1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/threadSMR.hpp"
  65 #include "runtime/timer.hpp"
  66 #include "runtime/vm_version.hpp"
  67 #include "semaphore_posix.hpp"
  68 #include "services/attachListener.hpp"
  69 #include "services/memTracker.hpp"
  70 #include "services/runtimeService.hpp"
  71 #include "utilities/align.hpp"
  72 #include "utilities/decoder.hpp"
  73 #include "utilities/defaultStream.hpp"
  74 #include "utilities/events.hpp"
  75 #include "utilities/elfFile.hpp"
  76 #include "utilities/growableArray.hpp"
  77 #include "utilities/macros.hpp"
  78 #include "utilities/vmError.hpp"
  79 
  80 // put OS-includes here
  81 # include <sys/types.h>
  82 # include <sys/mman.h>
  83 # include <sys/stat.h>
  84 # include <sys/select.h>
  85 # include <pthread.h>
  86 # include <signal.h>
  87 # include <errno.h>
  88 # include <dlfcn.h>
  89 # include <stdio.h>
  90 # include <unistd.h>
  91 # include <sys/resource.h>
  92 # include <pthread.h>
  93 # include <sys/stat.h>
  94 # include <sys/time.h>
  95 # include <sys/times.h>
  96 # include <sys/utsname.h>
  97 # include <sys/socket.h>
  98 # include <sys/wait.h>
  99 # include <pwd.h>
 100 # include <poll.h>
 101 # include <fcntl.h>
 102 # include <string.h>
 103 # include <syscall.h>
 104 # include <sys/sysinfo.h>
 105 # include <gnu/libc-version.h>
 106 # include <sys/ipc.h>
 107 # include <sys/shm.h>
 108 # include <link.h>
 109 # include <stdint.h>
 110 # include <inttypes.h>
 111 # include <sys/ioctl.h>
 112 
 113 #ifndef _GNU_SOURCE
 114   #define _GNU_SOURCE
 115   #include <sched.h>
 116   #undef _GNU_SOURCE
 117 #else
 118   #include <sched.h>
 119 #endif
 120 
 121 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 122 // getrusage() is prepared to handle the associated failure.
 123 #ifndef RUSAGE_THREAD
 124   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 125 #endif
 126 
 127 #define MAX_PATH    (2 * K)
 128 
 129 #define MAX_SECS 100000000
 130 
 131 // for timer info max values which include all bits
 132 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 133 
 134 enum CoredumpFilterBit {
 135   FILE_BACKED_PVT_BIT = 1 << 2,
 136   FILE_BACKED_SHARED_BIT = 1 << 3,
 137   LARGEPAGES_BIT = 1 << 6,
 138   DAX_SHARED_BIT = 1 << 8
 139 };
 140 
 141 ////////////////////////////////////////////////////////////////////////////////
 142 // global variables
 143 julong os::Linux::_physical_memory = 0;
 144 
 145 address   os::Linux::_initial_thread_stack_bottom = NULL;
 146 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 147 
 148 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 149 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 150 Mutex* os::Linux::_createThread_lock = NULL;
 151 pthread_t os::Linux::_main_thread;
 152 int os::Linux::_page_size = -1;
 153 bool os::Linux::_supports_fast_thread_cpu_time = false;
 154 uint32_t os::Linux::_os_version = 0;
 155 const char * os::Linux::_glibc_version = NULL;
 156 const char * os::Linux::_libpthread_version = NULL;
 157 
 158 static jlong initial_time_count=0;
 159 
 160 static int clock_tics_per_sec = 100;
 161 
 162 // If the VM might have been created on the primordial thread, we need to resolve the
 163 // primordial thread stack bounds and check if the current thread might be the
 164 // primordial thread in places. If we know that the primordial thread is never used,
 165 // such as when the VM was created by one of the standard java launchers, we can
 166 // avoid this
 167 static bool suppress_primordial_thread_resolution = false;
 168 
 169 // For diagnostics to print a message once. see run_periodic_checks
 170 static sigset_t check_signal_done;
 171 static bool check_signals = true;
 172 
 173 // Signal number used to suspend/resume a thread
 174 
 175 // do not use any signal number less than SIGSEGV, see 4355769
 176 static int SR_signum = SIGUSR2;
 177 sigset_t SR_sigset;
 178 
 179 // utility functions
 180 
 181 static int SR_initialize();
 182 
 183 julong os::available_memory() {
 184   return Linux::available_memory();
 185 }
 186 
 187 julong os::Linux::available_memory() {
 188   // values in struct sysinfo are "unsigned long"
 189   struct sysinfo si;
 190   julong avail_mem;
 191 
 192   if (OSContainer::is_containerized()) {
 193     jlong mem_limit, mem_usage;
 194     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 195       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 196                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 197     }
 198     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 199       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 200     }
 201     if (mem_limit > 0 && mem_usage > 0 ) {
 202       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 203       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 204       return avail_mem;
 205     }
 206   }
 207 
 208   sysinfo(&si);
 209   avail_mem = (julong)si.freeram * si.mem_unit;
 210   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 211   return avail_mem;
 212 }
 213 
 214 julong os::physical_memory() {
 215   jlong phys_mem = 0;
 216   if (OSContainer::is_containerized()) {
 217     jlong mem_limit;
 218     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 219       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 220       return mem_limit;
 221     }
 222     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 223                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 224   }
 225 
 226   phys_mem = Linux::physical_memory();
 227   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 228   return phys_mem;
 229 }
 230 
 231 static uint64_t initial_total_ticks = 0;
 232 static uint64_t initial_steal_ticks = 0;
 233 static bool     has_initial_tick_info = false;
 234 
 235 static void next_line(FILE *f) {
 236   int c;
 237   do {
 238     c = fgetc(f);
 239   } while (c != '\n' && c != EOF);
 240 }
 241 
 242 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 243   FILE*         fh;
 244   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 245   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 246   // irq: time  servicing interrupts; softirq: time servicing softirqs
 247   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 248   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 249   uint64_t      stealTicks = 0;
 250   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 251   // control of the Linux kernel
 252   uint64_t      guestNiceTicks = 0;
 253   int           logical_cpu = -1;
 254   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 255   int           n;
 256 
 257   memset(pticks, 0, sizeof(CPUPerfTicks));
 258 
 259   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 260     return false;
 261   }
 262 
 263   if (which_logical_cpu == -1) {
 264     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 265             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 266             UINT64_FORMAT " " UINT64_FORMAT " ",
 267             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 268             &iowTicks, &irqTicks, &sirqTicks,
 269             &stealTicks, &guestNiceTicks);
 270   } else {
 271     // Move to next line
 272     next_line(fh);
 273 
 274     // find the line for requested cpu faster to just iterate linefeeds?
 275     for (int i = 0; i < which_logical_cpu; i++) {
 276       next_line(fh);
 277     }
 278 
 279     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 280                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 281                UINT64_FORMAT " " UINT64_FORMAT " ",
 282                &logical_cpu, &userTicks, &niceTicks,
 283                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 284                &stealTicks, &guestNiceTicks);
 285   }
 286 
 287   fclose(fh);
 288   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 289     return false;
 290   }
 291   pticks->used       = userTicks + niceTicks;
 292   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 293   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 294                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 295 
 296   if (n > required_tickinfo_count + 3) {
 297     pticks->steal = stealTicks;
 298     pticks->has_steal_ticks = true;
 299   } else {
 300     pticks->steal = 0;
 301     pticks->has_steal_ticks = false;
 302   }
 303 
 304   return true;
 305 }
 306 
 307 // Return true if user is running as root.
 308 
 309 bool os::have_special_privileges() {
 310   static bool init = false;
 311   static bool privileges = false;
 312   if (!init) {
 313     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 314     init = true;
 315   }
 316   return privileges;
 317 }
 318 
 319 
 320 #ifndef SYS_gettid
 321 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 322   #ifdef __ia64__
 323     #define SYS_gettid 1105
 324   #else
 325     #ifdef __i386__
 326       #define SYS_gettid 224
 327     #else
 328       #ifdef __amd64__
 329         #define SYS_gettid 186
 330       #else
 331         #ifdef __sparc__
 332           #define SYS_gettid 143
 333         #else
 334           #error define gettid for the arch
 335         #endif
 336       #endif
 337     #endif
 338   #endif
 339 #endif
 340 
 341 
 342 // pid_t gettid()
 343 //
 344 // Returns the kernel thread id of the currently running thread. Kernel
 345 // thread id is used to access /proc.
 346 pid_t os::Linux::gettid() {
 347   int rslt = syscall(SYS_gettid);
 348   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 349   return (pid_t)rslt;
 350 }
 351 
 352 // Most versions of linux have a bug where the number of processors are
 353 // determined by looking at the /proc file system.  In a chroot environment,
 354 // the system call returns 1.
 355 static bool unsafe_chroot_detected = false;
 356 static const char *unstable_chroot_error = "/proc file system not found.\n"
 357                      "Java may be unstable running multithreaded in a chroot "
 358                      "environment on Linux when /proc filesystem is not mounted.";
 359 
 360 void os::Linux::initialize_system_info() {
 361   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 362   if (processor_count() == 1) {
 363     pid_t pid = os::Linux::gettid();
 364     char fname[32];
 365     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 366     FILE *fp = fopen(fname, "r");
 367     if (fp == NULL) {
 368       unsafe_chroot_detected = true;
 369     } else {
 370       fclose(fp);
 371     }
 372   }
 373   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 374   assert(processor_count() > 0, "linux error");
 375 }
 376 
 377 void os::init_system_properties_values() {
 378   // The next steps are taken in the product version:
 379   //
 380   // Obtain the JAVA_HOME value from the location of libjvm.so.
 381   // This library should be located at:
 382   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 383   //
 384   // If "/jre/lib/" appears at the right place in the path, then we
 385   // assume libjvm.so is installed in a JDK and we use this path.
 386   //
 387   // Otherwise exit with message: "Could not create the Java virtual machine."
 388   //
 389   // The following extra steps are taken in the debugging version:
 390   //
 391   // If "/jre/lib/" does NOT appear at the right place in the path
 392   // instead of exit check for $JAVA_HOME environment variable.
 393   //
 394   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 395   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 396   // it looks like libjvm.so is installed there
 397   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 398   //
 399   // Otherwise exit.
 400   //
 401   // Important note: if the location of libjvm.so changes this
 402   // code needs to be changed accordingly.
 403 
 404   // See ld(1):
 405   //      The linker uses the following search paths to locate required
 406   //      shared libraries:
 407   //        1: ...
 408   //        ...
 409   //        7: The default directories, normally /lib and /usr/lib.
 410 #ifndef OVERRIDE_LIBPATH
 411   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 412     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 413   #else
 414     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 415   #endif
 416 #else
 417   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 418 #endif
 419 
 420 // Base path of extensions installed on the system.
 421 #define SYS_EXT_DIR     "/usr/java/packages"
 422 #define EXTENSIONS_DIR  "/lib/ext"
 423 
 424   // Buffer that fits several sprintfs.
 425   // Note that the space for the colon and the trailing null are provided
 426   // by the nulls included by the sizeof operator.
 427   const size_t bufsize =
 428     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 429          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 430   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 431 
 432   // sysclasspath, java_home, dll_dir
 433   {
 434     char *pslash;
 435     os::jvm_path(buf, bufsize);
 436 
 437     // Found the full path to libjvm.so.
 438     // Now cut the path to <java_home>/jre if we can.
 439     pslash = strrchr(buf, '/');
 440     if (pslash != NULL) {
 441       *pslash = '\0';            // Get rid of /libjvm.so.
 442     }
 443     pslash = strrchr(buf, '/');
 444     if (pslash != NULL) {
 445       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 446     }
 447     Arguments::set_dll_dir(buf);
 448 
 449     if (pslash != NULL) {
 450       pslash = strrchr(buf, '/');
 451       if (pslash != NULL) {
 452         *pslash = '\0';        // Get rid of /lib.
 453       }
 454     }
 455     Arguments::set_java_home(buf);
 456     if (!set_boot_path('/', ':')) {
 457       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 458     }
 459   }
 460 
 461   // Where to look for native libraries.
 462   //
 463   // Note: Due to a legacy implementation, most of the library path
 464   // is set in the launcher. This was to accomodate linking restrictions
 465   // on legacy Linux implementations (which are no longer supported).
 466   // Eventually, all the library path setting will be done here.
 467   //
 468   // However, to prevent the proliferation of improperly built native
 469   // libraries, the new path component /usr/java/packages is added here.
 470   // Eventually, all the library path setting will be done here.
 471   {
 472     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 473     // should always exist (until the legacy problem cited above is
 474     // addressed).
 475     const char *v = ::getenv("LD_LIBRARY_PATH");
 476     const char *v_colon = ":";
 477     if (v == NULL) { v = ""; v_colon = ""; }
 478     // That's +1 for the colon and +1 for the trailing '\0'.
 479     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 480                                                      strlen(v) + 1 +
 481                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 482                                                      mtInternal);
 483     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 484     Arguments::set_library_path(ld_library_path);
 485     FREE_C_HEAP_ARRAY(char, ld_library_path);
 486   }
 487 
 488   // Extensions directories.
 489   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 490   Arguments::set_ext_dirs(buf);
 491 
 492   FREE_C_HEAP_ARRAY(char, buf);
 493 
 494 #undef DEFAULT_LIBPATH
 495 #undef SYS_EXT_DIR
 496 #undef EXTENSIONS_DIR
 497 }
 498 
 499 ////////////////////////////////////////////////////////////////////////////////
 500 // breakpoint support
 501 
 502 void os::breakpoint() {
 503   BREAKPOINT;
 504 }
 505 
 506 extern "C" void breakpoint() {
 507   // use debugger to set breakpoint here
 508 }
 509 
 510 ////////////////////////////////////////////////////////////////////////////////
 511 // signal support
 512 
 513 debug_only(static bool signal_sets_initialized = false);
 514 static sigset_t unblocked_sigs, vm_sigs;
 515 
 516 void os::Linux::signal_sets_init() {
 517   // Should also have an assertion stating we are still single-threaded.
 518   assert(!signal_sets_initialized, "Already initialized");
 519   // Fill in signals that are necessarily unblocked for all threads in
 520   // the VM. Currently, we unblock the following signals:
 521   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 522   //                         by -Xrs (=ReduceSignalUsage));
 523   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 524   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 525   // the dispositions or masks wrt these signals.
 526   // Programs embedding the VM that want to use the above signals for their
 527   // own purposes must, at this time, use the "-Xrs" option to prevent
 528   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 529   // (See bug 4345157, and other related bugs).
 530   // In reality, though, unblocking these signals is really a nop, since
 531   // these signals are not blocked by default.
 532   sigemptyset(&unblocked_sigs);
 533   sigaddset(&unblocked_sigs, SIGILL);
 534   sigaddset(&unblocked_sigs, SIGSEGV);
 535   sigaddset(&unblocked_sigs, SIGBUS);
 536   sigaddset(&unblocked_sigs, SIGFPE);
 537 #if defined(PPC64)
 538   sigaddset(&unblocked_sigs, SIGTRAP);
 539 #endif
 540   sigaddset(&unblocked_sigs, SR_signum);
 541 
 542   if (!ReduceSignalUsage) {
 543     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 544       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 545     }
 546     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 547       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 548     }
 549     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 550       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 551     }
 552   }
 553   // Fill in signals that are blocked by all but the VM thread.
 554   sigemptyset(&vm_sigs);
 555   if (!ReduceSignalUsage) {
 556     sigaddset(&vm_sigs, BREAK_SIGNAL);
 557   }
 558   debug_only(signal_sets_initialized = true);
 559 
 560 }
 561 
 562 // These are signals that are unblocked while a thread is running Java.
 563 // (For some reason, they get blocked by default.)
 564 sigset_t* os::Linux::unblocked_signals() {
 565   assert(signal_sets_initialized, "Not initialized");
 566   return &unblocked_sigs;
 567 }
 568 
 569 // These are the signals that are blocked while a (non-VM) thread is
 570 // running Java. Only the VM thread handles these signals.
 571 sigset_t* os::Linux::vm_signals() {
 572   assert(signal_sets_initialized, "Not initialized");
 573   return &vm_sigs;
 574 }
 575 
 576 void os::Linux::hotspot_sigmask(Thread* thread) {
 577 
 578   //Save caller's signal mask before setting VM signal mask
 579   sigset_t caller_sigmask;
 580   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 581 
 582   OSThread* osthread = thread->osthread();
 583   osthread->set_caller_sigmask(caller_sigmask);
 584 
 585   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 586 
 587   if (!ReduceSignalUsage) {
 588     if (thread->is_VM_thread()) {
 589       // Only the VM thread handles BREAK_SIGNAL ...
 590       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 591     } else {
 592       // ... all other threads block BREAK_SIGNAL
 593       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 594     }
 595   }
 596 }
 597 
 598 //////////////////////////////////////////////////////////////////////////////
 599 // detecting pthread library
 600 
 601 void os::Linux::libpthread_init() {
 602   // Save glibc and pthread version strings.
 603 #if !defined(_CS_GNU_LIBC_VERSION) || \
 604     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 605   #error "glibc too old (< 2.3.2)"
 606 #endif
 607 
 608   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 609   assert(n > 0, "cannot retrieve glibc version");
 610   char *str = (char *)malloc(n, mtInternal);
 611   confstr(_CS_GNU_LIBC_VERSION, str, n);
 612   os::Linux::set_glibc_version(str);
 613 
 614   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 615   assert(n > 0, "cannot retrieve pthread version");
 616   str = (char *)malloc(n, mtInternal);
 617   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 618   os::Linux::set_libpthread_version(str);
 619 }
 620 
 621 /////////////////////////////////////////////////////////////////////////////
 622 // thread stack expansion
 623 
 624 // os::Linux::manually_expand_stack() takes care of expanding the thread
 625 // stack. Note that this is normally not needed: pthread stacks allocate
 626 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 627 // committed. Therefore it is not necessary to expand the stack manually.
 628 //
 629 // Manually expanding the stack was historically needed on LinuxThreads
 630 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 631 // it is kept to deal with very rare corner cases:
 632 //
 633 // For one, user may run the VM on an own implementation of threads
 634 // whose stacks are - like the old LinuxThreads - implemented using
 635 // mmap(MAP_GROWSDOWN).
 636 //
 637 // Also, this coding may be needed if the VM is running on the primordial
 638 // thread. Normally we avoid running on the primordial thread; however,
 639 // user may still invoke the VM on the primordial thread.
 640 //
 641 // The following historical comment describes the details about running
 642 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 643 
 644 
 645 // Force Linux kernel to expand current thread stack. If "bottom" is close
 646 // to the stack guard, caller should block all signals.
 647 //
 648 // MAP_GROWSDOWN:
 649 //   A special mmap() flag that is used to implement thread stacks. It tells
 650 //   kernel that the memory region should extend downwards when needed. This
 651 //   allows early versions of LinuxThreads to only mmap the first few pages
 652 //   when creating a new thread. Linux kernel will automatically expand thread
 653 //   stack as needed (on page faults).
 654 //
 655 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 656 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 657 //   region, it's hard to tell if the fault is due to a legitimate stack
 658 //   access or because of reading/writing non-exist memory (e.g. buffer
 659 //   overrun). As a rule, if the fault happens below current stack pointer,
 660 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 661 //   application (see Linux kernel fault.c).
 662 //
 663 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 664 //   stack overflow detection.
 665 //
 666 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 667 //   not use MAP_GROWSDOWN.
 668 //
 669 // To get around the problem and allow stack banging on Linux, we need to
 670 // manually expand thread stack after receiving the SIGSEGV.
 671 //
 672 // There are two ways to expand thread stack to address "bottom", we used
 673 // both of them in JVM before 1.5:
 674 //   1. adjust stack pointer first so that it is below "bottom", and then
 675 //      touch "bottom"
 676 //   2. mmap() the page in question
 677 //
 678 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 679 // if current sp is already near the lower end of page 101, and we need to
 680 // call mmap() to map page 100, it is possible that part of the mmap() frame
 681 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 682 // That will destroy the mmap() frame and cause VM to crash.
 683 //
 684 // The following code works by adjusting sp first, then accessing the "bottom"
 685 // page to force a page fault. Linux kernel will then automatically expand the
 686 // stack mapping.
 687 //
 688 // _expand_stack_to() assumes its frame size is less than page size, which
 689 // should always be true if the function is not inlined.
 690 
 691 static void NOINLINE _expand_stack_to(address bottom) {
 692   address sp;
 693   size_t size;
 694   volatile char *p;
 695 
 696   // Adjust bottom to point to the largest address within the same page, it
 697   // gives us a one-page buffer if alloca() allocates slightly more memory.
 698   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 699   bottom += os::Linux::page_size() - 1;
 700 
 701   // sp might be slightly above current stack pointer; if that's the case, we
 702   // will alloca() a little more space than necessary, which is OK. Don't use
 703   // os::current_stack_pointer(), as its result can be slightly below current
 704   // stack pointer, causing us to not alloca enough to reach "bottom".
 705   sp = (address)&sp;
 706 
 707   if (sp > bottom) {
 708     size = sp - bottom;
 709     p = (volatile char *)alloca(size);
 710     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 711     p[0] = '\0';
 712   }
 713 }
 714 
 715 void os::Linux::expand_stack_to(address bottom) {
 716   _expand_stack_to(bottom);
 717 }
 718 
 719 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 720   assert(t!=NULL, "just checking");
 721   assert(t->osthread()->expanding_stack(), "expand should be set");
 722   assert(t->stack_base() != NULL, "stack_base was not initialized");
 723 
 724   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 725     sigset_t mask_all, old_sigset;
 726     sigfillset(&mask_all);
 727     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 728     _expand_stack_to(addr);
 729     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 730     return true;
 731   }
 732   return false;
 733 }
 734 
 735 //////////////////////////////////////////////////////////////////////////////
 736 // create new thread
 737 
 738 // Thread start routine for all newly created threads
 739 static void *thread_native_entry(Thread *thread) {
 740 
 741   thread->record_stack_base_and_size();
 742 
 743   // Try to randomize the cache line index of hot stack frames.
 744   // This helps when threads of the same stack traces evict each other's
 745   // cache lines. The threads can be either from the same JVM instance, or
 746   // from different JVM instances. The benefit is especially true for
 747   // processors with hyperthreading technology.
 748   static int counter = 0;
 749   int pid = os::current_process_id();
 750   alloca(((pid ^ counter++) & 7) * 128);
 751 
 752   thread->initialize_thread_current();
 753 
 754   OSThread* osthread = thread->osthread();
 755   Monitor* sync = osthread->startThread_lock();
 756 
 757   osthread->set_thread_id(os::current_thread_id());
 758 
 759   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 760     os::current_thread_id(), (uintx) pthread_self());
 761 
 762   if (UseNUMA) {
 763     int lgrp_id = os::numa_get_group_id();
 764     if (lgrp_id != -1) {
 765       thread->set_lgrp_id(lgrp_id);
 766     }
 767   }
 768   // initialize signal mask for this thread
 769   os::Linux::hotspot_sigmask(thread);
 770 
 771   // initialize floating point control register
 772   os::Linux::init_thread_fpu_state();
 773 
 774   // handshaking with parent thread
 775   {
 776     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 777 
 778     // notify parent thread
 779     osthread->set_state(INITIALIZED);
 780     sync->notify_all();
 781 
 782     // wait until os::start_thread()
 783     while (osthread->get_state() == INITIALIZED) {
 784       sync->wait_without_safepoint_check();
 785     }
 786   }
 787 
 788   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 789 
 790   // call one more level start routine
 791   thread->call_run();
 792 
 793   // Note: at this point the thread object may already have deleted itself.
 794   // Prevent dereferencing it from here on out.
 795   thread = NULL;
 796 
 797   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 798     os::current_thread_id(), (uintx) pthread_self());
 799 
 800   return 0;
 801 }
 802 
 803 bool os::create_thread(Thread* thread, ThreadType thr_type,
 804                        size_t req_stack_size) {
 805   assert(thread->osthread() == NULL, "caller responsible");
 806 
 807   // Allocate the OSThread object
 808   OSThread* osthread = new OSThread(NULL, NULL);
 809   if (osthread == NULL) {
 810     return false;
 811   }
 812 
 813   // set the correct thread state
 814   osthread->set_thread_type(thr_type);
 815 
 816   // Initial state is ALLOCATED but not INITIALIZED
 817   osthread->set_state(ALLOCATED);
 818 
 819   thread->set_osthread(osthread);
 820 
 821   // init thread attributes
 822   pthread_attr_t attr;
 823   pthread_attr_init(&attr);
 824   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 825 
 826   // Calculate stack size if it's not specified by caller.
 827   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 828   // In the Linux NPTL pthread implementation the guard size mechanism
 829   // is not implemented properly. The posix standard requires adding
 830   // the size of the guard pages to the stack size, instead Linux
 831   // takes the space out of 'stacksize'. Thus we adapt the requested
 832   // stack_size by the size of the guard pages to mimick proper
 833   // behaviour. However, be careful not to end up with a size
 834   // of zero due to overflow. Don't add the guard page in that case.
 835   size_t guard_size = os::Linux::default_guard_size(thr_type);
 836   if (stack_size <= SIZE_MAX - guard_size) {
 837     stack_size += guard_size;
 838   }
 839   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 840 
 841   int status = pthread_attr_setstacksize(&attr, stack_size);
 842   assert_status(status == 0, status, "pthread_attr_setstacksize");
 843 
 844   // Configure glibc guard page.
 845   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 846 
 847   ThreadState state;
 848 
 849   {
 850     pthread_t tid;
 851     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 852 
 853     char buf[64];
 854     if (ret == 0) {
 855       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 856         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 857     } else {
 858       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 859         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 860       // Log some OS information which might explain why creating the thread failed.
 861       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 862       LogStream st(Log(os, thread)::info());
 863       os::Posix::print_rlimit_info(&st);
 864       os::print_memory_info(&st);
 865       os::Linux::print_proc_sys_info(&st);
 866       os::Linux::print_container_info(&st);
 867     }
 868 
 869     pthread_attr_destroy(&attr);
 870 
 871     if (ret != 0) {
 872       // Need to clean up stuff we've allocated so far
 873       thread->set_osthread(NULL);
 874       delete osthread;
 875       return false;
 876     }
 877 
 878     // Store pthread info into the OSThread
 879     osthread->set_pthread_id(tid);
 880 
 881     // Wait until child thread is either initialized or aborted
 882     {
 883       Monitor* sync_with_child = osthread->startThread_lock();
 884       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 885       while ((state = osthread->get_state()) == ALLOCATED) {
 886         sync_with_child->wait_without_safepoint_check();
 887       }
 888     }
 889   }
 890 
 891   // Aborted due to thread limit being reached
 892   if (state == ZOMBIE) {
 893     thread->set_osthread(NULL);
 894     delete osthread;
 895     return false;
 896   }
 897 
 898   // The thread is returned suspended (in state INITIALIZED),
 899   // and is started higher up in the call chain
 900   assert(state == INITIALIZED, "race condition");
 901   return true;
 902 }
 903 
 904 /////////////////////////////////////////////////////////////////////////////
 905 // attach existing thread
 906 
 907 // bootstrap the main thread
 908 bool os::create_main_thread(JavaThread* thread) {
 909   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 910   return create_attached_thread(thread);
 911 }
 912 
 913 bool os::create_attached_thread(JavaThread* thread) {
 914 #ifdef ASSERT
 915   thread->verify_not_published();
 916 #endif
 917 
 918   // Allocate the OSThread object
 919   OSThread* osthread = new OSThread(NULL, NULL);
 920 
 921   if (osthread == NULL) {
 922     return false;
 923   }
 924 
 925   // Store pthread info into the OSThread
 926   osthread->set_thread_id(os::Linux::gettid());
 927   osthread->set_pthread_id(::pthread_self());
 928 
 929   // initialize floating point control register
 930   os::Linux::init_thread_fpu_state();
 931 
 932   // Initial thread state is RUNNABLE
 933   osthread->set_state(RUNNABLE);
 934 
 935   thread->set_osthread(osthread);
 936 
 937   if (UseNUMA) {
 938     int lgrp_id = os::numa_get_group_id();
 939     if (lgrp_id != -1) {
 940       thread->set_lgrp_id(lgrp_id);
 941     }
 942   }
 943 
 944   if (os::is_primordial_thread()) {
 945     // If current thread is primordial thread, its stack is mapped on demand,
 946     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 947     // the entire stack region to avoid SEGV in stack banging.
 948     // It is also useful to get around the heap-stack-gap problem on SuSE
 949     // kernel (see 4821821 for details). We first expand stack to the top
 950     // of yellow zone, then enable stack yellow zone (order is significant,
 951     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 952     // is no gap between the last two virtual memory regions.
 953 
 954     JavaThread *jt = (JavaThread *)thread;
 955     address addr = jt->stack_reserved_zone_base();
 956     assert(addr != NULL, "initialization problem?");
 957     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 958 
 959     osthread->set_expanding_stack();
 960     os::Linux::manually_expand_stack(jt, addr);
 961     osthread->clear_expanding_stack();
 962   }
 963 
 964   // initialize signal mask for this thread
 965   // and save the caller's signal mask
 966   os::Linux::hotspot_sigmask(thread);
 967 
 968   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 969     os::current_thread_id(), (uintx) pthread_self());
 970 
 971   return true;
 972 }
 973 
 974 void os::pd_start_thread(Thread* thread) {
 975   OSThread * osthread = thread->osthread();
 976   assert(osthread->get_state() != INITIALIZED, "just checking");
 977   Monitor* sync_with_child = osthread->startThread_lock();
 978   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 979   sync_with_child->notify();
 980 }
 981 
 982 // Free Linux resources related to the OSThread
 983 void os::free_thread(OSThread* osthread) {
 984   assert(osthread != NULL, "osthread not set");
 985 
 986   // We are told to free resources of the argument thread,
 987   // but we can only really operate on the current thread.
 988   assert(Thread::current()->osthread() == osthread,
 989          "os::free_thread but not current thread");
 990 
 991 #ifdef ASSERT
 992   sigset_t current;
 993   sigemptyset(&current);
 994   pthread_sigmask(SIG_SETMASK, NULL, &current);
 995   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 996 #endif
 997 
 998   // Restore caller's signal mask
 999   sigset_t sigmask = osthread->caller_sigmask();
1000   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1001 
1002   delete osthread;
1003 }
1004 
1005 //////////////////////////////////////////////////////////////////////////////
1006 // primordial thread
1007 
1008 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1009 bool os::is_primordial_thread(void) {
1010   if (suppress_primordial_thread_resolution) {
1011     return false;
1012   }
1013   char dummy;
1014   // If called before init complete, thread stack bottom will be null.
1015   // Can be called if fatal error occurs before initialization.
1016   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1017   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1018          os::Linux::initial_thread_stack_size()   != 0,
1019          "os::init did not locate primordial thread's stack region");
1020   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1021       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1022                         os::Linux::initial_thread_stack_size()) {
1023     return true;
1024   } else {
1025     return false;
1026   }
1027 }
1028 
1029 // Find the virtual memory area that contains addr
1030 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1031   FILE *fp = fopen("/proc/self/maps", "r");
1032   if (fp) {
1033     address low, high;
1034     while (!feof(fp)) {
1035       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1036         if (low <= addr && addr < high) {
1037           if (vma_low)  *vma_low  = low;
1038           if (vma_high) *vma_high = high;
1039           fclose(fp);
1040           return true;
1041         }
1042       }
1043       for (;;) {
1044         int ch = fgetc(fp);
1045         if (ch == EOF || ch == (int)'\n') break;
1046       }
1047     }
1048     fclose(fp);
1049   }
1050   return false;
1051 }
1052 
1053 // Locate primordial thread stack. This special handling of primordial thread stack
1054 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1055 // bogus value for the primordial process thread. While the launcher has created
1056 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1057 // JNI invocation API from a primordial thread.
1058 void os::Linux::capture_initial_stack(size_t max_size) {
1059 
1060   // max_size is either 0 (which means accept OS default for thread stacks) or
1061   // a user-specified value known to be at least the minimum needed. If we
1062   // are actually on the primordial thread we can make it appear that we have a
1063   // smaller max_size stack by inserting the guard pages at that location. But we
1064   // cannot do anything to emulate a larger stack than what has been provided by
1065   // the OS or threading library. In fact if we try to use a stack greater than
1066   // what is set by rlimit then we will crash the hosting process.
1067 
1068   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1069   // If this is "unlimited" then it will be a huge value.
1070   struct rlimit rlim;
1071   getrlimit(RLIMIT_STACK, &rlim);
1072   size_t stack_size = rlim.rlim_cur;
1073 
1074   // 6308388: a bug in ld.so will relocate its own .data section to the
1075   //   lower end of primordial stack; reduce ulimit -s value a little bit
1076   //   so we won't install guard page on ld.so's data section.
1077   //   But ensure we don't underflow the stack size - allow 1 page spare
1078   if (stack_size >= (size_t)(3 * page_size())) {
1079     stack_size -= 2 * page_size();
1080   }
1081 
1082   // Try to figure out where the stack base (top) is. This is harder.
1083   //
1084   // When an application is started, glibc saves the initial stack pointer in
1085   // a global variable "__libc_stack_end", which is then used by system
1086   // libraries. __libc_stack_end should be pretty close to stack top. The
1087   // variable is available since the very early days. However, because it is
1088   // a private interface, it could disappear in the future.
1089   //
1090   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1091   // to __libc_stack_end, it is very close to stack top, but isn't the real
1092   // stack top. Note that /proc may not exist if VM is running as a chroot
1093   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1094   // /proc/<pid>/stat could change in the future (though unlikely).
1095   //
1096   // We try __libc_stack_end first. If that doesn't work, look for
1097   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1098   // as a hint, which should work well in most cases.
1099 
1100   uintptr_t stack_start;
1101 
1102   // try __libc_stack_end first
1103   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1104   if (p && *p) {
1105     stack_start = *p;
1106   } else {
1107     // see if we can get the start_stack field from /proc/self/stat
1108     FILE *fp;
1109     int pid;
1110     char state;
1111     int ppid;
1112     int pgrp;
1113     int session;
1114     int nr;
1115     int tpgrp;
1116     unsigned long flags;
1117     unsigned long minflt;
1118     unsigned long cminflt;
1119     unsigned long majflt;
1120     unsigned long cmajflt;
1121     unsigned long utime;
1122     unsigned long stime;
1123     long cutime;
1124     long cstime;
1125     long prio;
1126     long nice;
1127     long junk;
1128     long it_real;
1129     uintptr_t start;
1130     uintptr_t vsize;
1131     intptr_t rss;
1132     uintptr_t rsslim;
1133     uintptr_t scodes;
1134     uintptr_t ecode;
1135     int i;
1136 
1137     // Figure what the primordial thread stack base is. Code is inspired
1138     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1139     // followed by command name surrounded by parentheses, state, etc.
1140     char stat[2048];
1141     int statlen;
1142 
1143     fp = fopen("/proc/self/stat", "r");
1144     if (fp) {
1145       statlen = fread(stat, 1, 2047, fp);
1146       stat[statlen] = '\0';
1147       fclose(fp);
1148 
1149       // Skip pid and the command string. Note that we could be dealing with
1150       // weird command names, e.g. user could decide to rename java launcher
1151       // to "java 1.4.2 :)", then the stat file would look like
1152       //                1234 (java 1.4.2 :)) R ... ...
1153       // We don't really need to know the command string, just find the last
1154       // occurrence of ")" and then start parsing from there. See bug 4726580.
1155       char * s = strrchr(stat, ')');
1156 
1157       i = 0;
1158       if (s) {
1159         // Skip blank chars
1160         do { s++; } while (s && isspace(*s));
1161 
1162 #define _UFM UINTX_FORMAT
1163 #define _DFM INTX_FORMAT
1164 
1165         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1166         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1167         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1168                    &state,          // 3  %c
1169                    &ppid,           // 4  %d
1170                    &pgrp,           // 5  %d
1171                    &session,        // 6  %d
1172                    &nr,             // 7  %d
1173                    &tpgrp,          // 8  %d
1174                    &flags,          // 9  %lu
1175                    &minflt,         // 10 %lu
1176                    &cminflt,        // 11 %lu
1177                    &majflt,         // 12 %lu
1178                    &cmajflt,        // 13 %lu
1179                    &utime,          // 14 %lu
1180                    &stime,          // 15 %lu
1181                    &cutime,         // 16 %ld
1182                    &cstime,         // 17 %ld
1183                    &prio,           // 18 %ld
1184                    &nice,           // 19 %ld
1185                    &junk,           // 20 %ld
1186                    &it_real,        // 21 %ld
1187                    &start,          // 22 UINTX_FORMAT
1188                    &vsize,          // 23 UINTX_FORMAT
1189                    &rss,            // 24 INTX_FORMAT
1190                    &rsslim,         // 25 UINTX_FORMAT
1191                    &scodes,         // 26 UINTX_FORMAT
1192                    &ecode,          // 27 UINTX_FORMAT
1193                    &stack_start);   // 28 UINTX_FORMAT
1194       }
1195 
1196 #undef _UFM
1197 #undef _DFM
1198 
1199       if (i != 28 - 2) {
1200         assert(false, "Bad conversion from /proc/self/stat");
1201         // product mode - assume we are the primordial thread, good luck in the
1202         // embedded case.
1203         warning("Can't detect primordial thread stack location - bad conversion");
1204         stack_start = (uintptr_t) &rlim;
1205       }
1206     } else {
1207       // For some reason we can't open /proc/self/stat (for example, running on
1208       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1209       // most cases, so don't abort:
1210       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1211       stack_start = (uintptr_t) &rlim;
1212     }
1213   }
1214 
1215   // Now we have a pointer (stack_start) very close to the stack top, the
1216   // next thing to do is to figure out the exact location of stack top. We
1217   // can find out the virtual memory area that contains stack_start by
1218   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1219   // and its upper limit is the real stack top. (again, this would fail if
1220   // running inside chroot, because /proc may not exist.)
1221 
1222   uintptr_t stack_top;
1223   address low, high;
1224   if (find_vma((address)stack_start, &low, &high)) {
1225     // success, "high" is the true stack top. (ignore "low", because initial
1226     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1227     stack_top = (uintptr_t)high;
1228   } else {
1229     // failed, likely because /proc/self/maps does not exist
1230     warning("Can't detect primordial thread stack location - find_vma failed");
1231     // best effort: stack_start is normally within a few pages below the real
1232     // stack top, use it as stack top, and reduce stack size so we won't put
1233     // guard page outside stack.
1234     stack_top = stack_start;
1235     stack_size -= 16 * page_size();
1236   }
1237 
1238   // stack_top could be partially down the page so align it
1239   stack_top = align_up(stack_top, page_size());
1240 
1241   // Allowed stack value is minimum of max_size and what we derived from rlimit
1242   if (max_size > 0) {
1243     _initial_thread_stack_size = MIN2(max_size, stack_size);
1244   } else {
1245     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1246     // clamp it at 8MB as we do on Solaris
1247     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1248   }
1249   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1250   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1251 
1252   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1253 
1254   if (log_is_enabled(Info, os, thread)) {
1255     // See if we seem to be on primordial process thread
1256     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1257                       uintptr_t(&rlim) < stack_top;
1258 
1259     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1260                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1261                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1262                          stack_top, intptr_t(_initial_thread_stack_bottom));
1263   }
1264 }
1265 
1266 ////////////////////////////////////////////////////////////////////////////////
1267 // time support
1268 
1269 #ifndef SUPPORTS_CLOCK_MONOTONIC
1270 #error "Build platform doesn't support clock_gettime and related functionality"
1271 #endif
1272 
1273 // Time since start-up in seconds to a fine granularity.
1274 // Used by VMSelfDestructTimer and the MemProfiler.
1275 double os::elapsedTime() {
1276 
1277   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1278 }
1279 
1280 jlong os::elapsed_counter() {
1281   return javaTimeNanos() - initial_time_count;
1282 }
1283 
1284 jlong os::elapsed_frequency() {
1285   return NANOSECS_PER_SEC; // nanosecond resolution
1286 }
1287 
1288 bool os::supports_vtime() { return true; }
1289 bool os::enable_vtime()   { return false; }
1290 bool os::vtime_enabled()  { return false; }
1291 
1292 double os::elapsedVTime() {
1293   struct rusage usage;
1294   int retval = getrusage(RUSAGE_THREAD, &usage);
1295   if (retval == 0) {
1296     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1297   } else {
1298     // better than nothing, but not much
1299     return elapsedTime();
1300   }
1301 }
1302 
1303 jlong os::javaTimeMillis() {
1304   timeval time;
1305   int status = gettimeofday(&time, NULL);
1306   assert(status != -1, "linux error");
1307   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1308 }
1309 
1310 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1311   timeval time;
1312   int status = gettimeofday(&time, NULL);
1313   assert(status != -1, "linux error");
1314   seconds = jlong(time.tv_sec);
1315   nanos = jlong(time.tv_usec) * 1000;
1316 }
1317 
1318 void os::Linux::fast_thread_clock_init() {
1319   if (!UseLinuxPosixThreadCPUClocks) {
1320     return;
1321   }
1322   clockid_t clockid;
1323   struct timespec tp;
1324   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1325       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1326 
1327   // Switch to using fast clocks for thread cpu time if
1328   // the clock_getres() returns 0 error code.
1329   // Note, that some kernels may support the current thread
1330   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1331   // returned by the pthread_getcpuclockid().
1332   // If the fast Posix clocks are supported then the clock_getres()
1333   // must return at least tp.tv_sec == 0 which means a resolution
1334   // better than 1 sec. This is extra check for reliability.
1335 
1336   if (pthread_getcpuclockid_func &&
1337       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1338       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1339     _supports_fast_thread_cpu_time = true;
1340     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1341   }
1342 }
1343 
1344 jlong os::javaTimeNanos() {
1345   if (os::supports_monotonic_clock()) {
1346     struct timespec tp;
1347     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1348     assert(status == 0, "gettime error");
1349     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1350     return result;
1351   } else {
1352     timeval time;
1353     int status = gettimeofday(&time, NULL);
1354     assert(status != -1, "linux error");
1355     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1356     return 1000 * usecs;
1357   }
1358 }
1359 
1360 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1361   if (os::supports_monotonic_clock()) {
1362     info_ptr->max_value = ALL_64_BITS;
1363 
1364     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1365     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1366     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1367   } else {
1368     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1369     info_ptr->max_value = ALL_64_BITS;
1370 
1371     // gettimeofday is a real time clock so it skips
1372     info_ptr->may_skip_backward = true;
1373     info_ptr->may_skip_forward = true;
1374   }
1375 
1376   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1377 }
1378 
1379 // Return the real, user, and system times in seconds from an
1380 // arbitrary fixed point in the past.
1381 bool os::getTimesSecs(double* process_real_time,
1382                       double* process_user_time,
1383                       double* process_system_time) {
1384   struct tms ticks;
1385   clock_t real_ticks = times(&ticks);
1386 
1387   if (real_ticks == (clock_t) (-1)) {
1388     return false;
1389   } else {
1390     double ticks_per_second = (double) clock_tics_per_sec;
1391     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1392     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1393     *process_real_time = ((double) real_ticks) / ticks_per_second;
1394 
1395     return true;
1396   }
1397 }
1398 
1399 
1400 char * os::local_time_string(char *buf, size_t buflen) {
1401   struct tm t;
1402   time_t long_time;
1403   time(&long_time);
1404   localtime_r(&long_time, &t);
1405   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1406                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1407                t.tm_hour, t.tm_min, t.tm_sec);
1408   return buf;
1409 }
1410 
1411 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1412   return localtime_r(clock, res);
1413 }
1414 
1415 ////////////////////////////////////////////////////////////////////////////////
1416 // runtime exit support
1417 
1418 // Note: os::shutdown() might be called very early during initialization, or
1419 // called from signal handler. Before adding something to os::shutdown(), make
1420 // sure it is async-safe and can handle partially initialized VM.
1421 void os::shutdown() {
1422 
1423   // allow PerfMemory to attempt cleanup of any persistent resources
1424   perfMemory_exit();
1425 
1426   // needs to remove object in file system
1427   AttachListener::abort();
1428 
1429   // flush buffered output, finish log files
1430   ostream_abort();
1431 
1432   // Check for abort hook
1433   abort_hook_t abort_hook = Arguments::abort_hook();
1434   if (abort_hook != NULL) {
1435     abort_hook();
1436   }
1437 
1438 }
1439 
1440 // Note: os::abort() might be called very early during initialization, or
1441 // called from signal handler. Before adding something to os::abort(), make
1442 // sure it is async-safe and can handle partially initialized VM.
1443 void os::abort(bool dump_core, void* siginfo, const void* context) {
1444   os::shutdown();
1445   if (dump_core) {
1446     if (DumpPrivateMappingsInCore) {
1447       ClassLoader::close_jrt_image();
1448     }
1449 #ifndef PRODUCT
1450     fdStream out(defaultStream::output_fd());
1451     out.print_raw("Current thread is ");
1452     char buf[16];
1453     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1454     out.print_raw_cr(buf);
1455     out.print_raw_cr("Dumping core ...");
1456 #endif
1457     ::abort(); // dump core
1458   }
1459 
1460   ::exit(1);
1461 }
1462 
1463 // Die immediately, no exit hook, no abort hook, no cleanup.
1464 // Dump a core file, if possible, for debugging.
1465 void os::die() {
1466   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1467     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1468     // and don't take the time to generate a core file.
1469     os::signal_raise(SIGKILL);
1470   } else {
1471     ::abort();
1472   }
1473 }
1474 
1475 // thread_id is kernel thread id (similar to Solaris LWP id)
1476 intx os::current_thread_id() { return os::Linux::gettid(); }
1477 int os::current_process_id() {
1478   return ::getpid();
1479 }
1480 
1481 // DLL functions
1482 
1483 const char* os::dll_file_extension() { return ".so"; }
1484 
1485 // This must be hard coded because it's the system's temporary
1486 // directory not the java application's temp directory, ala java.io.tmpdir.
1487 const char* os::get_temp_directory() { return "/tmp"; }
1488 
1489 static bool file_exists(const char* filename) {
1490   struct stat statbuf;
1491   if (filename == NULL || strlen(filename) == 0) {
1492     return false;
1493   }
1494   return os::stat(filename, &statbuf) == 0;
1495 }
1496 
1497 // check if addr is inside libjvm.so
1498 bool os::address_is_in_vm(address addr) {
1499   static address libjvm_base_addr;
1500   Dl_info dlinfo;
1501 
1502   if (libjvm_base_addr == NULL) {
1503     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1504       libjvm_base_addr = (address)dlinfo.dli_fbase;
1505     }
1506     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1507   }
1508 
1509   if (dladdr((void *)addr, &dlinfo) != 0) {
1510     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1511   }
1512 
1513   return false;
1514 }
1515 
1516 bool os::dll_address_to_function_name(address addr, char *buf,
1517                                       int buflen, int *offset,
1518                                       bool demangle) {
1519   // buf is not optional, but offset is optional
1520   assert(buf != NULL, "sanity check");
1521 
1522   Dl_info dlinfo;
1523 
1524   if (dladdr((void*)addr, &dlinfo) != 0) {
1525     // see if we have a matching symbol
1526     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1527       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1528         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1529       }
1530       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1531       return true;
1532     }
1533     // no matching symbol so try for just file info
1534     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1535       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1536                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1537         return true;
1538       }
1539     }
1540   }
1541 
1542   buf[0] = '\0';
1543   if (offset != NULL) *offset = -1;
1544   return false;
1545 }
1546 
1547 struct _address_to_library_name {
1548   address addr;          // input : memory address
1549   size_t  buflen;        //         size of fname
1550   char*   fname;         // output: library name
1551   address base;          //         library base addr
1552 };
1553 
1554 static int address_to_library_name_callback(struct dl_phdr_info *info,
1555                                             size_t size, void *data) {
1556   int i;
1557   bool found = false;
1558   address libbase = NULL;
1559   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1560 
1561   // iterate through all loadable segments
1562   for (i = 0; i < info->dlpi_phnum; i++) {
1563     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1564     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1565       // base address of a library is the lowest address of its loaded
1566       // segments.
1567       if (libbase == NULL || libbase > segbase) {
1568         libbase = segbase;
1569       }
1570       // see if 'addr' is within current segment
1571       if (segbase <= d->addr &&
1572           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1573         found = true;
1574       }
1575     }
1576   }
1577 
1578   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1579   // so dll_address_to_library_name() can fall through to use dladdr() which
1580   // can figure out executable name from argv[0].
1581   if (found && info->dlpi_name && info->dlpi_name[0]) {
1582     d->base = libbase;
1583     if (d->fname) {
1584       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1585     }
1586     return 1;
1587   }
1588   return 0;
1589 }
1590 
1591 bool os::dll_address_to_library_name(address addr, char* buf,
1592                                      int buflen, int* offset) {
1593   // buf is not optional, but offset is optional
1594   assert(buf != NULL, "sanity check");
1595 
1596   Dl_info dlinfo;
1597   struct _address_to_library_name data;
1598 
1599   // There is a bug in old glibc dladdr() implementation that it could resolve
1600   // to wrong library name if the .so file has a base address != NULL. Here
1601   // we iterate through the program headers of all loaded libraries to find
1602   // out which library 'addr' really belongs to. This workaround can be
1603   // removed once the minimum requirement for glibc is moved to 2.3.x.
1604   data.addr = addr;
1605   data.fname = buf;
1606   data.buflen = buflen;
1607   data.base = NULL;
1608   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1609 
1610   if (rslt) {
1611     // buf already contains library name
1612     if (offset) *offset = addr - data.base;
1613     return true;
1614   }
1615   if (dladdr((void*)addr, &dlinfo) != 0) {
1616     if (dlinfo.dli_fname != NULL) {
1617       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1618     }
1619     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1620       *offset = addr - (address)dlinfo.dli_fbase;
1621     }
1622     return true;
1623   }
1624 
1625   buf[0] = '\0';
1626   if (offset) *offset = -1;
1627   return false;
1628 }
1629 
1630 // Loads .dll/.so and
1631 // in case of error it checks if .dll/.so was built for the
1632 // same architecture as Hotspot is running on
1633 
1634 
1635 // Remember the stack's state. The Linux dynamic linker will change
1636 // the stack to 'executable' at most once, so we must safepoint only once.
1637 bool os::Linux::_stack_is_executable = false;
1638 
1639 // VM operation that loads a library.  This is necessary if stack protection
1640 // of the Java stacks can be lost during loading the library.  If we
1641 // do not stop the Java threads, they can stack overflow before the stacks
1642 // are protected again.
1643 class VM_LinuxDllLoad: public VM_Operation {
1644  private:
1645   const char *_filename;
1646   char *_ebuf;
1647   int _ebuflen;
1648   void *_lib;
1649  public:
1650   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1651     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1652   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1653   void doit() {
1654     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1655     os::Linux::_stack_is_executable = true;
1656   }
1657   void* loaded_library() { return _lib; }
1658 };
1659 
1660 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1661   void * result = NULL;
1662   bool load_attempted = false;
1663 
1664   // Check whether the library to load might change execution rights
1665   // of the stack. If they are changed, the protection of the stack
1666   // guard pages will be lost. We need a safepoint to fix this.
1667   //
1668   // See Linux man page execstack(8) for more info.
1669   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1670     if (!ElfFile::specifies_noexecstack(filename)) {
1671       if (!is_init_completed()) {
1672         os::Linux::_stack_is_executable = true;
1673         // This is OK - No Java threads have been created yet, and hence no
1674         // stack guard pages to fix.
1675         //
1676         // Dynamic loader will make all stacks executable after
1677         // this function returns, and will not do that again.
1678         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1679       } else {
1680         warning("You have loaded library %s which might have disabled stack guard. "
1681                 "The VM will try to fix the stack guard now.\n"
1682                 "It's highly recommended that you fix the library with "
1683                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1684                 filename);
1685 
1686         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1687         JavaThread *jt = JavaThread::current();
1688         if (jt->thread_state() != _thread_in_native) {
1689           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1690           // that requires ExecStack. Cannot enter safe point. Let's give up.
1691           warning("Unable to fix stack guard. Giving up.");
1692         } else {
1693           if (!LoadExecStackDllInVMThread) {
1694             // This is for the case where the DLL has an static
1695             // constructor function that executes JNI code. We cannot
1696             // load such DLLs in the VMThread.
1697             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1698           }
1699 
1700           ThreadInVMfromNative tiv(jt);
1701           debug_only(VMNativeEntryWrapper vew;)
1702 
1703           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1704           VMThread::execute(&op);
1705           if (LoadExecStackDllInVMThread) {
1706             result = op.loaded_library();
1707           }
1708           load_attempted = true;
1709         }
1710       }
1711     }
1712   }
1713 
1714   if (!load_attempted) {
1715     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1716   }
1717 
1718   if (result != NULL) {
1719     // Successful loading
1720     return result;
1721   }
1722 
1723   Elf32_Ehdr elf_head;
1724   int diag_msg_max_length=ebuflen-strlen(ebuf);
1725   char* diag_msg_buf=ebuf+strlen(ebuf);
1726 
1727   if (diag_msg_max_length==0) {
1728     // No more space in ebuf for additional diagnostics message
1729     return NULL;
1730   }
1731 
1732 
1733   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1734 
1735   if (file_descriptor < 0) {
1736     // Can't open library, report dlerror() message
1737     return NULL;
1738   }
1739 
1740   bool failed_to_read_elf_head=
1741     (sizeof(elf_head)!=
1742      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1743 
1744   ::close(file_descriptor);
1745   if (failed_to_read_elf_head) {
1746     // file i/o error - report dlerror() msg
1747     return NULL;
1748   }
1749 
1750   typedef struct {
1751     Elf32_Half    code;         // Actual value as defined in elf.h
1752     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1753     unsigned char elf_class;    // 32 or 64 bit
1754     unsigned char endianess;    // MSB or LSB
1755     char*         name;         // String representation
1756   } arch_t;
1757 
1758 #ifndef EM_486
1759   #define EM_486          6               /* Intel 80486 */
1760 #endif
1761 #ifndef EM_AARCH64
1762   #define EM_AARCH64    183               /* ARM AARCH64 */
1763 #endif
1764 
1765   static const arch_t arch_array[]={
1766     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1767     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1768     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1769     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1770     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1771     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1772     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1773     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1774 #if defined(VM_LITTLE_ENDIAN)
1775     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1776     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1777 #else
1778     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1779     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1780 #endif
1781     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1782     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1783     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1784     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1785     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1786     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1787     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1788     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1789   };
1790 
1791 #if  (defined IA32)
1792   static  Elf32_Half running_arch_code=EM_386;
1793 #elif   (defined AMD64) || (defined X32)
1794   static  Elf32_Half running_arch_code=EM_X86_64;
1795 #elif  (defined IA64)
1796   static  Elf32_Half running_arch_code=EM_IA_64;
1797 #elif  (defined __sparc) && (defined _LP64)
1798   static  Elf32_Half running_arch_code=EM_SPARCV9;
1799 #elif  (defined __sparc) && (!defined _LP64)
1800   static  Elf32_Half running_arch_code=EM_SPARC;
1801 #elif  (defined __powerpc64__)
1802   static  Elf32_Half running_arch_code=EM_PPC64;
1803 #elif  (defined __powerpc__)
1804   static  Elf32_Half running_arch_code=EM_PPC;
1805 #elif  (defined AARCH64)
1806   static  Elf32_Half running_arch_code=EM_AARCH64;
1807 #elif  (defined ARM)
1808   static  Elf32_Half running_arch_code=EM_ARM;
1809 #elif  (defined S390)
1810   static  Elf32_Half running_arch_code=EM_S390;
1811 #elif  (defined ALPHA)
1812   static  Elf32_Half running_arch_code=EM_ALPHA;
1813 #elif  (defined MIPSEL)
1814   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1815 #elif  (defined PARISC)
1816   static  Elf32_Half running_arch_code=EM_PARISC;
1817 #elif  (defined MIPS)
1818   static  Elf32_Half running_arch_code=EM_MIPS;
1819 #elif  (defined M68K)
1820   static  Elf32_Half running_arch_code=EM_68K;
1821 #elif  (defined SH)
1822   static  Elf32_Half running_arch_code=EM_SH;
1823 #else
1824     #error Method os::dll_load requires that one of following is defined:\
1825         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1826 #endif
1827 
1828   // Identify compatability class for VM's architecture and library's architecture
1829   // Obtain string descriptions for architectures
1830 
1831   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1832   int running_arch_index=-1;
1833 
1834   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1835     if (running_arch_code == arch_array[i].code) {
1836       running_arch_index    = i;
1837     }
1838     if (lib_arch.code == arch_array[i].code) {
1839       lib_arch.compat_class = arch_array[i].compat_class;
1840       lib_arch.name         = arch_array[i].name;
1841     }
1842   }
1843 
1844   assert(running_arch_index != -1,
1845          "Didn't find running architecture code (running_arch_code) in arch_array");
1846   if (running_arch_index == -1) {
1847     // Even though running architecture detection failed
1848     // we may still continue with reporting dlerror() message
1849     return NULL;
1850   }
1851 
1852   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1853     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1854     return NULL;
1855   }
1856 
1857 #ifndef S390
1858   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1859     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1860     return NULL;
1861   }
1862 #endif // !S390
1863 
1864   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1865     if (lib_arch.name!=NULL) {
1866       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1867                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1868                  lib_arch.name, arch_array[running_arch_index].name);
1869     } else {
1870       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1871                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1872                  lib_arch.code,
1873                  arch_array[running_arch_index].name);
1874     }
1875   }
1876 
1877   return NULL;
1878 }
1879 
1880 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1881                                 int ebuflen) {
1882   void * result = ::dlopen(filename, RTLD_LAZY);
1883   if (result == NULL) {
1884     const char* error_report = ::dlerror();
1885     if (error_report == NULL) {
1886       error_report = "dlerror returned no error description";
1887     }
1888     if (ebuf != NULL && ebuflen > 0) {
1889       ::strncpy(ebuf, error_report, ebuflen-1);
1890       ebuf[ebuflen-1]='\0';
1891     }
1892     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1893   } else {
1894     Events::log(NULL, "Loaded shared library %s", filename);
1895   }
1896   return result;
1897 }
1898 
1899 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1900                                        int ebuflen) {
1901   void * result = NULL;
1902   if (LoadExecStackDllInVMThread) {
1903     result = dlopen_helper(filename, ebuf, ebuflen);
1904   }
1905 
1906   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1907   // library that requires an executable stack, or which does not have this
1908   // stack attribute set, dlopen changes the stack attribute to executable. The
1909   // read protection of the guard pages gets lost.
1910   //
1911   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1912   // may have been queued at the same time.
1913 
1914   if (!_stack_is_executable) {
1915     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1916       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1917           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1918         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1919           warning("Attempt to reguard stack yellow zone failed.");
1920         }
1921       }
1922     }
1923   }
1924 
1925   return result;
1926 }
1927 
1928 void* os::dll_lookup(void* handle, const char* name) {
1929   void* res = dlsym(handle, name);
1930   return res;
1931 }
1932 
1933 void* os::get_default_process_handle() {
1934   return (void*)::dlopen(NULL, RTLD_LAZY);
1935 }
1936 
1937 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
1938   int fd = ::open(filename, O_RDONLY);
1939   if (fd == -1) {
1940     return false;
1941   }
1942 
1943   if (hdr != NULL) {
1944     st->print_cr("%s", hdr);
1945   }
1946 
1947   char buf[33];
1948   int bytes;
1949   buf[32] = '\0';
1950   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1951     st->print_raw(buf, bytes);
1952   }
1953 
1954   ::close(fd);
1955 
1956   return true;
1957 }
1958 
1959 void os::print_dll_info(outputStream *st) {
1960   st->print_cr("Dynamic libraries:");
1961 
1962   char fname[32];
1963   pid_t pid = os::Linux::gettid();
1964 
1965   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1966 
1967   if (!_print_ascii_file(fname, st)) {
1968     st->print("Can not get library information for pid = %d\n", pid);
1969   }
1970 }
1971 
1972 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1973   FILE *procmapsFile = NULL;
1974 
1975   // Open the procfs maps file for the current process
1976   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1977     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1978     char line[PATH_MAX + 100];
1979 
1980     // Read line by line from 'file'
1981     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1982       u8 base, top, offset, inode;
1983       char permissions[5];
1984       char device[6];
1985       char name[PATH_MAX + 1];
1986 
1987       // Parse fields from line
1988       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %7s " INT64_FORMAT " %s",
1989              &base, &top, permissions, &offset, device, &inode, name);
1990 
1991       // Filter by device id '00:00' so that we only get file system mapped files.
1992       if (strcmp(device, "00:00") != 0) {
1993 
1994         // Call callback with the fields of interest
1995         if(callback(name, (address)base, (address)top, param)) {
1996           // Oops abort, callback aborted
1997           fclose(procmapsFile);
1998           return 1;
1999         }
2000       }
2001     }
2002     fclose(procmapsFile);
2003   }
2004   return 0;
2005 }
2006 
2007 void os::print_os_info_brief(outputStream* st) {
2008   os::Linux::print_distro_info(st);
2009 
2010   os::Posix::print_uname_info(st);
2011 
2012   os::Linux::print_libversion_info(st);
2013 
2014 }
2015 
2016 void os::print_os_info(outputStream* st) {
2017   st->print("OS:");
2018 
2019   os::Linux::print_distro_info(st);
2020 
2021   os::Posix::print_uname_info(st);
2022 
2023   // Print warning if unsafe chroot environment detected
2024   if (unsafe_chroot_detected) {
2025     st->print("WARNING!! ");
2026     st->print_cr("%s", unstable_chroot_error);
2027   }
2028 
2029   os::Linux::print_libversion_info(st);
2030 
2031   os::Posix::print_rlimit_info(st);
2032 
2033   os::Posix::print_load_average(st);
2034 
2035   os::Linux::print_full_memory_info(st);
2036 
2037   os::Linux::print_proc_sys_info(st);
2038 
2039   os::Linux::print_ld_preload_file(st);
2040 
2041   os::Linux::print_container_info(st);
2042 
2043   VM_Version::print_platform_virtualization_info(st);
2044 
2045   os::Linux::print_steal_info(st);
2046 }
2047 
2048 // Try to identify popular distros.
2049 // Most Linux distributions have a /etc/XXX-release file, which contains
2050 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2051 // file that also contains the OS version string. Some have more than one
2052 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2053 // /etc/redhat-release.), so the order is important.
2054 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2055 // their own specific XXX-release file as well as a redhat-release file.
2056 // Because of this the XXX-release file needs to be searched for before the
2057 // redhat-release file.
2058 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2059 // search for redhat-release / SuSE-release needs to be before lsb-release.
2060 // Since the lsb-release file is the new standard it needs to be searched
2061 // before the older style release files.
2062 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2063 // next to last resort.  The os-release file is a new standard that contains
2064 // distribution information and the system-release file seems to be an old
2065 // standard that has been replaced by the lsb-release and os-release files.
2066 // Searching for the debian_version file is the last resort.  It contains
2067 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2068 // "Debian " is printed before the contents of the debian_version file.
2069 
2070 const char* distro_files[] = {
2071   "/etc/oracle-release",
2072   "/etc/mandriva-release",
2073   "/etc/mandrake-release",
2074   "/etc/sun-release",
2075   "/etc/redhat-release",
2076   "/etc/SuSE-release",
2077   "/etc/lsb-release",
2078   "/etc/turbolinux-release",
2079   "/etc/gentoo-release",
2080   "/etc/ltib-release",
2081   "/etc/angstrom-version",
2082   "/etc/system-release",
2083   "/etc/os-release",
2084   NULL };
2085 
2086 void os::Linux::print_distro_info(outputStream* st) {
2087   for (int i = 0;; i++) {
2088     const char* file = distro_files[i];
2089     if (file == NULL) {
2090       break;  // done
2091     }
2092     // If file prints, we found it.
2093     if (_print_ascii_file(file, st)) {
2094       return;
2095     }
2096   }
2097 
2098   if (file_exists("/etc/debian_version")) {
2099     st->print("Debian ");
2100     _print_ascii_file("/etc/debian_version", st);
2101   } else {
2102     st->print("Linux");
2103   }
2104   st->cr();
2105 }
2106 
2107 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2108   char buf[256];
2109   while (fgets(buf, sizeof(buf), fp)) {
2110     // Edit out extra stuff in expected format
2111     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2112       char* ptr = strstr(buf, "\"");  // the name is in quotes
2113       if (ptr != NULL) {
2114         ptr++; // go beyond first quote
2115         char* nl = strchr(ptr, '\"');
2116         if (nl != NULL) *nl = '\0';
2117         strncpy(distro, ptr, length);
2118       } else {
2119         ptr = strstr(buf, "=");
2120         ptr++; // go beyond equals then
2121         char* nl = strchr(ptr, '\n');
2122         if (nl != NULL) *nl = '\0';
2123         strncpy(distro, ptr, length);
2124       }
2125       return;
2126     } else if (get_first_line) {
2127       char* nl = strchr(buf, '\n');
2128       if (nl != NULL) *nl = '\0';
2129       strncpy(distro, buf, length);
2130       return;
2131     }
2132   }
2133   // print last line and close
2134   char* nl = strchr(buf, '\n');
2135   if (nl != NULL) *nl = '\0';
2136   strncpy(distro, buf, length);
2137 }
2138 
2139 static void parse_os_info(char* distro, size_t length, const char* file) {
2140   FILE* fp = fopen(file, "r");
2141   if (fp != NULL) {
2142     // if suse format, print out first line
2143     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2144     parse_os_info_helper(fp, distro, length, get_first_line);
2145     fclose(fp);
2146   }
2147 }
2148 
2149 void os::get_summary_os_info(char* buf, size_t buflen) {
2150   for (int i = 0;; i++) {
2151     const char* file = distro_files[i];
2152     if (file == NULL) {
2153       break; // ran out of distro_files
2154     }
2155     if (file_exists(file)) {
2156       parse_os_info(buf, buflen, file);
2157       return;
2158     }
2159   }
2160   // special case for debian
2161   if (file_exists("/etc/debian_version")) {
2162     strncpy(buf, "Debian ", buflen);
2163     if (buflen > 7) {
2164       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2165     }
2166   } else {
2167     strncpy(buf, "Linux", buflen);
2168   }
2169 }
2170 
2171 void os::Linux::print_libversion_info(outputStream* st) {
2172   // libc, pthread
2173   st->print("libc:");
2174   st->print("%s ", os::Linux::glibc_version());
2175   st->print("%s ", os::Linux::libpthread_version());
2176   st->cr();
2177 }
2178 
2179 void os::Linux::print_proc_sys_info(outputStream* st) {
2180   st->cr();
2181   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2182   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2183   st->cr();
2184   st->cr();
2185 
2186   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2187   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2188   st->cr();
2189   st->cr();
2190 
2191   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2192   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2193   st->cr();
2194   st->cr();
2195 }
2196 
2197 void os::Linux::print_full_memory_info(outputStream* st) {
2198   st->print("\n/proc/meminfo:\n");
2199   _print_ascii_file("/proc/meminfo", st);
2200   st->cr();
2201 }
2202 
2203 void os::Linux::print_ld_preload_file(outputStream* st) {
2204   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2205   st->cr();
2206 }
2207 
2208 void os::Linux::print_container_info(outputStream* st) {
2209   if (!OSContainer::is_containerized()) {
2210     return;
2211   }
2212 
2213   st->print("container (cgroup) information:\n");
2214 
2215   const char *p_ct = OSContainer::container_type();
2216   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2217 
2218   char *p = OSContainer::cpu_cpuset_cpus();
2219   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2220   free(p);
2221 
2222   p = OSContainer::cpu_cpuset_memory_nodes();
2223   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2224   free(p);
2225 
2226   int i = OSContainer::active_processor_count();
2227   st->print("active_processor_count: ");
2228   if (i > 0) {
2229     st->print("%d\n", i);
2230   } else {
2231     st->print("not supported\n");
2232   }
2233 
2234   i = OSContainer::cpu_quota();
2235   st->print("cpu_quota: ");
2236   if (i > 0) {
2237     st->print("%d\n", i);
2238   } else {
2239     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2240   }
2241 
2242   i = OSContainer::cpu_period();
2243   st->print("cpu_period: ");
2244   if (i > 0) {
2245     st->print("%d\n", i);
2246   } else {
2247     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2248   }
2249 
2250   i = OSContainer::cpu_shares();
2251   st->print("cpu_shares: ");
2252   if (i > 0) {
2253     st->print("%d\n", i);
2254   } else {
2255     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2256   }
2257 
2258   jlong j = OSContainer::memory_limit_in_bytes();
2259   st->print("memory_limit_in_bytes: ");
2260   if (j > 0) {
2261     st->print(JLONG_FORMAT "\n", j);
2262   } else {
2263     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2264   }
2265 
2266   j = OSContainer::memory_and_swap_limit_in_bytes();
2267   st->print("memory_and_swap_limit_in_bytes: ");
2268   if (j > 0) {
2269     st->print(JLONG_FORMAT "\n", j);
2270   } else {
2271     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2272   }
2273 
2274   j = OSContainer::memory_soft_limit_in_bytes();
2275   st->print("memory_soft_limit_in_bytes: ");
2276   if (j > 0) {
2277     st->print(JLONG_FORMAT "\n", j);
2278   } else {
2279     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2280   }
2281 
2282   j = OSContainer::OSContainer::memory_usage_in_bytes();
2283   st->print("memory_usage_in_bytes: ");
2284   if (j > 0) {
2285     st->print(JLONG_FORMAT "\n", j);
2286   } else {
2287     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2288   }
2289 
2290   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2291   st->print("memory_max_usage_in_bytes: ");
2292   if (j > 0) {
2293     st->print(JLONG_FORMAT "\n", j);
2294   } else {
2295     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2296   }
2297   st->cr();
2298 }
2299 
2300 void os::Linux::print_steal_info(outputStream* st) {
2301   if (has_initial_tick_info) {
2302     CPUPerfTicks pticks;
2303     bool res = os::Linux::get_tick_information(&pticks, -1);
2304 
2305     if (res && pticks.has_steal_ticks) {
2306       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2307       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2308       double steal_ticks_perc = 0.0;
2309       if (total_ticks_difference != 0) {
2310         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2311       }
2312       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2313       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2314     }
2315   }
2316 }
2317 
2318 void os::print_memory_info(outputStream* st) {
2319 
2320   st->print("Memory:");
2321   st->print(" %dk page", os::vm_page_size()>>10);
2322 
2323   // values in struct sysinfo are "unsigned long"
2324   struct sysinfo si;
2325   sysinfo(&si);
2326 
2327   st->print(", physical " UINT64_FORMAT "k",
2328             os::physical_memory() >> 10);
2329   st->print("(" UINT64_FORMAT "k free)",
2330             os::available_memory() >> 10);
2331   st->print(", swap " UINT64_FORMAT "k",
2332             ((jlong)si.totalswap * si.mem_unit) >> 10);
2333   st->print("(" UINT64_FORMAT "k free)",
2334             ((jlong)si.freeswap * si.mem_unit) >> 10);
2335   st->cr();
2336 }
2337 
2338 // Print the first "model name" line and the first "flags" line
2339 // that we find and nothing more. We assume "model name" comes
2340 // before "flags" so if we find a second "model name", then the
2341 // "flags" field is considered missing.
2342 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2343 #if defined(IA32) || defined(AMD64)
2344   // Other platforms have less repetitive cpuinfo files
2345   FILE *fp = fopen("/proc/cpuinfo", "r");
2346   if (fp) {
2347     while (!feof(fp)) {
2348       if (fgets(buf, buflen, fp)) {
2349         // Assume model name comes before flags
2350         bool model_name_printed = false;
2351         if (strstr(buf, "model name") != NULL) {
2352           if (!model_name_printed) {
2353             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2354             st->print_raw(buf);
2355             model_name_printed = true;
2356           } else {
2357             // model name printed but not flags?  Odd, just return
2358             fclose(fp);
2359             return true;
2360           }
2361         }
2362         // print the flags line too
2363         if (strstr(buf, "flags") != NULL) {
2364           st->print_raw(buf);
2365           fclose(fp);
2366           return true;
2367         }
2368       }
2369     }
2370     fclose(fp);
2371   }
2372 #endif // x86 platforms
2373   return false;
2374 }
2375 
2376 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2377   // Only print the model name if the platform provides this as a summary
2378   if (!print_model_name_and_flags(st, buf, buflen)) {
2379     st->print("\n/proc/cpuinfo:\n");
2380     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2381       st->print_cr("  <Not Available>");
2382     }
2383   }
2384 }
2385 
2386 #if defined(AMD64) || defined(IA32) || defined(X32)
2387 const char* search_string = "model name";
2388 #elif defined(M68K)
2389 const char* search_string = "CPU";
2390 #elif defined(PPC64)
2391 const char* search_string = "cpu";
2392 #elif defined(S390)
2393 const char* search_string = "machine =";
2394 #elif defined(SPARC)
2395 const char* search_string = "cpu";
2396 #else
2397 const char* search_string = "Processor";
2398 #endif
2399 
2400 // Parses the cpuinfo file for string representing the model name.
2401 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2402   FILE* fp = fopen("/proc/cpuinfo", "r");
2403   if (fp != NULL) {
2404     while (!feof(fp)) {
2405       char buf[256];
2406       if (fgets(buf, sizeof(buf), fp)) {
2407         char* start = strstr(buf, search_string);
2408         if (start != NULL) {
2409           char *ptr = start + strlen(search_string);
2410           char *end = buf + strlen(buf);
2411           while (ptr != end) {
2412              // skip whitespace and colon for the rest of the name.
2413              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2414                break;
2415              }
2416              ptr++;
2417           }
2418           if (ptr != end) {
2419             // reasonable string, get rid of newline and keep the rest
2420             char* nl = strchr(buf, '\n');
2421             if (nl != NULL) *nl = '\0';
2422             strncpy(cpuinfo, ptr, length);
2423             fclose(fp);
2424             return;
2425           }
2426         }
2427       }
2428     }
2429     fclose(fp);
2430   }
2431   // cpuinfo not found or parsing failed, just print generic string.  The entire
2432   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2433 #if   defined(AARCH64)
2434   strncpy(cpuinfo, "AArch64", length);
2435 #elif defined(AMD64)
2436   strncpy(cpuinfo, "x86_64", length);
2437 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2438   strncpy(cpuinfo, "ARM", length);
2439 #elif defined(IA32)
2440   strncpy(cpuinfo, "x86_32", length);
2441 #elif defined(IA64)
2442   strncpy(cpuinfo, "IA64", length);
2443 #elif defined(PPC)
2444   strncpy(cpuinfo, "PPC64", length);
2445 #elif defined(S390)
2446   strncpy(cpuinfo, "S390", length);
2447 #elif defined(SPARC)
2448   strncpy(cpuinfo, "sparcv9", length);
2449 #elif defined(ZERO_LIBARCH)
2450   strncpy(cpuinfo, ZERO_LIBARCH, length);
2451 #else
2452   strncpy(cpuinfo, "unknown", length);
2453 #endif
2454 }
2455 
2456 static void print_signal_handler(outputStream* st, int sig,
2457                                  char* buf, size_t buflen);
2458 
2459 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2460   st->print_cr("Signal Handlers:");
2461   print_signal_handler(st, SIGSEGV, buf, buflen);
2462   print_signal_handler(st, SIGBUS , buf, buflen);
2463   print_signal_handler(st, SIGFPE , buf, buflen);
2464   print_signal_handler(st, SIGPIPE, buf, buflen);
2465   print_signal_handler(st, SIGXFSZ, buf, buflen);
2466   print_signal_handler(st, SIGILL , buf, buflen);
2467   print_signal_handler(st, SR_signum, buf, buflen);
2468   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2469   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2470   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2471   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2472 #if defined(PPC64)
2473   print_signal_handler(st, SIGTRAP, buf, buflen);
2474 #endif
2475 }
2476 
2477 static char saved_jvm_path[MAXPATHLEN] = {0};
2478 
2479 // Find the full path to the current module, libjvm.so
2480 void os::jvm_path(char *buf, jint buflen) {
2481   // Error checking.
2482   if (buflen < MAXPATHLEN) {
2483     assert(false, "must use a large-enough buffer");
2484     buf[0] = '\0';
2485     return;
2486   }
2487   // Lazy resolve the path to current module.
2488   if (saved_jvm_path[0] != 0) {
2489     strcpy(buf, saved_jvm_path);
2490     return;
2491   }
2492 
2493   char dli_fname[MAXPATHLEN];
2494   bool ret = dll_address_to_library_name(
2495                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2496                                          dli_fname, sizeof(dli_fname), NULL);
2497   assert(ret, "cannot locate libjvm");
2498   char *rp = NULL;
2499   if (ret && dli_fname[0] != '\0') {
2500     rp = os::Posix::realpath(dli_fname, buf, buflen);
2501   }
2502   if (rp == NULL) {
2503     return;
2504   }
2505 
2506   if (Arguments::sun_java_launcher_is_altjvm()) {
2507     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2508     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2509     // If "/jre/lib/" appears at the right place in the string, then
2510     // assume we are installed in a JDK and we're done. Otherwise, check
2511     // for a JAVA_HOME environment variable and fix up the path so it
2512     // looks like libjvm.so is installed there (append a fake suffix
2513     // hotspot/libjvm.so).
2514     const char *p = buf + strlen(buf) - 1;
2515     for (int count = 0; p > buf && count < 5; ++count) {
2516       for (--p; p > buf && *p != '/'; --p)
2517         /* empty */ ;
2518     }
2519 
2520     if (strncmp(p, "/jre/lib/", 9) != 0) {
2521       // Look for JAVA_HOME in the environment.
2522       char* java_home_var = ::getenv("JAVA_HOME");
2523       if (java_home_var != NULL && java_home_var[0] != 0) {
2524         char* jrelib_p;
2525         int len;
2526 
2527         // Check the current module name "libjvm.so".
2528         p = strrchr(buf, '/');
2529         if (p == NULL) {
2530           return;
2531         }
2532         assert(strstr(p, "/libjvm") == p, "invalid library name");
2533 
2534         rp = os::Posix::realpath(java_home_var, buf, buflen);
2535         if (rp == NULL) {
2536           return;
2537         }
2538 
2539         // determine if this is a legacy image or modules image
2540         // modules image doesn't have "jre" subdirectory
2541         len = strlen(buf);
2542         assert(len < buflen, "Ran out of buffer room");
2543         jrelib_p = buf + len;
2544         snprintf(jrelib_p, buflen-len, "/jre/lib");
2545         if (0 != access(buf, F_OK)) {
2546           snprintf(jrelib_p, buflen-len, "/lib");
2547         }
2548 
2549         if (0 == access(buf, F_OK)) {
2550           // Use current module name "libjvm.so"
2551           len = strlen(buf);
2552           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2553         } else {
2554           // Go back to path of .so
2555           rp = os::Posix::realpath(dli_fname, buf, buflen);
2556           if (rp == NULL) {
2557             return;
2558           }
2559         }
2560       }
2561     }
2562   }
2563 
2564   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2565   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2566 }
2567 
2568 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2569   // no prefix required, not even "_"
2570 }
2571 
2572 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2573   // no suffix required
2574 }
2575 
2576 ////////////////////////////////////////////////////////////////////////////////
2577 // sun.misc.Signal support
2578 
2579 static volatile jint sigint_count = 0;
2580 
2581 static void UserHandler(int sig, void *siginfo, void *context) {
2582   // 4511530 - sem_post is serialized and handled by the manager thread. When
2583   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2584   // don't want to flood the manager thread with sem_post requests.
2585   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2586     return;
2587   }
2588 
2589   // Ctrl-C is pressed during error reporting, likely because the error
2590   // handler fails to abort. Let VM die immediately.
2591   if (sig == SIGINT && VMError::is_error_reported()) {
2592     os::die();
2593   }
2594 
2595   os::signal_notify(sig);
2596 }
2597 
2598 void* os::user_handler() {
2599   return CAST_FROM_FN_PTR(void*, UserHandler);
2600 }
2601 
2602 extern "C" {
2603   typedef void (*sa_handler_t)(int);
2604   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2605 }
2606 
2607 void* os::signal(int signal_number, void* handler) {
2608   struct sigaction sigAct, oldSigAct;
2609 
2610   sigfillset(&(sigAct.sa_mask));
2611   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2612   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2613 
2614   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2615     // -1 means registration failed
2616     return (void *)-1;
2617   }
2618 
2619   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2620 }
2621 
2622 void os::signal_raise(int signal_number) {
2623   ::raise(signal_number);
2624 }
2625 
2626 // The following code is moved from os.cpp for making this
2627 // code platform specific, which it is by its very nature.
2628 
2629 // Will be modified when max signal is changed to be dynamic
2630 int os::sigexitnum_pd() {
2631   return NSIG;
2632 }
2633 
2634 // a counter for each possible signal value
2635 static volatile jint pending_signals[NSIG+1] = { 0 };
2636 
2637 // Linux(POSIX) specific hand shaking semaphore.
2638 static Semaphore* sig_sem = NULL;
2639 static PosixSemaphore sr_semaphore;
2640 
2641 static void jdk_misc_signal_init() {
2642   // Initialize signal structures
2643   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2644 
2645   // Initialize signal semaphore
2646   sig_sem = new Semaphore();
2647 }
2648 
2649 void os::signal_notify(int sig) {
2650   if (sig_sem != NULL) {
2651     Atomic::inc(&pending_signals[sig]);
2652     sig_sem->signal();
2653   } else {
2654     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2655     // initialization isn't called.
2656     assert(ReduceSignalUsage, "signal semaphore should be created");
2657   }
2658 }
2659 
2660 static int check_pending_signals() {
2661   Atomic::store(0, &sigint_count);
2662   for (;;) {
2663     for (int i = 0; i < NSIG + 1; i++) {
2664       jint n = pending_signals[i];
2665       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2666         return i;
2667       }
2668     }
2669     JavaThread *thread = JavaThread::current();
2670     ThreadBlockInVM tbivm(thread);
2671 
2672     bool threadIsSuspended;
2673     do {
2674       thread->set_suspend_equivalent();
2675       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2676       sig_sem->wait();
2677 
2678       // were we externally suspended while we were waiting?
2679       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2680       if (threadIsSuspended) {
2681         // The semaphore has been incremented, but while we were waiting
2682         // another thread suspended us. We don't want to continue running
2683         // while suspended because that would surprise the thread that
2684         // suspended us.
2685         sig_sem->signal();
2686 
2687         thread->java_suspend_self();
2688       }
2689     } while (threadIsSuspended);
2690   }
2691 }
2692 
2693 int os::signal_wait() {
2694   return check_pending_signals();
2695 }
2696 
2697 ////////////////////////////////////////////////////////////////////////////////
2698 // Virtual Memory
2699 
2700 int os::vm_page_size() {
2701   // Seems redundant as all get out
2702   assert(os::Linux::page_size() != -1, "must call os::init");
2703   return os::Linux::page_size();
2704 }
2705 
2706 // Solaris allocates memory by pages.
2707 int os::vm_allocation_granularity() {
2708   assert(os::Linux::page_size() != -1, "must call os::init");
2709   return os::Linux::page_size();
2710 }
2711 
2712 // Rationale behind this function:
2713 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2714 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2715 //  samples for JITted code. Here we create private executable mapping over the code cache
2716 //  and then we can use standard (well, almost, as mapping can change) way to provide
2717 //  info for the reporting script by storing timestamp and location of symbol
2718 void linux_wrap_code(char* base, size_t size) {
2719   static volatile jint cnt = 0;
2720 
2721   if (!UseOprofile) {
2722     return;
2723   }
2724 
2725   char buf[PATH_MAX+1];
2726   int num = Atomic::add(1, &cnt);
2727 
2728   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2729            os::get_temp_directory(), os::current_process_id(), num);
2730   unlink(buf);
2731 
2732   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2733 
2734   if (fd != -1) {
2735     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2736     if (rv != (off_t)-1) {
2737       if (::write(fd, "", 1) == 1) {
2738         mmap(base, size,
2739              PROT_READ|PROT_WRITE|PROT_EXEC,
2740              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2741       }
2742     }
2743     ::close(fd);
2744     unlink(buf);
2745   }
2746 }
2747 
2748 static bool recoverable_mmap_error(int err) {
2749   // See if the error is one we can let the caller handle. This
2750   // list of errno values comes from JBS-6843484. I can't find a
2751   // Linux man page that documents this specific set of errno
2752   // values so while this list currently matches Solaris, it may
2753   // change as we gain experience with this failure mode.
2754   switch (err) {
2755   case EBADF:
2756   case EINVAL:
2757   case ENOTSUP:
2758     // let the caller deal with these errors
2759     return true;
2760 
2761   default:
2762     // Any remaining errors on this OS can cause our reserved mapping
2763     // to be lost. That can cause confusion where different data
2764     // structures think they have the same memory mapped. The worst
2765     // scenario is if both the VM and a library think they have the
2766     // same memory mapped.
2767     return false;
2768   }
2769 }
2770 
2771 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2772                                     int err) {
2773   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2774           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2775           os::strerror(err), err);
2776 }
2777 
2778 static void warn_fail_commit_memory(char* addr, size_t size,
2779                                     size_t alignment_hint, bool exec,
2780                                     int err) {
2781   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2782           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2783           alignment_hint, exec, os::strerror(err), err);
2784 }
2785 
2786 // NOTE: Linux kernel does not really reserve the pages for us.
2787 //       All it does is to check if there are enough free pages
2788 //       left at the time of mmap(). This could be a potential
2789 //       problem.
2790 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2791   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2792   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2793                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2794   if (res != (uintptr_t) MAP_FAILED) {
2795     if (UseNUMAInterleaving) {
2796       numa_make_global(addr, size);
2797     }
2798     return 0;
2799   }
2800 
2801   int err = errno;  // save errno from mmap() call above
2802 
2803   if (!recoverable_mmap_error(err)) {
2804     warn_fail_commit_memory(addr, size, exec, err);
2805     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2806   }
2807 
2808   return err;
2809 }
2810 
2811 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2812   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2813 }
2814 
2815 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2816                                   const char* mesg) {
2817   assert(mesg != NULL, "mesg must be specified");
2818   int err = os::Linux::commit_memory_impl(addr, size, exec);
2819   if (err != 0) {
2820     // the caller wants all commit errors to exit with the specified mesg:
2821     warn_fail_commit_memory(addr, size, exec, err);
2822     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2823   }
2824 }
2825 
2826 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2827 #ifndef MAP_HUGETLB
2828   #define MAP_HUGETLB 0x40000
2829 #endif
2830 
2831 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2832 #ifndef MADV_HUGEPAGE
2833   #define MADV_HUGEPAGE 14
2834 #endif
2835 
2836 int os::Linux::commit_memory_impl(char* addr, size_t size,
2837                                   size_t alignment_hint, bool exec) {
2838   int err = os::Linux::commit_memory_impl(addr, size, exec);
2839   if (err == 0) {
2840     realign_memory(addr, size, alignment_hint);
2841   }
2842   return err;
2843 }
2844 
2845 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2846                           bool exec) {
2847   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2848 }
2849 
2850 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2851                                   size_t alignment_hint, bool exec,
2852                                   const char* mesg) {
2853   assert(mesg != NULL, "mesg must be specified");
2854   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2855   if (err != 0) {
2856     // the caller wants all commit errors to exit with the specified mesg:
2857     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2858     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2859   }
2860 }
2861 
2862 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2863   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2864     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2865     // be supported or the memory may already be backed by huge pages.
2866     ::madvise(addr, bytes, MADV_HUGEPAGE);
2867   }
2868 }
2869 
2870 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2871   // This method works by doing an mmap over an existing mmaping and effectively discarding
2872   // the existing pages. However it won't work for SHM-based large pages that cannot be
2873   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2874   // small pages on top of the SHM segment. This method always works for small pages, so we
2875   // allow that in any case.
2876   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2877     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2878   }
2879 }
2880 
2881 void os::numa_make_global(char *addr, size_t bytes) {
2882   Linux::numa_interleave_memory(addr, bytes);
2883 }
2884 
2885 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2886 // bind policy to MPOL_PREFERRED for the current thread.
2887 #define USE_MPOL_PREFERRED 0
2888 
2889 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2890   // To make NUMA and large pages more robust when both enabled, we need to ease
2891   // the requirements on where the memory should be allocated. MPOL_BIND is the
2892   // default policy and it will force memory to be allocated on the specified
2893   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2894   // the specified node, but will not force it. Using this policy will prevent
2895   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2896   // free large pages.
2897   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2898   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2899 }
2900 
2901 bool os::numa_topology_changed() { return false; }
2902 
2903 size_t os::numa_get_groups_num() {
2904   // Return just the number of nodes in which it's possible to allocate memory
2905   // (in numa terminology, configured nodes).
2906   return Linux::numa_num_configured_nodes();
2907 }
2908 
2909 int os::numa_get_group_id() {
2910   int cpu_id = Linux::sched_getcpu();
2911   if (cpu_id != -1) {
2912     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2913     if (lgrp_id != -1) {
2914       return lgrp_id;
2915     }
2916   }
2917   return 0;
2918 }
2919 
2920 int os::Linux::get_existing_num_nodes() {
2921   int node;
2922   int highest_node_number = Linux::numa_max_node();
2923   int num_nodes = 0;
2924 
2925   // Get the total number of nodes in the system including nodes without memory.
2926   for (node = 0; node <= highest_node_number; node++) {
2927     if (is_node_in_existing_nodes(node)) {
2928       num_nodes++;
2929     }
2930   }
2931   return num_nodes;
2932 }
2933 
2934 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2935   int highest_node_number = Linux::numa_max_node();
2936   size_t i = 0;
2937 
2938   // Map all node ids in which it is possible to allocate memory. Also nodes are
2939   // not always consecutively available, i.e. available from 0 to the highest
2940   // node number. If the nodes have been bound explicitly using numactl membind,
2941   // then allocate memory from those nodes only.
2942   for (int node = 0; node <= highest_node_number; node++) {
2943     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
2944       ids[i++] = node;
2945     }
2946   }
2947   return i;
2948 }
2949 
2950 bool os::get_page_info(char *start, page_info* info) {
2951   return false;
2952 }
2953 
2954 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2955                      page_info* page_found) {
2956   return end;
2957 }
2958 
2959 
2960 int os::Linux::sched_getcpu_syscall(void) {
2961   unsigned int cpu = 0;
2962   int retval = -1;
2963 
2964 #if defined(IA32)
2965   #ifndef SYS_getcpu
2966     #define SYS_getcpu 318
2967   #endif
2968   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2969 #elif defined(AMD64)
2970 // Unfortunately we have to bring all these macros here from vsyscall.h
2971 // to be able to compile on old linuxes.
2972   #define __NR_vgetcpu 2
2973   #define VSYSCALL_START (-10UL << 20)
2974   #define VSYSCALL_SIZE 1024
2975   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2976   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2977   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2978   retval = vgetcpu(&cpu, NULL, NULL);
2979 #endif
2980 
2981   return (retval == -1) ? retval : cpu;
2982 }
2983 
2984 void os::Linux::sched_getcpu_init() {
2985   // sched_getcpu() should be in libc.
2986   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2987                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2988 
2989   // If it's not, try a direct syscall.
2990   if (sched_getcpu() == -1) {
2991     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2992                                     (void*)&sched_getcpu_syscall));
2993   }
2994 
2995   if (sched_getcpu() == -1) {
2996     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
2997   }
2998 }
2999 
3000 // Something to do with the numa-aware allocator needs these symbols
3001 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3002 extern "C" JNIEXPORT void numa_error(char *where) { }
3003 
3004 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3005 // load symbol from base version instead.
3006 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3007   void *f = dlvsym(handle, name, "libnuma_1.1");
3008   if (f == NULL) {
3009     f = dlsym(handle, name);
3010   }
3011   return f;
3012 }
3013 
3014 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3015 // Return NULL if the symbol is not defined in this particular version.
3016 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3017   return dlvsym(handle, name, "libnuma_1.2");
3018 }
3019 
3020 bool os::Linux::libnuma_init() {
3021   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3022     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3023     if (handle != NULL) {
3024       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3025                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3026       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3027                                        libnuma_dlsym(handle, "numa_max_node")));
3028       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3029                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3030       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3031                                         libnuma_dlsym(handle, "numa_available")));
3032       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3033                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3034       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3035                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3036       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3037                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3038       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3039                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3040       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3041                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3042       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3043                                        libnuma_dlsym(handle, "numa_distance")));
3044       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3045                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3046       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3047                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3048 
3049       if (numa_available() != -1) {
3050         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3051         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3052         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3053         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3054         set_numa_membind_bitmask(_numa_get_membind());
3055         // Create an index -> node mapping, since nodes are not always consecutive
3056         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3057         rebuild_nindex_to_node_map();
3058         // Create a cpu -> node mapping
3059         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3060         rebuild_cpu_to_node_map();
3061         return true;
3062       }
3063     }
3064   }
3065   return false;
3066 }
3067 
3068 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3069   // Creating guard page is very expensive. Java thread has HotSpot
3070   // guard pages, only enable glibc guard page for non-Java threads.
3071   // (Remember: compiler thread is a Java thread, too!)
3072   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3073 }
3074 
3075 void os::Linux::rebuild_nindex_to_node_map() {
3076   int highest_node_number = Linux::numa_max_node();
3077 
3078   nindex_to_node()->clear();
3079   for (int node = 0; node <= highest_node_number; node++) {
3080     if (Linux::is_node_in_existing_nodes(node)) {
3081       nindex_to_node()->append(node);
3082     }
3083   }
3084 }
3085 
3086 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3087 // The table is later used in get_node_by_cpu().
3088 void os::Linux::rebuild_cpu_to_node_map() {
3089   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3090                               // in libnuma (possible values are starting from 16,
3091                               // and continuing up with every other power of 2, but less
3092                               // than the maximum number of CPUs supported by kernel), and
3093                               // is a subject to change (in libnuma version 2 the requirements
3094                               // are more reasonable) we'll just hardcode the number they use
3095                               // in the library.
3096   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3097 
3098   size_t cpu_num = processor_count();
3099   size_t cpu_map_size = NCPUS / BitsPerCLong;
3100   size_t cpu_map_valid_size =
3101     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3102 
3103   cpu_to_node()->clear();
3104   cpu_to_node()->at_grow(cpu_num - 1);
3105 
3106   size_t node_num = get_existing_num_nodes();
3107 
3108   int distance = 0;
3109   int closest_distance = INT_MAX;
3110   int closest_node = 0;
3111   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3112   for (size_t i = 0; i < node_num; i++) {
3113     // Check if node is configured (not a memory-less node). If it is not, find
3114     // the closest configured node. Check also if node is bound, i.e. it's allowed
3115     // to allocate memory from the node. If it's not allowed, map cpus in that node
3116     // to the closest node from which memory allocation is allowed.
3117     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3118         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3119       closest_distance = INT_MAX;
3120       // Check distance from all remaining nodes in the system. Ignore distance
3121       // from itself, from another non-configured node, and from another non-bound
3122       // node.
3123       for (size_t m = 0; m < node_num; m++) {
3124         if (m != i &&
3125             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3126             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3127           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3128           // If a closest node is found, update. There is always at least one
3129           // configured and bound node in the system so there is always at least
3130           // one node close.
3131           if (distance != 0 && distance < closest_distance) {
3132             closest_distance = distance;
3133             closest_node = nindex_to_node()->at(m);
3134           }
3135         }
3136       }
3137      } else {
3138        // Current node is already a configured node.
3139        closest_node = nindex_to_node()->at(i);
3140      }
3141 
3142     // Get cpus from the original node and map them to the closest node. If node
3143     // is a configured node (not a memory-less node), then original node and
3144     // closest node are the same.
3145     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3146       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3147         if (cpu_map[j] != 0) {
3148           for (size_t k = 0; k < BitsPerCLong; k++) {
3149             if (cpu_map[j] & (1UL << k)) {
3150               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3151             }
3152           }
3153         }
3154       }
3155     }
3156   }
3157   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3158 }
3159 
3160 int os::Linux::get_node_by_cpu(int cpu_id) {
3161   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3162     return cpu_to_node()->at(cpu_id);
3163   }
3164   return -1;
3165 }
3166 
3167 GrowableArray<int>* os::Linux::_cpu_to_node;
3168 GrowableArray<int>* os::Linux::_nindex_to_node;
3169 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3170 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3171 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3172 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3173 os::Linux::numa_available_func_t os::Linux::_numa_available;
3174 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3175 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3176 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3177 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3178 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3179 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3180 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3181 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3182 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3183 unsigned long* os::Linux::_numa_all_nodes;
3184 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3185 struct bitmask* os::Linux::_numa_nodes_ptr;
3186 struct bitmask* os::Linux::_numa_interleave_bitmask;
3187 struct bitmask* os::Linux::_numa_membind_bitmask;
3188 
3189 bool os::pd_uncommit_memory(char* addr, size_t size) {
3190   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3191                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3192   return res  != (uintptr_t) MAP_FAILED;
3193 }
3194 
3195 static address get_stack_commited_bottom(address bottom, size_t size) {
3196   address nbot = bottom;
3197   address ntop = bottom + size;
3198 
3199   size_t page_sz = os::vm_page_size();
3200   unsigned pages = size / page_sz;
3201 
3202   unsigned char vec[1];
3203   unsigned imin = 1, imax = pages + 1, imid;
3204   int mincore_return_value = 0;
3205 
3206   assert(imin <= imax, "Unexpected page size");
3207 
3208   while (imin < imax) {
3209     imid = (imax + imin) / 2;
3210     nbot = ntop - (imid * page_sz);
3211 
3212     // Use a trick with mincore to check whether the page is mapped or not.
3213     // mincore sets vec to 1 if page resides in memory and to 0 if page
3214     // is swapped output but if page we are asking for is unmapped
3215     // it returns -1,ENOMEM
3216     mincore_return_value = mincore(nbot, page_sz, vec);
3217 
3218     if (mincore_return_value == -1) {
3219       // Page is not mapped go up
3220       // to find first mapped page
3221       if (errno != EAGAIN) {
3222         assert(errno == ENOMEM, "Unexpected mincore errno");
3223         imax = imid;
3224       }
3225     } else {
3226       // Page is mapped go down
3227       // to find first not mapped page
3228       imin = imid + 1;
3229     }
3230   }
3231 
3232   nbot = nbot + page_sz;
3233 
3234   // Adjust stack bottom one page up if last checked page is not mapped
3235   if (mincore_return_value == -1) {
3236     nbot = nbot + page_sz;
3237   }
3238 
3239   return nbot;
3240 }
3241 
3242 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3243   int mincore_return_value;
3244   const size_t stripe = 1024;  // query this many pages each time
3245   unsigned char vec[stripe + 1];
3246   // set a guard
3247   vec[stripe] = 'X';
3248 
3249   const size_t page_sz = os::vm_page_size();
3250   size_t pages = size / page_sz;
3251 
3252   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3253   assert(is_aligned(size, page_sz), "Size must be page aligned");
3254 
3255   committed_start = NULL;
3256 
3257   int loops = (pages + stripe - 1) / stripe;
3258   int committed_pages = 0;
3259   address loop_base = start;
3260   bool found_range = false;
3261 
3262   for (int index = 0; index < loops && !found_range; index ++) {
3263     assert(pages > 0, "Nothing to do");
3264     int pages_to_query = (pages >= stripe) ? stripe : pages;
3265     pages -= pages_to_query;
3266 
3267     // Get stable read
3268     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3269 
3270     // During shutdown, some memory goes away without properly notifying NMT,
3271     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3272     // Bailout and return as not committed for now.
3273     if (mincore_return_value == -1 && errno == ENOMEM) {
3274       return false;
3275     }
3276 
3277     assert(vec[stripe] == 'X', "overflow guard");
3278     assert(mincore_return_value == 0, "Range must be valid");
3279     // Process this stripe
3280     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3281       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3282         // End of current contiguous region
3283         if (committed_start != NULL) {
3284           found_range = true;
3285           break;
3286         }
3287       } else { // committed
3288         // Start of region
3289         if (committed_start == NULL) {
3290           committed_start = loop_base + page_sz * vecIdx;
3291         }
3292         committed_pages ++;
3293       }
3294     }
3295 
3296     loop_base += pages_to_query * page_sz;
3297   }
3298 
3299   if (committed_start != NULL) {
3300     assert(committed_pages > 0, "Must have committed region");
3301     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3302     assert(committed_start >= start && committed_start < start + size, "Out of range");
3303     committed_size = page_sz * committed_pages;
3304     return true;
3305   } else {
3306     assert(committed_pages == 0, "Should not have committed region");
3307     return false;
3308   }
3309 }
3310 
3311 
3312 // Linux uses a growable mapping for the stack, and if the mapping for
3313 // the stack guard pages is not removed when we detach a thread the
3314 // stack cannot grow beyond the pages where the stack guard was
3315 // mapped.  If at some point later in the process the stack expands to
3316 // that point, the Linux kernel cannot expand the stack any further
3317 // because the guard pages are in the way, and a segfault occurs.
3318 //
3319 // However, it's essential not to split the stack region by unmapping
3320 // a region (leaving a hole) that's already part of the stack mapping,
3321 // so if the stack mapping has already grown beyond the guard pages at
3322 // the time we create them, we have to truncate the stack mapping.
3323 // So, we need to know the extent of the stack mapping when
3324 // create_stack_guard_pages() is called.
3325 
3326 // We only need this for stacks that are growable: at the time of
3327 // writing thread stacks don't use growable mappings (i.e. those
3328 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3329 // only applies to the main thread.
3330 
3331 // If the (growable) stack mapping already extends beyond the point
3332 // where we're going to put our guard pages, truncate the mapping at
3333 // that point by munmap()ping it.  This ensures that when we later
3334 // munmap() the guard pages we don't leave a hole in the stack
3335 // mapping. This only affects the main/primordial thread
3336 
3337 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3338   if (os::is_primordial_thread()) {
3339     // As we manually grow stack up to bottom inside create_attached_thread(),
3340     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3341     // we don't need to do anything special.
3342     // Check it first, before calling heavy function.
3343     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3344     unsigned char vec[1];
3345 
3346     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3347       // Fallback to slow path on all errors, including EAGAIN
3348       stack_extent = (uintptr_t) get_stack_commited_bottom(
3349                                                            os::Linux::initial_thread_stack_bottom(),
3350                                                            (size_t)addr - stack_extent);
3351     }
3352 
3353     if (stack_extent < (uintptr_t)addr) {
3354       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3355     }
3356   }
3357 
3358   return os::commit_memory(addr, size, !ExecMem);
3359 }
3360 
3361 // If this is a growable mapping, remove the guard pages entirely by
3362 // munmap()ping them.  If not, just call uncommit_memory(). This only
3363 // affects the main/primordial thread, but guard against future OS changes.
3364 // It's safe to always unmap guard pages for primordial thread because we
3365 // always place it right after end of the mapped region.
3366 
3367 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3368   uintptr_t stack_extent, stack_base;
3369 
3370   if (os::is_primordial_thread()) {
3371     return ::munmap(addr, size) == 0;
3372   }
3373 
3374   return os::uncommit_memory(addr, size);
3375 }
3376 
3377 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3378 // at 'requested_addr'. If there are existing memory mappings at the same
3379 // location, however, they will be overwritten. If 'fixed' is false,
3380 // 'requested_addr' is only treated as a hint, the return value may or
3381 // may not start from the requested address. Unlike Linux mmap(), this
3382 // function returns NULL to indicate failure.
3383 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3384   char * addr;
3385   int flags;
3386 
3387   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3388   if (fixed) {
3389     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3390     flags |= MAP_FIXED;
3391   }
3392 
3393   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3394   // touch an uncommitted page. Otherwise, the read/write might
3395   // succeed if we have enough swap space to back the physical page.
3396   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3397                        flags, -1, 0);
3398 
3399   return addr == MAP_FAILED ? NULL : addr;
3400 }
3401 
3402 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3403 //   (req_addr != NULL) or with a given alignment.
3404 //  - bytes shall be a multiple of alignment.
3405 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3406 //  - alignment sets the alignment at which memory shall be allocated.
3407 //     It must be a multiple of allocation granularity.
3408 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3409 //  req_addr or NULL.
3410 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3411 
3412   size_t extra_size = bytes;
3413   if (req_addr == NULL && alignment > 0) {
3414     extra_size += alignment;
3415   }
3416 
3417   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3418     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3419     -1, 0);
3420   if (start == MAP_FAILED) {
3421     start = NULL;
3422   } else {
3423     if (req_addr != NULL) {
3424       if (start != req_addr) {
3425         ::munmap(start, extra_size);
3426         start = NULL;
3427       }
3428     } else {
3429       char* const start_aligned = align_up(start, alignment);
3430       char* const end_aligned = start_aligned + bytes;
3431       char* const end = start + extra_size;
3432       if (start_aligned > start) {
3433         ::munmap(start, start_aligned - start);
3434       }
3435       if (end_aligned < end) {
3436         ::munmap(end_aligned, end - end_aligned);
3437       }
3438       start = start_aligned;
3439     }
3440   }
3441   return start;
3442 }
3443 
3444 static int anon_munmap(char * addr, size_t size) {
3445   return ::munmap(addr, size) == 0;
3446 }
3447 
3448 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3449                             size_t alignment_hint) {
3450   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3451 }
3452 
3453 bool os::pd_release_memory(char* addr, size_t size) {
3454   return anon_munmap(addr, size);
3455 }
3456 
3457 static bool linux_mprotect(char* addr, size_t size, int prot) {
3458   // Linux wants the mprotect address argument to be page aligned.
3459   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3460 
3461   // According to SUSv3, mprotect() should only be used with mappings
3462   // established by mmap(), and mmap() always maps whole pages. Unaligned
3463   // 'addr' likely indicates problem in the VM (e.g. trying to change
3464   // protection of malloc'ed or statically allocated memory). Check the
3465   // caller if you hit this assert.
3466   assert(addr == bottom, "sanity check");
3467 
3468   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3469   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3470   return ::mprotect(bottom, size, prot) == 0;
3471 }
3472 
3473 // Set protections specified
3474 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3475                         bool is_committed) {
3476   unsigned int p = 0;
3477   switch (prot) {
3478   case MEM_PROT_NONE: p = PROT_NONE; break;
3479   case MEM_PROT_READ: p = PROT_READ; break;
3480   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3481   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3482   default:
3483     ShouldNotReachHere();
3484   }
3485   // is_committed is unused.
3486   return linux_mprotect(addr, bytes, p);
3487 }
3488 
3489 bool os::guard_memory(char* addr, size_t size) {
3490   return linux_mprotect(addr, size, PROT_NONE);
3491 }
3492 
3493 bool os::unguard_memory(char* addr, size_t size) {
3494   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3495 }
3496 
3497 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3498                                                     size_t page_size) {
3499   bool result = false;
3500   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3501                  MAP_ANONYMOUS|MAP_PRIVATE,
3502                  -1, 0);
3503   if (p != MAP_FAILED) {
3504     void *aligned_p = align_up(p, page_size);
3505 
3506     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3507 
3508     munmap(p, page_size * 2);
3509   }
3510 
3511   if (warn && !result) {
3512     warning("TransparentHugePages is not supported by the operating system.");
3513   }
3514 
3515   return result;
3516 }
3517 
3518 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3519   bool result = false;
3520   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3521                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3522                  -1, 0);
3523 
3524   if (p != MAP_FAILED) {
3525     // We don't know if this really is a huge page or not.
3526     FILE *fp = fopen("/proc/self/maps", "r");
3527     if (fp) {
3528       while (!feof(fp)) {
3529         char chars[257];
3530         long x = 0;
3531         if (fgets(chars, sizeof(chars), fp)) {
3532           if (sscanf(chars, "%lx-%*x", &x) == 1
3533               && x == (long)p) {
3534             if (strstr (chars, "hugepage")) {
3535               result = true;
3536               break;
3537             }
3538           }
3539         }
3540       }
3541       fclose(fp);
3542     }
3543     munmap(p, page_size);
3544   }
3545 
3546   if (warn && !result) {
3547     warning("HugeTLBFS is not supported by the operating system.");
3548   }
3549 
3550   return result;
3551 }
3552 
3553 // From the coredump_filter documentation:
3554 //
3555 // - (bit 0) anonymous private memory
3556 // - (bit 1) anonymous shared memory
3557 // - (bit 2) file-backed private memory
3558 // - (bit 3) file-backed shared memory
3559 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3560 //           effective only if the bit 2 is cleared)
3561 // - (bit 5) hugetlb private memory
3562 // - (bit 6) hugetlb shared memory
3563 // - (bit 7) dax private memory
3564 // - (bit 8) dax shared memory
3565 //
3566 static void set_coredump_filter(CoredumpFilterBit bit) {
3567   FILE *f;
3568   long cdm;
3569 
3570   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3571     return;
3572   }
3573 
3574   if (fscanf(f, "%lx", &cdm) != 1) {
3575     fclose(f);
3576     return;
3577   }
3578 
3579   long saved_cdm = cdm;
3580   rewind(f);
3581   cdm |= bit;
3582 
3583   if (cdm != saved_cdm) {
3584     fprintf(f, "%#lx", cdm);
3585   }
3586 
3587   fclose(f);
3588 }
3589 
3590 // Large page support
3591 
3592 static size_t _large_page_size = 0;
3593 
3594 size_t os::Linux::find_large_page_size() {
3595   size_t large_page_size = 0;
3596 
3597   // large_page_size on Linux is used to round up heap size. x86 uses either
3598   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3599   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3600   // page as large as 256M.
3601   //
3602   // Here we try to figure out page size by parsing /proc/meminfo and looking
3603   // for a line with the following format:
3604   //    Hugepagesize:     2048 kB
3605   //
3606   // If we can't determine the value (e.g. /proc is not mounted, or the text
3607   // format has been changed), we'll use the largest page size supported by
3608   // the processor.
3609 
3610 #ifndef ZERO
3611   large_page_size =
3612     AARCH64_ONLY(2 * M)
3613     AMD64_ONLY(2 * M)
3614     ARM32_ONLY(2 * M)
3615     IA32_ONLY(4 * M)
3616     IA64_ONLY(256 * M)
3617     PPC_ONLY(4 * M)
3618     S390_ONLY(1 * M)
3619     SPARC_ONLY(4 * M);
3620 #endif // ZERO
3621 
3622   FILE *fp = fopen("/proc/meminfo", "r");
3623   if (fp) {
3624     while (!feof(fp)) {
3625       int x = 0;
3626       char buf[16];
3627       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3628         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3629           large_page_size = x * K;
3630           break;
3631         }
3632       } else {
3633         // skip to next line
3634         for (;;) {
3635           int ch = fgetc(fp);
3636           if (ch == EOF || ch == (int)'\n') break;
3637         }
3638       }
3639     }
3640     fclose(fp);
3641   }
3642 
3643   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3644     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3645             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3646             proper_unit_for_byte_size(large_page_size));
3647   }
3648 
3649   return large_page_size;
3650 }
3651 
3652 size_t os::Linux::setup_large_page_size() {
3653   _large_page_size = Linux::find_large_page_size();
3654   const size_t default_page_size = (size_t)Linux::page_size();
3655   if (_large_page_size > default_page_size) {
3656     _page_sizes[0] = _large_page_size;
3657     _page_sizes[1] = default_page_size;
3658     _page_sizes[2] = 0;
3659   }
3660 
3661   return _large_page_size;
3662 }
3663 
3664 bool os::Linux::setup_large_page_type(size_t page_size) {
3665   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3666       FLAG_IS_DEFAULT(UseSHM) &&
3667       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3668 
3669     // The type of large pages has not been specified by the user.
3670 
3671     // Try UseHugeTLBFS and then UseSHM.
3672     UseHugeTLBFS = UseSHM = true;
3673 
3674     // Don't try UseTransparentHugePages since there are known
3675     // performance issues with it turned on. This might change in the future.
3676     UseTransparentHugePages = false;
3677   }
3678 
3679   if (UseTransparentHugePages) {
3680     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3681     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3682       UseHugeTLBFS = false;
3683       UseSHM = false;
3684       return true;
3685     }
3686     UseTransparentHugePages = false;
3687   }
3688 
3689   if (UseHugeTLBFS) {
3690     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3691     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3692       UseSHM = false;
3693       return true;
3694     }
3695     UseHugeTLBFS = false;
3696   }
3697 
3698   return UseSHM;
3699 }
3700 
3701 void os::large_page_init() {
3702   if (!UseLargePages &&
3703       !UseTransparentHugePages &&
3704       !UseHugeTLBFS &&
3705       !UseSHM) {
3706     // Not using large pages.
3707     return;
3708   }
3709 
3710   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3711     // The user explicitly turned off large pages.
3712     // Ignore the rest of the large pages flags.
3713     UseTransparentHugePages = false;
3714     UseHugeTLBFS = false;
3715     UseSHM = false;
3716     return;
3717   }
3718 
3719   size_t large_page_size = Linux::setup_large_page_size();
3720   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3721 
3722   set_coredump_filter(LARGEPAGES_BIT);
3723 }
3724 
3725 #ifndef SHM_HUGETLB
3726   #define SHM_HUGETLB 04000
3727 #endif
3728 
3729 #define shm_warning_format(format, ...)              \
3730   do {                                               \
3731     if (UseLargePages &&                             \
3732         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3733          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3734          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3735       warning(format, __VA_ARGS__);                  \
3736     }                                                \
3737   } while (0)
3738 
3739 #define shm_warning(str) shm_warning_format("%s", str)
3740 
3741 #define shm_warning_with_errno(str)                \
3742   do {                                             \
3743     int err = errno;                               \
3744     shm_warning_format(str " (error = %d)", err);  \
3745   } while (0)
3746 
3747 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3748   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3749 
3750   if (!is_aligned(alignment, SHMLBA)) {
3751     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3752     return NULL;
3753   }
3754 
3755   // To ensure that we get 'alignment' aligned memory from shmat,
3756   // we pre-reserve aligned virtual memory and then attach to that.
3757 
3758   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3759   if (pre_reserved_addr == NULL) {
3760     // Couldn't pre-reserve aligned memory.
3761     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3762     return NULL;
3763   }
3764 
3765   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3766   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3767 
3768   if ((intptr_t)addr == -1) {
3769     int err = errno;
3770     shm_warning_with_errno("Failed to attach shared memory.");
3771 
3772     assert(err != EACCES, "Unexpected error");
3773     assert(err != EIDRM,  "Unexpected error");
3774     assert(err != EINVAL, "Unexpected error");
3775 
3776     // Since we don't know if the kernel unmapped the pre-reserved memory area
3777     // we can't unmap it, since that would potentially unmap memory that was
3778     // mapped from other threads.
3779     return NULL;
3780   }
3781 
3782   return addr;
3783 }
3784 
3785 static char* shmat_at_address(int shmid, char* req_addr) {
3786   if (!is_aligned(req_addr, SHMLBA)) {
3787     assert(false, "Requested address needs to be SHMLBA aligned");
3788     return NULL;
3789   }
3790 
3791   char* addr = (char*)shmat(shmid, req_addr, 0);
3792 
3793   if ((intptr_t)addr == -1) {
3794     shm_warning_with_errno("Failed to attach shared memory.");
3795     return NULL;
3796   }
3797 
3798   return addr;
3799 }
3800 
3801 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3802   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3803   if (req_addr != NULL) {
3804     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3805     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3806     return shmat_at_address(shmid, req_addr);
3807   }
3808 
3809   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3810   // return large page size aligned memory addresses when req_addr == NULL.
3811   // However, if the alignment is larger than the large page size, we have
3812   // to manually ensure that the memory returned is 'alignment' aligned.
3813   if (alignment > os::large_page_size()) {
3814     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3815     return shmat_with_alignment(shmid, bytes, alignment);
3816   } else {
3817     return shmat_at_address(shmid, NULL);
3818   }
3819 }
3820 
3821 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3822                                             char* req_addr, bool exec) {
3823   // "exec" is passed in but not used.  Creating the shared image for
3824   // the code cache doesn't have an SHM_X executable permission to check.
3825   assert(UseLargePages && UseSHM, "only for SHM large pages");
3826   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3827   assert(is_aligned(req_addr, alignment), "Unaligned address");
3828 
3829   if (!is_aligned(bytes, os::large_page_size())) {
3830     return NULL; // Fallback to small pages.
3831   }
3832 
3833   // Create a large shared memory region to attach to based on size.
3834   // Currently, size is the total size of the heap.
3835   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3836   if (shmid == -1) {
3837     // Possible reasons for shmget failure:
3838     // 1. shmmax is too small for Java heap.
3839     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3840     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3841     // 2. not enough large page memory.
3842     //    > check available large pages: cat /proc/meminfo
3843     //    > increase amount of large pages:
3844     //          echo new_value > /proc/sys/vm/nr_hugepages
3845     //      Note 1: different Linux may use different name for this property,
3846     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3847     //      Note 2: it's possible there's enough physical memory available but
3848     //            they are so fragmented after a long run that they can't
3849     //            coalesce into large pages. Try to reserve large pages when
3850     //            the system is still "fresh".
3851     shm_warning_with_errno("Failed to reserve shared memory.");
3852     return NULL;
3853   }
3854 
3855   // Attach to the region.
3856   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3857 
3858   // Remove shmid. If shmat() is successful, the actual shared memory segment
3859   // will be deleted when it's detached by shmdt() or when the process
3860   // terminates. If shmat() is not successful this will remove the shared
3861   // segment immediately.
3862   shmctl(shmid, IPC_RMID, NULL);
3863 
3864   return addr;
3865 }
3866 
3867 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3868                                         int error) {
3869   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3870 
3871   bool warn_on_failure = UseLargePages &&
3872       (!FLAG_IS_DEFAULT(UseLargePages) ||
3873        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3874        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3875 
3876   if (warn_on_failure) {
3877     char msg[128];
3878     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3879                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3880     warning("%s", msg);
3881   }
3882 }
3883 
3884 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3885                                                         char* req_addr,
3886                                                         bool exec) {
3887   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3888   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3889   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3890 
3891   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3892   char* addr = (char*)::mmap(req_addr, bytes, prot,
3893                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3894                              -1, 0);
3895 
3896   if (addr == MAP_FAILED) {
3897     warn_on_large_pages_failure(req_addr, bytes, errno);
3898     return NULL;
3899   }
3900 
3901   assert(is_aligned(addr, os::large_page_size()), "Must be");
3902 
3903   return addr;
3904 }
3905 
3906 // Reserve memory using mmap(MAP_HUGETLB).
3907 //  - bytes shall be a multiple of alignment.
3908 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3909 //  - alignment sets the alignment at which memory shall be allocated.
3910 //     It must be a multiple of allocation granularity.
3911 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3912 //  req_addr or NULL.
3913 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3914                                                          size_t alignment,
3915                                                          char* req_addr,
3916                                                          bool exec) {
3917   size_t large_page_size = os::large_page_size();
3918   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3919 
3920   assert(is_aligned(req_addr, alignment), "Must be");
3921   assert(is_aligned(bytes, alignment), "Must be");
3922 
3923   // First reserve - but not commit - the address range in small pages.
3924   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3925 
3926   if (start == NULL) {
3927     return NULL;
3928   }
3929 
3930   assert(is_aligned(start, alignment), "Must be");
3931 
3932   char* end = start + bytes;
3933 
3934   // Find the regions of the allocated chunk that can be promoted to large pages.
3935   char* lp_start = align_up(start, large_page_size);
3936   char* lp_end   = align_down(end, large_page_size);
3937 
3938   size_t lp_bytes = lp_end - lp_start;
3939 
3940   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3941 
3942   if (lp_bytes == 0) {
3943     // The mapped region doesn't even span the start and the end of a large page.
3944     // Fall back to allocate a non-special area.
3945     ::munmap(start, end - start);
3946     return NULL;
3947   }
3948 
3949   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3950 
3951   void* result;
3952 
3953   // Commit small-paged leading area.
3954   if (start != lp_start) {
3955     result = ::mmap(start, lp_start - start, prot,
3956                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3957                     -1, 0);
3958     if (result == MAP_FAILED) {
3959       ::munmap(lp_start, end - lp_start);
3960       return NULL;
3961     }
3962   }
3963 
3964   // Commit large-paged area.
3965   result = ::mmap(lp_start, lp_bytes, prot,
3966                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3967                   -1, 0);
3968   if (result == MAP_FAILED) {
3969     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3970     // If the mmap above fails, the large pages region will be unmapped and we
3971     // have regions before and after with small pages. Release these regions.
3972     //
3973     // |  mapped  |  unmapped  |  mapped  |
3974     // ^          ^            ^          ^
3975     // start      lp_start     lp_end     end
3976     //
3977     ::munmap(start, lp_start - start);
3978     ::munmap(lp_end, end - lp_end);
3979     return NULL;
3980   }
3981 
3982   // Commit small-paged trailing area.
3983   if (lp_end != end) {
3984     result = ::mmap(lp_end, end - lp_end, prot,
3985                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3986                     -1, 0);
3987     if (result == MAP_FAILED) {
3988       ::munmap(start, lp_end - start);
3989       return NULL;
3990     }
3991   }
3992 
3993   return start;
3994 }
3995 
3996 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3997                                                    size_t alignment,
3998                                                    char* req_addr,
3999                                                    bool exec) {
4000   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4001   assert(is_aligned(req_addr, alignment), "Must be");
4002   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4003   assert(is_power_of_2(os::large_page_size()), "Must be");
4004   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4005 
4006   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4007     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4008   } else {
4009     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4010   }
4011 }
4012 
4013 char* os::reserve_memory_special(size_t bytes, size_t alignment,
4014                                  char* req_addr, bool exec) {
4015   assert(UseLargePages, "only for large pages");
4016 
4017   char* addr;
4018   if (UseSHM) {
4019     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4020   } else {
4021     assert(UseHugeTLBFS, "must be");
4022     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4023   }
4024 
4025   if (addr != NULL) {
4026     if (UseNUMAInterleaving) {
4027       numa_make_global(addr, bytes);
4028     }
4029 
4030     // The memory is committed
4031     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
4032   }
4033 
4034   return addr;
4035 }
4036 
4037 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4038   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4039   return shmdt(base) == 0;
4040 }
4041 
4042 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4043   return pd_release_memory(base, bytes);
4044 }
4045 
4046 bool os::release_memory_special(char* base, size_t bytes) {
4047   bool res;
4048   if (MemTracker::tracking_level() > NMT_minimal) {
4049     Tracker tkr(Tracker::release);
4050     res = os::Linux::release_memory_special_impl(base, bytes);
4051     if (res) {
4052       tkr.record((address)base, bytes);
4053     }
4054 
4055   } else {
4056     res = os::Linux::release_memory_special_impl(base, bytes);
4057   }
4058   return res;
4059 }
4060 
4061 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
4062   assert(UseLargePages, "only for large pages");
4063   bool res;
4064 
4065   if (UseSHM) {
4066     res = os::Linux::release_memory_special_shm(base, bytes);
4067   } else {
4068     assert(UseHugeTLBFS, "must be");
4069     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4070   }
4071   return res;
4072 }
4073 
4074 size_t os::large_page_size() {
4075   return _large_page_size;
4076 }
4077 
4078 // With SysV SHM the entire memory region must be allocated as shared
4079 // memory.
4080 // HugeTLBFS allows application to commit large page memory on demand.
4081 // However, when committing memory with HugeTLBFS fails, the region
4082 // that was supposed to be committed will lose the old reservation
4083 // and allow other threads to steal that memory region. Because of this
4084 // behavior we can't commit HugeTLBFS memory.
4085 bool os::can_commit_large_page_memory() {
4086   return UseTransparentHugePages;
4087 }
4088 
4089 bool os::can_execute_large_page_memory() {
4090   return UseTransparentHugePages || UseHugeTLBFS;
4091 }
4092 
4093 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4094   assert(file_desc >= 0, "file_desc is not valid");
4095   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4096   if (result != NULL) {
4097     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4098       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4099     }
4100   }
4101   return result;
4102 }
4103 
4104 // Reserve memory at an arbitrary address, only if that area is
4105 // available (and not reserved for something else).
4106 
4107 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4108   // Assert only that the size is a multiple of the page size, since
4109   // that's all that mmap requires, and since that's all we really know
4110   // about at this low abstraction level.  If we need higher alignment,
4111   // we can either pass an alignment to this method or verify alignment
4112   // in one of the methods further up the call chain.  See bug 5044738.
4113   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4114 
4115   // Repeatedly allocate blocks until the block is allocated at the
4116   // right spot.
4117 
4118   // Linux mmap allows caller to pass an address as hint; give it a try first,
4119   // if kernel honors the hint then we can return immediately.
4120   char * addr = anon_mmap(requested_addr, bytes, false);
4121   if (addr == requested_addr) {
4122     return requested_addr;
4123   }
4124 
4125   if (addr != NULL) {
4126     // mmap() is successful but it fails to reserve at the requested address
4127     anon_munmap(addr, bytes);
4128   }
4129 
4130   return NULL;
4131 }
4132 
4133 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4134 void os::infinite_sleep() {
4135   while (true) {    // sleep forever ...
4136     ::sleep(100);   // ... 100 seconds at a time
4137   }
4138 }
4139 
4140 // Used to convert frequent JVM_Yield() to nops
4141 bool os::dont_yield() {
4142   return DontYieldALot;
4143 }
4144 
4145 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4146 // actually give up the CPU. Since skip buddy (v2.6.28):
4147 //
4148 // * Sets the yielding task as skip buddy for current CPU's run queue.
4149 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4150 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4151 //
4152 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4153 // getting re-scheduled immediately.
4154 //
4155 void os::naked_yield() {
4156   sched_yield();
4157 }
4158 
4159 ////////////////////////////////////////////////////////////////////////////////
4160 // thread priority support
4161 
4162 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4163 // only supports dynamic priority, static priority must be zero. For real-time
4164 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4165 // However, for large multi-threaded applications, SCHED_RR is not only slower
4166 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4167 // of 5 runs - Sep 2005).
4168 //
4169 // The following code actually changes the niceness of kernel-thread/LWP. It
4170 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4171 // not the entire user process, and user level threads are 1:1 mapped to kernel
4172 // threads. It has always been the case, but could change in the future. For
4173 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4174 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4175 // (e.g., root privilege or CAP_SYS_NICE capability).
4176 
4177 int os::java_to_os_priority[CriticalPriority + 1] = {
4178   19,              // 0 Entry should never be used
4179 
4180    4,              // 1 MinPriority
4181    3,              // 2
4182    2,              // 3
4183 
4184    1,              // 4
4185    0,              // 5 NormPriority
4186   -1,              // 6
4187 
4188   -2,              // 7
4189   -3,              // 8
4190   -4,              // 9 NearMaxPriority
4191 
4192   -5,              // 10 MaxPriority
4193 
4194   -5               // 11 CriticalPriority
4195 };
4196 
4197 static int prio_init() {
4198   if (ThreadPriorityPolicy == 1) {
4199     if (geteuid() != 0) {
4200       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4201         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4202                 "e.g., being the root user. If the necessary permission is not " \
4203                 "possessed, changes to priority will be silently ignored.");
4204       }
4205     }
4206   }
4207   if (UseCriticalJavaThreadPriority) {
4208     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4209   }
4210   return 0;
4211 }
4212 
4213 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4214   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4215 
4216   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4217   return (ret == 0) ? OS_OK : OS_ERR;
4218 }
4219 
4220 OSReturn os::get_native_priority(const Thread* const thread,
4221                                  int *priority_ptr) {
4222   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4223     *priority_ptr = java_to_os_priority[NormPriority];
4224     return OS_OK;
4225   }
4226 
4227   errno = 0;
4228   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4229   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4230 }
4231 
4232 ////////////////////////////////////////////////////////////////////////////////
4233 // suspend/resume support
4234 
4235 //  The low-level signal-based suspend/resume support is a remnant from the
4236 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4237 //  within hotspot. Currently used by JFR's OSThreadSampler
4238 //
4239 //  The remaining code is greatly simplified from the more general suspension
4240 //  code that used to be used.
4241 //
4242 //  The protocol is quite simple:
4243 //  - suspend:
4244 //      - sends a signal to the target thread
4245 //      - polls the suspend state of the osthread using a yield loop
4246 //      - target thread signal handler (SR_handler) sets suspend state
4247 //        and blocks in sigsuspend until continued
4248 //  - resume:
4249 //      - sets target osthread state to continue
4250 //      - sends signal to end the sigsuspend loop in the SR_handler
4251 //
4252 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4253 //  but is checked for NULL in SR_handler as a thread termination indicator.
4254 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4255 //
4256 //  Note that resume_clear_context() and suspend_save_context() are needed
4257 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4258 //  which in part is used by:
4259 //    - Forte Analyzer: AsyncGetCallTrace()
4260 //    - StackBanging: get_frame_at_stack_banging_point()
4261 
4262 static void resume_clear_context(OSThread *osthread) {
4263   osthread->set_ucontext(NULL);
4264   osthread->set_siginfo(NULL);
4265 }
4266 
4267 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4268                                  ucontext_t* context) {
4269   osthread->set_ucontext(context);
4270   osthread->set_siginfo(siginfo);
4271 }
4272 
4273 // Handler function invoked when a thread's execution is suspended or
4274 // resumed. We have to be careful that only async-safe functions are
4275 // called here (Note: most pthread functions are not async safe and
4276 // should be avoided.)
4277 //
4278 // Note: sigwait() is a more natural fit than sigsuspend() from an
4279 // interface point of view, but sigwait() prevents the signal hander
4280 // from being run. libpthread would get very confused by not having
4281 // its signal handlers run and prevents sigwait()'s use with the
4282 // mutex granting granting signal.
4283 //
4284 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4285 //
4286 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4287   // Save and restore errno to avoid confusing native code with EINTR
4288   // after sigsuspend.
4289   int old_errno = errno;
4290 
4291   Thread* thread = Thread::current_or_null_safe();
4292   assert(thread != NULL, "Missing current thread in SR_handler");
4293 
4294   // On some systems we have seen signal delivery get "stuck" until the signal
4295   // mask is changed as part of thread termination. Check that the current thread
4296   // has not already terminated (via SR_lock()) - else the following assertion
4297   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4298   // destructor has completed.
4299 
4300   if (thread->SR_lock() == NULL) {
4301     return;
4302   }
4303 
4304   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4305 
4306   OSThread* osthread = thread->osthread();
4307 
4308   os::SuspendResume::State current = osthread->sr.state();
4309   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4310     suspend_save_context(osthread, siginfo, context);
4311 
4312     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4313     os::SuspendResume::State state = osthread->sr.suspended();
4314     if (state == os::SuspendResume::SR_SUSPENDED) {
4315       sigset_t suspend_set;  // signals for sigsuspend()
4316       sigemptyset(&suspend_set);
4317       // get current set of blocked signals and unblock resume signal
4318       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4319       sigdelset(&suspend_set, SR_signum);
4320 
4321       sr_semaphore.signal();
4322       // wait here until we are resumed
4323       while (1) {
4324         sigsuspend(&suspend_set);
4325 
4326         os::SuspendResume::State result = osthread->sr.running();
4327         if (result == os::SuspendResume::SR_RUNNING) {
4328           sr_semaphore.signal();
4329           break;
4330         }
4331       }
4332 
4333     } else if (state == os::SuspendResume::SR_RUNNING) {
4334       // request was cancelled, continue
4335     } else {
4336       ShouldNotReachHere();
4337     }
4338 
4339     resume_clear_context(osthread);
4340   } else if (current == os::SuspendResume::SR_RUNNING) {
4341     // request was cancelled, continue
4342   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4343     // ignore
4344   } else {
4345     // ignore
4346   }
4347 
4348   errno = old_errno;
4349 }
4350 
4351 static int SR_initialize() {
4352   struct sigaction act;
4353   char *s;
4354 
4355   // Get signal number to use for suspend/resume
4356   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4357     int sig = ::strtol(s, 0, 10);
4358     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4359         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4360       SR_signum = sig;
4361     } else {
4362       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4363               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4364     }
4365   }
4366 
4367   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4368          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4369 
4370   sigemptyset(&SR_sigset);
4371   sigaddset(&SR_sigset, SR_signum);
4372 
4373   // Set up signal handler for suspend/resume
4374   act.sa_flags = SA_RESTART|SA_SIGINFO;
4375   act.sa_handler = (void (*)(int)) SR_handler;
4376 
4377   // SR_signum is blocked by default.
4378   // 4528190 - We also need to block pthread restart signal (32 on all
4379   // supported Linux platforms). Note that LinuxThreads need to block
4380   // this signal for all threads to work properly. So we don't have
4381   // to use hard-coded signal number when setting up the mask.
4382   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4383 
4384   if (sigaction(SR_signum, &act, 0) == -1) {
4385     return -1;
4386   }
4387 
4388   // Save signal flag
4389   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4390   return 0;
4391 }
4392 
4393 static int sr_notify(OSThread* osthread) {
4394   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4395   assert_status(status == 0, status, "pthread_kill");
4396   return status;
4397 }
4398 
4399 // "Randomly" selected value for how long we want to spin
4400 // before bailing out on suspending a thread, also how often
4401 // we send a signal to a thread we want to resume
4402 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4403 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4404 
4405 // returns true on success and false on error - really an error is fatal
4406 // but this seems the normal response to library errors
4407 static bool do_suspend(OSThread* osthread) {
4408   assert(osthread->sr.is_running(), "thread should be running");
4409   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4410 
4411   // mark as suspended and send signal
4412   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4413     // failed to switch, state wasn't running?
4414     ShouldNotReachHere();
4415     return false;
4416   }
4417 
4418   if (sr_notify(osthread) != 0) {
4419     ShouldNotReachHere();
4420   }
4421 
4422   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4423   while (true) {
4424     if (sr_semaphore.timedwait(2)) {
4425       break;
4426     } else {
4427       // timeout
4428       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4429       if (cancelled == os::SuspendResume::SR_RUNNING) {
4430         return false;
4431       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4432         // make sure that we consume the signal on the semaphore as well
4433         sr_semaphore.wait();
4434         break;
4435       } else {
4436         ShouldNotReachHere();
4437         return false;
4438       }
4439     }
4440   }
4441 
4442   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4443   return true;
4444 }
4445 
4446 static void do_resume(OSThread* osthread) {
4447   assert(osthread->sr.is_suspended(), "thread should be suspended");
4448   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4449 
4450   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4451     // failed to switch to WAKEUP_REQUEST
4452     ShouldNotReachHere();
4453     return;
4454   }
4455 
4456   while (true) {
4457     if (sr_notify(osthread) == 0) {
4458       if (sr_semaphore.timedwait(2)) {
4459         if (osthread->sr.is_running()) {
4460           return;
4461         }
4462       }
4463     } else {
4464       ShouldNotReachHere();
4465     }
4466   }
4467 
4468   guarantee(osthread->sr.is_running(), "Must be running!");
4469 }
4470 
4471 ///////////////////////////////////////////////////////////////////////////////////
4472 // signal handling (except suspend/resume)
4473 
4474 // This routine may be used by user applications as a "hook" to catch signals.
4475 // The user-defined signal handler must pass unrecognized signals to this
4476 // routine, and if it returns true (non-zero), then the signal handler must
4477 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4478 // routine will never retun false (zero), but instead will execute a VM panic
4479 // routine kill the process.
4480 //
4481 // If this routine returns false, it is OK to call it again.  This allows
4482 // the user-defined signal handler to perform checks either before or after
4483 // the VM performs its own checks.  Naturally, the user code would be making
4484 // a serious error if it tried to handle an exception (such as a null check
4485 // or breakpoint) that the VM was generating for its own correct operation.
4486 //
4487 // This routine may recognize any of the following kinds of signals:
4488 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4489 // It should be consulted by handlers for any of those signals.
4490 //
4491 // The caller of this routine must pass in the three arguments supplied
4492 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4493 // field of the structure passed to sigaction().  This routine assumes that
4494 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4495 //
4496 // Note that the VM will print warnings if it detects conflicting signal
4497 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4498 //
4499 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4500                                                  siginfo_t* siginfo,
4501                                                  void* ucontext,
4502                                                  int abort_if_unrecognized);
4503 
4504 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4505   assert(info != NULL && uc != NULL, "it must be old kernel");
4506   int orig_errno = errno;  // Preserve errno value over signal handler.
4507   JVM_handle_linux_signal(sig, info, uc, true);
4508   errno = orig_errno;
4509 }
4510 
4511 
4512 // This boolean allows users to forward their own non-matching signals
4513 // to JVM_handle_linux_signal, harmlessly.
4514 bool os::Linux::signal_handlers_are_installed = false;
4515 
4516 // For signal-chaining
4517 bool os::Linux::libjsig_is_loaded = false;
4518 typedef struct sigaction *(*get_signal_t)(int);
4519 get_signal_t os::Linux::get_signal_action = NULL;
4520 
4521 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4522   struct sigaction *actp = NULL;
4523 
4524   if (libjsig_is_loaded) {
4525     // Retrieve the old signal handler from libjsig
4526     actp = (*get_signal_action)(sig);
4527   }
4528   if (actp == NULL) {
4529     // Retrieve the preinstalled signal handler from jvm
4530     actp = os::Posix::get_preinstalled_handler(sig);
4531   }
4532 
4533   return actp;
4534 }
4535 
4536 static bool call_chained_handler(struct sigaction *actp, int sig,
4537                                  siginfo_t *siginfo, void *context) {
4538   // Call the old signal handler
4539   if (actp->sa_handler == SIG_DFL) {
4540     // It's more reasonable to let jvm treat it as an unexpected exception
4541     // instead of taking the default action.
4542     return false;
4543   } else if (actp->sa_handler != SIG_IGN) {
4544     if ((actp->sa_flags & SA_NODEFER) == 0) {
4545       // automaticlly block the signal
4546       sigaddset(&(actp->sa_mask), sig);
4547     }
4548 
4549     sa_handler_t hand = NULL;
4550     sa_sigaction_t sa = NULL;
4551     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4552     // retrieve the chained handler
4553     if (siginfo_flag_set) {
4554       sa = actp->sa_sigaction;
4555     } else {
4556       hand = actp->sa_handler;
4557     }
4558 
4559     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4560       actp->sa_handler = SIG_DFL;
4561     }
4562 
4563     // try to honor the signal mask
4564     sigset_t oset;
4565     sigemptyset(&oset);
4566     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4567 
4568     // call into the chained handler
4569     if (siginfo_flag_set) {
4570       (*sa)(sig, siginfo, context);
4571     } else {
4572       (*hand)(sig);
4573     }
4574 
4575     // restore the signal mask
4576     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4577   }
4578   // Tell jvm's signal handler the signal is taken care of.
4579   return true;
4580 }
4581 
4582 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4583   bool chained = false;
4584   // signal-chaining
4585   if (UseSignalChaining) {
4586     struct sigaction *actp = get_chained_signal_action(sig);
4587     if (actp != NULL) {
4588       chained = call_chained_handler(actp, sig, siginfo, context);
4589     }
4590   }
4591   return chained;
4592 }
4593 
4594 // for diagnostic
4595 int sigflags[NSIG];
4596 
4597 int os::Linux::get_our_sigflags(int sig) {
4598   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4599   return sigflags[sig];
4600 }
4601 
4602 void os::Linux::set_our_sigflags(int sig, int flags) {
4603   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4604   if (sig > 0 && sig < NSIG) {
4605     sigflags[sig] = flags;
4606   }
4607 }
4608 
4609 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4610   // Check for overwrite.
4611   struct sigaction oldAct;
4612   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4613 
4614   void* oldhand = oldAct.sa_sigaction
4615                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4616                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4617   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4618       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4619       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4620     if (AllowUserSignalHandlers || !set_installed) {
4621       // Do not overwrite; user takes responsibility to forward to us.
4622       return;
4623     } else if (UseSignalChaining) {
4624       // save the old handler in jvm
4625       os::Posix::save_preinstalled_handler(sig, oldAct);
4626       // libjsig also interposes the sigaction() call below and saves the
4627       // old sigaction on it own.
4628     } else {
4629       fatal("Encountered unexpected pre-existing sigaction handler "
4630             "%#lx for signal %d.", (long)oldhand, sig);
4631     }
4632   }
4633 
4634   struct sigaction sigAct;
4635   sigfillset(&(sigAct.sa_mask));
4636   sigAct.sa_handler = SIG_DFL;
4637   if (!set_installed) {
4638     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4639   } else {
4640     sigAct.sa_sigaction = signalHandler;
4641     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4642   }
4643   // Save flags, which are set by ours
4644   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4645   sigflags[sig] = sigAct.sa_flags;
4646 
4647   int ret = sigaction(sig, &sigAct, &oldAct);
4648   assert(ret == 0, "check");
4649 
4650   void* oldhand2  = oldAct.sa_sigaction
4651                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4652                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4653   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4654 }
4655 
4656 // install signal handlers for signals that HotSpot needs to
4657 // handle in order to support Java-level exception handling.
4658 
4659 void os::Linux::install_signal_handlers() {
4660   if (!signal_handlers_are_installed) {
4661     signal_handlers_are_installed = true;
4662 
4663     // signal-chaining
4664     typedef void (*signal_setting_t)();
4665     signal_setting_t begin_signal_setting = NULL;
4666     signal_setting_t end_signal_setting = NULL;
4667     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4668                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4669     if (begin_signal_setting != NULL) {
4670       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4671                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4672       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4673                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4674       libjsig_is_loaded = true;
4675       assert(UseSignalChaining, "should enable signal-chaining");
4676     }
4677     if (libjsig_is_loaded) {
4678       // Tell libjsig jvm is setting signal handlers
4679       (*begin_signal_setting)();
4680     }
4681 
4682     set_signal_handler(SIGSEGV, true);
4683     set_signal_handler(SIGPIPE, true);
4684     set_signal_handler(SIGBUS, true);
4685     set_signal_handler(SIGILL, true);
4686     set_signal_handler(SIGFPE, true);
4687 #if defined(PPC64)
4688     set_signal_handler(SIGTRAP, true);
4689 #endif
4690     set_signal_handler(SIGXFSZ, true);
4691 
4692     if (libjsig_is_loaded) {
4693       // Tell libjsig jvm finishes setting signal handlers
4694       (*end_signal_setting)();
4695     }
4696 
4697     // We don't activate signal checker if libjsig is in place, we trust ourselves
4698     // and if UserSignalHandler is installed all bets are off.
4699     // Log that signal checking is off only if -verbose:jni is specified.
4700     if (CheckJNICalls) {
4701       if (libjsig_is_loaded) {
4702         if (PrintJNIResolving) {
4703           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4704         }
4705         check_signals = false;
4706       }
4707       if (AllowUserSignalHandlers) {
4708         if (PrintJNIResolving) {
4709           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4710         }
4711         check_signals = false;
4712       }
4713     }
4714   }
4715 }
4716 
4717 // This is the fastest way to get thread cpu time on Linux.
4718 // Returns cpu time (user+sys) for any thread, not only for current.
4719 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4720 // It might work on 2.6.10+ with a special kernel/glibc patch.
4721 // For reference, please, see IEEE Std 1003.1-2004:
4722 //   http://www.unix.org/single_unix_specification
4723 
4724 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4725   struct timespec tp;
4726   int rc = os::Posix::clock_gettime(clockid, &tp);
4727   assert(rc == 0, "clock_gettime is expected to return 0 code");
4728 
4729   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4730 }
4731 
4732 void os::Linux::initialize_os_info() {
4733   assert(_os_version == 0, "OS info already initialized");
4734 
4735   struct utsname _uname;
4736 
4737   uint32_t major;
4738   uint32_t minor;
4739   uint32_t fix;
4740 
4741   int rc;
4742 
4743   // Kernel version is unknown if
4744   // verification below fails.
4745   _os_version = 0x01000000;
4746 
4747   rc = uname(&_uname);
4748   if (rc != -1) {
4749 
4750     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4751     if (rc == 3) {
4752 
4753       if (major < 256 && minor < 256 && fix < 256) {
4754         // Kernel version format is as expected,
4755         // set it overriding unknown state.
4756         _os_version = (major << 16) |
4757                       (minor << 8 ) |
4758                       (fix   << 0 ) ;
4759       }
4760     }
4761   }
4762 }
4763 
4764 uint32_t os::Linux::os_version() {
4765   assert(_os_version != 0, "not initialized");
4766   return _os_version & 0x00FFFFFF;
4767 }
4768 
4769 bool os::Linux::os_version_is_known() {
4770   assert(_os_version != 0, "not initialized");
4771   return _os_version & 0x01000000 ? false : true;
4772 }
4773 
4774 /////
4775 // glibc on Linux platform uses non-documented flag
4776 // to indicate, that some special sort of signal
4777 // trampoline is used.
4778 // We will never set this flag, and we should
4779 // ignore this flag in our diagnostic
4780 #ifdef SIGNIFICANT_SIGNAL_MASK
4781   #undef SIGNIFICANT_SIGNAL_MASK
4782 #endif
4783 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4784 
4785 static const char* get_signal_handler_name(address handler,
4786                                            char* buf, int buflen) {
4787   int offset = 0;
4788   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4789   if (found) {
4790     // skip directory names
4791     const char *p1, *p2;
4792     p1 = buf;
4793     size_t len = strlen(os::file_separator());
4794     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4795     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4796   } else {
4797     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4798   }
4799   return buf;
4800 }
4801 
4802 static void print_signal_handler(outputStream* st, int sig,
4803                                  char* buf, size_t buflen) {
4804   struct sigaction sa;
4805 
4806   sigaction(sig, NULL, &sa);
4807 
4808   // See comment for SIGNIFICANT_SIGNAL_MASK define
4809   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4810 
4811   st->print("%s: ", os::exception_name(sig, buf, buflen));
4812 
4813   address handler = (sa.sa_flags & SA_SIGINFO)
4814     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4815     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4816 
4817   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4818     st->print("SIG_DFL");
4819   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4820     st->print("SIG_IGN");
4821   } else {
4822     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4823   }
4824 
4825   st->print(", sa_mask[0]=");
4826   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4827 
4828   address rh = VMError::get_resetted_sighandler(sig);
4829   // May be, handler was resetted by VMError?
4830   if (rh != NULL) {
4831     handler = rh;
4832     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4833   }
4834 
4835   st->print(", sa_flags=");
4836   os::Posix::print_sa_flags(st, sa.sa_flags);
4837 
4838   // Check: is it our handler?
4839   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4840       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4841     // It is our signal handler
4842     // check for flags, reset system-used one!
4843     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4844       st->print(
4845                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4846                 os::Linux::get_our_sigflags(sig));
4847     }
4848   }
4849   st->cr();
4850 }
4851 
4852 
4853 #define DO_SIGNAL_CHECK(sig)                      \
4854   do {                                            \
4855     if (!sigismember(&check_signal_done, sig)) {  \
4856       os::Linux::check_signal_handler(sig);       \
4857     }                                             \
4858   } while (0)
4859 
4860 // This method is a periodic task to check for misbehaving JNI applications
4861 // under CheckJNI, we can add any periodic checks here
4862 
4863 void os::run_periodic_checks() {
4864   if (check_signals == false) return;
4865 
4866   // SEGV and BUS if overridden could potentially prevent
4867   // generation of hs*.log in the event of a crash, debugging
4868   // such a case can be very challenging, so we absolutely
4869   // check the following for a good measure:
4870   DO_SIGNAL_CHECK(SIGSEGV);
4871   DO_SIGNAL_CHECK(SIGILL);
4872   DO_SIGNAL_CHECK(SIGFPE);
4873   DO_SIGNAL_CHECK(SIGBUS);
4874   DO_SIGNAL_CHECK(SIGPIPE);
4875   DO_SIGNAL_CHECK(SIGXFSZ);
4876 #if defined(PPC64)
4877   DO_SIGNAL_CHECK(SIGTRAP);
4878 #endif
4879 
4880   // ReduceSignalUsage allows the user to override these handlers
4881   // see comments at the very top and jvm_md.h
4882   if (!ReduceSignalUsage) {
4883     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4884     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4885     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4886     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4887   }
4888 
4889   DO_SIGNAL_CHECK(SR_signum);
4890 }
4891 
4892 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4893 
4894 static os_sigaction_t os_sigaction = NULL;
4895 
4896 void os::Linux::check_signal_handler(int sig) {
4897   char buf[O_BUFLEN];
4898   address jvmHandler = NULL;
4899 
4900 
4901   struct sigaction act;
4902   if (os_sigaction == NULL) {
4903     // only trust the default sigaction, in case it has been interposed
4904     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4905     if (os_sigaction == NULL) return;
4906   }
4907 
4908   os_sigaction(sig, (struct sigaction*)NULL, &act);
4909 
4910 
4911   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4912 
4913   address thisHandler = (act.sa_flags & SA_SIGINFO)
4914     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4915     : CAST_FROM_FN_PTR(address, act.sa_handler);
4916 
4917 
4918   switch (sig) {
4919   case SIGSEGV:
4920   case SIGBUS:
4921   case SIGFPE:
4922   case SIGPIPE:
4923   case SIGILL:
4924   case SIGXFSZ:
4925     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4926     break;
4927 
4928   case SHUTDOWN1_SIGNAL:
4929   case SHUTDOWN2_SIGNAL:
4930   case SHUTDOWN3_SIGNAL:
4931   case BREAK_SIGNAL:
4932     jvmHandler = (address)user_handler();
4933     break;
4934 
4935   default:
4936     if (sig == SR_signum) {
4937       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4938     } else {
4939       return;
4940     }
4941     break;
4942   }
4943 
4944   if (thisHandler != jvmHandler) {
4945     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4946     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4947     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4948     // No need to check this sig any longer
4949     sigaddset(&check_signal_done, sig);
4950     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4951     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4952       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4953                     exception_name(sig, buf, O_BUFLEN));
4954     }
4955   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4956     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4957     tty->print("expected:");
4958     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4959     tty->cr();
4960     tty->print("  found:");
4961     os::Posix::print_sa_flags(tty, act.sa_flags);
4962     tty->cr();
4963     // No need to check this sig any longer
4964     sigaddset(&check_signal_done, sig);
4965   }
4966 
4967   // Dump all the signal
4968   if (sigismember(&check_signal_done, sig)) {
4969     print_signal_handlers(tty, buf, O_BUFLEN);
4970   }
4971 }
4972 
4973 extern void report_error(char* file_name, int line_no, char* title,
4974                          char* format, ...);
4975 
4976 // this is called _before_ most of the global arguments have been parsed
4977 void os::init(void) {
4978   char dummy;   // used to get a guess on initial stack address
4979 
4980   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4981 
4982   init_random(1234567);
4983 
4984   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4985   if (Linux::page_size() == -1) {
4986     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4987           os::strerror(errno));
4988   }
4989   init_page_sizes((size_t) Linux::page_size());
4990 
4991   Linux::initialize_system_info();
4992 
4993   Linux::initialize_os_info();
4994 
4995   os::Linux::CPUPerfTicks pticks;
4996   bool res = os::Linux::get_tick_information(&pticks, -1);
4997 
4998   if (res && pticks.has_steal_ticks) {
4999     has_initial_tick_info = true;
5000     initial_total_ticks = pticks.total;
5001     initial_steal_ticks = pticks.steal;
5002   }
5003 
5004   // _main_thread points to the thread that created/loaded the JVM.
5005   Linux::_main_thread = pthread_self();
5006 
5007   // retrieve entry point for pthread_setname_np
5008   Linux::_pthread_setname_np =
5009     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5010 
5011   os::Posix::init();
5012 
5013   initial_time_count = javaTimeNanos();
5014 
5015   // Always warn if no monotonic clock available
5016   if (!os::Posix::supports_monotonic_clock()) {
5017     warning("No monotonic clock was available - timed services may "    \
5018             "be adversely affected if the time-of-day clock changes");
5019   }
5020 }
5021 
5022 // To install functions for atexit system call
5023 extern "C" {
5024   static void perfMemory_exit_helper() {
5025     perfMemory_exit();
5026   }
5027 }
5028 
5029 void os::pd_init_container_support() {
5030   OSContainer::init();
5031 }
5032 
5033 void os::Linux::numa_init() {
5034 
5035   // Java can be invoked as
5036   // 1. Without numactl and heap will be allocated/configured on all nodes as
5037   //    per the system policy.
5038   // 2. With numactl --interleave:
5039   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5040   //      API for membind case bitmask is reset.
5041   //      Interleave is only hint and Kernel can fallback to other nodes if
5042   //      no memory is available on the target nodes.
5043   // 3. With numactl --membind:
5044   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5045   //      interleave case returns bitmask of all nodes.
5046   // numa_all_nodes_ptr holds bitmask of all nodes.
5047   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5048   // bitmask when externally configured to run on all or fewer nodes.
5049 
5050   if (!Linux::libnuma_init()) {
5051     UseNUMA = false;
5052   } else {
5053     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5054       // If there's only one node (they start from 0) or if the process
5055       // is bound explicitly to a single node using membind, disable NUMA.
5056       UseNUMA = false;
5057     } else {
5058 
5059       LogTarget(Info,os) log;
5060       LogStream ls(log);
5061 
5062       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5063 
5064       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5065       const char* numa_mode = "membind";
5066 
5067       if (Linux::is_running_in_interleave_mode()) {
5068         bmp = Linux::_numa_interleave_bitmask;
5069         numa_mode = "interleave";
5070       }
5071 
5072       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5073                " Heap will be configured using NUMA memory nodes:", numa_mode);
5074 
5075       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5076         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5077           ls.print(" %d", node);
5078         }
5079       }
5080     }
5081   }
5082 
5083   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5084     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5085     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5086     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5087     // and disable adaptive resizing.
5088     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5089       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5090               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5091       UseAdaptiveSizePolicy = false;
5092       UseAdaptiveNUMAChunkSizing = false;
5093     }
5094   }
5095 
5096   if (!UseNUMA && ForceNUMA) {
5097     UseNUMA = true;
5098   }
5099 }
5100 
5101 // this is called _after_ the global arguments have been parsed
5102 jint os::init_2(void) {
5103 
5104   // This could be set after os::Posix::init() but all platforms
5105   // have to set it the same so we have to mirror Solaris.
5106   DEBUG_ONLY(os::set_mutex_init_done();)
5107 
5108   os::Posix::init_2();
5109 
5110   Linux::fast_thread_clock_init();
5111 
5112   // initialize suspend/resume support - must do this before signal_sets_init()
5113   if (SR_initialize() != 0) {
5114     perror("SR_initialize failed");
5115     return JNI_ERR;
5116   }
5117 
5118   Linux::signal_sets_init();
5119   Linux::install_signal_handlers();
5120   // Initialize data for jdk.internal.misc.Signal
5121   if (!ReduceSignalUsage) {
5122     jdk_misc_signal_init();
5123   }
5124 
5125   // Check and sets minimum stack sizes against command line options
5126   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5127     return JNI_ERR;
5128   }
5129 
5130 #if defined(IA32)
5131   // Need to ensure we've determined the process's initial stack to
5132   // perform the workaround
5133   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5134   workaround_expand_exec_shield_cs_limit();
5135 #else
5136   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5137   if (!suppress_primordial_thread_resolution) {
5138     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5139   }
5140 #endif
5141 
5142   Linux::libpthread_init();
5143   Linux::sched_getcpu_init();
5144   log_info(os)("HotSpot is running with %s, %s",
5145                Linux::glibc_version(), Linux::libpthread_version());
5146 
5147   if (UseNUMA) {
5148     Linux::numa_init();
5149   }
5150 
5151   if (MaxFDLimit) {
5152     // set the number of file descriptors to max. print out error
5153     // if getrlimit/setrlimit fails but continue regardless.
5154     struct rlimit nbr_files;
5155     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5156     if (status != 0) {
5157       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5158     } else {
5159       nbr_files.rlim_cur = nbr_files.rlim_max;
5160       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5161       if (status != 0) {
5162         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5163       }
5164     }
5165   }
5166 
5167   // Initialize lock used to serialize thread creation (see os::create_thread)
5168   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5169 
5170   // at-exit methods are called in the reverse order of their registration.
5171   // atexit functions are called on return from main or as a result of a
5172   // call to exit(3C). There can be only 32 of these functions registered
5173   // and atexit() does not set errno.
5174 
5175   if (PerfAllowAtExitRegistration) {
5176     // only register atexit functions if PerfAllowAtExitRegistration is set.
5177     // atexit functions can be delayed until process exit time, which
5178     // can be problematic for embedded VM situations. Embedded VMs should
5179     // call DestroyJavaVM() to assure that VM resources are released.
5180 
5181     // note: perfMemory_exit_helper atexit function may be removed in
5182     // the future if the appropriate cleanup code can be added to the
5183     // VM_Exit VMOperation's doit method.
5184     if (atexit(perfMemory_exit_helper) != 0) {
5185       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5186     }
5187   }
5188 
5189   // initialize thread priority policy
5190   prio_init();
5191 
5192   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5193     set_coredump_filter(DAX_SHARED_BIT);
5194   }
5195 
5196   if (DumpPrivateMappingsInCore) {
5197     set_coredump_filter(FILE_BACKED_PVT_BIT);
5198   }
5199 
5200   if (DumpSharedMappingsInCore) {
5201     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5202   }
5203 
5204   return JNI_OK;
5205 }
5206 
5207 // Mark the polling page as unreadable
5208 void os::make_polling_page_unreadable(void) {
5209   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5210     fatal("Could not disable polling page");
5211   }
5212 }
5213 
5214 // Mark the polling page as readable
5215 void os::make_polling_page_readable(void) {
5216   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5217     fatal("Could not enable polling page");
5218   }
5219 }
5220 
5221 // older glibc versions don't have this macro (which expands to
5222 // an optimized bit-counting function) so we have to roll our own
5223 #ifndef CPU_COUNT
5224 
5225 static int _cpu_count(const cpu_set_t* cpus) {
5226   int count = 0;
5227   // only look up to the number of configured processors
5228   for (int i = 0; i < os::processor_count(); i++) {
5229     if (CPU_ISSET(i, cpus)) {
5230       count++;
5231     }
5232   }
5233   return count;
5234 }
5235 
5236 #define CPU_COUNT(cpus) _cpu_count(cpus)
5237 
5238 #endif // CPU_COUNT
5239 
5240 // Get the current number of available processors for this process.
5241 // This value can change at any time during a process's lifetime.
5242 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5243 // If it appears there may be more than 1024 processors then we do a
5244 // dynamic check - see 6515172 for details.
5245 // If anything goes wrong we fallback to returning the number of online
5246 // processors - which can be greater than the number available to the process.
5247 int os::Linux::active_processor_count() {
5248   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5249   cpu_set_t* cpus_p = &cpus;
5250   int cpus_size = sizeof(cpu_set_t);
5251 
5252   int configured_cpus = os::processor_count();  // upper bound on available cpus
5253   int cpu_count = 0;
5254 
5255 // old build platforms may not support dynamic cpu sets
5256 #ifdef CPU_ALLOC
5257 
5258   // To enable easy testing of the dynamic path on different platforms we
5259   // introduce a diagnostic flag: UseCpuAllocPath
5260   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5261     // kernel may use a mask bigger than cpu_set_t
5262     log_trace(os)("active_processor_count: using dynamic path %s"
5263                   "- configured processors: %d",
5264                   UseCpuAllocPath ? "(forced) " : "",
5265                   configured_cpus);
5266     cpus_p = CPU_ALLOC(configured_cpus);
5267     if (cpus_p != NULL) {
5268       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5269       // zero it just to be safe
5270       CPU_ZERO_S(cpus_size, cpus_p);
5271     }
5272     else {
5273        // failed to allocate so fallback to online cpus
5274        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5275        log_trace(os)("active_processor_count: "
5276                      "CPU_ALLOC failed (%s) - using "
5277                      "online processor count: %d",
5278                      os::strerror(errno), online_cpus);
5279        return online_cpus;
5280     }
5281   }
5282   else {
5283     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5284                   configured_cpus);
5285   }
5286 #else // CPU_ALLOC
5287 // these stubs won't be executed
5288 #define CPU_COUNT_S(size, cpus) -1
5289 #define CPU_FREE(cpus)
5290 
5291   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5292                 configured_cpus);
5293 #endif // CPU_ALLOC
5294 
5295   // pid 0 means the current thread - which we have to assume represents the process
5296   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5297     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5298       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5299     }
5300     else {
5301       cpu_count = CPU_COUNT(cpus_p);
5302     }
5303     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5304   }
5305   else {
5306     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5307     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5308             "which may exceed available processors", os::strerror(errno), cpu_count);
5309   }
5310 
5311   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5312     CPU_FREE(cpus_p);
5313   }
5314 
5315   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5316   return cpu_count;
5317 }
5318 
5319 // Determine the active processor count from one of
5320 // three different sources:
5321 //
5322 // 1. User option -XX:ActiveProcessorCount
5323 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5324 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5325 //
5326 // Option 1, if specified, will always override.
5327 // If the cgroup subsystem is active and configured, we
5328 // will return the min of the cgroup and option 2 results.
5329 // This is required since tools, such as numactl, that
5330 // alter cpu affinity do not update cgroup subsystem
5331 // cpuset configuration files.
5332 int os::active_processor_count() {
5333   // User has overridden the number of active processors
5334   if (ActiveProcessorCount > 0) {
5335     log_trace(os)("active_processor_count: "
5336                   "active processor count set by user : %d",
5337                   ActiveProcessorCount);
5338     return ActiveProcessorCount;
5339   }
5340 
5341   int active_cpus;
5342   if (OSContainer::is_containerized()) {
5343     active_cpus = OSContainer::active_processor_count();
5344     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5345                    active_cpus);
5346   } else {
5347     active_cpus = os::Linux::active_processor_count();
5348   }
5349 
5350   return active_cpus;
5351 }
5352 
5353 uint os::processor_id() {
5354   const int id = Linux::sched_getcpu();
5355   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5356   return (uint)id;
5357 }
5358 
5359 void os::set_native_thread_name(const char *name) {
5360   if (Linux::_pthread_setname_np) {
5361     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5362     snprintf(buf, sizeof(buf), "%s", name);
5363     buf[sizeof(buf) - 1] = '\0';
5364     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5365     // ERANGE should not happen; all other errors should just be ignored.
5366     assert(rc != ERANGE, "pthread_setname_np failed");
5367   }
5368 }
5369 
5370 bool os::distribute_processes(uint length, uint* distribution) {
5371   // Not yet implemented.
5372   return false;
5373 }
5374 
5375 bool os::bind_to_processor(uint processor_id) {
5376   // Not yet implemented.
5377   return false;
5378 }
5379 
5380 ///
5381 
5382 void os::SuspendedThreadTask::internal_do_task() {
5383   if (do_suspend(_thread->osthread())) {
5384     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5385     do_task(context);
5386     do_resume(_thread->osthread());
5387   }
5388 }
5389 
5390 ////////////////////////////////////////////////////////////////////////////////
5391 // debug support
5392 
5393 bool os::find(address addr, outputStream* st) {
5394   Dl_info dlinfo;
5395   memset(&dlinfo, 0, sizeof(dlinfo));
5396   if (dladdr(addr, &dlinfo) != 0) {
5397     st->print(PTR_FORMAT ": ", p2i(addr));
5398     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5399       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5400                 p2i(addr) - p2i(dlinfo.dli_saddr));
5401     } else if (dlinfo.dli_fbase != NULL) {
5402       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5403     } else {
5404       st->print("<absolute address>");
5405     }
5406     if (dlinfo.dli_fname != NULL) {
5407       st->print(" in %s", dlinfo.dli_fname);
5408     }
5409     if (dlinfo.dli_fbase != NULL) {
5410       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5411     }
5412     st->cr();
5413 
5414     if (Verbose) {
5415       // decode some bytes around the PC
5416       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5417       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5418       address       lowest = (address) dlinfo.dli_sname;
5419       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5420       if (begin < lowest)  begin = lowest;
5421       Dl_info dlinfo2;
5422       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5423           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5424         end = (address) dlinfo2.dli_saddr;
5425       }
5426       Disassembler::decode(begin, end, st);
5427     }
5428     return true;
5429   }
5430   return false;
5431 }
5432 
5433 ////////////////////////////////////////////////////////////////////////////////
5434 // misc
5435 
5436 // This does not do anything on Linux. This is basically a hook for being
5437 // able to use structured exception handling (thread-local exception filters)
5438 // on, e.g., Win32.
5439 void
5440 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5441                          JavaCallArguments* args, Thread* thread) {
5442   f(value, method, args, thread);
5443 }
5444 
5445 void os::print_statistics() {
5446 }
5447 
5448 bool os::message_box(const char* title, const char* message) {
5449   int i;
5450   fdStream err(defaultStream::error_fd());
5451   for (i = 0; i < 78; i++) err.print_raw("=");
5452   err.cr();
5453   err.print_raw_cr(title);
5454   for (i = 0; i < 78; i++) err.print_raw("-");
5455   err.cr();
5456   err.print_raw_cr(message);
5457   for (i = 0; i < 78; i++) err.print_raw("=");
5458   err.cr();
5459 
5460   char buf[16];
5461   // Prevent process from exiting upon "read error" without consuming all CPU
5462   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5463 
5464   return buf[0] == 'y' || buf[0] == 'Y';
5465 }
5466 
5467 // Is a (classpath) directory empty?
5468 bool os::dir_is_empty(const char* path) {
5469   DIR *dir = NULL;
5470   struct dirent *ptr;
5471 
5472   dir = opendir(path);
5473   if (dir == NULL) return true;
5474 
5475   // Scan the directory
5476   bool result = true;
5477   while (result && (ptr = readdir(dir)) != NULL) {
5478     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5479       result = false;
5480     }
5481   }
5482   closedir(dir);
5483   return result;
5484 }
5485 
5486 // This code originates from JDK's sysOpen and open64_w
5487 // from src/solaris/hpi/src/system_md.c
5488 
5489 int os::open(const char *path, int oflag, int mode) {
5490   if (strlen(path) > MAX_PATH - 1) {
5491     errno = ENAMETOOLONG;
5492     return -1;
5493   }
5494 
5495   // All file descriptors that are opened in the Java process and not
5496   // specifically destined for a subprocess should have the close-on-exec
5497   // flag set.  If we don't set it, then careless 3rd party native code
5498   // might fork and exec without closing all appropriate file descriptors
5499   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5500   // turn might:
5501   //
5502   // - cause end-of-file to fail to be detected on some file
5503   //   descriptors, resulting in mysterious hangs, or
5504   //
5505   // - might cause an fopen in the subprocess to fail on a system
5506   //   suffering from bug 1085341.
5507   //
5508   // (Yes, the default setting of the close-on-exec flag is a Unix
5509   // design flaw)
5510   //
5511   // See:
5512   // 1085341: 32-bit stdio routines should support file descriptors >255
5513   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5514   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5515   //
5516   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5517   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5518   // because it saves a system call and removes a small window where the flag
5519   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5520   // and we fall back to using FD_CLOEXEC (see below).
5521 #ifdef O_CLOEXEC
5522   oflag |= O_CLOEXEC;
5523 #endif
5524 
5525   int fd = ::open64(path, oflag, mode);
5526   if (fd == -1) return -1;
5527 
5528   //If the open succeeded, the file might still be a directory
5529   {
5530     struct stat64 buf64;
5531     int ret = ::fstat64(fd, &buf64);
5532     int st_mode = buf64.st_mode;
5533 
5534     if (ret != -1) {
5535       if ((st_mode & S_IFMT) == S_IFDIR) {
5536         errno = EISDIR;
5537         ::close(fd);
5538         return -1;
5539       }
5540     } else {
5541       ::close(fd);
5542       return -1;
5543     }
5544   }
5545 
5546 #ifdef FD_CLOEXEC
5547   // Validate that the use of the O_CLOEXEC flag on open above worked.
5548   // With recent kernels, we will perform this check exactly once.
5549   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5550   if (!O_CLOEXEC_is_known_to_work) {
5551     int flags = ::fcntl(fd, F_GETFD);
5552     if (flags != -1) {
5553       if ((flags & FD_CLOEXEC) != 0)
5554         O_CLOEXEC_is_known_to_work = 1;
5555       else
5556         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5557     }
5558   }
5559 #endif
5560 
5561   return fd;
5562 }
5563 
5564 
5565 // create binary file, rewriting existing file if required
5566 int os::create_binary_file(const char* path, bool rewrite_existing) {
5567   int oflags = O_WRONLY | O_CREAT;
5568   if (!rewrite_existing) {
5569     oflags |= O_EXCL;
5570   }
5571   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5572 }
5573 
5574 // return current position of file pointer
5575 jlong os::current_file_offset(int fd) {
5576   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5577 }
5578 
5579 // move file pointer to the specified offset
5580 jlong os::seek_to_file_offset(int fd, jlong offset) {
5581   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5582 }
5583 
5584 // This code originates from JDK's sysAvailable
5585 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5586 
5587 int os::available(int fd, jlong *bytes) {
5588   jlong cur, end;
5589   int mode;
5590   struct stat64 buf64;
5591 
5592   if (::fstat64(fd, &buf64) >= 0) {
5593     mode = buf64.st_mode;
5594     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5595       int n;
5596       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5597         *bytes = n;
5598         return 1;
5599       }
5600     }
5601   }
5602   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5603     return 0;
5604   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5605     return 0;
5606   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5607     return 0;
5608   }
5609   *bytes = end - cur;
5610   return 1;
5611 }
5612 
5613 // Map a block of memory.
5614 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5615                         char *addr, size_t bytes, bool read_only,
5616                         bool allow_exec) {
5617   int prot;
5618   int flags = MAP_PRIVATE;
5619 
5620   if (read_only) {
5621     prot = PROT_READ;
5622   } else {
5623     prot = PROT_READ | PROT_WRITE;
5624   }
5625 
5626   if (allow_exec) {
5627     prot |= PROT_EXEC;
5628   }
5629 
5630   if (addr != NULL) {
5631     flags |= MAP_FIXED;
5632   }
5633 
5634   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5635                                      fd, file_offset);
5636   if (mapped_address == MAP_FAILED) {
5637     return NULL;
5638   }
5639   return mapped_address;
5640 }
5641 
5642 
5643 // Remap a block of memory.
5644 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5645                           char *addr, size_t bytes, bool read_only,
5646                           bool allow_exec) {
5647   // same as map_memory() on this OS
5648   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5649                         allow_exec);
5650 }
5651 
5652 
5653 // Unmap a block of memory.
5654 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5655   return munmap(addr, bytes) == 0;
5656 }
5657 
5658 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5659 
5660 static jlong fast_cpu_time(Thread *thread) {
5661     clockid_t clockid;
5662     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5663                                               &clockid);
5664     if (rc == 0) {
5665       return os::Linux::fast_thread_cpu_time(clockid);
5666     } else {
5667       // It's possible to encounter a terminated native thread that failed
5668       // to detach itself from the VM - which should result in ESRCH.
5669       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5670       return -1;
5671     }
5672 }
5673 
5674 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5675 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5676 // of a thread.
5677 //
5678 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5679 // the fast estimate available on the platform.
5680 
5681 jlong os::current_thread_cpu_time() {
5682   if (os::Linux::supports_fast_thread_cpu_time()) {
5683     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5684   } else {
5685     // return user + sys since the cost is the same
5686     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5687   }
5688 }
5689 
5690 jlong os::thread_cpu_time(Thread* thread) {
5691   // consistent with what current_thread_cpu_time() returns
5692   if (os::Linux::supports_fast_thread_cpu_time()) {
5693     return fast_cpu_time(thread);
5694   } else {
5695     return slow_thread_cpu_time(thread, true /* user + sys */);
5696   }
5697 }
5698 
5699 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5700   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5701     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5702   } else {
5703     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5704   }
5705 }
5706 
5707 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5708   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5709     return fast_cpu_time(thread);
5710   } else {
5711     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5712   }
5713 }
5714 
5715 //  -1 on error.
5716 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5717   pid_t  tid = thread->osthread()->thread_id();
5718   char *s;
5719   char stat[2048];
5720   int statlen;
5721   char proc_name[64];
5722   int count;
5723   long sys_time, user_time;
5724   char cdummy;
5725   int idummy;
5726   long ldummy;
5727   FILE *fp;
5728 
5729   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5730   fp = fopen(proc_name, "r");
5731   if (fp == NULL) return -1;
5732   statlen = fread(stat, 1, 2047, fp);
5733   stat[statlen] = '\0';
5734   fclose(fp);
5735 
5736   // Skip pid and the command string. Note that we could be dealing with
5737   // weird command names, e.g. user could decide to rename java launcher
5738   // to "java 1.4.2 :)", then the stat file would look like
5739   //                1234 (java 1.4.2 :)) R ... ...
5740   // We don't really need to know the command string, just find the last
5741   // occurrence of ")" and then start parsing from there. See bug 4726580.
5742   s = strrchr(stat, ')');
5743   if (s == NULL) return -1;
5744 
5745   // Skip blank chars
5746   do { s++; } while (s && isspace(*s));
5747 
5748   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5749                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5750                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5751                  &user_time, &sys_time);
5752   if (count != 13) return -1;
5753   if (user_sys_cpu_time) {
5754     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5755   } else {
5756     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5757   }
5758 }
5759 
5760 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5761   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5762   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5763   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5764   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5765 }
5766 
5767 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5768   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5769   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5770   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5771   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5772 }
5773 
5774 bool os::is_thread_cpu_time_supported() {
5775   return true;
5776 }
5777 
5778 // System loadavg support.  Returns -1 if load average cannot be obtained.
5779 // Linux doesn't yet have a (official) notion of processor sets,
5780 // so just return the system wide load average.
5781 int os::loadavg(double loadavg[], int nelem) {
5782   return ::getloadavg(loadavg, nelem);
5783 }
5784 
5785 void os::pause() {
5786   char filename[MAX_PATH];
5787   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5788     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5789   } else {
5790     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5791   }
5792 
5793   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5794   if (fd != -1) {
5795     struct stat buf;
5796     ::close(fd);
5797     while (::stat(filename, &buf) == 0) {
5798       (void)::poll(NULL, 0, 100);
5799     }
5800   } else {
5801     jio_fprintf(stderr,
5802                 "Could not open pause file '%s', continuing immediately.\n", filename);
5803   }
5804 }
5805 
5806 extern char** environ;
5807 
5808 // Run the specified command in a separate process. Return its exit value,
5809 // or -1 on failure (e.g. can't fork a new process).
5810 // Unlike system(), this function can be called from signal handler. It
5811 // doesn't block SIGINT et al.
5812 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5813   const char * argv[4] = {"sh", "-c", cmd, NULL};
5814 
5815   pid_t pid ;
5816 
5817   if (use_vfork_if_available) {
5818     pid = vfork();
5819   } else {
5820     pid = fork();
5821   }
5822 
5823   if (pid < 0) {
5824     // fork failed
5825     return -1;
5826 
5827   } else if (pid == 0) {
5828     // child process
5829 
5830     execve("/bin/sh", (char* const*)argv, environ);
5831 
5832     // execve failed
5833     _exit(-1);
5834 
5835   } else  {
5836     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5837     // care about the actual exit code, for now.
5838 
5839     int status;
5840 
5841     // Wait for the child process to exit.  This returns immediately if
5842     // the child has already exited. */
5843     while (waitpid(pid, &status, 0) < 0) {
5844       switch (errno) {
5845       case ECHILD: return 0;
5846       case EINTR: break;
5847       default: return -1;
5848       }
5849     }
5850 
5851     if (WIFEXITED(status)) {
5852       // The child exited normally; get its exit code.
5853       return WEXITSTATUS(status);
5854     } else if (WIFSIGNALED(status)) {
5855       // The child exited because of a signal
5856       // The best value to return is 0x80 + signal number,
5857       // because that is what all Unix shells do, and because
5858       // it allows callers to distinguish between process exit and
5859       // process death by signal.
5860       return 0x80 + WTERMSIG(status);
5861     } else {
5862       // Unknown exit code; pass it through
5863       return status;
5864     }
5865   }
5866 }
5867 
5868 // Get the default path to the core file
5869 // Returns the length of the string
5870 int os::get_core_path(char* buffer, size_t bufferSize) {
5871   /*
5872    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5873    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5874    */
5875   const int core_pattern_len = 129;
5876   char core_pattern[core_pattern_len] = {0};
5877 
5878   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5879   if (core_pattern_file == -1) {
5880     return -1;
5881   }
5882 
5883   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5884   ::close(core_pattern_file);
5885   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5886     return -1;
5887   }
5888   if (core_pattern[ret-1] == '\n') {
5889     core_pattern[ret-1] = '\0';
5890   } else {
5891     core_pattern[ret] = '\0';
5892   }
5893 
5894   // Replace the %p in the core pattern with the process id. NOTE: we do this
5895   // only if the pattern doesn't start with "|", and we support only one %p in
5896   // the pattern.
5897   char *pid_pos = strstr(core_pattern, "%p");
5898   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5899   int written;
5900 
5901   if (core_pattern[0] == '/') {
5902     if (pid_pos != NULL) {
5903       *pid_pos = '\0';
5904       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5905                              current_process_id(), tail);
5906     } else {
5907       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5908     }
5909   } else {
5910     char cwd[PATH_MAX];
5911 
5912     const char* p = get_current_directory(cwd, PATH_MAX);
5913     if (p == NULL) {
5914       return -1;
5915     }
5916 
5917     if (core_pattern[0] == '|') {
5918       written = jio_snprintf(buffer, bufferSize,
5919                              "\"%s\" (or dumping to %s/core.%d)",
5920                              &core_pattern[1], p, current_process_id());
5921     } else if (pid_pos != NULL) {
5922       *pid_pos = '\0';
5923       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5924                              current_process_id(), tail);
5925     } else {
5926       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5927     }
5928   }
5929 
5930   if (written < 0) {
5931     return -1;
5932   }
5933 
5934   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5935     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5936 
5937     if (core_uses_pid_file != -1) {
5938       char core_uses_pid = 0;
5939       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5940       ::close(core_uses_pid_file);
5941 
5942       if (core_uses_pid == '1') {
5943         jio_snprintf(buffer + written, bufferSize - written,
5944                                           ".%d", current_process_id());
5945       }
5946     }
5947   }
5948 
5949   return strlen(buffer);
5950 }
5951 
5952 bool os::start_debugging(char *buf, int buflen) {
5953   int len = (int)strlen(buf);
5954   char *p = &buf[len];
5955 
5956   jio_snprintf(p, buflen-len,
5957                "\n\n"
5958                "Do you want to debug the problem?\n\n"
5959                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5960                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5961                "Otherwise, press RETURN to abort...",
5962                os::current_process_id(), os::current_process_id(),
5963                os::current_thread_id(), os::current_thread_id());
5964 
5965   bool yes = os::message_box("Unexpected Error", buf);
5966 
5967   if (yes) {
5968     // yes, user asked VM to launch debugger
5969     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5970                  os::current_process_id(), os::current_process_id());
5971 
5972     os::fork_and_exec(buf);
5973     yes = false;
5974   }
5975   return yes;
5976 }
5977 
5978 
5979 // Java/Compiler thread:
5980 //
5981 //   Low memory addresses
5982 // P0 +------------------------+
5983 //    |                        |\  Java thread created by VM does not have glibc
5984 //    |    glibc guard page    | - guard page, attached Java thread usually has
5985 //    |                        |/  1 glibc guard page.
5986 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5987 //    |                        |\
5988 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5989 //    |                        |/
5990 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5991 //    |                        |\
5992 //    |      Normal Stack      | -
5993 //    |                        |/
5994 // P2 +------------------------+ Thread::stack_base()
5995 //
5996 // Non-Java thread:
5997 //
5998 //   Low memory addresses
5999 // P0 +------------------------+
6000 //    |                        |\
6001 //    |  glibc guard page      | - usually 1 page
6002 //    |                        |/
6003 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6004 //    |                        |\
6005 //    |      Normal Stack      | -
6006 //    |                        |/
6007 // P2 +------------------------+ Thread::stack_base()
6008 //
6009 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6010 //    returned from pthread_attr_getstack().
6011 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6012 //    of the stack size given in pthread_attr. We work around this for
6013 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6014 //
6015 #ifndef ZERO
6016 static void current_stack_region(address * bottom, size_t * size) {
6017   if (os::is_primordial_thread()) {
6018     // primordial thread needs special handling because pthread_getattr_np()
6019     // may return bogus value.
6020     *bottom = os::Linux::initial_thread_stack_bottom();
6021     *size   = os::Linux::initial_thread_stack_size();
6022   } else {
6023     pthread_attr_t attr;
6024 
6025     int rslt = pthread_getattr_np(pthread_self(), &attr);
6026 
6027     // JVM needs to know exact stack location, abort if it fails
6028     if (rslt != 0) {
6029       if (rslt == ENOMEM) {
6030         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6031       } else {
6032         fatal("pthread_getattr_np failed with error = %d", rslt);
6033       }
6034     }
6035 
6036     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6037       fatal("Cannot locate current stack attributes!");
6038     }
6039 
6040     // Work around NPTL stack guard error.
6041     size_t guard_size = 0;
6042     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6043     if (rslt != 0) {
6044       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6045     }
6046     *bottom += guard_size;
6047     *size   -= guard_size;
6048 
6049     pthread_attr_destroy(&attr);
6050 
6051   }
6052   assert(os::current_stack_pointer() >= *bottom &&
6053          os::current_stack_pointer() < *bottom + *size, "just checking");
6054 }
6055 
6056 address os::current_stack_base() {
6057   address bottom;
6058   size_t size;
6059   current_stack_region(&bottom, &size);
6060   return (bottom + size);
6061 }
6062 
6063 size_t os::current_stack_size() {
6064   // This stack size includes the usable stack and HotSpot guard pages
6065   // (for the threads that have Hotspot guard pages).
6066   address bottom;
6067   size_t size;
6068   current_stack_region(&bottom, &size);
6069   return size;
6070 }
6071 #endif
6072 
6073 static inline struct timespec get_mtime(const char* filename) {
6074   struct stat st;
6075   int ret = os::stat(filename, &st);
6076   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6077   return st.st_mtim;
6078 }
6079 
6080 int os::compare_file_modified_times(const char* file1, const char* file2) {
6081   struct timespec filetime1 = get_mtime(file1);
6082   struct timespec filetime2 = get_mtime(file2);
6083   int diff = filetime1.tv_sec - filetime2.tv_sec;
6084   if (diff == 0) {
6085     return filetime1.tv_nsec - filetime2.tv_nsec;
6086   }
6087   return diff;
6088 }
6089 
6090 /////////////// Unit tests ///////////////
6091 
6092 #ifndef PRODUCT
6093 
6094 class TestReserveMemorySpecial : AllStatic {
6095  public:
6096   static void small_page_write(void* addr, size_t size) {
6097     size_t page_size = os::vm_page_size();
6098 
6099     char* end = (char*)addr + size;
6100     for (char* p = (char*)addr; p < end; p += page_size) {
6101       *p = 1;
6102     }
6103   }
6104 
6105   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6106     if (!UseHugeTLBFS) {
6107       return;
6108     }
6109 
6110     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6111 
6112     if (addr != NULL) {
6113       small_page_write(addr, size);
6114 
6115       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6116     }
6117   }
6118 
6119   static void test_reserve_memory_special_huge_tlbfs_only() {
6120     if (!UseHugeTLBFS) {
6121       return;
6122     }
6123 
6124     size_t lp = os::large_page_size();
6125 
6126     for (size_t size = lp; size <= lp * 10; size += lp) {
6127       test_reserve_memory_special_huge_tlbfs_only(size);
6128     }
6129   }
6130 
6131   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6132     size_t lp = os::large_page_size();
6133     size_t ag = os::vm_allocation_granularity();
6134 
6135     // sizes to test
6136     const size_t sizes[] = {
6137       lp, lp + ag, lp + lp / 2, lp * 2,
6138       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6139       lp * 10, lp * 10 + lp / 2
6140     };
6141     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6142 
6143     // For each size/alignment combination, we test three scenarios:
6144     // 1) with req_addr == NULL
6145     // 2) with a non-null req_addr at which we expect to successfully allocate
6146     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6147     //    expect the allocation to either fail or to ignore req_addr
6148 
6149     // Pre-allocate two areas; they shall be as large as the largest allocation
6150     //  and aligned to the largest alignment we will be testing.
6151     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6152     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6153       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6154       -1, 0);
6155     assert(mapping1 != MAP_FAILED, "should work");
6156 
6157     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6158       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6159       -1, 0);
6160     assert(mapping2 != MAP_FAILED, "should work");
6161 
6162     // Unmap the first mapping, but leave the second mapping intact: the first
6163     // mapping will serve as a value for a "good" req_addr (case 2). The second
6164     // mapping, still intact, as "bad" req_addr (case 3).
6165     ::munmap(mapping1, mapping_size);
6166 
6167     // Case 1
6168     for (int i = 0; i < num_sizes; i++) {
6169       const size_t size = sizes[i];
6170       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6171         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6172         if (p != NULL) {
6173           assert(is_aligned(p, alignment), "must be");
6174           small_page_write(p, size);
6175           os::Linux::release_memory_special_huge_tlbfs(p, size);
6176         }
6177       }
6178     }
6179 
6180     // Case 2
6181     for (int i = 0; i < num_sizes; i++) {
6182       const size_t size = sizes[i];
6183       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6184         char* const req_addr = align_up(mapping1, alignment);
6185         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6186         if (p != NULL) {
6187           assert(p == req_addr, "must be");
6188           small_page_write(p, size);
6189           os::Linux::release_memory_special_huge_tlbfs(p, size);
6190         }
6191       }
6192     }
6193 
6194     // Case 3
6195     for (int i = 0; i < num_sizes; i++) {
6196       const size_t size = sizes[i];
6197       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6198         char* const req_addr = align_up(mapping2, alignment);
6199         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6200         // as the area around req_addr contains already existing mappings, the API should always
6201         // return NULL (as per contract, it cannot return another address)
6202         assert(p == NULL, "must be");
6203       }
6204     }
6205 
6206     ::munmap(mapping2, mapping_size);
6207 
6208   }
6209 
6210   static void test_reserve_memory_special_huge_tlbfs() {
6211     if (!UseHugeTLBFS) {
6212       return;
6213     }
6214 
6215     test_reserve_memory_special_huge_tlbfs_only();
6216     test_reserve_memory_special_huge_tlbfs_mixed();
6217   }
6218 
6219   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6220     if (!UseSHM) {
6221       return;
6222     }
6223 
6224     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6225 
6226     if (addr != NULL) {
6227       assert(is_aligned(addr, alignment), "Check");
6228       assert(is_aligned(addr, os::large_page_size()), "Check");
6229 
6230       small_page_write(addr, size);
6231 
6232       os::Linux::release_memory_special_shm(addr, size);
6233     }
6234   }
6235 
6236   static void test_reserve_memory_special_shm() {
6237     size_t lp = os::large_page_size();
6238     size_t ag = os::vm_allocation_granularity();
6239 
6240     for (size_t size = ag; size < lp * 3; size += ag) {
6241       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6242         test_reserve_memory_special_shm(size, alignment);
6243       }
6244     }
6245   }
6246 
6247   static void test() {
6248     test_reserve_memory_special_huge_tlbfs();
6249     test_reserve_memory_special_shm();
6250   }
6251 };
6252 
6253 void TestReserveMemorySpecial_test() {
6254   TestReserveMemorySpecial::test();
6255 }
6256 
6257 #endif