/* * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016, 2018 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "code/vtableStubs.hpp" #include "interp_masm_s390.hpp" #include "memory/resourceArea.hpp" #include "oops/compiledICHolder.hpp" #include "oops/instanceKlass.hpp" #include "oops/klass.inline.hpp" #include "oops/klassVtable.hpp" #include "runtime/sharedRuntime.hpp" #include "vmreg_s390.inline.hpp" #ifdef COMPILER2 #include "opto/runtime.hpp" #endif #define __ masm-> #ifndef PRODUCT extern "C" void bad_compiled_vtable_index(JavaThread* thread, oop receiver, int index); #endif // Used by compiler only; may use only caller saved, non-argument registers. VtableStub* VtableStubs::create_vtable_stub(int vtable_index) { // Read "A word on VtableStub sizing" in share/code/vtableStubs.hpp for details on stub sizing. const int stub_code_length = code_size_limit(true); VtableStub* s = new(stub_code_length) VtableStub(true, vtable_index); // Can be NULL if there is no free space in the code cache. if (s == NULL) { return NULL; } // Count unused bytes in instruction sequences of variable size. // We add them to the computed buffer size in order to avoid // overflow in subsequently generated stubs. address start_pc; int slop_bytes = 0; int slop_delta = 0; ResourceMark rm; CodeBuffer cb(s->entry_point(), stub_code_length); MacroAssembler* masm = new MacroAssembler(&cb); #if (!defined(PRODUCT) && defined(COMPILER2)) if (CountCompiledCalls) { // worst case actual size slop_delta = __ load_const_size() - __ load_const_optimized_rtn_len(Z_R1_scratch, (long)SharedRuntime::nof_megamorphic_calls_addr(), true); slop_bytes += slop_delta; assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta); // Use generic emitter for direct memory increment. // Abuse Z_method as scratch register for generic emitter. // It is loaded further down anyway before it is first used. // No dynamic code size variance here, increment is 1, always. __ add2mem_32(Address(Z_R1_scratch), 1, Z_method); } #endif assert(VtableStub::receiver_location() == Z_R2->as_VMReg(), "receiver expected in Z_ARG1"); const Register rcvr_klass = Z_R1_scratch; address npe_addr = __ pc(); // npe == NULL ptr exception // check if we must do an explicit check (implicit checks disabled, offset too large). __ null_check(Z_ARG1, Z_R1_scratch, oopDesc::klass_offset_in_bytes()); // Get receiver klass. __ load_klass(rcvr_klass, Z_ARG1); #ifndef PRODUCT if (DebugVtables) { NearLabel L; // Check offset vs vtable length. const Register vtable_idx = Z_R0_scratch; // worst case actual size slop_delta = __ load_const_size() - __ load_const_optimized_rtn_len(vtable_idx, vtable_index*vtableEntry::size(), true); slop_bytes += slop_delta; assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta); assert(Displacement::is_shortDisp(in_bytes(Klass::vtable_length_offset())), "disp to large"); __ z_cl(vtable_idx, in_bytes(Klass::vtable_length_offset()), rcvr_klass); __ z_brl(L); __ z_lghi(Z_ARG3, vtable_index); // Debug code, don't optimize. __ call_VM(noreg, CAST_FROM_FN_PTR(address, bad_compiled_vtable_index), Z_ARG1, Z_ARG3, false); // Count unused bytes (assume worst case here). slop_bytes += 12; __ bind(L); } #endif int entry_offset = in_bytes(Klass::vtable_start_offset()) + vtable_index * vtableEntry::size_in_bytes(); int v_off = entry_offset + vtableEntry::method_offset_in_bytes(); // Set method (in case of interpreted method), and destination address. // Duplicate safety code from enc_class Java_Dynamic_Call_dynTOC. if (Displacement::is_validDisp(v_off)) { __ z_lg(Z_method/*method oop*/, v_off, rcvr_klass/*class oop*/); // Account for the load_const in the else path. slop_delta = __ load_const_size(); } else { // Worse case, offset does not fit in displacement field. // worst case actual size slop_delta = __ load_const_size() - __ load_const_optimized_rtn_len(Z_method, v_off, true); __ z_lg(Z_method/*method oop*/, 0, Z_method/*method offset*/, rcvr_klass/*class oop*/); } slop_bytes += slop_delta; #ifndef PRODUCT if (DebugVtables) { NearLabel L; __ z_ltgr(Z_method, Z_method); __ z_brne(L); __ stop("Vtable entry is ZERO", 102); __ bind(L); } #endif // Must do an explicit check if offset too large or implicit checks are disabled. address ame_addr = __ pc(); __ null_check(Z_method, Z_R1_scratch, in_bytes(Method::from_compiled_offset())); __ z_lg(Z_R1_scratch, in_bytes(Method::from_compiled_offset()), Z_method); __ z_br(Z_R1_scratch); masm->flush(); bookkeeping(masm, tty, s, npe_addr, ame_addr, true, vtable_index, slop_bytes, 0); return s; } VtableStub* VtableStubs::create_itable_stub(int itable_index) { // Read "A word on VtableStub sizing" in share/code/vtableStubs.hpp for details on stub sizing. const int stub_code_length = code_size_limit(false); VtableStub* s = new(stub_code_length) VtableStub(false, itable_index); // Can be NULL if there is no free space in the code cache. if (s == NULL) { return NULL; } // Count unused bytes in instruction sequences of variable size. // We add them to the computed buffer size in order to avoid // overflow in subsequently generated stubs. address start_pc; int slop_bytes = 0; int slop_delta = 0; ResourceMark rm; CodeBuffer cb(s->entry_point(), stub_code_length); MacroAssembler* masm = new MacroAssembler(&cb); #if (!defined(PRODUCT) && defined(COMPILER2)) if (CountCompiledCalls) { // worst case actual size slop_delta = __ load_const_size() - __ load_const_optimized_rtn_len(Z_R1_scratch, (long)SharedRuntime::nof_megamorphic_calls_addr(), true); slop_bytes += slop_delta; assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta); // Use generic emitter for direct memory increment. // Abuse Z_method as scratch register for generic emitter. // It is loaded further down anyway before it is first used. // No dynamic code size variance here, increment is 1, always. __ add2mem_32(Address(Z_R1_scratch), 1, Z_method); } #endif assert(VtableStub::receiver_location() == Z_R2->as_VMReg(), "receiver expected in Z_ARG1"); // Entry arguments: // Z_method: Interface // Z_ARG1: Receiver NearLabel no_such_interface; const Register rcvr_klass = Z_tmp_1, interface = Z_tmp_2; // Get receiver klass. // Must do an explicit check if offset too large or implicit checks are disabled. address npe_addr = __ pc(); // npe == NULL ptr exception __ null_check(Z_ARG1, Z_R1_scratch, oopDesc::klass_offset_in_bytes()); __ load_klass(rcvr_klass, Z_ARG1); // Receiver subtype check against REFC. __ z_lg(interface, Address(Z_method, CompiledICHolder::holder_klass_offset())); __ lookup_interface_method(rcvr_klass, interface, noreg, noreg, Z_R1, no_such_interface, /*return_method=*/ false); // Get Method* and entrypoint for compiler __ z_lg(interface, Address(Z_method, CompiledICHolder::holder_metadata_offset())); __ lookup_interface_method(rcvr_klass, interface, itable_index, Z_method, Z_R1, no_such_interface, /*return_method=*/ true); #ifndef PRODUCT if (DebugVtables) { NearLabel ok1; __ z_ltgr(Z_method, Z_method); __ z_brne(ok1); __ stop("method is null", 103); __ bind(ok1); } #endif address ame_addr = __ pc(); // Must do an explicit check if implicit checks are disabled. if (!ImplicitNullChecks) { __ compare64_and_branch(Z_method, (intptr_t) 0, Assembler::bcondEqual, no_such_interface); } __ z_lg(Z_R1_scratch, in_bytes(Method::from_compiled_offset()), Z_method); __ z_br(Z_R1_scratch); // Handle IncompatibleClassChangeError in itable stubs. __ bind(no_such_interface); // more detailed IncompatibleClassChangeError // we force re-resolving of the call site by jumping to // the "handle wrong method" stub, thus letting the // interpreter runtime do all the dirty work. // worst case actual size slop_delta = __ load_const_size() - __ load_const_optimized_rtn_len(Z_R1_scratch, (long)SharedRuntime::get_handle_wrong_method_stub(), true); slop_bytes += slop_delta; assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta); __ z_br(Z_R1_scratch); masm->flush(); bookkeeping(masm, tty, s, npe_addr, ame_addr, false, itable_index, slop_bytes, 0); return s; } int VtableStub::pd_code_alignment() { // System z cache line size is 256 bytes, but octoword-alignment is quite ok. const unsigned int icache_line_size = 32; return icache_line_size; }