1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/threadSMR.hpp"
  65 #include "runtime/timer.hpp"
  66 #include "runtime/vm_version.hpp"
  67 #include "semaphore_posix.hpp"
  68 #include "services/attachListener.hpp"
  69 #include "services/memTracker.hpp"
  70 #include "services/runtimeService.hpp"
  71 #include "utilities/align.hpp"
  72 #include "utilities/decoder.hpp"
  73 #include "utilities/defaultStream.hpp"
  74 #include "utilities/events.hpp"
  75 #include "utilities/elfFile.hpp"
  76 #include "utilities/growableArray.hpp"
  77 #include "utilities/macros.hpp"
  78 #include "utilities/vmError.hpp"
  79 
  80 // put OS-includes here
  81 # include <sys/types.h>
  82 # include <sys/mman.h>
  83 # include <sys/stat.h>
  84 # include <sys/select.h>
  85 # include <pthread.h>
  86 # include <signal.h>
  87 # include <errno.h>
  88 # include <dlfcn.h>
  89 # include <stdio.h>
  90 # include <unistd.h>
  91 # include <sys/resource.h>
  92 # include <pthread.h>
  93 # include <sys/stat.h>
  94 # include <sys/time.h>
  95 # include <sys/times.h>
  96 # include <sys/utsname.h>
  97 # include <sys/socket.h>
  98 # include <sys/wait.h>
  99 # include <pwd.h>
 100 # include <poll.h>
 101 # include <fcntl.h>
 102 # include <string.h>
 103 # include <syscall.h>
 104 # include <sys/sysinfo.h>
 105 # include <gnu/libc-version.h>
 106 # include <sys/ipc.h>
 107 # include <sys/shm.h>
 108 # include <link.h>
 109 # include <stdint.h>
 110 # include <inttypes.h>
 111 # include <sys/ioctl.h>
 112 
 113 #ifndef _GNU_SOURCE
 114   #define _GNU_SOURCE
 115   #include <sched.h>
 116   #undef _GNU_SOURCE
 117 #else
 118   #include <sched.h>
 119 #endif
 120 
 121 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 122 // getrusage() is prepared to handle the associated failure.
 123 #ifndef RUSAGE_THREAD
 124   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 125 #endif
 126 
 127 #define MAX_PATH    (2 * K)
 128 
 129 #define MAX_SECS 100000000
 130 
 131 // for timer info max values which include all bits
 132 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 133 
 134 enum CoredumpFilterBit {
 135   FILE_BACKED_PVT_BIT = 1 << 2,
 136   FILE_BACKED_SHARED_BIT = 1 << 3,
 137   LARGEPAGES_BIT = 1 << 6,
 138   DAX_SHARED_BIT = 1 << 8
 139 };
 140 
 141 ////////////////////////////////////////////////////////////////////////////////
 142 // global variables
 143 julong os::Linux::_physical_memory = 0;
 144 
 145 address   os::Linux::_initial_thread_stack_bottom = NULL;
 146 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 147 
 148 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 149 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 150 Mutex* os::Linux::_createThread_lock = NULL;
 151 pthread_t os::Linux::_main_thread;
 152 int os::Linux::_page_size = -1;
 153 bool os::Linux::_supports_fast_thread_cpu_time = false;
 154 uint32_t os::Linux::_os_version = 0;
 155 const char * os::Linux::_glibc_version = NULL;
 156 const char * os::Linux::_libpthread_version = NULL;
 157 
 158 static jlong initial_time_count=0;
 159 
 160 static int clock_tics_per_sec = 100;
 161 
 162 // If the VM might have been created on the primordial thread, we need to resolve the
 163 // primordial thread stack bounds and check if the current thread might be the
 164 // primordial thread in places. If we know that the primordial thread is never used,
 165 // such as when the VM was created by one of the standard java launchers, we can
 166 // avoid this
 167 static bool suppress_primordial_thread_resolution = false;
 168 
 169 // For diagnostics to print a message once. see run_periodic_checks
 170 static sigset_t check_signal_done;
 171 static bool check_signals = true;
 172 
 173 // Signal number used to suspend/resume a thread
 174 
 175 // do not use any signal number less than SIGSEGV, see 4355769
 176 static int SR_signum = SIGUSR2;
 177 sigset_t SR_sigset;
 178 
 179 // utility functions
 180 
 181 static int SR_initialize();
 182 
 183 julong os::available_memory() {
 184   return Linux::available_memory();
 185 }
 186 
 187 julong os::Linux::available_memory() {
 188   // values in struct sysinfo are "unsigned long"
 189   struct sysinfo si;
 190   julong avail_mem;
 191 
 192   if (OSContainer::is_containerized()) {
 193     jlong mem_limit, mem_usage;
 194     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 195       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 196                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 197     }
 198     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 199       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 200     }
 201     if (mem_limit > 0 && mem_usage > 0 ) {
 202       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 203       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 204       return avail_mem;
 205     }
 206   }
 207 
 208   sysinfo(&si);
 209   avail_mem = (julong)si.freeram * si.mem_unit;
 210   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 211   return avail_mem;
 212 }
 213 
 214 julong os::physical_memory() {
 215   jlong phys_mem = 0;
 216   if (OSContainer::is_containerized()) {
 217     jlong mem_limit;
 218     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 219       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 220       return mem_limit;
 221     }
 222     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 223                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 224   }
 225 
 226   phys_mem = Linux::physical_memory();
 227   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 228   return phys_mem;
 229 }
 230 
 231 static uint64_t initial_total_ticks = 0;
 232 static uint64_t initial_steal_ticks = 0;
 233 static bool     has_initial_tick_info = false;
 234 
 235 static void next_line(FILE *f) {
 236   int c;
 237   do {
 238     c = fgetc(f);
 239   } while (c != '\n' && c != EOF);
 240 }
 241 
 242 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 243   FILE*         fh;
 244   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 245   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 246   // irq: time  servicing interrupts; softirq: time servicing softirqs
 247   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 248   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 249   uint64_t      stealTicks = 0;
 250   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 251   // control of the Linux kernel
 252   uint64_t      guestNiceTicks = 0;
 253   int           logical_cpu = -1;
 254   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 255   int           n;
 256 
 257   memset(pticks, 0, sizeof(CPUPerfTicks));
 258 
 259   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 260     return false;
 261   }
 262 
 263   if (which_logical_cpu == -1) {
 264     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 265             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 266             UINT64_FORMAT " " UINT64_FORMAT " ",
 267             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 268             &iowTicks, &irqTicks, &sirqTicks,
 269             &stealTicks, &guestNiceTicks);
 270   } else {
 271     // Move to next line
 272     next_line(fh);
 273 
 274     // find the line for requested cpu faster to just iterate linefeeds?
 275     for (int i = 0; i < which_logical_cpu; i++) {
 276       next_line(fh);
 277     }
 278 
 279     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 280                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 281                UINT64_FORMAT " " UINT64_FORMAT " ",
 282                &logical_cpu, &userTicks, &niceTicks,
 283                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 284                &stealTicks, &guestNiceTicks);
 285   }
 286 
 287   fclose(fh);
 288   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 289     return false;
 290   }
 291   pticks->used       = userTicks + niceTicks;
 292   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 293   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 294                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 295 
 296   if (n > required_tickinfo_count + 3) {
 297     pticks->steal = stealTicks;
 298     pticks->has_steal_ticks = true;
 299   } else {
 300     pticks->steal = 0;
 301     pticks->has_steal_ticks = false;
 302   }
 303 
 304   return true;
 305 }
 306 
 307 // Return true if user is running as root.
 308 
 309 bool os::have_special_privileges() {
 310   static bool init = false;
 311   static bool privileges = false;
 312   if (!init) {
 313     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 314     init = true;
 315   }
 316   return privileges;
 317 }
 318 
 319 
 320 #ifndef SYS_gettid
 321 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 322   #ifdef __ia64__
 323     #define SYS_gettid 1105
 324   #else
 325     #ifdef __i386__
 326       #define SYS_gettid 224
 327     #else
 328       #ifdef __amd64__
 329         #define SYS_gettid 186
 330       #else
 331         #ifdef __sparc__
 332           #define SYS_gettid 143
 333         #else
 334           #error define gettid for the arch
 335         #endif
 336       #endif
 337     #endif
 338   #endif
 339 #endif
 340 
 341 
 342 // pid_t gettid()
 343 //
 344 // Returns the kernel thread id of the currently running thread. Kernel
 345 // thread id is used to access /proc.
 346 pid_t os::Linux::gettid() {
 347   int rslt = syscall(SYS_gettid);
 348   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 349   return (pid_t)rslt;
 350 }
 351 
 352 // Most versions of linux have a bug where the number of processors are
 353 // determined by looking at the /proc file system.  In a chroot environment,
 354 // the system call returns 1.
 355 static bool unsafe_chroot_detected = false;
 356 static const char *unstable_chroot_error = "/proc file system not found.\n"
 357                      "Java may be unstable running multithreaded in a chroot "
 358                      "environment on Linux when /proc filesystem is not mounted.";
 359 
 360 void os::Linux::initialize_system_info() {
 361   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 362   if (processor_count() == 1) {
 363     pid_t pid = os::Linux::gettid();
 364     char fname[32];
 365     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 366     FILE *fp = fopen(fname, "r");
 367     if (fp == NULL) {
 368       unsafe_chroot_detected = true;
 369     } else {
 370       fclose(fp);
 371     }
 372   }
 373   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 374   assert(processor_count() > 0, "linux error");
 375 }
 376 
 377 void os::init_system_properties_values() {
 378   // The next steps are taken in the product version:
 379   //
 380   // Obtain the JAVA_HOME value from the location of libjvm.so.
 381   // This library should be located at:
 382   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 383   //
 384   // If "/jre/lib/" appears at the right place in the path, then we
 385   // assume libjvm.so is installed in a JDK and we use this path.
 386   //
 387   // Otherwise exit with message: "Could not create the Java virtual machine."
 388   //
 389   // The following extra steps are taken in the debugging version:
 390   //
 391   // If "/jre/lib/" does NOT appear at the right place in the path
 392   // instead of exit check for $JAVA_HOME environment variable.
 393   //
 394   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 395   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 396   // it looks like libjvm.so is installed there
 397   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 398   //
 399   // Otherwise exit.
 400   //
 401   // Important note: if the location of libjvm.so changes this
 402   // code needs to be changed accordingly.
 403 
 404   // See ld(1):
 405   //      The linker uses the following search paths to locate required
 406   //      shared libraries:
 407   //        1: ...
 408   //        ...
 409   //        7: The default directories, normally /lib and /usr/lib.
 410 #ifndef OVERRIDE_LIBPATH
 411   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 412     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 413   #else
 414     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 415   #endif
 416 #else
 417   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 418 #endif
 419 
 420 // Base path of extensions installed on the system.
 421 #define SYS_EXT_DIR     "/usr/java/packages"
 422 #define EXTENSIONS_DIR  "/lib/ext"
 423 
 424   // Buffer that fits several sprintfs.
 425   // Note that the space for the colon and the trailing null are provided
 426   // by the nulls included by the sizeof operator.
 427   const size_t bufsize =
 428     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 429          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 430   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 431 
 432   // sysclasspath, java_home, dll_dir
 433   {
 434     char *pslash;
 435     os::jvm_path(buf, bufsize);
 436 
 437     // Found the full path to libjvm.so.
 438     // Now cut the path to <java_home>/jre if we can.
 439     pslash = strrchr(buf, '/');
 440     if (pslash != NULL) {
 441       *pslash = '\0';            // Get rid of /libjvm.so.
 442     }
 443     pslash = strrchr(buf, '/');
 444     if (pslash != NULL) {
 445       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 446     }
 447     Arguments::set_dll_dir(buf);
 448 
 449     if (pslash != NULL) {
 450       pslash = strrchr(buf, '/');
 451       if (pslash != NULL) {
 452         *pslash = '\0';        // Get rid of /lib.
 453       }
 454     }
 455     Arguments::set_java_home(buf);
 456     if (!set_boot_path('/', ':')) {
 457       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 458     }
 459   }
 460 
 461   // Where to look for native libraries.
 462   //
 463   // Note: Due to a legacy implementation, most of the library path
 464   // is set in the launcher. This was to accomodate linking restrictions
 465   // on legacy Linux implementations (which are no longer supported).
 466   // Eventually, all the library path setting will be done here.
 467   //
 468   // However, to prevent the proliferation of improperly built native
 469   // libraries, the new path component /usr/java/packages is added here.
 470   // Eventually, all the library path setting will be done here.
 471   {
 472     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 473     // should always exist (until the legacy problem cited above is
 474     // addressed).
 475     const char *v = ::getenv("LD_LIBRARY_PATH");
 476     const char *v_colon = ":";
 477     if (v == NULL) { v = ""; v_colon = ""; }
 478     // That's +1 for the colon and +1 for the trailing '\0'.
 479     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 480                                                      strlen(v) + 1 +
 481                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 482                                                      mtInternal);
 483     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 484     Arguments::set_library_path(ld_library_path);
 485     FREE_C_HEAP_ARRAY(char, ld_library_path);
 486   }
 487 
 488   // Extensions directories.
 489   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 490   Arguments::set_ext_dirs(buf);
 491 
 492   FREE_C_HEAP_ARRAY(char, buf);
 493 
 494 #undef DEFAULT_LIBPATH
 495 #undef SYS_EXT_DIR
 496 #undef EXTENSIONS_DIR
 497 }
 498 
 499 ////////////////////////////////////////////////////////////////////////////////
 500 // breakpoint support
 501 
 502 void os::breakpoint() {
 503   BREAKPOINT;
 504 }
 505 
 506 extern "C" void breakpoint() {
 507   // use debugger to set breakpoint here
 508 }
 509 
 510 ////////////////////////////////////////////////////////////////////////////////
 511 // signal support
 512 
 513 debug_only(static bool signal_sets_initialized = false);
 514 static sigset_t unblocked_sigs, vm_sigs;
 515 
 516 void os::Linux::signal_sets_init() {
 517   // Should also have an assertion stating we are still single-threaded.
 518   assert(!signal_sets_initialized, "Already initialized");
 519   // Fill in signals that are necessarily unblocked for all threads in
 520   // the VM. Currently, we unblock the following signals:
 521   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 522   //                         by -Xrs (=ReduceSignalUsage));
 523   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 524   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 525   // the dispositions or masks wrt these signals.
 526   // Programs embedding the VM that want to use the above signals for their
 527   // own purposes must, at this time, use the "-Xrs" option to prevent
 528   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 529   // (See bug 4345157, and other related bugs).
 530   // In reality, though, unblocking these signals is really a nop, since
 531   // these signals are not blocked by default.
 532   sigemptyset(&unblocked_sigs);
 533   sigaddset(&unblocked_sigs, SIGILL);
 534   sigaddset(&unblocked_sigs, SIGSEGV);
 535   sigaddset(&unblocked_sigs, SIGBUS);
 536   sigaddset(&unblocked_sigs, SIGFPE);
 537 #if defined(PPC64)
 538   sigaddset(&unblocked_sigs, SIGTRAP);
 539 #endif
 540   sigaddset(&unblocked_sigs, SR_signum);
 541 
 542   if (!ReduceSignalUsage) {
 543     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 544       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 545     }
 546     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 547       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 548     }
 549     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 550       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 551     }
 552   }
 553   // Fill in signals that are blocked by all but the VM thread.
 554   sigemptyset(&vm_sigs);
 555   if (!ReduceSignalUsage) {
 556     sigaddset(&vm_sigs, BREAK_SIGNAL);
 557   }
 558   debug_only(signal_sets_initialized = true);
 559 
 560 }
 561 
 562 // These are signals that are unblocked while a thread is running Java.
 563 // (For some reason, they get blocked by default.)
 564 sigset_t* os::Linux::unblocked_signals() {
 565   assert(signal_sets_initialized, "Not initialized");
 566   return &unblocked_sigs;
 567 }
 568 
 569 // These are the signals that are blocked while a (non-VM) thread is
 570 // running Java. Only the VM thread handles these signals.
 571 sigset_t* os::Linux::vm_signals() {
 572   assert(signal_sets_initialized, "Not initialized");
 573   return &vm_sigs;
 574 }
 575 
 576 void os::Linux::hotspot_sigmask(Thread* thread) {
 577 
 578   //Save caller's signal mask before setting VM signal mask
 579   sigset_t caller_sigmask;
 580   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 581 
 582   OSThread* osthread = thread->osthread();
 583   osthread->set_caller_sigmask(caller_sigmask);
 584 
 585   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 586 
 587   if (!ReduceSignalUsage) {
 588     if (thread->is_VM_thread()) {
 589       // Only the VM thread handles BREAK_SIGNAL ...
 590       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 591     } else {
 592       // ... all other threads block BREAK_SIGNAL
 593       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 594     }
 595   }
 596 }
 597 
 598 //////////////////////////////////////////////////////////////////////////////
 599 // detecting pthread library
 600 
 601 void os::Linux::libpthread_init() {
 602   // Save glibc and pthread version strings.
 603 #if !defined(_CS_GNU_LIBC_VERSION) || \
 604     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 605   #error "glibc too old (< 2.3.2)"
 606 #endif
 607 
 608   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 609   assert(n > 0, "cannot retrieve glibc version");
 610   char *str = (char *)malloc(n, mtInternal);
 611   confstr(_CS_GNU_LIBC_VERSION, str, n);
 612   os::Linux::set_glibc_version(str);
 613 
 614   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 615   assert(n > 0, "cannot retrieve pthread version");
 616   str = (char *)malloc(n, mtInternal);
 617   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 618   os::Linux::set_libpthread_version(str);
 619 }
 620 
 621 /////////////////////////////////////////////////////////////////////////////
 622 // thread stack expansion
 623 
 624 // os::Linux::manually_expand_stack() takes care of expanding the thread
 625 // stack. Note that this is normally not needed: pthread stacks allocate
 626 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 627 // committed. Therefore it is not necessary to expand the stack manually.
 628 //
 629 // Manually expanding the stack was historically needed on LinuxThreads
 630 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 631 // it is kept to deal with very rare corner cases:
 632 //
 633 // For one, user may run the VM on an own implementation of threads
 634 // whose stacks are - like the old LinuxThreads - implemented using
 635 // mmap(MAP_GROWSDOWN).
 636 //
 637 // Also, this coding may be needed if the VM is running on the primordial
 638 // thread. Normally we avoid running on the primordial thread; however,
 639 // user may still invoke the VM on the primordial thread.
 640 //
 641 // The following historical comment describes the details about running
 642 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 643 
 644 
 645 // Force Linux kernel to expand current thread stack. If "bottom" is close
 646 // to the stack guard, caller should block all signals.
 647 //
 648 // MAP_GROWSDOWN:
 649 //   A special mmap() flag that is used to implement thread stacks. It tells
 650 //   kernel that the memory region should extend downwards when needed. This
 651 //   allows early versions of LinuxThreads to only mmap the first few pages
 652 //   when creating a new thread. Linux kernel will automatically expand thread
 653 //   stack as needed (on page faults).
 654 //
 655 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 656 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 657 //   region, it's hard to tell if the fault is due to a legitimate stack
 658 //   access or because of reading/writing non-exist memory (e.g. buffer
 659 //   overrun). As a rule, if the fault happens below current stack pointer,
 660 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 661 //   application (see Linux kernel fault.c).
 662 //
 663 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 664 //   stack overflow detection.
 665 //
 666 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 667 //   not use MAP_GROWSDOWN.
 668 //
 669 // To get around the problem and allow stack banging on Linux, we need to
 670 // manually expand thread stack after receiving the SIGSEGV.
 671 //
 672 // There are two ways to expand thread stack to address "bottom", we used
 673 // both of them in JVM before 1.5:
 674 //   1. adjust stack pointer first so that it is below "bottom", and then
 675 //      touch "bottom"
 676 //   2. mmap() the page in question
 677 //
 678 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 679 // if current sp is already near the lower end of page 101, and we need to
 680 // call mmap() to map page 100, it is possible that part of the mmap() frame
 681 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 682 // That will destroy the mmap() frame and cause VM to crash.
 683 //
 684 // The following code works by adjusting sp first, then accessing the "bottom"
 685 // page to force a page fault. Linux kernel will then automatically expand the
 686 // stack mapping.
 687 //
 688 // _expand_stack_to() assumes its frame size is less than page size, which
 689 // should always be true if the function is not inlined.
 690 
 691 static void NOINLINE _expand_stack_to(address bottom) {
 692   address sp;
 693   size_t size;
 694   volatile char *p;
 695 
 696   // Adjust bottom to point to the largest address within the same page, it
 697   // gives us a one-page buffer if alloca() allocates slightly more memory.
 698   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 699   bottom += os::Linux::page_size() - 1;
 700 
 701   // sp might be slightly above current stack pointer; if that's the case, we
 702   // will alloca() a little more space than necessary, which is OK. Don't use
 703   // os::current_stack_pointer(), as its result can be slightly below current
 704   // stack pointer, causing us to not alloca enough to reach "bottom".
 705   sp = (address)&sp;
 706 
 707   if (sp > bottom) {
 708     size = sp - bottom;
 709     p = (volatile char *)alloca(size);
 710     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 711     p[0] = '\0';
 712   }
 713 }
 714 
 715 void os::Linux::expand_stack_to(address bottom) {
 716   _expand_stack_to(bottom);
 717 }
 718 
 719 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 720   assert(t!=NULL, "just checking");
 721   assert(t->osthread()->expanding_stack(), "expand should be set");
 722   assert(t->stack_base() != NULL, "stack_base was not initialized");
 723 
 724   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 725     sigset_t mask_all, old_sigset;
 726     sigfillset(&mask_all);
 727     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 728     _expand_stack_to(addr);
 729     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 730     return true;
 731   }
 732   return false;
 733 }
 734 
 735 //////////////////////////////////////////////////////////////////////////////
 736 // create new thread
 737 
 738 // Thread start routine for all newly created threads
 739 static void *thread_native_entry(Thread *thread) {
 740 
 741   thread->record_stack_base_and_size();
 742 
 743   // Try to randomize the cache line index of hot stack frames.
 744   // This helps when threads of the same stack traces evict each other's
 745   // cache lines. The threads can be either from the same JVM instance, or
 746   // from different JVM instances. The benefit is especially true for
 747   // processors with hyperthreading technology.
 748   static int counter = 0;
 749   int pid = os::current_process_id();
 750   alloca(((pid ^ counter++) & 7) * 128);
 751 
 752   thread->initialize_thread_current();
 753 
 754   OSThread* osthread = thread->osthread();
 755   Monitor* sync = osthread->startThread_lock();
 756 
 757   osthread->set_thread_id(os::current_thread_id());
 758 
 759   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 760     os::current_thread_id(), (uintx) pthread_self());
 761 
 762   if (UseNUMA) {
 763     int lgrp_id = os::numa_get_group_id();
 764     if (lgrp_id != -1) {
 765       thread->set_lgrp_id(lgrp_id);
 766     }
 767   }
 768   // initialize signal mask for this thread
 769   os::Linux::hotspot_sigmask(thread);
 770 
 771   // initialize floating point control register
 772   os::Linux::init_thread_fpu_state();
 773 
 774   // handshaking with parent thread
 775   {
 776     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 777 
 778     // notify parent thread
 779     osthread->set_state(INITIALIZED);
 780     sync->notify_all();
 781 
 782     // wait until os::start_thread()
 783     while (osthread->get_state() == INITIALIZED) {
 784       sync->wait_without_safepoint_check();
 785     }
 786   }
 787 
 788   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 789 
 790   // call one more level start routine
 791   thread->call_run();
 792 
 793   // Note: at this point the thread object may already have deleted itself.
 794   // Prevent dereferencing it from here on out.
 795   thread = NULL;
 796 
 797   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 798     os::current_thread_id(), (uintx) pthread_self());
 799 
 800   return 0;
 801 }
 802 
 803 // On Linux, glibc places static TLS blocks (for __thread variables) on
 804 // the thread stack. This decreases the stack size actually available
 805 // to threads.
 806 //
 807 // For large static TLS sizes, this may cause threads to malfunction due
 808 // to insufficient stack space. This is a well-known issue in glibc:
 809 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 810 //
 811 // As a workaround, we call a private but assumed-stable glibc function,
 812 // __pthread_get_minstack() to obtain the minstack size and derive the
 813 // static TLS size from it. We then increase the user requested stack
 814 // size by this TLS size.
 815 //
 816 // Due to compatibility concerns, this size adjustment is opt-in and
 817 // controlled via AdjustStackSizeForTLS.
 818 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 819 
 820 GetMinStack _get_minstack_func = NULL;
 821 
 822 static void get_minstack_init() {
 823   _get_minstack_func =
 824         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 825   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 826                        _get_minstack_func == NULL ? "failed" : "succeeded");
 827 }
 828 
 829 // Returns the size of the static TLS area glibc puts on thread stacks.
 830 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 831   size_t tls_size = 0;
 832   if (_get_minstack_func != NULL) {
 833     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 834     size_t minstack_size = _get_minstack_func(attr);
 835 
 836     // Remove non-TLS area size included in minstack size returned
 837     // by __pthread_get_minstack() to get the static TLS size.
 838     // In glibc before 2.27, minstack size includes guard_size.
 839     // In glibc 2.27 and later, guard_size is automatically added
 840     // to the stack size by pthread_create and is no longer included
 841     // in minstack size. In both cases, the guard_size is taken into
 842     // account, so there is no need to adjust the result for that.
 843     //
 844     // Although __pthread_get_minstack() is a private glibc function,
 845     // it is expected to have a stable behavior across future glibc
 846     // versions while glibc still allocats the static TLS blocks off
 847     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 848     //
 849     // size_t
 850     // __pthread_get_minstack (const pthread_attr_t *attr)
 851     // {
 852     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 853     // }
 854     //
 855     //
 856     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 857     // if check is done for precaution.
 858     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 859       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 860     }
 861   }
 862 
 863   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 864                        tls_size);
 865   return tls_size;
 866 }
 867 
 868 bool os::create_thread(Thread* thread, ThreadType thr_type,
 869                        size_t req_stack_size) {
 870   assert(thread->osthread() == NULL, "caller responsible");
 871 
 872   // Allocate the OSThread object
 873   OSThread* osthread = new OSThread(NULL, NULL);
 874   if (osthread == NULL) {
 875     return false;
 876   }
 877 
 878   // set the correct thread state
 879   osthread->set_thread_type(thr_type);
 880 
 881   // Initial state is ALLOCATED but not INITIALIZED
 882   osthread->set_state(ALLOCATED);
 883 
 884   thread->set_osthread(osthread);
 885 
 886   // init thread attributes
 887   pthread_attr_t attr;
 888   pthread_attr_init(&attr);
 889   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 890 
 891   // Calculate stack size if it's not specified by caller.
 892   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 893   // In glibc versions prior to 2.7 the guard size mechanism
 894   // is not implemented properly. The posix standard requires adding
 895   // the size of the guard pages to the stack size, instead Linux
 896   // takes the space out of 'stacksize'. Thus we adapt the requested
 897   // stack_size by the size of the guard pages to mimick proper
 898   // behaviour. However, be careful not to end up with a size
 899   // of zero due to overflow. Don't add the guard page in that case.
 900   size_t guard_size = os::Linux::default_guard_size(thr_type);
 901   // Configure glibc guard page. Must happen before calling
 902   // get_static_tls_area_size(), which uses the guard_size.
 903   pthread_attr_setguardsize(&attr, guard_size);
 904 
 905   size_t stack_adjust_size = 0;
 906   if (AdjustStackSizeForTLS) {
 907     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 908     stack_adjust_size += get_static_tls_area_size(&attr);
 909   } else {
 910     stack_adjust_size += guard_size;
 911   }
 912 
 913   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 914   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 915     stack_size += stack_adjust_size;
 916   }
 917   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 918 
 919   int status = pthread_attr_setstacksize(&attr, stack_size);
 920   assert_status(status == 0, status, "pthread_attr_setstacksize");
 921 
 922   ThreadState state;
 923 
 924   {
 925     pthread_t tid;
 926     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 927 
 928     char buf[64];
 929     if (ret == 0) {
 930       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 931         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 932     } else {
 933       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 934         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 935       // Log some OS information which might explain why creating the thread failed.
 936       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 937       LogStream st(Log(os, thread)::info());
 938       os::Posix::print_rlimit_info(&st);
 939       os::print_memory_info(&st);
 940       os::Linux::print_proc_sys_info(&st);
 941       os::Linux::print_container_info(&st);
 942     }
 943 
 944     pthread_attr_destroy(&attr);
 945 
 946     if (ret != 0) {
 947       // Need to clean up stuff we've allocated so far
 948       thread->set_osthread(NULL);
 949       delete osthread;
 950       return false;
 951     }
 952 
 953     // Store pthread info into the OSThread
 954     osthread->set_pthread_id(tid);
 955 
 956     // Wait until child thread is either initialized or aborted
 957     {
 958       Monitor* sync_with_child = osthread->startThread_lock();
 959       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 960       while ((state = osthread->get_state()) == ALLOCATED) {
 961         sync_with_child->wait_without_safepoint_check();
 962       }
 963     }
 964   }
 965 
 966   // Aborted due to thread limit being reached
 967   if (state == ZOMBIE) {
 968     thread->set_osthread(NULL);
 969     delete osthread;
 970     return false;
 971   }
 972 
 973   // The thread is returned suspended (in state INITIALIZED),
 974   // and is started higher up in the call chain
 975   assert(state == INITIALIZED, "race condition");
 976   return true;
 977 }
 978 
 979 /////////////////////////////////////////////////////////////////////////////
 980 // attach existing thread
 981 
 982 // bootstrap the main thread
 983 bool os::create_main_thread(JavaThread* thread) {
 984   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 985   return create_attached_thread(thread);
 986 }
 987 
 988 bool os::create_attached_thread(JavaThread* thread) {
 989 #ifdef ASSERT
 990   thread->verify_not_published();
 991 #endif
 992 
 993   // Allocate the OSThread object
 994   OSThread* osthread = new OSThread(NULL, NULL);
 995 
 996   if (osthread == NULL) {
 997     return false;
 998   }
 999 
1000   // Store pthread info into the OSThread
1001   osthread->set_thread_id(os::Linux::gettid());
1002   osthread->set_pthread_id(::pthread_self());
1003 
1004   // initialize floating point control register
1005   os::Linux::init_thread_fpu_state();
1006 
1007   // Initial thread state is RUNNABLE
1008   osthread->set_state(RUNNABLE);
1009 
1010   thread->set_osthread(osthread);
1011 
1012   if (UseNUMA) {
1013     int lgrp_id = os::numa_get_group_id();
1014     if (lgrp_id != -1) {
1015       thread->set_lgrp_id(lgrp_id);
1016     }
1017   }
1018 
1019   if (os::is_primordial_thread()) {
1020     // If current thread is primordial thread, its stack is mapped on demand,
1021     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1022     // the entire stack region to avoid SEGV in stack banging.
1023     // It is also useful to get around the heap-stack-gap problem on SuSE
1024     // kernel (see 4821821 for details). We first expand stack to the top
1025     // of yellow zone, then enable stack yellow zone (order is significant,
1026     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1027     // is no gap between the last two virtual memory regions.
1028 
1029     JavaThread *jt = (JavaThread *)thread;
1030     address addr = jt->stack_reserved_zone_base();
1031     assert(addr != NULL, "initialization problem?");
1032     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1033 
1034     osthread->set_expanding_stack();
1035     os::Linux::manually_expand_stack(jt, addr);
1036     osthread->clear_expanding_stack();
1037   }
1038 
1039   // initialize signal mask for this thread
1040   // and save the caller's signal mask
1041   os::Linux::hotspot_sigmask(thread);
1042 
1043   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1044     os::current_thread_id(), (uintx) pthread_self());
1045 
1046   return true;
1047 }
1048 
1049 void os::pd_start_thread(Thread* thread) {
1050   OSThread * osthread = thread->osthread();
1051   assert(osthread->get_state() != INITIALIZED, "just checking");
1052   Monitor* sync_with_child = osthread->startThread_lock();
1053   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1054   sync_with_child->notify();
1055 }
1056 
1057 // Free Linux resources related to the OSThread
1058 void os::free_thread(OSThread* osthread) {
1059   assert(osthread != NULL, "osthread not set");
1060 
1061   // We are told to free resources of the argument thread,
1062   // but we can only really operate on the current thread.
1063   assert(Thread::current()->osthread() == osthread,
1064          "os::free_thread but not current thread");
1065 
1066 #ifdef ASSERT
1067   sigset_t current;
1068   sigemptyset(&current);
1069   pthread_sigmask(SIG_SETMASK, NULL, &current);
1070   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1071 #endif
1072 
1073   // Restore caller's signal mask
1074   sigset_t sigmask = osthread->caller_sigmask();
1075   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1076 
1077   delete osthread;
1078 }
1079 
1080 //////////////////////////////////////////////////////////////////////////////
1081 // primordial thread
1082 
1083 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1084 bool os::is_primordial_thread(void) {
1085   if (suppress_primordial_thread_resolution) {
1086     return false;
1087   }
1088   char dummy;
1089   // If called before init complete, thread stack bottom will be null.
1090   // Can be called if fatal error occurs before initialization.
1091   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1092   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1093          os::Linux::initial_thread_stack_size()   != 0,
1094          "os::init did not locate primordial thread's stack region");
1095   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1096       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1097                         os::Linux::initial_thread_stack_size()) {
1098     return true;
1099   } else {
1100     return false;
1101   }
1102 }
1103 
1104 // Find the virtual memory area that contains addr
1105 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1106   FILE *fp = fopen("/proc/self/maps", "r");
1107   if (fp) {
1108     address low, high;
1109     while (!feof(fp)) {
1110       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1111         if (low <= addr && addr < high) {
1112           if (vma_low)  *vma_low  = low;
1113           if (vma_high) *vma_high = high;
1114           fclose(fp);
1115           return true;
1116         }
1117       }
1118       for (;;) {
1119         int ch = fgetc(fp);
1120         if (ch == EOF || ch == (int)'\n') break;
1121       }
1122     }
1123     fclose(fp);
1124   }
1125   return false;
1126 }
1127 
1128 // Locate primordial thread stack. This special handling of primordial thread stack
1129 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1130 // bogus value for the primordial process thread. While the launcher has created
1131 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1132 // JNI invocation API from a primordial thread.
1133 void os::Linux::capture_initial_stack(size_t max_size) {
1134 
1135   // max_size is either 0 (which means accept OS default for thread stacks) or
1136   // a user-specified value known to be at least the minimum needed. If we
1137   // are actually on the primordial thread we can make it appear that we have a
1138   // smaller max_size stack by inserting the guard pages at that location. But we
1139   // cannot do anything to emulate a larger stack than what has been provided by
1140   // the OS or threading library. In fact if we try to use a stack greater than
1141   // what is set by rlimit then we will crash the hosting process.
1142 
1143   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1144   // If this is "unlimited" then it will be a huge value.
1145   struct rlimit rlim;
1146   getrlimit(RLIMIT_STACK, &rlim);
1147   size_t stack_size = rlim.rlim_cur;
1148 
1149   // 6308388: a bug in ld.so will relocate its own .data section to the
1150   //   lower end of primordial stack; reduce ulimit -s value a little bit
1151   //   so we won't install guard page on ld.so's data section.
1152   //   But ensure we don't underflow the stack size - allow 1 page spare
1153   if (stack_size >= (size_t)(3 * page_size())) {
1154     stack_size -= 2 * page_size();
1155   }
1156 
1157   // Try to figure out where the stack base (top) is. This is harder.
1158   //
1159   // When an application is started, glibc saves the initial stack pointer in
1160   // a global variable "__libc_stack_end", which is then used by system
1161   // libraries. __libc_stack_end should be pretty close to stack top. The
1162   // variable is available since the very early days. However, because it is
1163   // a private interface, it could disappear in the future.
1164   //
1165   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1166   // to __libc_stack_end, it is very close to stack top, but isn't the real
1167   // stack top. Note that /proc may not exist if VM is running as a chroot
1168   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1169   // /proc/<pid>/stat could change in the future (though unlikely).
1170   //
1171   // We try __libc_stack_end first. If that doesn't work, look for
1172   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1173   // as a hint, which should work well in most cases.
1174 
1175   uintptr_t stack_start;
1176 
1177   // try __libc_stack_end first
1178   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1179   if (p && *p) {
1180     stack_start = *p;
1181   } else {
1182     // see if we can get the start_stack field from /proc/self/stat
1183     FILE *fp;
1184     int pid;
1185     char state;
1186     int ppid;
1187     int pgrp;
1188     int session;
1189     int nr;
1190     int tpgrp;
1191     unsigned long flags;
1192     unsigned long minflt;
1193     unsigned long cminflt;
1194     unsigned long majflt;
1195     unsigned long cmajflt;
1196     unsigned long utime;
1197     unsigned long stime;
1198     long cutime;
1199     long cstime;
1200     long prio;
1201     long nice;
1202     long junk;
1203     long it_real;
1204     uintptr_t start;
1205     uintptr_t vsize;
1206     intptr_t rss;
1207     uintptr_t rsslim;
1208     uintptr_t scodes;
1209     uintptr_t ecode;
1210     int i;
1211 
1212     // Figure what the primordial thread stack base is. Code is inspired
1213     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1214     // followed by command name surrounded by parentheses, state, etc.
1215     char stat[2048];
1216     int statlen;
1217 
1218     fp = fopen("/proc/self/stat", "r");
1219     if (fp) {
1220       statlen = fread(stat, 1, 2047, fp);
1221       stat[statlen] = '\0';
1222       fclose(fp);
1223 
1224       // Skip pid and the command string. Note that we could be dealing with
1225       // weird command names, e.g. user could decide to rename java launcher
1226       // to "java 1.4.2 :)", then the stat file would look like
1227       //                1234 (java 1.4.2 :)) R ... ...
1228       // We don't really need to know the command string, just find the last
1229       // occurrence of ")" and then start parsing from there. See bug 4726580.
1230       char * s = strrchr(stat, ')');
1231 
1232       i = 0;
1233       if (s) {
1234         // Skip blank chars
1235         do { s++; } while (s && isspace(*s));
1236 
1237 #define _UFM UINTX_FORMAT
1238 #define _DFM INTX_FORMAT
1239 
1240         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1241         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1242         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1243                    &state,          // 3  %c
1244                    &ppid,           // 4  %d
1245                    &pgrp,           // 5  %d
1246                    &session,        // 6  %d
1247                    &nr,             // 7  %d
1248                    &tpgrp,          // 8  %d
1249                    &flags,          // 9  %lu
1250                    &minflt,         // 10 %lu
1251                    &cminflt,        // 11 %lu
1252                    &majflt,         // 12 %lu
1253                    &cmajflt,        // 13 %lu
1254                    &utime,          // 14 %lu
1255                    &stime,          // 15 %lu
1256                    &cutime,         // 16 %ld
1257                    &cstime,         // 17 %ld
1258                    &prio,           // 18 %ld
1259                    &nice,           // 19 %ld
1260                    &junk,           // 20 %ld
1261                    &it_real,        // 21 %ld
1262                    &start,          // 22 UINTX_FORMAT
1263                    &vsize,          // 23 UINTX_FORMAT
1264                    &rss,            // 24 INTX_FORMAT
1265                    &rsslim,         // 25 UINTX_FORMAT
1266                    &scodes,         // 26 UINTX_FORMAT
1267                    &ecode,          // 27 UINTX_FORMAT
1268                    &stack_start);   // 28 UINTX_FORMAT
1269       }
1270 
1271 #undef _UFM
1272 #undef _DFM
1273 
1274       if (i != 28 - 2) {
1275         assert(false, "Bad conversion from /proc/self/stat");
1276         // product mode - assume we are the primordial thread, good luck in the
1277         // embedded case.
1278         warning("Can't detect primordial thread stack location - bad conversion");
1279         stack_start = (uintptr_t) &rlim;
1280       }
1281     } else {
1282       // For some reason we can't open /proc/self/stat (for example, running on
1283       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1284       // most cases, so don't abort:
1285       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1286       stack_start = (uintptr_t) &rlim;
1287     }
1288   }
1289 
1290   // Now we have a pointer (stack_start) very close to the stack top, the
1291   // next thing to do is to figure out the exact location of stack top. We
1292   // can find out the virtual memory area that contains stack_start by
1293   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1294   // and its upper limit is the real stack top. (again, this would fail if
1295   // running inside chroot, because /proc may not exist.)
1296 
1297   uintptr_t stack_top;
1298   address low, high;
1299   if (find_vma((address)stack_start, &low, &high)) {
1300     // success, "high" is the true stack top. (ignore "low", because initial
1301     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1302     stack_top = (uintptr_t)high;
1303   } else {
1304     // failed, likely because /proc/self/maps does not exist
1305     warning("Can't detect primordial thread stack location - find_vma failed");
1306     // best effort: stack_start is normally within a few pages below the real
1307     // stack top, use it as stack top, and reduce stack size so we won't put
1308     // guard page outside stack.
1309     stack_top = stack_start;
1310     stack_size -= 16 * page_size();
1311   }
1312 
1313   // stack_top could be partially down the page so align it
1314   stack_top = align_up(stack_top, page_size());
1315 
1316   // Allowed stack value is minimum of max_size and what we derived from rlimit
1317   if (max_size > 0) {
1318     _initial_thread_stack_size = MIN2(max_size, stack_size);
1319   } else {
1320     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1321     // clamp it at 8MB as we do on Solaris
1322     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1323   }
1324   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1325   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1326 
1327   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1328 
1329   if (log_is_enabled(Info, os, thread)) {
1330     // See if we seem to be on primordial process thread
1331     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1332                       uintptr_t(&rlim) < stack_top;
1333 
1334     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1335                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1336                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1337                          stack_top, intptr_t(_initial_thread_stack_bottom));
1338   }
1339 }
1340 
1341 ////////////////////////////////////////////////////////////////////////////////
1342 // time support
1343 
1344 #ifndef SUPPORTS_CLOCK_MONOTONIC
1345 #error "Build platform doesn't support clock_gettime and related functionality"
1346 #endif
1347 
1348 // Time since start-up in seconds to a fine granularity.
1349 // Used by VMSelfDestructTimer and the MemProfiler.
1350 double os::elapsedTime() {
1351 
1352   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1353 }
1354 
1355 jlong os::elapsed_counter() {
1356   return javaTimeNanos() - initial_time_count;
1357 }
1358 
1359 jlong os::elapsed_frequency() {
1360   return NANOSECS_PER_SEC; // nanosecond resolution
1361 }
1362 
1363 bool os::supports_vtime() { return true; }
1364 bool os::enable_vtime()   { return false; }
1365 bool os::vtime_enabled()  { return false; }
1366 
1367 double os::elapsedVTime() {
1368   struct rusage usage;
1369   int retval = getrusage(RUSAGE_THREAD, &usage);
1370   if (retval == 0) {
1371     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1372   } else {
1373     // better than nothing, but not much
1374     return elapsedTime();
1375   }
1376 }
1377 
1378 jlong os::javaTimeMillis() {
1379   timeval time;
1380   int status = gettimeofday(&time, NULL);
1381   assert(status != -1, "linux error");
1382   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1383 }
1384 
1385 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1386   timeval time;
1387   int status = gettimeofday(&time, NULL);
1388   assert(status != -1, "linux error");
1389   seconds = jlong(time.tv_sec);
1390   nanos = jlong(time.tv_usec) * 1000;
1391 }
1392 
1393 void os::Linux::fast_thread_clock_init() {
1394   if (!UseLinuxPosixThreadCPUClocks) {
1395     return;
1396   }
1397   clockid_t clockid;
1398   struct timespec tp;
1399   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1400       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1401 
1402   // Switch to using fast clocks for thread cpu time if
1403   // the clock_getres() returns 0 error code.
1404   // Note, that some kernels may support the current thread
1405   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1406   // returned by the pthread_getcpuclockid().
1407   // If the fast Posix clocks are supported then the clock_getres()
1408   // must return at least tp.tv_sec == 0 which means a resolution
1409   // better than 1 sec. This is extra check for reliability.
1410 
1411   if (pthread_getcpuclockid_func &&
1412       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1413       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1414     _supports_fast_thread_cpu_time = true;
1415     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1416   }
1417 }
1418 
1419 jlong os::javaTimeNanos() {
1420   if (os::supports_monotonic_clock()) {
1421     struct timespec tp;
1422     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1423     assert(status == 0, "gettime error");
1424     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1425     return result;
1426   } else {
1427     timeval time;
1428     int status = gettimeofday(&time, NULL);
1429     assert(status != -1, "linux error");
1430     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1431     return 1000 * usecs;
1432   }
1433 }
1434 
1435 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1436   if (os::supports_monotonic_clock()) {
1437     info_ptr->max_value = ALL_64_BITS;
1438 
1439     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1440     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1441     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1442   } else {
1443     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1444     info_ptr->max_value = ALL_64_BITS;
1445 
1446     // gettimeofday is a real time clock so it skips
1447     info_ptr->may_skip_backward = true;
1448     info_ptr->may_skip_forward = true;
1449   }
1450 
1451   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1452 }
1453 
1454 // Return the real, user, and system times in seconds from an
1455 // arbitrary fixed point in the past.
1456 bool os::getTimesSecs(double* process_real_time,
1457                       double* process_user_time,
1458                       double* process_system_time) {
1459   struct tms ticks;
1460   clock_t real_ticks = times(&ticks);
1461 
1462   if (real_ticks == (clock_t) (-1)) {
1463     return false;
1464   } else {
1465     double ticks_per_second = (double) clock_tics_per_sec;
1466     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1467     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1468     *process_real_time = ((double) real_ticks) / ticks_per_second;
1469 
1470     return true;
1471   }
1472 }
1473 
1474 
1475 char * os::local_time_string(char *buf, size_t buflen) {
1476   struct tm t;
1477   time_t long_time;
1478   time(&long_time);
1479   localtime_r(&long_time, &t);
1480   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1481                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1482                t.tm_hour, t.tm_min, t.tm_sec);
1483   return buf;
1484 }
1485 
1486 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1487   return localtime_r(clock, res);
1488 }
1489 
1490 ////////////////////////////////////////////////////////////////////////////////
1491 // runtime exit support
1492 
1493 // Note: os::shutdown() might be called very early during initialization, or
1494 // called from signal handler. Before adding something to os::shutdown(), make
1495 // sure it is async-safe and can handle partially initialized VM.
1496 void os::shutdown() {
1497 
1498   // allow PerfMemory to attempt cleanup of any persistent resources
1499   perfMemory_exit();
1500 
1501   // needs to remove object in file system
1502   AttachListener::abort();
1503 
1504   // flush buffered output, finish log files
1505   ostream_abort();
1506 
1507   // Check for abort hook
1508   abort_hook_t abort_hook = Arguments::abort_hook();
1509   if (abort_hook != NULL) {
1510     abort_hook();
1511   }
1512 
1513 }
1514 
1515 // Note: os::abort() might be called very early during initialization, or
1516 // called from signal handler. Before adding something to os::abort(), make
1517 // sure it is async-safe and can handle partially initialized VM.
1518 void os::abort(bool dump_core, void* siginfo, const void* context) {
1519   os::shutdown();
1520   if (dump_core) {
1521     if (DumpPrivateMappingsInCore) {
1522       ClassLoader::close_jrt_image();
1523     }
1524 #ifndef PRODUCT
1525     fdStream out(defaultStream::output_fd());
1526     out.print_raw("Current thread is ");
1527     char buf[16];
1528     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1529     out.print_raw_cr(buf);
1530     out.print_raw_cr("Dumping core ...");
1531 #endif
1532     ::abort(); // dump core
1533   }
1534 
1535   ::exit(1);
1536 }
1537 
1538 // Die immediately, no exit hook, no abort hook, no cleanup.
1539 // Dump a core file, if possible, for debugging.
1540 void os::die() {
1541   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1542     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1543     // and don't take the time to generate a core file.
1544     os::signal_raise(SIGKILL);
1545   } else {
1546     ::abort();
1547   }
1548 }
1549 
1550 // thread_id is kernel thread id (similar to Solaris LWP id)
1551 intx os::current_thread_id() { return os::Linux::gettid(); }
1552 int os::current_process_id() {
1553   return ::getpid();
1554 }
1555 
1556 // DLL functions
1557 
1558 const char* os::dll_file_extension() { return ".so"; }
1559 
1560 // This must be hard coded because it's the system's temporary
1561 // directory not the java application's temp directory, ala java.io.tmpdir.
1562 const char* os::get_temp_directory() { return "/tmp"; }
1563 
1564 static bool file_exists(const char* filename) {
1565   struct stat statbuf;
1566   if (filename == NULL || strlen(filename) == 0) {
1567     return false;
1568   }
1569   return os::stat(filename, &statbuf) == 0;
1570 }
1571 
1572 // check if addr is inside libjvm.so
1573 bool os::address_is_in_vm(address addr) {
1574   static address libjvm_base_addr;
1575   Dl_info dlinfo;
1576 
1577   if (libjvm_base_addr == NULL) {
1578     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1579       libjvm_base_addr = (address)dlinfo.dli_fbase;
1580     }
1581     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1582   }
1583 
1584   if (dladdr((void *)addr, &dlinfo) != 0) {
1585     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1586   }
1587 
1588   return false;
1589 }
1590 
1591 bool os::dll_address_to_function_name(address addr, char *buf,
1592                                       int buflen, int *offset,
1593                                       bool demangle) {
1594   // buf is not optional, but offset is optional
1595   assert(buf != NULL, "sanity check");
1596 
1597   Dl_info dlinfo;
1598 
1599   if (dladdr((void*)addr, &dlinfo) != 0) {
1600     // see if we have a matching symbol
1601     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1602       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1603         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1604       }
1605       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1606       return true;
1607     }
1608     // no matching symbol so try for just file info
1609     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1610       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1611                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1612         return true;
1613       }
1614     }
1615   }
1616 
1617   buf[0] = '\0';
1618   if (offset != NULL) *offset = -1;
1619   return false;
1620 }
1621 
1622 struct _address_to_library_name {
1623   address addr;          // input : memory address
1624   size_t  buflen;        //         size of fname
1625   char*   fname;         // output: library name
1626   address base;          //         library base addr
1627 };
1628 
1629 static int address_to_library_name_callback(struct dl_phdr_info *info,
1630                                             size_t size, void *data) {
1631   int i;
1632   bool found = false;
1633   address libbase = NULL;
1634   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1635 
1636   // iterate through all loadable segments
1637   for (i = 0; i < info->dlpi_phnum; i++) {
1638     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1639     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1640       // base address of a library is the lowest address of its loaded
1641       // segments.
1642       if (libbase == NULL || libbase > segbase) {
1643         libbase = segbase;
1644       }
1645       // see if 'addr' is within current segment
1646       if (segbase <= d->addr &&
1647           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1648         found = true;
1649       }
1650     }
1651   }
1652 
1653   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1654   // so dll_address_to_library_name() can fall through to use dladdr() which
1655   // can figure out executable name from argv[0].
1656   if (found && info->dlpi_name && info->dlpi_name[0]) {
1657     d->base = libbase;
1658     if (d->fname) {
1659       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1660     }
1661     return 1;
1662   }
1663   return 0;
1664 }
1665 
1666 bool os::dll_address_to_library_name(address addr, char* buf,
1667                                      int buflen, int* offset) {
1668   // buf is not optional, but offset is optional
1669   assert(buf != NULL, "sanity check");
1670 
1671   Dl_info dlinfo;
1672   struct _address_to_library_name data;
1673 
1674   // There is a bug in old glibc dladdr() implementation that it could resolve
1675   // to wrong library name if the .so file has a base address != NULL. Here
1676   // we iterate through the program headers of all loaded libraries to find
1677   // out which library 'addr' really belongs to. This workaround can be
1678   // removed once the minimum requirement for glibc is moved to 2.3.x.
1679   data.addr = addr;
1680   data.fname = buf;
1681   data.buflen = buflen;
1682   data.base = NULL;
1683   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1684 
1685   if (rslt) {
1686     // buf already contains library name
1687     if (offset) *offset = addr - data.base;
1688     return true;
1689   }
1690   if (dladdr((void*)addr, &dlinfo) != 0) {
1691     if (dlinfo.dli_fname != NULL) {
1692       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1693     }
1694     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1695       *offset = addr - (address)dlinfo.dli_fbase;
1696     }
1697     return true;
1698   }
1699 
1700   buf[0] = '\0';
1701   if (offset) *offset = -1;
1702   return false;
1703 }
1704 
1705 // Loads .dll/.so and
1706 // in case of error it checks if .dll/.so was built for the
1707 // same architecture as Hotspot is running on
1708 
1709 
1710 // Remember the stack's state. The Linux dynamic linker will change
1711 // the stack to 'executable' at most once, so we must safepoint only once.
1712 bool os::Linux::_stack_is_executable = false;
1713 
1714 // VM operation that loads a library.  This is necessary if stack protection
1715 // of the Java stacks can be lost during loading the library.  If we
1716 // do not stop the Java threads, they can stack overflow before the stacks
1717 // are protected again.
1718 class VM_LinuxDllLoad: public VM_Operation {
1719  private:
1720   const char *_filename;
1721   char *_ebuf;
1722   int _ebuflen;
1723   void *_lib;
1724  public:
1725   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1726     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1727   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1728   void doit() {
1729     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1730     os::Linux::_stack_is_executable = true;
1731   }
1732   void* loaded_library() { return _lib; }
1733 };
1734 
1735 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1736   void * result = NULL;
1737   bool load_attempted = false;
1738 
1739   // Check whether the library to load might change execution rights
1740   // of the stack. If they are changed, the protection of the stack
1741   // guard pages will be lost. We need a safepoint to fix this.
1742   //
1743   // See Linux man page execstack(8) for more info.
1744   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1745     if (!ElfFile::specifies_noexecstack(filename)) {
1746       if (!is_init_completed()) {
1747         os::Linux::_stack_is_executable = true;
1748         // This is OK - No Java threads have been created yet, and hence no
1749         // stack guard pages to fix.
1750         //
1751         // Dynamic loader will make all stacks executable after
1752         // this function returns, and will not do that again.
1753         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1754       } else {
1755         warning("You have loaded library %s which might have disabled stack guard. "
1756                 "The VM will try to fix the stack guard now.\n"
1757                 "It's highly recommended that you fix the library with "
1758                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1759                 filename);
1760 
1761         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1762         JavaThread *jt = JavaThread::current();
1763         if (jt->thread_state() != _thread_in_native) {
1764           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1765           // that requires ExecStack. Cannot enter safe point. Let's give up.
1766           warning("Unable to fix stack guard. Giving up.");
1767         } else {
1768           if (!LoadExecStackDllInVMThread) {
1769             // This is for the case where the DLL has an static
1770             // constructor function that executes JNI code. We cannot
1771             // load such DLLs in the VMThread.
1772             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1773           }
1774 
1775           ThreadInVMfromNative tiv(jt);
1776           debug_only(VMNativeEntryWrapper vew;)
1777 
1778           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1779           VMThread::execute(&op);
1780           if (LoadExecStackDllInVMThread) {
1781             result = op.loaded_library();
1782           }
1783           load_attempted = true;
1784         }
1785       }
1786     }
1787   }
1788 
1789   if (!load_attempted) {
1790     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1791   }
1792 
1793   if (result != NULL) {
1794     // Successful loading
1795     return result;
1796   }
1797 
1798   Elf32_Ehdr elf_head;
1799   int diag_msg_max_length=ebuflen-strlen(ebuf);
1800   char* diag_msg_buf=ebuf+strlen(ebuf);
1801 
1802   if (diag_msg_max_length==0) {
1803     // No more space in ebuf for additional diagnostics message
1804     return NULL;
1805   }
1806 
1807 
1808   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1809 
1810   if (file_descriptor < 0) {
1811     // Can't open library, report dlerror() message
1812     return NULL;
1813   }
1814 
1815   bool failed_to_read_elf_head=
1816     (sizeof(elf_head)!=
1817      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1818 
1819   ::close(file_descriptor);
1820   if (failed_to_read_elf_head) {
1821     // file i/o error - report dlerror() msg
1822     return NULL;
1823   }
1824 
1825   typedef struct {
1826     Elf32_Half    code;         // Actual value as defined in elf.h
1827     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1828     unsigned char elf_class;    // 32 or 64 bit
1829     unsigned char endianess;    // MSB or LSB
1830     char*         name;         // String representation
1831   } arch_t;
1832 
1833 #ifndef EM_486
1834   #define EM_486          6               /* Intel 80486 */
1835 #endif
1836 #ifndef EM_AARCH64
1837   #define EM_AARCH64    183               /* ARM AARCH64 */
1838 #endif
1839 
1840   static const arch_t arch_array[]={
1841     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1842     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1843     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1844     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1845     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1846     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1847     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1848     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1849 #if defined(VM_LITTLE_ENDIAN)
1850     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1851     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1852 #else
1853     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1854     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1855 #endif
1856     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1857     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1858     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1859     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1860     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1861     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1862     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1863     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1864   };
1865 
1866 #if  (defined IA32)
1867   static  Elf32_Half running_arch_code=EM_386;
1868 #elif   (defined AMD64) || (defined X32)
1869   static  Elf32_Half running_arch_code=EM_X86_64;
1870 #elif  (defined IA64)
1871   static  Elf32_Half running_arch_code=EM_IA_64;
1872 #elif  (defined __sparc) && (defined _LP64)
1873   static  Elf32_Half running_arch_code=EM_SPARCV9;
1874 #elif  (defined __sparc) && (!defined _LP64)
1875   static  Elf32_Half running_arch_code=EM_SPARC;
1876 #elif  (defined __powerpc64__)
1877   static  Elf32_Half running_arch_code=EM_PPC64;
1878 #elif  (defined __powerpc__)
1879   static  Elf32_Half running_arch_code=EM_PPC;
1880 #elif  (defined AARCH64)
1881   static  Elf32_Half running_arch_code=EM_AARCH64;
1882 #elif  (defined ARM)
1883   static  Elf32_Half running_arch_code=EM_ARM;
1884 #elif  (defined S390)
1885   static  Elf32_Half running_arch_code=EM_S390;
1886 #elif  (defined ALPHA)
1887   static  Elf32_Half running_arch_code=EM_ALPHA;
1888 #elif  (defined MIPSEL)
1889   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1890 #elif  (defined PARISC)
1891   static  Elf32_Half running_arch_code=EM_PARISC;
1892 #elif  (defined MIPS)
1893   static  Elf32_Half running_arch_code=EM_MIPS;
1894 #elif  (defined M68K)
1895   static  Elf32_Half running_arch_code=EM_68K;
1896 #elif  (defined SH)
1897   static  Elf32_Half running_arch_code=EM_SH;
1898 #else
1899     #error Method os::dll_load requires that one of following is defined:\
1900         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1901 #endif
1902 
1903   // Identify compatability class for VM's architecture and library's architecture
1904   // Obtain string descriptions for architectures
1905 
1906   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1907   int running_arch_index=-1;
1908 
1909   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1910     if (running_arch_code == arch_array[i].code) {
1911       running_arch_index    = i;
1912     }
1913     if (lib_arch.code == arch_array[i].code) {
1914       lib_arch.compat_class = arch_array[i].compat_class;
1915       lib_arch.name         = arch_array[i].name;
1916     }
1917   }
1918 
1919   assert(running_arch_index != -1,
1920          "Didn't find running architecture code (running_arch_code) in arch_array");
1921   if (running_arch_index == -1) {
1922     // Even though running architecture detection failed
1923     // we may still continue with reporting dlerror() message
1924     return NULL;
1925   }
1926 
1927   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1928     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1929     return NULL;
1930   }
1931 
1932 #ifndef S390
1933   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1934     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1935     return NULL;
1936   }
1937 #endif // !S390
1938 
1939   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1940     if (lib_arch.name!=NULL) {
1941       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1942                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1943                  lib_arch.name, arch_array[running_arch_index].name);
1944     } else {
1945       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1946                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1947                  lib_arch.code,
1948                  arch_array[running_arch_index].name);
1949     }
1950   }
1951 
1952   return NULL;
1953 }
1954 
1955 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1956                                 int ebuflen) {
1957   void * result = ::dlopen(filename, RTLD_LAZY);
1958   if (result == NULL) {
1959     const char* error_report = ::dlerror();
1960     if (error_report == NULL) {
1961       error_report = "dlerror returned no error description";
1962     }
1963     if (ebuf != NULL && ebuflen > 0) {
1964       ::strncpy(ebuf, error_report, ebuflen-1);
1965       ebuf[ebuflen-1]='\0';
1966     }
1967     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1968   } else {
1969     Events::log(NULL, "Loaded shared library %s", filename);
1970   }
1971   return result;
1972 }
1973 
1974 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1975                                        int ebuflen) {
1976   void * result = NULL;
1977   if (LoadExecStackDllInVMThread) {
1978     result = dlopen_helper(filename, ebuf, ebuflen);
1979   }
1980 
1981   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1982   // library that requires an executable stack, or which does not have this
1983   // stack attribute set, dlopen changes the stack attribute to executable. The
1984   // read protection of the guard pages gets lost.
1985   //
1986   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1987   // may have been queued at the same time.
1988 
1989   if (!_stack_is_executable) {
1990     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1991       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1992           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1993         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1994           warning("Attempt to reguard stack yellow zone failed.");
1995         }
1996       }
1997     }
1998   }
1999 
2000   return result;
2001 }
2002 
2003 void* os::dll_lookup(void* handle, const char* name) {
2004   void* res = dlsym(handle, name);
2005   return res;
2006 }
2007 
2008 void* os::get_default_process_handle() {
2009   return (void*)::dlopen(NULL, RTLD_LAZY);
2010 }
2011 
2012 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2013   int fd = ::open(filename, O_RDONLY);
2014   if (fd == -1) {
2015     return false;
2016   }
2017 
2018   if (hdr != NULL) {
2019     st->print_cr("%s", hdr);
2020   }
2021 
2022   char buf[33];
2023   int bytes;
2024   buf[32] = '\0';
2025   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2026     st->print_raw(buf, bytes);
2027   }
2028 
2029   ::close(fd);
2030 
2031   return true;
2032 }
2033 
2034 void os::print_dll_info(outputStream *st) {
2035   st->print_cr("Dynamic libraries:");
2036 
2037   char fname[32];
2038   pid_t pid = os::Linux::gettid();
2039 
2040   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2041 
2042   if (!_print_ascii_file(fname, st)) {
2043     st->print("Can not get library information for pid = %d\n", pid);
2044   }
2045 }
2046 
2047 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2048   FILE *procmapsFile = NULL;
2049 
2050   // Open the procfs maps file for the current process
2051   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2052     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2053     char line[PATH_MAX + 100];
2054 
2055     // Read line by line from 'file'
2056     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2057       u8 base, top, offset, inode;
2058       char permissions[5];
2059       char device[6];
2060       char name[PATH_MAX + 1];
2061 
2062       // Parse fields from line
2063       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %7s " INT64_FORMAT " %s",
2064              &base, &top, permissions, &offset, device, &inode, name);
2065 
2066       // Filter by device id '00:00' so that we only get file system mapped files.
2067       if (strcmp(device, "00:00") != 0) {
2068 
2069         // Call callback with the fields of interest
2070         if(callback(name, (address)base, (address)top, param)) {
2071           // Oops abort, callback aborted
2072           fclose(procmapsFile);
2073           return 1;
2074         }
2075       }
2076     }
2077     fclose(procmapsFile);
2078   }
2079   return 0;
2080 }
2081 
2082 void os::print_os_info_brief(outputStream* st) {
2083   os::Linux::print_distro_info(st);
2084 
2085   os::Posix::print_uname_info(st);
2086 
2087   os::Linux::print_libversion_info(st);
2088 
2089 }
2090 
2091 void os::print_os_info(outputStream* st) {
2092   st->print("OS:");
2093 
2094   os::Linux::print_distro_info(st);
2095 
2096   os::Posix::print_uname_info(st);
2097 
2098   // Print warning if unsafe chroot environment detected
2099   if (unsafe_chroot_detected) {
2100     st->print("WARNING!! ");
2101     st->print_cr("%s", unstable_chroot_error);
2102   }
2103 
2104   os::Linux::print_libversion_info(st);
2105 
2106   os::Posix::print_rlimit_info(st);
2107 
2108   os::Posix::print_load_average(st);
2109 
2110   os::Linux::print_full_memory_info(st);
2111 
2112   os::Linux::print_proc_sys_info(st);
2113 
2114   os::Linux::print_ld_preload_file(st);
2115 
2116   os::Linux::print_container_info(st);
2117 
2118   VM_Version::print_platform_virtualization_info(st);
2119 
2120   os::Linux::print_steal_info(st);
2121 }
2122 
2123 // Try to identify popular distros.
2124 // Most Linux distributions have a /etc/XXX-release file, which contains
2125 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2126 // file that also contains the OS version string. Some have more than one
2127 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2128 // /etc/redhat-release.), so the order is important.
2129 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2130 // their own specific XXX-release file as well as a redhat-release file.
2131 // Because of this the XXX-release file needs to be searched for before the
2132 // redhat-release file.
2133 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2134 // search for redhat-release / SuSE-release needs to be before lsb-release.
2135 // Since the lsb-release file is the new standard it needs to be searched
2136 // before the older style release files.
2137 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2138 // next to last resort.  The os-release file is a new standard that contains
2139 // distribution information and the system-release file seems to be an old
2140 // standard that has been replaced by the lsb-release and os-release files.
2141 // Searching for the debian_version file is the last resort.  It contains
2142 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2143 // "Debian " is printed before the contents of the debian_version file.
2144 
2145 const char* distro_files[] = {
2146   "/etc/oracle-release",
2147   "/etc/mandriva-release",
2148   "/etc/mandrake-release",
2149   "/etc/sun-release",
2150   "/etc/redhat-release",
2151   "/etc/SuSE-release",
2152   "/etc/lsb-release",
2153   "/etc/turbolinux-release",
2154   "/etc/gentoo-release",
2155   "/etc/ltib-release",
2156   "/etc/angstrom-version",
2157   "/etc/system-release",
2158   "/etc/os-release",
2159   NULL };
2160 
2161 void os::Linux::print_distro_info(outputStream* st) {
2162   for (int i = 0;; i++) {
2163     const char* file = distro_files[i];
2164     if (file == NULL) {
2165       break;  // done
2166     }
2167     // If file prints, we found it.
2168     if (_print_ascii_file(file, st)) {
2169       return;
2170     }
2171   }
2172 
2173   if (file_exists("/etc/debian_version")) {
2174     st->print("Debian ");
2175     _print_ascii_file("/etc/debian_version", st);
2176   } else {
2177     st->print("Linux");
2178   }
2179   st->cr();
2180 }
2181 
2182 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2183   char buf[256];
2184   while (fgets(buf, sizeof(buf), fp)) {
2185     // Edit out extra stuff in expected format
2186     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2187       char* ptr = strstr(buf, "\"");  // the name is in quotes
2188       if (ptr != NULL) {
2189         ptr++; // go beyond first quote
2190         char* nl = strchr(ptr, '\"');
2191         if (nl != NULL) *nl = '\0';
2192         strncpy(distro, ptr, length);
2193       } else {
2194         ptr = strstr(buf, "=");
2195         ptr++; // go beyond equals then
2196         char* nl = strchr(ptr, '\n');
2197         if (nl != NULL) *nl = '\0';
2198         strncpy(distro, ptr, length);
2199       }
2200       return;
2201     } else if (get_first_line) {
2202       char* nl = strchr(buf, '\n');
2203       if (nl != NULL) *nl = '\0';
2204       strncpy(distro, buf, length);
2205       return;
2206     }
2207   }
2208   // print last line and close
2209   char* nl = strchr(buf, '\n');
2210   if (nl != NULL) *nl = '\0';
2211   strncpy(distro, buf, length);
2212 }
2213 
2214 static void parse_os_info(char* distro, size_t length, const char* file) {
2215   FILE* fp = fopen(file, "r");
2216   if (fp != NULL) {
2217     // if suse format, print out first line
2218     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2219     parse_os_info_helper(fp, distro, length, get_first_line);
2220     fclose(fp);
2221   }
2222 }
2223 
2224 void os::get_summary_os_info(char* buf, size_t buflen) {
2225   for (int i = 0;; i++) {
2226     const char* file = distro_files[i];
2227     if (file == NULL) {
2228       break; // ran out of distro_files
2229     }
2230     if (file_exists(file)) {
2231       parse_os_info(buf, buflen, file);
2232       return;
2233     }
2234   }
2235   // special case for debian
2236   if (file_exists("/etc/debian_version")) {
2237     strncpy(buf, "Debian ", buflen);
2238     if (buflen > 7) {
2239       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2240     }
2241   } else {
2242     strncpy(buf, "Linux", buflen);
2243   }
2244 }
2245 
2246 void os::Linux::print_libversion_info(outputStream* st) {
2247   // libc, pthread
2248   st->print("libc:");
2249   st->print("%s ", os::Linux::glibc_version());
2250   st->print("%s ", os::Linux::libpthread_version());
2251   st->cr();
2252 }
2253 
2254 void os::Linux::print_proc_sys_info(outputStream* st) {
2255   st->cr();
2256   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2257   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2258   st->cr();
2259   st->cr();
2260 
2261   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2262   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2263   st->cr();
2264   st->cr();
2265 
2266   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2267   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2268   st->cr();
2269   st->cr();
2270 }
2271 
2272 void os::Linux::print_full_memory_info(outputStream* st) {
2273   st->print("\n/proc/meminfo:\n");
2274   _print_ascii_file("/proc/meminfo", st);
2275   st->cr();
2276 }
2277 
2278 void os::Linux::print_ld_preload_file(outputStream* st) {
2279   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2280   st->cr();
2281 }
2282 
2283 void os::Linux::print_container_info(outputStream* st) {
2284   if (!OSContainer::is_containerized()) {
2285     return;
2286   }
2287 
2288   st->print("container (cgroup) information:\n");
2289 
2290   const char *p_ct = OSContainer::container_type();
2291   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2292 
2293   char *p = OSContainer::cpu_cpuset_cpus();
2294   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2295   free(p);
2296 
2297   p = OSContainer::cpu_cpuset_memory_nodes();
2298   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2299   free(p);
2300 
2301   int i = OSContainer::active_processor_count();
2302   st->print("active_processor_count: ");
2303   if (i > 0) {
2304     st->print("%d\n", i);
2305   } else {
2306     st->print("not supported\n");
2307   }
2308 
2309   i = OSContainer::cpu_quota();
2310   st->print("cpu_quota: ");
2311   if (i > 0) {
2312     st->print("%d\n", i);
2313   } else {
2314     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2315   }
2316 
2317   i = OSContainer::cpu_period();
2318   st->print("cpu_period: ");
2319   if (i > 0) {
2320     st->print("%d\n", i);
2321   } else {
2322     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2323   }
2324 
2325   i = OSContainer::cpu_shares();
2326   st->print("cpu_shares: ");
2327   if (i > 0) {
2328     st->print("%d\n", i);
2329   } else {
2330     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2331   }
2332 
2333   jlong j = OSContainer::memory_limit_in_bytes();
2334   st->print("memory_limit_in_bytes: ");
2335   if (j > 0) {
2336     st->print(JLONG_FORMAT "\n", j);
2337   } else {
2338     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2339   }
2340 
2341   j = OSContainer::memory_and_swap_limit_in_bytes();
2342   st->print("memory_and_swap_limit_in_bytes: ");
2343   if (j > 0) {
2344     st->print(JLONG_FORMAT "\n", j);
2345   } else {
2346     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2347   }
2348 
2349   j = OSContainer::memory_soft_limit_in_bytes();
2350   st->print("memory_soft_limit_in_bytes: ");
2351   if (j > 0) {
2352     st->print(JLONG_FORMAT "\n", j);
2353   } else {
2354     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2355   }
2356 
2357   j = OSContainer::OSContainer::memory_usage_in_bytes();
2358   st->print("memory_usage_in_bytes: ");
2359   if (j > 0) {
2360     st->print(JLONG_FORMAT "\n", j);
2361   } else {
2362     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2363   }
2364 
2365   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2366   st->print("memory_max_usage_in_bytes: ");
2367   if (j > 0) {
2368     st->print(JLONG_FORMAT "\n", j);
2369   } else {
2370     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2371   }
2372   st->cr();
2373 }
2374 
2375 void os::Linux::print_steal_info(outputStream* st) {
2376   if (has_initial_tick_info) {
2377     CPUPerfTicks pticks;
2378     bool res = os::Linux::get_tick_information(&pticks, -1);
2379 
2380     if (res && pticks.has_steal_ticks) {
2381       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2382       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2383       double steal_ticks_perc = 0.0;
2384       if (total_ticks_difference != 0) {
2385         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2386       }
2387       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2388       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2389     }
2390   }
2391 }
2392 
2393 void os::print_memory_info(outputStream* st) {
2394 
2395   st->print("Memory:");
2396   st->print(" %dk page", os::vm_page_size()>>10);
2397 
2398   // values in struct sysinfo are "unsigned long"
2399   struct sysinfo si;
2400   sysinfo(&si);
2401 
2402   st->print(", physical " UINT64_FORMAT "k",
2403             os::physical_memory() >> 10);
2404   st->print("(" UINT64_FORMAT "k free)",
2405             os::available_memory() >> 10);
2406   st->print(", swap " UINT64_FORMAT "k",
2407             ((jlong)si.totalswap * si.mem_unit) >> 10);
2408   st->print("(" UINT64_FORMAT "k free)",
2409             ((jlong)si.freeswap * si.mem_unit) >> 10);
2410   st->cr();
2411 }
2412 
2413 // Print the first "model name" line and the first "flags" line
2414 // that we find and nothing more. We assume "model name" comes
2415 // before "flags" so if we find a second "model name", then the
2416 // "flags" field is considered missing.
2417 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2418 #if defined(IA32) || defined(AMD64)
2419   // Other platforms have less repetitive cpuinfo files
2420   FILE *fp = fopen("/proc/cpuinfo", "r");
2421   if (fp) {
2422     while (!feof(fp)) {
2423       if (fgets(buf, buflen, fp)) {
2424         // Assume model name comes before flags
2425         bool model_name_printed = false;
2426         if (strstr(buf, "model name") != NULL) {
2427           if (!model_name_printed) {
2428             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2429             st->print_raw(buf);
2430             model_name_printed = true;
2431           } else {
2432             // model name printed but not flags?  Odd, just return
2433             fclose(fp);
2434             return true;
2435           }
2436         }
2437         // print the flags line too
2438         if (strstr(buf, "flags") != NULL) {
2439           st->print_raw(buf);
2440           fclose(fp);
2441           return true;
2442         }
2443       }
2444     }
2445     fclose(fp);
2446   }
2447 #endif // x86 platforms
2448   return false;
2449 }
2450 
2451 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2452   // Only print the model name if the platform provides this as a summary
2453   if (!print_model_name_and_flags(st, buf, buflen)) {
2454     st->print("\n/proc/cpuinfo:\n");
2455     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2456       st->print_cr("  <Not Available>");
2457     }
2458   }
2459 }
2460 
2461 #if defined(AMD64) || defined(IA32) || defined(X32)
2462 const char* search_string = "model name";
2463 #elif defined(M68K)
2464 const char* search_string = "CPU";
2465 #elif defined(PPC64)
2466 const char* search_string = "cpu";
2467 #elif defined(S390)
2468 const char* search_string = "machine =";
2469 #elif defined(SPARC)
2470 const char* search_string = "cpu";
2471 #else
2472 const char* search_string = "Processor";
2473 #endif
2474 
2475 // Parses the cpuinfo file for string representing the model name.
2476 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2477   FILE* fp = fopen("/proc/cpuinfo", "r");
2478   if (fp != NULL) {
2479     while (!feof(fp)) {
2480       char buf[256];
2481       if (fgets(buf, sizeof(buf), fp)) {
2482         char* start = strstr(buf, search_string);
2483         if (start != NULL) {
2484           char *ptr = start + strlen(search_string);
2485           char *end = buf + strlen(buf);
2486           while (ptr != end) {
2487              // skip whitespace and colon for the rest of the name.
2488              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2489                break;
2490              }
2491              ptr++;
2492           }
2493           if (ptr != end) {
2494             // reasonable string, get rid of newline and keep the rest
2495             char* nl = strchr(buf, '\n');
2496             if (nl != NULL) *nl = '\0';
2497             strncpy(cpuinfo, ptr, length);
2498             fclose(fp);
2499             return;
2500           }
2501         }
2502       }
2503     }
2504     fclose(fp);
2505   }
2506   // cpuinfo not found or parsing failed, just print generic string.  The entire
2507   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2508 #if   defined(AARCH64)
2509   strncpy(cpuinfo, "AArch64", length);
2510 #elif defined(AMD64)
2511   strncpy(cpuinfo, "x86_64", length);
2512 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2513   strncpy(cpuinfo, "ARM", length);
2514 #elif defined(IA32)
2515   strncpy(cpuinfo, "x86_32", length);
2516 #elif defined(IA64)
2517   strncpy(cpuinfo, "IA64", length);
2518 #elif defined(PPC)
2519   strncpy(cpuinfo, "PPC64", length);
2520 #elif defined(S390)
2521   strncpy(cpuinfo, "S390", length);
2522 #elif defined(SPARC)
2523   strncpy(cpuinfo, "sparcv9", length);
2524 #elif defined(ZERO_LIBARCH)
2525   strncpy(cpuinfo, ZERO_LIBARCH, length);
2526 #else
2527   strncpy(cpuinfo, "unknown", length);
2528 #endif
2529 }
2530 
2531 static void print_signal_handler(outputStream* st, int sig,
2532                                  char* buf, size_t buflen);
2533 
2534 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2535   st->print_cr("Signal Handlers:");
2536   print_signal_handler(st, SIGSEGV, buf, buflen);
2537   print_signal_handler(st, SIGBUS , buf, buflen);
2538   print_signal_handler(st, SIGFPE , buf, buflen);
2539   print_signal_handler(st, SIGPIPE, buf, buflen);
2540   print_signal_handler(st, SIGXFSZ, buf, buflen);
2541   print_signal_handler(st, SIGILL , buf, buflen);
2542   print_signal_handler(st, SR_signum, buf, buflen);
2543   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2544   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2545   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2546   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2547 #if defined(PPC64)
2548   print_signal_handler(st, SIGTRAP, buf, buflen);
2549 #endif
2550 }
2551 
2552 static char saved_jvm_path[MAXPATHLEN] = {0};
2553 
2554 // Find the full path to the current module, libjvm.so
2555 void os::jvm_path(char *buf, jint buflen) {
2556   // Error checking.
2557   if (buflen < MAXPATHLEN) {
2558     assert(false, "must use a large-enough buffer");
2559     buf[0] = '\0';
2560     return;
2561   }
2562   // Lazy resolve the path to current module.
2563   if (saved_jvm_path[0] != 0) {
2564     strcpy(buf, saved_jvm_path);
2565     return;
2566   }
2567 
2568   char dli_fname[MAXPATHLEN];
2569   bool ret = dll_address_to_library_name(
2570                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2571                                          dli_fname, sizeof(dli_fname), NULL);
2572   assert(ret, "cannot locate libjvm");
2573   char *rp = NULL;
2574   if (ret && dli_fname[0] != '\0') {
2575     rp = os::Posix::realpath(dli_fname, buf, buflen);
2576   }
2577   if (rp == NULL) {
2578     return;
2579   }
2580 
2581   if (Arguments::sun_java_launcher_is_altjvm()) {
2582     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2583     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2584     // If "/jre/lib/" appears at the right place in the string, then
2585     // assume we are installed in a JDK and we're done. Otherwise, check
2586     // for a JAVA_HOME environment variable and fix up the path so it
2587     // looks like libjvm.so is installed there (append a fake suffix
2588     // hotspot/libjvm.so).
2589     const char *p = buf + strlen(buf) - 1;
2590     for (int count = 0; p > buf && count < 5; ++count) {
2591       for (--p; p > buf && *p != '/'; --p)
2592         /* empty */ ;
2593     }
2594 
2595     if (strncmp(p, "/jre/lib/", 9) != 0) {
2596       // Look for JAVA_HOME in the environment.
2597       char* java_home_var = ::getenv("JAVA_HOME");
2598       if (java_home_var != NULL && java_home_var[0] != 0) {
2599         char* jrelib_p;
2600         int len;
2601 
2602         // Check the current module name "libjvm.so".
2603         p = strrchr(buf, '/');
2604         if (p == NULL) {
2605           return;
2606         }
2607         assert(strstr(p, "/libjvm") == p, "invalid library name");
2608 
2609         rp = os::Posix::realpath(java_home_var, buf, buflen);
2610         if (rp == NULL) {
2611           return;
2612         }
2613 
2614         // determine if this is a legacy image or modules image
2615         // modules image doesn't have "jre" subdirectory
2616         len = strlen(buf);
2617         assert(len < buflen, "Ran out of buffer room");
2618         jrelib_p = buf + len;
2619         snprintf(jrelib_p, buflen-len, "/jre/lib");
2620         if (0 != access(buf, F_OK)) {
2621           snprintf(jrelib_p, buflen-len, "/lib");
2622         }
2623 
2624         if (0 == access(buf, F_OK)) {
2625           // Use current module name "libjvm.so"
2626           len = strlen(buf);
2627           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2628         } else {
2629           // Go back to path of .so
2630           rp = os::Posix::realpath(dli_fname, buf, buflen);
2631           if (rp == NULL) {
2632             return;
2633           }
2634         }
2635       }
2636     }
2637   }
2638 
2639   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2640   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2641 }
2642 
2643 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2644   // no prefix required, not even "_"
2645 }
2646 
2647 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2648   // no suffix required
2649 }
2650 
2651 ////////////////////////////////////////////////////////////////////////////////
2652 // sun.misc.Signal support
2653 
2654 static volatile jint sigint_count = 0;
2655 
2656 static void UserHandler(int sig, void *siginfo, void *context) {
2657   // 4511530 - sem_post is serialized and handled by the manager thread. When
2658   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2659   // don't want to flood the manager thread with sem_post requests.
2660   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2661     return;
2662   }
2663 
2664   // Ctrl-C is pressed during error reporting, likely because the error
2665   // handler fails to abort. Let VM die immediately.
2666   if (sig == SIGINT && VMError::is_error_reported()) {
2667     os::die();
2668   }
2669 
2670   os::signal_notify(sig);
2671 }
2672 
2673 void* os::user_handler() {
2674   return CAST_FROM_FN_PTR(void*, UserHandler);
2675 }
2676 
2677 extern "C" {
2678   typedef void (*sa_handler_t)(int);
2679   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2680 }
2681 
2682 void* os::signal(int signal_number, void* handler) {
2683   struct sigaction sigAct, oldSigAct;
2684 
2685   sigfillset(&(sigAct.sa_mask));
2686   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2687   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2688 
2689   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2690     // -1 means registration failed
2691     return (void *)-1;
2692   }
2693 
2694   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2695 }
2696 
2697 void os::signal_raise(int signal_number) {
2698   ::raise(signal_number);
2699 }
2700 
2701 // The following code is moved from os.cpp for making this
2702 // code platform specific, which it is by its very nature.
2703 
2704 // Will be modified when max signal is changed to be dynamic
2705 int os::sigexitnum_pd() {
2706   return NSIG;
2707 }
2708 
2709 // a counter for each possible signal value
2710 static volatile jint pending_signals[NSIG+1] = { 0 };
2711 
2712 // Linux(POSIX) specific hand shaking semaphore.
2713 static Semaphore* sig_sem = NULL;
2714 static PosixSemaphore sr_semaphore;
2715 
2716 static void jdk_misc_signal_init() {
2717   // Initialize signal structures
2718   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2719 
2720   // Initialize signal semaphore
2721   sig_sem = new Semaphore();
2722 }
2723 
2724 void os::signal_notify(int sig) {
2725   if (sig_sem != NULL) {
2726     Atomic::inc(&pending_signals[sig]);
2727     sig_sem->signal();
2728   } else {
2729     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2730     // initialization isn't called.
2731     assert(ReduceSignalUsage, "signal semaphore should be created");
2732   }
2733 }
2734 
2735 static int check_pending_signals() {
2736   Atomic::store(0, &sigint_count);
2737   for (;;) {
2738     for (int i = 0; i < NSIG + 1; i++) {
2739       jint n = pending_signals[i];
2740       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2741         return i;
2742       }
2743     }
2744     JavaThread *thread = JavaThread::current();
2745     ThreadBlockInVM tbivm(thread);
2746 
2747     bool threadIsSuspended;
2748     do {
2749       thread->set_suspend_equivalent();
2750       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2751       sig_sem->wait();
2752 
2753       // were we externally suspended while we were waiting?
2754       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2755       if (threadIsSuspended) {
2756         // The semaphore has been incremented, but while we were waiting
2757         // another thread suspended us. We don't want to continue running
2758         // while suspended because that would surprise the thread that
2759         // suspended us.
2760         sig_sem->signal();
2761 
2762         thread->java_suspend_self();
2763       }
2764     } while (threadIsSuspended);
2765   }
2766 }
2767 
2768 int os::signal_wait() {
2769   return check_pending_signals();
2770 }
2771 
2772 ////////////////////////////////////////////////////////////////////////////////
2773 // Virtual Memory
2774 
2775 int os::vm_page_size() {
2776   // Seems redundant as all get out
2777   assert(os::Linux::page_size() != -1, "must call os::init");
2778   return os::Linux::page_size();
2779 }
2780 
2781 // Solaris allocates memory by pages.
2782 int os::vm_allocation_granularity() {
2783   assert(os::Linux::page_size() != -1, "must call os::init");
2784   return os::Linux::page_size();
2785 }
2786 
2787 // Rationale behind this function:
2788 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2789 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2790 //  samples for JITted code. Here we create private executable mapping over the code cache
2791 //  and then we can use standard (well, almost, as mapping can change) way to provide
2792 //  info for the reporting script by storing timestamp and location of symbol
2793 void linux_wrap_code(char* base, size_t size) {
2794   static volatile jint cnt = 0;
2795 
2796   if (!UseOprofile) {
2797     return;
2798   }
2799 
2800   char buf[PATH_MAX+1];
2801   int num = Atomic::add(1, &cnt);
2802 
2803   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2804            os::get_temp_directory(), os::current_process_id(), num);
2805   unlink(buf);
2806 
2807   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2808 
2809   if (fd != -1) {
2810     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2811     if (rv != (off_t)-1) {
2812       if (::write(fd, "", 1) == 1) {
2813         mmap(base, size,
2814              PROT_READ|PROT_WRITE|PROT_EXEC,
2815              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2816       }
2817     }
2818     ::close(fd);
2819     unlink(buf);
2820   }
2821 }
2822 
2823 static bool recoverable_mmap_error(int err) {
2824   // See if the error is one we can let the caller handle. This
2825   // list of errno values comes from JBS-6843484. I can't find a
2826   // Linux man page that documents this specific set of errno
2827   // values so while this list currently matches Solaris, it may
2828   // change as we gain experience with this failure mode.
2829   switch (err) {
2830   case EBADF:
2831   case EINVAL:
2832   case ENOTSUP:
2833     // let the caller deal with these errors
2834     return true;
2835 
2836   default:
2837     // Any remaining errors on this OS can cause our reserved mapping
2838     // to be lost. That can cause confusion where different data
2839     // structures think they have the same memory mapped. The worst
2840     // scenario is if both the VM and a library think they have the
2841     // same memory mapped.
2842     return false;
2843   }
2844 }
2845 
2846 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2847                                     int err) {
2848   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2849           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2850           os::strerror(err), err);
2851 }
2852 
2853 static void warn_fail_commit_memory(char* addr, size_t size,
2854                                     size_t alignment_hint, bool exec,
2855                                     int err) {
2856   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2857           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2858           alignment_hint, exec, os::strerror(err), err);
2859 }
2860 
2861 // NOTE: Linux kernel does not really reserve the pages for us.
2862 //       All it does is to check if there are enough free pages
2863 //       left at the time of mmap(). This could be a potential
2864 //       problem.
2865 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2866   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2867   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2868                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2869   if (res != (uintptr_t) MAP_FAILED) {
2870     if (UseNUMAInterleaving) {
2871       numa_make_global(addr, size);
2872     }
2873     return 0;
2874   }
2875 
2876   int err = errno;  // save errno from mmap() call above
2877 
2878   if (!recoverable_mmap_error(err)) {
2879     warn_fail_commit_memory(addr, size, exec, err);
2880     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2881   }
2882 
2883   return err;
2884 }
2885 
2886 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2887   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2888 }
2889 
2890 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2891                                   const char* mesg) {
2892   assert(mesg != NULL, "mesg must be specified");
2893   int err = os::Linux::commit_memory_impl(addr, size, exec);
2894   if (err != 0) {
2895     // the caller wants all commit errors to exit with the specified mesg:
2896     warn_fail_commit_memory(addr, size, exec, err);
2897     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2898   }
2899 }
2900 
2901 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2902 #ifndef MAP_HUGETLB
2903   #define MAP_HUGETLB 0x40000
2904 #endif
2905 
2906 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2907 #ifndef MADV_HUGEPAGE
2908   #define MADV_HUGEPAGE 14
2909 #endif
2910 
2911 int os::Linux::commit_memory_impl(char* addr, size_t size,
2912                                   size_t alignment_hint, bool exec) {
2913   int err = os::Linux::commit_memory_impl(addr, size, exec);
2914   if (err == 0) {
2915     realign_memory(addr, size, alignment_hint);
2916   }
2917   return err;
2918 }
2919 
2920 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2921                           bool exec) {
2922   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2923 }
2924 
2925 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2926                                   size_t alignment_hint, bool exec,
2927                                   const char* mesg) {
2928   assert(mesg != NULL, "mesg must be specified");
2929   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2930   if (err != 0) {
2931     // the caller wants all commit errors to exit with the specified mesg:
2932     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2933     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2934   }
2935 }
2936 
2937 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2938   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2939     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2940     // be supported or the memory may already be backed by huge pages.
2941     ::madvise(addr, bytes, MADV_HUGEPAGE);
2942   }
2943 }
2944 
2945 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2946   // This method works by doing an mmap over an existing mmaping and effectively discarding
2947   // the existing pages. However it won't work for SHM-based large pages that cannot be
2948   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2949   // small pages on top of the SHM segment. This method always works for small pages, so we
2950   // allow that in any case.
2951   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2952     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2953   }
2954 }
2955 
2956 void os::numa_make_global(char *addr, size_t bytes) {
2957   Linux::numa_interleave_memory(addr, bytes);
2958 }
2959 
2960 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2961 // bind policy to MPOL_PREFERRED for the current thread.
2962 #define USE_MPOL_PREFERRED 0
2963 
2964 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2965   // To make NUMA and large pages more robust when both enabled, we need to ease
2966   // the requirements on where the memory should be allocated. MPOL_BIND is the
2967   // default policy and it will force memory to be allocated on the specified
2968   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2969   // the specified node, but will not force it. Using this policy will prevent
2970   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2971   // free large pages.
2972   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2973   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2974 }
2975 
2976 bool os::numa_topology_changed() { return false; }
2977 
2978 size_t os::numa_get_groups_num() {
2979   // Return just the number of nodes in which it's possible to allocate memory
2980   // (in numa terminology, configured nodes).
2981   return Linux::numa_num_configured_nodes();
2982 }
2983 
2984 int os::numa_get_group_id() {
2985   int cpu_id = Linux::sched_getcpu();
2986   if (cpu_id != -1) {
2987     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2988     if (lgrp_id != -1) {
2989       return lgrp_id;
2990     }
2991   }
2992   return 0;
2993 }
2994 
2995 int os::Linux::get_existing_num_nodes() {
2996   int node;
2997   int highest_node_number = Linux::numa_max_node();
2998   int num_nodes = 0;
2999 
3000   // Get the total number of nodes in the system including nodes without memory.
3001   for (node = 0; node <= highest_node_number; node++) {
3002     if (is_node_in_existing_nodes(node)) {
3003       num_nodes++;
3004     }
3005   }
3006   return num_nodes;
3007 }
3008 
3009 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3010   int highest_node_number = Linux::numa_max_node();
3011   size_t i = 0;
3012 
3013   // Map all node ids in which it is possible to allocate memory. Also nodes are
3014   // not always consecutively available, i.e. available from 0 to the highest
3015   // node number. If the nodes have been bound explicitly using numactl membind,
3016   // then allocate memory from those nodes only.
3017   for (int node = 0; node <= highest_node_number; node++) {
3018     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3019       ids[i++] = node;
3020     }
3021   }
3022   return i;
3023 }
3024 
3025 bool os::get_page_info(char *start, page_info* info) {
3026   return false;
3027 }
3028 
3029 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3030                      page_info* page_found) {
3031   return end;
3032 }
3033 
3034 
3035 int os::Linux::sched_getcpu_syscall(void) {
3036   unsigned int cpu = 0;
3037   int retval = -1;
3038 
3039 #if defined(IA32)
3040   #ifndef SYS_getcpu
3041     #define SYS_getcpu 318
3042   #endif
3043   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3044 #elif defined(AMD64)
3045 // Unfortunately we have to bring all these macros here from vsyscall.h
3046 // to be able to compile on old linuxes.
3047   #define __NR_vgetcpu 2
3048   #define VSYSCALL_START (-10UL << 20)
3049   #define VSYSCALL_SIZE 1024
3050   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3051   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3052   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3053   retval = vgetcpu(&cpu, NULL, NULL);
3054 #endif
3055 
3056   return (retval == -1) ? retval : cpu;
3057 }
3058 
3059 void os::Linux::sched_getcpu_init() {
3060   // sched_getcpu() should be in libc.
3061   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3062                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3063 
3064   // If it's not, try a direct syscall.
3065   if (sched_getcpu() == -1) {
3066     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3067                                     (void*)&sched_getcpu_syscall));
3068   }
3069 
3070   if (sched_getcpu() == -1) {
3071     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3072   }
3073 }
3074 
3075 // Something to do with the numa-aware allocator needs these symbols
3076 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3077 extern "C" JNIEXPORT void numa_error(char *where) { }
3078 
3079 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3080 // load symbol from base version instead.
3081 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3082   void *f = dlvsym(handle, name, "libnuma_1.1");
3083   if (f == NULL) {
3084     f = dlsym(handle, name);
3085   }
3086   return f;
3087 }
3088 
3089 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3090 // Return NULL if the symbol is not defined in this particular version.
3091 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3092   return dlvsym(handle, name, "libnuma_1.2");
3093 }
3094 
3095 bool os::Linux::libnuma_init() {
3096   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3097     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3098     if (handle != NULL) {
3099       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3100                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3101       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3102                                        libnuma_dlsym(handle, "numa_max_node")));
3103       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3104                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3105       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3106                                         libnuma_dlsym(handle, "numa_available")));
3107       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3108                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3109       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3110                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3111       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3112                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3113       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3114                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3115       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3116                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3117       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3118                                        libnuma_dlsym(handle, "numa_distance")));
3119       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3120                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3121       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3122                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3123 
3124       if (numa_available() != -1) {
3125         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3126         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3127         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3128         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3129         set_numa_membind_bitmask(_numa_get_membind());
3130         // Create an index -> node mapping, since nodes are not always consecutive
3131         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3132         rebuild_nindex_to_node_map();
3133         // Create a cpu -> node mapping
3134         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3135         rebuild_cpu_to_node_map();
3136         return true;
3137       }
3138     }
3139   }
3140   return false;
3141 }
3142 
3143 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3144   // Creating guard page is very expensive. Java thread has HotSpot
3145   // guard pages, only enable glibc guard page for non-Java threads.
3146   // (Remember: compiler thread is a Java thread, too!)
3147   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3148 }
3149 
3150 void os::Linux::rebuild_nindex_to_node_map() {
3151   int highest_node_number = Linux::numa_max_node();
3152 
3153   nindex_to_node()->clear();
3154   for (int node = 0; node <= highest_node_number; node++) {
3155     if (Linux::is_node_in_existing_nodes(node)) {
3156       nindex_to_node()->append(node);
3157     }
3158   }
3159 }
3160 
3161 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3162 // The table is later used in get_node_by_cpu().
3163 void os::Linux::rebuild_cpu_to_node_map() {
3164   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3165                               // in libnuma (possible values are starting from 16,
3166                               // and continuing up with every other power of 2, but less
3167                               // than the maximum number of CPUs supported by kernel), and
3168                               // is a subject to change (in libnuma version 2 the requirements
3169                               // are more reasonable) we'll just hardcode the number they use
3170                               // in the library.
3171   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3172 
3173   size_t cpu_num = processor_count();
3174   size_t cpu_map_size = NCPUS / BitsPerCLong;
3175   size_t cpu_map_valid_size =
3176     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3177 
3178   cpu_to_node()->clear();
3179   cpu_to_node()->at_grow(cpu_num - 1);
3180 
3181   size_t node_num = get_existing_num_nodes();
3182 
3183   int distance = 0;
3184   int closest_distance = INT_MAX;
3185   int closest_node = 0;
3186   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3187   for (size_t i = 0; i < node_num; i++) {
3188     // Check if node is configured (not a memory-less node). If it is not, find
3189     // the closest configured node. Check also if node is bound, i.e. it's allowed
3190     // to allocate memory from the node. If it's not allowed, map cpus in that node
3191     // to the closest node from which memory allocation is allowed.
3192     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3193         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3194       closest_distance = INT_MAX;
3195       // Check distance from all remaining nodes in the system. Ignore distance
3196       // from itself, from another non-configured node, and from another non-bound
3197       // node.
3198       for (size_t m = 0; m < node_num; m++) {
3199         if (m != i &&
3200             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3201             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3202           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3203           // If a closest node is found, update. There is always at least one
3204           // configured and bound node in the system so there is always at least
3205           // one node close.
3206           if (distance != 0 && distance < closest_distance) {
3207             closest_distance = distance;
3208             closest_node = nindex_to_node()->at(m);
3209           }
3210         }
3211       }
3212      } else {
3213        // Current node is already a configured node.
3214        closest_node = nindex_to_node()->at(i);
3215      }
3216 
3217     // Get cpus from the original node and map them to the closest node. If node
3218     // is a configured node (not a memory-less node), then original node and
3219     // closest node are the same.
3220     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3221       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3222         if (cpu_map[j] != 0) {
3223           for (size_t k = 0; k < BitsPerCLong; k++) {
3224             if (cpu_map[j] & (1UL << k)) {
3225               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3226             }
3227           }
3228         }
3229       }
3230     }
3231   }
3232   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3233 }
3234 
3235 int os::Linux::get_node_by_cpu(int cpu_id) {
3236   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3237     return cpu_to_node()->at(cpu_id);
3238   }
3239   return -1;
3240 }
3241 
3242 GrowableArray<int>* os::Linux::_cpu_to_node;
3243 GrowableArray<int>* os::Linux::_nindex_to_node;
3244 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3245 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3246 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3247 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3248 os::Linux::numa_available_func_t os::Linux::_numa_available;
3249 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3250 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3251 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3252 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3253 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3254 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3255 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3256 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3257 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3258 unsigned long* os::Linux::_numa_all_nodes;
3259 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3260 struct bitmask* os::Linux::_numa_nodes_ptr;
3261 struct bitmask* os::Linux::_numa_interleave_bitmask;
3262 struct bitmask* os::Linux::_numa_membind_bitmask;
3263 
3264 bool os::pd_uncommit_memory(char* addr, size_t size) {
3265   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3266                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3267   return res  != (uintptr_t) MAP_FAILED;
3268 }
3269 
3270 static address get_stack_commited_bottom(address bottom, size_t size) {
3271   address nbot = bottom;
3272   address ntop = bottom + size;
3273 
3274   size_t page_sz = os::vm_page_size();
3275   unsigned pages = size / page_sz;
3276 
3277   unsigned char vec[1];
3278   unsigned imin = 1, imax = pages + 1, imid;
3279   int mincore_return_value = 0;
3280 
3281   assert(imin <= imax, "Unexpected page size");
3282 
3283   while (imin < imax) {
3284     imid = (imax + imin) / 2;
3285     nbot = ntop - (imid * page_sz);
3286 
3287     // Use a trick with mincore to check whether the page is mapped or not.
3288     // mincore sets vec to 1 if page resides in memory and to 0 if page
3289     // is swapped output but if page we are asking for is unmapped
3290     // it returns -1,ENOMEM
3291     mincore_return_value = mincore(nbot, page_sz, vec);
3292 
3293     if (mincore_return_value == -1) {
3294       // Page is not mapped go up
3295       // to find first mapped page
3296       if (errno != EAGAIN) {
3297         assert(errno == ENOMEM, "Unexpected mincore errno");
3298         imax = imid;
3299       }
3300     } else {
3301       // Page is mapped go down
3302       // to find first not mapped page
3303       imin = imid + 1;
3304     }
3305   }
3306 
3307   nbot = nbot + page_sz;
3308 
3309   // Adjust stack bottom one page up if last checked page is not mapped
3310   if (mincore_return_value == -1) {
3311     nbot = nbot + page_sz;
3312   }
3313 
3314   return nbot;
3315 }
3316 
3317 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3318   int mincore_return_value;
3319   const size_t stripe = 1024;  // query this many pages each time
3320   unsigned char vec[stripe + 1];
3321   // set a guard
3322   vec[stripe] = 'X';
3323 
3324   const size_t page_sz = os::vm_page_size();
3325   size_t pages = size / page_sz;
3326 
3327   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3328   assert(is_aligned(size, page_sz), "Size must be page aligned");
3329 
3330   committed_start = NULL;
3331 
3332   int loops = (pages + stripe - 1) / stripe;
3333   int committed_pages = 0;
3334   address loop_base = start;
3335   bool found_range = false;
3336 
3337   for (int index = 0; index < loops && !found_range; index ++) {
3338     assert(pages > 0, "Nothing to do");
3339     int pages_to_query = (pages >= stripe) ? stripe : pages;
3340     pages -= pages_to_query;
3341 
3342     // Get stable read
3343     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3344 
3345     // During shutdown, some memory goes away without properly notifying NMT,
3346     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3347     // Bailout and return as not committed for now.
3348     if (mincore_return_value == -1 && errno == ENOMEM) {
3349       return false;
3350     }
3351 
3352     assert(vec[stripe] == 'X', "overflow guard");
3353     assert(mincore_return_value == 0, "Range must be valid");
3354     // Process this stripe
3355     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3356       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3357         // End of current contiguous region
3358         if (committed_start != NULL) {
3359           found_range = true;
3360           break;
3361         }
3362       } else { // committed
3363         // Start of region
3364         if (committed_start == NULL) {
3365           committed_start = loop_base + page_sz * vecIdx;
3366         }
3367         committed_pages ++;
3368       }
3369     }
3370 
3371     loop_base += pages_to_query * page_sz;
3372   }
3373 
3374   if (committed_start != NULL) {
3375     assert(committed_pages > 0, "Must have committed region");
3376     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3377     assert(committed_start >= start && committed_start < start + size, "Out of range");
3378     committed_size = page_sz * committed_pages;
3379     return true;
3380   } else {
3381     assert(committed_pages == 0, "Should not have committed region");
3382     return false;
3383   }
3384 }
3385 
3386 
3387 // Linux uses a growable mapping for the stack, and if the mapping for
3388 // the stack guard pages is not removed when we detach a thread the
3389 // stack cannot grow beyond the pages where the stack guard was
3390 // mapped.  If at some point later in the process the stack expands to
3391 // that point, the Linux kernel cannot expand the stack any further
3392 // because the guard pages are in the way, and a segfault occurs.
3393 //
3394 // However, it's essential not to split the stack region by unmapping
3395 // a region (leaving a hole) that's already part of the stack mapping,
3396 // so if the stack mapping has already grown beyond the guard pages at
3397 // the time we create them, we have to truncate the stack mapping.
3398 // So, we need to know the extent of the stack mapping when
3399 // create_stack_guard_pages() is called.
3400 
3401 // We only need this for stacks that are growable: at the time of
3402 // writing thread stacks don't use growable mappings (i.e. those
3403 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3404 // only applies to the main thread.
3405 
3406 // If the (growable) stack mapping already extends beyond the point
3407 // where we're going to put our guard pages, truncate the mapping at
3408 // that point by munmap()ping it.  This ensures that when we later
3409 // munmap() the guard pages we don't leave a hole in the stack
3410 // mapping. This only affects the main/primordial thread
3411 
3412 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3413   if (os::is_primordial_thread()) {
3414     // As we manually grow stack up to bottom inside create_attached_thread(),
3415     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3416     // we don't need to do anything special.
3417     // Check it first, before calling heavy function.
3418     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3419     unsigned char vec[1];
3420 
3421     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3422       // Fallback to slow path on all errors, including EAGAIN
3423       stack_extent = (uintptr_t) get_stack_commited_bottom(
3424                                                            os::Linux::initial_thread_stack_bottom(),
3425                                                            (size_t)addr - stack_extent);
3426     }
3427 
3428     if (stack_extent < (uintptr_t)addr) {
3429       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3430     }
3431   }
3432 
3433   return os::commit_memory(addr, size, !ExecMem);
3434 }
3435 
3436 // If this is a growable mapping, remove the guard pages entirely by
3437 // munmap()ping them.  If not, just call uncommit_memory(). This only
3438 // affects the main/primordial thread, but guard against future OS changes.
3439 // It's safe to always unmap guard pages for primordial thread because we
3440 // always place it right after end of the mapped region.
3441 
3442 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3443   uintptr_t stack_extent, stack_base;
3444 
3445   if (os::is_primordial_thread()) {
3446     return ::munmap(addr, size) == 0;
3447   }
3448 
3449   return os::uncommit_memory(addr, size);
3450 }
3451 
3452 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3453 // at 'requested_addr'. If there are existing memory mappings at the same
3454 // location, however, they will be overwritten. If 'fixed' is false,
3455 // 'requested_addr' is only treated as a hint, the return value may or
3456 // may not start from the requested address. Unlike Linux mmap(), this
3457 // function returns NULL to indicate failure.
3458 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3459   char * addr;
3460   int flags;
3461 
3462   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3463   if (fixed) {
3464     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3465     flags |= MAP_FIXED;
3466   }
3467 
3468   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3469   // touch an uncommitted page. Otherwise, the read/write might
3470   // succeed if we have enough swap space to back the physical page.
3471   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3472                        flags, -1, 0);
3473 
3474   return addr == MAP_FAILED ? NULL : addr;
3475 }
3476 
3477 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3478 //   (req_addr != NULL) or with a given alignment.
3479 //  - bytes shall be a multiple of alignment.
3480 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3481 //  - alignment sets the alignment at which memory shall be allocated.
3482 //     It must be a multiple of allocation granularity.
3483 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3484 //  req_addr or NULL.
3485 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3486 
3487   size_t extra_size = bytes;
3488   if (req_addr == NULL && alignment > 0) {
3489     extra_size += alignment;
3490   }
3491 
3492   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3493     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3494     -1, 0);
3495   if (start == MAP_FAILED) {
3496     start = NULL;
3497   } else {
3498     if (req_addr != NULL) {
3499       if (start != req_addr) {
3500         ::munmap(start, extra_size);
3501         start = NULL;
3502       }
3503     } else {
3504       char* const start_aligned = align_up(start, alignment);
3505       char* const end_aligned = start_aligned + bytes;
3506       char* const end = start + extra_size;
3507       if (start_aligned > start) {
3508         ::munmap(start, start_aligned - start);
3509       }
3510       if (end_aligned < end) {
3511         ::munmap(end_aligned, end - end_aligned);
3512       }
3513       start = start_aligned;
3514     }
3515   }
3516   return start;
3517 }
3518 
3519 static int anon_munmap(char * addr, size_t size) {
3520   return ::munmap(addr, size) == 0;
3521 }
3522 
3523 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3524                             size_t alignment_hint) {
3525   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3526 }
3527 
3528 bool os::pd_release_memory(char* addr, size_t size) {
3529   return anon_munmap(addr, size);
3530 }
3531 
3532 static bool linux_mprotect(char* addr, size_t size, int prot) {
3533   // Linux wants the mprotect address argument to be page aligned.
3534   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3535 
3536   // According to SUSv3, mprotect() should only be used with mappings
3537   // established by mmap(), and mmap() always maps whole pages. Unaligned
3538   // 'addr' likely indicates problem in the VM (e.g. trying to change
3539   // protection of malloc'ed or statically allocated memory). Check the
3540   // caller if you hit this assert.
3541   assert(addr == bottom, "sanity check");
3542 
3543   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3544   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3545   return ::mprotect(bottom, size, prot) == 0;
3546 }
3547 
3548 // Set protections specified
3549 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3550                         bool is_committed) {
3551   unsigned int p = 0;
3552   switch (prot) {
3553   case MEM_PROT_NONE: p = PROT_NONE; break;
3554   case MEM_PROT_READ: p = PROT_READ; break;
3555   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3556   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3557   default:
3558     ShouldNotReachHere();
3559   }
3560   // is_committed is unused.
3561   return linux_mprotect(addr, bytes, p);
3562 }
3563 
3564 bool os::guard_memory(char* addr, size_t size) {
3565   return linux_mprotect(addr, size, PROT_NONE);
3566 }
3567 
3568 bool os::unguard_memory(char* addr, size_t size) {
3569   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3570 }
3571 
3572 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3573                                                     size_t page_size) {
3574   bool result = false;
3575   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3576                  MAP_ANONYMOUS|MAP_PRIVATE,
3577                  -1, 0);
3578   if (p != MAP_FAILED) {
3579     void *aligned_p = align_up(p, page_size);
3580 
3581     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3582 
3583     munmap(p, page_size * 2);
3584   }
3585 
3586   if (warn && !result) {
3587     warning("TransparentHugePages is not supported by the operating system.");
3588   }
3589 
3590   return result;
3591 }
3592 
3593 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3594   bool result = false;
3595   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3596                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3597                  -1, 0);
3598 
3599   if (p != MAP_FAILED) {
3600     // We don't know if this really is a huge page or not.
3601     FILE *fp = fopen("/proc/self/maps", "r");
3602     if (fp) {
3603       while (!feof(fp)) {
3604         char chars[257];
3605         long x = 0;
3606         if (fgets(chars, sizeof(chars), fp)) {
3607           if (sscanf(chars, "%lx-%*x", &x) == 1
3608               && x == (long)p) {
3609             if (strstr (chars, "hugepage")) {
3610               result = true;
3611               break;
3612             }
3613           }
3614         }
3615       }
3616       fclose(fp);
3617     }
3618     munmap(p, page_size);
3619   }
3620 
3621   if (warn && !result) {
3622     warning("HugeTLBFS is not supported by the operating system.");
3623   }
3624 
3625   return result;
3626 }
3627 
3628 // From the coredump_filter documentation:
3629 //
3630 // - (bit 0) anonymous private memory
3631 // - (bit 1) anonymous shared memory
3632 // - (bit 2) file-backed private memory
3633 // - (bit 3) file-backed shared memory
3634 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3635 //           effective only if the bit 2 is cleared)
3636 // - (bit 5) hugetlb private memory
3637 // - (bit 6) hugetlb shared memory
3638 // - (bit 7) dax private memory
3639 // - (bit 8) dax shared memory
3640 //
3641 static void set_coredump_filter(CoredumpFilterBit bit) {
3642   FILE *f;
3643   long cdm;
3644 
3645   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3646     return;
3647   }
3648 
3649   if (fscanf(f, "%lx", &cdm) != 1) {
3650     fclose(f);
3651     return;
3652   }
3653 
3654   long saved_cdm = cdm;
3655   rewind(f);
3656   cdm |= bit;
3657 
3658   if (cdm != saved_cdm) {
3659     fprintf(f, "%#lx", cdm);
3660   }
3661 
3662   fclose(f);
3663 }
3664 
3665 // Large page support
3666 
3667 static size_t _large_page_size = 0;
3668 
3669 size_t os::Linux::find_large_page_size() {
3670   size_t large_page_size = 0;
3671 
3672   // large_page_size on Linux is used to round up heap size. x86 uses either
3673   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3674   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3675   // page as large as 256M.
3676   //
3677   // Here we try to figure out page size by parsing /proc/meminfo and looking
3678   // for a line with the following format:
3679   //    Hugepagesize:     2048 kB
3680   //
3681   // If we can't determine the value (e.g. /proc is not mounted, or the text
3682   // format has been changed), we'll use the largest page size supported by
3683   // the processor.
3684 
3685 #ifndef ZERO
3686   large_page_size =
3687     AARCH64_ONLY(2 * M)
3688     AMD64_ONLY(2 * M)
3689     ARM32_ONLY(2 * M)
3690     IA32_ONLY(4 * M)
3691     IA64_ONLY(256 * M)
3692     PPC_ONLY(4 * M)
3693     S390_ONLY(1 * M)
3694     SPARC_ONLY(4 * M);
3695 #endif // ZERO
3696 
3697   FILE *fp = fopen("/proc/meminfo", "r");
3698   if (fp) {
3699     while (!feof(fp)) {
3700       int x = 0;
3701       char buf[16];
3702       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3703         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3704           large_page_size = x * K;
3705           break;
3706         }
3707       } else {
3708         // skip to next line
3709         for (;;) {
3710           int ch = fgetc(fp);
3711           if (ch == EOF || ch == (int)'\n') break;
3712         }
3713       }
3714     }
3715     fclose(fp);
3716   }
3717 
3718   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3719     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3720             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3721             proper_unit_for_byte_size(large_page_size));
3722   }
3723 
3724   return large_page_size;
3725 }
3726 
3727 size_t os::Linux::setup_large_page_size() {
3728   _large_page_size = Linux::find_large_page_size();
3729   const size_t default_page_size = (size_t)Linux::page_size();
3730   if (_large_page_size > default_page_size) {
3731     _page_sizes[0] = _large_page_size;
3732     _page_sizes[1] = default_page_size;
3733     _page_sizes[2] = 0;
3734   }
3735 
3736   return _large_page_size;
3737 }
3738 
3739 bool os::Linux::setup_large_page_type(size_t page_size) {
3740   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3741       FLAG_IS_DEFAULT(UseSHM) &&
3742       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3743 
3744     // The type of large pages has not been specified by the user.
3745 
3746     // Try UseHugeTLBFS and then UseSHM.
3747     UseHugeTLBFS = UseSHM = true;
3748 
3749     // Don't try UseTransparentHugePages since there are known
3750     // performance issues with it turned on. This might change in the future.
3751     UseTransparentHugePages = false;
3752   }
3753 
3754   if (UseTransparentHugePages) {
3755     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3756     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3757       UseHugeTLBFS = false;
3758       UseSHM = false;
3759       return true;
3760     }
3761     UseTransparentHugePages = false;
3762   }
3763 
3764   if (UseHugeTLBFS) {
3765     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3766     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3767       UseSHM = false;
3768       return true;
3769     }
3770     UseHugeTLBFS = false;
3771   }
3772 
3773   return UseSHM;
3774 }
3775 
3776 void os::large_page_init() {
3777   if (!UseLargePages &&
3778       !UseTransparentHugePages &&
3779       !UseHugeTLBFS &&
3780       !UseSHM) {
3781     // Not using large pages.
3782     return;
3783   }
3784 
3785   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3786     // The user explicitly turned off large pages.
3787     // Ignore the rest of the large pages flags.
3788     UseTransparentHugePages = false;
3789     UseHugeTLBFS = false;
3790     UseSHM = false;
3791     return;
3792   }
3793 
3794   size_t large_page_size = Linux::setup_large_page_size();
3795   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3796 
3797   set_coredump_filter(LARGEPAGES_BIT);
3798 }
3799 
3800 #ifndef SHM_HUGETLB
3801   #define SHM_HUGETLB 04000
3802 #endif
3803 
3804 #define shm_warning_format(format, ...)              \
3805   do {                                               \
3806     if (UseLargePages &&                             \
3807         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3808          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3809          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3810       warning(format, __VA_ARGS__);                  \
3811     }                                                \
3812   } while (0)
3813 
3814 #define shm_warning(str) shm_warning_format("%s", str)
3815 
3816 #define shm_warning_with_errno(str)                \
3817   do {                                             \
3818     int err = errno;                               \
3819     shm_warning_format(str " (error = %d)", err);  \
3820   } while (0)
3821 
3822 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3823   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3824 
3825   if (!is_aligned(alignment, SHMLBA)) {
3826     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3827     return NULL;
3828   }
3829 
3830   // To ensure that we get 'alignment' aligned memory from shmat,
3831   // we pre-reserve aligned virtual memory and then attach to that.
3832 
3833   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3834   if (pre_reserved_addr == NULL) {
3835     // Couldn't pre-reserve aligned memory.
3836     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3837     return NULL;
3838   }
3839 
3840   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3841   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3842 
3843   if ((intptr_t)addr == -1) {
3844     int err = errno;
3845     shm_warning_with_errno("Failed to attach shared memory.");
3846 
3847     assert(err != EACCES, "Unexpected error");
3848     assert(err != EIDRM,  "Unexpected error");
3849     assert(err != EINVAL, "Unexpected error");
3850 
3851     // Since we don't know if the kernel unmapped the pre-reserved memory area
3852     // we can't unmap it, since that would potentially unmap memory that was
3853     // mapped from other threads.
3854     return NULL;
3855   }
3856 
3857   return addr;
3858 }
3859 
3860 static char* shmat_at_address(int shmid, char* req_addr) {
3861   if (!is_aligned(req_addr, SHMLBA)) {
3862     assert(false, "Requested address needs to be SHMLBA aligned");
3863     return NULL;
3864   }
3865 
3866   char* addr = (char*)shmat(shmid, req_addr, 0);
3867 
3868   if ((intptr_t)addr == -1) {
3869     shm_warning_with_errno("Failed to attach shared memory.");
3870     return NULL;
3871   }
3872 
3873   return addr;
3874 }
3875 
3876 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3877   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3878   if (req_addr != NULL) {
3879     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3880     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3881     return shmat_at_address(shmid, req_addr);
3882   }
3883 
3884   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3885   // return large page size aligned memory addresses when req_addr == NULL.
3886   // However, if the alignment is larger than the large page size, we have
3887   // to manually ensure that the memory returned is 'alignment' aligned.
3888   if (alignment > os::large_page_size()) {
3889     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3890     return shmat_with_alignment(shmid, bytes, alignment);
3891   } else {
3892     return shmat_at_address(shmid, NULL);
3893   }
3894 }
3895 
3896 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3897                                             char* req_addr, bool exec) {
3898   // "exec" is passed in but not used.  Creating the shared image for
3899   // the code cache doesn't have an SHM_X executable permission to check.
3900   assert(UseLargePages && UseSHM, "only for SHM large pages");
3901   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3902   assert(is_aligned(req_addr, alignment), "Unaligned address");
3903 
3904   if (!is_aligned(bytes, os::large_page_size())) {
3905     return NULL; // Fallback to small pages.
3906   }
3907 
3908   // Create a large shared memory region to attach to based on size.
3909   // Currently, size is the total size of the heap.
3910   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3911   if (shmid == -1) {
3912     // Possible reasons for shmget failure:
3913     // 1. shmmax is too small for Java heap.
3914     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3915     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3916     // 2. not enough large page memory.
3917     //    > check available large pages: cat /proc/meminfo
3918     //    > increase amount of large pages:
3919     //          echo new_value > /proc/sys/vm/nr_hugepages
3920     //      Note 1: different Linux may use different name for this property,
3921     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3922     //      Note 2: it's possible there's enough physical memory available but
3923     //            they are so fragmented after a long run that they can't
3924     //            coalesce into large pages. Try to reserve large pages when
3925     //            the system is still "fresh".
3926     shm_warning_with_errno("Failed to reserve shared memory.");
3927     return NULL;
3928   }
3929 
3930   // Attach to the region.
3931   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3932 
3933   // Remove shmid. If shmat() is successful, the actual shared memory segment
3934   // will be deleted when it's detached by shmdt() or when the process
3935   // terminates. If shmat() is not successful this will remove the shared
3936   // segment immediately.
3937   shmctl(shmid, IPC_RMID, NULL);
3938 
3939   return addr;
3940 }
3941 
3942 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3943                                         int error) {
3944   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3945 
3946   bool warn_on_failure = UseLargePages &&
3947       (!FLAG_IS_DEFAULT(UseLargePages) ||
3948        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3949        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3950 
3951   if (warn_on_failure) {
3952     char msg[128];
3953     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3954                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3955     warning("%s", msg);
3956   }
3957 }
3958 
3959 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3960                                                         char* req_addr,
3961                                                         bool exec) {
3962   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3963   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3964   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3965 
3966   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3967   char* addr = (char*)::mmap(req_addr, bytes, prot,
3968                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3969                              -1, 0);
3970 
3971   if (addr == MAP_FAILED) {
3972     warn_on_large_pages_failure(req_addr, bytes, errno);
3973     return NULL;
3974   }
3975 
3976   assert(is_aligned(addr, os::large_page_size()), "Must be");
3977 
3978   return addr;
3979 }
3980 
3981 // Reserve memory using mmap(MAP_HUGETLB).
3982 //  - bytes shall be a multiple of alignment.
3983 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3984 //  - alignment sets the alignment at which memory shall be allocated.
3985 //     It must be a multiple of allocation granularity.
3986 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3987 //  req_addr or NULL.
3988 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3989                                                          size_t alignment,
3990                                                          char* req_addr,
3991                                                          bool exec) {
3992   size_t large_page_size = os::large_page_size();
3993   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3994 
3995   assert(is_aligned(req_addr, alignment), "Must be");
3996   assert(is_aligned(bytes, alignment), "Must be");
3997 
3998   // First reserve - but not commit - the address range in small pages.
3999   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4000 
4001   if (start == NULL) {
4002     return NULL;
4003   }
4004 
4005   assert(is_aligned(start, alignment), "Must be");
4006 
4007   char* end = start + bytes;
4008 
4009   // Find the regions of the allocated chunk that can be promoted to large pages.
4010   char* lp_start = align_up(start, large_page_size);
4011   char* lp_end   = align_down(end, large_page_size);
4012 
4013   size_t lp_bytes = lp_end - lp_start;
4014 
4015   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4016 
4017   if (lp_bytes == 0) {
4018     // The mapped region doesn't even span the start and the end of a large page.
4019     // Fall back to allocate a non-special area.
4020     ::munmap(start, end - start);
4021     return NULL;
4022   }
4023 
4024   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4025 
4026   void* result;
4027 
4028   // Commit small-paged leading area.
4029   if (start != lp_start) {
4030     result = ::mmap(start, lp_start - start, prot,
4031                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4032                     -1, 0);
4033     if (result == MAP_FAILED) {
4034       ::munmap(lp_start, end - lp_start);
4035       return NULL;
4036     }
4037   }
4038 
4039   // Commit large-paged area.
4040   result = ::mmap(lp_start, lp_bytes, prot,
4041                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
4042                   -1, 0);
4043   if (result == MAP_FAILED) {
4044     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4045     // If the mmap above fails, the large pages region will be unmapped and we
4046     // have regions before and after with small pages. Release these regions.
4047     //
4048     // |  mapped  |  unmapped  |  mapped  |
4049     // ^          ^            ^          ^
4050     // start      lp_start     lp_end     end
4051     //
4052     ::munmap(start, lp_start - start);
4053     ::munmap(lp_end, end - lp_end);
4054     return NULL;
4055   }
4056 
4057   // Commit small-paged trailing area.
4058   if (lp_end != end) {
4059     result = ::mmap(lp_end, end - lp_end, prot,
4060                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4061                     -1, 0);
4062     if (result == MAP_FAILED) {
4063       ::munmap(start, lp_end - start);
4064       return NULL;
4065     }
4066   }
4067 
4068   return start;
4069 }
4070 
4071 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4072                                                    size_t alignment,
4073                                                    char* req_addr,
4074                                                    bool exec) {
4075   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4076   assert(is_aligned(req_addr, alignment), "Must be");
4077   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4078   assert(is_power_of_2(os::large_page_size()), "Must be");
4079   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4080 
4081   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4082     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4083   } else {
4084     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4085   }
4086 }
4087 
4088 char* os::reserve_memory_special(size_t bytes, size_t alignment,
4089                                  char* req_addr, bool exec) {
4090   assert(UseLargePages, "only for large pages");
4091 
4092   char* addr;
4093   if (UseSHM) {
4094     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4095   } else {
4096     assert(UseHugeTLBFS, "must be");
4097     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4098   }
4099 
4100   if (addr != NULL) {
4101     if (UseNUMAInterleaving) {
4102       numa_make_global(addr, bytes);
4103     }
4104 
4105     // The memory is committed
4106     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
4107   }
4108 
4109   return addr;
4110 }
4111 
4112 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4113   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4114   return shmdt(base) == 0;
4115 }
4116 
4117 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4118   return pd_release_memory(base, bytes);
4119 }
4120 
4121 bool os::release_memory_special(char* base, size_t bytes) {
4122   bool res;
4123   if (MemTracker::tracking_level() > NMT_minimal) {
4124     Tracker tkr(Tracker::release);
4125     res = os::Linux::release_memory_special_impl(base, bytes);
4126     if (res) {
4127       tkr.record((address)base, bytes);
4128     }
4129 
4130   } else {
4131     res = os::Linux::release_memory_special_impl(base, bytes);
4132   }
4133   return res;
4134 }
4135 
4136 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
4137   assert(UseLargePages, "only for large pages");
4138   bool res;
4139 
4140   if (UseSHM) {
4141     res = os::Linux::release_memory_special_shm(base, bytes);
4142   } else {
4143     assert(UseHugeTLBFS, "must be");
4144     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4145   }
4146   return res;
4147 }
4148 
4149 size_t os::large_page_size() {
4150   return _large_page_size;
4151 }
4152 
4153 // With SysV SHM the entire memory region must be allocated as shared
4154 // memory.
4155 // HugeTLBFS allows application to commit large page memory on demand.
4156 // However, when committing memory with HugeTLBFS fails, the region
4157 // that was supposed to be committed will lose the old reservation
4158 // and allow other threads to steal that memory region. Because of this
4159 // behavior we can't commit HugeTLBFS memory.
4160 bool os::can_commit_large_page_memory() {
4161   return UseTransparentHugePages;
4162 }
4163 
4164 bool os::can_execute_large_page_memory() {
4165   return UseTransparentHugePages || UseHugeTLBFS;
4166 }
4167 
4168 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4169   assert(file_desc >= 0, "file_desc is not valid");
4170   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4171   if (result != NULL) {
4172     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4173       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4174     }
4175   }
4176   return result;
4177 }
4178 
4179 // Reserve memory at an arbitrary address, only if that area is
4180 // available (and not reserved for something else).
4181 
4182 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4183   // Assert only that the size is a multiple of the page size, since
4184   // that's all that mmap requires, and since that's all we really know
4185   // about at this low abstraction level.  If we need higher alignment,
4186   // we can either pass an alignment to this method or verify alignment
4187   // in one of the methods further up the call chain.  See bug 5044738.
4188   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4189 
4190   // Repeatedly allocate blocks until the block is allocated at the
4191   // right spot.
4192 
4193   // Linux mmap allows caller to pass an address as hint; give it a try first,
4194   // if kernel honors the hint then we can return immediately.
4195   char * addr = anon_mmap(requested_addr, bytes, false);
4196   if (addr == requested_addr) {
4197     return requested_addr;
4198   }
4199 
4200   if (addr != NULL) {
4201     // mmap() is successful but it fails to reserve at the requested address
4202     anon_munmap(addr, bytes);
4203   }
4204 
4205   return NULL;
4206 }
4207 
4208 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4209 void os::infinite_sleep() {
4210   while (true) {    // sleep forever ...
4211     ::sleep(100);   // ... 100 seconds at a time
4212   }
4213 }
4214 
4215 // Used to convert frequent JVM_Yield() to nops
4216 bool os::dont_yield() {
4217   return DontYieldALot;
4218 }
4219 
4220 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4221 // actually give up the CPU. Since skip buddy (v2.6.28):
4222 //
4223 // * Sets the yielding task as skip buddy for current CPU's run queue.
4224 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4225 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4226 //
4227 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4228 // getting re-scheduled immediately.
4229 //
4230 void os::naked_yield() {
4231   sched_yield();
4232 }
4233 
4234 ////////////////////////////////////////////////////////////////////////////////
4235 // thread priority support
4236 
4237 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4238 // only supports dynamic priority, static priority must be zero. For real-time
4239 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4240 // However, for large multi-threaded applications, SCHED_RR is not only slower
4241 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4242 // of 5 runs - Sep 2005).
4243 //
4244 // The following code actually changes the niceness of kernel-thread/LWP. It
4245 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4246 // not the entire user process, and user level threads are 1:1 mapped to kernel
4247 // threads. It has always been the case, but could change in the future. For
4248 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4249 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4250 // (e.g., root privilege or CAP_SYS_NICE capability).
4251 
4252 int os::java_to_os_priority[CriticalPriority + 1] = {
4253   19,              // 0 Entry should never be used
4254 
4255    4,              // 1 MinPriority
4256    3,              // 2
4257    2,              // 3
4258 
4259    1,              // 4
4260    0,              // 5 NormPriority
4261   -1,              // 6
4262 
4263   -2,              // 7
4264   -3,              // 8
4265   -4,              // 9 NearMaxPriority
4266 
4267   -5,              // 10 MaxPriority
4268 
4269   -5               // 11 CriticalPriority
4270 };
4271 
4272 static int prio_init() {
4273   if (ThreadPriorityPolicy == 1) {
4274     if (geteuid() != 0) {
4275       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4276         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4277                 "e.g., being the root user. If the necessary permission is not " \
4278                 "possessed, changes to priority will be silently ignored.");
4279       }
4280     }
4281   }
4282   if (UseCriticalJavaThreadPriority) {
4283     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4284   }
4285   return 0;
4286 }
4287 
4288 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4289   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4290 
4291   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4292   return (ret == 0) ? OS_OK : OS_ERR;
4293 }
4294 
4295 OSReturn os::get_native_priority(const Thread* const thread,
4296                                  int *priority_ptr) {
4297   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4298     *priority_ptr = java_to_os_priority[NormPriority];
4299     return OS_OK;
4300   }
4301 
4302   errno = 0;
4303   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4304   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4305 }
4306 
4307 ////////////////////////////////////////////////////////////////////////////////
4308 // suspend/resume support
4309 
4310 //  The low-level signal-based suspend/resume support is a remnant from the
4311 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4312 //  within hotspot. Currently used by JFR's OSThreadSampler
4313 //
4314 //  The remaining code is greatly simplified from the more general suspension
4315 //  code that used to be used.
4316 //
4317 //  The protocol is quite simple:
4318 //  - suspend:
4319 //      - sends a signal to the target thread
4320 //      - polls the suspend state of the osthread using a yield loop
4321 //      - target thread signal handler (SR_handler) sets suspend state
4322 //        and blocks in sigsuspend until continued
4323 //  - resume:
4324 //      - sets target osthread state to continue
4325 //      - sends signal to end the sigsuspend loop in the SR_handler
4326 //
4327 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4328 //  but is checked for NULL in SR_handler as a thread termination indicator.
4329 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4330 //
4331 //  Note that resume_clear_context() and suspend_save_context() are needed
4332 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4333 //  which in part is used by:
4334 //    - Forte Analyzer: AsyncGetCallTrace()
4335 //    - StackBanging: get_frame_at_stack_banging_point()
4336 
4337 static void resume_clear_context(OSThread *osthread) {
4338   osthread->set_ucontext(NULL);
4339   osthread->set_siginfo(NULL);
4340 }
4341 
4342 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4343                                  ucontext_t* context) {
4344   osthread->set_ucontext(context);
4345   osthread->set_siginfo(siginfo);
4346 }
4347 
4348 // Handler function invoked when a thread's execution is suspended or
4349 // resumed. We have to be careful that only async-safe functions are
4350 // called here (Note: most pthread functions are not async safe and
4351 // should be avoided.)
4352 //
4353 // Note: sigwait() is a more natural fit than sigsuspend() from an
4354 // interface point of view, but sigwait() prevents the signal hander
4355 // from being run. libpthread would get very confused by not having
4356 // its signal handlers run and prevents sigwait()'s use with the
4357 // mutex granting granting signal.
4358 //
4359 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4360 //
4361 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4362   // Save and restore errno to avoid confusing native code with EINTR
4363   // after sigsuspend.
4364   int old_errno = errno;
4365 
4366   Thread* thread = Thread::current_or_null_safe();
4367   assert(thread != NULL, "Missing current thread in SR_handler");
4368 
4369   // On some systems we have seen signal delivery get "stuck" until the signal
4370   // mask is changed as part of thread termination. Check that the current thread
4371   // has not already terminated (via SR_lock()) - else the following assertion
4372   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4373   // destructor has completed.
4374 
4375   if (thread->SR_lock() == NULL) {
4376     return;
4377   }
4378 
4379   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4380 
4381   OSThread* osthread = thread->osthread();
4382 
4383   os::SuspendResume::State current = osthread->sr.state();
4384   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4385     suspend_save_context(osthread, siginfo, context);
4386 
4387     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4388     os::SuspendResume::State state = osthread->sr.suspended();
4389     if (state == os::SuspendResume::SR_SUSPENDED) {
4390       sigset_t suspend_set;  // signals for sigsuspend()
4391       sigemptyset(&suspend_set);
4392       // get current set of blocked signals and unblock resume signal
4393       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4394       sigdelset(&suspend_set, SR_signum);
4395 
4396       sr_semaphore.signal();
4397       // wait here until we are resumed
4398       while (1) {
4399         sigsuspend(&suspend_set);
4400 
4401         os::SuspendResume::State result = osthread->sr.running();
4402         if (result == os::SuspendResume::SR_RUNNING) {
4403           sr_semaphore.signal();
4404           break;
4405         }
4406       }
4407 
4408     } else if (state == os::SuspendResume::SR_RUNNING) {
4409       // request was cancelled, continue
4410     } else {
4411       ShouldNotReachHere();
4412     }
4413 
4414     resume_clear_context(osthread);
4415   } else if (current == os::SuspendResume::SR_RUNNING) {
4416     // request was cancelled, continue
4417   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4418     // ignore
4419   } else {
4420     // ignore
4421   }
4422 
4423   errno = old_errno;
4424 }
4425 
4426 static int SR_initialize() {
4427   struct sigaction act;
4428   char *s;
4429 
4430   // Get signal number to use for suspend/resume
4431   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4432     int sig = ::strtol(s, 0, 10);
4433     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4434         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4435       SR_signum = sig;
4436     } else {
4437       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4438               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4439     }
4440   }
4441 
4442   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4443          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4444 
4445   sigemptyset(&SR_sigset);
4446   sigaddset(&SR_sigset, SR_signum);
4447 
4448   // Set up signal handler for suspend/resume
4449   act.sa_flags = SA_RESTART|SA_SIGINFO;
4450   act.sa_handler = (void (*)(int)) SR_handler;
4451 
4452   // SR_signum is blocked by default.
4453   // 4528190 - We also need to block pthread restart signal (32 on all
4454   // supported Linux platforms). Note that LinuxThreads need to block
4455   // this signal for all threads to work properly. So we don't have
4456   // to use hard-coded signal number when setting up the mask.
4457   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4458 
4459   if (sigaction(SR_signum, &act, 0) == -1) {
4460     return -1;
4461   }
4462 
4463   // Save signal flag
4464   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4465   return 0;
4466 }
4467 
4468 static int sr_notify(OSThread* osthread) {
4469   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4470   assert_status(status == 0, status, "pthread_kill");
4471   return status;
4472 }
4473 
4474 // "Randomly" selected value for how long we want to spin
4475 // before bailing out on suspending a thread, also how often
4476 // we send a signal to a thread we want to resume
4477 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4478 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4479 
4480 // returns true on success and false on error - really an error is fatal
4481 // but this seems the normal response to library errors
4482 static bool do_suspend(OSThread* osthread) {
4483   assert(osthread->sr.is_running(), "thread should be running");
4484   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4485 
4486   // mark as suspended and send signal
4487   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4488     // failed to switch, state wasn't running?
4489     ShouldNotReachHere();
4490     return false;
4491   }
4492 
4493   if (sr_notify(osthread) != 0) {
4494     ShouldNotReachHere();
4495   }
4496 
4497   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4498   while (true) {
4499     if (sr_semaphore.timedwait(2)) {
4500       break;
4501     } else {
4502       // timeout
4503       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4504       if (cancelled == os::SuspendResume::SR_RUNNING) {
4505         return false;
4506       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4507         // make sure that we consume the signal on the semaphore as well
4508         sr_semaphore.wait();
4509         break;
4510       } else {
4511         ShouldNotReachHere();
4512         return false;
4513       }
4514     }
4515   }
4516 
4517   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4518   return true;
4519 }
4520 
4521 static void do_resume(OSThread* osthread) {
4522   assert(osthread->sr.is_suspended(), "thread should be suspended");
4523   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4524 
4525   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4526     // failed to switch to WAKEUP_REQUEST
4527     ShouldNotReachHere();
4528     return;
4529   }
4530 
4531   while (true) {
4532     if (sr_notify(osthread) == 0) {
4533       if (sr_semaphore.timedwait(2)) {
4534         if (osthread->sr.is_running()) {
4535           return;
4536         }
4537       }
4538     } else {
4539       ShouldNotReachHere();
4540     }
4541   }
4542 
4543   guarantee(osthread->sr.is_running(), "Must be running!");
4544 }
4545 
4546 ///////////////////////////////////////////////////////////////////////////////////
4547 // signal handling (except suspend/resume)
4548 
4549 // This routine may be used by user applications as a "hook" to catch signals.
4550 // The user-defined signal handler must pass unrecognized signals to this
4551 // routine, and if it returns true (non-zero), then the signal handler must
4552 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4553 // routine will never retun false (zero), but instead will execute a VM panic
4554 // routine kill the process.
4555 //
4556 // If this routine returns false, it is OK to call it again.  This allows
4557 // the user-defined signal handler to perform checks either before or after
4558 // the VM performs its own checks.  Naturally, the user code would be making
4559 // a serious error if it tried to handle an exception (such as a null check
4560 // or breakpoint) that the VM was generating for its own correct operation.
4561 //
4562 // This routine may recognize any of the following kinds of signals:
4563 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4564 // It should be consulted by handlers for any of those signals.
4565 //
4566 // The caller of this routine must pass in the three arguments supplied
4567 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4568 // field of the structure passed to sigaction().  This routine assumes that
4569 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4570 //
4571 // Note that the VM will print warnings if it detects conflicting signal
4572 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4573 //
4574 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4575                                                  siginfo_t* siginfo,
4576                                                  void* ucontext,
4577                                                  int abort_if_unrecognized);
4578 
4579 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4580   assert(info != NULL && uc != NULL, "it must be old kernel");
4581   int orig_errno = errno;  // Preserve errno value over signal handler.
4582   JVM_handle_linux_signal(sig, info, uc, true);
4583   errno = orig_errno;
4584 }
4585 
4586 
4587 // This boolean allows users to forward their own non-matching signals
4588 // to JVM_handle_linux_signal, harmlessly.
4589 bool os::Linux::signal_handlers_are_installed = false;
4590 
4591 // For signal-chaining
4592 bool os::Linux::libjsig_is_loaded = false;
4593 typedef struct sigaction *(*get_signal_t)(int);
4594 get_signal_t os::Linux::get_signal_action = NULL;
4595 
4596 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4597   struct sigaction *actp = NULL;
4598 
4599   if (libjsig_is_loaded) {
4600     // Retrieve the old signal handler from libjsig
4601     actp = (*get_signal_action)(sig);
4602   }
4603   if (actp == NULL) {
4604     // Retrieve the preinstalled signal handler from jvm
4605     actp = os::Posix::get_preinstalled_handler(sig);
4606   }
4607 
4608   return actp;
4609 }
4610 
4611 static bool call_chained_handler(struct sigaction *actp, int sig,
4612                                  siginfo_t *siginfo, void *context) {
4613   // Call the old signal handler
4614   if (actp->sa_handler == SIG_DFL) {
4615     // It's more reasonable to let jvm treat it as an unexpected exception
4616     // instead of taking the default action.
4617     return false;
4618   } else if (actp->sa_handler != SIG_IGN) {
4619     if ((actp->sa_flags & SA_NODEFER) == 0) {
4620       // automaticlly block the signal
4621       sigaddset(&(actp->sa_mask), sig);
4622     }
4623 
4624     sa_handler_t hand = NULL;
4625     sa_sigaction_t sa = NULL;
4626     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4627     // retrieve the chained handler
4628     if (siginfo_flag_set) {
4629       sa = actp->sa_sigaction;
4630     } else {
4631       hand = actp->sa_handler;
4632     }
4633 
4634     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4635       actp->sa_handler = SIG_DFL;
4636     }
4637 
4638     // try to honor the signal mask
4639     sigset_t oset;
4640     sigemptyset(&oset);
4641     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4642 
4643     // call into the chained handler
4644     if (siginfo_flag_set) {
4645       (*sa)(sig, siginfo, context);
4646     } else {
4647       (*hand)(sig);
4648     }
4649 
4650     // restore the signal mask
4651     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4652   }
4653   // Tell jvm's signal handler the signal is taken care of.
4654   return true;
4655 }
4656 
4657 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4658   bool chained = false;
4659   // signal-chaining
4660   if (UseSignalChaining) {
4661     struct sigaction *actp = get_chained_signal_action(sig);
4662     if (actp != NULL) {
4663       chained = call_chained_handler(actp, sig, siginfo, context);
4664     }
4665   }
4666   return chained;
4667 }
4668 
4669 // for diagnostic
4670 int sigflags[NSIG];
4671 
4672 int os::Linux::get_our_sigflags(int sig) {
4673   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4674   return sigflags[sig];
4675 }
4676 
4677 void os::Linux::set_our_sigflags(int sig, int flags) {
4678   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4679   if (sig > 0 && sig < NSIG) {
4680     sigflags[sig] = flags;
4681   }
4682 }
4683 
4684 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4685   // Check for overwrite.
4686   struct sigaction oldAct;
4687   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4688 
4689   void* oldhand = oldAct.sa_sigaction
4690                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4691                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4692   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4693       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4694       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4695     if (AllowUserSignalHandlers || !set_installed) {
4696       // Do not overwrite; user takes responsibility to forward to us.
4697       return;
4698     } else if (UseSignalChaining) {
4699       // save the old handler in jvm
4700       os::Posix::save_preinstalled_handler(sig, oldAct);
4701       // libjsig also interposes the sigaction() call below and saves the
4702       // old sigaction on it own.
4703     } else {
4704       fatal("Encountered unexpected pre-existing sigaction handler "
4705             "%#lx for signal %d.", (long)oldhand, sig);
4706     }
4707   }
4708 
4709   struct sigaction sigAct;
4710   sigfillset(&(sigAct.sa_mask));
4711   sigAct.sa_handler = SIG_DFL;
4712   if (!set_installed) {
4713     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4714   } else {
4715     sigAct.sa_sigaction = signalHandler;
4716     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4717   }
4718   // Save flags, which are set by ours
4719   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4720   sigflags[sig] = sigAct.sa_flags;
4721 
4722   int ret = sigaction(sig, &sigAct, &oldAct);
4723   assert(ret == 0, "check");
4724 
4725   void* oldhand2  = oldAct.sa_sigaction
4726                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4727                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4728   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4729 }
4730 
4731 // install signal handlers for signals that HotSpot needs to
4732 // handle in order to support Java-level exception handling.
4733 
4734 void os::Linux::install_signal_handlers() {
4735   if (!signal_handlers_are_installed) {
4736     signal_handlers_are_installed = true;
4737 
4738     // signal-chaining
4739     typedef void (*signal_setting_t)();
4740     signal_setting_t begin_signal_setting = NULL;
4741     signal_setting_t end_signal_setting = NULL;
4742     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4743                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4744     if (begin_signal_setting != NULL) {
4745       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4746                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4747       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4748                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4749       libjsig_is_loaded = true;
4750       assert(UseSignalChaining, "should enable signal-chaining");
4751     }
4752     if (libjsig_is_loaded) {
4753       // Tell libjsig jvm is setting signal handlers
4754       (*begin_signal_setting)();
4755     }
4756 
4757     set_signal_handler(SIGSEGV, true);
4758     set_signal_handler(SIGPIPE, true);
4759     set_signal_handler(SIGBUS, true);
4760     set_signal_handler(SIGILL, true);
4761     set_signal_handler(SIGFPE, true);
4762 #if defined(PPC64)
4763     set_signal_handler(SIGTRAP, true);
4764 #endif
4765     set_signal_handler(SIGXFSZ, true);
4766 
4767     if (libjsig_is_loaded) {
4768       // Tell libjsig jvm finishes setting signal handlers
4769       (*end_signal_setting)();
4770     }
4771 
4772     // We don't activate signal checker if libjsig is in place, we trust ourselves
4773     // and if UserSignalHandler is installed all bets are off.
4774     // Log that signal checking is off only if -verbose:jni is specified.
4775     if (CheckJNICalls) {
4776       if (libjsig_is_loaded) {
4777         if (PrintJNIResolving) {
4778           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4779         }
4780         check_signals = false;
4781       }
4782       if (AllowUserSignalHandlers) {
4783         if (PrintJNIResolving) {
4784           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4785         }
4786         check_signals = false;
4787       }
4788     }
4789   }
4790 }
4791 
4792 // This is the fastest way to get thread cpu time on Linux.
4793 // Returns cpu time (user+sys) for any thread, not only for current.
4794 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4795 // It might work on 2.6.10+ with a special kernel/glibc patch.
4796 // For reference, please, see IEEE Std 1003.1-2004:
4797 //   http://www.unix.org/single_unix_specification
4798 
4799 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4800   struct timespec tp;
4801   int rc = os::Posix::clock_gettime(clockid, &tp);
4802   assert(rc == 0, "clock_gettime is expected to return 0 code");
4803 
4804   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4805 }
4806 
4807 void os::Linux::initialize_os_info() {
4808   assert(_os_version == 0, "OS info already initialized");
4809 
4810   struct utsname _uname;
4811 
4812   uint32_t major;
4813   uint32_t minor;
4814   uint32_t fix;
4815 
4816   int rc;
4817 
4818   // Kernel version is unknown if
4819   // verification below fails.
4820   _os_version = 0x01000000;
4821 
4822   rc = uname(&_uname);
4823   if (rc != -1) {
4824 
4825     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4826     if (rc == 3) {
4827 
4828       if (major < 256 && minor < 256 && fix < 256) {
4829         // Kernel version format is as expected,
4830         // set it overriding unknown state.
4831         _os_version = (major << 16) |
4832                       (minor << 8 ) |
4833                       (fix   << 0 ) ;
4834       }
4835     }
4836   }
4837 }
4838 
4839 uint32_t os::Linux::os_version() {
4840   assert(_os_version != 0, "not initialized");
4841   return _os_version & 0x00FFFFFF;
4842 }
4843 
4844 bool os::Linux::os_version_is_known() {
4845   assert(_os_version != 0, "not initialized");
4846   return _os_version & 0x01000000 ? false : true;
4847 }
4848 
4849 /////
4850 // glibc on Linux platform uses non-documented flag
4851 // to indicate, that some special sort of signal
4852 // trampoline is used.
4853 // We will never set this flag, and we should
4854 // ignore this flag in our diagnostic
4855 #ifdef SIGNIFICANT_SIGNAL_MASK
4856   #undef SIGNIFICANT_SIGNAL_MASK
4857 #endif
4858 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4859 
4860 static const char* get_signal_handler_name(address handler,
4861                                            char* buf, int buflen) {
4862   int offset = 0;
4863   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4864   if (found) {
4865     // skip directory names
4866     const char *p1, *p2;
4867     p1 = buf;
4868     size_t len = strlen(os::file_separator());
4869     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4870     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4871   } else {
4872     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4873   }
4874   return buf;
4875 }
4876 
4877 static void print_signal_handler(outputStream* st, int sig,
4878                                  char* buf, size_t buflen) {
4879   struct sigaction sa;
4880 
4881   sigaction(sig, NULL, &sa);
4882 
4883   // See comment for SIGNIFICANT_SIGNAL_MASK define
4884   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4885 
4886   st->print("%s: ", os::exception_name(sig, buf, buflen));
4887 
4888   address handler = (sa.sa_flags & SA_SIGINFO)
4889     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4890     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4891 
4892   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4893     st->print("SIG_DFL");
4894   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4895     st->print("SIG_IGN");
4896   } else {
4897     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4898   }
4899 
4900   st->print(", sa_mask[0]=");
4901   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4902 
4903   address rh = VMError::get_resetted_sighandler(sig);
4904   // May be, handler was resetted by VMError?
4905   if (rh != NULL) {
4906     handler = rh;
4907     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4908   }
4909 
4910   st->print(", sa_flags=");
4911   os::Posix::print_sa_flags(st, sa.sa_flags);
4912 
4913   // Check: is it our handler?
4914   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4915       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4916     // It is our signal handler
4917     // check for flags, reset system-used one!
4918     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4919       st->print(
4920                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4921                 os::Linux::get_our_sigflags(sig));
4922     }
4923   }
4924   st->cr();
4925 }
4926 
4927 
4928 #define DO_SIGNAL_CHECK(sig)                      \
4929   do {                                            \
4930     if (!sigismember(&check_signal_done, sig)) {  \
4931       os::Linux::check_signal_handler(sig);       \
4932     }                                             \
4933   } while (0)
4934 
4935 // This method is a periodic task to check for misbehaving JNI applications
4936 // under CheckJNI, we can add any periodic checks here
4937 
4938 void os::run_periodic_checks() {
4939   if (check_signals == false) return;
4940 
4941   // SEGV and BUS if overridden could potentially prevent
4942   // generation of hs*.log in the event of a crash, debugging
4943   // such a case can be very challenging, so we absolutely
4944   // check the following for a good measure:
4945   DO_SIGNAL_CHECK(SIGSEGV);
4946   DO_SIGNAL_CHECK(SIGILL);
4947   DO_SIGNAL_CHECK(SIGFPE);
4948   DO_SIGNAL_CHECK(SIGBUS);
4949   DO_SIGNAL_CHECK(SIGPIPE);
4950   DO_SIGNAL_CHECK(SIGXFSZ);
4951 #if defined(PPC64)
4952   DO_SIGNAL_CHECK(SIGTRAP);
4953 #endif
4954 
4955   // ReduceSignalUsage allows the user to override these handlers
4956   // see comments at the very top and jvm_md.h
4957   if (!ReduceSignalUsage) {
4958     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4959     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4960     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4961     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4962   }
4963 
4964   DO_SIGNAL_CHECK(SR_signum);
4965 }
4966 
4967 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4968 
4969 static os_sigaction_t os_sigaction = NULL;
4970 
4971 void os::Linux::check_signal_handler(int sig) {
4972   char buf[O_BUFLEN];
4973   address jvmHandler = NULL;
4974 
4975 
4976   struct sigaction act;
4977   if (os_sigaction == NULL) {
4978     // only trust the default sigaction, in case it has been interposed
4979     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4980     if (os_sigaction == NULL) return;
4981   }
4982 
4983   os_sigaction(sig, (struct sigaction*)NULL, &act);
4984 
4985 
4986   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4987 
4988   address thisHandler = (act.sa_flags & SA_SIGINFO)
4989     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4990     : CAST_FROM_FN_PTR(address, act.sa_handler);
4991 
4992 
4993   switch (sig) {
4994   case SIGSEGV:
4995   case SIGBUS:
4996   case SIGFPE:
4997   case SIGPIPE:
4998   case SIGILL:
4999   case SIGXFSZ:
5000     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5001     break;
5002 
5003   case SHUTDOWN1_SIGNAL:
5004   case SHUTDOWN2_SIGNAL:
5005   case SHUTDOWN3_SIGNAL:
5006   case BREAK_SIGNAL:
5007     jvmHandler = (address)user_handler();
5008     break;
5009 
5010   default:
5011     if (sig == SR_signum) {
5012       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5013     } else {
5014       return;
5015     }
5016     break;
5017   }
5018 
5019   if (thisHandler != jvmHandler) {
5020     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5021     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5022     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5023     // No need to check this sig any longer
5024     sigaddset(&check_signal_done, sig);
5025     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5026     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5027       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5028                     exception_name(sig, buf, O_BUFLEN));
5029     }
5030   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5031     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5032     tty->print("expected:");
5033     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5034     tty->cr();
5035     tty->print("  found:");
5036     os::Posix::print_sa_flags(tty, act.sa_flags);
5037     tty->cr();
5038     // No need to check this sig any longer
5039     sigaddset(&check_signal_done, sig);
5040   }
5041 
5042   // Dump all the signal
5043   if (sigismember(&check_signal_done, sig)) {
5044     print_signal_handlers(tty, buf, O_BUFLEN);
5045   }
5046 }
5047 
5048 extern void report_error(char* file_name, int line_no, char* title,
5049                          char* format, ...);
5050 
5051 // this is called _before_ most of the global arguments have been parsed
5052 void os::init(void) {
5053   char dummy;   // used to get a guess on initial stack address
5054 
5055   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5056 
5057   init_random(1234567);
5058 
5059   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5060   if (Linux::page_size() == -1) {
5061     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5062           os::strerror(errno));
5063   }
5064   init_page_sizes((size_t) Linux::page_size());
5065 
5066   Linux::initialize_system_info();
5067 
5068   Linux::initialize_os_info();
5069 
5070   os::Linux::CPUPerfTicks pticks;
5071   bool res = os::Linux::get_tick_information(&pticks, -1);
5072 
5073   if (res && pticks.has_steal_ticks) {
5074     has_initial_tick_info = true;
5075     initial_total_ticks = pticks.total;
5076     initial_steal_ticks = pticks.steal;
5077   }
5078 
5079   // _main_thread points to the thread that created/loaded the JVM.
5080   Linux::_main_thread = pthread_self();
5081 
5082   // retrieve entry point for pthread_setname_np
5083   Linux::_pthread_setname_np =
5084     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5085 
5086   os::Posix::init();
5087 
5088   initial_time_count = javaTimeNanos();
5089 
5090   // Always warn if no monotonic clock available
5091   if (!os::Posix::supports_monotonic_clock()) {
5092     warning("No monotonic clock was available - timed services may "    \
5093             "be adversely affected if the time-of-day clock changes");
5094   }
5095 }
5096 
5097 // To install functions for atexit system call
5098 extern "C" {
5099   static void perfMemory_exit_helper() {
5100     perfMemory_exit();
5101   }
5102 }
5103 
5104 void os::pd_init_container_support() {
5105   OSContainer::init();
5106 }
5107 
5108 void os::Linux::numa_init() {
5109 
5110   // Java can be invoked as
5111   // 1. Without numactl and heap will be allocated/configured on all nodes as
5112   //    per the system policy.
5113   // 2. With numactl --interleave:
5114   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5115   //      API for membind case bitmask is reset.
5116   //      Interleave is only hint and Kernel can fallback to other nodes if
5117   //      no memory is available on the target nodes.
5118   // 3. With numactl --membind:
5119   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5120   //      interleave case returns bitmask of all nodes.
5121   // numa_all_nodes_ptr holds bitmask of all nodes.
5122   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5123   // bitmask when externally configured to run on all or fewer nodes.
5124 
5125   if (!Linux::libnuma_init()) {
5126     UseNUMA = false;
5127   } else {
5128     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5129       // If there's only one node (they start from 0) or if the process
5130       // is bound explicitly to a single node using membind, disable NUMA.
5131       UseNUMA = false;
5132     } else {
5133 
5134       LogTarget(Info,os) log;
5135       LogStream ls(log);
5136 
5137       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5138 
5139       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5140       const char* numa_mode = "membind";
5141 
5142       if (Linux::is_running_in_interleave_mode()) {
5143         bmp = Linux::_numa_interleave_bitmask;
5144         numa_mode = "interleave";
5145       }
5146 
5147       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5148                " Heap will be configured using NUMA memory nodes:", numa_mode);
5149 
5150       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5151         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5152           ls.print(" %d", node);
5153         }
5154       }
5155     }
5156   }
5157 
5158   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5159     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5160     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5161     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5162     // and disable adaptive resizing.
5163     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5164       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5165               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5166       UseAdaptiveSizePolicy = false;
5167       UseAdaptiveNUMAChunkSizing = false;
5168     }
5169   }
5170 
5171   if (!UseNUMA && ForceNUMA) {
5172     UseNUMA = true;
5173   }
5174 }
5175 
5176 // this is called _after_ the global arguments have been parsed
5177 jint os::init_2(void) {
5178 
5179   // This could be set after os::Posix::init() but all platforms
5180   // have to set it the same so we have to mirror Solaris.
5181   DEBUG_ONLY(os::set_mutex_init_done();)
5182 
5183   os::Posix::init_2();
5184 
5185   Linux::fast_thread_clock_init();
5186 
5187   // initialize suspend/resume support - must do this before signal_sets_init()
5188   if (SR_initialize() != 0) {
5189     perror("SR_initialize failed");
5190     return JNI_ERR;
5191   }
5192 
5193   Linux::signal_sets_init();
5194   Linux::install_signal_handlers();
5195   // Initialize data for jdk.internal.misc.Signal
5196   if (!ReduceSignalUsage) {
5197     jdk_misc_signal_init();
5198   }
5199 
5200   if (AdjustStackSizeForTLS) {
5201     get_minstack_init();
5202   }
5203 
5204   // Check and sets minimum stack sizes against command line options
5205   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5206     return JNI_ERR;
5207   }
5208 
5209 #if defined(IA32)
5210   // Need to ensure we've determined the process's initial stack to
5211   // perform the workaround
5212   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5213   workaround_expand_exec_shield_cs_limit();
5214 #else
5215   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5216   if (!suppress_primordial_thread_resolution) {
5217     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5218   }
5219 #endif
5220 
5221   Linux::libpthread_init();
5222   Linux::sched_getcpu_init();
5223   log_info(os)("HotSpot is running with %s, %s",
5224                Linux::glibc_version(), Linux::libpthread_version());
5225 
5226   if (UseNUMA) {
5227     Linux::numa_init();
5228   }
5229 
5230   if (MaxFDLimit) {
5231     // set the number of file descriptors to max. print out error
5232     // if getrlimit/setrlimit fails but continue regardless.
5233     struct rlimit nbr_files;
5234     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5235     if (status != 0) {
5236       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5237     } else {
5238       nbr_files.rlim_cur = nbr_files.rlim_max;
5239       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5240       if (status != 0) {
5241         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5242       }
5243     }
5244   }
5245 
5246   // Initialize lock used to serialize thread creation (see os::create_thread)
5247   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5248 
5249   // at-exit methods are called in the reverse order of their registration.
5250   // atexit functions are called on return from main or as a result of a
5251   // call to exit(3C). There can be only 32 of these functions registered
5252   // and atexit() does not set errno.
5253 
5254   if (PerfAllowAtExitRegistration) {
5255     // only register atexit functions if PerfAllowAtExitRegistration is set.
5256     // atexit functions can be delayed until process exit time, which
5257     // can be problematic for embedded VM situations. Embedded VMs should
5258     // call DestroyJavaVM() to assure that VM resources are released.
5259 
5260     // note: perfMemory_exit_helper atexit function may be removed in
5261     // the future if the appropriate cleanup code can be added to the
5262     // VM_Exit VMOperation's doit method.
5263     if (atexit(perfMemory_exit_helper) != 0) {
5264       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5265     }
5266   }
5267 
5268   // initialize thread priority policy
5269   prio_init();
5270 
5271   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5272     set_coredump_filter(DAX_SHARED_BIT);
5273   }
5274 
5275   if (DumpPrivateMappingsInCore) {
5276     set_coredump_filter(FILE_BACKED_PVT_BIT);
5277   }
5278 
5279   if (DumpSharedMappingsInCore) {
5280     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5281   }
5282 
5283   return JNI_OK;
5284 }
5285 
5286 // Mark the polling page as unreadable
5287 void os::make_polling_page_unreadable(void) {
5288   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5289     fatal("Could not disable polling page");
5290   }
5291 }
5292 
5293 // Mark the polling page as readable
5294 void os::make_polling_page_readable(void) {
5295   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5296     fatal("Could not enable polling page");
5297   }
5298 }
5299 
5300 // older glibc versions don't have this macro (which expands to
5301 // an optimized bit-counting function) so we have to roll our own
5302 #ifndef CPU_COUNT
5303 
5304 static int _cpu_count(const cpu_set_t* cpus) {
5305   int count = 0;
5306   // only look up to the number of configured processors
5307   for (int i = 0; i < os::processor_count(); i++) {
5308     if (CPU_ISSET(i, cpus)) {
5309       count++;
5310     }
5311   }
5312   return count;
5313 }
5314 
5315 #define CPU_COUNT(cpus) _cpu_count(cpus)
5316 
5317 #endif // CPU_COUNT
5318 
5319 // Get the current number of available processors for this process.
5320 // This value can change at any time during a process's lifetime.
5321 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5322 // If it appears there may be more than 1024 processors then we do a
5323 // dynamic check - see 6515172 for details.
5324 // If anything goes wrong we fallback to returning the number of online
5325 // processors - which can be greater than the number available to the process.
5326 int os::Linux::active_processor_count() {
5327   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5328   cpu_set_t* cpus_p = &cpus;
5329   int cpus_size = sizeof(cpu_set_t);
5330 
5331   int configured_cpus = os::processor_count();  // upper bound on available cpus
5332   int cpu_count = 0;
5333 
5334 // old build platforms may not support dynamic cpu sets
5335 #ifdef CPU_ALLOC
5336 
5337   // To enable easy testing of the dynamic path on different platforms we
5338   // introduce a diagnostic flag: UseCpuAllocPath
5339   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5340     // kernel may use a mask bigger than cpu_set_t
5341     log_trace(os)("active_processor_count: using dynamic path %s"
5342                   "- configured processors: %d",
5343                   UseCpuAllocPath ? "(forced) " : "",
5344                   configured_cpus);
5345     cpus_p = CPU_ALLOC(configured_cpus);
5346     if (cpus_p != NULL) {
5347       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5348       // zero it just to be safe
5349       CPU_ZERO_S(cpus_size, cpus_p);
5350     }
5351     else {
5352        // failed to allocate so fallback to online cpus
5353        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5354        log_trace(os)("active_processor_count: "
5355                      "CPU_ALLOC failed (%s) - using "
5356                      "online processor count: %d",
5357                      os::strerror(errno), online_cpus);
5358        return online_cpus;
5359     }
5360   }
5361   else {
5362     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5363                   configured_cpus);
5364   }
5365 #else // CPU_ALLOC
5366 // these stubs won't be executed
5367 #define CPU_COUNT_S(size, cpus) -1
5368 #define CPU_FREE(cpus)
5369 
5370   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5371                 configured_cpus);
5372 #endif // CPU_ALLOC
5373 
5374   // pid 0 means the current thread - which we have to assume represents the process
5375   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5376     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5377       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5378     }
5379     else {
5380       cpu_count = CPU_COUNT(cpus_p);
5381     }
5382     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5383   }
5384   else {
5385     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5386     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5387             "which may exceed available processors", os::strerror(errno), cpu_count);
5388   }
5389 
5390   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5391     CPU_FREE(cpus_p);
5392   }
5393 
5394   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5395   return cpu_count;
5396 }
5397 
5398 // Determine the active processor count from one of
5399 // three different sources:
5400 //
5401 // 1. User option -XX:ActiveProcessorCount
5402 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5403 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5404 //
5405 // Option 1, if specified, will always override.
5406 // If the cgroup subsystem is active and configured, we
5407 // will return the min of the cgroup and option 2 results.
5408 // This is required since tools, such as numactl, that
5409 // alter cpu affinity do not update cgroup subsystem
5410 // cpuset configuration files.
5411 int os::active_processor_count() {
5412   // User has overridden the number of active processors
5413   if (ActiveProcessorCount > 0) {
5414     log_trace(os)("active_processor_count: "
5415                   "active processor count set by user : %d",
5416                   ActiveProcessorCount);
5417     return ActiveProcessorCount;
5418   }
5419 
5420   int active_cpus;
5421   if (OSContainer::is_containerized()) {
5422     active_cpus = OSContainer::active_processor_count();
5423     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5424                    active_cpus);
5425   } else {
5426     active_cpus = os::Linux::active_processor_count();
5427   }
5428 
5429   return active_cpus;
5430 }
5431 
5432 uint os::processor_id() {
5433   const int id = Linux::sched_getcpu();
5434   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5435   return (uint)id;
5436 }
5437 
5438 void os::set_native_thread_name(const char *name) {
5439   if (Linux::_pthread_setname_np) {
5440     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5441     snprintf(buf, sizeof(buf), "%s", name);
5442     buf[sizeof(buf) - 1] = '\0';
5443     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5444     // ERANGE should not happen; all other errors should just be ignored.
5445     assert(rc != ERANGE, "pthread_setname_np failed");
5446   }
5447 }
5448 
5449 bool os::distribute_processes(uint length, uint* distribution) {
5450   // Not yet implemented.
5451   return false;
5452 }
5453 
5454 bool os::bind_to_processor(uint processor_id) {
5455   // Not yet implemented.
5456   return false;
5457 }
5458 
5459 ///
5460 
5461 void os::SuspendedThreadTask::internal_do_task() {
5462   if (do_suspend(_thread->osthread())) {
5463     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5464     do_task(context);
5465     do_resume(_thread->osthread());
5466   }
5467 }
5468 
5469 ////////////////////////////////////////////////////////////////////////////////
5470 // debug support
5471 
5472 bool os::find(address addr, outputStream* st) {
5473   Dl_info dlinfo;
5474   memset(&dlinfo, 0, sizeof(dlinfo));
5475   if (dladdr(addr, &dlinfo) != 0) {
5476     st->print(PTR_FORMAT ": ", p2i(addr));
5477     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5478       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5479                 p2i(addr) - p2i(dlinfo.dli_saddr));
5480     } else if (dlinfo.dli_fbase != NULL) {
5481       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5482     } else {
5483       st->print("<absolute address>");
5484     }
5485     if (dlinfo.dli_fname != NULL) {
5486       st->print(" in %s", dlinfo.dli_fname);
5487     }
5488     if (dlinfo.dli_fbase != NULL) {
5489       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5490     }
5491     st->cr();
5492 
5493     if (Verbose) {
5494       // decode some bytes around the PC
5495       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5496       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5497       address       lowest = (address) dlinfo.dli_sname;
5498       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5499       if (begin < lowest)  begin = lowest;
5500       Dl_info dlinfo2;
5501       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5502           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5503         end = (address) dlinfo2.dli_saddr;
5504       }
5505       Disassembler::decode(begin, end, st);
5506     }
5507     return true;
5508   }
5509   return false;
5510 }
5511 
5512 ////////////////////////////////////////////////////////////////////////////////
5513 // misc
5514 
5515 // This does not do anything on Linux. This is basically a hook for being
5516 // able to use structured exception handling (thread-local exception filters)
5517 // on, e.g., Win32.
5518 void
5519 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5520                          JavaCallArguments* args, Thread* thread) {
5521   f(value, method, args, thread);
5522 }
5523 
5524 void os::print_statistics() {
5525 }
5526 
5527 bool os::message_box(const char* title, const char* message) {
5528   int i;
5529   fdStream err(defaultStream::error_fd());
5530   for (i = 0; i < 78; i++) err.print_raw("=");
5531   err.cr();
5532   err.print_raw_cr(title);
5533   for (i = 0; i < 78; i++) err.print_raw("-");
5534   err.cr();
5535   err.print_raw_cr(message);
5536   for (i = 0; i < 78; i++) err.print_raw("=");
5537   err.cr();
5538 
5539   char buf[16];
5540   // Prevent process from exiting upon "read error" without consuming all CPU
5541   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5542 
5543   return buf[0] == 'y' || buf[0] == 'Y';
5544 }
5545 
5546 // Is a (classpath) directory empty?
5547 bool os::dir_is_empty(const char* path) {
5548   DIR *dir = NULL;
5549   struct dirent *ptr;
5550 
5551   dir = opendir(path);
5552   if (dir == NULL) return true;
5553 
5554   // Scan the directory
5555   bool result = true;
5556   while (result && (ptr = readdir(dir)) != NULL) {
5557     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5558       result = false;
5559     }
5560   }
5561   closedir(dir);
5562   return result;
5563 }
5564 
5565 // This code originates from JDK's sysOpen and open64_w
5566 // from src/solaris/hpi/src/system_md.c
5567 
5568 int os::open(const char *path, int oflag, int mode) {
5569   if (strlen(path) > MAX_PATH - 1) {
5570     errno = ENAMETOOLONG;
5571     return -1;
5572   }
5573 
5574   // All file descriptors that are opened in the Java process and not
5575   // specifically destined for a subprocess should have the close-on-exec
5576   // flag set.  If we don't set it, then careless 3rd party native code
5577   // might fork and exec without closing all appropriate file descriptors
5578   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5579   // turn might:
5580   //
5581   // - cause end-of-file to fail to be detected on some file
5582   //   descriptors, resulting in mysterious hangs, or
5583   //
5584   // - might cause an fopen in the subprocess to fail on a system
5585   //   suffering from bug 1085341.
5586   //
5587   // (Yes, the default setting of the close-on-exec flag is a Unix
5588   // design flaw)
5589   //
5590   // See:
5591   // 1085341: 32-bit stdio routines should support file descriptors >255
5592   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5593   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5594   //
5595   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5596   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5597   // because it saves a system call and removes a small window where the flag
5598   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5599   // and we fall back to using FD_CLOEXEC (see below).
5600 #ifdef O_CLOEXEC
5601   oflag |= O_CLOEXEC;
5602 #endif
5603 
5604   int fd = ::open64(path, oflag, mode);
5605   if (fd == -1) return -1;
5606 
5607   //If the open succeeded, the file might still be a directory
5608   {
5609     struct stat64 buf64;
5610     int ret = ::fstat64(fd, &buf64);
5611     int st_mode = buf64.st_mode;
5612 
5613     if (ret != -1) {
5614       if ((st_mode & S_IFMT) == S_IFDIR) {
5615         errno = EISDIR;
5616         ::close(fd);
5617         return -1;
5618       }
5619     } else {
5620       ::close(fd);
5621       return -1;
5622     }
5623   }
5624 
5625 #ifdef FD_CLOEXEC
5626   // Validate that the use of the O_CLOEXEC flag on open above worked.
5627   // With recent kernels, we will perform this check exactly once.
5628   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5629   if (!O_CLOEXEC_is_known_to_work) {
5630     int flags = ::fcntl(fd, F_GETFD);
5631     if (flags != -1) {
5632       if ((flags & FD_CLOEXEC) != 0)
5633         O_CLOEXEC_is_known_to_work = 1;
5634       else
5635         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5636     }
5637   }
5638 #endif
5639 
5640   return fd;
5641 }
5642 
5643 
5644 // create binary file, rewriting existing file if required
5645 int os::create_binary_file(const char* path, bool rewrite_existing) {
5646   int oflags = O_WRONLY | O_CREAT;
5647   if (!rewrite_existing) {
5648     oflags |= O_EXCL;
5649   }
5650   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5651 }
5652 
5653 // return current position of file pointer
5654 jlong os::current_file_offset(int fd) {
5655   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5656 }
5657 
5658 // move file pointer to the specified offset
5659 jlong os::seek_to_file_offset(int fd, jlong offset) {
5660   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5661 }
5662 
5663 // This code originates from JDK's sysAvailable
5664 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5665 
5666 int os::available(int fd, jlong *bytes) {
5667   jlong cur, end;
5668   int mode;
5669   struct stat64 buf64;
5670 
5671   if (::fstat64(fd, &buf64) >= 0) {
5672     mode = buf64.st_mode;
5673     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5674       int n;
5675       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5676         *bytes = n;
5677         return 1;
5678       }
5679     }
5680   }
5681   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5682     return 0;
5683   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5684     return 0;
5685   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5686     return 0;
5687   }
5688   *bytes = end - cur;
5689   return 1;
5690 }
5691 
5692 // Map a block of memory.
5693 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5694                         char *addr, size_t bytes, bool read_only,
5695                         bool allow_exec) {
5696   int prot;
5697   int flags = MAP_PRIVATE;
5698 
5699   if (read_only) {
5700     prot = PROT_READ;
5701   } else {
5702     prot = PROT_READ | PROT_WRITE;
5703   }
5704 
5705   if (allow_exec) {
5706     prot |= PROT_EXEC;
5707   }
5708 
5709   if (addr != NULL) {
5710     flags |= MAP_FIXED;
5711   }
5712 
5713   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5714                                      fd, file_offset);
5715   if (mapped_address == MAP_FAILED) {
5716     return NULL;
5717   }
5718   return mapped_address;
5719 }
5720 
5721 
5722 // Remap a block of memory.
5723 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5724                           char *addr, size_t bytes, bool read_only,
5725                           bool allow_exec) {
5726   // same as map_memory() on this OS
5727   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5728                         allow_exec);
5729 }
5730 
5731 
5732 // Unmap a block of memory.
5733 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5734   return munmap(addr, bytes) == 0;
5735 }
5736 
5737 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5738 
5739 static jlong fast_cpu_time(Thread *thread) {
5740     clockid_t clockid;
5741     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5742                                               &clockid);
5743     if (rc == 0) {
5744       return os::Linux::fast_thread_cpu_time(clockid);
5745     } else {
5746       // It's possible to encounter a terminated native thread that failed
5747       // to detach itself from the VM - which should result in ESRCH.
5748       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5749       return -1;
5750     }
5751 }
5752 
5753 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5754 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5755 // of a thread.
5756 //
5757 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5758 // the fast estimate available on the platform.
5759 
5760 jlong os::current_thread_cpu_time() {
5761   if (os::Linux::supports_fast_thread_cpu_time()) {
5762     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5763   } else {
5764     // return user + sys since the cost is the same
5765     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5766   }
5767 }
5768 
5769 jlong os::thread_cpu_time(Thread* thread) {
5770   // consistent with what current_thread_cpu_time() returns
5771   if (os::Linux::supports_fast_thread_cpu_time()) {
5772     return fast_cpu_time(thread);
5773   } else {
5774     return slow_thread_cpu_time(thread, true /* user + sys */);
5775   }
5776 }
5777 
5778 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5779   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5780     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5781   } else {
5782     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5783   }
5784 }
5785 
5786 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5787   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5788     return fast_cpu_time(thread);
5789   } else {
5790     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5791   }
5792 }
5793 
5794 //  -1 on error.
5795 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5796   pid_t  tid = thread->osthread()->thread_id();
5797   char *s;
5798   char stat[2048];
5799   int statlen;
5800   char proc_name[64];
5801   int count;
5802   long sys_time, user_time;
5803   char cdummy;
5804   int idummy;
5805   long ldummy;
5806   FILE *fp;
5807 
5808   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5809   fp = fopen(proc_name, "r");
5810   if (fp == NULL) return -1;
5811   statlen = fread(stat, 1, 2047, fp);
5812   stat[statlen] = '\0';
5813   fclose(fp);
5814 
5815   // Skip pid and the command string. Note that we could be dealing with
5816   // weird command names, e.g. user could decide to rename java launcher
5817   // to "java 1.4.2 :)", then the stat file would look like
5818   //                1234 (java 1.4.2 :)) R ... ...
5819   // We don't really need to know the command string, just find the last
5820   // occurrence of ")" and then start parsing from there. See bug 4726580.
5821   s = strrchr(stat, ')');
5822   if (s == NULL) return -1;
5823 
5824   // Skip blank chars
5825   do { s++; } while (s && isspace(*s));
5826 
5827   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5828                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5829                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5830                  &user_time, &sys_time);
5831   if (count != 13) return -1;
5832   if (user_sys_cpu_time) {
5833     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5834   } else {
5835     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5836   }
5837 }
5838 
5839 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5840   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5841   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5842   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5843   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5844 }
5845 
5846 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5847   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5848   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5849   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5850   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5851 }
5852 
5853 bool os::is_thread_cpu_time_supported() {
5854   return true;
5855 }
5856 
5857 // System loadavg support.  Returns -1 if load average cannot be obtained.
5858 // Linux doesn't yet have a (official) notion of processor sets,
5859 // so just return the system wide load average.
5860 int os::loadavg(double loadavg[], int nelem) {
5861   return ::getloadavg(loadavg, nelem);
5862 }
5863 
5864 void os::pause() {
5865   char filename[MAX_PATH];
5866   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5867     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5868   } else {
5869     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5870   }
5871 
5872   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5873   if (fd != -1) {
5874     struct stat buf;
5875     ::close(fd);
5876     while (::stat(filename, &buf) == 0) {
5877       (void)::poll(NULL, 0, 100);
5878     }
5879   } else {
5880     jio_fprintf(stderr,
5881                 "Could not open pause file '%s', continuing immediately.\n", filename);
5882   }
5883 }
5884 
5885 extern char** environ;
5886 
5887 // Run the specified command in a separate process. Return its exit value,
5888 // or -1 on failure (e.g. can't fork a new process).
5889 // Unlike system(), this function can be called from signal handler. It
5890 // doesn't block SIGINT et al.
5891 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5892   const char * argv[4] = {"sh", "-c", cmd, NULL};
5893 
5894   pid_t pid ;
5895 
5896   if (use_vfork_if_available) {
5897     pid = vfork();
5898   } else {
5899     pid = fork();
5900   }
5901 
5902   if (pid < 0) {
5903     // fork failed
5904     return -1;
5905 
5906   } else if (pid == 0) {
5907     // child process
5908 
5909     execve("/bin/sh", (char* const*)argv, environ);
5910 
5911     // execve failed
5912     _exit(-1);
5913 
5914   } else  {
5915     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5916     // care about the actual exit code, for now.
5917 
5918     int status;
5919 
5920     // Wait for the child process to exit.  This returns immediately if
5921     // the child has already exited. */
5922     while (waitpid(pid, &status, 0) < 0) {
5923       switch (errno) {
5924       case ECHILD: return 0;
5925       case EINTR: break;
5926       default: return -1;
5927       }
5928     }
5929 
5930     if (WIFEXITED(status)) {
5931       // The child exited normally; get its exit code.
5932       return WEXITSTATUS(status);
5933     } else if (WIFSIGNALED(status)) {
5934       // The child exited because of a signal
5935       // The best value to return is 0x80 + signal number,
5936       // because that is what all Unix shells do, and because
5937       // it allows callers to distinguish between process exit and
5938       // process death by signal.
5939       return 0x80 + WTERMSIG(status);
5940     } else {
5941       // Unknown exit code; pass it through
5942       return status;
5943     }
5944   }
5945 }
5946 
5947 // Get the default path to the core file
5948 // Returns the length of the string
5949 int os::get_core_path(char* buffer, size_t bufferSize) {
5950   /*
5951    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5952    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5953    */
5954   const int core_pattern_len = 129;
5955   char core_pattern[core_pattern_len] = {0};
5956 
5957   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5958   if (core_pattern_file == -1) {
5959     return -1;
5960   }
5961 
5962   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5963   ::close(core_pattern_file);
5964   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5965     return -1;
5966   }
5967   if (core_pattern[ret-1] == '\n') {
5968     core_pattern[ret-1] = '\0';
5969   } else {
5970     core_pattern[ret] = '\0';
5971   }
5972 
5973   // Replace the %p in the core pattern with the process id. NOTE: we do this
5974   // only if the pattern doesn't start with "|", and we support only one %p in
5975   // the pattern.
5976   char *pid_pos = strstr(core_pattern, "%p");
5977   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5978   int written;
5979 
5980   if (core_pattern[0] == '/') {
5981     if (pid_pos != NULL) {
5982       *pid_pos = '\0';
5983       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5984                              current_process_id(), tail);
5985     } else {
5986       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5987     }
5988   } else {
5989     char cwd[PATH_MAX];
5990 
5991     const char* p = get_current_directory(cwd, PATH_MAX);
5992     if (p == NULL) {
5993       return -1;
5994     }
5995 
5996     if (core_pattern[0] == '|') {
5997       written = jio_snprintf(buffer, bufferSize,
5998                              "\"%s\" (or dumping to %s/core.%d)",
5999                              &core_pattern[1], p, current_process_id());
6000     } else if (pid_pos != NULL) {
6001       *pid_pos = '\0';
6002       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
6003                              current_process_id(), tail);
6004     } else {
6005       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6006     }
6007   }
6008 
6009   if (written < 0) {
6010     return -1;
6011   }
6012 
6013   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6014     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6015 
6016     if (core_uses_pid_file != -1) {
6017       char core_uses_pid = 0;
6018       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6019       ::close(core_uses_pid_file);
6020 
6021       if (core_uses_pid == '1') {
6022         jio_snprintf(buffer + written, bufferSize - written,
6023                                           ".%d", current_process_id());
6024       }
6025     }
6026   }
6027 
6028   return strlen(buffer);
6029 }
6030 
6031 bool os::start_debugging(char *buf, int buflen) {
6032   int len = (int)strlen(buf);
6033   char *p = &buf[len];
6034 
6035   jio_snprintf(p, buflen-len,
6036                "\n\n"
6037                "Do you want to debug the problem?\n\n"
6038                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6039                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6040                "Otherwise, press RETURN to abort...",
6041                os::current_process_id(), os::current_process_id(),
6042                os::current_thread_id(), os::current_thread_id());
6043 
6044   bool yes = os::message_box("Unexpected Error", buf);
6045 
6046   if (yes) {
6047     // yes, user asked VM to launch debugger
6048     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6049                  os::current_process_id(), os::current_process_id());
6050 
6051     os::fork_and_exec(buf);
6052     yes = false;
6053   }
6054   return yes;
6055 }
6056 
6057 
6058 // Java/Compiler thread:
6059 //
6060 //   Low memory addresses
6061 // P0 +------------------------+
6062 //    |                        |\  Java thread created by VM does not have glibc
6063 //    |    glibc guard page    | - guard page, attached Java thread usually has
6064 //    |                        |/  1 glibc guard page.
6065 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6066 //    |                        |\
6067 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6068 //    |                        |/
6069 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6070 //    |                        |\
6071 //    |      Normal Stack      | -
6072 //    |                        |/
6073 // P2 +------------------------+ Thread::stack_base()
6074 //
6075 // Non-Java thread:
6076 //
6077 //   Low memory addresses
6078 // P0 +------------------------+
6079 //    |                        |\
6080 //    |  glibc guard page      | - usually 1 page
6081 //    |                        |/
6082 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6083 //    |                        |\
6084 //    |      Normal Stack      | -
6085 //    |                        |/
6086 // P2 +------------------------+ Thread::stack_base()
6087 //
6088 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6089 //    returned from pthread_attr_getstack().
6090 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6091 //    of the stack size given in pthread_attr. We work around this for
6092 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6093 //
6094 #ifndef ZERO
6095 static void current_stack_region(address * bottom, size_t * size) {
6096   if (os::is_primordial_thread()) {
6097     // primordial thread needs special handling because pthread_getattr_np()
6098     // may return bogus value.
6099     *bottom = os::Linux::initial_thread_stack_bottom();
6100     *size   = os::Linux::initial_thread_stack_size();
6101   } else {
6102     pthread_attr_t attr;
6103 
6104     int rslt = pthread_getattr_np(pthread_self(), &attr);
6105 
6106     // JVM needs to know exact stack location, abort if it fails
6107     if (rslt != 0) {
6108       if (rslt == ENOMEM) {
6109         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6110       } else {
6111         fatal("pthread_getattr_np failed with error = %d", rslt);
6112       }
6113     }
6114 
6115     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6116       fatal("Cannot locate current stack attributes!");
6117     }
6118 
6119     // Work around NPTL stack guard error.
6120     size_t guard_size = 0;
6121     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6122     if (rslt != 0) {
6123       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6124     }
6125     *bottom += guard_size;
6126     *size   -= guard_size;
6127 
6128     pthread_attr_destroy(&attr);
6129 
6130   }
6131   assert(os::current_stack_pointer() >= *bottom &&
6132          os::current_stack_pointer() < *bottom + *size, "just checking");
6133 }
6134 
6135 address os::current_stack_base() {
6136   address bottom;
6137   size_t size;
6138   current_stack_region(&bottom, &size);
6139   return (bottom + size);
6140 }
6141 
6142 size_t os::current_stack_size() {
6143   // This stack size includes the usable stack and HotSpot guard pages
6144   // (for the threads that have Hotspot guard pages).
6145   address bottom;
6146   size_t size;
6147   current_stack_region(&bottom, &size);
6148   return size;
6149 }
6150 #endif
6151 
6152 static inline struct timespec get_mtime(const char* filename) {
6153   struct stat st;
6154   int ret = os::stat(filename, &st);
6155   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6156   return st.st_mtim;
6157 }
6158 
6159 int os::compare_file_modified_times(const char* file1, const char* file2) {
6160   struct timespec filetime1 = get_mtime(file1);
6161   struct timespec filetime2 = get_mtime(file2);
6162   int diff = filetime1.tv_sec - filetime2.tv_sec;
6163   if (diff == 0) {
6164     return filetime1.tv_nsec - filetime2.tv_nsec;
6165   }
6166   return diff;
6167 }
6168 
6169 /////////////// Unit tests ///////////////
6170 
6171 #ifndef PRODUCT
6172 
6173 class TestReserveMemorySpecial : AllStatic {
6174  public:
6175   static void small_page_write(void* addr, size_t size) {
6176     size_t page_size = os::vm_page_size();
6177 
6178     char* end = (char*)addr + size;
6179     for (char* p = (char*)addr; p < end; p += page_size) {
6180       *p = 1;
6181     }
6182   }
6183 
6184   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6185     if (!UseHugeTLBFS) {
6186       return;
6187     }
6188 
6189     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6190 
6191     if (addr != NULL) {
6192       small_page_write(addr, size);
6193 
6194       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6195     }
6196   }
6197 
6198   static void test_reserve_memory_special_huge_tlbfs_only() {
6199     if (!UseHugeTLBFS) {
6200       return;
6201     }
6202 
6203     size_t lp = os::large_page_size();
6204 
6205     for (size_t size = lp; size <= lp * 10; size += lp) {
6206       test_reserve_memory_special_huge_tlbfs_only(size);
6207     }
6208   }
6209 
6210   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6211     size_t lp = os::large_page_size();
6212     size_t ag = os::vm_allocation_granularity();
6213 
6214     // sizes to test
6215     const size_t sizes[] = {
6216       lp, lp + ag, lp + lp / 2, lp * 2,
6217       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6218       lp * 10, lp * 10 + lp / 2
6219     };
6220     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6221 
6222     // For each size/alignment combination, we test three scenarios:
6223     // 1) with req_addr == NULL
6224     // 2) with a non-null req_addr at which we expect to successfully allocate
6225     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6226     //    expect the allocation to either fail or to ignore req_addr
6227 
6228     // Pre-allocate two areas; they shall be as large as the largest allocation
6229     //  and aligned to the largest alignment we will be testing.
6230     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6231     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6232       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6233       -1, 0);
6234     assert(mapping1 != MAP_FAILED, "should work");
6235 
6236     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6237       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6238       -1, 0);
6239     assert(mapping2 != MAP_FAILED, "should work");
6240 
6241     // Unmap the first mapping, but leave the second mapping intact: the first
6242     // mapping will serve as a value for a "good" req_addr (case 2). The second
6243     // mapping, still intact, as "bad" req_addr (case 3).
6244     ::munmap(mapping1, mapping_size);
6245 
6246     // Case 1
6247     for (int i = 0; i < num_sizes; i++) {
6248       const size_t size = sizes[i];
6249       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6250         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6251         if (p != NULL) {
6252           assert(is_aligned(p, alignment), "must be");
6253           small_page_write(p, size);
6254           os::Linux::release_memory_special_huge_tlbfs(p, size);
6255         }
6256       }
6257     }
6258 
6259     // Case 2
6260     for (int i = 0; i < num_sizes; i++) {
6261       const size_t size = sizes[i];
6262       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6263         char* const req_addr = align_up(mapping1, alignment);
6264         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6265         if (p != NULL) {
6266           assert(p == req_addr, "must be");
6267           small_page_write(p, size);
6268           os::Linux::release_memory_special_huge_tlbfs(p, size);
6269         }
6270       }
6271     }
6272 
6273     // Case 3
6274     for (int i = 0; i < num_sizes; i++) {
6275       const size_t size = sizes[i];
6276       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6277         char* const req_addr = align_up(mapping2, alignment);
6278         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6279         // as the area around req_addr contains already existing mappings, the API should always
6280         // return NULL (as per contract, it cannot return another address)
6281         assert(p == NULL, "must be");
6282       }
6283     }
6284 
6285     ::munmap(mapping2, mapping_size);
6286 
6287   }
6288 
6289   static void test_reserve_memory_special_huge_tlbfs() {
6290     if (!UseHugeTLBFS) {
6291       return;
6292     }
6293 
6294     test_reserve_memory_special_huge_tlbfs_only();
6295     test_reserve_memory_special_huge_tlbfs_mixed();
6296   }
6297 
6298   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6299     if (!UseSHM) {
6300       return;
6301     }
6302 
6303     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6304 
6305     if (addr != NULL) {
6306       assert(is_aligned(addr, alignment), "Check");
6307       assert(is_aligned(addr, os::large_page_size()), "Check");
6308 
6309       small_page_write(addr, size);
6310 
6311       os::Linux::release_memory_special_shm(addr, size);
6312     }
6313   }
6314 
6315   static void test_reserve_memory_special_shm() {
6316     size_t lp = os::large_page_size();
6317     size_t ag = os::vm_allocation_granularity();
6318 
6319     for (size_t size = ag; size < lp * 3; size += ag) {
6320       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6321         test_reserve_memory_special_shm(size, alignment);
6322       }
6323     }
6324   }
6325 
6326   static void test() {
6327     test_reserve_memory_special_huge_tlbfs();
6328     test_reserve_memory_special_shm();
6329   }
6330 };
6331 
6332 void TestReserveMemorySpecial_test() {
6333   TestReserveMemorySpecial::test();
6334 }
6335 
6336 #endif