1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2019 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "frame_ppc.hpp"
  32 #include "gc/shared/gcLocker.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interp_masm.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/compiledICHolder.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "runtime/safepointMechanism.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/vframeArray.hpp"
  41 #include "utilities/align.hpp"
  42 #include "vmreg_ppc.inline.hpp"
  43 #ifdef COMPILER1
  44 #include "c1/c1_Runtime1.hpp"
  45 #endif
  46 #ifdef COMPILER2
  47 #include "opto/ad.hpp"
  48 #include "opto/runtime.hpp"
  49 #endif
  50 
  51 #include <alloca.h>
  52 
  53 #define __ masm->
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) // nothing
  57 #else
  58 #define BLOCK_COMMENT(str) __ block_comment(str)
  59 #endif
  60 
  61 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  62 
  63 
  64 class RegisterSaver {
  65  // Used for saving volatile registers.
  66  public:
  67 
  68   // Support different return pc locations.
  69   enum ReturnPCLocation {
  70     return_pc_is_lr,
  71     return_pc_is_pre_saved,
  72     return_pc_is_thread_saved_exception_pc
  73   };
  74 
  75   static OopMap* push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
  76                          int* out_frame_size_in_bytes,
  77                          bool generate_oop_map,
  78                          int return_pc_adjustment,
  79                          ReturnPCLocation return_pc_location,
  80                          bool save_vectors = false);
  81   static void    restore_live_registers_and_pop_frame(MacroAssembler* masm,
  82                          int frame_size_in_bytes,
  83                          bool restore_ctr,
  84                          bool save_vectors = false);
  85 
  86   static void push_frame_and_save_argument_registers(MacroAssembler* masm,
  87                          Register r_temp,
  88                          int frame_size,
  89                          int total_args,
  90                          const VMRegPair *regs, const VMRegPair *regs2 = NULL);
  91   static void restore_argument_registers_and_pop_frame(MacroAssembler*masm,
  92                          int frame_size,
  93                          int total_args,
  94                          const VMRegPair *regs, const VMRegPair *regs2 = NULL);
  95 
  96   // During deoptimization only the result registers need to be restored
  97   // all the other values have already been extracted.
  98   static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes);
  99 
 100   // Constants and data structures:
 101 
 102   typedef enum {
 103     int_reg,
 104     float_reg,
 105     special_reg,
 106     vs_reg
 107   } RegisterType;
 108 
 109   typedef enum {
 110     reg_size          = 8,
 111     half_reg_size     = reg_size / 2,
 112     vs_reg_size       = 16
 113   } RegisterConstants;
 114 
 115   typedef struct {
 116     RegisterType        reg_type;
 117     int                 reg_num;
 118     VMReg               vmreg;
 119   } LiveRegType;
 120 };
 121 
 122 
 123 #define RegisterSaver_LiveIntReg(regname) \
 124   { RegisterSaver::int_reg,     regname->encoding(), regname->as_VMReg() }
 125 
 126 #define RegisterSaver_LiveFloatReg(regname) \
 127   { RegisterSaver::float_reg,   regname->encoding(), regname->as_VMReg() }
 128 
 129 #define RegisterSaver_LiveSpecialReg(regname) \
 130   { RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() }
 131 
 132 #define RegisterSaver_LiveVSReg(regname) \
 133   { RegisterSaver::vs_reg,      regname->encoding(), regname->as_VMReg() }
 134 
 135 static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
 136   // Live registers which get spilled to the stack. Register
 137   // positions in this array correspond directly to the stack layout.
 138 
 139   //
 140   // live special registers:
 141   //
 142   RegisterSaver_LiveSpecialReg(SR_CTR),
 143   //
 144   // live float registers:
 145   //
 146   RegisterSaver_LiveFloatReg( F0  ),
 147   RegisterSaver_LiveFloatReg( F1  ),
 148   RegisterSaver_LiveFloatReg( F2  ),
 149   RegisterSaver_LiveFloatReg( F3  ),
 150   RegisterSaver_LiveFloatReg( F4  ),
 151   RegisterSaver_LiveFloatReg( F5  ),
 152   RegisterSaver_LiveFloatReg( F6  ),
 153   RegisterSaver_LiveFloatReg( F7  ),
 154   RegisterSaver_LiveFloatReg( F8  ),
 155   RegisterSaver_LiveFloatReg( F9  ),
 156   RegisterSaver_LiveFloatReg( F10 ),
 157   RegisterSaver_LiveFloatReg( F11 ),
 158   RegisterSaver_LiveFloatReg( F12 ),
 159   RegisterSaver_LiveFloatReg( F13 ),
 160   RegisterSaver_LiveFloatReg( F14 ),
 161   RegisterSaver_LiveFloatReg( F15 ),
 162   RegisterSaver_LiveFloatReg( F16 ),
 163   RegisterSaver_LiveFloatReg( F17 ),
 164   RegisterSaver_LiveFloatReg( F18 ),
 165   RegisterSaver_LiveFloatReg( F19 ),
 166   RegisterSaver_LiveFloatReg( F20 ),
 167   RegisterSaver_LiveFloatReg( F21 ),
 168   RegisterSaver_LiveFloatReg( F22 ),
 169   RegisterSaver_LiveFloatReg( F23 ),
 170   RegisterSaver_LiveFloatReg( F24 ),
 171   RegisterSaver_LiveFloatReg( F25 ),
 172   RegisterSaver_LiveFloatReg( F26 ),
 173   RegisterSaver_LiveFloatReg( F27 ),
 174   RegisterSaver_LiveFloatReg( F28 ),
 175   RegisterSaver_LiveFloatReg( F29 ),
 176   RegisterSaver_LiveFloatReg( F30 ),
 177   RegisterSaver_LiveFloatReg( F31 ),
 178   //
 179   // live integer registers:
 180   //
 181   RegisterSaver_LiveIntReg(   R0  ),
 182   //RegisterSaver_LiveIntReg( R1  ), // stack pointer
 183   RegisterSaver_LiveIntReg(   R2  ),
 184   RegisterSaver_LiveIntReg(   R3  ),
 185   RegisterSaver_LiveIntReg(   R4  ),
 186   RegisterSaver_LiveIntReg(   R5  ),
 187   RegisterSaver_LiveIntReg(   R6  ),
 188   RegisterSaver_LiveIntReg(   R7  ),
 189   RegisterSaver_LiveIntReg(   R8  ),
 190   RegisterSaver_LiveIntReg(   R9  ),
 191   RegisterSaver_LiveIntReg(   R10 ),
 192   RegisterSaver_LiveIntReg(   R11 ),
 193   RegisterSaver_LiveIntReg(   R12 ),
 194   //RegisterSaver_LiveIntReg( R13 ), // system thread id
 195   RegisterSaver_LiveIntReg(   R14 ),
 196   RegisterSaver_LiveIntReg(   R15 ),
 197   RegisterSaver_LiveIntReg(   R16 ),
 198   RegisterSaver_LiveIntReg(   R17 ),
 199   RegisterSaver_LiveIntReg(   R18 ),
 200   RegisterSaver_LiveIntReg(   R19 ),
 201   RegisterSaver_LiveIntReg(   R20 ),
 202   RegisterSaver_LiveIntReg(   R21 ),
 203   RegisterSaver_LiveIntReg(   R22 ),
 204   RegisterSaver_LiveIntReg(   R23 ),
 205   RegisterSaver_LiveIntReg(   R24 ),
 206   RegisterSaver_LiveIntReg(   R25 ),
 207   RegisterSaver_LiveIntReg(   R26 ),
 208   RegisterSaver_LiveIntReg(   R27 ),
 209   RegisterSaver_LiveIntReg(   R28 ),
 210   RegisterSaver_LiveIntReg(   R29 ),
 211   RegisterSaver_LiveIntReg(   R30 ),
 212   RegisterSaver_LiveIntReg(   R31 )  // must be the last register (see save/restore functions below)
 213 };
 214 
 215 static const RegisterSaver::LiveRegType RegisterSaver_LiveVSRegs[] = {
 216   //
 217   // live vector scalar registers (optional, only these ones are used by C2):
 218   //
 219   RegisterSaver_LiveVSReg( VSR32 ),
 220   RegisterSaver_LiveVSReg( VSR33 ),
 221   RegisterSaver_LiveVSReg( VSR34 ),
 222   RegisterSaver_LiveVSReg( VSR35 ),
 223   RegisterSaver_LiveVSReg( VSR36 ),
 224   RegisterSaver_LiveVSReg( VSR37 ),
 225   RegisterSaver_LiveVSReg( VSR38 ),
 226   RegisterSaver_LiveVSReg( VSR39 ),
 227   RegisterSaver_LiveVSReg( VSR40 ),
 228   RegisterSaver_LiveVSReg( VSR41 ),
 229   RegisterSaver_LiveVSReg( VSR42 ),
 230   RegisterSaver_LiveVSReg( VSR43 ),
 231   RegisterSaver_LiveVSReg( VSR44 ),
 232   RegisterSaver_LiveVSReg( VSR45 ),
 233   RegisterSaver_LiveVSReg( VSR46 ),
 234   RegisterSaver_LiveVSReg( VSR47 ),
 235   RegisterSaver_LiveVSReg( VSR48 ),
 236   RegisterSaver_LiveVSReg( VSR49 ),
 237   RegisterSaver_LiveVSReg( VSR50 ),
 238   RegisterSaver_LiveVSReg( VSR51 )
 239 };
 240 
 241 
 242 OopMap* RegisterSaver::push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
 243                          int* out_frame_size_in_bytes,
 244                          bool generate_oop_map,
 245                          int return_pc_adjustment,
 246                          ReturnPCLocation return_pc_location,
 247                          bool save_vectors) {
 248   // Push an abi_reg_args-frame and store all registers which may be live.
 249   // If requested, create an OopMap: Record volatile registers as
 250   // callee-save values in an OopMap so their save locations will be
 251   // propagated to the RegisterMap of the caller frame during
 252   // StackFrameStream construction (needed for deoptimization; see
 253   // compiledVFrame::create_stack_value).
 254   // If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment.
 255   // Updated return pc is returned in R31 (if not return_pc_is_pre_saved).
 256 
 257   // calcualte frame size
 258   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
 259                                    sizeof(RegisterSaver::LiveRegType);
 260   const int vsregstosave_num     = save_vectors ? (sizeof(RegisterSaver_LiveVSRegs) /
 261                                                    sizeof(RegisterSaver::LiveRegType))
 262                                                 : 0;
 263   const int register_save_size   = regstosave_num * reg_size + vsregstosave_num * vs_reg_size;
 264   const int frame_size_in_bytes  = align_up(register_save_size, frame::alignment_in_bytes)
 265                                    + frame::abi_reg_args_size;
 266 
 267   *out_frame_size_in_bytes       = frame_size_in_bytes;
 268   const int frame_size_in_slots  = frame_size_in_bytes / sizeof(jint);
 269   const int register_save_offset = frame_size_in_bytes - register_save_size;
 270 
 271   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
 272   OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : NULL;
 273 
 274   BLOCK_COMMENT("push_frame_reg_args_and_save_live_registers {");
 275 
 276   // push a new frame
 277   __ push_frame(frame_size_in_bytes, noreg);
 278 
 279   // Save some registers in the last (non-vector) slots of the new frame so we
 280   // can use them as scratch regs or to determine the return pc.
 281   __ std(R31, frame_size_in_bytes -   reg_size - vsregstosave_num * vs_reg_size, R1_SP);
 282   __ std(R30, frame_size_in_bytes - 2*reg_size - vsregstosave_num * vs_reg_size, R1_SP);
 283 
 284   // save the flags
 285   // Do the save_LR_CR by hand and adjust the return pc if requested.
 286   __ mfcr(R30);
 287   __ std(R30, frame_size_in_bytes + _abi(cr), R1_SP);
 288   switch (return_pc_location) {
 289     case return_pc_is_lr: __ mflr(R31); break;
 290     case return_pc_is_pre_saved: assert(return_pc_adjustment == 0, "unsupported"); break;
 291     case return_pc_is_thread_saved_exception_pc: __ ld(R31, thread_(saved_exception_pc)); break;
 292     default: ShouldNotReachHere();
 293   }
 294   if (return_pc_location != return_pc_is_pre_saved) {
 295     if (return_pc_adjustment != 0) {
 296       __ addi(R31, R31, return_pc_adjustment);
 297     }
 298     __ std(R31, frame_size_in_bytes + _abi(lr), R1_SP);
 299   }
 300 
 301   // save all registers (ints and floats)
 302   int offset = register_save_offset;
 303 
 304   for (int i = 0; i < regstosave_num; i++) {
 305     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
 306     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
 307 
 308     switch (reg_type) {
 309       case RegisterSaver::int_reg: {
 310         if (reg_num < 30) { // We spilled R30-31 right at the beginning.
 311           __ std(as_Register(reg_num), offset, R1_SP);
 312         }
 313         break;
 314       }
 315       case RegisterSaver::float_reg: {
 316         __ stfd(as_FloatRegister(reg_num), offset, R1_SP);
 317         break;
 318       }
 319       case RegisterSaver::special_reg: {
 320         if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
 321           __ mfctr(R30);
 322           __ std(R30, offset, R1_SP);
 323         } else {
 324           Unimplemented();
 325         }
 326         break;
 327       }
 328       default:
 329         ShouldNotReachHere();
 330     }
 331 
 332     if (generate_oop_map) {
 333       map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
 334                             RegisterSaver_LiveRegs[i].vmreg);
 335       map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2),
 336                             RegisterSaver_LiveRegs[i].vmreg->next());
 337     }
 338     offset += reg_size;
 339   }
 340 
 341   for (int i = 0; i < vsregstosave_num; i++) {
 342     int reg_num  = RegisterSaver_LiveVSRegs[i].reg_num;
 343     int reg_type = RegisterSaver_LiveVSRegs[i].reg_type;
 344 
 345     __ li(R30, offset);
 346     __ stxvd2x(as_VectorSRegister(reg_num), R30, R1_SP);
 347 
 348     if (generate_oop_map) {
 349       map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
 350                             RegisterSaver_LiveVSRegs[i].vmreg);
 351     }
 352     offset += vs_reg_size;
 353   }
 354 
 355   assert(offset == frame_size_in_bytes, "consistency check");
 356 
 357   BLOCK_COMMENT("} push_frame_reg_args_and_save_live_registers");
 358 
 359   // And we're done.
 360   return map;
 361 }
 362 
 363 
 364 // Pop the current frame and restore all the registers that we
 365 // saved.
 366 void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm,
 367                                                          int frame_size_in_bytes,
 368                                                          bool restore_ctr,
 369                                                          bool save_vectors) {
 370   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
 371                                    sizeof(RegisterSaver::LiveRegType);
 372   const int vsregstosave_num     = save_vectors ? (sizeof(RegisterSaver_LiveVSRegs) /
 373                                                    sizeof(RegisterSaver::LiveRegType))
 374                                                 : 0;
 375   const int register_save_size   = regstosave_num * reg_size + vsregstosave_num * vs_reg_size;
 376 
 377   const int register_save_offset = frame_size_in_bytes - register_save_size;
 378 
 379   BLOCK_COMMENT("restore_live_registers_and_pop_frame {");
 380 
 381   // restore all registers (ints and floats)
 382   int offset = register_save_offset;
 383 
 384   for (int i = 0; i < regstosave_num; i++) {
 385     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
 386     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
 387 
 388     switch (reg_type) {
 389       case RegisterSaver::int_reg: {
 390         if (reg_num != 31) // R31 restored at the end, it's the tmp reg!
 391           __ ld(as_Register(reg_num), offset, R1_SP);
 392         break;
 393       }
 394       case RegisterSaver::float_reg: {
 395         __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
 396         break;
 397       }
 398       case RegisterSaver::special_reg: {
 399         if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
 400           if (restore_ctr) { // Nothing to do here if ctr already contains the next address.
 401             __ ld(R31, offset, R1_SP);
 402             __ mtctr(R31);
 403           }
 404         } else {
 405           Unimplemented();
 406         }
 407         break;
 408       }
 409       default:
 410         ShouldNotReachHere();
 411     }
 412     offset += reg_size;
 413   }
 414 
 415   for (int i = 0; i < vsregstosave_num; i++) {
 416     int reg_num  = RegisterSaver_LiveVSRegs[i].reg_num;
 417     int reg_type = RegisterSaver_LiveVSRegs[i].reg_type;
 418 
 419     __ li(R31, offset);
 420     __ lxvd2x(as_VectorSRegister(reg_num), R31, R1_SP);
 421 
 422     offset += vs_reg_size;
 423   }
 424 
 425   assert(offset == frame_size_in_bytes, "consistency check");
 426 
 427   // restore link and the flags
 428   __ ld(R31, frame_size_in_bytes + _abi(lr), R1_SP);
 429   __ mtlr(R31);
 430 
 431   __ ld(R31, frame_size_in_bytes + _abi(cr), R1_SP);
 432   __ mtcr(R31);
 433 
 434   // restore scratch register's value
 435   __ ld(R31, frame_size_in_bytes - reg_size - vsregstosave_num * vs_reg_size, R1_SP);
 436 
 437   // pop the frame
 438   __ addi(R1_SP, R1_SP, frame_size_in_bytes);
 439 
 440   BLOCK_COMMENT("} restore_live_registers_and_pop_frame");
 441 }
 442 
 443 void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp,
 444                                                            int frame_size,int total_args, const VMRegPair *regs,
 445                                                            const VMRegPair *regs2) {
 446   __ push_frame(frame_size, r_temp);
 447   int st_off = frame_size - wordSize;
 448   for (int i = 0; i < total_args; i++) {
 449     VMReg r_1 = regs[i].first();
 450     VMReg r_2 = regs[i].second();
 451     if (!r_1->is_valid()) {
 452       assert(!r_2->is_valid(), "");
 453       continue;
 454     }
 455     if (r_1->is_Register()) {
 456       Register r = r_1->as_Register();
 457       __ std(r, st_off, R1_SP);
 458       st_off -= wordSize;
 459     } else if (r_1->is_FloatRegister()) {
 460       FloatRegister f = r_1->as_FloatRegister();
 461       __ stfd(f, st_off, R1_SP);
 462       st_off -= wordSize;
 463     }
 464   }
 465   if (regs2 != NULL) {
 466     for (int i = 0; i < total_args; i++) {
 467       VMReg r_1 = regs2[i].first();
 468       VMReg r_2 = regs2[i].second();
 469       if (!r_1->is_valid()) {
 470         assert(!r_2->is_valid(), "");
 471         continue;
 472       }
 473       if (r_1->is_Register()) {
 474         Register r = r_1->as_Register();
 475         __ std(r, st_off, R1_SP);
 476         st_off -= wordSize;
 477       } else if (r_1->is_FloatRegister()) {
 478         FloatRegister f = r_1->as_FloatRegister();
 479         __ stfd(f, st_off, R1_SP);
 480         st_off -= wordSize;
 481       }
 482     }
 483   }
 484 }
 485 
 486 void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size,
 487                                                              int total_args, const VMRegPair *regs,
 488                                                              const VMRegPair *regs2) {
 489   int st_off = frame_size - wordSize;
 490   for (int i = 0; i < total_args; i++) {
 491     VMReg r_1 = regs[i].first();
 492     VMReg r_2 = regs[i].second();
 493     if (r_1->is_Register()) {
 494       Register r = r_1->as_Register();
 495       __ ld(r, st_off, R1_SP);
 496       st_off -= wordSize;
 497     } else if (r_1->is_FloatRegister()) {
 498       FloatRegister f = r_1->as_FloatRegister();
 499       __ lfd(f, st_off, R1_SP);
 500       st_off -= wordSize;
 501     }
 502   }
 503   if (regs2 != NULL)
 504     for (int i = 0; i < total_args; i++) {
 505       VMReg r_1 = regs2[i].first();
 506       VMReg r_2 = regs2[i].second();
 507       if (r_1->is_Register()) {
 508         Register r = r_1->as_Register();
 509         __ ld(r, st_off, R1_SP);
 510         st_off -= wordSize;
 511       } else if (r_1->is_FloatRegister()) {
 512         FloatRegister f = r_1->as_FloatRegister();
 513         __ lfd(f, st_off, R1_SP);
 514         st_off -= wordSize;
 515       }
 516     }
 517   __ pop_frame();
 518 }
 519 
 520 // Restore the registers that might be holding a result.
 521 void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) {
 522   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
 523                                    sizeof(RegisterSaver::LiveRegType);
 524   const int register_save_size   = regstosave_num * reg_size; // VS registers not relevant here.
 525   const int register_save_offset = frame_size_in_bytes - register_save_size;
 526 
 527   // restore all result registers (ints and floats)
 528   int offset = register_save_offset;
 529   for (int i = 0; i < regstosave_num; i++) {
 530     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
 531     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
 532     switch (reg_type) {
 533       case RegisterSaver::int_reg: {
 534         if (as_Register(reg_num)==R3_RET) // int result_reg
 535           __ ld(as_Register(reg_num), offset, R1_SP);
 536         break;
 537       }
 538       case RegisterSaver::float_reg: {
 539         if (as_FloatRegister(reg_num)==F1_RET) // float result_reg
 540           __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
 541         break;
 542       }
 543       case RegisterSaver::special_reg: {
 544         // Special registers don't hold a result.
 545         break;
 546       }
 547       default:
 548         ShouldNotReachHere();
 549     }
 550     offset += reg_size;
 551   }
 552 
 553   assert(offset == frame_size_in_bytes, "consistency check");
 554 }
 555 
 556 // Is vector's size (in bytes) bigger than a size saved by default?
 557 bool SharedRuntime::is_wide_vector(int size) {
 558   // Note, MaxVectorSize == 8/16 on PPC64.
 559   assert(size <= (SuperwordUseVSX ? 16 : 8), "%d bytes vectors are not supported", size);
 560   return size > 8;
 561 }
 562 
 563 size_t SharedRuntime::trampoline_size() {
 564   return Assembler::load_const_size + 8;
 565 }
 566 
 567 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 568   Register Rtemp = R12;
 569   __ load_const(Rtemp, destination);
 570   __ mtctr(Rtemp);
 571   __ bctr();
 572 }
 573 
 574 #ifdef COMPILER2
 575 static int reg2slot(VMReg r) {
 576   return r->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 577 }
 578 
 579 static int reg2offset(VMReg r) {
 580   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 581 }
 582 #endif
 583 
 584 // ---------------------------------------------------------------------------
 585 // Read the array of BasicTypes from a signature, and compute where the
 586 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
 587 // quantities. Values less than VMRegImpl::stack0 are registers, those above
 588 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
 589 // as framesizes are fixed.
 590 // VMRegImpl::stack0 refers to the first slot 0(sp).
 591 // and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register
 592 // up to RegisterImpl::number_of_registers) are the 64-bit
 593 // integer registers.
 594 
 595 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 596 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
 597 // units regardless of build. Of course for i486 there is no 64 bit build
 598 
 599 // The Java calling convention is a "shifted" version of the C ABI.
 600 // By skipping the first C ABI register we can call non-static jni methods
 601 // with small numbers of arguments without having to shuffle the arguments
 602 // at all. Since we control the java ABI we ought to at least get some
 603 // advantage out of it.
 604 
 605 const VMReg java_iarg_reg[8] = {
 606   R3->as_VMReg(),
 607   R4->as_VMReg(),
 608   R5->as_VMReg(),
 609   R6->as_VMReg(),
 610   R7->as_VMReg(),
 611   R8->as_VMReg(),
 612   R9->as_VMReg(),
 613   R10->as_VMReg()
 614 };
 615 
 616 const VMReg java_farg_reg[13] = {
 617   F1->as_VMReg(),
 618   F2->as_VMReg(),
 619   F3->as_VMReg(),
 620   F4->as_VMReg(),
 621   F5->as_VMReg(),
 622   F6->as_VMReg(),
 623   F7->as_VMReg(),
 624   F8->as_VMReg(),
 625   F9->as_VMReg(),
 626   F10->as_VMReg(),
 627   F11->as_VMReg(),
 628   F12->as_VMReg(),
 629   F13->as_VMReg()
 630 };
 631 
 632 const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]);
 633 const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]);
 634 
 635 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 636                                            VMRegPair *regs,
 637                                            int total_args_passed,
 638                                            int is_outgoing) {
 639   // C2c calling conventions for compiled-compiled calls.
 640   // Put 8 ints/longs into registers _AND_ 13 float/doubles into
 641   // registers _AND_ put the rest on the stack.
 642 
 643   const int inc_stk_for_intfloat   = 1; // 1 slots for ints and floats
 644   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
 645 
 646   int i;
 647   VMReg reg;
 648   int stk = 0;
 649   int ireg = 0;
 650   int freg = 0;
 651 
 652   // We put the first 8 arguments into registers and the rest on the
 653   // stack, float arguments are already in their argument registers
 654   // due to c2c calling conventions (see calling_convention).
 655   for (int i = 0; i < total_args_passed; ++i) {
 656     switch(sig_bt[i]) {
 657     case T_BOOLEAN:
 658     case T_CHAR:
 659     case T_BYTE:
 660     case T_SHORT:
 661     case T_INT:
 662       if (ireg < num_java_iarg_registers) {
 663         // Put int/ptr in register
 664         reg = java_iarg_reg[ireg];
 665         ++ireg;
 666       } else {
 667         // Put int/ptr on stack.
 668         reg = VMRegImpl::stack2reg(stk);
 669         stk += inc_stk_for_intfloat;
 670       }
 671       regs[i].set1(reg);
 672       break;
 673     case T_LONG:
 674       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
 675       if (ireg < num_java_iarg_registers) {
 676         // Put long in register.
 677         reg = java_iarg_reg[ireg];
 678         ++ireg;
 679       } else {
 680         // Put long on stack. They must be aligned to 2 slots.
 681         if (stk & 0x1) ++stk;
 682         reg = VMRegImpl::stack2reg(stk);
 683         stk += inc_stk_for_longdouble;
 684       }
 685       regs[i].set2(reg);
 686       break;
 687     case T_OBJECT:
 688     case T_ARRAY:
 689     case T_ADDRESS:
 690       if (ireg < num_java_iarg_registers) {
 691         // Put ptr in register.
 692         reg = java_iarg_reg[ireg];
 693         ++ireg;
 694       } else {
 695         // Put ptr on stack. Objects must be aligned to 2 slots too,
 696         // because "64-bit pointers record oop-ishness on 2 aligned
 697         // adjacent registers." (see OopFlow::build_oop_map).
 698         if (stk & 0x1) ++stk;
 699         reg = VMRegImpl::stack2reg(stk);
 700         stk += inc_stk_for_longdouble;
 701       }
 702       regs[i].set2(reg);
 703       break;
 704     case T_FLOAT:
 705       if (freg < num_java_farg_registers) {
 706         // Put float in register.
 707         reg = java_farg_reg[freg];
 708         ++freg;
 709       } else {
 710         // Put float on stack.
 711         reg = VMRegImpl::stack2reg(stk);
 712         stk += inc_stk_for_intfloat;
 713       }
 714       regs[i].set1(reg);
 715       break;
 716     case T_DOUBLE:
 717       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
 718       if (freg < num_java_farg_registers) {
 719         // Put double in register.
 720         reg = java_farg_reg[freg];
 721         ++freg;
 722       } else {
 723         // Put double on stack. They must be aligned to 2 slots.
 724         if (stk & 0x1) ++stk;
 725         reg = VMRegImpl::stack2reg(stk);
 726         stk += inc_stk_for_longdouble;
 727       }
 728       regs[i].set2(reg);
 729       break;
 730     case T_VOID:
 731       // Do not count halves.
 732       regs[i].set_bad();
 733       break;
 734     default:
 735       ShouldNotReachHere();
 736     }
 737   }
 738   return align_up(stk, 2);
 739 }
 740 
 741 #if defined(COMPILER1) || defined(COMPILER2)
 742 // Calling convention for calling C code.
 743 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 744                                         VMRegPair *regs,
 745                                         VMRegPair *regs2,
 746                                         int total_args_passed) {
 747   // Calling conventions for C runtime calls and calls to JNI native methods.
 748   //
 749   // PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8
 750   // int regs, leaving int regs undefined if the arg is flt/dbl. Hoist
 751   // the first 13 flt/dbl's in the first 13 fp regs but additionally
 752   // copy flt/dbl to the stack if they are beyond the 8th argument.
 753 
 754   const VMReg iarg_reg[8] = {
 755     R3->as_VMReg(),
 756     R4->as_VMReg(),
 757     R5->as_VMReg(),
 758     R6->as_VMReg(),
 759     R7->as_VMReg(),
 760     R8->as_VMReg(),
 761     R9->as_VMReg(),
 762     R10->as_VMReg()
 763   };
 764 
 765   const VMReg farg_reg[13] = {
 766     F1->as_VMReg(),
 767     F2->as_VMReg(),
 768     F3->as_VMReg(),
 769     F4->as_VMReg(),
 770     F5->as_VMReg(),
 771     F6->as_VMReg(),
 772     F7->as_VMReg(),
 773     F8->as_VMReg(),
 774     F9->as_VMReg(),
 775     F10->as_VMReg(),
 776     F11->as_VMReg(),
 777     F12->as_VMReg(),
 778     F13->as_VMReg()
 779   };
 780 
 781   // Check calling conventions consistency.
 782   assert(sizeof(iarg_reg) / sizeof(iarg_reg[0]) == Argument::n_int_register_parameters_c &&
 783          sizeof(farg_reg) / sizeof(farg_reg[0]) == Argument::n_float_register_parameters_c,
 784          "consistency");
 785 
 786   // `Stk' counts stack slots. Due to alignment, 32 bit values occupy
 787   // 2 such slots, like 64 bit values do.
 788   const int inc_stk_for_intfloat   = 2; // 2 slots for ints and floats
 789   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
 790 
 791   int i;
 792   VMReg reg;
 793   // Leave room for C-compatible ABI_REG_ARGS.
 794   int stk = (frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size;
 795   int arg = 0;
 796   int freg = 0;
 797 
 798   // Avoid passing C arguments in the wrong stack slots.
 799 #if defined(ABI_ELFv2)
 800   assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 96,
 801          "passing C arguments in wrong stack slots");
 802 #else
 803   assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112,
 804          "passing C arguments in wrong stack slots");
 805 #endif
 806   // We fill-out regs AND regs2 if an argument must be passed in a
 807   // register AND in a stack slot. If regs2 is NULL in such a
 808   // situation, we bail-out with a fatal error.
 809   for (int i = 0; i < total_args_passed; ++i, ++arg) {
 810     // Initialize regs2 to BAD.
 811     if (regs2 != NULL) regs2[i].set_bad();
 812 
 813     switch(sig_bt[i]) {
 814 
 815     //
 816     // If arguments 0-7 are integers, they are passed in integer registers.
 817     // Argument i is placed in iarg_reg[i].
 818     //
 819     case T_BOOLEAN:
 820     case T_CHAR:
 821     case T_BYTE:
 822     case T_SHORT:
 823     case T_INT:
 824       // We must cast ints to longs and use full 64 bit stack slots
 825       // here.  Thus fall through, handle as long.
 826     case T_LONG:
 827     case T_OBJECT:
 828     case T_ARRAY:
 829     case T_ADDRESS:
 830     case T_METADATA:
 831       // Oops are already boxed if required (JNI).
 832       if (arg < Argument::n_int_register_parameters_c) {
 833         reg = iarg_reg[arg];
 834       } else {
 835         reg = VMRegImpl::stack2reg(stk);
 836         stk += inc_stk_for_longdouble;
 837       }
 838       regs[i].set2(reg);
 839       break;
 840 
 841     //
 842     // Floats are treated differently from int regs:  The first 13 float arguments
 843     // are passed in registers (not the float args among the first 13 args).
 844     // Thus argument i is NOT passed in farg_reg[i] if it is float.  It is passed
 845     // in farg_reg[j] if argument i is the j-th float argument of this call.
 846     //
 847     case T_FLOAT:
 848 #if defined(LINUX)
 849       // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
 850       // in the least significant word of an argument slot.
 851 #if defined(VM_LITTLE_ENDIAN)
 852 #define FLOAT_WORD_OFFSET_IN_SLOT 0
 853 #else
 854 #define FLOAT_WORD_OFFSET_IN_SLOT 1
 855 #endif
 856 #elif defined(AIX)
 857       // Although AIX runs on big endian CPU, float is in the most
 858       // significant word of an argument slot.
 859 #define FLOAT_WORD_OFFSET_IN_SLOT 0
 860 #else
 861 #error "unknown OS"
 862 #endif
 863       if (freg < Argument::n_float_register_parameters_c) {
 864         // Put float in register ...
 865         reg = farg_reg[freg];
 866         ++freg;
 867 
 868         // Argument i for i > 8 is placed on the stack even if it's
 869         // placed in a register (if it's a float arg). Aix disassembly
 870         // shows that xlC places these float args on the stack AND in
 871         // a register. This is not documented, but we follow this
 872         // convention, too.
 873         if (arg >= Argument::n_regs_not_on_stack_c) {
 874           // ... and on the stack.
 875           guarantee(regs2 != NULL, "must pass float in register and stack slot");
 876           VMReg reg2 = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
 877           regs2[i].set1(reg2);
 878           stk += inc_stk_for_intfloat;
 879         }
 880 
 881       } else {
 882         // Put float on stack.
 883         reg = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
 884         stk += inc_stk_for_intfloat;
 885       }
 886       regs[i].set1(reg);
 887       break;
 888     case T_DOUBLE:
 889       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
 890       if (freg < Argument::n_float_register_parameters_c) {
 891         // Put double in register ...
 892         reg = farg_reg[freg];
 893         ++freg;
 894 
 895         // Argument i for i > 8 is placed on the stack even if it's
 896         // placed in a register (if it's a double arg). Aix disassembly
 897         // shows that xlC places these float args on the stack AND in
 898         // a register. This is not documented, but we follow this
 899         // convention, too.
 900         if (arg >= Argument::n_regs_not_on_stack_c) {
 901           // ... and on the stack.
 902           guarantee(regs2 != NULL, "must pass float in register and stack slot");
 903           VMReg reg2 = VMRegImpl::stack2reg(stk);
 904           regs2[i].set2(reg2);
 905           stk += inc_stk_for_longdouble;
 906         }
 907       } else {
 908         // Put double on stack.
 909         reg = VMRegImpl::stack2reg(stk);
 910         stk += inc_stk_for_longdouble;
 911       }
 912       regs[i].set2(reg);
 913       break;
 914 
 915     case T_VOID:
 916       // Do not count halves.
 917       regs[i].set_bad();
 918       --arg;
 919       break;
 920     default:
 921       ShouldNotReachHere();
 922     }
 923   }
 924 
 925   return align_up(stk, 2);
 926 }
 927 #endif // COMPILER2
 928 
 929 static address gen_c2i_adapter(MacroAssembler *masm,
 930                             int total_args_passed,
 931                             int comp_args_on_stack,
 932                             const BasicType *sig_bt,
 933                             const VMRegPair *regs,
 934                             Label& call_interpreter,
 935                             const Register& ientry) {
 936 
 937   address c2i_entrypoint;
 938 
 939   const Register sender_SP = R21_sender_SP; // == R21_tmp1
 940   const Register code      = R22_tmp2;
 941   //const Register ientry  = R23_tmp3;
 942   const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 };
 943   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
 944   int value_regs_index = 0;
 945 
 946   const Register return_pc = R27_tmp7;
 947   const Register tmp       = R28_tmp8;
 948 
 949   assert_different_registers(sender_SP, code, ientry, return_pc, tmp);
 950 
 951   // Adapter needs TOP_IJAVA_FRAME_ABI.
 952   const int adapter_size = frame::top_ijava_frame_abi_size +
 953                            align_up(total_args_passed * wordSize, frame::alignment_in_bytes);
 954 
 955   // regular (verified) c2i entry point
 956   c2i_entrypoint = __ pc();
 957 
 958   // Does compiled code exists? If yes, patch the caller's callsite.
 959   __ ld(code, method_(code));
 960   __ cmpdi(CCR0, code, 0);
 961   __ ld(ientry, method_(interpreter_entry)); // preloaded
 962   __ beq(CCR0, call_interpreter);
 963 
 964 
 965   // Patch caller's callsite, method_(code) was not NULL which means that
 966   // compiled code exists.
 967   __ mflr(return_pc);
 968   __ std(return_pc, _abi(lr), R1_SP);
 969   RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs);
 970 
 971   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc);
 972 
 973   RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs);
 974   __ ld(return_pc, _abi(lr), R1_SP);
 975   __ ld(ientry, method_(interpreter_entry)); // preloaded
 976   __ mtlr(return_pc);
 977 
 978 
 979   // Call the interpreter.
 980   __ BIND(call_interpreter);
 981   __ mtctr(ientry);
 982 
 983   // Get a copy of the current SP for loading caller's arguments.
 984   __ mr(sender_SP, R1_SP);
 985 
 986   // Add space for the adapter.
 987   __ resize_frame(-adapter_size, R12_scratch2);
 988 
 989   int st_off = adapter_size - wordSize;
 990 
 991   // Write the args into the outgoing interpreter space.
 992   for (int i = 0; i < total_args_passed; i++) {
 993     VMReg r_1 = regs[i].first();
 994     VMReg r_2 = regs[i].second();
 995     if (!r_1->is_valid()) {
 996       assert(!r_2->is_valid(), "");
 997       continue;
 998     }
 999     if (r_1->is_stack()) {
1000       Register tmp_reg = value_regs[value_regs_index];
1001       value_regs_index = (value_regs_index + 1) % num_value_regs;
1002       // The calling convention produces OptoRegs that ignore the out
1003       // preserve area (JIT's ABI). We must account for it here.
1004       int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
1005       if (!r_2->is_valid()) {
1006         __ lwz(tmp_reg, ld_off, sender_SP);
1007       } else {
1008         __ ld(tmp_reg, ld_off, sender_SP);
1009       }
1010       // Pretend stack targets were loaded into tmp_reg.
1011       r_1 = tmp_reg->as_VMReg();
1012     }
1013 
1014     if (r_1->is_Register()) {
1015       Register r = r_1->as_Register();
1016       if (!r_2->is_valid()) {
1017         __ stw(r, st_off, R1_SP);
1018         st_off-=wordSize;
1019       } else {
1020         // Longs are given 2 64-bit slots in the interpreter, but the
1021         // data is passed in only 1 slot.
1022         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
1023           DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
1024           st_off-=wordSize;
1025         }
1026         __ std(r, st_off, R1_SP);
1027         st_off-=wordSize;
1028       }
1029     } else {
1030       assert(r_1->is_FloatRegister(), "");
1031       FloatRegister f = r_1->as_FloatRegister();
1032       if (!r_2->is_valid()) {
1033         __ stfs(f, st_off, R1_SP);
1034         st_off-=wordSize;
1035       } else {
1036         // In 64bit, doubles are given 2 64-bit slots in the interpreter, but the
1037         // data is passed in only 1 slot.
1038         // One of these should get known junk...
1039         DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
1040         st_off-=wordSize;
1041         __ stfd(f, st_off, R1_SP);
1042         st_off-=wordSize;
1043       }
1044     }
1045   }
1046 
1047   // Jump to the interpreter just as if interpreter was doing it.
1048 
1049   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
1050 
1051   // load TOS
1052   __ addi(R15_esp, R1_SP, st_off);
1053 
1054   // Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1.
1055   assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register");
1056   __ bctr();
1057 
1058   return c2i_entrypoint;
1059 }
1060 
1061 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
1062                                     int total_args_passed,
1063                                     int comp_args_on_stack,
1064                                     const BasicType *sig_bt,
1065                                     const VMRegPair *regs) {
1066 
1067   // Load method's entry-point from method.
1068   __ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
1069   __ mtctr(R12_scratch2);
1070 
1071   // We will only enter here from an interpreted frame and never from after
1072   // passing thru a c2i. Azul allowed this but we do not. If we lose the
1073   // race and use a c2i we will remain interpreted for the race loser(s).
1074   // This removes all sorts of headaches on the x86 side and also eliminates
1075   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
1076 
1077   // Note: r13 contains the senderSP on entry. We must preserve it since
1078   // we may do a i2c -> c2i transition if we lose a race where compiled
1079   // code goes non-entrant while we get args ready.
1080   // In addition we use r13 to locate all the interpreter args as
1081   // we must align the stack to 16 bytes on an i2c entry else we
1082   // lose alignment we expect in all compiled code and register
1083   // save code can segv when fxsave instructions find improperly
1084   // aligned stack pointer.
1085 
1086   const Register ld_ptr = R15_esp;
1087   const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 };
1088   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
1089   int value_regs_index = 0;
1090 
1091   int ld_offset = total_args_passed*wordSize;
1092 
1093   // Cut-out for having no stack args. Since up to 2 int/oop args are passed
1094   // in registers, we will occasionally have no stack args.
1095   int comp_words_on_stack = 0;
1096   if (comp_args_on_stack) {
1097     // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
1098     // registers are below. By subtracting stack0, we either get a negative
1099     // number (all values in registers) or the maximum stack slot accessed.
1100 
1101     // Convert 4-byte c2 stack slots to words.
1102     comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
1103     // Round up to miminum stack alignment, in wordSize.
1104     comp_words_on_stack = align_up(comp_words_on_stack, 2);
1105     __ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1);
1106   }
1107 
1108   // Now generate the shuffle code.  Pick up all register args and move the
1109   // rest through register value=Z_R12.
1110   BLOCK_COMMENT("Shuffle arguments");
1111   for (int i = 0; i < total_args_passed; i++) {
1112     if (sig_bt[i] == T_VOID) {
1113       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
1114       continue;
1115     }
1116 
1117     // Pick up 0, 1 or 2 words from ld_ptr.
1118     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
1119             "scrambled load targets?");
1120     VMReg r_1 = regs[i].first();
1121     VMReg r_2 = regs[i].second();
1122     if (!r_1->is_valid()) {
1123       assert(!r_2->is_valid(), "");
1124       continue;
1125     }
1126     if (r_1->is_FloatRegister()) {
1127       if (!r_2->is_valid()) {
1128         __ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr);
1129         ld_offset-=wordSize;
1130       } else {
1131         // Skip the unused interpreter slot.
1132         __ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr);
1133         ld_offset-=2*wordSize;
1134       }
1135     } else {
1136       Register r;
1137       if (r_1->is_stack()) {
1138         // Must do a memory to memory move thru "value".
1139         r = value_regs[value_regs_index];
1140         value_regs_index = (value_regs_index + 1) % num_value_regs;
1141       } else {
1142         r = r_1->as_Register();
1143       }
1144       if (!r_2->is_valid()) {
1145         // Not sure we need to do this but it shouldn't hurt.
1146         if (is_reference_type(sig_bt[i]) || sig_bt[i] == T_ADDRESS) {
1147           __ ld(r, ld_offset, ld_ptr);
1148           ld_offset-=wordSize;
1149         } else {
1150           __ lwz(r, ld_offset, ld_ptr);
1151           ld_offset-=wordSize;
1152         }
1153       } else {
1154         // In 64bit, longs are given 2 64-bit slots in the interpreter, but the
1155         // data is passed in only 1 slot.
1156         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
1157           ld_offset-=wordSize;
1158         }
1159         __ ld(r, ld_offset, ld_ptr);
1160         ld_offset-=wordSize;
1161       }
1162 
1163       if (r_1->is_stack()) {
1164         // Now store value where the compiler expects it
1165         int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size;
1166 
1167         if (sig_bt[i] == T_INT   || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN ||
1168             sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR  || sig_bt[i] == T_BYTE) {
1169           __ stw(r, st_off, R1_SP);
1170         } else {
1171           __ std(r, st_off, R1_SP);
1172         }
1173       }
1174     }
1175   }
1176 
1177   BLOCK_COMMENT("Store method");
1178   // Store method into thread->callee_target.
1179   // We might end up in handle_wrong_method if the callee is
1180   // deoptimized as we race thru here. If that happens we don't want
1181   // to take a safepoint because the caller frame will look
1182   // interpreted and arguments are now "compiled" so it is much better
1183   // to make this transition invisible to the stack walking
1184   // code. Unfortunately if we try and find the callee by normal means
1185   // a safepoint is possible. So we stash the desired callee in the
1186   // thread and the vm will find there should this case occur.
1187   __ std(R19_method, thread_(callee_target));
1188 
1189   // Jump to the compiled code just as if compiled code was doing it.
1190   __ bctr();
1191 }
1192 
1193 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1194                                                             int total_args_passed,
1195                                                             int comp_args_on_stack,
1196                                                             const BasicType *sig_bt,
1197                                                             const VMRegPair *regs,
1198                                                             AdapterFingerPrint* fingerprint) {
1199   address i2c_entry;
1200   address c2i_unverified_entry;
1201   address c2i_entry;
1202 
1203 
1204   // entry: i2c
1205 
1206   __ align(CodeEntryAlignment);
1207   i2c_entry = __ pc();
1208   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
1209 
1210 
1211   // entry: c2i unverified
1212 
1213   __ align(CodeEntryAlignment);
1214   BLOCK_COMMENT("c2i unverified entry");
1215   c2i_unverified_entry = __ pc();
1216 
1217   // inline_cache contains a compiledICHolder
1218   const Register ic             = R19_method;
1219   const Register ic_klass       = R11_scratch1;
1220   const Register receiver_klass = R12_scratch2;
1221   const Register code           = R21_tmp1;
1222   const Register ientry         = R23_tmp3;
1223 
1224   assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry);
1225   assert(R11_scratch1 == R11, "need prologue scratch register");
1226 
1227   Label call_interpreter;
1228 
1229   assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()),
1230          "klass offset should reach into any page");
1231   // Check for NULL argument if we don't have implicit null checks.
1232   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
1233     if (TrapBasedNullChecks) {
1234       __ trap_null_check(R3_ARG1);
1235     } else {
1236       Label valid;
1237       __ cmpdi(CCR0, R3_ARG1, 0);
1238       __ bne_predict_taken(CCR0, valid);
1239       // We have a null argument, branch to ic_miss_stub.
1240       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1241                        relocInfo::runtime_call_type);
1242       __ BIND(valid);
1243     }
1244   }
1245   // Assume argument is not NULL, load klass from receiver.
1246   __ load_klass(receiver_klass, R3_ARG1);
1247 
1248   __ ld(ic_klass, CompiledICHolder::holder_klass_offset(), ic);
1249 
1250   if (TrapBasedICMissChecks) {
1251     __ trap_ic_miss_check(receiver_klass, ic_klass);
1252   } else {
1253     Label valid;
1254     __ cmpd(CCR0, receiver_klass, ic_klass);
1255     __ beq_predict_taken(CCR0, valid);
1256     // We have an unexpected klass, branch to ic_miss_stub.
1257     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1258                      relocInfo::runtime_call_type);
1259     __ BIND(valid);
1260   }
1261 
1262   // Argument is valid and klass is as expected, continue.
1263 
1264   // Extract method from inline cache, verified entry point needs it.
1265   __ ld(R19_method, CompiledICHolder::holder_metadata_offset(), ic);
1266   assert(R19_method == ic, "the inline cache register is dead here");
1267 
1268   __ ld(code, method_(code));
1269   __ cmpdi(CCR0, code, 0);
1270   __ ld(ientry, method_(interpreter_entry)); // preloaded
1271   __ beq_predict_taken(CCR0, call_interpreter);
1272 
1273   // Branch to ic_miss_stub.
1274   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type);
1275 
1276   // entry: c2i
1277 
1278   c2i_entry = __ pc();
1279 
1280   // Class initialization barrier for static methods
1281   address c2i_no_clinit_check_entry = NULL;
1282   if (VM_Version::supports_fast_class_init_checks()) {
1283     Label L_skip_barrier;
1284 
1285     { // Bypass the barrier for non-static methods
1286       __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1287       __ andi_(R0, R0, JVM_ACC_STATIC);
1288       __ beq(CCR0, L_skip_barrier); // non-static
1289     }
1290 
1291     Register klass = R11_scratch1;
1292     __ load_method_holder(klass, R19_method);
1293     __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
1294 
1295     __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
1296     __ mtctr(klass);
1297     __ bctr();
1298 
1299     __ bind(L_skip_barrier);
1300     c2i_no_clinit_check_entry = __ pc();
1301   }
1302 
1303   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry);
1304 
1305   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
1306 }
1307 
1308 #ifdef COMPILER2
1309 // An oop arg. Must pass a handle not the oop itself.
1310 static void object_move(MacroAssembler* masm,
1311                         int frame_size_in_slots,
1312                         OopMap* oop_map, int oop_handle_offset,
1313                         bool is_receiver, int* receiver_offset,
1314                         VMRegPair src, VMRegPair dst,
1315                         Register r_caller_sp, Register r_temp_1, Register r_temp_2) {
1316   assert(!is_receiver || (is_receiver && (*receiver_offset == -1)),
1317          "receiver has already been moved");
1318 
1319   // We must pass a handle. First figure out the location we use as a handle.
1320 
1321   if (src.first()->is_stack()) {
1322     // stack to stack or reg
1323 
1324     const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
1325     Label skip;
1326     const int oop_slot_in_callers_frame = reg2slot(src.first());
1327 
1328     guarantee(!is_receiver, "expecting receiver in register");
1329     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots));
1330 
1331     __ addi(r_handle, r_caller_sp, reg2offset(src.first()));
1332     __ ld(  r_temp_2, reg2offset(src.first()), r_caller_sp);
1333     __ cmpdi(CCR0, r_temp_2, 0);
1334     __ bne(CCR0, skip);
1335     // Use a NULL handle if oop is NULL.
1336     __ li(r_handle, 0);
1337     __ bind(skip);
1338 
1339     if (dst.first()->is_stack()) {
1340       // stack to stack
1341       __ std(r_handle, reg2offset(dst.first()), R1_SP);
1342     } else {
1343       // stack to reg
1344       // Nothing to do, r_handle is already the dst register.
1345     }
1346   } else {
1347     // reg to stack or reg
1348     const Register r_oop      = src.first()->as_Register();
1349     const Register r_handle   = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
1350     const int oop_slot        = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word
1351                                 + oop_handle_offset; // in slots
1352     const int oop_offset = oop_slot * VMRegImpl::stack_slot_size;
1353     Label skip;
1354 
1355     if (is_receiver) {
1356       *receiver_offset = oop_offset;
1357     }
1358     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot));
1359 
1360     __ std( r_oop,    oop_offset, R1_SP);
1361     __ addi(r_handle, R1_SP, oop_offset);
1362 
1363     __ cmpdi(CCR0, r_oop, 0);
1364     __ bne(CCR0, skip);
1365     // Use a NULL handle if oop is NULL.
1366     __ li(r_handle, 0);
1367     __ bind(skip);
1368 
1369     if (dst.first()->is_stack()) {
1370       // reg to stack
1371       __ std(r_handle, reg2offset(dst.first()), R1_SP);
1372     } else {
1373       // reg to reg
1374       // Nothing to do, r_handle is already the dst register.
1375     }
1376   }
1377 }
1378 
1379 static void int_move(MacroAssembler*masm,
1380                      VMRegPair src, VMRegPair dst,
1381                      Register r_caller_sp, Register r_temp) {
1382   assert(src.first()->is_valid(), "incoming must be int");
1383   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
1384 
1385   if (src.first()->is_stack()) {
1386     if (dst.first()->is_stack()) {
1387       // stack to stack
1388       __ lwa(r_temp, reg2offset(src.first()), r_caller_sp);
1389       __ std(r_temp, reg2offset(dst.first()), R1_SP);
1390     } else {
1391       // stack to reg
1392       __ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
1393     }
1394   } else if (dst.first()->is_stack()) {
1395     // reg to stack
1396     __ extsw(r_temp, src.first()->as_Register());
1397     __ std(r_temp, reg2offset(dst.first()), R1_SP);
1398   } else {
1399     // reg to reg
1400     __ extsw(dst.first()->as_Register(), src.first()->as_Register());
1401   }
1402 }
1403 
1404 static void long_move(MacroAssembler*masm,
1405                       VMRegPair src, VMRegPair dst,
1406                       Register r_caller_sp, Register r_temp) {
1407   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long");
1408   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
1409 
1410   if (src.first()->is_stack()) {
1411     if (dst.first()->is_stack()) {
1412       // stack to stack
1413       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
1414       __ std(r_temp, reg2offset(dst.first()), R1_SP);
1415     } else {
1416       // stack to reg
1417       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
1418     }
1419   } else if (dst.first()->is_stack()) {
1420     // reg to stack
1421     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
1422   } else {
1423     // reg to reg
1424     if (dst.first()->as_Register() != src.first()->as_Register())
1425       __ mr(dst.first()->as_Register(), src.first()->as_Register());
1426   }
1427 }
1428 
1429 static void float_move(MacroAssembler*masm,
1430                        VMRegPair src, VMRegPair dst,
1431                        Register r_caller_sp, Register r_temp) {
1432   assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float");
1433   assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float");
1434 
1435   if (src.first()->is_stack()) {
1436     if (dst.first()->is_stack()) {
1437       // stack to stack
1438       __ lwz(r_temp, reg2offset(src.first()), r_caller_sp);
1439       __ stw(r_temp, reg2offset(dst.first()), R1_SP);
1440     } else {
1441       // stack to reg
1442       __ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
1443     }
1444   } else if (dst.first()->is_stack()) {
1445     // reg to stack
1446     __ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
1447   } else {
1448     // reg to reg
1449     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
1450       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1451   }
1452 }
1453 
1454 static void double_move(MacroAssembler*masm,
1455                         VMRegPair src, VMRegPair dst,
1456                         Register r_caller_sp, Register r_temp) {
1457   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double");
1458   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double");
1459 
1460   if (src.first()->is_stack()) {
1461     if (dst.first()->is_stack()) {
1462       // stack to stack
1463       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
1464       __ std(r_temp, reg2offset(dst.first()), R1_SP);
1465     } else {
1466       // stack to reg
1467       __ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
1468     }
1469   } else if (dst.first()->is_stack()) {
1470     // reg to stack
1471     __ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
1472   } else {
1473     // reg to reg
1474     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
1475       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1476   }
1477 }
1478 
1479 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1480   switch (ret_type) {
1481     case T_BOOLEAN:
1482     case T_CHAR:
1483     case T_BYTE:
1484     case T_SHORT:
1485     case T_INT:
1486       __ stw (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1487       break;
1488     case T_ARRAY:
1489     case T_OBJECT:
1490     case T_LONG:
1491       __ std (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1492       break;
1493     case T_FLOAT:
1494       __ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1495       break;
1496     case T_DOUBLE:
1497       __ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1498       break;
1499     case T_VOID:
1500       break;
1501     default:
1502       ShouldNotReachHere();
1503       break;
1504   }
1505 }
1506 
1507 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1508   switch (ret_type) {
1509     case T_BOOLEAN:
1510     case T_CHAR:
1511     case T_BYTE:
1512     case T_SHORT:
1513     case T_INT:
1514       __ lwz(R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1515       break;
1516     case T_ARRAY:
1517     case T_OBJECT:
1518     case T_LONG:
1519       __ ld (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1520       break;
1521     case T_FLOAT:
1522       __ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1523       break;
1524     case T_DOUBLE:
1525       __ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1526       break;
1527     case T_VOID:
1528       break;
1529     default:
1530       ShouldNotReachHere();
1531       break;
1532   }
1533 }
1534 
1535 static void save_or_restore_arguments(MacroAssembler* masm,
1536                                       const int stack_slots,
1537                                       const int total_in_args,
1538                                       const int arg_save_area,
1539                                       OopMap* map,
1540                                       VMRegPair* in_regs,
1541                                       BasicType* in_sig_bt) {
1542   // If map is non-NULL then the code should store the values,
1543   // otherwise it should load them.
1544   int slot = arg_save_area;
1545   // Save down double word first.
1546   for (int i = 0; i < total_in_args; i++) {
1547     if (in_regs[i].first()->is_FloatRegister() && in_sig_bt[i] == T_DOUBLE) {
1548       int offset = slot * VMRegImpl::stack_slot_size;
1549       slot += VMRegImpl::slots_per_word;
1550       assert(slot <= stack_slots, "overflow (after DOUBLE stack slot)");
1551       if (map != NULL) {
1552         __ stfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
1553       } else {
1554         __ lfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
1555       }
1556     } else if (in_regs[i].first()->is_Register() &&
1557         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1558       int offset = slot * VMRegImpl::stack_slot_size;
1559       if (map != NULL) {
1560         __ std(in_regs[i].first()->as_Register(), offset, R1_SP);
1561         if (in_sig_bt[i] == T_ARRAY) {
1562           map->set_oop(VMRegImpl::stack2reg(slot));
1563         }
1564       } else {
1565         __ ld(in_regs[i].first()->as_Register(), offset, R1_SP);
1566       }
1567       slot += VMRegImpl::slots_per_word;
1568       assert(slot <= stack_slots, "overflow (after LONG/ARRAY stack slot)");
1569     }
1570   }
1571   // Save or restore single word registers.
1572   for (int i = 0; i < total_in_args; i++) {
1573     if (in_regs[i].first()->is_Register()) {
1574       int offset = slot * VMRegImpl::stack_slot_size;
1575       // Value lives in an input register. Save it on stack.
1576       switch (in_sig_bt[i]) {
1577         case T_BOOLEAN:
1578         case T_CHAR:
1579         case T_BYTE:
1580         case T_SHORT:
1581         case T_INT:
1582           if (map != NULL) {
1583             __ stw(in_regs[i].first()->as_Register(), offset, R1_SP);
1584           } else {
1585             __ lwa(in_regs[i].first()->as_Register(), offset, R1_SP);
1586           }
1587           slot++;
1588           assert(slot <= stack_slots, "overflow (after INT or smaller stack slot)");
1589           break;
1590         case T_ARRAY:
1591         case T_LONG:
1592           // handled above
1593           break;
1594         case T_OBJECT:
1595         default: ShouldNotReachHere();
1596       }
1597     } else if (in_regs[i].first()->is_FloatRegister()) {
1598       if (in_sig_bt[i] == T_FLOAT) {
1599         int offset = slot * VMRegImpl::stack_slot_size;
1600         slot++;
1601         assert(slot <= stack_slots, "overflow (after FLOAT stack slot)");
1602         if (map != NULL) {
1603           __ stfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
1604         } else {
1605           __ lfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
1606         }
1607       }
1608     } else if (in_regs[i].first()->is_stack()) {
1609       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1610         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1611         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1612       }
1613     }
1614   }
1615 }
1616 
1617 // Check GCLocker::needs_gc and enter the runtime if it's true. This
1618 // keeps a new JNI critical region from starting until a GC has been
1619 // forced. Save down any oops in registers and describe them in an
1620 // OopMap.
1621 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1622                                                const int stack_slots,
1623                                                const int total_in_args,
1624                                                const int arg_save_area,
1625                                                OopMapSet* oop_maps,
1626                                                VMRegPair* in_regs,
1627                                                BasicType* in_sig_bt,
1628                                                Register tmp_reg ) {
1629   __ block_comment("check GCLocker::needs_gc");
1630   Label cont;
1631   __ lbz(tmp_reg, (RegisterOrConstant)(intptr_t)GCLocker::needs_gc_address());
1632   __ cmplwi(CCR0, tmp_reg, 0);
1633   __ beq(CCR0, cont);
1634 
1635   // Save down any values that are live in registers and call into the
1636   // runtime to halt for a GC.
1637   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1638   save_or_restore_arguments(masm, stack_slots, total_in_args,
1639                             arg_save_area, map, in_regs, in_sig_bt);
1640 
1641   __ mr(R3_ARG1, R16_thread);
1642   __ set_last_Java_frame(R1_SP, noreg);
1643 
1644   __ block_comment("block_for_jni_critical");
1645   address entry_point = CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical);
1646 #if defined(ABI_ELFv2)
1647   __ call_c(entry_point, relocInfo::runtime_call_type);
1648 #else
1649   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::runtime_call_type);
1650 #endif
1651   address start           = __ pc() - __ offset(),
1652           calls_return_pc = __ last_calls_return_pc();
1653   oop_maps->add_gc_map(calls_return_pc - start, map);
1654 
1655   __ reset_last_Java_frame();
1656 
1657   // Reload all the register arguments.
1658   save_or_restore_arguments(masm, stack_slots, total_in_args,
1659                             arg_save_area, NULL, in_regs, in_sig_bt);
1660 
1661   __ BIND(cont);
1662 
1663 #ifdef ASSERT
1664   if (StressCriticalJNINatives) {
1665     // Stress register saving.
1666     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1667     save_or_restore_arguments(masm, stack_slots, total_in_args,
1668                               arg_save_area, map, in_regs, in_sig_bt);
1669     // Destroy argument registers.
1670     for (int i = 0; i < total_in_args; i++) {
1671       if (in_regs[i].first()->is_Register()) {
1672         const Register reg = in_regs[i].first()->as_Register();
1673         __ neg(reg, reg);
1674       } else if (in_regs[i].first()->is_FloatRegister()) {
1675         __ fneg(in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
1676       }
1677     }
1678 
1679     save_or_restore_arguments(masm, stack_slots, total_in_args,
1680                               arg_save_area, NULL, in_regs, in_sig_bt);
1681   }
1682 #endif
1683 }
1684 
1685 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) {
1686   if (src.first()->is_stack()) {
1687     if (dst.first()->is_stack()) {
1688       // stack to stack
1689       __ ld(r_temp, reg2offset(src.first()), r_caller_sp);
1690       __ std(r_temp, reg2offset(dst.first()), R1_SP);
1691     } else {
1692       // stack to reg
1693       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
1694     }
1695   } else if (dst.first()->is_stack()) {
1696     // reg to stack
1697     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
1698   } else {
1699     if (dst.first() != src.first()) {
1700       __ mr(dst.first()->as_Register(), src.first()->as_Register());
1701     }
1702   }
1703 }
1704 
1705 // Unpack an array argument into a pointer to the body and the length
1706 // if the array is non-null, otherwise pass 0 for both.
1707 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type,
1708                                   VMRegPair body_arg, VMRegPair length_arg, Register r_caller_sp,
1709                                   Register tmp_reg, Register tmp2_reg) {
1710   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1711          "possible collision");
1712   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1713          "possible collision");
1714 
1715   // Pass the length, ptr pair.
1716   Label set_out_args;
1717   VMRegPair tmp, tmp2;
1718   tmp.set_ptr(tmp_reg->as_VMReg());
1719   tmp2.set_ptr(tmp2_reg->as_VMReg());
1720   if (reg.first()->is_stack()) {
1721     // Load the arg up from the stack.
1722     move_ptr(masm, reg, tmp, r_caller_sp, /*unused*/ R0);
1723     reg = tmp;
1724   }
1725   __ li(tmp2_reg, 0); // Pass zeros if Array=null.
1726   if (tmp_reg != reg.first()->as_Register()) __ li(tmp_reg, 0);
1727   __ cmpdi(CCR0, reg.first()->as_Register(), 0);
1728   __ beq(CCR0, set_out_args);
1729   __ lwa(tmp2_reg, arrayOopDesc::length_offset_in_bytes(), reg.first()->as_Register());
1730   __ addi(tmp_reg, reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type));
1731   __ bind(set_out_args);
1732   move_ptr(masm, tmp, body_arg, r_caller_sp, /*unused*/ R0);
1733   move_ptr(masm, tmp2, length_arg, r_caller_sp, /*unused*/ R0); // Same as move32_64 on PPC64.
1734 }
1735 
1736 static void verify_oop_args(MacroAssembler* masm,
1737                             const methodHandle& method,
1738                             const BasicType* sig_bt,
1739                             const VMRegPair* regs) {
1740   Register temp_reg = R19_method;  // not part of any compiled calling seq
1741   if (VerifyOops) {
1742     for (int i = 0; i < method->size_of_parameters(); i++) {
1743       if (is_reference_type(sig_bt[i])) {
1744         VMReg r = regs[i].first();
1745         assert(r->is_valid(), "bad oop arg");
1746         if (r->is_stack()) {
1747           __ ld(temp_reg, reg2offset(r), R1_SP);
1748           __ verify_oop(temp_reg);
1749         } else {
1750           __ verify_oop(r->as_Register());
1751         }
1752       }
1753     }
1754   }
1755 }
1756 
1757 static void gen_special_dispatch(MacroAssembler* masm,
1758                                  const methodHandle& method,
1759                                  const BasicType* sig_bt,
1760                                  const VMRegPair* regs) {
1761   verify_oop_args(masm, method, sig_bt, regs);
1762   vmIntrinsics::ID iid = method->intrinsic_id();
1763 
1764   // Now write the args into the outgoing interpreter space
1765   bool     has_receiver   = false;
1766   Register receiver_reg   = noreg;
1767   int      member_arg_pos = -1;
1768   Register member_reg     = noreg;
1769   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1770   if (ref_kind != 0) {
1771     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1772     member_reg = R19_method;  // known to be free at this point
1773     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1774   } else if (iid == vmIntrinsics::_invokeBasic) {
1775     has_receiver = true;
1776   } else {
1777     fatal("unexpected intrinsic id %d", iid);
1778   }
1779 
1780   if (member_reg != noreg) {
1781     // Load the member_arg into register, if necessary.
1782     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1783     VMReg r = regs[member_arg_pos].first();
1784     if (r->is_stack()) {
1785       __ ld(member_reg, reg2offset(r), R1_SP);
1786     } else {
1787       // no data motion is needed
1788       member_reg = r->as_Register();
1789     }
1790   }
1791 
1792   if (has_receiver) {
1793     // Make sure the receiver is loaded into a register.
1794     assert(method->size_of_parameters() > 0, "oob");
1795     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1796     VMReg r = regs[0].first();
1797     assert(r->is_valid(), "bad receiver arg");
1798     if (r->is_stack()) {
1799       // Porting note:  This assumes that compiled calling conventions always
1800       // pass the receiver oop in a register.  If this is not true on some
1801       // platform, pick a temp and load the receiver from stack.
1802       fatal("receiver always in a register");
1803       receiver_reg = R11_scratch1;  // TODO (hs24): is R11_scratch1 really free at this point?
1804       __ ld(receiver_reg, reg2offset(r), R1_SP);
1805     } else {
1806       // no data motion is needed
1807       receiver_reg = r->as_Register();
1808     }
1809   }
1810 
1811   // Figure out which address we are really jumping to:
1812   MethodHandles::generate_method_handle_dispatch(masm, iid,
1813                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1814 }
1815 
1816 #endif // COMPILER2
1817 
1818 // ---------------------------------------------------------------------------
1819 // Generate a native wrapper for a given method. The method takes arguments
1820 // in the Java compiled code convention, marshals them to the native
1821 // convention (handlizes oops, etc), transitions to native, makes the call,
1822 // returns to java state (possibly blocking), unhandlizes any result and
1823 // returns.
1824 //
1825 // Critical native functions are a shorthand for the use of
1826 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1827 // functions.  The wrapper is expected to unpack the arguments before
1828 // passing them to the callee and perform checks before and after the
1829 // native call to ensure that they GCLocker
1830 // lock_critical/unlock_critical semantics are followed.  Some other
1831 // parts of JNI setup are skipped like the tear down of the JNI handle
1832 // block and the check for pending exceptions it's impossible for them
1833 // to be thrown.
1834 //
1835 // They are roughly structured like this:
1836 //   if (GCLocker::needs_gc())
1837 //     SharedRuntime::block_for_jni_critical();
1838 //   tranistion to thread_in_native
1839 //   unpack arrray arguments and call native entry point
1840 //   check for safepoint in progress
1841 //   check if any thread suspend flags are set
1842 //     call into JVM and possible unlock the JNI critical
1843 //     if a GC was suppressed while in the critical native.
1844 //   transition back to thread_in_Java
1845 //   return to caller
1846 //
1847 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1848                                                 const methodHandle& method,
1849                                                 int compile_id,
1850                                                 BasicType *in_sig_bt,
1851                                                 VMRegPair *in_regs,
1852                                                 BasicType ret_type,
1853                                                 address critical_entry) {
1854 #ifdef COMPILER2
1855   if (method->is_method_handle_intrinsic()) {
1856     vmIntrinsics::ID iid = method->intrinsic_id();
1857     intptr_t start = (intptr_t)__ pc();
1858     int vep_offset = ((intptr_t)__ pc()) - start;
1859     gen_special_dispatch(masm,
1860                          method,
1861                          in_sig_bt,
1862                          in_regs);
1863     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1864     __ flush();
1865     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1866     return nmethod::new_native_nmethod(method,
1867                                        compile_id,
1868                                        masm->code(),
1869                                        vep_offset,
1870                                        frame_complete,
1871                                        stack_slots / VMRegImpl::slots_per_word,
1872                                        in_ByteSize(-1),
1873                                        in_ByteSize(-1),
1874                                        (OopMapSet*)NULL);
1875   }
1876 
1877   bool is_critical_native = true;
1878   address native_func = critical_entry;
1879   if (native_func == NULL) {
1880     native_func = method->native_function();
1881     is_critical_native = false;
1882   }
1883   assert(native_func != NULL, "must have function");
1884 
1885   // First, create signature for outgoing C call
1886   // --------------------------------------------------------------------------
1887 
1888   int total_in_args = method->size_of_parameters();
1889   // We have received a description of where all the java args are located
1890   // on entry to the wrapper. We need to convert these args to where
1891   // the jni function will expect them. To figure out where they go
1892   // we convert the java signature to a C signature by inserting
1893   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1894 
1895   // Calculate the total number of C arguments and create arrays for the
1896   // signature and the outgoing registers.
1897   // On ppc64, we have two arrays for the outgoing registers, because
1898   // some floating-point arguments must be passed in registers _and_
1899   // in stack locations.
1900   bool method_is_static = method->is_static();
1901   int  total_c_args     = total_in_args;
1902 
1903   if (!is_critical_native) {
1904     int n_hidden_args = method_is_static ? 2 : 1;
1905     total_c_args += n_hidden_args;
1906   } else {
1907     // No JNIEnv*, no this*, but unpacked arrays (base+length).
1908     for (int i = 0; i < total_in_args; i++) {
1909       if (in_sig_bt[i] == T_ARRAY) {
1910         total_c_args++;
1911       }
1912     }
1913   }
1914 
1915   BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1916   VMRegPair *out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1917   VMRegPair *out_regs2  = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1918   BasicType* in_elem_bt = NULL;
1919 
1920   // Create the signature for the C call:
1921   //   1) add the JNIEnv*
1922   //   2) add the class if the method is static
1923   //   3) copy the rest of the incoming signature (shifted by the number of
1924   //      hidden arguments).
1925 
1926   int argc = 0;
1927   if (!is_critical_native) {
1928     out_sig_bt[argc++] = T_ADDRESS;
1929     if (method->is_static()) {
1930       out_sig_bt[argc++] = T_OBJECT;
1931     }
1932 
1933     for (int i = 0; i < total_in_args ; i++ ) {
1934       out_sig_bt[argc++] = in_sig_bt[i];
1935     }
1936   } else {
1937     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1938     SignatureStream ss(method->signature());
1939     int o = 0;
1940     for (int i = 0; i < total_in_args ; i++, o++) {
1941       if (in_sig_bt[i] == T_ARRAY) {
1942         // Arrays are passed as int, elem* pair
1943         Symbol* atype = ss.as_symbol();
1944         const char* at = atype->as_C_string();
1945         if (strlen(at) == 2) {
1946           assert(at[0] == '[', "must be");
1947           switch (at[1]) {
1948             case 'B': in_elem_bt[o] = T_BYTE; break;
1949             case 'C': in_elem_bt[o] = T_CHAR; break;
1950             case 'D': in_elem_bt[o] = T_DOUBLE; break;
1951             case 'F': in_elem_bt[o] = T_FLOAT; break;
1952             case 'I': in_elem_bt[o] = T_INT; break;
1953             case 'J': in_elem_bt[o] = T_LONG; break;
1954             case 'S': in_elem_bt[o] = T_SHORT; break;
1955             case 'Z': in_elem_bt[o] = T_BOOLEAN; break;
1956             default: ShouldNotReachHere();
1957           }
1958         }
1959       } else {
1960         in_elem_bt[o] = T_VOID;
1961       }
1962       if (in_sig_bt[i] != T_VOID) {
1963         assert(in_sig_bt[i] == ss.type(), "must match");
1964         ss.next();
1965       }
1966     }
1967 
1968     for (int i = 0; i < total_in_args ; i++ ) {
1969       if (in_sig_bt[i] == T_ARRAY) {
1970         // Arrays are passed as int, elem* pair.
1971         out_sig_bt[argc++] = T_INT;
1972         out_sig_bt[argc++] = T_ADDRESS;
1973       } else {
1974         out_sig_bt[argc++] = in_sig_bt[i];
1975       }
1976     }
1977   }
1978 
1979 
1980   // Compute the wrapper's frame size.
1981   // --------------------------------------------------------------------------
1982 
1983   // Now figure out where the args must be stored and how much stack space
1984   // they require.
1985   //
1986   // Compute framesize for the wrapper. We need to handlize all oops in
1987   // incoming registers.
1988   //
1989   // Calculate the total number of stack slots we will need:
1990   //   1) abi requirements
1991   //   2) outgoing arguments
1992   //   3) space for inbound oop handle area
1993   //   4) space for handlizing a klass if static method
1994   //   5) space for a lock if synchronized method
1995   //   6) workspace for saving return values, int <-> float reg moves, etc.
1996   //   7) alignment
1997   //
1998   // Layout of the native wrapper frame:
1999   // (stack grows upwards, memory grows downwards)
2000   //
2001   // NW     [ABI_REG_ARGS]             <-- 1) R1_SP
2002   //        [outgoing arguments]       <-- 2) R1_SP + out_arg_slot_offset
2003   //        [oopHandle area]           <-- 3) R1_SP + oop_handle_offset (save area for critical natives)
2004   //        klass                      <-- 4) R1_SP + klass_offset
2005   //        lock                       <-- 5) R1_SP + lock_offset
2006   //        [workspace]                <-- 6) R1_SP + workspace_offset
2007   //        [alignment] (optional)     <-- 7)
2008   // caller [JIT_TOP_ABI_48]           <-- r_callers_sp
2009   //
2010   // - *_slot_offset Indicates offset from SP in number of stack slots.
2011   // - *_offset      Indicates offset from SP in bytes.
2012 
2013   int stack_slots = c_calling_convention(out_sig_bt, out_regs, out_regs2, total_c_args) + // 1+2)
2014                     SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention.
2015 
2016   // Now the space for the inbound oop handle area.
2017   int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word;
2018   if (is_critical_native) {
2019     // Critical natives may have to call out so they need a save area
2020     // for register arguments.
2021     int double_slots = 0;
2022     int single_slots = 0;
2023     for (int i = 0; i < total_in_args; i++) {
2024       if (in_regs[i].first()->is_Register()) {
2025         const Register reg = in_regs[i].first()->as_Register();
2026         switch (in_sig_bt[i]) {
2027           case T_BOOLEAN:
2028           case T_BYTE:
2029           case T_SHORT:
2030           case T_CHAR:
2031           case T_INT:
2032           // Fall through.
2033           case T_ARRAY:
2034           case T_LONG: double_slots++; break;
2035           default:  ShouldNotReachHere();
2036         }
2037       } else if (in_regs[i].first()->is_FloatRegister()) {
2038         switch (in_sig_bt[i]) {
2039           case T_FLOAT:  single_slots++; break;
2040           case T_DOUBLE: double_slots++; break;
2041           default:  ShouldNotReachHere();
2042         }
2043       }
2044     }
2045     total_save_slots = double_slots * 2 + align_up(single_slots, 2); // round to even
2046   }
2047 
2048   int oop_handle_slot_offset = stack_slots;
2049   stack_slots += total_save_slots;                                                // 3)
2050 
2051   int klass_slot_offset = 0;
2052   int klass_offset      = -1;
2053   if (method_is_static && !is_critical_native) {                                  // 4)
2054     klass_slot_offset  = stack_slots;
2055     klass_offset       = klass_slot_offset * VMRegImpl::stack_slot_size;
2056     stack_slots       += VMRegImpl::slots_per_word;
2057   }
2058 
2059   int lock_slot_offset = 0;
2060   int lock_offset      = -1;
2061   if (method->is_synchronized()) {                                                // 5)
2062     lock_slot_offset   = stack_slots;
2063     lock_offset        = lock_slot_offset * VMRegImpl::stack_slot_size;
2064     stack_slots       += VMRegImpl::slots_per_word;
2065   }
2066 
2067   int workspace_slot_offset = stack_slots;                                        // 6)
2068   stack_slots         += 2;
2069 
2070   // Now compute actual number of stack words we need.
2071   // Rounding to make stack properly aligned.
2072   stack_slots = align_up(stack_slots,                                             // 7)
2073                          frame::alignment_in_bytes / VMRegImpl::stack_slot_size);
2074   int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size;
2075 
2076 
2077   // Now we can start generating code.
2078   // --------------------------------------------------------------------------
2079 
2080   intptr_t start_pc = (intptr_t)__ pc();
2081   intptr_t vep_start_pc;
2082   intptr_t frame_done_pc;
2083   intptr_t oopmap_pc;
2084 
2085   Label    ic_miss;
2086   Label    handle_pending_exception;
2087 
2088   Register r_callers_sp = R21;
2089   Register r_temp_1     = R22;
2090   Register r_temp_2     = R23;
2091   Register r_temp_3     = R24;
2092   Register r_temp_4     = R25;
2093   Register r_temp_5     = R26;
2094   Register r_temp_6     = R27;
2095   Register r_return_pc  = R28;
2096 
2097   Register r_carg1_jnienv        = noreg;
2098   Register r_carg2_classorobject = noreg;
2099   if (!is_critical_native) {
2100     r_carg1_jnienv        = out_regs[0].first()->as_Register();
2101     r_carg2_classorobject = out_regs[1].first()->as_Register();
2102   }
2103 
2104 
2105   // Generate the Unverified Entry Point (UEP).
2106   // --------------------------------------------------------------------------
2107   assert(start_pc == (intptr_t)__ pc(), "uep must be at start");
2108 
2109   // Check ic: object class == cached class?
2110   if (!method_is_static) {
2111   Register ic = as_Register(Matcher::inline_cache_reg_encode());
2112   Register receiver_klass = r_temp_1;
2113 
2114   __ cmpdi(CCR0, R3_ARG1, 0);
2115   __ beq(CCR0, ic_miss);
2116   __ verify_oop(R3_ARG1);
2117   __ load_klass(receiver_klass, R3_ARG1);
2118 
2119   __ cmpd(CCR0, receiver_klass, ic);
2120   __ bne(CCR0, ic_miss);
2121   }
2122 
2123 
2124   // Generate the Verified Entry Point (VEP).
2125   // --------------------------------------------------------------------------
2126   vep_start_pc = (intptr_t)__ pc();
2127 
2128   if (UseRTMLocking) {
2129     // Abort RTM transaction before calling JNI
2130     // because critical section can be large and
2131     // abort anyway. Also nmethod can be deoptimized.
2132     __ tabort_();
2133   }
2134 
2135   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
2136     Label L_skip_barrier;
2137     Register klass = r_temp_1;
2138     // Notify OOP recorder (don't need the relocation)
2139     AddressLiteral md = __ constant_metadata_address(method->method_holder());
2140     __ load_const_optimized(klass, md.value(), R0);
2141     __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
2142 
2143     __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
2144     __ mtctr(klass);
2145     __ bctr();
2146 
2147     __ bind(L_skip_barrier);
2148   }
2149 
2150   __ save_LR_CR(r_temp_1);
2151   __ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame.
2152   __ mr(r_callers_sp, R1_SP);                            // Remember frame pointer.
2153   __ push_frame(frame_size_in_bytes, r_temp_1);          // Push the c2n adapter's frame.
2154   frame_done_pc = (intptr_t)__ pc();
2155 
2156   __ verify_thread();
2157 
2158   // Native nmethod wrappers never take possesion of the oop arguments.
2159   // So the caller will gc the arguments.
2160   // The only thing we need an oopMap for is if the call is static.
2161   //
2162   // An OopMap for lock (and class if static), and one for the VM call itself.
2163   OopMapSet *oop_maps = new OopMapSet();
2164   OopMap    *oop_map  = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2165 
2166   if (is_critical_native) {
2167     check_needs_gc_for_critical_native(masm, stack_slots, total_in_args, oop_handle_slot_offset,
2168                                        oop_maps, in_regs, in_sig_bt, r_temp_1);
2169   }
2170 
2171   // Move arguments from register/stack to register/stack.
2172   // --------------------------------------------------------------------------
2173   //
2174   // We immediately shuffle the arguments so that for any vm call we have
2175   // to make from here on out (sync slow path, jvmti, etc.) we will have
2176   // captured the oops from our caller and have a valid oopMap for them.
2177   //
2178   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2179   // (derived from JavaThread* which is in R16_thread) and, if static,
2180   // the class mirror instead of a receiver. This pretty much guarantees that
2181   // register layout will not match. We ignore these extra arguments during
2182   // the shuffle. The shuffle is described by the two calling convention
2183   // vectors we have in our possession. We simply walk the java vector to
2184   // get the source locations and the c vector to get the destinations.
2185 
2186   // Record sp-based slot for receiver on stack for non-static methods.
2187   int receiver_offset = -1;
2188 
2189   // We move the arguments backward because the floating point registers
2190   // destination will always be to a register with a greater or equal
2191   // register number or the stack.
2192   //   in  is the index of the incoming Java arguments
2193   //   out is the index of the outgoing C arguments
2194 
2195 #ifdef ASSERT
2196   bool reg_destroyed[RegisterImpl::number_of_registers];
2197   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2198   for (int r = 0 ; r < RegisterImpl::number_of_registers ; r++) {
2199     reg_destroyed[r] = false;
2200   }
2201   for (int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++) {
2202     freg_destroyed[f] = false;
2203   }
2204 #endif // ASSERT
2205 
2206   for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) {
2207 
2208 #ifdef ASSERT
2209     if (in_regs[in].first()->is_Register()) {
2210       assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!");
2211     } else if (in_regs[in].first()->is_FloatRegister()) {
2212       assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!");
2213     }
2214     if (out_regs[out].first()->is_Register()) {
2215       reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true;
2216     } else if (out_regs[out].first()->is_FloatRegister()) {
2217       freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true;
2218     }
2219     if (out_regs2[out].first()->is_Register()) {
2220       reg_destroyed[out_regs2[out].first()->as_Register()->encoding()] = true;
2221     } else if (out_regs2[out].first()->is_FloatRegister()) {
2222       freg_destroyed[out_regs2[out].first()->as_FloatRegister()->encoding()] = true;
2223     }
2224 #endif // ASSERT
2225 
2226     switch (in_sig_bt[in]) {
2227       case T_BOOLEAN:
2228       case T_CHAR:
2229       case T_BYTE:
2230       case T_SHORT:
2231       case T_INT:
2232         // Move int and do sign extension.
2233         int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2234         break;
2235       case T_LONG:
2236         long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2237         break;
2238       case T_ARRAY:
2239         if (is_critical_native) {
2240           int body_arg = out;
2241           out -= 1; // Point to length arg.
2242           unpack_array_argument(masm, in_regs[in], in_elem_bt[in], out_regs[body_arg], out_regs[out],
2243                                 r_callers_sp, r_temp_1, r_temp_2);
2244           break;
2245         }
2246       case T_OBJECT:
2247         assert(!is_critical_native, "no oop arguments");
2248         object_move(masm, stack_slots,
2249                     oop_map, oop_handle_slot_offset,
2250                     ((in == 0) && (!method_is_static)), &receiver_offset,
2251                     in_regs[in], out_regs[out],
2252                     r_callers_sp, r_temp_1, r_temp_2);
2253         break;
2254       case T_VOID:
2255         break;
2256       case T_FLOAT:
2257         float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2258         if (out_regs2[out].first()->is_valid()) {
2259           float_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
2260         }
2261         break;
2262       case T_DOUBLE:
2263         double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2264         if (out_regs2[out].first()->is_valid()) {
2265           double_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
2266         }
2267         break;
2268       case T_ADDRESS:
2269         fatal("found type (T_ADDRESS) in java args");
2270         break;
2271       default:
2272         ShouldNotReachHere();
2273         break;
2274     }
2275   }
2276 
2277   // Pre-load a static method's oop into ARG2.
2278   // Used both by locking code and the normal JNI call code.
2279   if (method_is_static && !is_critical_native) {
2280     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()),
2281                         r_carg2_classorobject);
2282 
2283     // Now handlize the static class mirror in carg2. It's known not-null.
2284     __ std(r_carg2_classorobject, klass_offset, R1_SP);
2285     oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2286     __ addi(r_carg2_classorobject, R1_SP, klass_offset);
2287   }
2288 
2289   // Get JNIEnv* which is first argument to native.
2290   if (!is_critical_native) {
2291     __ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset()));
2292   }
2293 
2294   // NOTE:
2295   //
2296   // We have all of the arguments setup at this point.
2297   // We MUST NOT touch any outgoing regs from this point on.
2298   // So if we must call out we must push a new frame.
2299 
2300   // Get current pc for oopmap, and load it patchable relative to global toc.
2301   oopmap_pc = (intptr_t) __ pc();
2302   __ calculate_address_from_global_toc(r_return_pc, (address)oopmap_pc, true, true, true, true);
2303 
2304   // We use the same pc/oopMap repeatedly when we call out.
2305   oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map);
2306 
2307   // r_return_pc now has the pc loaded that we will use when we finally call
2308   // to native.
2309 
2310   // Make sure that thread is non-volatile; it crosses a bunch of VM calls below.
2311   assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register");
2312 
2313 # if 0
2314   // DTrace method entry
2315 # endif
2316 
2317   // Lock a synchronized method.
2318   // --------------------------------------------------------------------------
2319 
2320   if (method->is_synchronized()) {
2321     assert(!is_critical_native, "unhandled");
2322     ConditionRegister r_flag = CCR1;
2323     Register          r_oop  = r_temp_4;
2324     const Register    r_box  = r_temp_5;
2325     Label             done, locked;
2326 
2327     // Load the oop for the object or class. r_carg2_classorobject contains
2328     // either the handlized oop from the incoming arguments or the handlized
2329     // class mirror (if the method is static).
2330     __ ld(r_oop, 0, r_carg2_classorobject);
2331 
2332     // Get the lock box slot's address.
2333     __ addi(r_box, R1_SP, lock_offset);
2334 
2335 #   ifdef ASSERT
2336     if (UseBiasedLocking) {
2337       // Making the box point to itself will make it clear it went unused
2338       // but also be obviously invalid.
2339       __ std(r_box, 0, r_box);
2340     }
2341 #   endif // ASSERT
2342 
2343     // Try fastpath for locking.
2344     // fast_lock kills r_temp_1, r_temp_2, r_temp_3.
2345     __ compiler_fast_lock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
2346     __ beq(r_flag, locked);
2347 
2348     // None of the above fast optimizations worked so we have to get into the
2349     // slow case of monitor enter. Inline a special case of call_VM that
2350     // disallows any pending_exception.
2351 
2352     // Save argument registers and leave room for C-compatible ABI_REG_ARGS.
2353     int frame_size = frame::abi_reg_args_size + align_up(total_c_args * wordSize, frame::alignment_in_bytes);
2354     __ mr(R11_scratch1, R1_SP);
2355     RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2);
2356 
2357     // Do the call.
2358     __ set_last_Java_frame(R11_scratch1, r_return_pc);
2359     assert(r_return_pc->is_nonvolatile(), "expecting return pc to be in non-volatile register");
2360     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread);
2361     __ reset_last_Java_frame();
2362 
2363     RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs, out_regs2);
2364 
2365     __ asm_assert_mem8_is_zero(thread_(pending_exception),
2366        "no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C", 0);
2367 
2368     __ bind(locked);
2369   }
2370 
2371 
2372   // Publish thread state
2373   // --------------------------------------------------------------------------
2374 
2375   // Use that pc we placed in r_return_pc a while back as the current frame anchor.
2376   __ set_last_Java_frame(R1_SP, r_return_pc);
2377 
2378   // Transition from _thread_in_Java to _thread_in_native.
2379   __ li(R0, _thread_in_native);
2380   __ release();
2381   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2382   __ stw(R0, thread_(thread_state));
2383 
2384 
2385   // The JNI call
2386   // --------------------------------------------------------------------------
2387 #if defined(ABI_ELFv2)
2388   __ call_c(native_func, relocInfo::runtime_call_type);
2389 #else
2390   FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func;
2391   __ call_c(fd_native_method, relocInfo::runtime_call_type);
2392 #endif
2393 
2394 
2395   // Now, we are back from the native code.
2396 
2397 
2398   // Unpack the native result.
2399   // --------------------------------------------------------------------------
2400 
2401   // For int-types, we do any needed sign-extension required.
2402   // Care must be taken that the return values (R3_RET and F1_RET)
2403   // will survive any VM calls for blocking or unlocking.
2404   // An OOP result (handle) is done specially in the slow-path code.
2405 
2406   switch (ret_type) {
2407     case T_VOID:    break;        // Nothing to do!
2408     case T_FLOAT:   break;        // Got it where we want it (unless slow-path).
2409     case T_DOUBLE:  break;        // Got it where we want it (unless slow-path).
2410     case T_LONG:    break;        // Got it where we want it (unless slow-path).
2411     case T_OBJECT:  break;        // Really a handle.
2412                                   // Cannot de-handlize until after reclaiming jvm_lock.
2413     case T_ARRAY:   break;
2414 
2415     case T_BOOLEAN: {             // 0 -> false(0); !0 -> true(1)
2416       Label skip_modify;
2417       __ cmpwi(CCR0, R3_RET, 0);
2418       __ beq(CCR0, skip_modify);
2419       __ li(R3_RET, 1);
2420       __ bind(skip_modify);
2421       break;
2422       }
2423     case T_BYTE: {                // sign extension
2424       __ extsb(R3_RET, R3_RET);
2425       break;
2426       }
2427     case T_CHAR: {                // unsigned result
2428       __ andi(R3_RET, R3_RET, 0xffff);
2429       break;
2430       }
2431     case T_SHORT: {               // sign extension
2432       __ extsh(R3_RET, R3_RET);
2433       break;
2434       }
2435     case T_INT:                   // nothing to do
2436       break;
2437     default:
2438       ShouldNotReachHere();
2439       break;
2440   }
2441 
2442 
2443   // Publish thread state
2444   // --------------------------------------------------------------------------
2445 
2446   // Switch thread to "native transition" state before reading the
2447   // synchronization state. This additional state is necessary because reading
2448   // and testing the synchronization state is not atomic w.r.t. GC, as this
2449   // scenario demonstrates:
2450   //   - Java thread A, in _thread_in_native state, loads _not_synchronized
2451   //     and is preempted.
2452   //   - VM thread changes sync state to synchronizing and suspends threads
2453   //     for GC.
2454   //   - Thread A is resumed to finish this native method, but doesn't block
2455   //     here since it didn't see any synchronization in progress, and escapes.
2456 
2457   // Transition from _thread_in_native to _thread_in_native_trans.
2458   __ li(R0, _thread_in_native_trans);
2459   __ release();
2460   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2461   __ stw(R0, thread_(thread_state));
2462 
2463 
2464   // Must we block?
2465   // --------------------------------------------------------------------------
2466 
2467   // Block, if necessary, before resuming in _thread_in_Java state.
2468   // In order for GC to work, don't clear the last_Java_sp until after blocking.
2469   Label after_transition;
2470   {
2471     Label no_block, sync;
2472 
2473     // Force this write out before the read below.
2474     __ fence();
2475 
2476     Register sync_state_addr = r_temp_4;
2477     Register sync_state      = r_temp_5;
2478     Register suspend_flags   = r_temp_6;
2479 
2480     // No synchronization in progress nor yet synchronized
2481     // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
2482     __ safepoint_poll(sync, sync_state);
2483 
2484     // Not suspended.
2485     // TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
2486     __ lwz(suspend_flags, thread_(suspend_flags));
2487     __ cmpwi(CCR1, suspend_flags, 0);
2488     __ beq(CCR1, no_block);
2489 
2490     // Block. Save any potential method result value before the operation and
2491     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2492     // lets us share the oopMap we used when we went native rather than create
2493     // a distinct one for this pc.
2494     __ bind(sync);
2495     __ isync();
2496 
2497     address entry_point = is_critical_native
2498       ? CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)
2499       : CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans);
2500     save_native_result(masm, ret_type, workspace_slot_offset);
2501     __ call_VM_leaf(entry_point, R16_thread);
2502     restore_native_result(masm, ret_type, workspace_slot_offset);
2503 
2504     if (is_critical_native) {
2505       __ b(after_transition); // No thread state transition here.
2506     }
2507     __ bind(no_block);
2508   }
2509 
2510   // Publish thread state.
2511   // --------------------------------------------------------------------------
2512 
2513   // Thread state is thread_in_native_trans. Any safepoint blocking has
2514   // already happened so we can now change state to _thread_in_Java.
2515 
2516   // Transition from _thread_in_native_trans to _thread_in_Java.
2517   __ li(R0, _thread_in_Java);
2518   __ lwsync(); // Acquire safepoint and suspend state, release thread state.
2519   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2520   __ stw(R0, thread_(thread_state));
2521   __ bind(after_transition);
2522 
2523   // Reguard any pages if necessary.
2524   // --------------------------------------------------------------------------
2525 
2526   Label no_reguard;
2527   __ lwz(r_temp_1, thread_(stack_guard_state));
2528   __ cmpwi(CCR0, r_temp_1, JavaThread::stack_guard_yellow_reserved_disabled);
2529   __ bne(CCR0, no_reguard);
2530 
2531   save_native_result(masm, ret_type, workspace_slot_offset);
2532   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2533   restore_native_result(masm, ret_type, workspace_slot_offset);
2534 
2535   __ bind(no_reguard);
2536 
2537 
2538   // Unlock
2539   // --------------------------------------------------------------------------
2540 
2541   if (method->is_synchronized()) {
2542 
2543     ConditionRegister r_flag   = CCR1;
2544     const Register r_oop       = r_temp_4;
2545     const Register r_box       = r_temp_5;
2546     const Register r_exception = r_temp_6;
2547     Label done;
2548 
2549     // Get oop and address of lock object box.
2550     if (method_is_static) {
2551       assert(klass_offset != -1, "");
2552       __ ld(r_oop, klass_offset, R1_SP);
2553     } else {
2554       assert(receiver_offset != -1, "");
2555       __ ld(r_oop, receiver_offset, R1_SP);
2556     }
2557     __ addi(r_box, R1_SP, lock_offset);
2558 
2559     // Try fastpath for unlocking.
2560     __ compiler_fast_unlock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
2561     __ beq(r_flag, done);
2562 
2563     // Save and restore any potential method result value around the unlocking operation.
2564     save_native_result(masm, ret_type, workspace_slot_offset);
2565 
2566     // Must save pending exception around the slow-path VM call. Since it's a
2567     // leaf call, the pending exception (if any) can be kept in a register.
2568     __ ld(r_exception, thread_(pending_exception));
2569     assert(r_exception->is_nonvolatile(), "exception register must be non-volatile");
2570     __ li(R0, 0);
2571     __ std(R0, thread_(pending_exception));
2572 
2573     // Slow case of monitor enter.
2574     // Inline a special case of call_VM that disallows any pending_exception.
2575     // Arguments are (oop obj, BasicLock* lock, JavaThread* thread).
2576     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box, R16_thread);
2577 
2578     __ asm_assert_mem8_is_zero(thread_(pending_exception),
2579        "no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C", 0);
2580 
2581     restore_native_result(masm, ret_type, workspace_slot_offset);
2582 
2583     // Check_forward_pending_exception jump to forward_exception if any pending
2584     // exception is set. The forward_exception routine expects to see the
2585     // exception in pending_exception and not in a register. Kind of clumsy,
2586     // since all folks who branch to forward_exception must have tested
2587     // pending_exception first and hence have it in a register already.
2588     __ std(r_exception, thread_(pending_exception));
2589 
2590     __ bind(done);
2591   }
2592 
2593 # if 0
2594   // DTrace method exit
2595 # endif
2596 
2597   // Clear "last Java frame" SP and PC.
2598   // --------------------------------------------------------------------------
2599 
2600   __ reset_last_Java_frame();
2601 
2602   // Unbox oop result, e.g. JNIHandles::resolve value.
2603   // --------------------------------------------------------------------------
2604 
2605   if (is_reference_type(ret_type)) {
2606     __ resolve_jobject(R3_RET, r_temp_1, r_temp_2, /* needs_frame */ false);
2607   }
2608 
2609   if (CheckJNICalls) {
2610     // clear_pending_jni_exception_check
2611     __ load_const_optimized(R0, 0L);
2612     __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
2613   }
2614 
2615   // Reset handle block.
2616   // --------------------------------------------------------------------------
2617   if (!is_critical_native) {
2618   __ ld(r_temp_1, thread_(active_handles));
2619   // TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
2620   __ li(r_temp_2, 0);
2621   __ stw(r_temp_2, JNIHandleBlock::top_offset_in_bytes(), r_temp_1);
2622 
2623 
2624   // Check for pending exceptions.
2625   // --------------------------------------------------------------------------
2626   __ ld(r_temp_2, thread_(pending_exception));
2627   __ cmpdi(CCR0, r_temp_2, 0);
2628   __ bne(CCR0, handle_pending_exception);
2629   }
2630 
2631   // Return
2632   // --------------------------------------------------------------------------
2633 
2634   __ pop_frame();
2635   __ restore_LR_CR(R11);
2636   __ blr();
2637 
2638 
2639   // Handler for pending exceptions (out-of-line).
2640   // --------------------------------------------------------------------------
2641 
2642   // Since this is a native call, we know the proper exception handler
2643   // is the empty function. We just pop this frame and then jump to
2644   // forward_exception_entry.
2645   if (!is_critical_native) {
2646   __ align(InteriorEntryAlignment);
2647   __ bind(handle_pending_exception);
2648 
2649   __ pop_frame();
2650   __ restore_LR_CR(R11);
2651   __ b64_patchable((address)StubRoutines::forward_exception_entry(),
2652                        relocInfo::runtime_call_type);
2653   }
2654 
2655   // Handler for a cache miss (out-of-line).
2656   // --------------------------------------------------------------------------
2657 
2658   if (!method_is_static) {
2659   __ align(InteriorEntryAlignment);
2660   __ bind(ic_miss);
2661 
2662   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
2663                        relocInfo::runtime_call_type);
2664   }
2665 
2666   // Done.
2667   // --------------------------------------------------------------------------
2668 
2669   __ flush();
2670 
2671   nmethod *nm = nmethod::new_native_nmethod(method,
2672                                             compile_id,
2673                                             masm->code(),
2674                                             vep_start_pc-start_pc,
2675                                             frame_done_pc-start_pc,
2676                                             stack_slots / VMRegImpl::slots_per_word,
2677                                             (method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2678                                             in_ByteSize(lock_offset),
2679                                             oop_maps);
2680 
2681   if (is_critical_native) {
2682     nm->set_lazy_critical_native(true);
2683   }
2684 
2685   return nm;
2686 #else
2687   ShouldNotReachHere();
2688   return NULL;
2689 #endif // COMPILER2
2690 }
2691 
2692 // This function returns the adjust size (in number of words) to a c2i adapter
2693 // activation for use during deoptimization.
2694 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2695   return align_up((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::alignment_in_bytes);
2696 }
2697 
2698 uint SharedRuntime::out_preserve_stack_slots() {
2699 #if defined(COMPILER1) || defined(COMPILER2)
2700   return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size;
2701 #else
2702   return 0;
2703 #endif
2704 }
2705 
2706 #if defined(COMPILER1) || defined(COMPILER2)
2707 // Frame generation for deopt and uncommon trap blobs.
2708 static void push_skeleton_frame(MacroAssembler* masm, bool deopt,
2709                                 /* Read */
2710                                 Register unroll_block_reg,
2711                                 /* Update */
2712                                 Register frame_sizes_reg,
2713                                 Register number_of_frames_reg,
2714                                 Register pcs_reg,
2715                                 /* Invalidate */
2716                                 Register frame_size_reg,
2717                                 Register pc_reg) {
2718 
2719   __ ld(pc_reg, 0, pcs_reg);
2720   __ ld(frame_size_reg, 0, frame_sizes_reg);
2721   __ std(pc_reg, _abi(lr), R1_SP);
2722   __ push_frame(frame_size_reg, R0/*tmp*/);
2723   __ std(R1_SP, _ijava_state_neg(sender_sp), R1_SP);
2724   __ addi(number_of_frames_reg, number_of_frames_reg, -1);
2725   __ addi(frame_sizes_reg, frame_sizes_reg, wordSize);
2726   __ addi(pcs_reg, pcs_reg, wordSize);
2727 }
2728 
2729 // Loop through the UnrollBlock info and create new frames.
2730 static void push_skeleton_frames(MacroAssembler* masm, bool deopt,
2731                                  /* read */
2732                                  Register unroll_block_reg,
2733                                  /* invalidate */
2734                                  Register frame_sizes_reg,
2735                                  Register number_of_frames_reg,
2736                                  Register pcs_reg,
2737                                  Register frame_size_reg,
2738                                  Register pc_reg) {
2739   Label loop;
2740 
2741  // _number_of_frames is of type int (deoptimization.hpp)
2742   __ lwa(number_of_frames_reg,
2743              Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(),
2744              unroll_block_reg);
2745   __ ld(pcs_reg,
2746             Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(),
2747             unroll_block_reg);
2748   __ ld(frame_sizes_reg,
2749             Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(),
2750             unroll_block_reg);
2751 
2752   // stack: (caller_of_deoptee, ...).
2753 
2754   // At this point we either have an interpreter frame or a compiled
2755   // frame on top of stack. If it is a compiled frame we push a new c2i
2756   // adapter here
2757 
2758   // Memorize top-frame stack-pointer.
2759   __ mr(frame_size_reg/*old_sp*/, R1_SP);
2760 
2761   // Resize interpreter top frame OR C2I adapter.
2762 
2763   // At this moment, the top frame (which is the caller of the deoptee) is
2764   // an interpreter frame or a newly pushed C2I adapter or an entry frame.
2765   // The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the
2766   // outgoing arguments.
2767   //
2768   // In order to push the interpreter frame for the deoptee, we need to
2769   // resize the top frame such that we are able to place the deoptee's
2770   // locals in the frame.
2771   // Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI
2772   // into a valid PARENT_IJAVA_FRAME_ABI.
2773 
2774   __ lwa(R11_scratch1,
2775              Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(),
2776              unroll_block_reg);
2777   __ neg(R11_scratch1, R11_scratch1);
2778 
2779   // R11_scratch1 contains size of locals for frame resizing.
2780   // R12_scratch2 contains top frame's lr.
2781 
2782   // Resize frame by complete frame size prevents TOC from being
2783   // overwritten by locals. A more stack space saving way would be
2784   // to copy the TOC to its location in the new abi.
2785   __ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size);
2786 
2787   // now, resize the frame
2788   __ resize_frame(R11_scratch1, pc_reg/*tmp*/);
2789 
2790   // In the case where we have resized a c2i frame above, the optional
2791   // alignment below the locals has size 32 (why?).
2792   __ std(R12_scratch2, _abi(lr), R1_SP);
2793 
2794   // Initialize initial_caller_sp.
2795  __ std(frame_size_reg, _ijava_state_neg(sender_sp), R1_SP);
2796 
2797 #ifdef ASSERT
2798   // Make sure that there is at least one entry in the array.
2799   __ cmpdi(CCR0, number_of_frames_reg, 0);
2800   __ asm_assert_ne("array_size must be > 0", 0x205);
2801 #endif
2802 
2803   // Now push the new interpreter frames.
2804   //
2805   __ bind(loop);
2806   // Allocate a new frame, fill in the pc.
2807   push_skeleton_frame(masm, deopt,
2808                       unroll_block_reg,
2809                       frame_sizes_reg,
2810                       number_of_frames_reg,
2811                       pcs_reg,
2812                       frame_size_reg,
2813                       pc_reg);
2814   __ cmpdi(CCR0, number_of_frames_reg, 0);
2815   __ bne(CCR0, loop);
2816 
2817   // Get the return address pointing into the frame manager.
2818   __ ld(R0, 0, pcs_reg);
2819   // Store it in the top interpreter frame.
2820   __ std(R0, _abi(lr), R1_SP);
2821   // Initialize frame_manager_lr of interpreter top frame.
2822 }
2823 #endif
2824 
2825 void SharedRuntime::generate_deopt_blob() {
2826   // Allocate space for the code
2827   ResourceMark rm;
2828   // Setup code generation tools
2829   CodeBuffer buffer("deopt_blob", 2048, 1024);
2830   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
2831   Label exec_mode_initialized;
2832   int frame_size_in_words;
2833   OopMap* map = NULL;
2834   OopMapSet *oop_maps = new OopMapSet();
2835 
2836   // size of ABI112 plus spill slots for R3_RET and F1_RET.
2837   const int frame_size_in_bytes = frame::abi_reg_args_spill_size;
2838   const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
2839   int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info.
2840 
2841   const Register exec_mode_reg = R21_tmp1;
2842 
2843   const address start = __ pc();
2844 
2845 #if defined(COMPILER1) || defined(COMPILER2)
2846   // --------------------------------------------------------------------------
2847   // Prolog for non exception case!
2848 
2849   // We have been called from the deopt handler of the deoptee.
2850   //
2851   // deoptee:
2852   //                      ...
2853   //                      call X
2854   //                      ...
2855   //  deopt_handler:      call_deopt_stub
2856   //  cur. return pc  --> ...
2857   //
2858   // So currently SR_LR points behind the call in the deopt handler.
2859   // We adjust it such that it points to the start of the deopt handler.
2860   // The return_pc has been stored in the frame of the deoptee and
2861   // will replace the address of the deopt_handler in the call
2862   // to Deoptimization::fetch_unroll_info below.
2863   // We can't grab a free register here, because all registers may
2864   // contain live values, so let the RegisterSaver do the adjustment
2865   // of the return pc.
2866   const int return_pc_adjustment_no_exception = -HandlerImpl::size_deopt_handler();
2867 
2868   // Push the "unpack frame"
2869   // Save everything in sight.
2870   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
2871                                                                    &first_frame_size_in_bytes,
2872                                                                    /*generate_oop_map=*/ true,
2873                                                                    return_pc_adjustment_no_exception,
2874                                                                    RegisterSaver::return_pc_is_lr);
2875   assert(map != NULL, "OopMap must have been created");
2876 
2877   __ li(exec_mode_reg, Deoptimization::Unpack_deopt);
2878   // Save exec mode for unpack_frames.
2879   __ b(exec_mode_initialized);
2880 
2881   // --------------------------------------------------------------------------
2882   // Prolog for exception case
2883 
2884   // An exception is pending.
2885   // We have been called with a return (interpreter) or a jump (exception blob).
2886   //
2887   // - R3_ARG1: exception oop
2888   // - R4_ARG2: exception pc
2889 
2890   int exception_offset = __ pc() - start;
2891 
2892   BLOCK_COMMENT("Prolog for exception case");
2893 
2894   // Store exception oop and pc in thread (location known to GC).
2895   // This is needed since the call to "fetch_unroll_info()" may safepoint.
2896   __ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
2897   __ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
2898   __ std(R4_ARG2, _abi(lr), R1_SP);
2899 
2900   // Vanilla deoptimization with an exception pending in exception_oop.
2901   int exception_in_tls_offset = __ pc() - start;
2902 
2903   // Push the "unpack frame".
2904   // Save everything in sight.
2905   RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
2906                                                              &first_frame_size_in_bytes,
2907                                                              /*generate_oop_map=*/ false,
2908                                                              /*return_pc_adjustment_exception=*/ 0,
2909                                                              RegisterSaver::return_pc_is_pre_saved);
2910 
2911   // Deopt during an exception. Save exec mode for unpack_frames.
2912   __ li(exec_mode_reg, Deoptimization::Unpack_exception);
2913 
2914   // fall through
2915 
2916   int reexecute_offset = 0;
2917 #ifdef COMPILER1
2918   __ b(exec_mode_initialized);
2919 
2920   // Reexecute entry, similar to c2 uncommon trap
2921   reexecute_offset = __ pc() - start;
2922 
2923   RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
2924                                                              &first_frame_size_in_bytes,
2925                                                              /*generate_oop_map=*/ false,
2926                                                              /*return_pc_adjustment_reexecute=*/ 0,
2927                                                              RegisterSaver::return_pc_is_pre_saved);
2928   __ li(exec_mode_reg, Deoptimization::Unpack_reexecute);
2929 #endif
2930 
2931   // --------------------------------------------------------------------------
2932   __ BIND(exec_mode_initialized);
2933 
2934   {
2935   const Register unroll_block_reg = R22_tmp2;
2936 
2937   // We need to set `last_Java_frame' because `fetch_unroll_info' will
2938   // call `last_Java_frame()'. The value of the pc in the frame is not
2939   // particularly important. It just needs to identify this blob.
2940   __ set_last_Java_frame(R1_SP, noreg);
2941 
2942   // With EscapeAnalysis turned on, this call may safepoint!
2943   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread, exec_mode_reg);
2944   address calls_return_pc = __ last_calls_return_pc();
2945   // Set an oopmap for the call site that describes all our saved registers.
2946   oop_maps->add_gc_map(calls_return_pc - start, map);
2947 
2948   __ reset_last_Java_frame();
2949   // Save the return value.
2950   __ mr(unroll_block_reg, R3_RET);
2951 
2952   // Restore only the result registers that have been saved
2953   // by save_volatile_registers(...).
2954   RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes);
2955 
2956   // reload the exec mode from the UnrollBlock (it might have changed)
2957   __ lwz(exec_mode_reg, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes(), unroll_block_reg);
2958   // In excp_deopt_mode, restore and clear exception oop which we
2959   // stored in the thread during exception entry above. The exception
2960   // oop will be the return value of this stub.
2961   Label skip_restore_excp;
2962   __ cmpdi(CCR0, exec_mode_reg, Deoptimization::Unpack_exception);
2963   __ bne(CCR0, skip_restore_excp);
2964   __ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
2965   __ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
2966   __ li(R0, 0);
2967   __ std(R0, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
2968   __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
2969   __ BIND(skip_restore_excp);
2970 
2971   __ pop_frame();
2972 
2973   // stack: (deoptee, optional i2c, caller of deoptee, ...).
2974 
2975   // pop the deoptee's frame
2976   __ pop_frame();
2977 
2978   // stack: (caller_of_deoptee, ...).
2979 
2980   // Loop through the `UnrollBlock' info and create interpreter frames.
2981   push_skeleton_frames(masm, true/*deopt*/,
2982                        unroll_block_reg,
2983                        R23_tmp3,
2984                        R24_tmp4,
2985                        R25_tmp5,
2986                        R26_tmp6,
2987                        R27_tmp7);
2988 
2989   // stack: (skeletal interpreter frame, ..., optional skeletal
2990   // interpreter frame, optional c2i, caller of deoptee, ...).
2991   }
2992 
2993   // push an `unpack_frame' taking care of float / int return values.
2994   __ push_frame(frame_size_in_bytes, R0/*tmp*/);
2995 
2996   // stack: (unpack frame, skeletal interpreter frame, ..., optional
2997   // skeletal interpreter frame, optional c2i, caller of deoptee,
2998   // ...).
2999 
3000   // Spill live volatile registers since we'll do a call.
3001   __ std( R3_RET, _abi_reg_args_spill(spill_ret),  R1_SP);
3002   __ stfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
3003 
3004   // Let the unpacker layout information in the skeletal frames just
3005   // allocated.
3006   __ get_PC_trash_LR(R3_RET);
3007   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET);
3008   // This is a call to a LEAF method, so no oop map is required.
3009   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
3010                   R16_thread/*thread*/, exec_mode_reg/*exec_mode*/);
3011   __ reset_last_Java_frame();
3012 
3013   // Restore the volatiles saved above.
3014   __ ld( R3_RET, _abi_reg_args_spill(spill_ret),  R1_SP);
3015   __ lfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
3016 
3017   // Pop the unpack frame.
3018   __ pop_frame();
3019   __ restore_LR_CR(R0);
3020 
3021   // stack: (top interpreter frame, ..., optional interpreter frame,
3022   // optional c2i, caller of deoptee, ...).
3023 
3024   // Initialize R14_state.
3025   __ restore_interpreter_state(R11_scratch1);
3026   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
3027 
3028   // Return to the interpreter entry point.
3029   __ blr();
3030   __ flush();
3031 #else // COMPILER2
3032   __ unimplemented("deopt blob needed only with compiler");
3033   int exception_offset = __ pc() - start;
3034 #endif // COMPILER2
3035 
3036   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset,
3037                                            reexecute_offset, first_frame_size_in_bytes / wordSize);
3038   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3039 }
3040 
3041 #ifdef COMPILER2
3042 void SharedRuntime::generate_uncommon_trap_blob() {
3043   // Allocate space for the code.
3044   ResourceMark rm;
3045   // Setup code generation tools.
3046   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3047   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
3048   address start = __ pc();
3049 
3050   if (UseRTMLocking) {
3051     // Abort RTM transaction before possible nmethod deoptimization.
3052     __ tabort_();
3053   }
3054 
3055   Register unroll_block_reg = R21_tmp1;
3056   Register klass_index_reg  = R22_tmp2;
3057   Register unc_trap_reg     = R23_tmp3;
3058 
3059   OopMapSet* oop_maps = new OopMapSet();
3060   int frame_size_in_bytes = frame::abi_reg_args_size;
3061   OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
3062 
3063   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
3064 
3065   // Push a dummy `unpack_frame' and call
3066   // `Deoptimization::uncommon_trap' to pack the compiled frame into a
3067   // vframe array and return the `UnrollBlock' information.
3068 
3069   // Save LR to compiled frame.
3070   __ save_LR_CR(R11_scratch1);
3071 
3072   // Push an "uncommon_trap" frame.
3073   __ push_frame_reg_args(0, R11_scratch1);
3074 
3075   // stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...).
3076 
3077   // Set the `unpack_frame' as last_Java_frame.
3078   // `Deoptimization::uncommon_trap' expects it and considers its
3079   // sender frame as the deoptee frame.
3080   // Remember the offset of the instruction whose address will be
3081   // moved to R11_scratch1.
3082   address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
3083 
3084   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
3085 
3086   __ mr(klass_index_reg, R3);
3087   __ li(R5_ARG3, Deoptimization::Unpack_uncommon_trap);
3088   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap),
3089                   R16_thread, klass_index_reg, R5_ARG3);
3090 
3091   // Set an oopmap for the call site.
3092   oop_maps->add_gc_map(gc_map_pc - start, map);
3093 
3094   __ reset_last_Java_frame();
3095 
3096   // Pop the `unpack frame'.
3097   __ pop_frame();
3098 
3099   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
3100 
3101   // Save the return value.
3102   __ mr(unroll_block_reg, R3_RET);
3103 
3104   // Pop the uncommon_trap frame.
3105   __ pop_frame();
3106 
3107   // stack: (caller_of_deoptee, ...).
3108 
3109 #ifdef ASSERT
3110   __ lwz(R22_tmp2, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes(), unroll_block_reg);
3111   __ cmpdi(CCR0, R22_tmp2, (unsigned)Deoptimization::Unpack_uncommon_trap);
3112   __ asm_assert_eq("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap", 0);
3113 #endif
3114 
3115   // Allocate new interpreter frame(s) and possibly a c2i adapter
3116   // frame.
3117   push_skeleton_frames(masm, false/*deopt*/,
3118                        unroll_block_reg,
3119                        R22_tmp2,
3120                        R23_tmp3,
3121                        R24_tmp4,
3122                        R25_tmp5,
3123                        R26_tmp6);
3124 
3125   // stack: (skeletal interpreter frame, ..., optional skeletal
3126   // interpreter frame, optional c2i, caller of deoptee, ...).
3127 
3128   // Push a dummy `unpack_frame' taking care of float return values.
3129   // Call `Deoptimization::unpack_frames' to layout information in the
3130   // interpreter frames just created.
3131 
3132   // Push a simple "unpack frame" here.
3133   __ push_frame_reg_args(0, R11_scratch1);
3134 
3135   // stack: (unpack frame, skeletal interpreter frame, ..., optional
3136   // skeletal interpreter frame, optional c2i, caller of deoptee,
3137   // ...).
3138 
3139   // Set the "unpack_frame" as last_Java_frame.
3140   __ get_PC_trash_LR(R11_scratch1);
3141   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
3142 
3143   // Indicate it is the uncommon trap case.
3144   __ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap);
3145   // Let the unpacker layout information in the skeletal frames just
3146   // allocated.
3147   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
3148                   R16_thread, unc_trap_reg);
3149 
3150   __ reset_last_Java_frame();
3151   // Pop the `unpack frame'.
3152   __ pop_frame();
3153   // Restore LR from top interpreter frame.
3154   __ restore_LR_CR(R11_scratch1);
3155 
3156   // stack: (top interpreter frame, ..., optional interpreter frame,
3157   // optional c2i, caller of deoptee, ...).
3158 
3159   __ restore_interpreter_state(R11_scratch1);
3160   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
3161 
3162   // Return to the interpreter entry point.
3163   __ blr();
3164 
3165   masm->flush();
3166 
3167   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize);
3168 }
3169 #endif // COMPILER2
3170 
3171 // Generate a special Compile2Runtime blob that saves all registers, and setup oopmap.
3172 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3173   assert(StubRoutines::forward_exception_entry() != NULL,
3174          "must be generated before");
3175 
3176   ResourceMark rm;
3177   OopMapSet *oop_maps = new OopMapSet();
3178   OopMap* map;
3179 
3180   // Allocate space for the code. Setup code generation tools.
3181   CodeBuffer buffer("handler_blob", 2048, 1024);
3182   MacroAssembler* masm = new MacroAssembler(&buffer);
3183 
3184   address start = __ pc();
3185   int frame_size_in_bytes = 0;
3186 
3187   RegisterSaver::ReturnPCLocation return_pc_location;
3188   bool cause_return = (poll_type == POLL_AT_RETURN);
3189   if (cause_return) {
3190     // Nothing to do here. The frame has already been popped in MachEpilogNode.
3191     // Register LR already contains the return pc.
3192     return_pc_location = RegisterSaver::return_pc_is_lr;
3193   } else {
3194     // Use thread()->saved_exception_pc() as return pc.
3195     return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc;
3196   }
3197 
3198   if (UseRTMLocking) {
3199     // Abort RTM transaction before calling runtime
3200     // because critical section can be large and so
3201     // will abort anyway. Also nmethod can be deoptimized.
3202     __ tabort_();
3203   }
3204 
3205   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3206 
3207   // Save registers, fpu state, and flags. Set R31 = return pc.
3208   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
3209                                                                    &frame_size_in_bytes,
3210                                                                    /*generate_oop_map=*/ true,
3211                                                                    /*return_pc_adjustment=*/0,
3212                                                                    return_pc_location, save_vectors);
3213 
3214   // The following is basically a call_VM. However, we need the precise
3215   // address of the call in order to generate an oopmap. Hence, we do all the
3216   // work outselves.
3217   __ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg);
3218 
3219   // The return address must always be correct so that the frame constructor
3220   // never sees an invalid pc.
3221 
3222   // Do the call
3223   __ call_VM_leaf(call_ptr, R16_thread);
3224   address calls_return_pc = __ last_calls_return_pc();
3225 
3226   // Set an oopmap for the call site. This oopmap will map all
3227   // oop-registers and debug-info registers as callee-saved. This
3228   // will allow deoptimization at this safepoint to find all possible
3229   // debug-info recordings, as well as let GC find all oops.
3230   oop_maps->add_gc_map(calls_return_pc - start, map);
3231 
3232   Label noException;
3233 
3234   // Clear the last Java frame.
3235   __ reset_last_Java_frame();
3236 
3237   BLOCK_COMMENT("  Check pending exception.");
3238   const Register pending_exception = R0;
3239   __ ld(pending_exception, thread_(pending_exception));
3240   __ cmpdi(CCR0, pending_exception, 0);
3241   __ beq(CCR0, noException);
3242 
3243   // Exception pending
3244   RegisterSaver::restore_live_registers_and_pop_frame(masm,
3245                                                       frame_size_in_bytes,
3246                                                       /*restore_ctr=*/true, save_vectors);
3247 
3248   BLOCK_COMMENT("  Jump to forward_exception_entry.");
3249   // Jump to forward_exception_entry, with the issuing PC in LR
3250   // so it looks like the original nmethod called forward_exception_entry.
3251   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
3252 
3253   // No exception case.
3254   __ BIND(noException);
3255 
3256   if (SafepointMechanism::uses_thread_local_poll() && !cause_return) {
3257     Label no_adjust;
3258     // If our stashed return pc was modified by the runtime we avoid touching it
3259     __ ld(R0, frame_size_in_bytes + _abi(lr), R1_SP);
3260     __ cmpd(CCR0, R0, R31);
3261     __ bne(CCR0, no_adjust);
3262 
3263     // Adjust return pc forward to step over the safepoint poll instruction
3264     __ addi(R31, R31, 4);
3265     __ std(R31, frame_size_in_bytes + _abi(lr), R1_SP);
3266 
3267     __ bind(no_adjust);
3268   }
3269 
3270   // Normal exit, restore registers and exit.
3271   RegisterSaver::restore_live_registers_and_pop_frame(masm,
3272                                                       frame_size_in_bytes,
3273                                                       /*restore_ctr=*/true, save_vectors);
3274 
3275   __ blr();
3276 
3277   // Make sure all code is generated
3278   masm->flush();
3279 
3280   // Fill-out other meta info
3281   // CodeBlob frame size is in words.
3282   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize);
3283 }
3284 
3285 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss)
3286 //
3287 // Generate a stub that calls into the vm to find out the proper destination
3288 // of a java call. All the argument registers are live at this point
3289 // but since this is generic code we don't know what they are and the caller
3290 // must do any gc of the args.
3291 //
3292 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3293 
3294   // allocate space for the code
3295   ResourceMark rm;
3296 
3297   CodeBuffer buffer(name, 1000, 512);
3298   MacroAssembler* masm = new MacroAssembler(&buffer);
3299 
3300   int frame_size_in_bytes;
3301 
3302   OopMapSet *oop_maps = new OopMapSet();
3303   OopMap* map = NULL;
3304 
3305   address start = __ pc();
3306 
3307   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
3308                                                                    &frame_size_in_bytes,
3309                                                                    /*generate_oop_map*/ true,
3310                                                                    /*return_pc_adjustment*/ 0,
3311                                                                    RegisterSaver::return_pc_is_lr);
3312 
3313   // Use noreg as last_Java_pc, the return pc will be reconstructed
3314   // from the physical frame.
3315   __ set_last_Java_frame(/*sp*/R1_SP, noreg);
3316 
3317   int frame_complete = __ offset();
3318 
3319   // Pass R19_method as 2nd (optional) argument, used by
3320   // counter_overflow_stub.
3321   __ call_VM_leaf(destination, R16_thread, R19_method);
3322   address calls_return_pc = __ last_calls_return_pc();
3323   // Set an oopmap for the call site.
3324   // We need this not only for callee-saved registers, but also for volatile
3325   // registers that the compiler might be keeping live across a safepoint.
3326   // Create the oopmap for the call's return pc.
3327   oop_maps->add_gc_map(calls_return_pc - start, map);
3328 
3329   // R3_RET contains the address we are going to jump to assuming no exception got installed.
3330 
3331   // clear last_Java_sp
3332   __ reset_last_Java_frame();
3333 
3334   // Check for pending exceptions.
3335   BLOCK_COMMENT("Check for pending exceptions.");
3336   Label pending;
3337   __ ld(R11_scratch1, thread_(pending_exception));
3338   __ cmpdi(CCR0, R11_scratch1, 0);
3339   __ bne(CCR0, pending);
3340 
3341   __ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame.
3342 
3343   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false);
3344 
3345   // Get the returned method.
3346   __ get_vm_result_2(R19_method);
3347 
3348   __ bctr();
3349 
3350 
3351   // Pending exception after the safepoint.
3352   __ BIND(pending);
3353 
3354   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true);
3355 
3356   // exception pending => remove activation and forward to exception handler
3357 
3358   __ li(R11_scratch1, 0);
3359   __ ld(R3_ARG1, thread_(pending_exception));
3360   __ std(R11_scratch1, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3361   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
3362 
3363   // -------------
3364   // Make sure all code is generated.
3365   masm->flush();
3366 
3367   // return the blob
3368   // frame_size_words or bytes??
3369   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize,
3370                                        oop_maps, true);
3371 }
3372 
3373 
3374 //------------------------------Montgomery multiplication------------------------
3375 //
3376 
3377 // Subtract 0:b from carry:a. Return carry.
3378 static unsigned long
3379 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3380   long i = 0;
3381   unsigned long tmp, tmp2;
3382   __asm__ __volatile__ (
3383     "subfc  %[tmp], %[tmp], %[tmp]   \n" // pre-set CA
3384     "mtctr  %[len]                   \n"
3385     "0:                              \n"
3386     "ldx    %[tmp], %[i], %[a]       \n"
3387     "ldx    %[tmp2], %[i], %[b]      \n"
3388     "subfe  %[tmp], %[tmp2], %[tmp]  \n" // subtract extended
3389     "stdx   %[tmp], %[i], %[a]       \n"
3390     "addi   %[i], %[i], 8            \n"
3391     "bdnz   0b                       \n"
3392     "addme  %[tmp], %[carry]         \n" // carry + CA - 1
3393     : [i]"+b"(i), [tmp]"=&r"(tmp), [tmp2]"=&r"(tmp2)
3394     : [a]"r"(a), [b]"r"(b), [carry]"r"(carry), [len]"r"(len)
3395     : "ctr", "xer", "memory"
3396   );
3397   return tmp;
3398 }
3399 
3400 // Multiply (unsigned) Long A by Long B, accumulating the double-
3401 // length result into the accumulator formed of T0, T1, and T2.
3402 inline void MACC(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) {
3403   unsigned long hi, lo;
3404   __asm__ __volatile__ (
3405     "mulld  %[lo], %[A], %[B]    \n"
3406     "mulhdu %[hi], %[A], %[B]    \n"
3407     "addc   %[T0], %[T0], %[lo]  \n"
3408     "adde   %[T1], %[T1], %[hi]  \n"
3409     "addze  %[T2], %[T2]         \n"
3410     : [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
3411     : [A]"r"(A), [B]"r"(B)
3412     : "xer"
3413   );
3414 }
3415 
3416 // As above, but add twice the double-length result into the
3417 // accumulator.
3418 inline void MACC2(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) {
3419   unsigned long hi, lo;
3420   __asm__ __volatile__ (
3421     "mulld  %[lo], %[A], %[B]    \n"
3422     "mulhdu %[hi], %[A], %[B]    \n"
3423     "addc   %[T0], %[T0], %[lo]  \n"
3424     "adde   %[T1], %[T1], %[hi]  \n"
3425     "addze  %[T2], %[T2]         \n"
3426     "addc   %[T0], %[T0], %[lo]  \n"
3427     "adde   %[T1], %[T1], %[hi]  \n"
3428     "addze  %[T2], %[T2]         \n"
3429     : [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
3430     : [A]"r"(A), [B]"r"(B)
3431     : "xer"
3432   );
3433 }
3434 
3435 // Fast Montgomery multiplication. The derivation of the algorithm is
3436 // in "A Cryptographic Library for the Motorola DSP56000,
3437 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237".
3438 static void
3439 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
3440                     unsigned long m[], unsigned long inv, int len) {
3441   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3442   int i;
3443 
3444   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3445 
3446   for (i = 0; i < len; i++) {
3447     int j;
3448     for (j = 0; j < i; j++) {
3449       MACC(a[j], b[i-j], t0, t1, t2);
3450       MACC(m[j], n[i-j], t0, t1, t2);
3451     }
3452     MACC(a[i], b[0], t0, t1, t2);
3453     m[i] = t0 * inv;
3454     MACC(m[i], n[0], t0, t1, t2);
3455 
3456     assert(t0 == 0, "broken Montgomery multiply");
3457 
3458     t0 = t1; t1 = t2; t2 = 0;
3459   }
3460 
3461   for (i = len; i < 2*len; i++) {
3462     int j;
3463     for (j = i-len+1; j < len; j++) {
3464       MACC(a[j], b[i-j], t0, t1, t2);
3465       MACC(m[j], n[i-j], t0, t1, t2);
3466     }
3467     m[i-len] = t0;
3468     t0 = t1; t1 = t2; t2 = 0;
3469   }
3470 
3471   while (t0) {
3472     t0 = sub(m, n, t0, len);
3473   }
3474 }
3475 
3476 // Fast Montgomery squaring. This uses asymptotically 25% fewer
3477 // multiplies so it should be up to 25% faster than Montgomery
3478 // multiplication. However, its loop control is more complex and it
3479 // may actually run slower on some machines.
3480 static void
3481 montgomery_square(unsigned long a[], unsigned long n[],
3482                   unsigned long m[], unsigned long inv, int len) {
3483   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3484   int i;
3485 
3486   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3487 
3488   for (i = 0; i < len; i++) {
3489     int j;
3490     int end = (i+1)/2;
3491     for (j = 0; j < end; j++) {
3492       MACC2(a[j], a[i-j], t0, t1, t2);
3493       MACC(m[j], n[i-j], t0, t1, t2);
3494     }
3495     if ((i & 1) == 0) {
3496       MACC(a[j], a[j], t0, t1, t2);
3497     }
3498     for (; j < i; j++) {
3499       MACC(m[j], n[i-j], t0, t1, t2);
3500     }
3501     m[i] = t0 * inv;
3502     MACC(m[i], n[0], t0, t1, t2);
3503 
3504     assert(t0 == 0, "broken Montgomery square");
3505 
3506     t0 = t1; t1 = t2; t2 = 0;
3507   }
3508 
3509   for (i = len; i < 2*len; i++) {
3510     int start = i-len+1;
3511     int end = start + (len - start)/2;
3512     int j;
3513     for (j = start; j < end; j++) {
3514       MACC2(a[j], a[i-j], t0, t1, t2);
3515       MACC(m[j], n[i-j], t0, t1, t2);
3516     }
3517     if ((i & 1) == 0) {
3518       MACC(a[j], a[j], t0, t1, t2);
3519     }
3520     for (; j < len; j++) {
3521       MACC(m[j], n[i-j], t0, t1, t2);
3522     }
3523     m[i-len] = t0;
3524     t0 = t1; t1 = t2; t2 = 0;
3525   }
3526 
3527   while (t0) {
3528     t0 = sub(m, n, t0, len);
3529   }
3530 }
3531 
3532 // The threshold at which squaring is advantageous was determined
3533 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3534 // Doesn't seem to be relevant for Power8 so we use the same value.
3535 #define MONTGOMERY_SQUARING_THRESHOLD 64
3536 
3537 // Copy len longwords from s to d, word-swapping as we go. The
3538 // destination array is reversed.
3539 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
3540   d += len;
3541   while(len-- > 0) {
3542     d--;
3543     unsigned long s_val = *s;
3544     // Swap words in a longword on little endian machines.
3545 #ifdef VM_LITTLE_ENDIAN
3546      s_val = (s_val << 32) | (s_val >> 32);
3547 #endif
3548     *d = s_val;
3549     s++;
3550   }
3551 }
3552 
3553 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3554                                         jint len, jlong inv,
3555                                         jint *m_ints) {
3556   len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls.
3557   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3558   int longwords = len/2;
3559 
3560   // Make very sure we don't use so much space that the stack might
3561   // overflow. 512 jints corresponds to an 16384-bit integer and
3562   // will use here a total of 8k bytes of stack space.
3563   int total_allocation = longwords * sizeof (unsigned long) * 4;
3564   guarantee(total_allocation <= 8192, "must be");
3565   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3566 
3567   // Local scratch arrays
3568   unsigned long
3569     *a = scratch + 0 * longwords,
3570     *b = scratch + 1 * longwords,
3571     *n = scratch + 2 * longwords,
3572     *m = scratch + 3 * longwords;
3573 
3574   reverse_words((unsigned long *)a_ints, a, longwords);
3575   reverse_words((unsigned long *)b_ints, b, longwords);
3576   reverse_words((unsigned long *)n_ints, n, longwords);
3577 
3578   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
3579 
3580   reverse_words(m, (unsigned long *)m_ints, longwords);
3581 }
3582 
3583 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3584                                       jint len, jlong inv,
3585                                       jint *m_ints) {
3586   len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls.
3587   assert(len % 2 == 0, "array length in montgomery_square must be even");
3588   int longwords = len/2;
3589 
3590   // Make very sure we don't use so much space that the stack might
3591   // overflow. 512 jints corresponds to an 16384-bit integer and
3592   // will use here a total of 6k bytes of stack space.
3593   int total_allocation = longwords * sizeof (unsigned long) * 3;
3594   guarantee(total_allocation <= 8192, "must be");
3595   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3596 
3597   // Local scratch arrays
3598   unsigned long
3599     *a = scratch + 0 * longwords,
3600     *n = scratch + 1 * longwords,
3601     *m = scratch + 2 * longwords;
3602 
3603   reverse_words((unsigned long *)a_ints, a, longwords);
3604   reverse_words((unsigned long *)n_ints, n, longwords);
3605 
3606   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3607     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
3608   } else {
3609     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
3610   }
3611 
3612   reverse_words(m, (unsigned long *)m_ints, longwords);
3613 }