1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/templateTable.hpp"
  29 #include "memory/universe.inline.hpp"
  30 #include "oops/methodData.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "runtime/synchronizer.hpp"
  37 
  38 #ifndef CC_INTERP
  39 #define __ _masm->
  40 
  41 // Misc helpers
  42 
  43 // Do an oop store like *(base + index + offset) = val
  44 // index can be noreg,
  45 static void do_oop_store(InterpreterMacroAssembler* _masm,
  46                          Register base,
  47                          Register index,
  48                          int offset,
  49                          Register val,
  50                          Register tmp,
  51                          BarrierSet::Name barrier,
  52                          bool precise) {
  53   assert(tmp != val && tmp != base && tmp != index, "register collision");
  54   assert(index == noreg || offset == 0, "only one offset");
  55   switch (barrier) {
  56 #ifndef SERIALGC
  57     case BarrierSet::G1SATBCT:
  58     case BarrierSet::G1SATBCTLogging:
  59       {
  60         // Load and record the previous value.
  61         __ g1_write_barrier_pre(base, index, offset,
  62                                 noreg /* pre_val */,
  63                                 tmp, true /*preserve_o_regs*/);
  64 
  65         if (index == noreg ) {
  66           assert(Assembler::is_simm13(offset), "fix this code");
  67           __ store_heap_oop(val, base, offset);
  68         } else {
  69           __ store_heap_oop(val, base, index);
  70         }
  71 
  72         // No need for post barrier if storing NULL
  73         if (val != G0) {
  74           if (precise) {
  75             if (index == noreg) {
  76               __ add(base, offset, base);
  77             } else {
  78               __ add(base, index, base);
  79             }
  80           }
  81           __ g1_write_barrier_post(base, val, tmp);
  82         }
  83       }
  84       break;
  85 #endif // SERIALGC
  86     case BarrierSet::CardTableModRef:
  87     case BarrierSet::CardTableExtension:
  88       {
  89         if (index == noreg ) {
  90           assert(Assembler::is_simm13(offset), "fix this code");
  91           __ store_heap_oop(val, base, offset);
  92         } else {
  93           __ store_heap_oop(val, base, index);
  94         }
  95         // No need for post barrier if storing NULL
  96         if (val != G0) {
  97           if (precise) {
  98             if (index == noreg) {
  99               __ add(base, offset, base);
 100             } else {
 101               __ add(base, index, base);
 102             }
 103           }
 104           __ card_write_barrier_post(base, val, tmp);
 105         }
 106       }
 107       break;
 108     case BarrierSet::ModRef:
 109     case BarrierSet::Other:
 110       ShouldNotReachHere();
 111       break;
 112     default      :
 113       ShouldNotReachHere();
 114 
 115   }
 116 }
 117 
 118 
 119 //----------------------------------------------------------------------------------------------------
 120 // Platform-dependent initialization
 121 
 122 void TemplateTable::pd_initialize() {
 123   // (none)
 124 }
 125 
 126 
 127 //----------------------------------------------------------------------------------------------------
 128 // Condition conversion
 129 Assembler::Condition ccNot(TemplateTable::Condition cc) {
 130   switch (cc) {
 131     case TemplateTable::equal        : return Assembler::notEqual;
 132     case TemplateTable::not_equal    : return Assembler::equal;
 133     case TemplateTable::less         : return Assembler::greaterEqual;
 134     case TemplateTable::less_equal   : return Assembler::greater;
 135     case TemplateTable::greater      : return Assembler::lessEqual;
 136     case TemplateTable::greater_equal: return Assembler::less;
 137   }
 138   ShouldNotReachHere();
 139   return Assembler::zero;
 140 }
 141 
 142 //----------------------------------------------------------------------------------------------------
 143 // Miscelaneous helper routines
 144 
 145 
 146 Address TemplateTable::at_bcp(int offset) {
 147   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 148   return Address(Lbcp, offset);
 149 }
 150 
 151 
 152 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 153                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 154                                    int byte_no) {
 155   // With sharing on, may need to test Method* flag.
 156   if (!RewriteBytecodes)  return;
 157   Label L_patch_done;
 158 
 159   switch (bc) {
 160   case Bytecodes::_fast_aputfield:
 161   case Bytecodes::_fast_bputfield:
 162   case Bytecodes::_fast_cputfield:
 163   case Bytecodes::_fast_dputfield:
 164   case Bytecodes::_fast_fputfield:
 165   case Bytecodes::_fast_iputfield:
 166   case Bytecodes::_fast_lputfield:
 167   case Bytecodes::_fast_sputfield:
 168     {
 169       // We skip bytecode quickening for putfield instructions when
 170       // the put_code written to the constant pool cache is zero.
 171       // This is required so that every execution of this instruction
 172       // calls out to InterpreterRuntime::resolve_get_put to do
 173       // additional, required work.
 174       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 175       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 176       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
 177       __ set(bc, bc_reg);
 178       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
 179     }
 180     break;
 181   default:
 182     assert(byte_no == -1, "sanity");
 183     if (load_bc_into_bc_reg) {
 184       __ set(bc, bc_reg);
 185     }
 186   }
 187 
 188   if (JvmtiExport::can_post_breakpoint()) {
 189     Label L_fast_patch;
 190     __ ldub(at_bcp(0), temp_reg);
 191     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
 192     // perform the quickening, slowly, in the bowels of the breakpoint table
 193     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
 194     __ ba_short(L_patch_done);
 195     __ bind(L_fast_patch);
 196   }
 197 
 198 #ifdef ASSERT
 199   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
 200   Label L_okay;
 201   __ ldub(at_bcp(0), temp_reg);
 202   __ cmp(temp_reg, orig_bytecode);
 203   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 204   __ delayed()->cmp(temp_reg, bc_reg);
 205   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 206   __ delayed()->nop();
 207   __ stop("patching the wrong bytecode");
 208   __ bind(L_okay);
 209 #endif
 210 
 211   // patch bytecode
 212   __ stb(bc_reg, at_bcp(0));
 213   __ bind(L_patch_done);
 214 }
 215 
 216 //----------------------------------------------------------------------------------------------------
 217 // Individual instructions
 218 
 219 void TemplateTable::nop() {
 220   transition(vtos, vtos);
 221   // nothing to do
 222 }
 223 
 224 void TemplateTable::shouldnotreachhere() {
 225   transition(vtos, vtos);
 226   __ stop("shouldnotreachhere bytecode");
 227 }
 228 
 229 void TemplateTable::aconst_null() {
 230   transition(vtos, atos);
 231   __ clr(Otos_i);
 232 }
 233 
 234 
 235 void TemplateTable::iconst(int value) {
 236   transition(vtos, itos);
 237   __ set(value, Otos_i);
 238 }
 239 
 240 
 241 void TemplateTable::lconst(int value) {
 242   transition(vtos, ltos);
 243   assert(value >= 0, "check this code");
 244 #ifdef _LP64
 245   __ set(value, Otos_l);
 246 #else
 247   __ set(value, Otos_l2);
 248   __ clr( Otos_l1);
 249 #endif
 250 }
 251 
 252 
 253 void TemplateTable::fconst(int value) {
 254   transition(vtos, ftos);
 255   static float zero = 0.0, one = 1.0, two = 2.0;
 256   float* p;
 257   switch( value ) {
 258    default: ShouldNotReachHere();
 259    case 0:  p = &zero;  break;
 260    case 1:  p = &one;   break;
 261    case 2:  p = &two;   break;
 262   }
 263   AddressLiteral a(p);
 264   __ sethi(a, G3_scratch);
 265   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
 266 }
 267 
 268 
 269 void TemplateTable::dconst(int value) {
 270   transition(vtos, dtos);
 271   static double zero = 0.0, one = 1.0;
 272   double* p;
 273   switch( value ) {
 274    default: ShouldNotReachHere();
 275    case 0:  p = &zero;  break;
 276    case 1:  p = &one;   break;
 277   }
 278   AddressLiteral a(p);
 279   __ sethi(a, G3_scratch);
 280   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
 281 }
 282 
 283 
 284 // %%%%% Should factore most snippet templates across platforms
 285 
 286 void TemplateTable::bipush() {
 287   transition(vtos, itos);
 288   __ ldsb( at_bcp(1), Otos_i );
 289 }
 290 
 291 void TemplateTable::sipush() {
 292   transition(vtos, itos);
 293   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
 294 }
 295 
 296 void TemplateTable::ldc(bool wide) {
 297   transition(vtos, vtos);
 298   Label call_ldc, notInt, isString, notString, notClass, exit;
 299 
 300   if (wide) {
 301     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 302   } else {
 303     __ ldub(Lbcp, 1, O1);
 304   }
 305   __ get_cpool_and_tags(O0, O2);
 306 
 307   const int base_offset = ConstantPool::header_size() * wordSize;
 308   const int tags_offset = Array<u1>::base_offset_in_bytes();
 309 
 310   // get type from tags
 311   __ add(O2, tags_offset, O2);
 312   __ ldub(O2, O1, O2);
 313 
 314   // unresolved class? If so, must resolve
 315   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
 316 
 317   // unresolved class in error state
 318   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
 319 
 320   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
 321   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
 322   __ delayed()->add(O0, base_offset, O0);
 323 
 324   __ bind(call_ldc);
 325   __ set(wide, O1);
 326   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
 327   __ push(atos);
 328   __ ba_short(exit);
 329 
 330   __ bind(notClass);
 331  // __ add(O0, base_offset, O0);
 332   __ sll(O1, LogBytesPerWord, O1);
 333   __ cmp(O2, JVM_CONSTANT_Integer);
 334   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
 335   __ delayed()->cmp(O2, JVM_CONSTANT_String);
 336   __ ld(O0, O1, Otos_i);
 337   __ push(itos);
 338   __ ba_short(exit);
 339 
 340   __ bind(notInt);
 341  // __ cmp(O2, JVM_CONSTANT_String);
 342   __ brx(Assembler::equal, true, Assembler::pt, isString);
 343   __ delayed()->cmp(O2, JVM_CONSTANT_Object);
 344   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
 345   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 346   __ bind(isString);
 347   __ stop("string should be rewritten to fast_aldc");
 348   __ ba_short(exit);
 349 
 350   __ bind(notString);
 351  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 352   __ push(ftos);
 353 
 354   __ bind(exit);
 355 }
 356 
 357 // Fast path for caching oop constants.
 358 // %%% We should use this to handle Class and String constants also.
 359 // %%% It will simplify the ldc/primitive path considerably.
 360 void TemplateTable::fast_aldc(bool wide) {
 361   transition(vtos, atos);
 362 
 363   int index_size = wide ? sizeof(u2) : sizeof(u1);
 364   Label resolved;
 365 
 366   // We are resolved if the resolved reference cache entry contains a
 367   // non-null object (CallSite, etc.)
 368   assert_different_registers(Otos_i, G3_scratch);
 369   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
 370   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
 371   __ tst(Otos_i);
 372   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
 373   __ delayed()->set((int)bytecode(), O1);
 374 
 375   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 376 
 377   // first time invocation - must resolve first
 378   __ call_VM(Otos_i, entry, O1);
 379   __ bind(resolved);
 380   __ verify_oop(Otos_i);
 381 }
 382 
 383 
 384 void TemplateTable::ldc2_w() {
 385   transition(vtos, vtos);
 386   Label Long, exit;
 387 
 388   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 389   __ get_cpool_and_tags(O0, O2);
 390 
 391   const int base_offset = ConstantPool::header_size() * wordSize;
 392   const int tags_offset = Array<u1>::base_offset_in_bytes();
 393   // get type from tags
 394   __ add(O2, tags_offset, O2);
 395   __ ldub(O2, O1, O2);
 396 
 397   __ sll(O1, LogBytesPerWord, O1);
 398   __ add(O0, O1, G3_scratch);
 399 
 400   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
 401   // A double can be placed at word-aligned locations in the constant pool.
 402   // Check out Conversions.java for an example.
 403   // Also ConstantPool::header_size() is 20, which makes it very difficult
 404   // to double-align double on the constant pool.  SG, 11/7/97
 405 #ifdef _LP64
 406   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
 407 #else
 408   FloatRegister f = Ftos_d;
 409   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
 410   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
 411          f->successor());
 412 #endif
 413   __ push(dtos);
 414   __ ba_short(exit);
 415 
 416   __ bind(Long);
 417 #ifdef _LP64
 418   __ ldx(G3_scratch, base_offset, Otos_l);
 419 #else
 420   __ ld(G3_scratch, base_offset, Otos_l);
 421   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
 422 #endif
 423   __ push(ltos);
 424 
 425   __ bind(exit);
 426 }
 427 
 428 
 429 void TemplateTable::locals_index(Register reg, int offset) {
 430   __ ldub( at_bcp(offset), reg );
 431 }
 432 
 433 
 434 void TemplateTable::locals_index_wide(Register reg) {
 435   // offset is 2, not 1, because Lbcp points to wide prefix code
 436   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
 437 }
 438 
 439 void TemplateTable::iload() {
 440   transition(vtos, itos);
 441   // Rewrite iload,iload  pair into fast_iload2
 442   //         iload,caload pair into fast_icaload
 443   if (RewriteFrequentPairs) {
 444     Label rewrite, done;
 445 
 446     // get next byte
 447     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
 448 
 449     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 450     // last two iloads in a pair.  Comparing against fast_iload means that
 451     // the next bytecode is neither an iload or a caload, and therefore
 452     // an iload pair.
 453     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
 454 
 455     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
 456     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 457     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
 458 
 459     __ cmp(G3_scratch, (int)Bytecodes::_caload);
 460     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 461     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
 462 
 463     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
 464     // rewrite
 465     // G4_scratch: fast bytecode
 466     __ bind(rewrite);
 467     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
 468     __ bind(done);
 469   }
 470 
 471   // Get the local value into tos
 472   locals_index(G3_scratch);
 473   __ access_local_int( G3_scratch, Otos_i );
 474 }
 475 
 476 void TemplateTable::fast_iload2() {
 477   transition(vtos, itos);
 478   locals_index(G3_scratch);
 479   __ access_local_int( G3_scratch, Otos_i );
 480   __ push_i();
 481   locals_index(G3_scratch, 3);  // get next bytecode's local index.
 482   __ access_local_int( G3_scratch, Otos_i );
 483 }
 484 
 485 void TemplateTable::fast_iload() {
 486   transition(vtos, itos);
 487   locals_index(G3_scratch);
 488   __ access_local_int( G3_scratch, Otos_i );
 489 }
 490 
 491 void TemplateTable::lload() {
 492   transition(vtos, ltos);
 493   locals_index(G3_scratch);
 494   __ access_local_long( G3_scratch, Otos_l );
 495 }
 496 
 497 
 498 void TemplateTable::fload() {
 499   transition(vtos, ftos);
 500   locals_index(G3_scratch);
 501   __ access_local_float( G3_scratch, Ftos_f );
 502 }
 503 
 504 
 505 void TemplateTable::dload() {
 506   transition(vtos, dtos);
 507   locals_index(G3_scratch);
 508   __ access_local_double( G3_scratch, Ftos_d );
 509 }
 510 
 511 
 512 void TemplateTable::aload() {
 513   transition(vtos, atos);
 514   locals_index(G3_scratch);
 515   __ access_local_ptr( G3_scratch, Otos_i);
 516 }
 517 
 518 
 519 void TemplateTable::wide_iload() {
 520   transition(vtos, itos);
 521   locals_index_wide(G3_scratch);
 522   __ access_local_int( G3_scratch, Otos_i );
 523 }
 524 
 525 
 526 void TemplateTable::wide_lload() {
 527   transition(vtos, ltos);
 528   locals_index_wide(G3_scratch);
 529   __ access_local_long( G3_scratch, Otos_l );
 530 }
 531 
 532 
 533 void TemplateTable::wide_fload() {
 534   transition(vtos, ftos);
 535   locals_index_wide(G3_scratch);
 536   __ access_local_float( G3_scratch, Ftos_f );
 537 }
 538 
 539 
 540 void TemplateTable::wide_dload() {
 541   transition(vtos, dtos);
 542   locals_index_wide(G3_scratch);
 543   __ access_local_double( G3_scratch, Ftos_d );
 544 }
 545 
 546 
 547 void TemplateTable::wide_aload() {
 548   transition(vtos, atos);
 549   locals_index_wide(G3_scratch);
 550   __ access_local_ptr( G3_scratch, Otos_i );
 551   __ verify_oop(Otos_i);
 552 }
 553 
 554 
 555 void TemplateTable::iaload() {
 556   transition(itos, itos);
 557   // Otos_i: index
 558   // tos: array
 559   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 560   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
 561 }
 562 
 563 
 564 void TemplateTable::laload() {
 565   transition(itos, ltos);
 566   // Otos_i: index
 567   // O2: array
 568   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 569   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
 570 }
 571 
 572 
 573 void TemplateTable::faload() {
 574   transition(itos, ftos);
 575   // Otos_i: index
 576   // O2: array
 577   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 578   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
 579 }
 580 
 581 
 582 void TemplateTable::daload() {
 583   transition(itos, dtos);
 584   // Otos_i: index
 585   // O2: array
 586   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 587   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
 588 }
 589 
 590 
 591 void TemplateTable::aaload() {
 592   transition(itos, atos);
 593   // Otos_i: index
 594   // tos: array
 595   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
 596   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
 597   __ verify_oop(Otos_i);
 598 }
 599 
 600 
 601 void TemplateTable::baload() {
 602   transition(itos, itos);
 603   // Otos_i: index
 604   // tos: array
 605   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
 606   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
 607 }
 608 
 609 
 610 void TemplateTable::caload() {
 611   transition(itos, itos);
 612   // Otos_i: index
 613   // tos: array
 614   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 615   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 616 }
 617 
 618 void TemplateTable::fast_icaload() {
 619   transition(vtos, itos);
 620   // Otos_i: index
 621   // tos: array
 622   locals_index(G3_scratch);
 623   __ access_local_int( G3_scratch, Otos_i );
 624   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 625   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 626 }
 627 
 628 
 629 void TemplateTable::saload() {
 630   transition(itos, itos);
 631   // Otos_i: index
 632   // tos: array
 633   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 634   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
 635 }
 636 
 637 
 638 void TemplateTable::iload(int n) {
 639   transition(vtos, itos);
 640   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 641 }
 642 
 643 
 644 void TemplateTable::lload(int n) {
 645   transition(vtos, ltos);
 646   assert(n+1 < Argument::n_register_parameters, "would need more code");
 647   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
 648 }
 649 
 650 
 651 void TemplateTable::fload(int n) {
 652   transition(vtos, ftos);
 653   assert(n < Argument::n_register_parameters, "would need more code");
 654   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
 655 }
 656 
 657 
 658 void TemplateTable::dload(int n) {
 659   transition(vtos, dtos);
 660   FloatRegister dst = Ftos_d;
 661   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
 662 }
 663 
 664 
 665 void TemplateTable::aload(int n) {
 666   transition(vtos, atos);
 667   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 668 }
 669 
 670 
 671 void TemplateTable::aload_0() {
 672   transition(vtos, atos);
 673 
 674   // According to bytecode histograms, the pairs:
 675   //
 676   // _aload_0, _fast_igetfield (itos)
 677   // _aload_0, _fast_agetfield (atos)
 678   // _aload_0, _fast_fgetfield (ftos)
 679   //
 680   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 681   // bytecode checks the next bytecode and then rewrites the current
 682   // bytecode into a pair bytecode; otherwise it rewrites the current
 683   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 684   //
 685   if (RewriteFrequentPairs) {
 686     Label rewrite, done;
 687 
 688     // get next byte
 689     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
 690 
 691     // do actual aload_0
 692     aload(0);
 693 
 694     // if _getfield then wait with rewrite
 695     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
 696 
 697     // if _igetfield then rewrite to _fast_iaccess_0
 698     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 699     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
 700     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 701     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
 702 
 703     // if _agetfield then rewrite to _fast_aaccess_0
 704     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 705     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
 706     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 707     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
 708 
 709     // if _fgetfield then rewrite to _fast_faccess_0
 710     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 711     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
 712     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 713     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
 714 
 715     // else rewrite to _fast_aload0
 716     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 717     __ set(Bytecodes::_fast_aload_0, G4_scratch);
 718 
 719     // rewrite
 720     // G4_scratch: fast bytecode
 721     __ bind(rewrite);
 722     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
 723     __ bind(done);
 724   } else {
 725     aload(0);
 726   }
 727 }
 728 
 729 
 730 void TemplateTable::istore() {
 731   transition(itos, vtos);
 732   locals_index(G3_scratch);
 733   __ store_local_int( G3_scratch, Otos_i );
 734 }
 735 
 736 
 737 void TemplateTable::lstore() {
 738   transition(ltos, vtos);
 739   locals_index(G3_scratch);
 740   __ store_local_long( G3_scratch, Otos_l );
 741 }
 742 
 743 
 744 void TemplateTable::fstore() {
 745   transition(ftos, vtos);
 746   locals_index(G3_scratch);
 747   __ store_local_float( G3_scratch, Ftos_f );
 748 }
 749 
 750 
 751 void TemplateTable::dstore() {
 752   transition(dtos, vtos);
 753   locals_index(G3_scratch);
 754   __ store_local_double( G3_scratch, Ftos_d );
 755 }
 756 
 757 
 758 void TemplateTable::astore() {
 759   transition(vtos, vtos);
 760   __ load_ptr(0, Otos_i);
 761   __ inc(Lesp, Interpreter::stackElementSize);
 762   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 763   locals_index(G3_scratch);
 764   __ store_local_ptr(G3_scratch, Otos_i);
 765 }
 766 
 767 
 768 void TemplateTable::wide_istore() {
 769   transition(vtos, vtos);
 770   __ pop_i();
 771   locals_index_wide(G3_scratch);
 772   __ store_local_int( G3_scratch, Otos_i );
 773 }
 774 
 775 
 776 void TemplateTable::wide_lstore() {
 777   transition(vtos, vtos);
 778   __ pop_l();
 779   locals_index_wide(G3_scratch);
 780   __ store_local_long( G3_scratch, Otos_l );
 781 }
 782 
 783 
 784 void TemplateTable::wide_fstore() {
 785   transition(vtos, vtos);
 786   __ pop_f();
 787   locals_index_wide(G3_scratch);
 788   __ store_local_float( G3_scratch, Ftos_f );
 789 }
 790 
 791 
 792 void TemplateTable::wide_dstore() {
 793   transition(vtos, vtos);
 794   __ pop_d();
 795   locals_index_wide(G3_scratch);
 796   __ store_local_double( G3_scratch, Ftos_d );
 797 }
 798 
 799 
 800 void TemplateTable::wide_astore() {
 801   transition(vtos, vtos);
 802   __ load_ptr(0, Otos_i);
 803   __ inc(Lesp, Interpreter::stackElementSize);
 804   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 805   locals_index_wide(G3_scratch);
 806   __ store_local_ptr(G3_scratch, Otos_i);
 807 }
 808 
 809 
 810 void TemplateTable::iastore() {
 811   transition(itos, vtos);
 812   __ pop_i(O2); // index
 813   // Otos_i: val
 814   // O3: array
 815   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 816   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
 817 }
 818 
 819 
 820 void TemplateTable::lastore() {
 821   transition(ltos, vtos);
 822   __ pop_i(O2); // index
 823   // Otos_l: val
 824   // O3: array
 825   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 826   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
 827 }
 828 
 829 
 830 void TemplateTable::fastore() {
 831   transition(ftos, vtos);
 832   __ pop_i(O2); // index
 833   // Ftos_f: val
 834   // O3: array
 835   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 836   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
 837 }
 838 
 839 
 840 void TemplateTable::dastore() {
 841   transition(dtos, vtos);
 842   __ pop_i(O2); // index
 843   // Fos_d: val
 844   // O3: array
 845   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 846   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
 847 }
 848 
 849 
 850 void TemplateTable::aastore() {
 851   Label store_ok, is_null, done;
 852   transition(vtos, vtos);
 853   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
 854   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
 855   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
 856   // Otos_i: val
 857   // O2: index
 858   // O3: array
 859   __ verify_oop(Otos_i);
 860   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
 861 
 862   // do array store check - check for NULL value first
 863   __ br_null_short( Otos_i, Assembler::pn, is_null );
 864 
 865   __ load_klass(O3, O4); // get array klass
 866   __ load_klass(Otos_i, O5); // get value klass
 867 
 868   // do fast instanceof cache test
 869 
 870   __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
 871 
 872   assert(Otos_i == O0, "just checking");
 873 
 874   // Otos_i:    value
 875   // O1:        addr - offset
 876   // O2:        index
 877   // O3:        array
 878   // O4:        array element klass
 879   // O5:        value klass
 880 
 881   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 882 
 883   // Generate a fast subtype check.  Branch to store_ok if no
 884   // failure.  Throw if failure.
 885   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
 886 
 887   // Not a subtype; so must throw exception
 888   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
 889 
 890   // Store is OK.
 891   __ bind(store_ok);
 892   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
 893 
 894   __ ba(done);
 895   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
 896 
 897   __ bind(is_null);
 898   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
 899 
 900   __ profile_null_seen(G3_scratch);
 901   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
 902   __ bind(done);
 903 }
 904 
 905 
 906 void TemplateTable::bastore() {
 907   transition(itos, vtos);
 908   __ pop_i(O2); // index
 909   // Otos_i: val
 910   // O3: array
 911   __ index_check(O3, O2, 0, G3_scratch, O2);
 912   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
 913 }
 914 
 915 
 916 void TemplateTable::castore() {
 917   transition(itos, vtos);
 918   __ pop_i(O2); // index
 919   // Otos_i: val
 920   // O3: array
 921   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
 922   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
 923 }
 924 
 925 
 926 void TemplateTable::sastore() {
 927   // %%%%% Factor across platform
 928   castore();
 929 }
 930 
 931 
 932 void TemplateTable::istore(int n) {
 933   transition(itos, vtos);
 934   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
 935 }
 936 
 937 
 938 void TemplateTable::lstore(int n) {
 939   transition(ltos, vtos);
 940   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
 941   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
 942 
 943 }
 944 
 945 
 946 void TemplateTable::fstore(int n) {
 947   transition(ftos, vtos);
 948   assert(n < Argument::n_register_parameters, "only handle register cases");
 949   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
 950 }
 951 
 952 
 953 void TemplateTable::dstore(int n) {
 954   transition(dtos, vtos);
 955   FloatRegister src = Ftos_d;
 956   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
 957 }
 958 
 959 
 960 void TemplateTable::astore(int n) {
 961   transition(vtos, vtos);
 962   __ load_ptr(0, Otos_i);
 963   __ inc(Lesp, Interpreter::stackElementSize);
 964   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 965   __ store_local_ptr(n, Otos_i);
 966 }
 967 
 968 
 969 void TemplateTable::pop() {
 970   transition(vtos, vtos);
 971   __ inc(Lesp, Interpreter::stackElementSize);
 972 }
 973 
 974 
 975 void TemplateTable::pop2() {
 976   transition(vtos, vtos);
 977   __ inc(Lesp, 2 * Interpreter::stackElementSize);
 978 }
 979 
 980 
 981 void TemplateTable::dup() {
 982   transition(vtos, vtos);
 983   // stack: ..., a
 984   // load a and tag
 985   __ load_ptr(0, Otos_i);
 986   __ push_ptr(Otos_i);
 987   // stack: ..., a, a
 988 }
 989 
 990 
 991 void TemplateTable::dup_x1() {
 992   transition(vtos, vtos);
 993   // stack: ..., a, b
 994   __ load_ptr( 1, G3_scratch);  // get a
 995   __ load_ptr( 0, Otos_l1);     // get b
 996   __ store_ptr(1, Otos_l1);     // put b
 997   __ store_ptr(0, G3_scratch);  // put a - like swap
 998   __ push_ptr(Otos_l1);         // push b
 999   // stack: ..., b, a, b
1000 }
1001 
1002 
1003 void TemplateTable::dup_x2() {
1004   transition(vtos, vtos);
1005   // stack: ..., a, b, c
1006   // get c and push on stack, reuse registers
1007   __ load_ptr( 0, G3_scratch);  // get c
1008   __ push_ptr(G3_scratch);      // push c with tag
1009   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
1010   // (stack offsets n+1 now)
1011   __ load_ptr( 3, Otos_l1);     // get a
1012   __ store_ptr(3, G3_scratch);  // put c at 3
1013   // stack: ..., c, b, c, c  (a in reg)
1014   __ load_ptr( 2, G3_scratch);  // get b
1015   __ store_ptr(2, Otos_l1);     // put a at 2
1016   // stack: ..., c, a, c, c  (b in reg)
1017   __ store_ptr(1, G3_scratch);  // put b at 1
1018   // stack: ..., c, a, b, c
1019 }
1020 
1021 
1022 void TemplateTable::dup2() {
1023   transition(vtos, vtos);
1024   __ load_ptr(1, G3_scratch);  // get a
1025   __ load_ptr(0, Otos_l1);     // get b
1026   __ push_ptr(G3_scratch);     // push a
1027   __ push_ptr(Otos_l1);        // push b
1028   // stack: ..., a, b, a, b
1029 }
1030 
1031 
1032 void TemplateTable::dup2_x1() {
1033   transition(vtos, vtos);
1034   // stack: ..., a, b, c
1035   __ load_ptr( 1, Lscratch);    // get b
1036   __ load_ptr( 2, Otos_l1);     // get a
1037   __ store_ptr(2, Lscratch);    // put b at a
1038   // stack: ..., b, b, c
1039   __ load_ptr( 0, G3_scratch);  // get c
1040   __ store_ptr(1, G3_scratch);  // put c at b
1041   // stack: ..., b, c, c
1042   __ store_ptr(0, Otos_l1);     // put a at c
1043   // stack: ..., b, c, a
1044   __ push_ptr(Lscratch);        // push b
1045   __ push_ptr(G3_scratch);      // push c
1046   // stack: ..., b, c, a, b, c
1047 }
1048 
1049 
1050 // The spec says that these types can be a mixture of category 1 (1 word)
1051 // types and/or category 2 types (long and doubles)
1052 void TemplateTable::dup2_x2() {
1053   transition(vtos, vtos);
1054   // stack: ..., a, b, c, d
1055   __ load_ptr( 1, Lscratch);    // get c
1056   __ load_ptr( 3, Otos_l1);     // get a
1057   __ store_ptr(3, Lscratch);    // put c at 3
1058   __ store_ptr(1, Otos_l1);     // put a at 1
1059   // stack: ..., c, b, a, d
1060   __ load_ptr( 2, G3_scratch);  // get b
1061   __ load_ptr( 0, Otos_l1);     // get d
1062   __ store_ptr(0, G3_scratch);  // put b at 0
1063   __ store_ptr(2, Otos_l1);     // put d at 2
1064   // stack: ..., c, d, a, b
1065   __ push_ptr(Lscratch);        // push c
1066   __ push_ptr(Otos_l1);         // push d
1067   // stack: ..., c, d, a, b, c, d
1068 }
1069 
1070 
1071 void TemplateTable::swap() {
1072   transition(vtos, vtos);
1073   // stack: ..., a, b
1074   __ load_ptr( 1, G3_scratch);  // get a
1075   __ load_ptr( 0, Otos_l1);     // get b
1076   __ store_ptr(0, G3_scratch);  // put b
1077   __ store_ptr(1, Otos_l1);     // put a
1078   // stack: ..., b, a
1079 }
1080 
1081 
1082 void TemplateTable::iop2(Operation op) {
1083   transition(itos, itos);
1084   __ pop_i(O1);
1085   switch (op) {
1086    case  add:  __  add(O1, Otos_i, Otos_i);  break;
1087    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1088      // %%%%% Mul may not exist: better to call .mul?
1089    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1090    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1091    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1092    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1093    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1094    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1095    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1096    default: ShouldNotReachHere();
1097   }
1098 }
1099 
1100 
1101 void TemplateTable::lop2(Operation op) {
1102   transition(ltos, ltos);
1103   __ pop_l(O2);
1104   switch (op) {
1105 #ifdef _LP64
1106    case  add:  __  add(O2, Otos_l, Otos_l);  break;
1107    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1108    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1109    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1110    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1111 #else
1112    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
1113    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
1114    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
1115    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
1116    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
1117 #endif
1118    default: ShouldNotReachHere();
1119   }
1120 }
1121 
1122 
1123 void TemplateTable::idiv() {
1124   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1125   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1126 
1127   transition(itos, itos);
1128   __ pop_i(O1); // get 1st op
1129 
1130   // Y contains upper 32 bits of result, set it to 0 or all ones
1131   __ wry(G0);
1132   __ mov(~0, G3_scratch);
1133 
1134   __ tst(O1);
1135      Label neg;
1136   __ br(Assembler::negative, true, Assembler::pn, neg);
1137   __ delayed()->wry(G3_scratch);
1138   __ bind(neg);
1139 
1140      Label ok;
1141   __ tst(Otos_i);
1142   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1143 
1144   const int min_int = 0x80000000;
1145   Label regular;
1146   __ cmp(Otos_i, -1);
1147   __ br(Assembler::notEqual, false, Assembler::pt, regular);
1148 #ifdef _LP64
1149   // Don't put set in delay slot
1150   // Set will turn into multiple instructions in 64 bit mode
1151   __ delayed()->nop();
1152   __ set(min_int, G4_scratch);
1153 #else
1154   __ delayed()->set(min_int, G4_scratch);
1155 #endif
1156   Label done;
1157   __ cmp(O1, G4_scratch);
1158   __ br(Assembler::equal, true, Assembler::pt, done);
1159   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1160 
1161   __ bind(regular);
1162   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1163   __ bind(done);
1164 }
1165 
1166 
1167 void TemplateTable::irem() {
1168   transition(itos, itos);
1169   __ mov(Otos_i, O2); // save divisor
1170   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1171   __ smul(Otos_i, O2, Otos_i);
1172   __ sub(O1, Otos_i, Otos_i);
1173 }
1174 
1175 
1176 void TemplateTable::lmul() {
1177   transition(ltos, ltos);
1178   __ pop_l(O2);
1179 #ifdef _LP64
1180   __ mulx(Otos_l, O2, Otos_l);
1181 #else
1182   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
1183 #endif
1184 
1185 }
1186 
1187 
1188 void TemplateTable::ldiv() {
1189   transition(ltos, ltos);
1190 
1191   // check for zero
1192   __ pop_l(O2);
1193 #ifdef _LP64
1194   __ tst(Otos_l);
1195   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1196   __ sdivx(O2, Otos_l, Otos_l);
1197 #else
1198   __ orcc(Otos_l1, Otos_l2, G0);
1199   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1200   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1201 #endif
1202 }
1203 
1204 
1205 void TemplateTable::lrem() {
1206   transition(ltos, ltos);
1207 
1208   // check for zero
1209   __ pop_l(O2);
1210 #ifdef _LP64
1211   __ tst(Otos_l);
1212   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1213   __ sdivx(O2, Otos_l, Otos_l2);
1214   __ mulx (Otos_l2, Otos_l, Otos_l2);
1215   __ sub  (O2, Otos_l2, Otos_l);
1216 #else
1217   __ orcc(Otos_l1, Otos_l2, G0);
1218   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1219   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1220 #endif
1221 }
1222 
1223 
1224 void TemplateTable::lshl() {
1225   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1226 
1227   __ pop_l(O2);                          // shift value in O2, O3
1228 #ifdef _LP64
1229   __ sllx(O2, Otos_i, Otos_l);
1230 #else
1231   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1232 #endif
1233 }
1234 
1235 
1236 void TemplateTable::lshr() {
1237   transition(itos, ltos); // %%%% see lshl comment
1238 
1239   __ pop_l(O2);                          // shift value in O2, O3
1240 #ifdef _LP64
1241   __ srax(O2, Otos_i, Otos_l);
1242 #else
1243   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1244 #endif
1245 }
1246 
1247 
1248 
1249 void TemplateTable::lushr() {
1250   transition(itos, ltos); // %%%% see lshl comment
1251 
1252   __ pop_l(O2);                          // shift value in O2, O3
1253 #ifdef _LP64
1254   __ srlx(O2, Otos_i, Otos_l);
1255 #else
1256   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1257 #endif
1258 }
1259 
1260 
1261 void TemplateTable::fop2(Operation op) {
1262   transition(ftos, ftos);
1263   switch (op) {
1264    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1265    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1266    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1267    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1268    case  rem:
1269      assert(Ftos_f == F0, "just checking");
1270 #ifdef _LP64
1271      // LP64 calling conventions use F1, F3 for passing 2 floats
1272      __ pop_f(F1);
1273      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1274 #else
1275      __ pop_i(O0);
1276      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
1277      __ ld( __ d_tmp, O1 );
1278 #endif
1279      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1280      assert( Ftos_f == F0, "fix this code" );
1281      break;
1282 
1283    default: ShouldNotReachHere();
1284   }
1285 }
1286 
1287 
1288 void TemplateTable::dop2(Operation op) {
1289   transition(dtos, dtos);
1290   switch (op) {
1291    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1292    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1293    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1294    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1295    case  rem:
1296 #ifdef _LP64
1297      // Pass arguments in D0, D2
1298      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1299      __ pop_d( F0 );
1300 #else
1301      // Pass arguments in O0O1, O2O3
1302      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1303      __ ldd( __ d_tmp, O2 );
1304      __ pop_d(Ftos_f);
1305      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1306      __ ldd( __ d_tmp, O0 );
1307 #endif
1308      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1309      assert( Ftos_d == F0, "fix this code" );
1310      break;
1311 
1312    default: ShouldNotReachHere();
1313   }
1314 }
1315 
1316 
1317 void TemplateTable::ineg() {
1318   transition(itos, itos);
1319   __ neg(Otos_i);
1320 }
1321 
1322 
1323 void TemplateTable::lneg() {
1324   transition(ltos, ltos);
1325 #ifdef _LP64
1326   __ sub(G0, Otos_l, Otos_l);
1327 #else
1328   __ lneg(Otos_l1, Otos_l2);
1329 #endif
1330 }
1331 
1332 
1333 void TemplateTable::fneg() {
1334   transition(ftos, ftos);
1335   __ fneg(FloatRegisterImpl::S, Ftos_f);
1336 }
1337 
1338 
1339 void TemplateTable::dneg() {
1340   transition(dtos, dtos);
1341   // v8 has fnegd if source and dest are the same
1342   __ fneg(FloatRegisterImpl::D, Ftos_f);
1343 }
1344 
1345 
1346 void TemplateTable::iinc() {
1347   transition(vtos, vtos);
1348   locals_index(G3_scratch);
1349   __ ldsb(Lbcp, 2, O2);  // load constant
1350   __ access_local_int(G3_scratch, Otos_i);
1351   __ add(Otos_i, O2, Otos_i);
1352   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1353 }
1354 
1355 
1356 void TemplateTable::wide_iinc() {
1357   transition(vtos, vtos);
1358   locals_index_wide(G3_scratch);
1359   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1360   __ access_local_int(G3_scratch, Otos_i);
1361   __ add(Otos_i, O3, Otos_i);
1362   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1363 }
1364 
1365 
1366 void TemplateTable::convert() {
1367 // %%%%% Factor this first part accross platforms
1368   #ifdef ASSERT
1369     TosState tos_in  = ilgl;
1370     TosState tos_out = ilgl;
1371     switch (bytecode()) {
1372       case Bytecodes::_i2l: // fall through
1373       case Bytecodes::_i2f: // fall through
1374       case Bytecodes::_i2d: // fall through
1375       case Bytecodes::_i2b: // fall through
1376       case Bytecodes::_i2c: // fall through
1377       case Bytecodes::_i2s: tos_in = itos; break;
1378       case Bytecodes::_l2i: // fall through
1379       case Bytecodes::_l2f: // fall through
1380       case Bytecodes::_l2d: tos_in = ltos; break;
1381       case Bytecodes::_f2i: // fall through
1382       case Bytecodes::_f2l: // fall through
1383       case Bytecodes::_f2d: tos_in = ftos; break;
1384       case Bytecodes::_d2i: // fall through
1385       case Bytecodes::_d2l: // fall through
1386       case Bytecodes::_d2f: tos_in = dtos; break;
1387       default             : ShouldNotReachHere();
1388     }
1389     switch (bytecode()) {
1390       case Bytecodes::_l2i: // fall through
1391       case Bytecodes::_f2i: // fall through
1392       case Bytecodes::_d2i: // fall through
1393       case Bytecodes::_i2b: // fall through
1394       case Bytecodes::_i2c: // fall through
1395       case Bytecodes::_i2s: tos_out = itos; break;
1396       case Bytecodes::_i2l: // fall through
1397       case Bytecodes::_f2l: // fall through
1398       case Bytecodes::_d2l: tos_out = ltos; break;
1399       case Bytecodes::_i2f: // fall through
1400       case Bytecodes::_l2f: // fall through
1401       case Bytecodes::_d2f: tos_out = ftos; break;
1402       case Bytecodes::_i2d: // fall through
1403       case Bytecodes::_l2d: // fall through
1404       case Bytecodes::_f2d: tos_out = dtos; break;
1405       default             : ShouldNotReachHere();
1406     }
1407     transition(tos_in, tos_out);
1408   #endif
1409 
1410 
1411   // Conversion
1412   Label done;
1413   switch (bytecode()) {
1414    case Bytecodes::_i2l:
1415 #ifdef _LP64
1416     // Sign extend the 32 bits
1417     __ sra ( Otos_i, 0, Otos_l );
1418 #else
1419     __ addcc(Otos_i, 0, Otos_l2);
1420     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
1421     __ delayed()->clr(Otos_l1);
1422     __ set(~0, Otos_l1);
1423 #endif
1424     break;
1425 
1426    case Bytecodes::_i2f:
1427     __ st(Otos_i, __ d_tmp );
1428     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1429     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1430     break;
1431 
1432    case Bytecodes::_i2d:
1433     __ st(Otos_i, __ d_tmp);
1434     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1435     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1436     break;
1437 
1438    case Bytecodes::_i2b:
1439     __ sll(Otos_i, 24, Otos_i);
1440     __ sra(Otos_i, 24, Otos_i);
1441     break;
1442 
1443    case Bytecodes::_i2c:
1444     __ sll(Otos_i, 16, Otos_i);
1445     __ srl(Otos_i, 16, Otos_i);
1446     break;
1447 
1448    case Bytecodes::_i2s:
1449     __ sll(Otos_i, 16, Otos_i);
1450     __ sra(Otos_i, 16, Otos_i);
1451     break;
1452 
1453    case Bytecodes::_l2i:
1454 #ifndef _LP64
1455     __ mov(Otos_l2, Otos_i);
1456 #else
1457     // Sign-extend into the high 32 bits
1458     __ sra(Otos_l, 0, Otos_i);
1459 #endif
1460     break;
1461 
1462    case Bytecodes::_l2f:
1463    case Bytecodes::_l2d:
1464     __ st_long(Otos_l, __ d_tmp);
1465     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1466 
1467     if (VM_Version::v9_instructions_work()) {
1468       if (bytecode() == Bytecodes::_l2f) {
1469         __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1470       } else {
1471         __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1472       }
1473     } else {
1474       __ call_VM_leaf(
1475         Lscratch,
1476         bytecode() == Bytecodes::_l2f
1477           ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
1478           : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
1479       );
1480     }
1481     break;
1482 
1483   case Bytecodes::_f2i:  {
1484       Label isNaN;
1485       // result must be 0 if value is NaN; test by comparing value to itself
1486       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1487       // According to the v8 manual, you have to have a non-fp instruction
1488       // between fcmp and fb.
1489       if (!VM_Version::v9_instructions_work()) {
1490         __ nop();
1491       }
1492       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1493       __ delayed()->clr(Otos_i);                                     // NaN
1494       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1495       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1496       __ ld(__ d_tmp, Otos_i);
1497       __ bind(isNaN);
1498     }
1499     break;
1500 
1501    case Bytecodes::_f2l:
1502     // must uncache tos
1503     __ push_f();
1504 #ifdef _LP64
1505     __ pop_f(F1);
1506 #else
1507     __ pop_i(O0);
1508 #endif
1509     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1510     break;
1511 
1512    case Bytecodes::_f2d:
1513     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1514     break;
1515 
1516    case Bytecodes::_d2i:
1517    case Bytecodes::_d2l:
1518     // must uncache tos
1519     __ push_d();
1520 #ifdef _LP64
1521     // LP64 calling conventions pass first double arg in D0
1522     __ pop_d( Ftos_d );
1523 #else
1524     __ pop_i( O0 );
1525     __ pop_i( O1 );
1526 #endif
1527     __ call_VM_leaf(Lscratch,
1528         bytecode() == Bytecodes::_d2i
1529           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1530           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1531     break;
1532 
1533     case Bytecodes::_d2f:
1534     if (VM_Version::v9_instructions_work()) {
1535       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1536     }
1537     else {
1538       // must uncache tos
1539       __ push_d();
1540       __ pop_i(O0);
1541       __ pop_i(O1);
1542       __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
1543     }
1544     break;
1545 
1546     default: ShouldNotReachHere();
1547   }
1548   __ bind(done);
1549 }
1550 
1551 
1552 void TemplateTable::lcmp() {
1553   transition(ltos, itos);
1554 
1555 #ifdef _LP64
1556   __ pop_l(O1); // pop off value 1, value 2 is in O0
1557   __ lcmp( O1, Otos_l, Otos_i );
1558 #else
1559   __ pop_l(O2); // cmp O2,3 to O0,1
1560   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
1561 #endif
1562 }
1563 
1564 
1565 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1566 
1567   if (is_float) __ pop_f(F2);
1568   else          __ pop_d(F2);
1569 
1570   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1571 
1572   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1573 }
1574 
1575 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1576   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1577   __ verify_thread();
1578 
1579   const Register O2_bumped_count = O2;
1580   __ profile_taken_branch(G3_scratch, O2_bumped_count);
1581 
1582   // get (wide) offset to O1_disp
1583   const Register O1_disp = O1;
1584   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1585   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1586 
1587   // Handle all the JSR stuff here, then exit.
1588   // It's much shorter and cleaner than intermingling with the
1589   // non-JSR normal-branch stuff occurring below.
1590   if( is_jsr ) {
1591     // compute return address as bci in Otos_i
1592     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1593     __ sub(Lbcp, G3_scratch, G3_scratch);
1594     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1595 
1596     // Bump Lbcp to target of JSR
1597     __ add(Lbcp, O1_disp, Lbcp);
1598     // Push returnAddress for "ret" on stack
1599     __ push_ptr(Otos_i);
1600     // And away we go!
1601     __ dispatch_next(vtos);
1602     return;
1603   }
1604 
1605   // Normal (non-jsr) branch handling
1606 
1607   // Save the current Lbcp
1608   const Register O0_cur_bcp = O0;
1609   __ mov( Lbcp, O0_cur_bcp );
1610 
1611 
1612   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1613   if ( increment_invocation_counter_for_backward_branches ) {
1614     Label Lforward;
1615     // check branch direction
1616     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1617     // Bump bytecode pointer by displacement (take the branch)
1618     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1619 
1620     if (TieredCompilation) {
1621       Label Lno_mdo, Loverflow;
1622       int increment = InvocationCounter::count_increment;
1623       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1624       if (ProfileInterpreter) {
1625         // If no method data exists, go to profile_continue.
1626         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
1627         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
1628 
1629         // Increment backedge counter in the MDO
1630         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
1631                                                  in_bytes(InvocationCounter::counter_offset()));
1632         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, Lscratch,
1633                                    Assembler::notZero, &Lforward);
1634         __ ba_short(Loverflow);
1635       }
1636 
1637       // If there's no MDO, increment counter in Method*
1638       __ bind(Lno_mdo);
1639       Address backedge_counter(Lmethod, in_bytes(Method::backedge_counter_offset()) +
1640                                         in_bytes(InvocationCounter::counter_offset()));
1641       __ increment_mask_and_jump(backedge_counter, increment, mask, G3_scratch, Lscratch,
1642                                  Assembler::notZero, &Lforward);
1643       __ bind(Loverflow);
1644 
1645       // notify point for loop, pass branch bytecode
1646       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O0_cur_bcp);
1647 
1648       // Was an OSR adapter generated?
1649       // O0 = osr nmethod
1650       __ br_null_short(O0, Assembler::pn, Lforward);
1651 
1652       // Has the nmethod been invalidated already?
1653       __ ld(O0, nmethod::entry_bci_offset(), O2);
1654       __ cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, Lforward);
1655 
1656       // migrate the interpreter frame off of the stack
1657 
1658       __ mov(G2_thread, L7);
1659       // save nmethod
1660       __ mov(O0, L6);
1661       __ set_last_Java_frame(SP, noreg);
1662       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
1663       __ reset_last_Java_frame();
1664       __ mov(L7, G2_thread);
1665 
1666       // move OSR nmethod to I1
1667       __ mov(L6, I1);
1668 
1669       // OSR buffer to I0
1670       __ mov(O0, I0);
1671 
1672       // remove the interpreter frame
1673       __ restore(I5_savedSP, 0, SP);
1674 
1675       // Jump to the osr code.
1676       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
1677       __ jmp(O2, G0);
1678       __ delayed()->nop();
1679 
1680     } else {
1681       // Update Backedge branch separately from invocations
1682       const Register G4_invoke_ctr = G4;
1683       __ increment_backedge_counter(G4_invoke_ctr, G1_scratch);
1684       if (ProfileInterpreter) {
1685         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward);
1686         if (UseOnStackReplacement) {
1687           __ test_backedge_count_for_osr(O2_bumped_count, O0_cur_bcp, G3_scratch);
1688         }
1689       } else {
1690         if (UseOnStackReplacement) {
1691           __ test_backedge_count_for_osr(G4_invoke_ctr, O0_cur_bcp, G3_scratch);
1692         }
1693       }
1694     }
1695 
1696     __ bind(Lforward);
1697   } else
1698     // Bump bytecode pointer by displacement (take the branch)
1699     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1700 
1701   // continue with bytecode @ target
1702   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1703   // %%%%% and changing dispatch_next to dispatch_only
1704   __ dispatch_next(vtos);
1705 }
1706 
1707 
1708 // Note Condition in argument is TemplateTable::Condition
1709 // arg scope is within class scope
1710 
1711 void TemplateTable::if_0cmp(Condition cc) {
1712   // no pointers, integer only!
1713   transition(itos, vtos);
1714   // assume branch is more often taken than not (loops use backward branches)
1715   __ cmp( Otos_i, 0);
1716   __ if_cmp(ccNot(cc), false);
1717 }
1718 
1719 
1720 void TemplateTable::if_icmp(Condition cc) {
1721   transition(itos, vtos);
1722   __ pop_i(O1);
1723   __ cmp(O1, Otos_i);
1724   __ if_cmp(ccNot(cc), false);
1725 }
1726 
1727 
1728 void TemplateTable::if_nullcmp(Condition cc) {
1729   transition(atos, vtos);
1730   __ tst(Otos_i);
1731   __ if_cmp(ccNot(cc), true);
1732 }
1733 
1734 
1735 void TemplateTable::if_acmp(Condition cc) {
1736   transition(atos, vtos);
1737   __ pop_ptr(O1);
1738   __ verify_oop(O1);
1739   __ verify_oop(Otos_i);
1740   __ cmp(O1, Otos_i);
1741   __ if_cmp(ccNot(cc), true);
1742 }
1743 
1744 
1745 
1746 void TemplateTable::ret() {
1747   transition(vtos, vtos);
1748   locals_index(G3_scratch);
1749   __ access_local_returnAddress(G3_scratch, Otos_i);
1750   // Otos_i contains the bci, compute the bcp from that
1751 
1752 #ifdef _LP64
1753 #ifdef ASSERT
1754   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1755   // the result.  The return address (really a BCI) was stored with an
1756   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1757   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1758   // loaded value.
1759   { Label zzz ;
1760      __ set (65536, G3_scratch) ;
1761      __ cmp (Otos_i, G3_scratch) ;
1762      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1763      __ delayed()->nop();
1764      __ stop("BCI is in the wrong register half?");
1765      __ bind (zzz) ;
1766   }
1767 #endif
1768 #endif
1769 
1770   __ profile_ret(vtos, Otos_i, G4_scratch);
1771 
1772   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1773   __ add(G3_scratch, Otos_i, G3_scratch);
1774   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1775   __ dispatch_next(vtos);
1776 }
1777 
1778 
1779 void TemplateTable::wide_ret() {
1780   transition(vtos, vtos);
1781   locals_index_wide(G3_scratch);
1782   __ access_local_returnAddress(G3_scratch, Otos_i);
1783   // Otos_i contains the bci, compute the bcp from that
1784 
1785   __ profile_ret(vtos, Otos_i, G4_scratch);
1786 
1787   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1788   __ add(G3_scratch, Otos_i, G3_scratch);
1789   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1790   __ dispatch_next(vtos);
1791 }
1792 
1793 
1794 void TemplateTable::tableswitch() {
1795   transition(itos, vtos);
1796   Label default_case, continue_execution;
1797 
1798   // align bcp
1799   __ add(Lbcp, BytesPerInt, O1);
1800   __ and3(O1, -BytesPerInt, O1);
1801   // load lo, hi
1802   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1803   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1804 #ifdef _LP64
1805   // Sign extend the 32 bits
1806   __ sra ( Otos_i, 0, Otos_i );
1807 #endif /* _LP64 */
1808 
1809   // check against lo & hi
1810   __ cmp( Otos_i, O2);
1811   __ br( Assembler::less, false, Assembler::pn, default_case);
1812   __ delayed()->cmp( Otos_i, O3 );
1813   __ br( Assembler::greater, false, Assembler::pn, default_case);
1814   // lookup dispatch offset
1815   __ delayed()->sub(Otos_i, O2, O2);
1816   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1817   __ sll(O2, LogBytesPerInt, O2);
1818   __ add(O2, 3 * BytesPerInt, O2);
1819   __ ba(continue_execution);
1820   __ delayed()->ld(O1, O2, O2);
1821   // handle default
1822   __ bind(default_case);
1823   __ profile_switch_default(O3);
1824   __ ld(O1, 0, O2); // get default offset
1825   // continue execution
1826   __ bind(continue_execution);
1827   __ add(Lbcp, O2, Lbcp);
1828   __ dispatch_next(vtos);
1829 }
1830 
1831 
1832 void TemplateTable::lookupswitch() {
1833   transition(itos, itos);
1834   __ stop("lookupswitch bytecode should have been rewritten");
1835 }
1836 
1837 void TemplateTable::fast_linearswitch() {
1838   transition(itos, vtos);
1839     Label loop_entry, loop, found, continue_execution;
1840   // align bcp
1841   __ add(Lbcp, BytesPerInt, O1);
1842   __ and3(O1, -BytesPerInt, O1);
1843  // set counter
1844   __ ld(O1, BytesPerInt, O2);
1845   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1846   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1847   __ ba(loop_entry);
1848   __ delayed()->add(O3, O2, O2); // counter now points past last pair
1849 
1850   // table search
1851   __ bind(loop);
1852   __ cmp(O4, Otos_i);
1853   __ br(Assembler::equal, true, Assembler::pn, found);
1854   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1855   __ inc(O3, 2 * BytesPerInt);
1856 
1857   __ bind(loop_entry);
1858   __ cmp(O2, O3);
1859   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1860   __ delayed()->ld(O3, 0, O4);
1861 
1862   // default case
1863   __ ld(O1, 0, O4); // get default offset
1864   if (ProfileInterpreter) {
1865     __ profile_switch_default(O3);
1866     __ ba_short(continue_execution);
1867   }
1868 
1869   // entry found -> get offset
1870   __ bind(found);
1871   if (ProfileInterpreter) {
1872     __ sub(O3, O1, O3);
1873     __ sub(O3, 2*BytesPerInt, O3);
1874     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1875     __ profile_switch_case(O3, O1, O2, G3_scratch);
1876 
1877     __ bind(continue_execution);
1878   }
1879   __ add(Lbcp, O4, Lbcp);
1880   __ dispatch_next(vtos);
1881 }
1882 
1883 
1884 void TemplateTable::fast_binaryswitch() {
1885   transition(itos, vtos);
1886   // Implementation using the following core algorithm: (copied from Intel)
1887   //
1888   // int binary_search(int key, LookupswitchPair* array, int n) {
1889   //   // Binary search according to "Methodik des Programmierens" by
1890   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1891   //   int i = 0;
1892   //   int j = n;
1893   //   while (i+1 < j) {
1894   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1895   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1896   //     // where a stands for the array and assuming that the (inexisting)
1897   //     // element a[n] is infinitely big.
1898   //     int h = (i + j) >> 1;
1899   //     // i < h < j
1900   //     if (key < array[h].fast_match()) {
1901   //       j = h;
1902   //     } else {
1903   //       i = h;
1904   //     }
1905   //   }
1906   //   // R: a[i] <= key < a[i+1] or Q
1907   //   // (i.e., if key is within array, i is the correct index)
1908   //   return i;
1909   // }
1910 
1911   // register allocation
1912   assert(Otos_i == O0, "alias checking");
1913   const Register Rkey     = Otos_i;                    // already set (tosca)
1914   const Register Rarray   = O1;
1915   const Register Ri       = O2;
1916   const Register Rj       = O3;
1917   const Register Rh       = O4;
1918   const Register Rscratch = O5;
1919 
1920   const int log_entry_size = 3;
1921   const int entry_size = 1 << log_entry_size;
1922 
1923   Label found;
1924   // Find Array start
1925   __ add(Lbcp, 3 * BytesPerInt, Rarray);
1926   __ and3(Rarray, -BytesPerInt, Rarray);
1927   // initialize i & j (in delay slot)
1928   __ clr( Ri );
1929 
1930   // and start
1931   Label entry;
1932   __ ba(entry);
1933   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1934   // (Rj is already in the native byte-ordering.)
1935 
1936   // binary search loop
1937   { Label loop;
1938     __ bind( loop );
1939     // int h = (i + j) >> 1;
1940     __ sra( Rh, 1, Rh );
1941     // if (key < array[h].fast_match()) {
1942     //   j = h;
1943     // } else {
1944     //   i = h;
1945     // }
1946     __ sll( Rh, log_entry_size, Rscratch );
1947     __ ld( Rarray, Rscratch, Rscratch );
1948     // (Rscratch is already in the native byte-ordering.)
1949     __ cmp( Rkey, Rscratch );
1950     if ( VM_Version::v9_instructions_work() ) {
1951       __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1952       __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1953     }
1954     else {
1955       Label end_of_if;
1956       __ br( Assembler::less, true, Assembler::pt, end_of_if );
1957       __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
1958       __ mov( Rh, Ri );            // else i = h
1959       __ bind(end_of_if);          // }
1960     }
1961 
1962     // while (i+1 < j)
1963     __ bind( entry );
1964     __ add( Ri, 1, Rscratch );
1965     __ cmp(Rscratch, Rj);
1966     __ br( Assembler::less, true, Assembler::pt, loop );
1967     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1968   }
1969 
1970   // end of binary search, result index is i (must check again!)
1971   Label default_case;
1972   Label continue_execution;
1973   if (ProfileInterpreter) {
1974     __ mov( Ri, Rh );              // Save index in i for profiling
1975   }
1976   __ sll( Ri, log_entry_size, Ri );
1977   __ ld( Rarray, Ri, Rscratch );
1978   // (Rscratch is already in the native byte-ordering.)
1979   __ cmp( Rkey, Rscratch );
1980   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1981   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1982 
1983   // entry found -> j = offset
1984   __ inc( Ri, BytesPerInt );
1985   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1986   __ ld( Rarray, Ri, Rj );
1987   // (Rj is already in the native byte-ordering.)
1988 
1989   if (ProfileInterpreter) {
1990     __ ba_short(continue_execution);
1991   }
1992 
1993   __ bind(default_case); // fall through (if not profiling)
1994   __ profile_switch_default(Ri);
1995 
1996   __ bind(continue_execution);
1997   __ add( Lbcp, Rj, Lbcp );
1998   __ dispatch_next( vtos );
1999 }
2000 
2001 
2002 void TemplateTable::_return(TosState state) {
2003   transition(state, state);
2004   assert(_desc->calls_vm(), "inconsistent calls_vm information");
2005 
2006   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2007     assert(state == vtos, "only valid state");
2008     __ mov(G0, G3_scratch);
2009     __ access_local_ptr(G3_scratch, Otos_i);
2010     __ load_klass(Otos_i, O2);
2011     __ set(JVM_ACC_HAS_FINALIZER, G3);
2012     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
2013     __ andcc(G3, O2, G0);
2014     Label skip_register_finalizer;
2015     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
2016     __ delayed()->nop();
2017 
2018     // Call out to do finalizer registration
2019     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
2020 
2021     __ bind(skip_register_finalizer);
2022   }
2023 
2024   __ remove_activation(state, /* throw_monitor_exception */ true);
2025 
2026   // The caller's SP was adjusted upon method entry to accomodate
2027   // the callee's non-argument locals. Undo that adjustment.
2028   __ ret();                             // return to caller
2029   __ delayed()->restore(I5_savedSP, G0, SP);
2030 }
2031 
2032 
2033 // ----------------------------------------------------------------------------
2034 // Volatile variables demand their effects be made known to all CPU's in
2035 // order.  Store buffers on most chips allow reads & writes to reorder; the
2036 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2037 // memory barrier (i.e., it's not sufficient that the interpreter does not
2038 // reorder volatile references, the hardware also must not reorder them).
2039 //
2040 // According to the new Java Memory Model (JMM):
2041 // (1) All volatiles are serialized wrt to each other.
2042 // ALSO reads & writes act as aquire & release, so:
2043 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2044 // the read float up to before the read.  It's OK for non-volatile memory refs
2045 // that happen before the volatile read to float down below it.
2046 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2047 // that happen BEFORE the write float down to after the write.  It's OK for
2048 // non-volatile memory refs that happen after the volatile write to float up
2049 // before it.
2050 //
2051 // We only put in barriers around volatile refs (they are expensive), not
2052 // _between_ memory refs (that would require us to track the flavor of the
2053 // previous memory refs).  Requirements (2) and (3) require some barriers
2054 // before volatile stores and after volatile loads.  These nearly cover
2055 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2056 // case is placed after volatile-stores although it could just as well go
2057 // before volatile-loads.
2058 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
2059   // Helper function to insert a is-volatile test and memory barrier
2060   // All current sparc implementations run in TSO, needing only StoreLoad
2061   if ((order_constraint & Assembler::StoreLoad) == 0) return;
2062   __ membar( order_constraint );
2063 }
2064 
2065 // ----------------------------------------------------------------------------
2066 void TemplateTable::resolve_cache_and_index(int byte_no,
2067                                             Register Rcache,
2068                                             Register index,
2069                                             size_t index_size) {
2070   // Depends on cpCacheOop layout!
2071   Label resolved;
2072 
2073     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2074     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
2075     __ cmp(Lbyte_code, (int) bytecode());  // have we resolved this bytecode?
2076     __ br(Assembler::equal, false, Assembler::pt, resolved);
2077     __ delayed()->set((int)bytecode(), O1);
2078 
2079   address entry;
2080   switch (bytecode()) {
2081     case Bytecodes::_getstatic      : // fall through
2082     case Bytecodes::_putstatic      : // fall through
2083     case Bytecodes::_getfield       : // fall through
2084     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2085     case Bytecodes::_invokevirtual  : // fall through
2086     case Bytecodes::_invokespecial  : // fall through
2087     case Bytecodes::_invokestatic   : // fall through
2088     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
2089     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);  break;
2090     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
2091     default:
2092       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2093       break;
2094   }
2095   // first time invocation - must resolve first
2096   __ call_VM(noreg, entry, O1);
2097   // Update registers with resolved info
2098   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2099   __ bind(resolved);
2100 }
2101 
2102 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2103                                                Register method,
2104                                                Register itable_index,
2105                                                Register flags,
2106                                                bool is_invokevirtual,
2107                                                bool is_invokevfinal,
2108                                                bool is_invokedynamic) {
2109   // Uses both G3_scratch and G4_scratch
2110   Register cache = G3_scratch;
2111   Register index = G4_scratch;
2112   assert_different_registers(cache, method, itable_index);
2113 
2114   // determine constant pool cache field offsets
2115   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2116   const int method_offset = in_bytes(
2117       ConstantPoolCache::base_offset() +
2118       ((byte_no == f2_byte)
2119        ? ConstantPoolCacheEntry::f2_offset()
2120        : ConstantPoolCacheEntry::f1_offset()
2121       )
2122     );
2123   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2124                                     ConstantPoolCacheEntry::flags_offset());
2125   // access constant pool cache fields
2126   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2127                                     ConstantPoolCacheEntry::f2_offset());
2128 
2129   if (is_invokevfinal) {
2130     __ get_cache_and_index_at_bcp(cache, index, 1);
2131     __ ld_ptr(Address(cache, method_offset), method);
2132   } else {
2133     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2134     resolve_cache_and_index(byte_no, cache, index, index_size);
2135     __ ld_ptr(Address(cache, method_offset), method);
2136   }
2137 
2138   if (itable_index != noreg) {
2139     // pick up itable or appendix index from f2 also:
2140     __ ld_ptr(Address(cache, index_offset), itable_index);
2141   }
2142   __ ld_ptr(Address(cache, flags_offset), flags);
2143 }
2144 
2145 // The Rcache register must be set before call
2146 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2147                                               Register Rcache,
2148                                               Register index,
2149                                               Register Roffset,
2150                                               Register Rflags,
2151                                               bool is_static) {
2152   assert_different_registers(Rcache, Rflags, Roffset);
2153 
2154   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2155 
2156   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2157   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2158   if (is_static) {
2159     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2160     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2161     __ ld_ptr( Robj, mirror_offset, Robj);
2162   }
2163 }
2164 
2165 // The registers Rcache and index expected to be set before call.
2166 // Correct values of the Rcache and index registers are preserved.
2167 void TemplateTable::jvmti_post_field_access(Register Rcache,
2168                                             Register index,
2169                                             bool is_static,
2170                                             bool has_tos) {
2171   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2172 
2173   if (JvmtiExport::can_post_field_access()) {
2174     // Check to see if a field access watch has been set before we take
2175     // the time to call into the VM.
2176     Label Label1;
2177     assert_different_registers(Rcache, index, G1_scratch);
2178     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2179     __ load_contents(get_field_access_count_addr, G1_scratch);
2180     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
2181 
2182     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2183 
2184     if (is_static) {
2185       __ clr(Otos_i);
2186     } else {
2187       if (has_tos) {
2188       // save object pointer before call_VM() clobbers it
2189         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2190       } else {
2191         // Load top of stack (do not pop the value off the stack);
2192         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2193       }
2194       __ verify_oop(Otos_i);
2195     }
2196     // Otos_i: object pointer or NULL if static
2197     // Rcache: cache entry pointer
2198     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2199                Otos_i, Rcache);
2200     if (!is_static && has_tos) {
2201       __ pop_ptr(Otos_i);  // restore object pointer
2202       __ verify_oop(Otos_i);
2203     }
2204     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2205     __ bind(Label1);
2206   }
2207 }
2208 
2209 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2210   transition(vtos, vtos);
2211 
2212   Register Rcache = G3_scratch;
2213   Register index  = G4_scratch;
2214   Register Rclass = Rcache;
2215   Register Roffset= G4_scratch;
2216   Register Rflags = G1_scratch;
2217   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2218 
2219   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2220   jvmti_post_field_access(Rcache, index, is_static, false);
2221   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2222 
2223   if (!is_static) {
2224     pop_and_check_object(Rclass);
2225   } else {
2226     __ verify_oop(Rclass);
2227   }
2228 
2229   Label exit;
2230 
2231   Assembler::Membar_mask_bits membar_bits =
2232     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2233 
2234   if (__ membar_has_effect(membar_bits)) {
2235     // Get volatile flag
2236     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2237     __ and3(Rflags, Lscratch, Lscratch);
2238   }
2239 
2240   Label checkVolatile;
2241 
2242   // compute field type
2243   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
2244   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2245   // Make sure we don't need to mask Rflags after the above shift
2246   ConstantPoolCacheEntry::verify_tos_state_shift();
2247 
2248   // Check atos before itos for getstatic, more likely (in Queens at least)
2249   __ cmp(Rflags, atos);
2250   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2251   __ delayed() ->cmp(Rflags, itos);
2252 
2253   // atos
2254   __ load_heap_oop(Rclass, Roffset, Otos_i);
2255   __ verify_oop(Otos_i);
2256   __ push(atos);
2257   if (!is_static) {
2258     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2259   }
2260   __ ba(checkVolatile);
2261   __ delayed()->tst(Lscratch);
2262 
2263   __ bind(notObj);
2264 
2265   // cmp(Rflags, itos);
2266   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2267   __ delayed() ->cmp(Rflags, ltos);
2268 
2269   // itos
2270   __ ld(Rclass, Roffset, Otos_i);
2271   __ push(itos);
2272   if (!is_static) {
2273     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2274   }
2275   __ ba(checkVolatile);
2276   __ delayed()->tst(Lscratch);
2277 
2278   __ bind(notInt);
2279 
2280   // cmp(Rflags, ltos);
2281   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2282   __ delayed() ->cmp(Rflags, btos);
2283 
2284   // ltos
2285   // load must be atomic
2286   __ ld_long(Rclass, Roffset, Otos_l);
2287   __ push(ltos);
2288   if (!is_static) {
2289     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2290   }
2291   __ ba(checkVolatile);
2292   __ delayed()->tst(Lscratch);
2293 
2294   __ bind(notLong);
2295 
2296   // cmp(Rflags, btos);
2297   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2298   __ delayed() ->cmp(Rflags, ctos);
2299 
2300   // btos
2301   __ ldsb(Rclass, Roffset, Otos_i);
2302   __ push(itos);
2303   if (!is_static) {
2304     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2305   }
2306   __ ba(checkVolatile);
2307   __ delayed()->tst(Lscratch);
2308 
2309   __ bind(notByte);
2310 
2311   // cmp(Rflags, ctos);
2312   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2313   __ delayed() ->cmp(Rflags, stos);
2314 
2315   // ctos
2316   __ lduh(Rclass, Roffset, Otos_i);
2317   __ push(itos);
2318   if (!is_static) {
2319     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2320   }
2321   __ ba(checkVolatile);
2322   __ delayed()->tst(Lscratch);
2323 
2324   __ bind(notChar);
2325 
2326   // cmp(Rflags, stos);
2327   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2328   __ delayed() ->cmp(Rflags, ftos);
2329 
2330   // stos
2331   __ ldsh(Rclass, Roffset, Otos_i);
2332   __ push(itos);
2333   if (!is_static) {
2334     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2335   }
2336   __ ba(checkVolatile);
2337   __ delayed()->tst(Lscratch);
2338 
2339   __ bind(notShort);
2340 
2341 
2342   // cmp(Rflags, ftos);
2343   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2344   __ delayed() ->tst(Lscratch);
2345 
2346   // ftos
2347   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2348   __ push(ftos);
2349   if (!is_static) {
2350     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2351   }
2352   __ ba(checkVolatile);
2353   __ delayed()->tst(Lscratch);
2354 
2355   __ bind(notFloat);
2356 
2357 
2358   // dtos
2359   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2360   __ push(dtos);
2361   if (!is_static) {
2362     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2363   }
2364 
2365   __ bind(checkVolatile);
2366   if (__ membar_has_effect(membar_bits)) {
2367     // __ tst(Lscratch); executed in delay slot
2368     __ br(Assembler::zero, false, Assembler::pt, exit);
2369     __ delayed()->nop();
2370     volatile_barrier(membar_bits);
2371   }
2372 
2373   __ bind(exit);
2374 }
2375 
2376 
2377 void TemplateTable::getfield(int byte_no) {
2378   getfield_or_static(byte_no, false);
2379 }
2380 
2381 void TemplateTable::getstatic(int byte_no) {
2382   getfield_or_static(byte_no, true);
2383 }
2384 
2385 
2386 void TemplateTable::fast_accessfield(TosState state) {
2387   transition(atos, state);
2388   Register Rcache  = G3_scratch;
2389   Register index   = G4_scratch;
2390   Register Roffset = G4_scratch;
2391   Register Rflags  = Rcache;
2392   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2393 
2394   __ get_cache_and_index_at_bcp(Rcache, index, 1);
2395   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2396 
2397   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2398 
2399   __ null_check(Otos_i);
2400   __ verify_oop(Otos_i);
2401 
2402   Label exit;
2403 
2404   Assembler::Membar_mask_bits membar_bits =
2405     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2406   if (__ membar_has_effect(membar_bits)) {
2407     // Get volatile flag
2408     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2409     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2410   }
2411 
2412   switch (bytecode()) {
2413     case Bytecodes::_fast_bgetfield:
2414       __ ldsb(Otos_i, Roffset, Otos_i);
2415       break;
2416     case Bytecodes::_fast_cgetfield:
2417       __ lduh(Otos_i, Roffset, Otos_i);
2418       break;
2419     case Bytecodes::_fast_sgetfield:
2420       __ ldsh(Otos_i, Roffset, Otos_i);
2421       break;
2422     case Bytecodes::_fast_igetfield:
2423       __ ld(Otos_i, Roffset, Otos_i);
2424       break;
2425     case Bytecodes::_fast_lgetfield:
2426       __ ld_long(Otos_i, Roffset, Otos_l);
2427       break;
2428     case Bytecodes::_fast_fgetfield:
2429       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2430       break;
2431     case Bytecodes::_fast_dgetfield:
2432       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2433       break;
2434     case Bytecodes::_fast_agetfield:
2435       __ load_heap_oop(Otos_i, Roffset, Otos_i);
2436       break;
2437     default:
2438       ShouldNotReachHere();
2439   }
2440 
2441   if (__ membar_has_effect(membar_bits)) {
2442     __ btst(Lscratch, Rflags);
2443     __ br(Assembler::zero, false, Assembler::pt, exit);
2444     __ delayed()->nop();
2445     volatile_barrier(membar_bits);
2446     __ bind(exit);
2447   }
2448 
2449   if (state == atos) {
2450     __ verify_oop(Otos_i);    // does not blow flags!
2451   }
2452 }
2453 
2454 void TemplateTable::jvmti_post_fast_field_mod() {
2455   if (JvmtiExport::can_post_field_modification()) {
2456     // Check to see if a field modification watch has been set before we take
2457     // the time to call into the VM.
2458     Label done;
2459     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2460     __ load_contents(get_field_modification_count_addr, G4_scratch);
2461     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
2462     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2463     __ verify_oop(G4_scratch);
2464     __ push_ptr(G4_scratch);    // put the object pointer back on tos
2465     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2466     // Save tos values before call_VM() clobbers them. Since we have
2467     // to do it for every data type, we use the saved values as the
2468     // jvalue object.
2469     switch (bytecode()) {  // save tos values before call_VM() clobbers them
2470     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2471     case Bytecodes::_fast_bputfield: // fall through
2472     case Bytecodes::_fast_sputfield: // fall through
2473     case Bytecodes::_fast_cputfield: // fall through
2474     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2475     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2476     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2477     // get words in right order for use as jvalue object
2478     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2479     }
2480     // setup pointer to jvalue object
2481     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2482     // G4_scratch:  object pointer
2483     // G1_scratch: cache entry pointer
2484     // G3_scratch: jvalue object on the stack
2485     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2486     switch (bytecode()) {             // restore tos values
2487     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2488     case Bytecodes::_fast_bputfield: // fall through
2489     case Bytecodes::_fast_sputfield: // fall through
2490     case Bytecodes::_fast_cputfield: // fall through
2491     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2492     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2493     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2494     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2495     }
2496     __ bind(done);
2497   }
2498 }
2499 
2500 // The registers Rcache and index expected to be set before call.
2501 // The function may destroy various registers, just not the Rcache and index registers.
2502 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2503   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2504 
2505   if (JvmtiExport::can_post_field_modification()) {
2506     // Check to see if a field modification watch has been set before we take
2507     // the time to call into the VM.
2508     Label Label1;
2509     assert_different_registers(Rcache, index, G1_scratch);
2510     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2511     __ load_contents(get_field_modification_count_addr, G1_scratch);
2512     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
2513 
2514     // The Rcache and index registers have been already set.
2515     // This allows to eliminate this call but the Rcache and index
2516     // registers must be correspondingly used after this line.
2517     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2518 
2519     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2520     if (is_static) {
2521       // Life is simple.  Null out the object pointer.
2522       __ clr(G4_scratch);
2523     } else {
2524       Register Rflags = G1_scratch;
2525       // Life is harder. The stack holds the value on top, followed by the
2526       // object.  We don't know the size of the value, though; it could be
2527       // one or two words depending on its type. As a result, we must find
2528       // the type to determine where the object is.
2529 
2530       Label two_word, valsizeknown;
2531       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2532       __ mov(Lesp, G4_scratch);
2533       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2534       // Make sure we don't need to mask Rflags after the above shift
2535       ConstantPoolCacheEntry::verify_tos_state_shift();
2536       __ cmp(Rflags, ltos);
2537       __ br(Assembler::equal, false, Assembler::pt, two_word);
2538       __ delayed()->cmp(Rflags, dtos);
2539       __ br(Assembler::equal, false, Assembler::pt, two_word);
2540       __ delayed()->nop();
2541       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2542       __ ba_short(valsizeknown);
2543       __ bind(two_word);
2544 
2545       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2546 
2547       __ bind(valsizeknown);
2548       // setup object pointer
2549       __ ld_ptr(G4_scratch, 0, G4_scratch);
2550       __ verify_oop(G4_scratch);
2551     }
2552     // setup pointer to jvalue object
2553     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2554     // G4_scratch:  object pointer or NULL if static
2555     // G3_scratch: cache entry pointer
2556     // G1_scratch: jvalue object on the stack
2557     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2558                G4_scratch, G3_scratch, G1_scratch);
2559     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2560     __ bind(Label1);
2561   }
2562 }
2563 
2564 void TemplateTable::pop_and_check_object(Register r) {
2565   __ pop_ptr(r);
2566   __ null_check(r);  // for field access must check obj.
2567   __ verify_oop(r);
2568 }
2569 
2570 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2571   transition(vtos, vtos);
2572   Register Rcache = G3_scratch;
2573   Register index  = G4_scratch;
2574   Register Rclass = Rcache;
2575   Register Roffset= G4_scratch;
2576   Register Rflags = G1_scratch;
2577   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2578 
2579   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2580   jvmti_post_field_mod(Rcache, index, is_static);
2581   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2582 
2583   Assembler::Membar_mask_bits read_bits =
2584     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2585   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2586 
2587   Label notVolatile, checkVolatile, exit;
2588   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2589     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2590     __ and3(Rflags, Lscratch, Lscratch);
2591 
2592     if (__ membar_has_effect(read_bits)) {
2593       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2594       volatile_barrier(read_bits);
2595       __ bind(notVolatile);
2596     }
2597   }
2598 
2599   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2600   // Make sure we don't need to mask Rflags after the above shift
2601   ConstantPoolCacheEntry::verify_tos_state_shift();
2602 
2603   // compute field type
2604   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
2605 
2606   if (is_static) {
2607     // putstatic with object type most likely, check that first
2608     __ cmp(Rflags, atos);
2609     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2610     __ delayed()->cmp(Rflags, itos);
2611 
2612     // atos
2613     {
2614       __ pop_ptr();
2615       __ verify_oop(Otos_i);
2616       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2617       __ ba(checkVolatile);
2618       __ delayed()->tst(Lscratch);
2619     }
2620 
2621     __ bind(notObj);
2622     // cmp(Rflags, itos);
2623     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2624     __ delayed()->cmp(Rflags, btos);
2625 
2626     // itos
2627     {
2628       __ pop_i();
2629       __ st(Otos_i, Rclass, Roffset);
2630       __ ba(checkVolatile);
2631       __ delayed()->tst(Lscratch);
2632     }
2633 
2634     __ bind(notInt);
2635   } else {
2636     // putfield with int type most likely, check that first
2637     __ cmp(Rflags, itos);
2638     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2639     __ delayed()->cmp(Rflags, atos);
2640 
2641     // itos
2642     {
2643       __ pop_i();
2644       pop_and_check_object(Rclass);
2645       __ st(Otos_i, Rclass, Roffset);
2646       patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
2647       __ ba(checkVolatile);
2648       __ delayed()->tst(Lscratch);
2649     }
2650 
2651     __ bind(notInt);
2652     // cmp(Rflags, atos);
2653     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2654     __ delayed()->cmp(Rflags, btos);
2655 
2656     // atos
2657     {
2658       __ pop_ptr();
2659       pop_and_check_object(Rclass);
2660       __ verify_oop(Otos_i);
2661       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2662       patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
2663       __ ba(checkVolatile);
2664       __ delayed()->tst(Lscratch);
2665     }
2666 
2667     __ bind(notObj);
2668   }
2669 
2670   // cmp(Rflags, btos);
2671   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2672   __ delayed()->cmp(Rflags, ltos);
2673 
2674   // btos
2675   {
2676     __ pop_i();
2677     if (!is_static) pop_and_check_object(Rclass);
2678     __ stb(Otos_i, Rclass, Roffset);
2679     if (!is_static) {
2680       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
2681     }
2682     __ ba(checkVolatile);
2683     __ delayed()->tst(Lscratch);
2684   }
2685 
2686   __ bind(notByte);
2687   // cmp(Rflags, ltos);
2688   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2689   __ delayed()->cmp(Rflags, ctos);
2690 
2691   // ltos
2692   {
2693     __ pop_l();
2694     if (!is_static) pop_and_check_object(Rclass);
2695     __ st_long(Otos_l, Rclass, Roffset);
2696     if (!is_static) {
2697       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
2698     }
2699     __ ba(checkVolatile);
2700     __ delayed()->tst(Lscratch);
2701   }
2702 
2703   __ bind(notLong);
2704   // cmp(Rflags, ctos);
2705   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2706   __ delayed()->cmp(Rflags, stos);
2707 
2708   // ctos (char)
2709   {
2710     __ pop_i();
2711     if (!is_static) pop_and_check_object(Rclass);
2712     __ sth(Otos_i, Rclass, Roffset);
2713     if (!is_static) {
2714       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
2715     }
2716     __ ba(checkVolatile);
2717     __ delayed()->tst(Lscratch);
2718   }
2719 
2720   __ bind(notChar);
2721   // cmp(Rflags, stos);
2722   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2723   __ delayed()->cmp(Rflags, ftos);
2724 
2725   // stos (short)
2726   {
2727     __ pop_i();
2728     if (!is_static) pop_and_check_object(Rclass);
2729     __ sth(Otos_i, Rclass, Roffset);
2730     if (!is_static) {
2731       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
2732     }
2733     __ ba(checkVolatile);
2734     __ delayed()->tst(Lscratch);
2735   }
2736 
2737   __ bind(notShort);
2738   // cmp(Rflags, ftos);
2739   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2740   __ delayed()->nop();
2741 
2742   // ftos
2743   {
2744     __ pop_f();
2745     if (!is_static) pop_and_check_object(Rclass);
2746     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2747     if (!is_static) {
2748       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
2749     }
2750     __ ba(checkVolatile);
2751     __ delayed()->tst(Lscratch);
2752   }
2753 
2754   __ bind(notFloat);
2755 
2756   // dtos
2757   {
2758     __ pop_d();
2759     if (!is_static) pop_and_check_object(Rclass);
2760     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2761     if (!is_static) {
2762       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
2763     }
2764   }
2765 
2766   __ bind(checkVolatile);
2767   __ tst(Lscratch);
2768 
2769   if (__ membar_has_effect(write_bits)) {
2770     // __ tst(Lscratch); in delay slot
2771     __ br(Assembler::zero, false, Assembler::pt, exit);
2772     __ delayed()->nop();
2773     volatile_barrier(Assembler::StoreLoad);
2774     __ bind(exit);
2775   }
2776 }
2777 
2778 void TemplateTable::fast_storefield(TosState state) {
2779   transition(state, vtos);
2780   Register Rcache = G3_scratch;
2781   Register Rclass = Rcache;
2782   Register Roffset= G4_scratch;
2783   Register Rflags = G1_scratch;
2784   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2785 
2786   jvmti_post_fast_field_mod();
2787 
2788   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2789 
2790   Assembler::Membar_mask_bits read_bits =
2791     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2792   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2793 
2794   Label notVolatile, checkVolatile, exit;
2795   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2796     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2797     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2798     __ and3(Rflags, Lscratch, Lscratch);
2799     if (__ membar_has_effect(read_bits)) {
2800       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2801       volatile_barrier(read_bits);
2802       __ bind(notVolatile);
2803     }
2804   }
2805 
2806   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2807   pop_and_check_object(Rclass);
2808 
2809   switch (bytecode()) {
2810     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2811     case Bytecodes::_fast_cputfield: /* fall through */
2812     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2813     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2814     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2815     case Bytecodes::_fast_fputfield:
2816       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2817       break;
2818     case Bytecodes::_fast_dputfield:
2819       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2820       break;
2821     case Bytecodes::_fast_aputfield:
2822       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2823       break;
2824     default:
2825       ShouldNotReachHere();
2826   }
2827 
2828   if (__ membar_has_effect(write_bits)) {
2829     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
2830     volatile_barrier(Assembler::StoreLoad);
2831     __ bind(exit);
2832   }
2833 }
2834 
2835 
2836 void TemplateTable::putfield(int byte_no) {
2837   putfield_or_static(byte_no, false);
2838 }
2839 
2840 void TemplateTable::putstatic(int byte_no) {
2841   putfield_or_static(byte_no, true);
2842 }
2843 
2844 
2845 void TemplateTable::fast_xaccess(TosState state) {
2846   transition(vtos, state);
2847   Register Rcache = G3_scratch;
2848   Register Roffset = G4_scratch;
2849   Register Rflags  = G4_scratch;
2850   Register Rreceiver = Lscratch;
2851 
2852   __ ld_ptr(Llocals, 0, Rreceiver);
2853 
2854   // access constant pool cache  (is resolved)
2855   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2856   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2857   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2858 
2859   __ verify_oop(Rreceiver);
2860   __ null_check(Rreceiver);
2861   if (state == atos) {
2862     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2863   } else if (state == itos) {
2864     __ ld (Rreceiver, Roffset, Otos_i) ;
2865   } else if (state == ftos) {
2866     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2867   } else {
2868     ShouldNotReachHere();
2869   }
2870 
2871   Assembler::Membar_mask_bits membar_bits =
2872     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2873   if (__ membar_has_effect(membar_bits)) {
2874 
2875     // Get is_volatile value in Rflags and check if membar is needed
2876     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2877 
2878     // Test volatile
2879     Label notVolatile;
2880     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2881     __ btst(Rflags, Lscratch);
2882     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2883     __ delayed()->nop();
2884     volatile_barrier(membar_bits);
2885     __ bind(notVolatile);
2886   }
2887 
2888   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2889   __ sub(Lbcp, 1, Lbcp);
2890 }
2891 
2892 //----------------------------------------------------------------------------------------------------
2893 // Calls
2894 
2895 void TemplateTable::count_calls(Register method, Register temp) {
2896   // implemented elsewhere
2897   ShouldNotReachHere();
2898 }
2899 
2900 void TemplateTable::prepare_invoke(int byte_no,
2901                                    Register method,  // linked method (or i-klass)
2902                                    Register ra,      // return address
2903                                    Register index,   // itable index, MethodType, etc.
2904                                    Register recv,    // if caller wants to see it
2905                                    Register flags    // if caller wants to test it
2906                                    ) {
2907   // determine flags
2908   const Bytecodes::Code code = bytecode();
2909   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2910   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2911   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2912   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2913   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2914   const bool load_receiver       = (recv != noreg);
2915   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2916   assert(recv  == noreg || recv  == O0, "");
2917   assert(flags == noreg || flags == O1, "");
2918 
2919   // setup registers & access constant pool cache
2920   if (recv  == noreg)  recv  = O0;
2921   if (flags == noreg)  flags = O1;
2922   const Register temp = O2;
2923   assert_different_registers(method, ra, index, recv, flags, temp);
2924 
2925   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2926 
2927   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
2928 
2929   // maybe push appendix to arguments
2930   if (is_invokedynamic || is_invokehandle) {
2931     Label L_no_push;
2932     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
2933     __ btst(flags, temp);
2934     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
2935     __ delayed()->nop();
2936     // Push the appendix as a trailing parameter.
2937     // This must be done before we get the receiver,
2938     // since the parameter_size includes it.
2939     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2940     __ load_resolved_reference_at_index(temp, index);
2941     __ verify_oop(temp);
2942     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
2943     __ bind(L_no_push);
2944   }
2945 
2946   // load receiver if needed (after appendix is pushed so parameter size is correct)
2947   if (load_receiver) {
2948     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
2949     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
2950     __ verify_oop(recv);
2951   }
2952 
2953   // compute return type
2954   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
2955   // Make sure we don't need to mask flags after the above shift
2956   ConstantPoolCacheEntry::verify_tos_state_shift();
2957   // load return address
2958   {
2959     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
2960         (address)Interpreter::return_5_addrs_by_index_table() :
2961         (address)Interpreter::return_3_addrs_by_index_table();
2962     AddressLiteral table(table_addr);
2963     __ set(table, temp);
2964     __ sll(ra, LogBytesPerWord, ra);
2965     __ ld_ptr(Address(temp, ra), ra);
2966   }
2967 }
2968 
2969 
2970 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
2971   Register Rtemp = G4_scratch;
2972   Register Rcall = Rindex;
2973   assert_different_registers(Rcall, G5_method, Gargs, Rret);
2974 
2975   // get target Method* & entry point
2976   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
2977   __ call_from_interpreter(Rcall, Gargs, Rret);
2978 }
2979 
2980 void TemplateTable::invokevirtual(int byte_no) {
2981   transition(vtos, vtos);
2982   assert(byte_no == f2_byte, "use this argument");
2983 
2984   Register Rscratch = G3_scratch;
2985   Register Rtemp    = G4_scratch;
2986   Register Rret     = Lscratch;
2987   Register O0_recv  = O0;
2988   Label notFinal;
2989 
2990   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
2991   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2992 
2993   // Check for vfinal
2994   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
2995   __ btst(Rret, G4_scratch);
2996   __ br(Assembler::zero, false, Assembler::pt, notFinal);
2997   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
2998 
2999   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
3000 
3001   invokevfinal_helper(Rscratch, Rret);
3002 
3003   __ bind(notFinal);
3004 
3005   __ mov(G5_method, Rscratch);  // better scratch register
3006   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
3007   // receiver is in O0_recv
3008   __ verify_oop(O0_recv);
3009 
3010   // get return address
3011   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
3012   __ set(table, Rtemp);
3013   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3014   // Make sure we don't need to mask Rret after the above shift
3015   ConstantPoolCacheEntry::verify_tos_state_shift();
3016   __ sll(Rret,  LogBytesPerWord, Rret);
3017   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3018 
3019   // get receiver klass
3020   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3021   __ load_klass(O0_recv, O0_recv);
3022   __ verify_klass_ptr(O0_recv);
3023 
3024   __ profile_virtual_call(O0_recv, O4);
3025 
3026   generate_vtable_call(O0_recv, Rscratch, Rret);
3027 }
3028 
3029 void TemplateTable::fast_invokevfinal(int byte_no) {
3030   transition(vtos, vtos);
3031   assert(byte_no == f2_byte, "use this argument");
3032 
3033   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
3034                              /*is_invokevfinal*/true, false);
3035   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3036   invokevfinal_helper(G3_scratch, Lscratch);
3037 }
3038 
3039 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
3040   Register Rtemp = G4_scratch;
3041 
3042   // Load receiver from stack slot
3043   __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
3044   __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
3045   __ load_receiver(G4_scratch, O0);
3046 
3047   // receiver NULL check
3048   __ null_check(O0);
3049 
3050   __ profile_final_call(O4);
3051 
3052   // get return address
3053   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
3054   __ set(table, Rtemp);
3055   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3056   // Make sure we don't need to mask Rret after the above shift
3057   ConstantPoolCacheEntry::verify_tos_state_shift();
3058   __ sll(Rret,  LogBytesPerWord, Rret);
3059   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3060 
3061 
3062   // do the call
3063   __ call_from_interpreter(Rscratch, Gargs, Rret);
3064 }
3065 
3066 
3067 void TemplateTable::invokespecial(int byte_no) {
3068   transition(vtos, vtos);
3069   assert(byte_no == f1_byte, "use this argument");
3070 
3071   const Register Rret     = Lscratch;
3072   const Register O0_recv  = O0;
3073   const Register Rscratch = G3_scratch;
3074 
3075   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
3076   __ null_check(O0_recv);
3077 
3078   // do the call
3079   __ profile_call(O4);
3080   __ call_from_interpreter(Rscratch, Gargs, Rret);
3081 }
3082 
3083 
3084 void TemplateTable::invokestatic(int byte_no) {
3085   transition(vtos, vtos);
3086   assert(byte_no == f1_byte, "use this argument");
3087 
3088   const Register Rret     = Lscratch;
3089   const Register Rscratch = G3_scratch;
3090 
3091   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
3092 
3093   // do the call
3094   __ profile_call(O4);
3095   __ call_from_interpreter(Rscratch, Gargs, Rret);
3096 }
3097 
3098 void TemplateTable::invokeinterface_object_method(Register RKlass,
3099                                                   Register Rcall,
3100                                                   Register Rret,
3101                                                   Register Rflags) {
3102   Register Rscratch = G4_scratch;
3103   Register Rindex = Lscratch;
3104 
3105   assert_different_registers(Rscratch, Rindex, Rret);
3106 
3107   Label notFinal;
3108 
3109   // Check for vfinal
3110   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
3111   __ btst(Rflags, Rscratch);
3112   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3113   __ delayed()->nop();
3114 
3115   __ profile_final_call(O4);
3116 
3117   // do the call - the index (f2) contains the Method*
3118   assert_different_registers(G5_method, Gargs, Rcall);
3119   __ mov(Rindex, G5_method);
3120   __ call_from_interpreter(Rcall, Gargs, Rret);
3121   __ bind(notFinal);
3122 
3123   __ profile_virtual_call(RKlass, O4);
3124   generate_vtable_call(RKlass, Rindex, Rret);
3125 }
3126 
3127 
3128 void TemplateTable::invokeinterface(int byte_no) {
3129   transition(vtos, vtos);
3130   assert(byte_no == f1_byte, "use this argument");
3131 
3132   const Register Rinterface  = G1_scratch;
3133   const Register Rret        = G3_scratch;
3134   const Register Rindex      = Lscratch;
3135   const Register O0_recv     = O0;
3136   const Register O1_flags    = O1;
3137   const Register O2_Klass    = O2;
3138   const Register Rscratch    = G4_scratch;
3139   assert_different_registers(Rscratch, G5_method);
3140 
3141   prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
3142 
3143   // get receiver klass
3144   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3145   __ load_klass(O0_recv, O2_Klass);
3146 
3147   // Special case of invokeinterface called for virtual method of
3148   // java.lang.Object.  See cpCacheOop.cpp for details.
3149   // This code isn't produced by javac, but could be produced by
3150   // another compliant java compiler.
3151   Label notMethod;
3152   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
3153   __ btst(O1_flags, Rscratch);
3154   __ br(Assembler::zero, false, Assembler::pt, notMethod);
3155   __ delayed()->nop();
3156 
3157   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
3158 
3159   __ bind(notMethod);
3160 
3161   __ profile_virtual_call(O2_Klass, O4);
3162 
3163   //
3164   // find entry point to call
3165   //
3166 
3167   // compute start of first itableOffsetEntry (which is at end of vtable)
3168   const int base = InstanceKlass::vtable_start_offset() * wordSize;
3169   Label search;
3170   Register Rtemp = O1_flags;
3171 
3172   __ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp);
3173   if (align_object_offset(1) > 1) {
3174     __ round_to(Rtemp, align_object_offset(1));
3175   }
3176   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
3177   if (Assembler::is_simm13(base)) {
3178     __ add(Rtemp, base, Rtemp);
3179   } else {
3180     __ set(base, Rscratch);
3181     __ add(Rscratch, Rtemp, Rtemp);
3182   }
3183   __ add(O2_Klass, Rtemp, Rscratch);
3184 
3185   __ bind(search);
3186 
3187   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
3188   {
3189     Label ok;
3190 
3191     // Check that entry is non-null.  Null entries are probably a bytecode
3192     // problem.  If the interface isn't implemented by the receiver class,
3193     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
3194     // this too but that's only if the entry isn't already resolved, so we
3195     // need to check again.
3196     __ br_notnull_short( Rtemp, Assembler::pt, ok);
3197     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3198     __ should_not_reach_here();
3199     __ bind(ok);
3200   }
3201 
3202   __ cmp(Rinterface, Rtemp);
3203   __ brx(Assembler::notEqual, true, Assembler::pn, search);
3204   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
3205 
3206   // entry found and Rscratch points to it
3207   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
3208 
3209   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
3210   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
3211   __ add(Rscratch, Rindex, Rscratch);
3212   __ ld_ptr(O2_Klass, Rscratch, G5_method);
3213 
3214   // Check for abstract method error.
3215   {
3216     Label ok;
3217     __ br_notnull_short(G5_method, Assembler::pt, ok);
3218     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3219     __ should_not_reach_here();
3220     __ bind(ok);
3221   }
3222 
3223   Register Rcall = Rinterface;
3224   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3225 
3226   __ call_from_interpreter(Rcall, Gargs, Rret);
3227 }
3228 
3229 void TemplateTable::invokehandle(int byte_no) {
3230   transition(vtos, vtos);
3231   assert(byte_no == f1_byte, "use this argument");
3232 
3233   if (!EnableInvokeDynamic) {
3234     // rewriter does not generate this bytecode
3235     __ should_not_reach_here();
3236     return;
3237   }
3238 
3239   const Register Rret       = Lscratch;
3240   const Register G4_mtype   = G4_scratch;
3241   const Register O0_recv    = O0;
3242   const Register Rscratch   = G3_scratch;
3243 
3244   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
3245   __ null_check(O0_recv);
3246 
3247   // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
3248   // G5: MH.invokeExact_MT method (from f2)
3249 
3250   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
3251 
3252   // do the call
3253   __ verify_oop(G4_mtype);
3254   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
3255   __ call_from_interpreter(Rscratch, Gargs, Rret);
3256 }
3257 
3258 
3259 void TemplateTable::invokedynamic(int byte_no) {
3260   transition(vtos, vtos);
3261   assert(byte_no == f1_byte, "use this argument");
3262 
3263   if (!EnableInvokeDynamic) {
3264     // We should not encounter this bytecode if !EnableInvokeDynamic.
3265     // The verifier will stop it.  However, if we get past the verifier,
3266     // this will stop the thread in a reasonable way, without crashing the JVM.
3267     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3268                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3269     // the call_VM checks for exception, so we should never return here.
3270     __ should_not_reach_here();
3271     return;
3272   }
3273 
3274   const Register Rret        = Lscratch;
3275   const Register G4_callsite = G4_scratch;
3276   const Register Rscratch    = G3_scratch;
3277 
3278   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
3279 
3280   // G4: CallSite object (from cpool->resolved_references[f1])
3281   // G5: MH.linkToCallSite method (from f2)
3282 
3283   // Note:  G4_callsite is already pushed by prepare_invoke
3284 
3285   // %%% should make a type profile for any invokedynamic that takes a ref argument
3286   // profile this call
3287   __ profile_call(O4);
3288 
3289   // do the call
3290   __ verify_oop(G4_callsite);
3291   __ call_from_interpreter(Rscratch, Gargs, Rret);
3292 }
3293 
3294 
3295 //----------------------------------------------------------------------------------------------------
3296 // Allocation
3297 
3298 void TemplateTable::_new() {
3299   transition(vtos, atos);
3300 
3301   Label slow_case;
3302   Label done;
3303   Label initialize_header;
3304   Label initialize_object;  // including clearing the fields
3305 
3306   Register RallocatedObject = Otos_i;
3307   Register RinstanceKlass = O1;
3308   Register Roffset = O3;
3309   Register Rscratch = O4;
3310 
3311   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3312   __ get_cpool_and_tags(Rscratch, G3_scratch);
3313   // make sure the class we're about to instantiate has been resolved
3314   // This is done before loading InstanceKlass to be consistent with the order
3315   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3316   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3317   __ ldub(G3_scratch, Roffset, G3_scratch);
3318   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3319   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3320   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3321   // get InstanceKlass
3322   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
3323   __ add(Roffset, sizeof(ConstantPool), Roffset);
3324   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
3325 
3326   // make sure klass is fully initialized:
3327   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
3328   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
3329   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3330   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3331 
3332   // get instance_size in InstanceKlass (already aligned)
3333   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3334 
3335   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3336   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3337   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3338   __ delayed()->nop();
3339 
3340   // allocate the instance
3341   // 1) Try to allocate in the TLAB
3342   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
3343   // 3) if the above fails (or is not applicable), go to a slow case
3344   // (creates a new TLAB, etc.)
3345 
3346   const bool allow_shared_alloc =
3347     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3348 
3349   if(UseTLAB) {
3350     Register RoldTopValue = RallocatedObject;
3351     Register RtlabWasteLimitValue = G3_scratch;
3352     Register RnewTopValue = G1_scratch;
3353     Register RendValue = Rscratch;
3354     Register RfreeValue = RnewTopValue;
3355 
3356     // check if we can allocate in the TLAB
3357     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3358     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3359     __ add(RoldTopValue, Roffset, RnewTopValue);
3360 
3361     // if there is enough space, we do not CAS and do not clear
3362     __ cmp(RnewTopValue, RendValue);
3363     if(ZeroTLAB) {
3364       // the fields have already been cleared
3365       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3366     } else {
3367       // initialize both the header and fields
3368       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3369     }
3370     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3371 
3372     if (allow_shared_alloc) {
3373       // Check if tlab should be discarded (refill_waste_limit >= free)
3374       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
3375       __ sub(RendValue, RoldTopValue, RfreeValue);
3376 #ifdef _LP64
3377       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
3378 #else
3379       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
3380 #endif
3381       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
3382 
3383       // increment waste limit to prevent getting stuck on this slow path
3384       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
3385       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3386     } else {
3387       // No allocation in the shared eden.
3388       __ ba_short(slow_case);
3389     }
3390   }
3391 
3392   // Allocation in the shared Eden
3393   if (allow_shared_alloc) {
3394     Register RoldTopValue = G1_scratch;
3395     Register RtopAddr = G3_scratch;
3396     Register RnewTopValue = RallocatedObject;
3397     Register RendValue = Rscratch;
3398 
3399     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3400 
3401     Label retry;
3402     __ bind(retry);
3403     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3404     __ ld_ptr(RendValue, 0, RendValue);
3405     __ ld_ptr(RtopAddr, 0, RoldTopValue);
3406     __ add(RoldTopValue, Roffset, RnewTopValue);
3407 
3408     // RnewTopValue contains the top address after the new object
3409     // has been allocated.
3410     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
3411 
3412     __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
3413       VM_Version::v9_instructions_work() ? NULL :
3414       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3415 
3416     // if someone beat us on the allocation, try again, otherwise continue
3417     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
3418 
3419     // bump total bytes allocated by this thread
3420     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
3421     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
3422   }
3423 
3424   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3425     // clear object fields
3426     __ bind(initialize_object);
3427     __ deccc(Roffset, sizeof(oopDesc));
3428     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3429     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3430 
3431     // initialize remaining object fields
3432     if (UseBlockZeroing) {
3433       // Use BIS for zeroing
3434       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
3435     } else {
3436       Label loop;
3437       __ subcc(Roffset, wordSize, Roffset);
3438       __ bind(loop);
3439       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3440       __ st_ptr(G0, G3_scratch, Roffset);
3441       __ br(Assembler::notEqual, false, Assembler::pt, loop);
3442       __ delayed()->subcc(Roffset, wordSize, Roffset);
3443     }
3444     __ ba_short(initialize_header);
3445   }
3446 
3447   // slow case
3448   __ bind(slow_case);
3449   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3450   __ get_constant_pool(O1);
3451 
3452   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3453 
3454   __ ba_short(done);
3455 
3456   // Initialize the header: mark, klass
3457   __ bind(initialize_header);
3458 
3459   if (UseBiasedLocking) {
3460     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
3461   } else {
3462     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3463   }
3464   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3465   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3466   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3467 
3468   {
3469     SkipIfEqual skip_if(
3470       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3471     // Trigger dtrace event
3472     __ push(atos);
3473     __ call_VM_leaf(noreg,
3474        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3475     __ pop(atos);
3476   }
3477 
3478   // continue
3479   __ bind(done);
3480 }
3481 
3482 
3483 
3484 void TemplateTable::newarray() {
3485   transition(itos, atos);
3486   __ ldub(Lbcp, 1, O1);
3487      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3488 }
3489 
3490 
3491 void TemplateTable::anewarray() {
3492   transition(itos, atos);
3493   __ get_constant_pool(O1);
3494   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3495      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3496 }
3497 
3498 
3499 void TemplateTable::arraylength() {
3500   transition(atos, itos);
3501   Label ok;
3502   __ verify_oop(Otos_i);
3503   __ tst(Otos_i);
3504   __ throw_if_not_1_x( Assembler::notZero, ok );
3505   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3506   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3507 }
3508 
3509 
3510 void TemplateTable::checkcast() {
3511   transition(atos, atos);
3512   Label done, is_null, quicked, cast_ok, resolved;
3513   Register Roffset = G1_scratch;
3514   Register RobjKlass = O5;
3515   Register RspecifiedKlass = O4;
3516 
3517   // Check for casting a NULL
3518   __ br_null_short(Otos_i, Assembler::pn, is_null);
3519 
3520   // Get value klass in RobjKlass
3521   __ load_klass(Otos_i, RobjKlass); // get value klass
3522 
3523   // Get constant pool tag
3524   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3525 
3526   // See if the checkcast has been quickened
3527   __ get_cpool_and_tags(Lscratch, G3_scratch);
3528   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3529   __ ldub(G3_scratch, Roffset, G3_scratch);
3530   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3531   __ br(Assembler::equal, true, Assembler::pt, quicked);
3532   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3533 
3534   __ push_ptr(); // save receiver for result, and for GC
3535   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3536   __ get_vm_result_2(RspecifiedKlass);
3537   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3538 
3539   __ ba_short(resolved);
3540 
3541   // Extract target class from constant pool
3542   __ bind(quicked);
3543   __ add(Roffset, sizeof(ConstantPool), Roffset);
3544   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3545   __ bind(resolved);
3546   __ load_klass(Otos_i, RobjKlass); // get value klass
3547 
3548   // Generate a fast subtype check.  Branch to cast_ok if no
3549   // failure.  Throw exception if failure.
3550   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3551 
3552   // Not a subtype; so must throw exception
3553   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3554 
3555   __ bind(cast_ok);
3556 
3557   if (ProfileInterpreter) {
3558     __ ba_short(done);
3559   }
3560   __ bind(is_null);
3561   __ profile_null_seen(G3_scratch);
3562   __ bind(done);
3563 }
3564 
3565 
3566 void TemplateTable::instanceof() {
3567   Label done, is_null, quicked, resolved;
3568   transition(atos, itos);
3569   Register Roffset = G1_scratch;
3570   Register RobjKlass = O5;
3571   Register RspecifiedKlass = O4;
3572 
3573   // Check for casting a NULL
3574   __ br_null_short(Otos_i, Assembler::pt, is_null);
3575 
3576   // Get value klass in RobjKlass
3577   __ load_klass(Otos_i, RobjKlass); // get value klass
3578 
3579   // Get constant pool tag
3580   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3581 
3582   // See if the checkcast has been quickened
3583   __ get_cpool_and_tags(Lscratch, G3_scratch);
3584   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3585   __ ldub(G3_scratch, Roffset, G3_scratch);
3586   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3587   __ br(Assembler::equal, true, Assembler::pt, quicked);
3588   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3589 
3590   __ push_ptr(); // save receiver for result, and for GC
3591   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3592   __ get_vm_result_2(RspecifiedKlass);
3593   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3594 
3595   __ ba_short(resolved);
3596 
3597   // Extract target class from constant pool
3598   __ bind(quicked);
3599   __ add(Roffset, sizeof(ConstantPool), Roffset);
3600   __ get_constant_pool(Lscratch);
3601   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3602   __ bind(resolved);
3603   __ load_klass(Otos_i, RobjKlass); // get value klass
3604 
3605   // Generate a fast subtype check.  Branch to cast_ok if no
3606   // failure.  Return 0 if failure.
3607   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3608   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3609   // Not a subtype; return 0;
3610   __ clr( Otos_i );
3611 
3612   if (ProfileInterpreter) {
3613     __ ba_short(done);
3614   }
3615   __ bind(is_null);
3616   __ profile_null_seen(G3_scratch);
3617   __ bind(done);
3618 }
3619 
3620 void TemplateTable::_breakpoint() {
3621 
3622    // Note: We get here even if we are single stepping..
3623    // jbug inists on setting breakpoints at every bytecode
3624    // even if we are in single step mode.
3625 
3626    transition(vtos, vtos);
3627    // get the unpatched byte code
3628    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3629    __ mov(O0, Lbyte_code);
3630 
3631    // post the breakpoint event
3632    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3633 
3634    // complete the execution of original bytecode
3635    __ dispatch_normal(vtos);
3636 }
3637 
3638 
3639 //----------------------------------------------------------------------------------------------------
3640 // Exceptions
3641 
3642 void TemplateTable::athrow() {
3643   transition(atos, vtos);
3644 
3645   // This works because exception is cached in Otos_i which is same as O0,
3646   // which is same as what throw_exception_entry_expects
3647   assert(Otos_i == Oexception, "see explanation above");
3648 
3649   __ verify_oop(Otos_i);
3650   __ null_check(Otos_i);
3651   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3652 }
3653 
3654 
3655 //----------------------------------------------------------------------------------------------------
3656 // Synchronization
3657 
3658 
3659 // See frame_sparc.hpp for monitor block layout.
3660 // Monitor elements are dynamically allocated by growing stack as needed.
3661 
3662 void TemplateTable::monitorenter() {
3663   transition(atos, vtos);
3664   __ verify_oop(Otos_i);
3665   // Try to acquire a lock on the object
3666   // Repeat until succeeded (i.e., until
3667   // monitorenter returns true).
3668 
3669   {   Label ok;
3670     __ tst(Otos_i);
3671     __ throw_if_not_1_x( Assembler::notZero,  ok);
3672     __ delayed()->mov(Otos_i, Lscratch); // save obj
3673     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3674   }
3675 
3676   assert(O0 == Otos_i, "Be sure where the object to lock is");
3677 
3678   // find a free slot in the monitor block
3679 
3680 
3681   // initialize entry pointer
3682   __ clr(O1); // points to free slot or NULL
3683 
3684   {
3685     Label entry, loop, exit;
3686     __ add( __ top_most_monitor(), O2 ); // last one to check
3687     __ ba( entry );
3688     __ delayed()->mov( Lmonitors, O3 ); // first one to check
3689 
3690 
3691     __ bind( loop );
3692 
3693     __ verify_oop(O4);          // verify each monitor's oop
3694     __ tst(O4); // is this entry unused?
3695     if (VM_Version::v9_instructions_work())
3696       __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3697     else {
3698       Label L;
3699       __ br( Assembler::zero, true, Assembler::pn, L );
3700       __ delayed()->mov(O3, O1); // rememeber this one if match
3701       __ bind(L);
3702     }
3703 
3704     __ cmp(O4, O0); // check if current entry is for same object
3705     __ brx( Assembler::equal, false, Assembler::pn, exit );
3706     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3707 
3708     __ bind( entry );
3709 
3710     __ cmp( O3, O2 );
3711     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3712     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3713 
3714     __ bind( exit );
3715   }
3716 
3717   { Label allocated;
3718 
3719     // found free slot?
3720     __ br_notnull_short(O1, Assembler::pn, allocated);
3721 
3722     __ add_monitor_to_stack( false, O2, O3 );
3723     __ mov(Lmonitors, O1);
3724 
3725     __ bind(allocated);
3726   }
3727 
3728   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3729   // The object has already been poped from the stack, so the expression stack looks correct.
3730   __ inc(Lbcp);
3731 
3732   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3733   __ lock_object(O1, O0);
3734 
3735   // check if there's enough space on the stack for the monitors after locking
3736   __ generate_stack_overflow_check(0);
3737 
3738   // The bcp has already been incremented. Just need to dispatch to next instruction.
3739   __ dispatch_next(vtos);
3740 }
3741 
3742 
3743 void TemplateTable::monitorexit() {
3744   transition(atos, vtos);
3745   __ verify_oop(Otos_i);
3746   __ tst(Otos_i);
3747   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3748 
3749   assert(O0 == Otos_i, "just checking");
3750 
3751   { Label entry, loop, found;
3752     __ add( __ top_most_monitor(), O2 ); // last one to check
3753     __ ba(entry);
3754     // use Lscratch to hold monitor elem to check, start with most recent monitor,
3755     // By using a local it survives the call to the C routine.
3756     __ delayed()->mov( Lmonitors, Lscratch );
3757 
3758     __ bind( loop );
3759 
3760     __ verify_oop(O4);          // verify each monitor's oop
3761     __ cmp(O4, O0); // check if current entry is for desired object
3762     __ brx( Assembler::equal, true, Assembler::pt, found );
3763     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3764 
3765     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3766 
3767     __ bind( entry );
3768 
3769     __ cmp( Lscratch, O2 );
3770     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3771     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3772 
3773     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3774     __ should_not_reach_here();
3775 
3776     __ bind(found);
3777   }
3778   __ unlock_object(O1);
3779 }
3780 
3781 
3782 //----------------------------------------------------------------------------------------------------
3783 // Wide instructions
3784 
3785 void TemplateTable::wide() {
3786   transition(vtos, vtos);
3787   __ ldub(Lbcp, 1, G3_scratch);// get next bc
3788   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3789   AddressLiteral ep(Interpreter::_wentry_point);
3790   __ set(ep, G4_scratch);
3791   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3792   __ jmp(G3_scratch, G0);
3793   __ delayed()->nop();
3794   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3795 }
3796 
3797 
3798 //----------------------------------------------------------------------------------------------------
3799 // Multi arrays
3800 
3801 void TemplateTable::multianewarray() {
3802   transition(vtos, atos);
3803      // put ndims * wordSize into Lscratch
3804   __ ldub( Lbcp,     3,               Lscratch);
3805   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3806      // Lesp points past last_dim, so set to O1 to first_dim address
3807   __ add(  Lesp,     Lscratch,        O1);
3808      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3809   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3810 }
3811 #endif /* !CC_INTERP */