, rcx); // save invocation count
 340     __ addl(rcx, rax);                // add both counters
 341 
 342     // profile_method is non-null only for interpreted method so
 343     // profile_method != NULL == !native_call
 344 
 345     if (ProfileInterpreter && profile_method != NULL) {
 346       // Test to see if we should create a method data oop
 347       __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
 348       __ jcc(Assembler::less, *profile_method_continue);
 349 
 350       // if no method data exists, go to profile_method
 351       __ test_method_data_pointer(rax, *profile_method);
 352     }
 353 
 354     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
 355     __ jcc(Assembler::aboveEqual, *overflow);
 356   }
 357 }
 358 
 359 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
 360 
 361   // Asm interpreter on entry
 362   // r14 - locals
 363   // r13 - bcp
 364   // rbx - method
 365   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
 366   // rbp - interpreter frame
 367 
 368   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 369   // Everything as it was on entry
 370   // rdx is not restored. Doesn't appear to really be set.
 371 
 372   const Address size_of_parameters(rbx,
 373                                    Method::size_of_parameters_offset());
 374 
 375   // InterpreterRuntime::frequency_counter_overflow takes two
 376   // arguments, the first (thread) is passed by call_VM, the second
 377   // indicates if the counter overflow occurs at a backwards branch
 378   // (NULL bcp).  We pass zero for it.  The call returns the address
 379   // of the verified entry point for the method or NULL if the
 380   // compilation did not complete (either went background or bailed
 381   // out).
 382   __ movl(c_rarg1, 0);
 383   __ call_VM(noreg,
 384              CAST_FROM_FN_PTR(address,
 385                               InterpreterRuntime::frequency_counter_overflow),
 386              c_rarg1);
 387 
 388   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
 389   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
 390   // and jump to the interpreted entry.
 391   __ jmp(*do_continue, relocInfo::none);
 392 }
 393 
 394 // See if we've got enough room on the stack for locals plus overhead.
 395 // The expression stack grows down incrementally, so the normal guard
 396 // page mechanism will work for that.
 397 //
 398 // NOTE: Since the additional locals are also always pushed (wasn't
 399 // obvious in generate_method_entry) so the guard should work for them
 400 // too.
 401 //
 402 // Args:
 403 //      rdx: number of additional locals this frame needs (what we must check)
 404 //      rbx: Method*
 405 //
 406 // Kills:
 407 //      rax
 408 void InterpreterGenerator::generate_stack_overflow_check(void) {
 409 
 410   // monitor entry size: see picture of stack set
 411   // (generate_method_entry) and frame_amd64.hpp
 412   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 413 
 414   // total overhead size: entry_size + (saved rbp through expr stack
 415   // bottom).  be sure to change this if you add/subtract anything
 416   // to/from the overhead area
 417   const int overhead_size =
 418     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 419 
 420   const int page_size = os::vm_page_size();
 421 
 422   Label after_frame_check;
 423 
 424   // see if the frame is greater than one page in size. If so,
 425   // then we need to verify there is enough stack space remaining
 426   // for the additional locals.
 427   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
 428   __ jcc(Assembler::belowEqual, after_frame_check);
 429 
 430   // compute rsp as if this were going to be the last frame on
 431   // the stack before the red zone
 432 
 433   const Address stack_base(r15_thread, Thread::stack_base_offset());
 434   const Address stack_size(r15_thread, Thread::stack_size_offset());
 435 
 436   // locals + overhead, in bytes
 437   __ mov(rax, rdx);
 438   __ shlptr(rax, Interpreter::logStackElementSize);  // 2 slots per parameter.
 439   __ addptr(rax, overhead_size);
 440 
 441 #ifdef ASSERT
 442   Label stack_base_okay, stack_size_okay;
 443   // verify that thread stack base is non-zero
 444   __ cmpptr(stack_base, (int32_t)NULL_WORD);
 445   __ jcc(Assembler::notEqual, stack_base_okay);
 446   __ stop("stack base is zero");
 447   __ bind(stack_base_okay);
 448   // verify that thread stack size is non-zero
 449   __ cmpptr(stack_size, 0);
 450   __ jcc(Assembler::notEqual, stack_size_okay);
 451   __ stop("stack size is zero");
 452   __ bind(stack_size_okay);
 453 #endif
 454 
 455   // Add stack base to locals and subtract stack size
 456   __ addptr(rax, stack_base);
 457   __ subptr(rax, stack_size);
 458 
 459   // Use the maximum number of pages we might bang.
 460   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
 461                                                                               (StackRedPages+StackYellowPages);
 462 
 463   // add in the red and yellow zone sizes
 464   __ addptr(rax, max_pages * page_size);
 465 
 466   // check against the current stack bottom
 467   __ cmpptr(rsp, rax);
 468   __ jcc(Assembler::above, after_frame_check);
 469 
 470   // Restore sender's sp as SP. This is necessary if the sender's
 471   // frame is an extended compiled frame (see gen_c2i_adapter())
 472   // and safer anyway in case of JSR292 adaptations.
 473 
 474   __ pop(rax); // return address must be moved if SP is changed
 475   __ mov(rsp, r13);
 476   __ push(rax);
 477 
 478   // Note: the restored frame is not necessarily interpreted.
 479   // Use the shared runtime version of the StackOverflowError.
 480   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 481   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
 482 
 483   // all done with frame size check
 484   __ bind(after_frame_check);
 485 }
 486 
 487 // Allocate monitor and lock method (asm interpreter)
 488 //
 489 // Args:
 490 //      rbx: Method*
 491 //      r14: locals
 492 //
 493 // Kills:
 494 //      rax
 495 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 496 //      rscratch1, rscratch2 (scratch regs)
 497 void InterpreterGenerator::lock_method(void) {
 498   // synchronize method
 499   const Address access_flags(rbx, Method::access_flags_offset());
 500   const Address monitor_block_top(
 501         rbp,
 502         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 503   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 504 
 505 #ifdef ASSERT
 506   {
 507     Label L;
 508     __ movl(rax, access_flags);
 509     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 510     __ jcc(Assembler::notZero, L);
 511     __ stop("method doesn't need synchronization");
 512     __ bind(L);
 513   }
 514 #endif // ASSERT
 515 
 516   // get synchronization object
 517   {
 518     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 519     Label done;
 520     __ movl(rax, access_flags);
 521     __ testl(rax, JVM_ACC_STATIC);
 522     // get receiver (assume this is frequent case)
 523     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
 524     __ jcc(Assembler::zero, done);
 525     __ movptr(rax, Address(rbx, Method::const_offset()));
 526     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
 527     __ movptr(rax, Address(rax,
 528                            ConstantPool::pool_holder_offset_in_bytes()));
 529     __ movptr(rax, Address(rax, mirror_offset));
 530 
 531 #ifdef ASSERT
 532     {
 533       Label L;
 534       __ testptr(rax, rax);
 535       __ jcc(Assembler::notZero, L);
 536       __ stop("synchronization object is NULL");
 537       __ bind(L);
 538     }
 539 #endif // ASSERT
 540 
 541     __ bind(done);
 542   }
 543 
 544   // add space for monitor & lock
 545   __ subptr(rsp, entry_size); // add space for a monitor entry
 546   __ movptr(monitor_block_top, rsp);  // set new monitor block top
 547   // store object
 548   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
 549   __ movptr(c_rarg1, rsp); // object address
 550   __ lock_object(c_rarg1);
 551 }
 552 
 553 // Generate a fixed interpreter frame. This is identical setup for
 554 // interpreted methods and for native methods hence the shared code.
 555 //
 556 // Args:
 557 //      rax: return address
 558 //      rbx: Method*
 559 //      r14: pointer to locals
 560 //      r13: sender sp
 561 //      rdx: cp cache
 562 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 563   // initialize fixed part of activation frame
 564   __ push(rax);        // save return address
 565   __ enter();          // save old & set new rbp
 566   __ push(r13);        // set sender sp
 567   __ push((int)NULL_WORD); // leave last_sp as null
 568   __ movptr(r13, Address(rbx, Method::const_offset()));      // get ConstMethod*
 569   __ lea(r13, Address(r13, ConstMethod::codes_offset())); // get codebase
 570   __ push(rbx);        // save Method*
 571   if (ProfileInterpreter) {
 572     Label method_data_continue;
 573     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
 574     __ testptr(rdx, rdx);
 575     __ jcc(Assembler::zero, method_data_continue);
 576     __ addptr(rdx, in_bytes(MethodData::data_offset()));
 577     __ bind(method_data_continue);
 578     __ push(rdx);      // set the mdp (method data pointer)
 579   } else {
 580     __ push(0);
 581   }
 582 
 583   __ movptr(rdx, Address(rbx, Method::const_offset()));
 584   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
 585   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
 586   __ push(rdx); // set constant pool cache
 587   __ push(r14); // set locals pointer
 588   if (native_call) {
 589     __ push(0); // no bcp
 590   } else {
 591     __ push(r13); // set bcp
 592   }
 593   __ push(0); // reserve word for pointer to expression stack bottom
 594   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
 595 }
 596 
 597 // End of helpers
 598 
 599 // Various method entries
 600 //------------------------------------------------------------------------------------------------------------------------
 601 //
 602 //
 603 
 604 // Call an accessor method (assuming it is resolved, otherwise drop
 605 // into vanilla (slow path) entry
 606 address InterpreterGenerator::generate_accessor_entry(void) {
 607   // rbx: Method*
 608 
 609   // r13: senderSP must preserver for slow path, set SP to it on fast path
 610 
 611   address entry_point = __ pc();
 612   Label xreturn_path;
 613 
 614   // do fastpath for resolved accessor methods
 615   if (UseFastAccessorMethods) {
 616     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
 617     //       thereof; parameter size = 1
 618     // Note: We can only use this code if the getfield has been resolved
 619     //       and if we don't have a null-pointer exception => check for
 620     //       these conditions first and use slow path if necessary.
 621     Label slow_path;
 622     // If we need a safepoint check, generate full interpreter entry.
 623     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 624              SafepointSynchronize::_not_synchronized);
 625 
 626     __ jcc(Assembler::notEqual, slow_path);
 627     // rbx: method
 628     __ movptr(rax, Address(rsp, wordSize));
 629 
 630     // check if local 0 != NULL and read field
 631     __ testptr(rax, rax);
 632     __ jcc(Assembler::zero, slow_path);
 633 
 634     // read first instruction word and extract bytecode @ 1 and index @ 2
 635     __ movptr(rdx, Address(rbx, Method::const_offset()));
 636     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
 637     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
 638     // Shift codes right to get the index on the right.
 639     // The bytecode fetched looks like <index><0xb4><0x2a>
 640     __ shrl(rdx, 2 * BitsPerByte);
 641     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
 642     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
 643 
 644     // rax: local 0
 645     // rbx: method
 646     // rdx: constant pool cache index
 647     // rdi: constant pool cache
 648 
 649     // check if getfield has been resolved and read constant pool cache entry
 650     // check the validity of the cache entry by testing whether _indices field
 651     // contains Bytecode::_getfield in b1 byte.
 652     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
 653            "adjust shift below");
 654     __ movl(rcx,
 655             Address(rdi,
 656                     rdx,
 657                     Address::times_8,
 658                     ConstantPoolCache::base_offset() +
 659                     ConstantPoolCacheEntry::indices_offset()));
 660     __ shrl(rcx, 2 * BitsPerByte);
 661     __ andl(rcx, 0xFF);
 662     __ cmpl(rcx, Bytecodes::_getfield);
 663     __ jcc(Assembler::notEqual, slow_path);
 664 
 665     // Note: constant pool entry is not valid before bytecode is resolved
 666     __ movptr(rcx,
 667               Address(rdi,
 668                       rdx,
 669                       Address::times_8,
 670                       ConstantPoolCache::base_offset() +
 671                       ConstantPoolCacheEntry::f2_offset()));
 672     // edx: flags
 673     __ movl(rdx,
 674             Address(rdi,
 675                     rdx,
 676                     Address::times_8,
 677                     ConstantPoolCache::base_offset() +
 678                     ConstantPoolCacheEntry::flags_offset()));
 679 
 680     Label notObj, notInt, notByte, notShort;
 681     const Address field_address(rax, rcx, Address::times_1);
 682 
 683     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 684     // because they are different sizes.
 685     // Use the type from the constant pool cache
 686     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
 687     // Make sure we don't need to mask edx after the above shift
 688     ConstantPoolCacheEntry::verify_tos_state_shift();
 689 
 690     __ cmpl(rdx, atos);
 691     __ jcc(Assembler::notEqual, notObj);
 692     // atos
 693     __ load_heap_oop(rax, field_address);
 694     __ jmp(xreturn_path);
 695 
 696     __ bind(notObj);
 697     __ cmpl(rdx, itos);
 698     __ jcc(Assembler::notEqual, notInt);
 699     // itos
 700     __ movl(rax, field_address);
 701     __ jmp(xreturn_path);
 702 
 703     __ bind(notInt);
 704     __ cmpl(rdx, btos);
 705     __ jcc(Assembler::notEqual, notByte);
 706     // btos
 707     __ load_signed_byte(rax, field_address);
 708     __ jmp(xreturn_path);
 709 
 710     __ bind(notByte);
 711     __ cmpl(rdx, stos);
 712     __ jcc(Assembler::notEqual, notShort);
 713     // stos
 714     __ load_signed_short(rax, field_address);
 715     __ jmp(xreturn_path);
 716 
 717     __ bind(notShort);
 718 #ifdef ASSERT
 719     Label okay;
 720     __ cmpl(rdx, ctos);
 721     __ jcc(Assembler::equal, okay);
 722     __ stop("what type is this?");
 723     __ bind(okay);
 724 #endif
 725     // ctos
 726     __ load_unsigned_short(rax, field_address);
 727 
 728     __ bind(xreturn_path);
 729 
 730     // _ireturn/_areturn
 731     __ pop(rdi);
 732     __ mov(rsp, r13);
 733     __ jmp(rdi);
 734     __ ret(0);
 735 
 736     // generate a vanilla interpreter entry as the slow path
 737     __ bind(slow_path);
 738     (void) generate_normal_entry(false);
 739   } else {
 740     (void) generate_normal_entry(false);
 741   }
 742 
 743   return entry_point;
 744 }
 745 
 746 // Method entry for java.lang.ref.Reference.get.
 747 address InterpreterGenerator::generate_Reference_get_entry(void) {
 748 #ifndef SERIALGC
 749   // Code: _aload_0, _getfield, _areturn
 750   // parameter size = 1
 751   //
 752   // The code that gets generated by this routine is split into 2 parts:
 753   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 754   //    2. The slow path - which is an expansion of the regular method entry.
 755   //
 756   // Notes:-
 757   // * In the G1 code we do not check whether we need to block for
 758   //   a safepoint. If G1 is enabled then we must execute the specialized
 759   //   code for Reference.get (except when the Reference object is null)
 760   //   so that we can log the value in the referent field with an SATB
 761   //   update buffer.
 762   //   If the code for the getfield template is modified so that the
 763   //   G1 pre-barrier code is executed when the current method is
 764   //   Reference.get() then going through the normal method entry
 765   //   will be fine.
 766   // * The G1 code can, however, check the receiver object (the instance
 767   //   of java.lang.Reference) and jump to the slow path if null. If the
 768   //   Reference object is null then we obviously cannot fetch the referent
 769   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 770   //   regular method entry code to generate the NPE.
 771   //
 772   // This code is based on generate_accessor_enty.
 773   //
 774   // rbx: Method*
 775 
 776   // r13: senderSP must preserve for slow path, set SP to it on fast path
 777 
 778   address entry = __ pc();
 779 
 780   const int referent_offset = java_lang_ref_Reference::referent_offset;
 781   guarantee(referent_offset > 0, "referent offset not initialized");
 782 
 783   if (UseG1GC) {
 784     Label slow_path;
 785     // rbx: method
 786 
 787     // Check if local 0 != NULL
 788     // If the receiver is null then it is OK to jump to the slow path.
 789     __ movptr(rax, Address(rsp, wordSize));
 790 
 791     __ testptr(rax, rax);
 792     __ jcc(Assembler::zero, slow_path);
 793 
 794     // rax: local 0
 795     // rbx: method (but can be used as scratch now)
 796     // rdx: scratch
 797     // rdi: scratch
 798 
 799     // Generate the G1 pre-barrier code to log the value of
 800     // the referent field in an SATB buffer.
 801 
 802     // Load the value of the referent field.
 803     const Address field_address(rax, referent_offset);
 804     __ load_heap_oop(rax, field_address);
 805 
 806     // Generate the G1 pre-barrier code to log the value of
 807     // the referent field in an SATB buffer.
 808     __ g1_write_barrier_pre(noreg /* obj */,
 809                             rax /* pre_val */,
 810                             r15_thread /* thread */,
 811                             rbx /* tmp */,
 812                             true /* tosca_live */,
 813                             true /* expand_call */);
 814 
 815     // _areturn
 816     __ pop(rdi);                // get return address
 817     __ mov(rsp, r13);           // set sp to sender sp
 818     __ jmp(rdi);
 819     __ ret(0);
 820 
 821     // generate a vanilla interpreter entry as the slow path
 822     __ bind(slow_path);
 823     (void) generate_normal_entry(false);
 824 
 825     return entry;
 826   }
 827 #endif // SERIALGC
 828 
 829   // If G1 is not enabled then attempt to go through the accessor entry point
 830   // Reference.get is an accessor
 831   return generate_accessor_entry();
 832 }
 833 
 834 
 835 // Interpreter stub for calling a native method. (asm interpreter)
 836 // This sets up a somewhat different looking stack for calling the
 837 // native method than the typical interpreter frame setup.
 838 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 839   // determine code generation flags
 840   bool inc_counter  = UseCompiler || CountCompiledCalls;
 841 
 842   // rbx: Method*
 843   // r13: sender sp
 844 
 845   address entry_point = __ pc();
 846 
 847   const Address size_of_parameters(rbx, Method::
 848                                         size_of_parameters_offset());
 849   const Address invocation_counter(rbx, Method::
 850                                         invocation_counter_offset() +
 851                                         InvocationCounter::counter_offset());
 852   const Address access_flags      (rbx, Method::access_flags_offset());
 853 
 854   // get parameter size (always needed)
 855   __ load_unsigned_short(rcx, size_of_parameters);
 856 
 857   // native calls don't need the stack size check since they have no
 858   // expression stack and the arguments are already on the stack and
 859   // we only add a handful of words to the stack
 860 
 861   // rbx: Method*
 862   // rcx: size of parameters
 863   // r13: sender sp
 864   __ pop(rax);                                       // get return address
 865 
 866   // for natives the size of locals is zero
 867 
 868   // compute beginning of parameters (r14)
 869   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
 870 
 871   // add 2 zero-initialized slots for native calls
 872   // initialize result_handler slot
 873   __ push((int) NULL_WORD);
 874   // slot for oop temp
 875   // (static native method holder mirror/jni oop result)
 876   __ push((int) NULL_WORD);
 877 
 878   if (inc_counter) {
 879     __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
 880   }
 881 
 882   // initialize fixed part of activation frame
 883   generate_fixed_frame(true);
 884 
 885   // make sure method is native & not abstract
 886 #ifdef ASSERT
 887   __ movl(rax, access_flags);
 888   {
 889     Label L;
 890     __ testl(rax, JVM_ACC_NATIVE);
 891     __ jcc(Assembler::notZero, L);
 892     __ stop("tried to execute non-native method as native");
 893     __ bind(L);
 894   }
 895   {
 896     Label L;
 897     __ testl(rax, JVM_ACC_ABSTRACT);
 898     __ jcc(Assembler::zero, L);
 899     __ stop("tried to execute abstract method in interpreter");
 900     __ bind(L);
 901   }
 902 #endif
 903 
 904   // Since at this point in the method invocation the exception handler
 905   // would try to exit the monitor of synchronized methods which hasn't
 906   // been entered yet, we set the thread local variable
 907   // _do_not_unlock_if_synchronized to true. The remove_activation will
 908   // check this flag.
 909 
 910   const Address do_not_unlock_if_synchronized(r15_thread,
 911         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 912   __ movbool(do_not_unlock_if_synchronized, true);
 913 
 914   // increment invocation count & check for overflow
 915   Label invocation_counter_overflow;
 916   if (inc_counter) {
 917     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 918   }
 919 
 920   Label continue_after_compile;
 921   __ bind(continue_after_compile);
 922 
 923   bang_stack_shadow_pages(true);
 924 
 925   // reset the _do_not_unlock_if_synchronized flag
 926   __ movbool(do_not_unlock_if_synchronized, false);
 927 
 928   // check for synchronized methods
 929   // Must happen AFTER invocation_counter check and stack overflow check,
 930   // so method is not locked if overflows.
 931   if (synchronized) {
 932     lock_method();
 933   } else {
 934     // no synchronization necessary
 935 #ifdef ASSERT
 936     {
 937       Label L;
 938       __ movl(rax, access_flags);
 939       __ testl(rax, JVM_ACC_SYNCHRONIZED);
 940       __ jcc(Assembler::zero, L);
 941       __ stop("method needs synchronization");
 942       __ bind(L);
 943     }
 944 #endif
 945   }
 946 
 947   // start execution
 948 #ifdef ASSERT
 949   {
 950     Label L;
 951     const Address monitor_block_top(rbp,
 952                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
 953     __ movptr(rax, monitor_block_top);
 954     __ cmpptr(rax, rsp);
 955     __ jcc(Assembler::equal, L);
 956     __ stop("broken stack frame setup in interpreter");
 957     __ bind(L);
 958   }
 959 #endif
 960 
 961   // jvmti support
 962   __ notify_method_entry();
 963 
 964   // work registers
 965   const Register method = rbx;
 966   const Register t      = r11;
 967 
 968   // allocate space for parameters
 969   __ get_method(method);
 970   __ load_unsigned_short(t,
 971                          Address(method,
 972                                  Method::size_of_parameters_offset()));
 973   __ shll(t, Interpreter::logStackElementSize);
 974 
 975   __ subptr(rsp, t);
 976   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
 977   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
 978 
 979   // get signature handler
 980   {
 981     Label L;
 982     __ movptr(t, Address(method, Method::signature_handler_offset()));
 983     __ testptr(t, t);
 984     __ jcc(Assembler::notZero, L);
 985     __ call_VM(noreg,
 986                CAST_FROM_FN_PTR(address,
 987                                 InterpreterRuntime::prepare_native_call),
 988                method);
 989     __ get_method(method);
 990     __ movptr(t, Address(method, Method::signature_handler_offset()));
 991     __ bind(L);
 992   }
 993 
 994   // call signature handler
 995   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
 996          "adjust this code");
 997   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
 998          "adjust this code");
 999   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1000           "adjust this code");
1001 
1002   // The generated handlers do not touch RBX (the method oop).
1003   // However, large signatures cannot be cached and are generated
1004   // each time here.  The slow-path generator can do a GC on return,
1005   // so we must reload it after the call.
1006   __ call(t);
1007   __ get_method(method);        // slow path can do a GC, reload RBX
1008 
1009 
1010   // result handler is in rax
1011   // set result handler
1012   __ movptr(Address(rbp,
1013                     (frame::interpreter_frame_result_handler_offset) * wordSize),
1014             rax);
1015 
1016   // pass mirror handle if static call
1017   {
1018     Label L;
1019     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1020     __ movl(t, Address(method, Method::access_flags_offset()));
1021     __ testl(t, JVM_ACC_STATIC);
1022     __ jcc(Assembler::zero, L);
1023     // get mirror
1024     __ movptr(t, Address(method, Method::const_offset()));
1025     __ movptr(t, Address(t, ConstMethod::constants_offset()));
1026     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
1027     __ movptr(t, Address(t, mirror_offset));
1028     // copy mirror into activation frame
1029     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
1030             t);
1031     // pass handle to mirror
1032     __ lea(c_rarg1,
1033            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
1034     __ bind(L);
1035   }
1036 
1037   // get native function entry point
1038   {
1039     Label L;
1040     __ movptr(rax, Address(method, Method::native_function_offset()));
1041     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1042     __ movptr(rscratch2, unsatisfied.addr());
1043     __ cmpptr(rax, rscratch2);
1044     __ jcc(Assembler::notEqual, L);
1045     __ call_VM(noreg,
1046                CAST_FROM_FN_PTR(address,
1047                                 InterpreterRuntime::prepare_native_call),
1048                method);
1049     __ get_method(method);
1050     __ movptr(rax, Address(method, Method::native_function_offset()));
1051     __ bind(L);
1052   }
1053 
1054   // pass JNIEnv
1055   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
1056 
1057   // It is enough that the pc() points into the right code
1058   // segment. It does not have to be the correct return pc.
1059   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
1060 
1061   // change thread state
1062 #ifdef ASSERT
1063   {
1064     Label L;
1065     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
1066     __ cmpl(t, _thread_in_Java);
1067     __ jcc(Assembler::equal, L);
1068     __ stop("Wrong thread state in native stub");
1069     __ bind(L);
1070   }
1071 #endif
1072 
1073   // Change state to native
1074 
1075   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
1076           _thread_in_native);
1077 
1078   // Call the native method.
1079   __ call(rax);
1080   // result potentially in rax or xmm0
1081 
1082   // Depending on runtime options, either restore the MXCSR
1083   // register after returning from the JNI Call or verify that
1084   // it wasn't changed during -Xcheck:jni.
1085   if (RestoreMXCSROnJNICalls) {
1086     __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
1087   }
1088   else if (CheckJNICalls) {
1089     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
1090   }
1091 
1092   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1093   // in order to extract the result of a method call. If the order of these
1094   // pushes change or anything else is added to the stack then the code in
1095   // interpreter_frame_result must also change.
1096 
1097   __ push(dtos);
1098   __ push(ltos);
1099 
1100   // change thread state
1101   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
1102           _thread_in_native_trans);
1103 
1104   if (os::is_MP()) {
1105     if (UseMembar) {
1106       // Force this write out before the read below
1107       __ membar(Assembler::Membar_mask_bits(
1108            Assembler::LoadLoad | Assembler::LoadStore |
1109            Assembler::StoreLoad | Assembler::StoreStore));
1110     } else {
1111       // Write serialization page so VM thread can do a pseudo remote membar.
1112       // We use the current thread pointer to calculate a thread specific
1113       // offset to write to within the page. This minimizes bus traffic
1114       // due to cache line collision.
1115       __ serialize_memory(r15_thread, rscratch2);
1116     }
1117   }
1118 
1119   // check for safepoint operation in progress and/or pending suspend requests
1120   {
1121     Label Continue;
1122     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1123              SafepointSynchronize::_not_synchronized);
1124 
1125     Label L;
1126     __ jcc(Assembler::notEqual, L);
1127     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
1128     __ jcc(Assembler::equal, Continue);
1129     __ bind(L);
1130 
1131     // Don't use call_VM as it will see a possible pending exception
1132     // and forward it and never return here preventing us from
1133     // clearing _last_native_pc down below.  Also can't use
1134     // call_VM_leaf either as it will check to see if r13 & r14 are
1135     // preserved and correspond to the bcp/locals pointers. So we do a
1136     // runtime call by hand.
1137     //
1138     __ mov(c_rarg0, r15_thread);
1139     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1140     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1141     __ andptr(rsp, -16); // align stack as required by ABI
1142     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1143     __ mov(rsp, r12); // restore sp
1144     __ reinit_heapbase();
1145     __ bind(Continue);
1146   }
1147 
1148   // change thread state
1149   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
1150 
1151   // reset_last_Java_frame
1152   __ reset_last_Java_frame(true, true);
1153 
1154   // reset handle block
1155   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
1156   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1157 
1158   // If result is an oop unbox and store it in frame where gc will see it
1159   // and result handler will pick it up
1160 
1161   {
1162     Label no_oop, store_result;
1163     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1164     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
1165     __ jcc(Assembler::notEqual, no_oop);
1166     // retrieve result
1167     __ pop(ltos);
1168     __ testptr(rax, rax);
1169     __ jcc(Assembler::zero, store_result);
1170     __ movptr(rax, Address(rax, 0));
1171     __ bind(store_result);
1172     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
1173     // keep stack depth as expected by pushing oop which will eventually be discarde
1174     __ push(ltos);
1175     __ bind(no_oop);
1176   }
1177 
1178 
1179   {
1180     Label no_reguard;
1181     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
1182             JavaThread::stack_guard_yellow_disabled);
1183     __ jcc(Assembler::notEqual, no_reguard);
1184 
1185     __ pusha(); // XXX only save smashed registers
1186     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1187     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1188     __ andptr(rsp, -16); // align stack as required by ABI
1189     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1190     __ mov(rsp, r12); // restore sp
1191     __ popa(); // XXX only restore smashed registers
1192     __ reinit_heapbase();
1193 
1194     __ bind(no_reguard);
1195   }
1196 
1197 
1198   // The method register is junk from after the thread_in_native transition
1199   // until here.  Also can't call_VM until the bcp has been
1200   // restored.  Need bcp for throwing exception below so get it now.
1201   __ get_method(method);
1202 
1203   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
1204   // r13 == code_base()
1205   __ movptr(r13, Address(method, Method::const_offset()));   // get ConstMethod*
1206   __ lea(r13, Address(r13, ConstMethod::codes_offset()));    // get codebase
1207   // handle exceptions (exception handling will handle unlocking!)
1208   {
1209     Label L;
1210     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
1211     __ jcc(Assembler::zero, L);
1212     // Note: At some point we may want to unify this with the code
1213     // used in call_VM_base(); i.e., we should use the
1214     // StubRoutines::forward_exception code. For now this doesn't work
1215     // here because the rsp is not correctly set at this point.
1216     __ MacroAssembler::call_VM(noreg,
1217                                CAST_FROM_FN_PTR(address,
1218                                InterpreterRuntime::throw_pending_exception));
1219     __ should_not_reach_here();
1220     __ bind(L);
1221   }
1222 
1223   // do unlocking if necessary
1224   {
1225     Label L;
1226     __ movl(t, Address(method, Method::access_flags_offset()));
1227     __ testl(t, JVM_ACC_SYNCHRONIZED);
1228     __ jcc(Assembler::zero, L);
1229     // the code below should be shared with interpreter macro
1230     // assembler implementation
1231     {
1232       Label unlock;
1233       // BasicObjectLock will be first in list, since this is a
1234       // synchronized method. However, need to check that the object
1235       // has not been unlocked by an explicit monitorexit bytecode.
1236       const Address monitor(rbp,
1237                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1238                                        wordSize - sizeof(BasicObjectLock)));
1239 
1240       // monitor expect in c_rarg1 for slow unlock path
1241       __ lea(c_rarg1, monitor); // address of first monitor
1242 
1243       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
1244       __ testptr(t, t);
1245       __ jcc(Assembler::notZero, unlock);
1246 
1247       // Entry already unlocked, need to throw exception
1248       __ MacroAssembler::call_VM(noreg,
1249                                  CAST_FROM_FN_PTR(address,
1250                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1251       __ should_not_reach_here();
1252 
1253       __ bind(unlock);
1254       __ unlock_object(c_rarg1);
1255     }
1256     __ bind(L);
1257   }
1258 
1259   // jvmti support
1260   // Note: This must happen _after_ handling/throwing any exceptions since
1261   //       the exception handler code notifies the runtime of method exits
1262   //       too. If this happens before, method entry/exit notifications are
1263   //       not properly paired (was bug - gri 11/22/99).
1264   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1265 
1266   // restore potential result in edx:eax, call result handler to
1267   // restore potential result in ST0 & handle result
1268 
1269   __ pop(ltos);
1270   __ pop(dtos);
1271 
1272   __ movptr(t, Address(rbp,
1273                        (frame::interpreter_frame_result_handler_offset) * wordSize));
1274   __ call(t);
1275 
1276   // remove activation
1277   __ movptr(t, Address(rbp,
1278                        frame::interpreter_frame_sender_sp_offset *
1279                        wordSize)); // get sender sp
1280   __ leave();                                // remove frame anchor
1281   __ pop(rdi);                               // get return address
1282   __ mov(rsp, t);                            // set sp to sender sp
1283   __ jmp(rdi);
1284 
1285   if (inc_counter) {
1286     // Handle overflow of counter and compile method
1287     __ bind(invocation_counter_overflow);
1288     generate_counter_overflow(&continue_after_compile);
1289   }
1290 
1291   return entry_point;
1292 }
1293 
1294 //
1295 // Generic interpreted method entry to (asm) interpreter
1296 //
1297 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1298   // determine code generation flags
1299   bool inc_counter  = UseCompiler || CountCompiledCalls;
1300 
1301   // ebx: Method*
1302   // r13: sender sp
1303   address entry_point = __ pc();
1304 
1305   const Address size_of_parameters(rbx,
1306                                    Method::size_of_parameters_offset());
1307   const Address size_of_locals(rbx, Method::size_of_locals_offset());
1308   const Address invocation_counter(rbx,
1309                                    Method::invocation_counter_offset() +
1310                                    InvocationCounter::counter_offset());
1311   const Address access_flags(rbx, Method::access_flags_offset());
1312 
1313   // get parameter size (always needed)
1314   __ load_unsigned_short(rcx, size_of_parameters);
1315 
1316   // rbx: Method*
1317   // rcx: size of parameters
1318   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
1319 
1320   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
1321   __ subl(rdx, rcx); // rdx = no. of additional locals
1322 
1323   // YYY
1324 //   __ incrementl(rdx);
1325 //   __ andl(rdx, -2);
1326 
1327   // see if we've got enough room on the stack for locals plus overhead.
1328   generate_stack_overflow_check();
1329 
1330   // get return address
1331   __ pop(rax);
1332 
1333   // compute beginning of parameters (r14)
1334   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
1335 
1336   // rdx - # of additional locals
1337   // allocate space for locals
1338   // explicitly initialize locals
1339   {
1340     Label exit, loop;
1341     __ testl(rdx, rdx);
1342     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
1343     __ bind(loop);
1344     __ push((int) NULL_WORD); // initialize local variables
1345     __ decrementl(rdx); // until everything initialized
1346     __ jcc(Assembler::greater, loop);
1347     __ bind(exit);
1348   }
1349 
1350   // (pre-)fetch invocation count
1351   if (inc_counter) {
1352     __ movl(rcx, invocation_counter);
1353   }
1354   // initialize fixed part of activation frame
1355   generate_fixed_frame(false);
1356 
1357   // make sure method is not native & not abstract
1358 #ifdef ASSERT
1359   __ movl(rax, access_flags);
1360   {
1361     Label L;
1362     __ testl(rax, JVM_ACC_NATIVE);
1363     __ jcc(Assembler::zero, L);
1364     __ stop("tried to execute native method as non-native");
1365     __ bind(L);
1366   }
1367   {
1368     Label L;
1369     __ testl(rax, JVM_ACC_ABSTRACT);
1370     __ jcc(Assembler::zero, L);
1371     __ stop("tried to execute abstract method in interpreter");
1372     __ bind(L);
1373   }
1374 #endif
1375 
1376   // Since at this point in the method invocation the exception
1377   // handler would try to exit the monitor of synchronized methods
1378   // which hasn't been entered yet, we set the thread local variable
1379   // _do_not_unlock_if_synchronized to true. The remove_activation
1380   // will check this flag.
1381 
1382   const Address do_not_unlock_if_synchronized(r15_thread,
1383         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1384   __ movbool(do_not_unlock_if_synchronized, true);
1385 
1386   // increment invocation count & check for overflow
1387   Label invocation_counter_overflow;
1388   Label profile_method;
1389   Label profile_method_continue;
1390   if (inc_counter) {
1391     generate_counter_incr(&invocation_counter_overflow,
1392                           &profile_method,
1393                           &profile_method_continue);
1394     if (ProfileInterpreter) {
1395       __ bind(profile_method_continue);
1396     }
1397   }
1398 
1399   Label continue_after_compile;
1400   __ bind(continue_after_compile);
1401 
1402   // check for synchronized interpreted methods
1403   bang_stack_shadow_pages(false);
1404 
1405   // reset the _do_not_unlock_if_synchronized flag
1406   __ movbool(do_not_unlock_if_synchronized, false);
1407 
1408   // check for synchronized methods
1409   // Must happen AFTER invocation_counter check and stack overflow check,
1410   // so method is not locked if overflows.
1411   if (synchronized) {
1412     // Allocate monitor and lock method
1413     lock_method();
1414   } else {
1415     // no synchronization necessary
1416 #ifdef ASSERT
1417     {
1418       Label L;
1419       __ movl(rax, access_flags);
1420       __ testl(rax, JVM_ACC_SYNCHRONIZED);
1421       __ jcc(Assembler::zero, L);
1422       __ stop("method needs synchronization");
1423       __ bind(L);
1424     }
1425 #endif
1426   }
1427 
1428   // start execution
1429 #ifdef ASSERT
1430   {
1431     Label L;
1432      const Address monitor_block_top (rbp,
1433                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1434     __ movptr(rax, monitor_block_top);
1435     __ cmpptr(rax, rsp);
1436     __ jcc(Assembler::equal, L);
1437     __ stop("broken stack frame setup in interpreter");
1438     __ bind(L);
1439   }
1440 #endif
1441 
1442   // jvmti support
1443   __ notify_method_entry();
1444 
1445   __ dispatch_next(vtos);
1446 
1447   // invocation counter overflow
1448   if (inc_counter) {
1449     if (ProfileInterpreter) {
1450       // We have decided to profile this method in the interpreter
1451       __ bind(profile_method);
1452       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1453       __ set_method_data_pointer_for_bcp();
1454       __ get_method(rbx);
1455       __ jmp(profile_method_continue);
1456     }
1457     // Handle overflow of counter and compile method
1458     __ bind(invocation_counter_overflow);
1459     generate_counter_overflow(&continue_after_compile);
1460   }
1461 
1462   return entry_point;
1463 }
1464 
1465 // Entry points
1466 //
1467 // Here we generate the various kind of entries into the interpreter.
1468 // The two main entry type are generic bytecode methods and native
1469 // call method.  These both come in synchronized and non-synchronized
1470 // versions but the frame layout they create is very similar. The
1471 // other method entry types are really just special purpose entries
1472 // that are really entry and interpretation all in one. These are for
1473 // trivial methods like accessor, empty, or special math methods.
1474 //
1475 // When control flow reaches any of the entry types for the interpreter
1476 // the following holds ->
1477 //
1478 // Arguments:
1479 //
1480 // rbx: Method*
1481 //
1482 // Stack layout immediately at entry
1483 //
1484 // [ return address     ] <--- rsp
1485 // [ parameter n        ]
1486 //   ...
1487 // [ parameter 1        ]
1488 // [ expression stack   ] (caller's java expression stack)
1489 
1490 // Assuming that we don't go to one of the trivial specialized entries
1491 // the stack will look like below when we are ready to execute the
1492 // first bytecode (or call the native routine). The register usage
1493 // will be as the template based interpreter expects (see
1494 // interpreter_amd64.hpp).
1495 //
1496 // local variables follow incoming parameters immediately; i.e.
1497 // the return address is moved to the end of the locals).
1498 //
1499 // [ monitor entry      ] <--- rsp
1500 //   ...
1501 // [ monitor entry      ]
1502 // [ expr. stack bottom ]
1503 // [ saved r13          ]
1504 // [ current r14        ]
1505 // [ Method*            ]
1506 // [ saved ebp          ] <--- rbp
1507 // [ return address     ]
1508 // [ local variable m   ]
1509 //   ...
1510 // [ local variable 1   ]
1511 // [ parameter n        ]
1512 //   ...
1513 // [ parameter 1        ] <--- r14
1514 
1515 address AbstractInterpreterGenerator::generate_method_entry(
1516                                         AbstractInterpreter::MethodKind kind) {
1517   // determine code generation flags
1518   bool synchronized = false;
1519   address entry_point = NULL;
1520 
1521   switch (kind) {
1522   case Interpreter::zerolocals             :                                                                             break;
1523   case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
1524   case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break;
1525   case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);  break;
1526   case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();       break;
1527   case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();    break;
1528   case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();    break;
1529 
1530   case Interpreter::java_lang_math_sin     : // fall thru
1531   case Interpreter::java_lang_math_cos     : // fall thru
1532   case Interpreter::java_lang_math_tan     : // fall thru
1533   case Interpreter::java_lang_math_abs     : // fall thru
1534   case Interpreter::java_lang_math_log     : // fall thru
1535   case Interpreter::java_lang_math_log10   : // fall thru
1536   case Interpreter::java_lang_math_sqrt    : // fall thru
1537   case Interpreter::java_lang_math_pow     : // fall thru
1538   case Interpreter::java_lang_math_exp     : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);    break;
1539   case Interpreter::java_lang_ref_reference_get
1540                                            : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
1541   default:
1542     fatal(err_msg("unexpected method kind: %d", kind));
1543     break;
1544   }
1545 
1546   if (entry_point) {
1547     return entry_point;
1548   }
1549 
1550   return ((InterpreterGenerator*) this)->
1551                                 generate_normal_entry(synchronized);
1552 }
1553 
1554 // These should never be compiled since the interpreter will prefer
1555 // the compiled version to the intrinsic version.
1556 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
1557   switch (method_kind(m)) {
1558     case Interpreter::java_lang_math_sin     : // fall thru
1559     case Interpreter::java_lang_math_cos     : // fall thru
1560     case Interpreter::java_lang_math_tan     : // fall thru
1561     case Interpreter::java_lang_math_abs     : // fall thru
1562     case Interpreter::java_lang_math_log     : // fall thru
1563     case Interpreter::java_lang_math_log10   : // fall thru
1564     case Interpreter::java_lang_math_sqrt    : // fall thru
1565     case Interpreter::java_lang_math_pow     : // fall thru
1566     case Interpreter::java_lang_math_exp     :
1567       return false;
1568     default:
1569       return true;
1570   }
1571 }
1572 
1573 // How much stack a method activation needs in words.
1574 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1575   const int entry_size = frame::interpreter_frame_monitor_size();
1576 
1577   // total overhead size: entry_size + (saved rbp thru expr stack
1578   // bottom).  be sure to change this if you add/subtract anything
1579   // to/from the overhead area
1580   const int overhead_size =
1581     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
1582 
1583   const int stub_code = frame::entry_frame_after_call_words;
1584   const int extra_stack = Method::extra_stack_entries();
1585   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
1586                            Interpreter::stackElementWords;
1587   return (overhead_size + method_stack + stub_code);
1588 }
1589 
1590 int AbstractInterpreter::layout_activation(Method* method,
1591                                            int tempcount,
1592                                            int popframe_extra_args,
1593                                            int moncount,
1594                                            int caller_actual_parameters,
1595                                            int callee_param_count,
1596                                            int callee_locals,
1597                                            frame* caller,
1598                                            frame* interpreter_frame,
1599                                            bool is_top_frame) {
1600   // Note: This calculation must exactly parallel the frame setup
1601   // in AbstractInterpreterGenerator::generate_method_entry.
1602   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
1603   // The frame interpreter_frame, if not NULL, is guaranteed to be the
1604   // right size, as determined by a previous call to this method.
1605   // It is also guaranteed to be walkable even though it is in a skeletal state
1606 
1607   // fixed size of an interpreter frame:
1608   int max_locals = method->max_locals() * Interpreter::stackElementWords;
1609   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
1610                      Interpreter::stackElementWords;
1611 
1612   int overhead = frame::sender_sp_offset -
1613                  frame::interpreter_frame_initial_sp_offset;
1614   // Our locals were accounted for by the caller (or last_frame_adjust
1615   // on the transistion) Since the callee parameters already account
1616   // for the callee's params we only need to account for the extra
1617   // locals.
1618   int size = overhead +
1619          (callee_locals - callee_param_count)*Interpreter::stackElementWords +
1620          moncount * frame::interpreter_frame_monitor_size() +
1621          tempcount* Interpreter::stackElementWords + popframe_extra_args;
1622   if (interpreter_frame != NULL) {
1623 #ifdef ASSERT
1624     if (!EnableInvokeDynamic)
1625       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
1626       // Probably, since deoptimization doesn't work yet.
1627       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
1628     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
1629 #endif
1630 
1631     interpreter_frame->interpreter_frame_set_method(method);
1632     // NOTE the difference in using sender_sp and
1633     // interpreter_frame_sender_sp interpreter_frame_sender_sp is
1634     // the original sp of the caller (the unextended_sp) and
1635     // sender_sp is fp+16 XXX
1636     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
1637 
1638 #ifdef ASSERT
1639     if (caller->is_interpreted_frame()) {
1640       assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
1641     }
1642 #endif
1643 
1644     interpreter_frame->interpreter_frame_set_locals(locals);
1645     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
1646     BasicObjectLock* monbot = montop - moncount;
1647     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
1648 
1649     // Set last_sp
1650     intptr_t*  esp = (intptr_t*) monbot -
1651                      tempcount*Interpreter::stackElementWords -
1652                      popframe_extra_args;
1653     interpreter_frame->interpreter_frame_set_last_sp(esp);
1654 
1655     // All frames but the initial (oldest) interpreter frame we fill in have
1656     // a value for sender_sp that allows walking the stack but isn't
1657     // truly correct. Correct the value here.
1658     if (extra_locals != 0 &&
1659         interpreter_frame->sender_sp() ==
1660         interpreter_frame->interpreter_frame_sender_sp()) {
1661       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
1662                                                          extra_locals);
1663     }
1664     *interpreter_frame->interpreter_frame_cache_addr() =
1665       method->constants()->cache();
1666   }
1667   return size;
1668 }
1669 
1670 //-----------------------------------------------------------------------------
1671 // Exceptions
1672 
1673 void TemplateInterpreterGenerator::generate_throw_exception() {
1674   // Entry point in previous activation (i.e., if the caller was
1675   // interpreted)
1676   Interpreter::_rethrow_exception_entry = __ pc();
1677   // Restore sp to interpreter_frame_last_sp even though we are going
1678   // to empty the expression stack for the exception processing.
1679   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
1680   // rax: exception
1681   // rdx: return address/pc that threw exception
1682   __ restore_bcp();    // r13 points to call/send
1683   __ restore_locals();
1684   __ reinit_heapbase();  // restore r12 as heapbase.
1685   // Entry point for exceptions thrown within interpreter code
1686   Interpreter::_throw_exception_entry = __ pc();
1687   // expression stack is undefined here
1688   // rax: exception
1689   // r13: exception bcp
1690   __ verify_oop(rax);
1691   __ mov(c_rarg1, rax);
1692 
1693   // expression stack must be empty before entering the VM in case of
1694   // an exception
1695   __ empty_expression_stack();
1696   // find exception handler address and preserve exception oop
1697   __ call_VM(rdx,
1698              CAST_FROM_FN_PTR(address,
1699                           InterpreterRuntime::exception_handler_for_exception),
1700              c_rarg1);
1701   // rax: exception handler entry point
1702   // rdx: preserved exception oop
1703   // r13: bcp for exception handler
1704   __ push_ptr(rdx); // push exception which is now the only value on the stack
1705   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
1706 
1707   // If the exception is not handled in the current frame the frame is
1708   // removed and the exception is rethrown (i.e. exception
1709   // continuation is _rethrow_exception).
1710   //
1711   // Note: At this point the bci is still the bxi for the instruction
1712   // which caused the exception and the expression stack is
1713   // empty. Thus, for any VM calls at this point, GC will find a legal
1714   // oop map (with empty expression stack).
1715 
1716   // In current activation
1717   // tos: exception
1718   // esi: exception bcp
1719 
1720   //
1721   // JVMTI PopFrame support
1722   //
1723 
1724   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1725   __ empty_expression_stack();
1726   // Set the popframe_processing bit in pending_popframe_condition
1727   // indicating that we are currently handling popframe, so that
1728   // call_VMs that may happen later do not trigger new popframe
1729   // handling cycles.
1730   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
1731   __ orl(rdx, JavaThread::popframe_processing_bit);
1732   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
1733 
1734   {
1735     // Check to see whether we are returning to a deoptimized frame.
1736     // (The PopFrame call ensures that the caller of the popped frame is
1737     // either interpreted or compiled and deoptimizes it if compiled.)
1738     // In this case, we can't call dispatch_next() after the frame is
1739     // popped, but instead must save the incoming arguments and restore
1740     // them after deoptimization has occurred.
1741     //
1742     // Note that we don't compare the return PC against the
1743     // deoptimization blob's unpack entry because of the presence of
1744     // adapter frames in C2.
1745     Label caller_not_deoptimized;
1746     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
1747     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1748                                InterpreterRuntime::interpreter_contains), c_rarg1);
1749     __ testl(rax, rax);
1750     __ jcc(Assembler::notZero, caller_not_deoptimized);
1751 
1752     // Compute size of arguments for saving when returning to
1753     // deoptimized caller
1754     __ get_method(rax);
1755     __ load_unsigned_short(rax, Address(rax, in_bytes(Method::
1756                                                 size_of_parameters_offset())));
1757     __ shll(rax, Interpreter::logStackElementSize);
1758     __ restore_locals(); // XXX do we need this?
1759     __ subptr(r14, rax);
1760     __ addptr(r14, wordSize);
1761     // Save these arguments
1762     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1763                                            Deoptimization::
1764                                            popframe_preserve_args),
1765                           r15_thread, rax, r14);
1766 
1767     __ remove_activation(vtos, rdx,
1768                          /* throw_monitor_exception */ false,
1769                          /* install_monitor_exception */ false,
1770                          /* notify_jvmdi */ false);
1771 
1772     // Inform deoptimization that it is responsible for restoring
1773     // these arguments
1774     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
1775             JavaThread::popframe_force_deopt_reexecution_bit);
1776 
1777     // Continue in deoptimization handler
1778     __ jmp(rdx);
1779 
1780     __ bind(caller_not_deoptimized);
1781   }
1782 
1783   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
1784                        /* throw_monitor_exception */ false,
1785                        /* install_monitor_exception */ false,
1786                        /* notify_jvmdi */ false);
1787 
1788   // Finish with popframe handling
1789   // A previous I2C followed by a deoptimization might have moved the
1790   // outgoing arguments further up the stack. PopFrame expects the
1791   // mutations to those outgoing arguments to be preserved and other
1792   // constraints basically require this frame to look exactly as
1793   // though it had previously invoked an interpreted activation with
1794   // no space between the top of the expression stack (current
1795   // last_sp) and the top of stack. Rather than force deopt to
1796   // maintain this kind of invariant all the time we call a small
1797   // fixup routine to move the mutated arguments onto the top of our
1798   // expression stack if necessary.
1799   __ mov(c_rarg1, rsp);
1800   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1801   // PC must point into interpreter here
1802   __ set_last_Java_frame(noreg, rbp, __ pc());
1803   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
1804   __ reset_last_Java_frame(true, true);
1805   // Restore the last_sp and null it out
1806   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1807   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
1808 
1809   __ restore_bcp();  // XXX do we need this?
1810   __ restore_locals(); // XXX do we need this?
1811   // The method data pointer was incremented already during
1812   // call profiling. We have to restore the mdp for the current bcp.
1813   if (ProfileInterpreter) {
1814     __ set_method_data_pointer_for_bcp();
1815   }
1816 
1817   // Clear the popframe condition flag
1818   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
1819           JavaThread::popframe_inactive);
1820 
1821   __ dispatch_next(vtos);
1822   // end of PopFrame support
1823 
1824   Interpreter::_remove_activation_entry = __ pc();
1825 
1826   // preserve exception over this code sequence
1827   __ pop_ptr(rax);
1828   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
1829   // remove the activation (without doing throws on illegalMonitorExceptions)
1830   __ remove_activation(vtos, rdx, false, true, false);
1831   // restore exception
1832   __ get_vm_result(rax, r15_thread);
1833 
1834   // In between activations - previous activation type unknown yet
1835   // compute continuation point - the continuation point expects the
1836   // following registers set up:
1837   //
1838   // rax: exception
1839   // rdx: return address/pc that threw exception
1840   // rsp: expression stack of caller
1841   // rbp: ebp of caller
1842   __ push(rax);                                  // save exception
1843   __ push(rdx);                                  // save return address
1844   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1845                           SharedRuntime::exception_handler_for_return_address),
1846                         r15_thread, rdx);
1847   __ mov(rbx, rax);                              // save exception handler
1848   __ pop(rdx);                                   // restore return address
1849   __ pop(rax);                                   // restore exception
1850   // Note that an "issuing PC" is actually the next PC after the call
1851   __ jmp(rbx);                                   // jump to exception
1852                                                  // handler of caller
1853 }
1854 
1855 
1856 //
1857 // JVMTI ForceEarlyReturn support
1858 //
1859 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1860   address entry = __ pc();
1861 
1862   __ restore_bcp();
1863   __ restore_locals();
1864   __ empty_expression_stack();
1865   __ load_earlyret_value(state);
1866 
1867   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
1868   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
1869 
1870   // Clear the earlyret state
1871   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
1872 
1873   __ remove_activation(state, rsi,
1874                        false, /* throw_monitor_exception */
1875                        false, /* install_monitor_exception */
1876                        true); /* notify_jvmdi */
1877   __ jmp(rsi);
1878 
1879   return entry;
1880 } // end of ForceEarlyReturn support
1881 
1882 
1883 //-----------------------------------------------------------------------------
1884 // Helper for vtos entry point generation
1885 
1886 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1887                                                          address& bep,
1888                                                          address& cep,
1889                                                          address& sep,
1890                                                          address& aep,
1891                                                          address& iep,
1892                                                          address& lep,
1893                                                          address& fep,
1894                                                          address& dep,
1895                                                          address& vep) {
1896   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1897   Label L;
1898   aep = __ pc();  __ push_ptr();  __ jmp(L);
1899   fep = __ pc();  __ push_f();    __ jmp(L);
1900   dep = __ pc();  __ push_d();    __ jmp(L);
1901   lep = __ pc();  __ push_l();    __ jmp(L);
1902   bep = cep = sep =
1903   iep = __ pc();  __ push_i();
1904   vep = __ pc();
1905   __ bind(L);
1906   generate_and_dispatch(t);
1907 }
1908 
1909 
1910 //-----------------------------------------------------------------------------
1911 // Generation of individual instructions
1912 
1913 // helpers for generate_and_dispatch
1914 
1915 
1916 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1917   : TemplateInterpreterGenerator(code) {
1918    generate_all(); // down here so it can be "virtual"
1919 }
1920 
1921 //-----------------------------------------------------------------------------
1922 
1923 // Non-product code
1924 #ifndef PRODUCT
1925 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1926   address entry = __ pc();
1927 
1928   __ push(state);
1929   __ push(c_rarg0);
1930   __ push(c_rarg1);
1931   __ push(c_rarg2);
1932   __ push(c_rarg3);
1933   __ mov(c_rarg2, rax);  // Pass itos
1934 #ifdef _WIN64
1935   __ movflt(xmm3, xmm0); // Pass ftos
1936 #endif
1937   __ call_VM(noreg,
1938              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
1939              c_rarg1, c_rarg2, c_rarg3);
1940   __ pop(c_rarg3);
1941   __ pop(c_rarg2);
1942   __ pop(c_rarg1);
1943   __ pop(c_rarg0);
1944   __ pop(state);
1945   __ ret(0);                                   // return from result handler
1946 
1947   return entry;
1948 }
1949 
1950 void TemplateInterpreterGenerator::count_bytecode() {
1951   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
1952 }
1953 
1954 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1955   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
1956 }
1957 
1958 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1959   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
1960   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
1961   __ orl(rbx,
1962          ((int) t->bytecode()) <<
1963          BytecodePairHistogram::log2_number_of_codes);
1964   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
1965   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
1966   __ incrementl(Address(rscratch1, rbx, Address::times_4));
1967 }
1968 
1969 
1970 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1971   // Call a little run-time stub to avoid blow-up for each bytecode.
1972   // The run-time runtime saves the right registers, depending on
1973   // the tosca in-state for the given template.
1974 
1975   assert(Interpreter::trace_code(t->tos_in()) != NULL,
1976          "entry must have been generated");
1977   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1978   __ andptr(rsp, -16); // align stack as required by ABI
1979   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
1980   __ mov(rsp, r12); // restore sp
1981   __ reinit_heapbase();
1982 }
1983 
1984 
1985 void TemplateInterpreterGenerator::stop_interpreter_at() {
1986   Label L;
1987   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
1988            StopInterpreterAt);
1989   __ jcc(Assembler::notEqual, L);
1990   __ int3();
1991   __ bind(L);
1992 }
1993 #endif // !PRODUCT
1994 #endif // ! CC_INTERP