/* * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1Allocator.inline.hpp" #include "gc/g1/g1AllocRegion.inline.hpp" #include "gc/g1/g1EvacStats.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/heapRegion.inline.hpp" #include "gc/g1/heapRegionSet.inline.hpp" #include "utilities/align.hpp" G1DefaultAllocator::G1DefaultAllocator(G1CollectedHeap* heap) : G1Allocator(heap), _survivor_is_full(false), _old_is_full(false), _retained_old_gc_alloc_region(NULL), _survivor_gc_alloc_region(heap->alloc_buffer_stats(InCSetState::Young)), _old_gc_alloc_region(heap->alloc_buffer_stats(InCSetState::Old)) { } void G1DefaultAllocator::init_mutator_alloc_region() { assert(_mutator_alloc_region.get() == NULL, "pre-condition"); _mutator_alloc_region.init(); } void G1DefaultAllocator::release_mutator_alloc_region() { _mutator_alloc_region.release(); assert(_mutator_alloc_region.get() == NULL, "post-condition"); } void G1Allocator::reuse_retained_old_region(EvacuationInfo& evacuation_info, OldGCAllocRegion* old, HeapRegion** retained_old) { HeapRegion* retained_region = *retained_old; *retained_old = NULL; assert(retained_region == NULL || !retained_region->is_archive(), "Archive region should not be alloc region (index %u)", retained_region->hrm_index()); // We will discard the current GC alloc region if: // a) it's in the collection set (it can happen!), // b) it's already full (no point in using it), // c) it's empty (this means that it was emptied during // a cleanup and it should be on the free list now), or // d) it's humongous (this means that it was emptied // during a cleanup and was added to the free list, but // has been subsequently used to allocate a humongous // object that may be less than the region size). if (retained_region != NULL && !retained_region->in_collection_set() && !(retained_region->top() == retained_region->end()) && !retained_region->is_empty() && !retained_region->is_humongous()) { retained_region->record_timestamp(); // The retained region was added to the old region set when it was // retired. We have to remove it now, since we don't allow regions // we allocate to in the region sets. We'll re-add it later, when // it's retired again. _g1h->old_set_remove(retained_region); bool during_im = _g1h->collector_state()->during_initial_mark_pause(); retained_region->note_start_of_copying(during_im); old->set(retained_region); _g1h->hr_printer()->reuse(retained_region); evacuation_info.set_alloc_regions_used_before(retained_region->used()); } } void G1DefaultAllocator::init_gc_alloc_regions(EvacuationInfo& evacuation_info) { assert_at_safepoint(true /* should_be_vm_thread */); _survivor_is_full = false; _old_is_full = false; _survivor_gc_alloc_region.init(); _old_gc_alloc_region.init(); reuse_retained_old_region(evacuation_info, &_old_gc_alloc_region, &_retained_old_gc_alloc_region); } void G1DefaultAllocator::release_gc_alloc_regions(EvacuationInfo& evacuation_info) { AllocationContext_t context = AllocationContext::current(); evacuation_info.set_allocation_regions(survivor_gc_alloc_region(context)->count() + old_gc_alloc_region(context)->count()); survivor_gc_alloc_region(context)->release(); // If we have an old GC alloc region to release, we'll save it in // _retained_old_gc_alloc_region. If we don't // _retained_old_gc_alloc_region will become NULL. This is what we // want either way so no reason to check explicitly for either // condition. _retained_old_gc_alloc_region = old_gc_alloc_region(context)->release(); } void G1DefaultAllocator::abandon_gc_alloc_regions() { assert(survivor_gc_alloc_region(AllocationContext::current())->get() == NULL, "pre-condition"); assert(old_gc_alloc_region(AllocationContext::current())->get() == NULL, "pre-condition"); _retained_old_gc_alloc_region = NULL; } bool G1DefaultAllocator::survivor_is_full(AllocationContext_t context) const { return _survivor_is_full; } bool G1DefaultAllocator::old_is_full(AllocationContext_t context) const { return _old_is_full; } void G1DefaultAllocator::set_survivor_full(AllocationContext_t context) { _survivor_is_full = true; } void G1DefaultAllocator::set_old_full(AllocationContext_t context) { _old_is_full = true; } G1PLAB::G1PLAB(size_t gclab_word_size) : PLAB(gclab_word_size), _retired(true) { } size_t G1Allocator::unsafe_max_tlab_alloc(AllocationContext_t context) { // Return the remaining space in the cur alloc region, but not less than // the min TLAB size. // Also, this value can be at most the humongous object threshold, // since we can't allow tlabs to grow big enough to accommodate // humongous objects. HeapRegion* hr = mutator_alloc_region(context)->get(); size_t max_tlab = _g1h->max_tlab_size() * wordSize; if (hr == NULL) { return max_tlab; } else { return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab); } } HeapWord* G1Allocator::par_allocate_during_gc(InCSetState dest, size_t word_size, AllocationContext_t context) { size_t temp = 0; HeapWord* result = par_allocate_during_gc(dest, word_size, word_size, &temp, context); assert(result == NULL || temp == word_size, "Requested " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT, word_size, temp, p2i(result)); return result; } HeapWord* G1Allocator::par_allocate_during_gc(InCSetState dest, size_t min_word_size, size_t desired_word_size, size_t* actual_word_size, AllocationContext_t context) { switch (dest.value()) { case InCSetState::Young: return survivor_attempt_allocation(min_word_size, desired_word_size, actual_word_size, context); case InCSetState::Old: return old_attempt_allocation(min_word_size, desired_word_size, actual_word_size, context); default: ShouldNotReachHere(); return NULL; // Keep some compilers happy } } HeapWord* G1Allocator::survivor_attempt_allocation(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size, AllocationContext_t context) { assert(!_g1h->is_humongous(desired_word_size), "we should not be seeing humongous-size allocations in this path"); HeapWord* result = survivor_gc_alloc_region(context)->attempt_allocation(min_word_size, desired_word_size, actual_word_size, false /* bot_updates */); if (result == NULL && !survivor_is_full(context)) { MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); result = survivor_gc_alloc_region(context)->attempt_allocation_locked(min_word_size, desired_word_size, actual_word_size, false /* bot_updates */); if (result == NULL) { set_survivor_full(context); } } if (result != NULL) { _g1h->dirty_young_block(result, *actual_word_size); } return result; } HeapWord* G1Allocator::old_attempt_allocation(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size, AllocationContext_t context) { assert(!_g1h->is_humongous(desired_word_size), "we should not be seeing humongous-size allocations in this path"); HeapWord* result = old_gc_alloc_region(context)->attempt_allocation(min_word_size, desired_word_size, actual_word_size, true /* bot_updates */); if (result == NULL && !old_is_full(context)) { MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); result = old_gc_alloc_region(context)->attempt_allocation_locked(min_word_size, desired_word_size, actual_word_size, true /* bot_updates */); if (result == NULL) { set_old_full(context); } } return result; } G1PLABAllocator::G1PLABAllocator(G1Allocator* allocator) : _g1h(G1CollectedHeap::heap()), _allocator(allocator), _survivor_alignment_bytes(calc_survivor_alignment_bytes()) { for (size_t i = 0; i < ARRAY_SIZE(_direct_allocated); i++) { _direct_allocated[i] = 0; } } bool G1PLABAllocator::may_throw_away_buffer(size_t const allocation_word_sz, size_t const buffer_size) const { return (allocation_word_sz * 100 < buffer_size * ParallelGCBufferWastePct); } HeapWord* G1PLABAllocator::allocate_direct_or_new_plab(InCSetState dest, size_t word_sz, AllocationContext_t context, bool* plab_refill_failed) { size_t plab_word_size = G1CollectedHeap::heap()->desired_plab_sz(dest); size_t required_in_plab = PLAB::size_required_for_allocation(word_sz); // Only get a new PLAB if the allocation fits and it would not waste more than // ParallelGCBufferWastePct in the existing buffer. if ((required_in_plab <= plab_word_size) && may_throw_away_buffer(required_in_plab, plab_word_size)) { G1PLAB* alloc_buf = alloc_buffer(dest, context); alloc_buf->retire(); size_t actual_plab_size = 0; HeapWord* buf = _allocator->par_allocate_during_gc(dest, required_in_plab, plab_word_size, &actual_plab_size, context); assert(buf == NULL || ((actual_plab_size >= required_in_plab) && (actual_plab_size <= plab_word_size)), "Requested at minimum " SIZE_FORMAT ", desired " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT, required_in_plab, plab_word_size, actual_plab_size, p2i(buf)); if (buf != NULL) { alloc_buf->set_buf(buf, actual_plab_size); HeapWord* const obj = alloc_buf->allocate(word_sz); assert(obj != NULL, "PLAB should have been big enough, tried to allocate " SIZE_FORMAT " requiring " SIZE_FORMAT " PLAB size " SIZE_FORMAT, word_sz, required_in_plab, plab_word_size); return obj; } // Otherwise. *plab_refill_failed = true; } // Try direct allocation. HeapWord* result = _allocator->par_allocate_during_gc(dest, word_sz, context); if (result != NULL) { _direct_allocated[dest.value()] += word_sz; } return result; } void G1PLABAllocator::undo_allocation(InCSetState dest, HeapWord* obj, size_t word_sz, AllocationContext_t context) { alloc_buffer(dest, context)->undo_allocation(obj, word_sz); } G1DefaultPLABAllocator::G1DefaultPLABAllocator(G1Allocator* allocator) : G1PLABAllocator(allocator), _surviving_alloc_buffer(_g1h->desired_plab_sz(InCSetState::Young)), _tenured_alloc_buffer(_g1h->desired_plab_sz(InCSetState::Old)) { for (uint state = 0; state < InCSetState::Num; state++) { _alloc_buffers[state] = NULL; } _alloc_buffers[InCSetState::Young] = &_surviving_alloc_buffer; _alloc_buffers[InCSetState::Old] = &_tenured_alloc_buffer; } void G1DefaultPLABAllocator::flush_and_retire_stats() { for (uint state = 0; state < InCSetState::Num; state++) { G1PLAB* const buf = _alloc_buffers[state]; if (buf != NULL) { G1EvacStats* stats = _g1h->alloc_buffer_stats(state); buf->flush_and_retire_stats(stats); stats->add_direct_allocated(_direct_allocated[state]); _direct_allocated[state] = 0; } } } void G1DefaultPLABAllocator::waste(size_t& wasted, size_t& undo_wasted) { wasted = 0; undo_wasted = 0; for (uint state = 0; state < InCSetState::Num; state++) { G1PLAB * const buf = _alloc_buffers[state]; if (buf != NULL) { wasted += buf->waste(); undo_wasted += buf->undo_waste(); } } } bool G1ArchiveAllocator::_archive_check_enabled = false; G1ArchiveRegionMap G1ArchiveAllocator::_closed_archive_region_map; G1ArchiveRegionMap G1ArchiveAllocator::_open_archive_region_map; G1ArchiveAllocator* G1ArchiveAllocator::create_allocator(G1CollectedHeap* g1h, bool open) { // Create the archive allocator, and also enable archive object checking // in mark-sweep, since we will be creating archive regions. G1ArchiveAllocator* result = new G1ArchiveAllocator(g1h, open); enable_archive_object_check(); return result; } bool G1ArchiveAllocator::alloc_new_region() { // Allocate the highest free region in the reserved heap, // and add it to our list of allocated regions. It is marked // archive and added to the old set. HeapRegion* hr = _g1h->alloc_highest_free_region(); if (hr == NULL) { return false; } assert(hr->is_empty(), "expected empty region (index %u)", hr->hrm_index()); if (_open) { hr->set_open_archive(); } else { hr->set_closed_archive(); } _g1h->old_set_add(hr); _g1h->hr_printer()->alloc(hr); _allocated_regions.append(hr); _allocation_region = hr; // Set up _bottom and _max to begin allocating in the lowest // min_region_size'd chunk of the allocated G1 region. _bottom = hr->bottom(); _max = _bottom + HeapRegion::min_region_size_in_words(); // Tell mark-sweep that objects in this region are not to be marked. set_range_archive(MemRegion(_bottom, HeapRegion::GrainWords), _open); // Since we've modified the old set, call update_sizes. _g1h->g1mm()->update_sizes(); return true; } HeapWord* G1ArchiveAllocator::archive_mem_allocate(size_t word_size) { assert(word_size != 0, "size must not be zero"); if (_allocation_region == NULL) { if (!alloc_new_region()) { return NULL; } } HeapWord* old_top = _allocation_region->top(); assert(_bottom >= _allocation_region->bottom(), "inconsistent allocation state: " PTR_FORMAT " < " PTR_FORMAT, p2i(_bottom), p2i(_allocation_region->bottom())); assert(_max <= _allocation_region->end(), "inconsistent allocation state: " PTR_FORMAT " > " PTR_FORMAT, p2i(_max), p2i(_allocation_region->end())); assert(_bottom <= old_top && old_top <= _max, "inconsistent allocation state: expected " PTR_FORMAT " <= " PTR_FORMAT " <= " PTR_FORMAT, p2i(_bottom), p2i(old_top), p2i(_max)); // Allocate the next word_size words in the current allocation chunk. // If allocation would cross the _max boundary, insert a filler and begin // at the base of the next min_region_size'd chunk. Also advance to the next // chunk if we don't yet cross the boundary, but the remainder would be too // small to fill. HeapWord* new_top = old_top + word_size; size_t remainder = pointer_delta(_max, new_top); if ((new_top > _max) || ((new_top < _max) && (remainder < CollectedHeap::min_fill_size()))) { if (old_top != _max) { size_t fill_size = pointer_delta(_max, old_top); CollectedHeap::fill_with_object(old_top, fill_size); _summary_bytes_used += fill_size * HeapWordSize; } _allocation_region->set_top(_max); old_top = _bottom = _max; // Check if we've just used up the last min_region_size'd chunk // in the current region, and if so, allocate a new one. if (_bottom != _allocation_region->end()) { _max = _bottom + HeapRegion::min_region_size_in_words(); } else { if (!alloc_new_region()) { return NULL; } old_top = _allocation_region->bottom(); } } _allocation_region->set_top(old_top + word_size); _summary_bytes_used += word_size * HeapWordSize; return old_top; } void G1ArchiveAllocator::complete_archive(GrowableArray* ranges, size_t end_alignment_in_bytes) { assert((end_alignment_in_bytes >> LogHeapWordSize) < HeapRegion::min_region_size_in_words(), "alignment " SIZE_FORMAT " too large", end_alignment_in_bytes); assert(is_aligned(end_alignment_in_bytes, HeapWordSize), "alignment " SIZE_FORMAT " is not HeapWord (%u) aligned", end_alignment_in_bytes, HeapWordSize); // If we've allocated nothing, simply return. if (_allocation_region == NULL) { return; } // If an end alignment was requested, insert filler objects. if (end_alignment_in_bytes != 0) { HeapWord* currtop = _allocation_region->top(); HeapWord* newtop = align_up(currtop, end_alignment_in_bytes); size_t fill_size = pointer_delta(newtop, currtop); if (fill_size != 0) { if (fill_size < CollectedHeap::min_fill_size()) { // If the required fill is smaller than we can represent, // bump up to the next aligned address. We know we won't exceed the current // region boundary because the max supported alignment is smaller than the min // region size, and because the allocation code never leaves space smaller than // the min_fill_size at the top of the current allocation region. newtop = align_up(currtop + CollectedHeap::min_fill_size(), end_alignment_in_bytes); fill_size = pointer_delta(newtop, currtop); } HeapWord* fill = archive_mem_allocate(fill_size); CollectedHeap::fill_with_objects(fill, fill_size); } } // Loop through the allocated regions, and create MemRegions summarizing // the allocated address range, combining contiguous ranges. Add the // MemRegions to the GrowableArray provided by the caller. int index = _allocated_regions.length() - 1; assert(_allocated_regions.at(index) == _allocation_region, "expected region %u at end of array, found %u", _allocation_region->hrm_index(), _allocated_regions.at(index)->hrm_index()); HeapWord* base_address = _allocation_region->bottom(); HeapWord* top = base_address; while (index >= 0) { HeapRegion* next = _allocated_regions.at(index); HeapWord* new_base = next->bottom(); HeapWord* new_top = next->top(); if (new_base != top) { ranges->append(MemRegion(base_address, pointer_delta(top, base_address))); base_address = new_base; } top = new_top; index = index - 1; } assert(top != base_address, "zero-sized range, address " PTR_FORMAT, p2i(base_address)); ranges->append(MemRegion(base_address, pointer_delta(top, base_address))); _allocated_regions.clear(); _allocation_region = NULL; };