1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/callGenerator.hpp"
  41 #include "opto/castnode.hpp"
  42 #include "opto/cfgnode.hpp"
  43 #include "opto/convertnode.hpp"
  44 #include "opto/countbitsnode.hpp"
  45 #include "opto/intrinsicnode.hpp"
  46 #include "opto/idealKit.hpp"
  47 #include "opto/mathexactnode.hpp"
  48 #include "opto/movenode.hpp"
  49 #include "opto/mulnode.hpp"
  50 #include "opto/narrowptrnode.hpp"
  51 #include "opto/opaquenode.hpp"
  52 #include "opto/parse.hpp"
  53 #include "opto/runtime.hpp"
  54 #include "opto/rootnode.hpp"
  55 #include "opto/subnode.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "prims/unsafe.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "utilities/macros.hpp"
  61 
  62 
  63 class LibraryIntrinsic : public InlineCallGenerator {
  64   // Extend the set of intrinsics known to the runtime:
  65  public:
  66  private:
  67   bool             _is_virtual;
  68   bool             _does_virtual_dispatch;
  69   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  70   int8_t           _last_predicate; // Last generated predicate
  71   vmIntrinsics::ID _intrinsic_id;
  72 
  73  public:
  74   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  75     : InlineCallGenerator(m),
  76       _is_virtual(is_virtual),
  77       _does_virtual_dispatch(does_virtual_dispatch),
  78       _predicates_count((int8_t)predicates_count),
  79       _last_predicate((int8_t)-1),
  80       _intrinsic_id(id)
  81   {
  82   }
  83   virtual bool is_intrinsic() const { return true; }
  84   virtual bool is_virtual()   const { return _is_virtual; }
  85   virtual bool is_predicated() const { return _predicates_count > 0; }
  86   virtual int  predicates_count() const { return _predicates_count; }
  87   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  88   virtual JVMState* generate(JVMState* jvms);
  89   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  90   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  91 };
  92 
  93 
  94 // Local helper class for LibraryIntrinsic:
  95 class LibraryCallKit : public GraphKit {
  96  private:
  97   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  98   Node*             _result;        // the result node, if any
  99   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
 100 
 101   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
 102 
 103  public:
 104   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 105     : GraphKit(jvms),
 106       _intrinsic(intrinsic),
 107       _result(NULL)
 108   {
 109     // Check if this is a root compile.  In that case we don't have a caller.
 110     if (!jvms->has_method()) {
 111       _reexecute_sp = sp();
 112     } else {
 113       // Find out how many arguments the interpreter needs when deoptimizing
 114       // and save the stack pointer value so it can used by uncommon_trap.
 115       // We find the argument count by looking at the declared signature.
 116       bool ignored_will_link;
 117       ciSignature* declared_signature = NULL;
 118       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 119       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 120       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 121     }
 122   }
 123 
 124   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 125 
 126   ciMethod*         caller()    const    { return jvms()->method(); }
 127   int               bci()       const    { return jvms()->bci(); }
 128   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 129   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 130   ciMethod*         callee()    const    { return _intrinsic->method(); }
 131 
 132   bool  try_to_inline(int predicate);
 133   Node* try_to_predicate(int predicate);
 134 
 135   void push_result() {
 136     // Push the result onto the stack.
 137     if (!stopped() && result() != NULL) {
 138       BasicType bt = result()->bottom_type()->basic_type();
 139       push_node(bt, result());
 140     }
 141   }
 142 
 143  private:
 144   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 145     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 146   }
 147 
 148   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 149   void  set_result(RegionNode* region, PhiNode* value);
 150   Node*     result() { return _result; }
 151 
 152   virtual int reexecute_sp() { return _reexecute_sp; }
 153 
 154   // Helper functions to inline natives
 155   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 156   Node* generate_slow_guard(Node* test, RegionNode* region);
 157   Node* generate_fair_guard(Node* test, RegionNode* region);
 158   Node* generate_negative_guard(Node* index, RegionNode* region,
 159                                 // resulting CastII of index:
 160                                 Node* *pos_index = NULL);
 161   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 162                              Node* array_length,
 163                              RegionNode* region);
 164   void  generate_string_range_check(Node* array, Node* offset,
 165                                     Node* length, bool char_count);
 166   Node* generate_current_thread(Node* &tls_output);
 167   Node* load_mirror_from_klass(Node* klass);
 168   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 169                                       RegionNode* region, int null_path,
 170                                       int offset);
 171   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 172                                RegionNode* region, int null_path) {
 173     int offset = java_lang_Class::klass_offset_in_bytes();
 174     return load_klass_from_mirror_common(mirror, never_see_null,
 175                                          region, null_path,
 176                                          offset);
 177   }
 178   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 179                                      RegionNode* region, int null_path) {
 180     int offset = java_lang_Class::array_klass_offset_in_bytes();
 181     return load_klass_from_mirror_common(mirror, never_see_null,
 182                                          region, null_path,
 183                                          offset);
 184   }
 185   Node* generate_access_flags_guard(Node* kls,
 186                                     int modifier_mask, int modifier_bits,
 187                                     RegionNode* region);
 188   Node* generate_interface_guard(Node* kls, RegionNode* region);
 189   Node* generate_array_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, false, false);
 191   }
 192   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 193     return generate_array_guard_common(kls, region, false, true);
 194   }
 195   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 196     return generate_array_guard_common(kls, region, true, false);
 197   }
 198   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 199     return generate_array_guard_common(kls, region, true, true);
 200   }
 201   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 202                                     bool obj_array, bool not_array);
 203   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 204   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 205                                      bool is_virtual = false, bool is_static = false);
 206   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 207     return generate_method_call(method_id, false, true);
 208   }
 209   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 210     return generate_method_call(method_id, true, false);
 211   }
 212   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 213   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 214 
 215   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 216   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 217   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 218   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 219   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 220                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 221   bool inline_string_indexOfChar();
 222   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 223   bool inline_string_toBytesU();
 224   bool inline_string_getCharsU();
 225   bool inline_string_copy(bool compress);
 226   bool inline_string_char_access(bool is_store);
 227   Node* round_double_node(Node* n);
 228   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 229   bool inline_math_native(vmIntrinsics::ID id);
 230   bool inline_math(vmIntrinsics::ID id);
 231   bool inline_double_math(vmIntrinsics::ID id);
 232   template <typename OverflowOp>
 233   bool inline_math_overflow(Node* arg1, Node* arg2);
 234   void inline_math_mathExact(Node* math, Node* test);
 235   bool inline_math_addExactI(bool is_increment);
 236   bool inline_math_addExactL(bool is_increment);
 237   bool inline_math_multiplyExactI();
 238   bool inline_math_multiplyExactL();
 239   bool inline_math_multiplyHigh();
 240   bool inline_math_negateExactI();
 241   bool inline_math_negateExactL();
 242   bool inline_math_subtractExactI(bool is_decrement);
 243   bool inline_math_subtractExactL(bool is_decrement);
 244   bool inline_min_max(vmIntrinsics::ID id);
 245   bool inline_notify(vmIntrinsics::ID id);
 246   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 247   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 248   int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
 249   Node* make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type = T_ILLEGAL, bool can_cast = false);
 250 
 251   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 252   DecoratorSet mo_decorator_for_access_kind(AccessKind kind);
 253   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 254   static bool klass_needs_init_guard(Node* kls);
 255   bool inline_unsafe_allocate();
 256   bool inline_unsafe_newArray(bool uninitialized);
 257   bool inline_unsafe_writeback0();
 258   bool inline_unsafe_writebackSync0(bool is_pre);
 259   bool inline_unsafe_copyMemory();
 260   bool inline_native_currentThread();
 261 
 262   bool inline_native_time_funcs(address method, const char* funcName);
 263 #ifdef JFR_HAVE_INTRINSICS
 264   bool inline_native_classID();
 265   bool inline_native_getEventWriter();
 266 #endif
 267   bool inline_native_isInterrupted();
 268   bool inline_native_Class_query(vmIntrinsics::ID id);
 269   bool inline_native_subtype_check();
 270   bool inline_native_getLength();
 271   bool inline_array_copyOf(bool is_copyOfRange);
 272   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 273   bool inline_preconditions_checkIndex();
 274   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array);
 275   bool inline_native_clone(bool is_virtual);
 276   bool inline_native_Reflection_getCallerClass();
 277   // Helper function for inlining native object hash method
 278   bool inline_native_hashcode(bool is_virtual, bool is_static);
 279   bool inline_native_getClass();
 280 
 281   // Helper functions for inlining arraycopy
 282   bool inline_arraycopy();
 283   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 284                                                 RegionNode* slow_region);
 285   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 286   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
 287                                       uint new_idx);
 288 
 289   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 290   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 291   bool inline_unsafe_fence(vmIntrinsics::ID id);
 292   bool inline_onspinwait();
 293   bool inline_fp_conversions(vmIntrinsics::ID id);
 294   bool inline_number_methods(vmIntrinsics::ID id);
 295   bool inline_reference_get();
 296   bool inline_Class_cast();
 297   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 298   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 299   bool inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id);
 300   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 301   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 302   Node* inline_electronicCodeBook_AESCrypt_predicate(bool decrypting);
 303   Node* inline_counterMode_AESCrypt_predicate();
 304   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 305   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 306   bool inline_ghash_processBlocks();
 307   bool inline_base64_encodeBlock();
 308   bool inline_sha_implCompress(vmIntrinsics::ID id);
 309   bool inline_digestBase_implCompressMB(int predicate);
 310   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 311                                  bool long_state, address stubAddr, const char *stubName,
 312                                  Node* src_start, Node* ofs, Node* limit);
 313   Node* get_state_from_sha_object(Node *sha_object);
 314   Node* get_state_from_sha5_object(Node *sha_object);
 315   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 316   bool inline_encodeISOArray();
 317   bool inline_updateCRC32();
 318   bool inline_updateBytesCRC32();
 319   bool inline_updateByteBufferCRC32();
 320   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 321   bool inline_updateBytesCRC32C();
 322   bool inline_updateDirectByteBufferCRC32C();
 323   bool inline_updateBytesAdler32();
 324   bool inline_updateByteBufferAdler32();
 325   bool inline_multiplyToLen();
 326   bool inline_hasNegatives();
 327   bool inline_squareToLen();
 328   bool inline_mulAdd();
 329   bool inline_montgomeryMultiply();
 330   bool inline_montgomerySquare();
 331   bool inline_vectorizedMismatch();
 332   bool inline_fma(vmIntrinsics::ID id);
 333   bool inline_character_compare(vmIntrinsics::ID id);
 334   bool inline_fp_min_max(vmIntrinsics::ID id);
 335 
 336   bool inline_profileBoolean();
 337   bool inline_isCompileConstant();
 338   void clear_upper_avx() {
 339 #ifdef X86
 340     if (UseAVX >= 2) {
 341       C->set_clear_upper_avx(true);
 342     }
 343 #endif
 344   }
 345 };
 346 
 347 //---------------------------make_vm_intrinsic----------------------------
 348 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 349   vmIntrinsics::ID id = m->intrinsic_id();
 350   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 351 
 352   if (!m->is_loaded()) {
 353     // Do not attempt to inline unloaded methods.
 354     return NULL;
 355   }
 356 
 357   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 358   bool is_available = false;
 359 
 360   {
 361     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 362     // the compiler must transition to '_thread_in_vm' state because both
 363     // methods access VM-internal data.
 364     VM_ENTRY_MARK;
 365     methodHandle mh(THREAD, m->get_Method());
 366     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
 367                    !C->directive()->is_intrinsic_disabled(mh) &&
 368                    !vmIntrinsics::is_disabled_by_flags(mh);
 369 
 370   }
 371 
 372   if (is_available) {
 373     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 374     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 375     return new LibraryIntrinsic(m, is_virtual,
 376                                 vmIntrinsics::predicates_needed(id),
 377                                 vmIntrinsics::does_virtual_dispatch(id),
 378                                 (vmIntrinsics::ID) id);
 379   } else {
 380     return NULL;
 381   }
 382 }
 383 
 384 //----------------------register_library_intrinsics-----------------------
 385 // Initialize this file's data structures, for each Compile instance.
 386 void Compile::register_library_intrinsics() {
 387   // Nothing to do here.
 388 }
 389 
 390 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 391   LibraryCallKit kit(jvms, this);
 392   Compile* C = kit.C;
 393   int nodes = C->unique();
 394 #ifndef PRODUCT
 395   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 396     char buf[1000];
 397     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 398     tty->print_cr("Intrinsic %s", str);
 399   }
 400 #endif
 401   ciMethod* callee = kit.callee();
 402   const int bci    = kit.bci();
 403 
 404   // Try to inline the intrinsic.
 405   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 406       kit.try_to_inline(_last_predicate)) {
 407     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 408                                           : "(intrinsic)";
 409     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 410     if (C->print_intrinsics() || C->print_inlining()) {
 411       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 412     }
 413     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 414     if (C->log()) {
 415       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 416                      vmIntrinsics::name_at(intrinsic_id()),
 417                      (is_virtual() ? " virtual='1'" : ""),
 418                      C->unique() - nodes);
 419     }
 420     // Push the result from the inlined method onto the stack.
 421     kit.push_result();
 422     C->print_inlining_update(this);
 423     return kit.transfer_exceptions_into_jvms();
 424   }
 425 
 426   // The intrinsic bailed out
 427   if (jvms->has_method()) {
 428     // Not a root compile.
 429     const char* msg;
 430     if (callee->intrinsic_candidate()) {
 431       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 432     } else {
 433       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 434                          : "failed to inline (intrinsic), method not annotated";
 435     }
 436     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 437     if (C->print_intrinsics() || C->print_inlining()) {
 438       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 439     }
 440   } else {
 441     // Root compile
 442     ResourceMark rm;
 443     stringStream msg_stream;
 444     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 445                      vmIntrinsics::name_at(intrinsic_id()),
 446                      is_virtual() ? " (virtual)" : "", bci);
 447     const char *msg = msg_stream.as_string();
 448     log_debug(jit, inlining)("%s", msg);
 449     if (C->print_intrinsics() || C->print_inlining()) {
 450       tty->print("%s", msg);
 451     }
 452   }
 453   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 454   C->print_inlining_update(this);
 455   return NULL;
 456 }
 457 
 458 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 459   LibraryCallKit kit(jvms, this);
 460   Compile* C = kit.C;
 461   int nodes = C->unique();
 462   _last_predicate = predicate;
 463 #ifndef PRODUCT
 464   assert(is_predicated() && predicate < predicates_count(), "sanity");
 465   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 466     char buf[1000];
 467     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 468     tty->print_cr("Predicate for intrinsic %s", str);
 469   }
 470 #endif
 471   ciMethod* callee = kit.callee();
 472   const int bci    = kit.bci();
 473 
 474   Node* slow_ctl = kit.try_to_predicate(predicate);
 475   if (!kit.failing()) {
 476     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 477                                           : "(intrinsic, predicate)";
 478     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 479     if (C->print_intrinsics() || C->print_inlining()) {
 480       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 481     }
 482     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 483     if (C->log()) {
 484       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 485                      vmIntrinsics::name_at(intrinsic_id()),
 486                      (is_virtual() ? " virtual='1'" : ""),
 487                      C->unique() - nodes);
 488     }
 489     return slow_ctl; // Could be NULL if the check folds.
 490   }
 491 
 492   // The intrinsic bailed out
 493   if (jvms->has_method()) {
 494     // Not a root compile.
 495     const char* msg = "failed to generate predicate for intrinsic";
 496     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 497     if (C->print_intrinsics() || C->print_inlining()) {
 498       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 499     }
 500   } else {
 501     // Root compile
 502     ResourceMark rm;
 503     stringStream msg_stream;
 504     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 505                      vmIntrinsics::name_at(intrinsic_id()),
 506                      is_virtual() ? " (virtual)" : "", bci);
 507     const char *msg = msg_stream.as_string();
 508     log_debug(jit, inlining)("%s", msg);
 509     if (C->print_intrinsics() || C->print_inlining()) {
 510       C->print_inlining_stream()->print("%s", msg);
 511     }
 512   }
 513   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 514   return NULL;
 515 }
 516 
 517 bool LibraryCallKit::try_to_inline(int predicate) {
 518   // Handle symbolic names for otherwise undistinguished boolean switches:
 519   const bool is_store       = true;
 520   const bool is_compress    = true;
 521   const bool is_static      = true;
 522   const bool is_volatile    = true;
 523 
 524   if (!jvms()->has_method()) {
 525     // Root JVMState has a null method.
 526     assert(map()->memory()->Opcode() == Op_Parm, "");
 527     // Insert the memory aliasing node
 528     set_all_memory(reset_memory());
 529   }
 530   assert(merged_memory(), "");
 531 
 532 
 533   switch (intrinsic_id()) {
 534   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 535   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 536   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 537 
 538   case vmIntrinsics::_ceil:
 539   case vmIntrinsics::_floor:
 540   case vmIntrinsics::_rint:
 541   case vmIntrinsics::_dsin:
 542   case vmIntrinsics::_dcos:
 543   case vmIntrinsics::_dtan:
 544   case vmIntrinsics::_dabs:
 545   case vmIntrinsics::_fabs:
 546   case vmIntrinsics::_iabs:
 547   case vmIntrinsics::_labs:
 548   case vmIntrinsics::_datan2:
 549   case vmIntrinsics::_dsqrt:
 550   case vmIntrinsics::_dexp:
 551   case vmIntrinsics::_dlog:
 552   case vmIntrinsics::_dlog10:
 553   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 554 
 555   case vmIntrinsics::_min:
 556   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 557 
 558   case vmIntrinsics::_notify:
 559   case vmIntrinsics::_notifyAll:
 560     return inline_notify(intrinsic_id());
 561 
 562   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 563   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 564   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 565   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 566   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 567   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 568   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 569   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 570   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 571   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 572   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 573   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 574   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 575 
 576   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 577 
 578   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 579   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 580   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 581   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 582 
 583   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 584   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 585   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 586   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 587   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 588   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 589   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 590 
 591   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 592   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 593 
 594   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 595   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 596   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 597   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 598 
 599   case vmIntrinsics::_compressStringC:
 600   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 601   case vmIntrinsics::_inflateStringC:
 602   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 603 
 604   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 605   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 606   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 607   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 608   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 609   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 610   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 611   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 612   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 613 
 614   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 615   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 616   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 617   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 618   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 619   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 620   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 621   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 622   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 623 
 624   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 625   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 626   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 627   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 628   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 629   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 630   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 631   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 632   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 633 
 634   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 635   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 636   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 637   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 638   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 639   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 640   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 641   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 642   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 643 
 644   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 645   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 646   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 647   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 648 
 649   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 650   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 651   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 652   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 653 
 654   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 655   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 656   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 657   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 658   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 659   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 660   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 661   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 662   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 663 
 664   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 665   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 666   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 667   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 668   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 669   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 670   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 671   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 672   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 673 
 674   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 675   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 676   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 677   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 678   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 679   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 680   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 681   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 682   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 683 
 684   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 685   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 686   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 687   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 688   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 689   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 690   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 691   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 692   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 693 
 694   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 695   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 696   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 697   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 698   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 699 
 700   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 701   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 702   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 703   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 704   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 705   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 706   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 707   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 708   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 709   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 710   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 711   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 712   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 713   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 714   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 715   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 716   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 717   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 718   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 719   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 720 
 721   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 722   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 723   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 724   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 725   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 726   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 727   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 728   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 729   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 730   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 731   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 732   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 733   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 734   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 735   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 736 
 737   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 738   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 739   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 740   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 741 
 742   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 743   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 744   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 745   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 746   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 747 
 748   case vmIntrinsics::_loadFence:
 749   case vmIntrinsics::_storeFence:
 750   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 751 
 752   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 753 
 754   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 755   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 756 
 757 #ifdef JFR_HAVE_INTRINSICS
 758   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime");
 759   case vmIntrinsics::_getClassId:               return inline_native_classID();
 760   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 761 #endif
 762   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 763   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 764   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 765   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 766   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 767   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 768   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 769   case vmIntrinsics::_getLength:                return inline_native_getLength();
 770   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 771   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 772   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 773   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 774   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 775   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 776 
 777   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 778   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 779 
 780   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 781 
 782   case vmIntrinsics::_isInstance:
 783   case vmIntrinsics::_getModifiers:
 784   case vmIntrinsics::_isInterface:
 785   case vmIntrinsics::_isArray:
 786   case vmIntrinsics::_isPrimitive:
 787   case vmIntrinsics::_getSuperclass:
 788   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 789 
 790   case vmIntrinsics::_floatToRawIntBits:
 791   case vmIntrinsics::_floatToIntBits:
 792   case vmIntrinsics::_intBitsToFloat:
 793   case vmIntrinsics::_doubleToRawLongBits:
 794   case vmIntrinsics::_doubleToLongBits:
 795   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 796 
 797   case vmIntrinsics::_numberOfLeadingZeros_i:
 798   case vmIntrinsics::_numberOfLeadingZeros_l:
 799   case vmIntrinsics::_numberOfTrailingZeros_i:
 800   case vmIntrinsics::_numberOfTrailingZeros_l:
 801   case vmIntrinsics::_bitCount_i:
 802   case vmIntrinsics::_bitCount_l:
 803   case vmIntrinsics::_reverseBytes_i:
 804   case vmIntrinsics::_reverseBytes_l:
 805   case vmIntrinsics::_reverseBytes_s:
 806   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 807 
 808   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 809 
 810   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 811 
 812   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 813 
 814   case vmIntrinsics::_aescrypt_encryptBlock:
 815   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 816 
 817   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 818   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 819     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 820 
 821   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 822   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 823     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 824 
 825   case vmIntrinsics::_counterMode_AESCrypt:
 826     return inline_counterMode_AESCrypt(intrinsic_id());
 827 
 828   case vmIntrinsics::_sha_implCompress:
 829   case vmIntrinsics::_sha2_implCompress:
 830   case vmIntrinsics::_sha5_implCompress:
 831     return inline_sha_implCompress(intrinsic_id());
 832 
 833   case vmIntrinsics::_digestBase_implCompressMB:
 834     return inline_digestBase_implCompressMB(predicate);
 835 
 836   case vmIntrinsics::_multiplyToLen:
 837     return inline_multiplyToLen();
 838 
 839   case vmIntrinsics::_squareToLen:
 840     return inline_squareToLen();
 841 
 842   case vmIntrinsics::_mulAdd:
 843     return inline_mulAdd();
 844 
 845   case vmIntrinsics::_montgomeryMultiply:
 846     return inline_montgomeryMultiply();
 847   case vmIntrinsics::_montgomerySquare:
 848     return inline_montgomerySquare();
 849 
 850   case vmIntrinsics::_vectorizedMismatch:
 851     return inline_vectorizedMismatch();
 852 
 853   case vmIntrinsics::_ghash_processBlocks:
 854     return inline_ghash_processBlocks();
 855   case vmIntrinsics::_base64_encodeBlock:
 856     return inline_base64_encodeBlock();
 857 
 858   case vmIntrinsics::_encodeISOArray:
 859   case vmIntrinsics::_encodeByteISOArray:
 860     return inline_encodeISOArray();
 861 
 862   case vmIntrinsics::_updateCRC32:
 863     return inline_updateCRC32();
 864   case vmIntrinsics::_updateBytesCRC32:
 865     return inline_updateBytesCRC32();
 866   case vmIntrinsics::_updateByteBufferCRC32:
 867     return inline_updateByteBufferCRC32();
 868 
 869   case vmIntrinsics::_updateBytesCRC32C:
 870     return inline_updateBytesCRC32C();
 871   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 872     return inline_updateDirectByteBufferCRC32C();
 873 
 874   case vmIntrinsics::_updateBytesAdler32:
 875     return inline_updateBytesAdler32();
 876   case vmIntrinsics::_updateByteBufferAdler32:
 877     return inline_updateByteBufferAdler32();
 878 
 879   case vmIntrinsics::_profileBoolean:
 880     return inline_profileBoolean();
 881   case vmIntrinsics::_isCompileConstant:
 882     return inline_isCompileConstant();
 883 
 884   case vmIntrinsics::_hasNegatives:
 885     return inline_hasNegatives();
 886 
 887   case vmIntrinsics::_fmaD:
 888   case vmIntrinsics::_fmaF:
 889     return inline_fma(intrinsic_id());
 890 
 891   case vmIntrinsics::_isDigit:
 892   case vmIntrinsics::_isLowerCase:
 893   case vmIntrinsics::_isUpperCase:
 894   case vmIntrinsics::_isWhitespace:
 895     return inline_character_compare(intrinsic_id());
 896 
 897   case vmIntrinsics::_maxF:
 898   case vmIntrinsics::_minF:
 899   case vmIntrinsics::_maxD:
 900   case vmIntrinsics::_minD:
 901     return inline_fp_min_max(intrinsic_id());
 902 
 903   default:
 904     // If you get here, it may be that someone has added a new intrinsic
 905     // to the list in vmSymbols.hpp without implementing it here.
 906 #ifndef PRODUCT
 907     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 908       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 909                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 910     }
 911 #endif
 912     return false;
 913   }
 914 }
 915 
 916 Node* LibraryCallKit::try_to_predicate(int predicate) {
 917   if (!jvms()->has_method()) {
 918     // Root JVMState has a null method.
 919     assert(map()->memory()->Opcode() == Op_Parm, "");
 920     // Insert the memory aliasing node
 921     set_all_memory(reset_memory());
 922   }
 923   assert(merged_memory(), "");
 924 
 925   switch (intrinsic_id()) {
 926   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 927     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 928   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 929     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 930   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 931     return inline_electronicCodeBook_AESCrypt_predicate(false);
 932   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 933     return inline_electronicCodeBook_AESCrypt_predicate(true);
 934   case vmIntrinsics::_counterMode_AESCrypt:
 935     return inline_counterMode_AESCrypt_predicate();
 936   case vmIntrinsics::_digestBase_implCompressMB:
 937     return inline_digestBase_implCompressMB_predicate(predicate);
 938 
 939   default:
 940     // If you get here, it may be that someone has added a new intrinsic
 941     // to the list in vmSymbols.hpp without implementing it here.
 942 #ifndef PRODUCT
 943     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 944       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 945                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 946     }
 947 #endif
 948     Node* slow_ctl = control();
 949     set_control(top()); // No fast path instrinsic
 950     return slow_ctl;
 951   }
 952 }
 953 
 954 //------------------------------set_result-------------------------------
 955 // Helper function for finishing intrinsics.
 956 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 957   record_for_igvn(region);
 958   set_control(_gvn.transform(region));
 959   set_result( _gvn.transform(value));
 960   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 961 }
 962 
 963 //------------------------------generate_guard---------------------------
 964 // Helper function for generating guarded fast-slow graph structures.
 965 // The given 'test', if true, guards a slow path.  If the test fails
 966 // then a fast path can be taken.  (We generally hope it fails.)
 967 // In all cases, GraphKit::control() is updated to the fast path.
 968 // The returned value represents the control for the slow path.
 969 // The return value is never 'top'; it is either a valid control
 970 // or NULL if it is obvious that the slow path can never be taken.
 971 // Also, if region and the slow control are not NULL, the slow edge
 972 // is appended to the region.
 973 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 974   if (stopped()) {
 975     // Already short circuited.
 976     return NULL;
 977   }
 978 
 979   // Build an if node and its projections.
 980   // If test is true we take the slow path, which we assume is uncommon.
 981   if (_gvn.type(test) == TypeInt::ZERO) {
 982     // The slow branch is never taken.  No need to build this guard.
 983     return NULL;
 984   }
 985 
 986   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 987 
 988   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 989   if (if_slow == top()) {
 990     // The slow branch is never taken.  No need to build this guard.
 991     return NULL;
 992   }
 993 
 994   if (region != NULL)
 995     region->add_req(if_slow);
 996 
 997   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 998   set_control(if_fast);
 999 
1000   return if_slow;
1001 }
1002 
1003 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1004   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1005 }
1006 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1007   return generate_guard(test, region, PROB_FAIR);
1008 }
1009 
1010 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1011                                                      Node* *pos_index) {
1012   if (stopped())
1013     return NULL;                // already stopped
1014   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1015     return NULL;                // index is already adequately typed
1016   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1017   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1018   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1019   if (is_neg != NULL && pos_index != NULL) {
1020     // Emulate effect of Parse::adjust_map_after_if.
1021     Node* ccast = new CastIINode(index, TypeInt::POS);
1022     ccast->set_req(0, control());
1023     (*pos_index) = _gvn.transform(ccast);
1024   }
1025   return is_neg;
1026 }
1027 
1028 // Make sure that 'position' is a valid limit index, in [0..length].
1029 // There are two equivalent plans for checking this:
1030 //   A. (offset + copyLength)  unsigned<=  arrayLength
1031 //   B. offset  <=  (arrayLength - copyLength)
1032 // We require that all of the values above, except for the sum and
1033 // difference, are already known to be non-negative.
1034 // Plan A is robust in the face of overflow, if offset and copyLength
1035 // are both hugely positive.
1036 //
1037 // Plan B is less direct and intuitive, but it does not overflow at
1038 // all, since the difference of two non-negatives is always
1039 // representable.  Whenever Java methods must perform the equivalent
1040 // check they generally use Plan B instead of Plan A.
1041 // For the moment we use Plan A.
1042 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1043                                                   Node* subseq_length,
1044                                                   Node* array_length,
1045                                                   RegionNode* region) {
1046   if (stopped())
1047     return NULL;                // already stopped
1048   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1049   if (zero_offset && subseq_length->eqv_uncast(array_length))
1050     return NULL;                // common case of whole-array copy
1051   Node* last = subseq_length;
1052   if (!zero_offset)             // last += offset
1053     last = _gvn.transform(new AddINode(last, offset));
1054   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1055   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1056   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1057   return is_over;
1058 }
1059 
1060 // Emit range checks for the given String.value byte array
1061 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1062   if (stopped()) {
1063     return; // already stopped
1064   }
1065   RegionNode* bailout = new RegionNode(1);
1066   record_for_igvn(bailout);
1067   if (char_count) {
1068     // Convert char count to byte count
1069     count = _gvn.transform(new LShiftINode(count, intcon(1)));
1070   }
1071 
1072   // Offset and count must not be negative
1073   generate_negative_guard(offset, bailout);
1074   generate_negative_guard(count, bailout);
1075   // Offset + count must not exceed length of array
1076   generate_limit_guard(offset, count, load_array_length(array), bailout);
1077 
1078   if (bailout->req() > 1) {
1079     PreserveJVMState pjvms(this);
1080     set_control(_gvn.transform(bailout));
1081     uncommon_trap(Deoptimization::Reason_intrinsic,
1082                   Deoptimization::Action_maybe_recompile);
1083   }
1084 }
1085 
1086 //--------------------------generate_current_thread--------------------
1087 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1088   ciKlass*    thread_klass = env()->Thread_klass();
1089   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1090   Node* thread = _gvn.transform(new ThreadLocalNode());
1091   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1092   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1093   tls_output = thread;
1094   return threadObj;
1095 }
1096 
1097 
1098 //------------------------------make_string_method_node------------------------
1099 // Helper method for String intrinsic functions. This version is called with
1100 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1101 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1102 // containing the lengths of str1 and str2.
1103 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1104   Node* result = NULL;
1105   switch (opcode) {
1106   case Op_StrIndexOf:
1107     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1108                                 str1_start, cnt1, str2_start, cnt2, ae);
1109     break;
1110   case Op_StrComp:
1111     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1112                              str1_start, cnt1, str2_start, cnt2, ae);
1113     break;
1114   case Op_StrEquals:
1115     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1116     // Use the constant length if there is one because optimized match rule may exist.
1117     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1118                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1119     break;
1120   default:
1121     ShouldNotReachHere();
1122     return NULL;
1123   }
1124 
1125   // All these intrinsics have checks.
1126   C->set_has_split_ifs(true); // Has chance for split-if optimization
1127   clear_upper_avx();
1128 
1129   return _gvn.transform(result);
1130 }
1131 
1132 //------------------------------inline_string_compareTo------------------------
1133 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1134   Node* arg1 = argument(0);
1135   Node* arg2 = argument(1);
1136 
1137   arg1 = must_be_not_null(arg1, true);
1138   arg2 = must_be_not_null(arg2, true);
1139 
1140   arg1 = access_resolve(arg1, ACCESS_READ);
1141   arg2 = access_resolve(arg2, ACCESS_READ);
1142 
1143   // Get start addr and length of first argument
1144   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1145   Node* arg1_cnt    = load_array_length(arg1);
1146 
1147   // Get start addr and length of second argument
1148   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1149   Node* arg2_cnt    = load_array_length(arg2);
1150 
1151   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1152   set_result(result);
1153   return true;
1154 }
1155 
1156 //------------------------------inline_string_equals------------------------
1157 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1158   Node* arg1 = argument(0);
1159   Node* arg2 = argument(1);
1160 
1161   // paths (plus control) merge
1162   RegionNode* region = new RegionNode(3);
1163   Node* phi = new PhiNode(region, TypeInt::BOOL);
1164 
1165   if (!stopped()) {
1166 
1167     arg1 = must_be_not_null(arg1, true);
1168     arg2 = must_be_not_null(arg2, true);
1169 
1170     arg1 = access_resolve(arg1, ACCESS_READ);
1171     arg2 = access_resolve(arg2, ACCESS_READ);
1172 
1173     // Get start addr and length of first argument
1174     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1175     Node* arg1_cnt    = load_array_length(arg1);
1176 
1177     // Get start addr and length of second argument
1178     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1179     Node* arg2_cnt    = load_array_length(arg2);
1180 
1181     // Check for arg1_cnt != arg2_cnt
1182     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1183     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1184     Node* if_ne = generate_slow_guard(bol, NULL);
1185     if (if_ne != NULL) {
1186       phi->init_req(2, intcon(0));
1187       region->init_req(2, if_ne);
1188     }
1189 
1190     // Check for count == 0 is done by assembler code for StrEquals.
1191 
1192     if (!stopped()) {
1193       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1194       phi->init_req(1, equals);
1195       region->init_req(1, control());
1196     }
1197   }
1198 
1199   // post merge
1200   set_control(_gvn.transform(region));
1201   record_for_igvn(region);
1202 
1203   set_result(_gvn.transform(phi));
1204   return true;
1205 }
1206 
1207 //------------------------------inline_array_equals----------------------------
1208 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1209   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1210   Node* arg1 = argument(0);
1211   Node* arg2 = argument(1);
1212 
1213   arg1 = access_resolve(arg1, ACCESS_READ);
1214   arg2 = access_resolve(arg2, ACCESS_READ);
1215 
1216   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1217   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1218   clear_upper_avx();
1219 
1220   return true;
1221 }
1222 
1223 //------------------------------inline_hasNegatives------------------------------
1224 bool LibraryCallKit::inline_hasNegatives() {
1225   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1226     return false;
1227   }
1228 
1229   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1230   // no receiver since it is static method
1231   Node* ba         = argument(0);
1232   Node* offset     = argument(1);
1233   Node* len        = argument(2);
1234 
1235   ba = must_be_not_null(ba, true);
1236 
1237   // Range checks
1238   generate_string_range_check(ba, offset, len, false);
1239   if (stopped()) {
1240     return true;
1241   }
1242   ba = access_resolve(ba, ACCESS_READ);
1243   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1244   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1245   set_result(_gvn.transform(result));
1246   return true;
1247 }
1248 
1249 bool LibraryCallKit::inline_preconditions_checkIndex() {
1250   Node* index = argument(0);
1251   Node* length = argument(1);
1252   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1253     return false;
1254   }
1255 
1256   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1257   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1258 
1259   {
1260     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1261     uncommon_trap(Deoptimization::Reason_intrinsic,
1262                   Deoptimization::Action_make_not_entrant);
1263   }
1264 
1265   if (stopped()) {
1266     return false;
1267   }
1268 
1269   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1270   BoolTest::mask btest = BoolTest::lt;
1271   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1272   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1273   _gvn.set_type(rc, rc->Value(&_gvn));
1274   if (!rc_bool->is_Con()) {
1275     record_for_igvn(rc);
1276   }
1277   set_control(_gvn.transform(new IfTrueNode(rc)));
1278   {
1279     PreserveJVMState pjvms(this);
1280     set_control(_gvn.transform(new IfFalseNode(rc)));
1281     uncommon_trap(Deoptimization::Reason_range_check,
1282                   Deoptimization::Action_make_not_entrant);
1283   }
1284 
1285   if (stopped()) {
1286     return false;
1287   }
1288 
1289   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1290   result->set_req(0, control());
1291   result = _gvn.transform(result);
1292   set_result(result);
1293   replace_in_map(index, result);
1294   clear_upper_avx();
1295   return true;
1296 }
1297 
1298 //------------------------------inline_string_indexOf------------------------
1299 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1300   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1301     return false;
1302   }
1303   Node* src = argument(0);
1304   Node* tgt = argument(1);
1305 
1306   // Make the merge point
1307   RegionNode* result_rgn = new RegionNode(4);
1308   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1309 
1310   src = must_be_not_null(src, true);
1311   tgt = must_be_not_null(tgt, true);
1312 
1313   src = access_resolve(src, ACCESS_READ);
1314   tgt = access_resolve(tgt, ACCESS_READ);
1315 
1316   // Get start addr and length of source string
1317   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1318   Node* src_count = load_array_length(src);
1319 
1320   // Get start addr and length of substring
1321   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1322   Node* tgt_count = load_array_length(tgt);
1323 
1324   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1325     // Divide src size by 2 if String is UTF16 encoded
1326     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1327   }
1328   if (ae == StrIntrinsicNode::UU) {
1329     // Divide substring size by 2 if String is UTF16 encoded
1330     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1331   }
1332 
1333   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1334   if (result != NULL) {
1335     result_phi->init_req(3, result);
1336     result_rgn->init_req(3, control());
1337   }
1338   set_control(_gvn.transform(result_rgn));
1339   record_for_igvn(result_rgn);
1340   set_result(_gvn.transform(result_phi));
1341 
1342   return true;
1343 }
1344 
1345 //-----------------------------inline_string_indexOf-----------------------
1346 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1347   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1348     return false;
1349   }
1350   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1351     return false;
1352   }
1353   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1354   Node* src         = argument(0); // byte[]
1355   Node* src_count   = argument(1); // char count
1356   Node* tgt         = argument(2); // byte[]
1357   Node* tgt_count   = argument(3); // char count
1358   Node* from_index  = argument(4); // char index
1359 
1360   src = must_be_not_null(src, true);
1361   tgt = must_be_not_null(tgt, true);
1362 
1363   src = access_resolve(src, ACCESS_READ);
1364   tgt = access_resolve(tgt, ACCESS_READ);
1365 
1366   // Multiply byte array index by 2 if String is UTF16 encoded
1367   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1368   src_count = _gvn.transform(new SubINode(src_count, from_index));
1369   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1370   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1371 
1372   // Range checks
1373   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1374   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1375   if (stopped()) {
1376     return true;
1377   }
1378 
1379   RegionNode* region = new RegionNode(5);
1380   Node* phi = new PhiNode(region, TypeInt::INT);
1381 
1382   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1383   if (result != NULL) {
1384     // The result is index relative to from_index if substring was found, -1 otherwise.
1385     // Generate code which will fold into cmove.
1386     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1387     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1388 
1389     Node* if_lt = generate_slow_guard(bol, NULL);
1390     if (if_lt != NULL) {
1391       // result == -1
1392       phi->init_req(3, result);
1393       region->init_req(3, if_lt);
1394     }
1395     if (!stopped()) {
1396       result = _gvn.transform(new AddINode(result, from_index));
1397       phi->init_req(4, result);
1398       region->init_req(4, control());
1399     }
1400   }
1401 
1402   set_control(_gvn.transform(region));
1403   record_for_igvn(region);
1404   set_result(_gvn.transform(phi));
1405   clear_upper_avx();
1406 
1407   return true;
1408 }
1409 
1410 // Create StrIndexOfNode with fast path checks
1411 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1412                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1413   // Check for substr count > string count
1414   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1415   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1416   Node* if_gt = generate_slow_guard(bol, NULL);
1417   if (if_gt != NULL) {
1418     phi->init_req(1, intcon(-1));
1419     region->init_req(1, if_gt);
1420   }
1421   if (!stopped()) {
1422     // Check for substr count == 0
1423     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1424     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1425     Node* if_zero = generate_slow_guard(bol, NULL);
1426     if (if_zero != NULL) {
1427       phi->init_req(2, intcon(0));
1428       region->init_req(2, if_zero);
1429     }
1430   }
1431   if (!stopped()) {
1432     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1433   }
1434   return NULL;
1435 }
1436 
1437 //-----------------------------inline_string_indexOfChar-----------------------
1438 bool LibraryCallKit::inline_string_indexOfChar() {
1439   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1440     return false;
1441   }
1442   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1443     return false;
1444   }
1445   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1446   Node* src         = argument(0); // byte[]
1447   Node* tgt         = argument(1); // tgt is int ch
1448   Node* from_index  = argument(2);
1449   Node* max         = argument(3);
1450 
1451   src = must_be_not_null(src, true);
1452   src = access_resolve(src, ACCESS_READ);
1453 
1454   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1455   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1456   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1457 
1458   // Range checks
1459   generate_string_range_check(src, src_offset, src_count, true);
1460   if (stopped()) {
1461     return true;
1462   }
1463 
1464   RegionNode* region = new RegionNode(3);
1465   Node* phi = new PhiNode(region, TypeInt::INT);
1466 
1467   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1468   C->set_has_split_ifs(true); // Has chance for split-if optimization
1469   _gvn.transform(result);
1470 
1471   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1472   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1473 
1474   Node* if_lt = generate_slow_guard(bol, NULL);
1475   if (if_lt != NULL) {
1476     // result == -1
1477     phi->init_req(2, result);
1478     region->init_req(2, if_lt);
1479   }
1480   if (!stopped()) {
1481     result = _gvn.transform(new AddINode(result, from_index));
1482     phi->init_req(1, result);
1483     region->init_req(1, control());
1484   }
1485   set_control(_gvn.transform(region));
1486   record_for_igvn(region);
1487   set_result(_gvn.transform(phi));
1488 
1489   return true;
1490 }
1491 //---------------------------inline_string_copy---------------------
1492 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1493 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1494 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1495 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1496 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1497 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1498 bool LibraryCallKit::inline_string_copy(bool compress) {
1499   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1500     return false;
1501   }
1502   int nargs = 5;  // 2 oops, 3 ints
1503   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1504 
1505   Node* src         = argument(0);
1506   Node* src_offset  = argument(1);
1507   Node* dst         = argument(2);
1508   Node* dst_offset  = argument(3);
1509   Node* length      = argument(4);
1510 
1511   // Check for allocation before we add nodes that would confuse
1512   // tightly_coupled_allocation()
1513   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1514 
1515   // Figure out the size and type of the elements we will be copying.
1516   const Type* src_type = src->Value(&_gvn);
1517   const Type* dst_type = dst->Value(&_gvn);
1518   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1519   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1520   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1521          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1522          "Unsupported array types for inline_string_copy");
1523 
1524   src = must_be_not_null(src, true);
1525   dst = must_be_not_null(dst, true);
1526 
1527   // Convert char[] offsets to byte[] offsets
1528   bool convert_src = (compress && src_elem == T_BYTE);
1529   bool convert_dst = (!compress && dst_elem == T_BYTE);
1530   if (convert_src) {
1531     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1532   } else if (convert_dst) {
1533     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1534   }
1535 
1536   // Range checks
1537   generate_string_range_check(src, src_offset, length, convert_src);
1538   generate_string_range_check(dst, dst_offset, length, convert_dst);
1539   if (stopped()) {
1540     return true;
1541   }
1542 
1543   src = access_resolve(src, ACCESS_READ);
1544   dst = access_resolve(dst, ACCESS_WRITE);
1545 
1546   Node* src_start = array_element_address(src, src_offset, src_elem);
1547   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1548   // 'src_start' points to src array + scaled offset
1549   // 'dst_start' points to dst array + scaled offset
1550   Node* count = NULL;
1551   if (compress) {
1552     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1553   } else {
1554     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1555   }
1556 
1557   if (alloc != NULL) {
1558     if (alloc->maybe_set_complete(&_gvn)) {
1559       // "You break it, you buy it."
1560       InitializeNode* init = alloc->initialization();
1561       assert(init->is_complete(), "we just did this");
1562       init->set_complete_with_arraycopy();
1563       assert(dst->is_CheckCastPP(), "sanity");
1564       assert(dst->in(0)->in(0) == init, "dest pinned");
1565     }
1566     // Do not let stores that initialize this object be reordered with
1567     // a subsequent store that would make this object accessible by
1568     // other threads.
1569     // Record what AllocateNode this StoreStore protects so that
1570     // escape analysis can go from the MemBarStoreStoreNode to the
1571     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1572     // based on the escape status of the AllocateNode.
1573     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1574   }
1575   if (compress) {
1576     set_result(_gvn.transform(count));
1577   }
1578   clear_upper_avx();
1579 
1580   return true;
1581 }
1582 
1583 #ifdef _LP64
1584 #define XTOP ,top() /*additional argument*/
1585 #else  //_LP64
1586 #define XTOP        /*no additional argument*/
1587 #endif //_LP64
1588 
1589 //------------------------inline_string_toBytesU--------------------------
1590 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1591 bool LibraryCallKit::inline_string_toBytesU() {
1592   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1593     return false;
1594   }
1595   // Get the arguments.
1596   Node* value     = argument(0);
1597   Node* offset    = argument(1);
1598   Node* length    = argument(2);
1599 
1600   Node* newcopy = NULL;
1601 
1602   // Set the original stack and the reexecute bit for the interpreter to reexecute
1603   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1604   { PreserveReexecuteState preexecs(this);
1605     jvms()->set_should_reexecute(true);
1606 
1607     // Check if a null path was taken unconditionally.
1608     value = null_check(value);
1609 
1610     RegionNode* bailout = new RegionNode(1);
1611     record_for_igvn(bailout);
1612 
1613     // Range checks
1614     generate_negative_guard(offset, bailout);
1615     generate_negative_guard(length, bailout);
1616     generate_limit_guard(offset, length, load_array_length(value), bailout);
1617     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1618     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1619 
1620     if (bailout->req() > 1) {
1621       PreserveJVMState pjvms(this);
1622       set_control(_gvn.transform(bailout));
1623       uncommon_trap(Deoptimization::Reason_intrinsic,
1624                     Deoptimization::Action_maybe_recompile);
1625     }
1626     if (stopped()) {
1627       return true;
1628     }
1629 
1630     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1631     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1632     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1633     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1634 
1635     // Calculate starting addresses.
1636     value = access_resolve(value, ACCESS_READ);
1637     Node* src_start = array_element_address(value, offset, T_CHAR);
1638     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1639 
1640     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1641     const TypeInt* toffset = gvn().type(offset)->is_int();
1642     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1643 
1644     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1645     const char* copyfunc_name = "arraycopy";
1646     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1647     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1648                       OptoRuntime::fast_arraycopy_Type(),
1649                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1650                       src_start, dst_start, ConvI2X(length) XTOP);
1651     // Do not let reads from the cloned object float above the arraycopy.
1652     if (alloc != NULL) {
1653       if (alloc->maybe_set_complete(&_gvn)) {
1654         // "You break it, you buy it."
1655         InitializeNode* init = alloc->initialization();
1656         assert(init->is_complete(), "we just did this");
1657         init->set_complete_with_arraycopy();
1658         assert(newcopy->is_CheckCastPP(), "sanity");
1659         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1660       }
1661       // Do not let stores that initialize this object be reordered with
1662       // a subsequent store that would make this object accessible by
1663       // other threads.
1664       // Record what AllocateNode this StoreStore protects so that
1665       // escape analysis can go from the MemBarStoreStoreNode to the
1666       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1667       // based on the escape status of the AllocateNode.
1668       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1669     } else {
1670       insert_mem_bar(Op_MemBarCPUOrder);
1671     }
1672   } // original reexecute is set back here
1673 
1674   C->set_has_split_ifs(true); // Has chance for split-if optimization
1675   if (!stopped()) {
1676     set_result(newcopy);
1677   }
1678   clear_upper_avx();
1679 
1680   return true;
1681 }
1682 
1683 //------------------------inline_string_getCharsU--------------------------
1684 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1685 bool LibraryCallKit::inline_string_getCharsU() {
1686   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1687     return false;
1688   }
1689 
1690   // Get the arguments.
1691   Node* src       = argument(0);
1692   Node* src_begin = argument(1);
1693   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1694   Node* dst       = argument(3);
1695   Node* dst_begin = argument(4);
1696 
1697   // Check for allocation before we add nodes that would confuse
1698   // tightly_coupled_allocation()
1699   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1700 
1701   // Check if a null path was taken unconditionally.
1702   src = null_check(src);
1703   dst = null_check(dst);
1704   if (stopped()) {
1705     return true;
1706   }
1707 
1708   // Get length and convert char[] offset to byte[] offset
1709   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1710   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1711 
1712   // Range checks
1713   generate_string_range_check(src, src_begin, length, true);
1714   generate_string_range_check(dst, dst_begin, length, false);
1715   if (stopped()) {
1716     return true;
1717   }
1718 
1719   if (!stopped()) {
1720     src = access_resolve(src, ACCESS_READ);
1721     dst = access_resolve(dst, ACCESS_WRITE);
1722 
1723     // Calculate starting addresses.
1724     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1725     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1726 
1727     // Check if array addresses are aligned to HeapWordSize
1728     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1729     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1730     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1731                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1732 
1733     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1734     const char* copyfunc_name = "arraycopy";
1735     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1736     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1737                       OptoRuntime::fast_arraycopy_Type(),
1738                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1739                       src_start, dst_start, ConvI2X(length) XTOP);
1740     // Do not let reads from the cloned object float above the arraycopy.
1741     if (alloc != NULL) {
1742       if (alloc->maybe_set_complete(&_gvn)) {
1743         // "You break it, you buy it."
1744         InitializeNode* init = alloc->initialization();
1745         assert(init->is_complete(), "we just did this");
1746         init->set_complete_with_arraycopy();
1747         assert(dst->is_CheckCastPP(), "sanity");
1748         assert(dst->in(0)->in(0) == init, "dest pinned");
1749       }
1750       // Do not let stores that initialize this object be reordered with
1751       // a subsequent store that would make this object accessible by
1752       // other threads.
1753       // Record what AllocateNode this StoreStore protects so that
1754       // escape analysis can go from the MemBarStoreStoreNode to the
1755       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1756       // based on the escape status of the AllocateNode.
1757       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1758     } else {
1759       insert_mem_bar(Op_MemBarCPUOrder);
1760     }
1761   }
1762 
1763   C->set_has_split_ifs(true); // Has chance for split-if optimization
1764   return true;
1765 }
1766 
1767 //----------------------inline_string_char_access----------------------------
1768 // Store/Load char to/from byte[] array.
1769 // static void StringUTF16.putChar(byte[] val, int index, int c)
1770 // static char StringUTF16.getChar(byte[] val, int index)
1771 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1772   Node* value  = argument(0);
1773   Node* index  = argument(1);
1774   Node* ch = is_store ? argument(2) : NULL;
1775 
1776   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1777   // correctly requires matched array shapes.
1778   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1779           "sanity: byte[] and char[] bases agree");
1780   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1781           "sanity: byte[] and char[] scales agree");
1782 
1783   // Bail when getChar over constants is requested: constant folding would
1784   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1785   // Java method would constant fold nicely instead.
1786   if (!is_store && value->is_Con() && index->is_Con()) {
1787     return false;
1788   }
1789 
1790   value = must_be_not_null(value, true);
1791   value = access_resolve(value, is_store ? ACCESS_WRITE : ACCESS_READ);
1792 
1793   Node* adr = array_element_address(value, index, T_CHAR);
1794   if (adr->is_top()) {
1795     return false;
1796   }
1797   if (is_store) {
1798     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1799   } else {
1800     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
1801     set_result(ch);
1802   }
1803   return true;
1804 }
1805 
1806 //--------------------------round_double_node--------------------------------
1807 // Round a double node if necessary.
1808 Node* LibraryCallKit::round_double_node(Node* n) {
1809   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1810     n = _gvn.transform(new RoundDoubleNode(0, n));
1811   return n;
1812 }
1813 
1814 //------------------------------inline_math-----------------------------------
1815 // public static double Math.abs(double)
1816 // public static double Math.sqrt(double)
1817 // public static double Math.log(double)
1818 // public static double Math.log10(double)
1819 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1820   Node* arg = round_double_node(argument(0));
1821   Node* n = NULL;
1822   switch (id) {
1823   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1824   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1825   case vmIntrinsics::_ceil:   n = new RoundDoubleModeNode(arg, makecon(TypeInt::make(2))); break;
1826   case vmIntrinsics::_floor:  n = new RoundDoubleModeNode(arg, makecon(TypeInt::make(1))); break;
1827   case vmIntrinsics::_rint:   n = new RoundDoubleModeNode(arg, makecon(TypeInt::make(0))); break;
1828   default:  fatal_unexpected_iid(id);  break;
1829   }
1830   set_result(_gvn.transform(n));
1831   return true;
1832 }
1833 
1834 //------------------------------inline_math-----------------------------------
1835 // public static float Math.abs(float)
1836 // public static int Math.abs(int)
1837 // public static long Math.abs(long)
1838 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1839   Node* arg = argument(0);
1840   Node* n = NULL;
1841   switch (id) {
1842   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1843   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1844   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1845   default:  fatal_unexpected_iid(id);  break;
1846   }
1847   set_result(_gvn.transform(n));
1848   return true;
1849 }
1850 
1851 //------------------------------runtime_math-----------------------------
1852 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1853   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1854          "must be (DD)D or (D)D type");
1855 
1856   // Inputs
1857   Node* a = round_double_node(argument(0));
1858   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1859 
1860   const TypePtr* no_memory_effects = NULL;
1861   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1862                                  no_memory_effects,
1863                                  a, top(), b, b ? top() : NULL);
1864   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1865 #ifdef ASSERT
1866   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1867   assert(value_top == top(), "second value must be top");
1868 #endif
1869 
1870   set_result(value);
1871   return true;
1872 }
1873 
1874 //------------------------------inline_math_native-----------------------------
1875 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1876 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1877   switch (id) {
1878     // These intrinsics are not properly supported on all hardware
1879   case vmIntrinsics::_dsin:
1880     return StubRoutines::dsin() != NULL ?
1881       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1882       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1883   case vmIntrinsics::_dcos:
1884     return StubRoutines::dcos() != NULL ?
1885       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1886       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1887   case vmIntrinsics::_dtan:
1888     return StubRoutines::dtan() != NULL ?
1889       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1890       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1891   case vmIntrinsics::_dlog:
1892     return StubRoutines::dlog() != NULL ?
1893       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1894       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1895   case vmIntrinsics::_dlog10:
1896     return StubRoutines::dlog10() != NULL ?
1897       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1898       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1899 
1900     // These intrinsics are supported on all hardware
1901   case vmIntrinsics::_ceil:
1902   case vmIntrinsics::_floor:
1903   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1904   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1905   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1906   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1907   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1908   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1909 
1910   case vmIntrinsics::_dexp:
1911     return StubRoutines::dexp() != NULL ?
1912       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1913       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1914   case vmIntrinsics::_dpow: {
1915     Node* exp = round_double_node(argument(2));
1916     const TypeD* d = _gvn.type(exp)->isa_double_constant();
1917     if (d != NULL && d->getd() == 2.0) {
1918       // Special case: pow(x, 2.0) => x * x
1919       Node* base = round_double_node(argument(0));
1920       set_result(_gvn.transform(new MulDNode(base, base)));
1921       return true;
1922     }
1923     return StubRoutines::dpow() != NULL ?
1924       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1925       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1926   }
1927 #undef FN_PTR
1928 
1929    // These intrinsics are not yet correctly implemented
1930   case vmIntrinsics::_datan2:
1931     return false;
1932 
1933   default:
1934     fatal_unexpected_iid(id);
1935     return false;
1936   }
1937 }
1938 
1939 static bool is_simple_name(Node* n) {
1940   return (n->req() == 1         // constant
1941           || (n->is_Type() && n->as_Type()->type()->singleton())
1942           || n->is_Proj()       // parameter or return value
1943           || n->is_Phi()        // local of some sort
1944           );
1945 }
1946 
1947 //----------------------------inline_notify-----------------------------------*
1948 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1949   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1950   address func;
1951   if (id == vmIntrinsics::_notify) {
1952     func = OptoRuntime::monitor_notify_Java();
1953   } else {
1954     func = OptoRuntime::monitor_notifyAll_Java();
1955   }
1956   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1957   make_slow_call_ex(call, env()->Throwable_klass(), false);
1958   return true;
1959 }
1960 
1961 
1962 //----------------------------inline_min_max-----------------------------------
1963 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1964   set_result(generate_min_max(id, argument(0), argument(1)));
1965   return true;
1966 }
1967 
1968 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1969   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1970   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1971   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1972   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1973 
1974   {
1975     PreserveJVMState pjvms(this);
1976     PreserveReexecuteState preexecs(this);
1977     jvms()->set_should_reexecute(true);
1978 
1979     set_control(slow_path);
1980     set_i_o(i_o());
1981 
1982     uncommon_trap(Deoptimization::Reason_intrinsic,
1983                   Deoptimization::Action_none);
1984   }
1985 
1986   set_control(fast_path);
1987   set_result(math);
1988 }
1989 
1990 template <typename OverflowOp>
1991 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1992   typedef typename OverflowOp::MathOp MathOp;
1993 
1994   MathOp* mathOp = new MathOp(arg1, arg2);
1995   Node* operation = _gvn.transform( mathOp );
1996   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1997   inline_math_mathExact(operation, ofcheck);
1998   return true;
1999 }
2000 
2001 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2002   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2003 }
2004 
2005 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2006   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2007 }
2008 
2009 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2010   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2011 }
2012 
2013 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2014   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2015 }
2016 
2017 bool LibraryCallKit::inline_math_negateExactI() {
2018   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2019 }
2020 
2021 bool LibraryCallKit::inline_math_negateExactL() {
2022   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2023 }
2024 
2025 bool LibraryCallKit::inline_math_multiplyExactI() {
2026   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2027 }
2028 
2029 bool LibraryCallKit::inline_math_multiplyExactL() {
2030   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2031 }
2032 
2033 bool LibraryCallKit::inline_math_multiplyHigh() {
2034   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2035   return true;
2036 }
2037 
2038 Node*
2039 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2040   // These are the candidate return value:
2041   Node* xvalue = x0;
2042   Node* yvalue = y0;
2043 
2044   if (xvalue == yvalue) {
2045     return xvalue;
2046   }
2047 
2048   bool want_max = (id == vmIntrinsics::_max);
2049 
2050   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2051   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2052   if (txvalue == NULL || tyvalue == NULL)  return top();
2053   // This is not really necessary, but it is consistent with a
2054   // hypothetical MaxINode::Value method:
2055   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2056 
2057   // %%% This folding logic should (ideally) be in a different place.
2058   // Some should be inside IfNode, and there to be a more reliable
2059   // transformation of ?: style patterns into cmoves.  We also want
2060   // more powerful optimizations around cmove and min/max.
2061 
2062   // Try to find a dominating comparison of these guys.
2063   // It can simplify the index computation for Arrays.copyOf
2064   // and similar uses of System.arraycopy.
2065   // First, compute the normalized version of CmpI(x, y).
2066   int   cmp_op = Op_CmpI;
2067   Node* xkey = xvalue;
2068   Node* ykey = yvalue;
2069   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2070   if (ideal_cmpxy->is_Cmp()) {
2071     // E.g., if we have CmpI(length - offset, count),
2072     // it might idealize to CmpI(length, count + offset)
2073     cmp_op = ideal_cmpxy->Opcode();
2074     xkey = ideal_cmpxy->in(1);
2075     ykey = ideal_cmpxy->in(2);
2076   }
2077 
2078   // Start by locating any relevant comparisons.
2079   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2080   Node* cmpxy = NULL;
2081   Node* cmpyx = NULL;
2082   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2083     Node* cmp = start_from->fast_out(k);
2084     if (cmp->outcnt() > 0 &&            // must have prior uses
2085         cmp->in(0) == NULL &&           // must be context-independent
2086         cmp->Opcode() == cmp_op) {      // right kind of compare
2087       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2088       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2089     }
2090   }
2091 
2092   const int NCMPS = 2;
2093   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2094   int cmpn;
2095   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2096     if (cmps[cmpn] != NULL)  break;     // find a result
2097   }
2098   if (cmpn < NCMPS) {
2099     // Look for a dominating test that tells us the min and max.
2100     int depth = 0;                // Limit search depth for speed
2101     Node* dom = control();
2102     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2103       if (++depth >= 100)  break;
2104       Node* ifproj = dom;
2105       if (!ifproj->is_Proj())  continue;
2106       Node* iff = ifproj->in(0);
2107       if (!iff->is_If())  continue;
2108       Node* bol = iff->in(1);
2109       if (!bol->is_Bool())  continue;
2110       Node* cmp = bol->in(1);
2111       if (cmp == NULL)  continue;
2112       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2113         if (cmps[cmpn] == cmp)  break;
2114       if (cmpn == NCMPS)  continue;
2115       BoolTest::mask btest = bol->as_Bool()->_test._test;
2116       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2117       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2118       // At this point, we know that 'x btest y' is true.
2119       switch (btest) {
2120       case BoolTest::eq:
2121         // They are proven equal, so we can collapse the min/max.
2122         // Either value is the answer.  Choose the simpler.
2123         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2124           return yvalue;
2125         return xvalue;
2126       case BoolTest::lt:          // x < y
2127       case BoolTest::le:          // x <= y
2128         return (want_max ? yvalue : xvalue);
2129       case BoolTest::gt:          // x > y
2130       case BoolTest::ge:          // x >= y
2131         return (want_max ? xvalue : yvalue);
2132       default:
2133         break;
2134       }
2135     }
2136   }
2137 
2138   // We failed to find a dominating test.
2139   // Let's pick a test that might GVN with prior tests.
2140   Node*          best_bol   = NULL;
2141   BoolTest::mask best_btest = BoolTest::illegal;
2142   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2143     Node* cmp = cmps[cmpn];
2144     if (cmp == NULL)  continue;
2145     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2146       Node* bol = cmp->fast_out(j);
2147       if (!bol->is_Bool())  continue;
2148       BoolTest::mask btest = bol->as_Bool()->_test._test;
2149       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2150       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2151       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2152         best_bol   = bol->as_Bool();
2153         best_btest = btest;
2154       }
2155     }
2156   }
2157 
2158   Node* answer_if_true  = NULL;
2159   Node* answer_if_false = NULL;
2160   switch (best_btest) {
2161   default:
2162     if (cmpxy == NULL)
2163       cmpxy = ideal_cmpxy;
2164     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2165     // and fall through:
2166   case BoolTest::lt:          // x < y
2167   case BoolTest::le:          // x <= y
2168     answer_if_true  = (want_max ? yvalue : xvalue);
2169     answer_if_false = (want_max ? xvalue : yvalue);
2170     break;
2171   case BoolTest::gt:          // x > y
2172   case BoolTest::ge:          // x >= y
2173     answer_if_true  = (want_max ? xvalue : yvalue);
2174     answer_if_false = (want_max ? yvalue : xvalue);
2175     break;
2176   }
2177 
2178   jint hi, lo;
2179   if (want_max) {
2180     // We can sharpen the minimum.
2181     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2182     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2183   } else {
2184     // We can sharpen the maximum.
2185     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2186     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2187   }
2188 
2189   // Use a flow-free graph structure, to avoid creating excess control edges
2190   // which could hinder other optimizations.
2191   // Since Math.min/max is often used with arraycopy, we want
2192   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2193   Node* cmov = CMoveNode::make(NULL, best_bol,
2194                                answer_if_false, answer_if_true,
2195                                TypeInt::make(lo, hi, widen));
2196 
2197   return _gvn.transform(cmov);
2198 
2199   /*
2200   // This is not as desirable as it may seem, since Min and Max
2201   // nodes do not have a full set of optimizations.
2202   // And they would interfere, anyway, with 'if' optimizations
2203   // and with CMoveI canonical forms.
2204   switch (id) {
2205   case vmIntrinsics::_min:
2206     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2207   case vmIntrinsics::_max:
2208     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2209   default:
2210     ShouldNotReachHere();
2211   }
2212   */
2213 }
2214 
2215 inline int
2216 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2217   const TypePtr* base_type = TypePtr::NULL_PTR;
2218   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2219   if (base_type == NULL) {
2220     // Unknown type.
2221     return Type::AnyPtr;
2222   } else if (base_type == TypePtr::NULL_PTR) {
2223     // Since this is a NULL+long form, we have to switch to a rawptr.
2224     base   = _gvn.transform(new CastX2PNode(offset));
2225     offset = MakeConX(0);
2226     return Type::RawPtr;
2227   } else if (base_type->base() == Type::RawPtr) {
2228     return Type::RawPtr;
2229   } else if (base_type->isa_oopptr()) {
2230     // Base is never null => always a heap address.
2231     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2232       return Type::OopPtr;
2233     }
2234     // Offset is small => always a heap address.
2235     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2236     if (offset_type != NULL &&
2237         base_type->offset() == 0 &&     // (should always be?)
2238         offset_type->_lo >= 0 &&
2239         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2240       return Type::OopPtr;
2241     } else if (type == T_OBJECT) {
2242       // off heap access to an oop doesn't make any sense. Has to be on
2243       // heap.
2244       return Type::OopPtr;
2245     }
2246     // Otherwise, it might either be oop+off or NULL+addr.
2247     return Type::AnyPtr;
2248   } else {
2249     // No information:
2250     return Type::AnyPtr;
2251   }
2252 }
2253 
2254 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type, bool can_cast) {
2255   Node* uncasted_base = base;
2256   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2257   if (kind == Type::RawPtr) {
2258     return basic_plus_adr(top(), uncasted_base, offset);
2259   } else if (kind == Type::AnyPtr) {
2260     assert(base == uncasted_base, "unexpected base change");
2261     if (can_cast) {
2262       if (!_gvn.type(base)->speculative_maybe_null() &&
2263           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2264         // According to profiling, this access is always on
2265         // heap. Casting the base to not null and thus avoiding membars
2266         // around the access should allow better optimizations
2267         Node* null_ctl = top();
2268         base = null_check_oop(base, &null_ctl, true, true, true);
2269         assert(null_ctl->is_top(), "no null control here");
2270         return basic_plus_adr(base, offset);
2271       } else if (_gvn.type(base)->speculative_always_null() &&
2272                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2273         // According to profiling, this access is always off
2274         // heap.
2275         base = null_assert(base);
2276         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2277         offset = MakeConX(0);
2278         return basic_plus_adr(top(), raw_base, offset);
2279       }
2280     }
2281     // We don't know if it's an on heap or off heap access. Fall back
2282     // to raw memory access.
2283     base = access_resolve(base, decorators);
2284     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2285     return basic_plus_adr(top(), raw, offset);
2286   } else {
2287     assert(base == uncasted_base, "unexpected base change");
2288     // We know it's an on heap access so base can't be null
2289     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2290       base = must_be_not_null(base, true);
2291     }
2292     return basic_plus_adr(base, offset);
2293   }
2294 }
2295 
2296 //--------------------------inline_number_methods-----------------------------
2297 // inline int     Integer.numberOfLeadingZeros(int)
2298 // inline int        Long.numberOfLeadingZeros(long)
2299 //
2300 // inline int     Integer.numberOfTrailingZeros(int)
2301 // inline int        Long.numberOfTrailingZeros(long)
2302 //
2303 // inline int     Integer.bitCount(int)
2304 // inline int        Long.bitCount(long)
2305 //
2306 // inline char  Character.reverseBytes(char)
2307 // inline short     Short.reverseBytes(short)
2308 // inline int     Integer.reverseBytes(int)
2309 // inline long       Long.reverseBytes(long)
2310 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2311   Node* arg = argument(0);
2312   Node* n = NULL;
2313   switch (id) {
2314   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2315   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2316   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2317   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2318   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2319   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2320   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2321   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2322   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2323   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2324   default:  fatal_unexpected_iid(id);  break;
2325   }
2326   set_result(_gvn.transform(n));
2327   return true;
2328 }
2329 
2330 //----------------------------inline_unsafe_access----------------------------
2331 
2332 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2333   // Attempt to infer a sharper value type from the offset and base type.
2334   ciKlass* sharpened_klass = NULL;
2335 
2336   // See if it is an instance field, with an object type.
2337   if (alias_type->field() != NULL) {
2338     if (alias_type->field()->type()->is_klass()) {
2339       sharpened_klass = alias_type->field()->type()->as_klass();
2340     }
2341   }
2342 
2343   // See if it is a narrow oop array.
2344   if (adr_type->isa_aryptr()) {
2345     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2346       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2347       if (elem_type != NULL) {
2348         sharpened_klass = elem_type->klass();
2349       }
2350     }
2351   }
2352 
2353   // The sharpened class might be unloaded if there is no class loader
2354   // contraint in place.
2355   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2356     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2357 
2358 #ifndef PRODUCT
2359     if (C->print_intrinsics() || C->print_inlining()) {
2360       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2361       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2362     }
2363 #endif
2364     // Sharpen the value type.
2365     return tjp;
2366   }
2367   return NULL;
2368 }
2369 
2370 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2371   switch (kind) {
2372       case Relaxed:
2373         return MO_UNORDERED;
2374       case Opaque:
2375         return MO_RELAXED;
2376       case Acquire:
2377         return MO_ACQUIRE;
2378       case Release:
2379         return MO_RELEASE;
2380       case Volatile:
2381         return MO_SEQ_CST;
2382       default:
2383         ShouldNotReachHere();
2384         return 0;
2385   }
2386 }
2387 
2388 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2389   if (callee()->is_static())  return false;  // caller must have the capability!
2390   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2391   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2392   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2393   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2394 
2395   if (is_reference_type(type)) {
2396     decorators |= ON_UNKNOWN_OOP_REF;
2397   }
2398 
2399   if (unaligned) {
2400     decorators |= C2_UNALIGNED;
2401   }
2402 
2403 #ifndef PRODUCT
2404   {
2405     ResourceMark rm;
2406     // Check the signatures.
2407     ciSignature* sig = callee()->signature();
2408 #ifdef ASSERT
2409     if (!is_store) {
2410       // Object getReference(Object base, int/long offset), etc.
2411       BasicType rtype = sig->return_type()->basic_type();
2412       assert(rtype == type, "getter must return the expected value");
2413       assert(sig->count() == 2, "oop getter has 2 arguments");
2414       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2415       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2416     } else {
2417       // void putReference(Object base, int/long offset, Object x), etc.
2418       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2419       assert(sig->count() == 3, "oop putter has 3 arguments");
2420       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2421       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2422       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2423       assert(vtype == type, "putter must accept the expected value");
2424     }
2425 #endif // ASSERT
2426  }
2427 #endif //PRODUCT
2428 
2429   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2430 
2431   Node* receiver = argument(0);  // type: oop
2432 
2433   // Build address expression.
2434   Node* adr;
2435   Node* heap_base_oop = top();
2436   Node* offset = top();
2437   Node* val;
2438 
2439   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2440   Node* base = argument(1);  // type: oop
2441   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2442   offset = argument(2);  // type: long
2443   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2444   // to be plain byte offsets, which are also the same as those accepted
2445   // by oopDesc::field_addr.
2446   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2447          "fieldOffset must be byte-scaled");
2448   // 32-bit machines ignore the high half!
2449   offset = ConvL2X(offset);
2450   adr = make_unsafe_address(base, offset, is_store ? ACCESS_WRITE : ACCESS_READ, type, kind == Relaxed);
2451 
2452   if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2453     heap_base_oop = base;
2454   } else if (type == T_OBJECT) {
2455     return false; // off-heap oop accesses are not supported
2456   }
2457 
2458   // Can base be NULL? Otherwise, always on-heap access.
2459   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2460 
2461   if (!can_access_non_heap) {
2462     decorators |= IN_HEAP;
2463   }
2464 
2465   val = is_store ? argument(4) : NULL;
2466 
2467   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2468   if (adr_type == TypePtr::NULL_PTR) {
2469     return false; // off-heap access with zero address
2470   }
2471 
2472   // Try to categorize the address.
2473   Compile::AliasType* alias_type = C->alias_type(adr_type);
2474   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2475 
2476   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2477       alias_type->adr_type() == TypeAryPtr::RANGE) {
2478     return false; // not supported
2479   }
2480 
2481   bool mismatched = false;
2482   BasicType bt = alias_type->basic_type();
2483   if (bt != T_ILLEGAL) {
2484     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2485     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2486       // Alias type doesn't differentiate between byte[] and boolean[]).
2487       // Use address type to get the element type.
2488       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2489     }
2490     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2491       // accessing an array field with getReference is not a mismatch
2492       bt = T_OBJECT;
2493     }
2494     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2495       // Don't intrinsify mismatched object accesses
2496       return false;
2497     }
2498     mismatched = (bt != type);
2499   } else if (alias_type->adr_type()->isa_oopptr()) {
2500     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2501   }
2502 
2503   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2504 
2505   if (mismatched) {
2506     decorators |= C2_MISMATCHED;
2507   }
2508 
2509   // First guess at the value type.
2510   const Type *value_type = Type::get_const_basic_type(type);
2511 
2512   // Figure out the memory ordering.
2513   decorators |= mo_decorator_for_access_kind(kind);
2514 
2515   if (!is_store && type == T_OBJECT) {
2516     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2517     if (tjp != NULL) {
2518       value_type = tjp;
2519     }
2520   }
2521 
2522   receiver = null_check(receiver);
2523   if (stopped()) {
2524     return true;
2525   }
2526   // Heap pointers get a null-check from the interpreter,
2527   // as a courtesy.  However, this is not guaranteed by Unsafe,
2528   // and it is not possible to fully distinguish unintended nulls
2529   // from intended ones in this API.
2530 
2531   if (!is_store) {
2532     Node* p = NULL;
2533     // Try to constant fold a load from a constant field
2534     ciField* field = alias_type->field();
2535     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2536       // final or stable field
2537       p = make_constant_from_field(field, heap_base_oop);
2538     }
2539 
2540     if (p == NULL) { // Could not constant fold the load
2541       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2542       // Normalize the value returned by getBoolean in the following cases
2543       if (type == T_BOOLEAN &&
2544           (mismatched ||
2545            heap_base_oop == top() ||                  // - heap_base_oop is NULL or
2546            (can_access_non_heap && field == NULL))    // - heap_base_oop is potentially NULL
2547                                                       //   and the unsafe access is made to large offset
2548                                                       //   (i.e., larger than the maximum offset necessary for any
2549                                                       //   field access)
2550             ) {
2551           IdealKit ideal = IdealKit(this);
2552 #define __ ideal.
2553           IdealVariable normalized_result(ideal);
2554           __ declarations_done();
2555           __ set(normalized_result, p);
2556           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2557           __ set(normalized_result, ideal.ConI(1));
2558           ideal.end_if();
2559           final_sync(ideal);
2560           p = __ value(normalized_result);
2561 #undef __
2562       }
2563     }
2564     if (type == T_ADDRESS) {
2565       p = gvn().transform(new CastP2XNode(NULL, p));
2566       p = ConvX2UL(p);
2567     }
2568     // The load node has the control of the preceding MemBarCPUOrder.  All
2569     // following nodes will have the control of the MemBarCPUOrder inserted at
2570     // the end of this method.  So, pushing the load onto the stack at a later
2571     // point is fine.
2572     set_result(p);
2573   } else {
2574     if (bt == T_ADDRESS) {
2575       // Repackage the long as a pointer.
2576       val = ConvL2X(val);
2577       val = gvn().transform(new CastX2PNode(val));
2578     }
2579     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2580   }
2581 
2582   return true;
2583 }
2584 
2585 //----------------------------inline_unsafe_load_store----------------------------
2586 // This method serves a couple of different customers (depending on LoadStoreKind):
2587 //
2588 // LS_cmp_swap:
2589 //
2590 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2591 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2592 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2593 //
2594 // LS_cmp_swap_weak:
2595 //
2596 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2597 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2598 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2599 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2600 //
2601 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2602 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2603 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2604 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2605 //
2606 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2607 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2608 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2609 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2610 //
2611 // LS_cmp_exchange:
2612 //
2613 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2614 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2615 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2616 //
2617 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2618 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2619 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2620 //
2621 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2622 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2623 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2624 //
2625 // LS_get_add:
2626 //
2627 //   int  getAndAddInt( Object o, long offset, int  delta)
2628 //   long getAndAddLong(Object o, long offset, long delta)
2629 //
2630 // LS_get_set:
2631 //
2632 //   int    getAndSet(Object o, long offset, int    newValue)
2633 //   long   getAndSet(Object o, long offset, long   newValue)
2634 //   Object getAndSet(Object o, long offset, Object newValue)
2635 //
2636 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2637   // This basic scheme here is the same as inline_unsafe_access, but
2638   // differs in enough details that combining them would make the code
2639   // overly confusing.  (This is a true fact! I originally combined
2640   // them, but even I was confused by it!) As much code/comments as
2641   // possible are retained from inline_unsafe_access though to make
2642   // the correspondences clearer. - dl
2643 
2644   if (callee()->is_static())  return false;  // caller must have the capability!
2645 
2646   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2647   decorators |= mo_decorator_for_access_kind(access_kind);
2648 
2649 #ifndef PRODUCT
2650   BasicType rtype;
2651   {
2652     ResourceMark rm;
2653     // Check the signatures.
2654     ciSignature* sig = callee()->signature();
2655     rtype = sig->return_type()->basic_type();
2656     switch(kind) {
2657       case LS_get_add:
2658       case LS_get_set: {
2659       // Check the signatures.
2660 #ifdef ASSERT
2661       assert(rtype == type, "get and set must return the expected type");
2662       assert(sig->count() == 3, "get and set has 3 arguments");
2663       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2664       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2665       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2666       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2667 #endif // ASSERT
2668         break;
2669       }
2670       case LS_cmp_swap:
2671       case LS_cmp_swap_weak: {
2672       // Check the signatures.
2673 #ifdef ASSERT
2674       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2675       assert(sig->count() == 4, "CAS has 4 arguments");
2676       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2677       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2678 #endif // ASSERT
2679         break;
2680       }
2681       case LS_cmp_exchange: {
2682       // Check the signatures.
2683 #ifdef ASSERT
2684       assert(rtype == type, "CAS must return the expected type");
2685       assert(sig->count() == 4, "CAS has 4 arguments");
2686       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2687       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2688 #endif // ASSERT
2689         break;
2690       }
2691       default:
2692         ShouldNotReachHere();
2693     }
2694   }
2695 #endif //PRODUCT
2696 
2697   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2698 
2699   // Get arguments:
2700   Node* receiver = NULL;
2701   Node* base     = NULL;
2702   Node* offset   = NULL;
2703   Node* oldval   = NULL;
2704   Node* newval   = NULL;
2705   switch(kind) {
2706     case LS_cmp_swap:
2707     case LS_cmp_swap_weak:
2708     case LS_cmp_exchange: {
2709       const bool two_slot_type = type2size[type] == 2;
2710       receiver = argument(0);  // type: oop
2711       base     = argument(1);  // type: oop
2712       offset   = argument(2);  // type: long
2713       oldval   = argument(4);  // type: oop, int, or long
2714       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2715       break;
2716     }
2717     case LS_get_add:
2718     case LS_get_set: {
2719       receiver = argument(0);  // type: oop
2720       base     = argument(1);  // type: oop
2721       offset   = argument(2);  // type: long
2722       oldval   = NULL;
2723       newval   = argument(4);  // type: oop, int, or long
2724       break;
2725     }
2726     default:
2727       ShouldNotReachHere();
2728   }
2729 
2730   // Build field offset expression.
2731   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2732   // to be plain byte offsets, which are also the same as those accepted
2733   // by oopDesc::field_addr.
2734   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2735   // 32-bit machines ignore the high half of long offsets
2736   offset = ConvL2X(offset);
2737   Node* adr = make_unsafe_address(base, offset, ACCESS_WRITE | ACCESS_READ, type, false);
2738   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2739 
2740   Compile::AliasType* alias_type = C->alias_type(adr_type);
2741   BasicType bt = alias_type->basic_type();
2742   if (bt != T_ILLEGAL &&
2743       (is_reference_type(bt) != (type == T_OBJECT))) {
2744     // Don't intrinsify mismatched object accesses.
2745     return false;
2746   }
2747 
2748   // For CAS, unlike inline_unsafe_access, there seems no point in
2749   // trying to refine types. Just use the coarse types here.
2750   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2751   const Type *value_type = Type::get_const_basic_type(type);
2752 
2753   switch (kind) {
2754     case LS_get_set:
2755     case LS_cmp_exchange: {
2756       if (type == T_OBJECT) {
2757         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2758         if (tjp != NULL) {
2759           value_type = tjp;
2760         }
2761       }
2762       break;
2763     }
2764     case LS_cmp_swap:
2765     case LS_cmp_swap_weak:
2766     case LS_get_add:
2767       break;
2768     default:
2769       ShouldNotReachHere();
2770   }
2771 
2772   // Null check receiver.
2773   receiver = null_check(receiver);
2774   if (stopped()) {
2775     return true;
2776   }
2777 
2778   int alias_idx = C->get_alias_index(adr_type);
2779 
2780   if (is_reference_type(type)) {
2781     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2782 
2783     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2784     // could be delayed during Parse (for example, in adjust_map_after_if()).
2785     // Execute transformation here to avoid barrier generation in such case.
2786     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2787       newval = _gvn.makecon(TypePtr::NULL_PTR);
2788 
2789     if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2790       // Refine the value to a null constant, when it is known to be null
2791       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2792     }
2793   }
2794 
2795   Node* result = NULL;
2796   switch (kind) {
2797     case LS_cmp_exchange: {
2798       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2799                                             oldval, newval, value_type, type, decorators);
2800       break;
2801     }
2802     case LS_cmp_swap_weak:
2803       decorators |= C2_WEAK_CMPXCHG;
2804     case LS_cmp_swap: {
2805       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2806                                              oldval, newval, value_type, type, decorators);
2807       break;
2808     }
2809     case LS_get_set: {
2810       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2811                                      newval, value_type, type, decorators);
2812       break;
2813     }
2814     case LS_get_add: {
2815       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2816                                     newval, value_type, type, decorators);
2817       break;
2818     }
2819     default:
2820       ShouldNotReachHere();
2821   }
2822 
2823   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2824   set_result(result);
2825   return true;
2826 }
2827 
2828 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2829   // Regardless of form, don't allow previous ld/st to move down,
2830   // then issue acquire, release, or volatile mem_bar.
2831   insert_mem_bar(Op_MemBarCPUOrder);
2832   switch(id) {
2833     case vmIntrinsics::_loadFence:
2834       insert_mem_bar(Op_LoadFence);
2835       return true;
2836     case vmIntrinsics::_storeFence:
2837       insert_mem_bar(Op_StoreFence);
2838       return true;
2839     case vmIntrinsics::_fullFence:
2840       insert_mem_bar(Op_MemBarVolatile);
2841       return true;
2842     default:
2843       fatal_unexpected_iid(id);
2844       return false;
2845   }
2846 }
2847 
2848 bool LibraryCallKit::inline_onspinwait() {
2849   insert_mem_bar(Op_OnSpinWait);
2850   return true;
2851 }
2852 
2853 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2854   if (!kls->is_Con()) {
2855     return true;
2856   }
2857   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2858   if (klsptr == NULL) {
2859     return true;
2860   }
2861   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2862   // don't need a guard for a klass that is already initialized
2863   return !ik->is_initialized();
2864 }
2865 
2866 //----------------------------inline_unsafe_writeback0-------------------------
2867 // public native void Unsafe.writeback0(long address)
2868 bool LibraryCallKit::inline_unsafe_writeback0() {
2869   if (!Matcher::has_match_rule(Op_CacheWB)) {
2870     return false;
2871   }
2872 #ifndef PRODUCT
2873   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2874   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2875   ciSignature* sig = callee()->signature();
2876   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2877 #endif
2878   null_check_receiver();  // null-check, then ignore
2879   Node *addr = argument(1);
2880   addr = new CastX2PNode(addr);
2881   addr = _gvn.transform(addr);
2882   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2883   flush = _gvn.transform(flush);
2884   set_memory(flush, TypeRawPtr::BOTTOM);
2885   return true;
2886 }
2887 
2888 //----------------------------inline_unsafe_writeback0-------------------------
2889 // public native void Unsafe.writeback0(long address)
2890 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2891   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2892     return false;
2893   }
2894   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2895     return false;
2896   }
2897 #ifndef PRODUCT
2898   assert(Matcher::has_match_rule(Op_CacheWB),
2899          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2900                 : "found match rule for CacheWBPostSync but not CacheWB"));
2901 
2902 #endif
2903   null_check_receiver();  // null-check, then ignore
2904   Node *sync;
2905   if (is_pre) {
2906     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2907   } else {
2908     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2909   }
2910   sync = _gvn.transform(sync);
2911   set_memory(sync, TypeRawPtr::BOTTOM);
2912   return true;
2913 }
2914 
2915 //----------------------------inline_unsafe_allocate---------------------------
2916 // public native Object Unsafe.allocateInstance(Class<?> cls);
2917 bool LibraryCallKit::inline_unsafe_allocate() {
2918   if (callee()->is_static())  return false;  // caller must have the capability!
2919 
2920   null_check_receiver();  // null-check, then ignore
2921   Node* cls = null_check(argument(1));
2922   if (stopped())  return true;
2923 
2924   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2925   kls = null_check(kls);
2926   if (stopped())  return true;  // argument was like int.class
2927 
2928   Node* test = NULL;
2929   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2930     // Note:  The argument might still be an illegal value like
2931     // Serializable.class or Object[].class.   The runtime will handle it.
2932     // But we must make an explicit check for initialization.
2933     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2934     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2935     // can generate code to load it as unsigned byte.
2936     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2937     Node* bits = intcon(InstanceKlass::fully_initialized);
2938     test = _gvn.transform(new SubINode(inst, bits));
2939     // The 'test' is non-zero if we need to take a slow path.
2940   }
2941 
2942   Node* obj = new_instance(kls, test);
2943   set_result(obj);
2944   return true;
2945 }
2946 
2947 //------------------------inline_native_time_funcs--------------
2948 // inline code for System.currentTimeMillis() and System.nanoTime()
2949 // these have the same type and signature
2950 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2951   const TypeFunc* tf = OptoRuntime::void_long_Type();
2952   const TypePtr* no_memory_effects = NULL;
2953   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2954   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2955 #ifdef ASSERT
2956   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2957   assert(value_top == top(), "second value must be top");
2958 #endif
2959   set_result(value);
2960   return true;
2961 }
2962 
2963 #ifdef JFR_HAVE_INTRINSICS
2964 
2965 /*
2966 * oop -> myklass
2967 * myklass->trace_id |= USED
2968 * return myklass->trace_id & ~0x3
2969 */
2970 bool LibraryCallKit::inline_native_classID() {
2971   Node* cls = null_check(argument(0), T_OBJECT);
2972   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2973   kls = null_check(kls, T_OBJECT);
2974 
2975   ByteSize offset = KLASS_TRACE_ID_OFFSET;
2976   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2977   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
2978 
2979   Node* clsused = longcon(0x01l); // set the class bit
2980   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
2981   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2982   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
2983 
2984 #ifdef TRACE_ID_META_BITS
2985   Node* mbits = longcon(~TRACE_ID_META_BITS);
2986   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
2987 #endif
2988 #ifdef TRACE_ID_SHIFT
2989   Node* cbits = intcon(TRACE_ID_SHIFT);
2990   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
2991 #endif
2992 
2993   set_result(tvalue);
2994   return true;
2995 
2996 }
2997 
2998 bool LibraryCallKit::inline_native_getEventWriter() {
2999   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3000 
3001   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3002                                   in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3003 
3004   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3005 
3006   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
3007   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
3008 
3009   IfNode* iff_jobj_null =
3010     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3011 
3012   enum { _normal_path = 1,
3013          _null_path = 2,
3014          PATH_LIMIT };
3015 
3016   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3017   PhiNode*    result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3018 
3019   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
3020   result_rgn->init_req(_null_path, jobj_is_null);
3021   result_val->init_req(_null_path, null());
3022 
3023   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
3024   set_control(jobj_is_not_null);
3025   Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT,
3026                           IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3027   result_rgn->init_req(_normal_path, control());
3028   result_val->init_req(_normal_path, res);
3029 
3030   set_result(result_rgn, result_val);
3031 
3032   return true;
3033 }
3034 
3035 #endif // JFR_HAVE_INTRINSICS
3036 
3037 //------------------------inline_native_currentThread------------------
3038 bool LibraryCallKit::inline_native_currentThread() {
3039   Node* junk = NULL;
3040   set_result(generate_current_thread(junk));
3041   return true;
3042 }
3043 
3044 //------------------------inline_native_isInterrupted------------------
3045 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3046 bool LibraryCallKit::inline_native_isInterrupted() {
3047   // Add a fast path to t.isInterrupted(clear_int):
3048   //   (t == Thread.current() &&
3049   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3050   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3051   // So, in the common case that the interrupt bit is false,
3052   // we avoid making a call into the VM.  Even if the interrupt bit
3053   // is true, if the clear_int argument is false, we avoid the VM call.
3054   // However, if the receiver is not currentThread, we must call the VM,
3055   // because there must be some locking done around the operation.
3056 
3057   // We only go to the fast case code if we pass two guards.
3058   // Paths which do not pass are accumulated in the slow_region.
3059 
3060   enum {
3061     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3062     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3063     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3064     PATH_LIMIT
3065   };
3066 
3067   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3068   // out of the function.
3069   insert_mem_bar(Op_MemBarCPUOrder);
3070 
3071   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3072   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3073 
3074   RegionNode* slow_region = new RegionNode(1);
3075   record_for_igvn(slow_region);
3076 
3077   // (a) Receiving thread must be the current thread.
3078   Node* rec_thr = argument(0);
3079   Node* tls_ptr = NULL;
3080   Node* cur_thr = generate_current_thread(tls_ptr);
3081 
3082   // Resolve oops to stable for CmpP below.
3083   cur_thr = access_resolve(cur_thr, 0);
3084   rec_thr = access_resolve(rec_thr, 0);
3085 
3086   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3087   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3088 
3089   generate_slow_guard(bol_thr, slow_region);
3090 
3091   // (b) Interrupt bit on TLS must be false.
3092   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3093   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3094   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3095 
3096   // Set the control input on the field _interrupted read to prevent it floating up.
3097   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3098   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3099   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3100 
3101   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3102 
3103   // First fast path:  if (!TLS._interrupted) return false;
3104   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3105   result_rgn->init_req(no_int_result_path, false_bit);
3106   result_val->init_req(no_int_result_path, intcon(0));
3107 
3108   // drop through to next case
3109   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3110 
3111 #ifndef _WINDOWS
3112   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3113   Node* clr_arg = argument(1);
3114   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3115   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3116   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3117 
3118   // Second fast path:  ... else if (!clear_int) return true;
3119   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3120   result_rgn->init_req(no_clear_result_path, false_arg);
3121   result_val->init_req(no_clear_result_path, intcon(1));
3122 
3123   // drop through to next case
3124   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3125 #else
3126   // To return true on Windows you must read the _interrupted field
3127   // and check the event state i.e. take the slow path.
3128 #endif // _WINDOWS
3129 
3130   // (d) Otherwise, go to the slow path.
3131   slow_region->add_req(control());
3132   set_control( _gvn.transform(slow_region));
3133 
3134   if (stopped()) {
3135     // There is no slow path.
3136     result_rgn->init_req(slow_result_path, top());
3137     result_val->init_req(slow_result_path, top());
3138   } else {
3139     // non-virtual because it is a private non-static
3140     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3141 
3142     Node* slow_val = set_results_for_java_call(slow_call);
3143     // this->control() comes from set_results_for_java_call
3144 
3145     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3146     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3147 
3148     // These two phis are pre-filled with copies of of the fast IO and Memory
3149     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3150     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3151 
3152     result_rgn->init_req(slow_result_path, control());
3153     result_io ->init_req(slow_result_path, i_o());
3154     result_mem->init_req(slow_result_path, reset_memory());
3155     result_val->init_req(slow_result_path, slow_val);
3156 
3157     set_all_memory(_gvn.transform(result_mem));
3158     set_i_o(       _gvn.transform(result_io));
3159   }
3160 
3161   C->set_has_split_ifs(true); // Has chance for split-if optimization
3162   set_result(result_rgn, result_val);
3163   return true;
3164 }
3165 
3166 //---------------------------load_mirror_from_klass----------------------------
3167 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3168 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3169   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3170   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3171   // mirror = ((OopHandle)mirror)->resolve();
3172   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3173 }
3174 
3175 //-----------------------load_klass_from_mirror_common-------------------------
3176 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3177 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3178 // and branch to the given path on the region.
3179 // If never_see_null, take an uncommon trap on null, so we can optimistically
3180 // compile for the non-null case.
3181 // If the region is NULL, force never_see_null = true.
3182 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3183                                                     bool never_see_null,
3184                                                     RegionNode* region,
3185                                                     int null_path,
3186                                                     int offset) {
3187   if (region == NULL)  never_see_null = true;
3188   Node* p = basic_plus_adr(mirror, offset);
3189   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3190   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3191   Node* null_ctl = top();
3192   kls = null_check_oop(kls, &null_ctl, never_see_null);
3193   if (region != NULL) {
3194     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3195     region->init_req(null_path, null_ctl);
3196   } else {
3197     assert(null_ctl == top(), "no loose ends");
3198   }
3199   return kls;
3200 }
3201 
3202 //--------------------(inline_native_Class_query helpers)---------------------
3203 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3204 // Fall through if (mods & mask) == bits, take the guard otherwise.
3205 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3206   // Branch around if the given klass has the given modifier bit set.
3207   // Like generate_guard, adds a new path onto the region.
3208   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3209   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3210   Node* mask = intcon(modifier_mask);
3211   Node* bits = intcon(modifier_bits);
3212   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3213   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3214   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3215   return generate_fair_guard(bol, region);
3216 }
3217 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3218   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3219 }
3220 
3221 //-------------------------inline_native_Class_query-------------------
3222 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3223   const Type* return_type = TypeInt::BOOL;
3224   Node* prim_return_value = top();  // what happens if it's a primitive class?
3225   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3226   bool expect_prim = false;     // most of these guys expect to work on refs
3227 
3228   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3229 
3230   Node* mirror = argument(0);
3231   Node* obj    = top();
3232 
3233   switch (id) {
3234   case vmIntrinsics::_isInstance:
3235     // nothing is an instance of a primitive type
3236     prim_return_value = intcon(0);
3237     obj = argument(1);
3238     break;
3239   case vmIntrinsics::_getModifiers:
3240     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3241     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3242     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3243     break;
3244   case vmIntrinsics::_isInterface:
3245     prim_return_value = intcon(0);
3246     break;
3247   case vmIntrinsics::_isArray:
3248     prim_return_value = intcon(0);
3249     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3250     break;
3251   case vmIntrinsics::_isPrimitive:
3252     prim_return_value = intcon(1);
3253     expect_prim = true;  // obviously
3254     break;
3255   case vmIntrinsics::_getSuperclass:
3256     prim_return_value = null();
3257     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3258     break;
3259   case vmIntrinsics::_getClassAccessFlags:
3260     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3261     return_type = TypeInt::INT;  // not bool!  6297094
3262     break;
3263   default:
3264     fatal_unexpected_iid(id);
3265     break;
3266   }
3267 
3268   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3269   if (mirror_con == NULL)  return false;  // cannot happen?
3270 
3271 #ifndef PRODUCT
3272   if (C->print_intrinsics() || C->print_inlining()) {
3273     ciType* k = mirror_con->java_mirror_type();
3274     if (k) {
3275       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3276       k->print_name();
3277       tty->cr();
3278     }
3279   }
3280 #endif
3281 
3282   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3283   RegionNode* region = new RegionNode(PATH_LIMIT);
3284   record_for_igvn(region);
3285   PhiNode* phi = new PhiNode(region, return_type);
3286 
3287   // The mirror will never be null of Reflection.getClassAccessFlags, however
3288   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3289   // if it is. See bug 4774291.
3290 
3291   // For Reflection.getClassAccessFlags(), the null check occurs in
3292   // the wrong place; see inline_unsafe_access(), above, for a similar
3293   // situation.
3294   mirror = null_check(mirror);
3295   // If mirror or obj is dead, only null-path is taken.
3296   if (stopped())  return true;
3297 
3298   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3299 
3300   // Now load the mirror's klass metaobject, and null-check it.
3301   // Side-effects region with the control path if the klass is null.
3302   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3303   // If kls is null, we have a primitive mirror.
3304   phi->init_req(_prim_path, prim_return_value);
3305   if (stopped()) { set_result(region, phi); return true; }
3306   bool safe_for_replace = (region->in(_prim_path) == top());
3307 
3308   Node* p;  // handy temp
3309   Node* null_ctl;
3310 
3311   // Now that we have the non-null klass, we can perform the real query.
3312   // For constant classes, the query will constant-fold in LoadNode::Value.
3313   Node* query_value = top();
3314   switch (id) {
3315   case vmIntrinsics::_isInstance:
3316     // nothing is an instance of a primitive type
3317     query_value = gen_instanceof(obj, kls, safe_for_replace);
3318     break;
3319 
3320   case vmIntrinsics::_getModifiers:
3321     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3322     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3323     break;
3324 
3325   case vmIntrinsics::_isInterface:
3326     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3327     if (generate_interface_guard(kls, region) != NULL)
3328       // A guard was added.  If the guard is taken, it was an interface.
3329       phi->add_req(intcon(1));
3330     // If we fall through, it's a plain class.
3331     query_value = intcon(0);
3332     break;
3333 
3334   case vmIntrinsics::_isArray:
3335     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3336     if (generate_array_guard(kls, region) != NULL)
3337       // A guard was added.  If the guard is taken, it was an array.
3338       phi->add_req(intcon(1));
3339     // If we fall through, it's a plain class.
3340     query_value = intcon(0);
3341     break;
3342 
3343   case vmIntrinsics::_isPrimitive:
3344     query_value = intcon(0); // "normal" path produces false
3345     break;
3346 
3347   case vmIntrinsics::_getSuperclass:
3348     // The rules here are somewhat unfortunate, but we can still do better
3349     // with random logic than with a JNI call.
3350     // Interfaces store null or Object as _super, but must report null.
3351     // Arrays store an intermediate super as _super, but must report Object.
3352     // Other types can report the actual _super.
3353     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3354     if (generate_interface_guard(kls, region) != NULL)
3355       // A guard was added.  If the guard is taken, it was an interface.
3356       phi->add_req(null());
3357     if (generate_array_guard(kls, region) != NULL)
3358       // A guard was added.  If the guard is taken, it was an array.
3359       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3360     // If we fall through, it's a plain class.  Get its _super.
3361     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3362     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3363     null_ctl = top();
3364     kls = null_check_oop(kls, &null_ctl);
3365     if (null_ctl != top()) {
3366       // If the guard is taken, Object.superClass is null (both klass and mirror).
3367       region->add_req(null_ctl);
3368       phi   ->add_req(null());
3369     }
3370     if (!stopped()) {
3371       query_value = load_mirror_from_klass(kls);
3372     }
3373     break;
3374 
3375   case vmIntrinsics::_getClassAccessFlags:
3376     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3377     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3378     break;
3379 
3380   default:
3381     fatal_unexpected_iid(id);
3382     break;
3383   }
3384 
3385   // Fall-through is the normal case of a query to a real class.
3386   phi->init_req(1, query_value);
3387   region->init_req(1, control());
3388 
3389   C->set_has_split_ifs(true); // Has chance for split-if optimization
3390   set_result(region, phi);
3391   return true;
3392 }
3393 
3394 //-------------------------inline_Class_cast-------------------
3395 bool LibraryCallKit::inline_Class_cast() {
3396   Node* mirror = argument(0); // Class
3397   Node* obj    = argument(1);
3398   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3399   if (mirror_con == NULL) {
3400     return false;  // dead path (mirror->is_top()).
3401   }
3402   if (obj == NULL || obj->is_top()) {
3403     return false;  // dead path
3404   }
3405   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3406 
3407   // First, see if Class.cast() can be folded statically.
3408   // java_mirror_type() returns non-null for compile-time Class constants.
3409   ciType* tm = mirror_con->java_mirror_type();
3410   if (tm != NULL && tm->is_klass() &&
3411       tp != NULL && tp->klass() != NULL) {
3412     if (!tp->klass()->is_loaded()) {
3413       // Don't use intrinsic when class is not loaded.
3414       return false;
3415     } else {
3416       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3417       if (static_res == Compile::SSC_always_true) {
3418         // isInstance() is true - fold the code.
3419         set_result(obj);
3420         return true;
3421       } else if (static_res == Compile::SSC_always_false) {
3422         // Don't use intrinsic, have to throw ClassCastException.
3423         // If the reference is null, the non-intrinsic bytecode will
3424         // be optimized appropriately.
3425         return false;
3426       }
3427     }
3428   }
3429 
3430   // Bailout intrinsic and do normal inlining if exception path is frequent.
3431   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3432     return false;
3433   }
3434 
3435   // Generate dynamic checks.
3436   // Class.cast() is java implementation of _checkcast bytecode.
3437   // Do checkcast (Parse::do_checkcast()) optimizations here.
3438 
3439   mirror = null_check(mirror);
3440   // If mirror is dead, only null-path is taken.
3441   if (stopped()) {
3442     return true;
3443   }
3444 
3445   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3446   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3447   RegionNode* region = new RegionNode(PATH_LIMIT);
3448   record_for_igvn(region);
3449 
3450   // Now load the mirror's klass metaobject, and null-check it.
3451   // If kls is null, we have a primitive mirror and
3452   // nothing is an instance of a primitive type.
3453   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3454 
3455   Node* res = top();
3456   if (!stopped()) {
3457     Node* bad_type_ctrl = top();
3458     // Do checkcast optimizations.
3459     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3460     region->init_req(_bad_type_path, bad_type_ctrl);
3461   }
3462   if (region->in(_prim_path) != top() ||
3463       region->in(_bad_type_path) != top()) {
3464     // Let Interpreter throw ClassCastException.
3465     PreserveJVMState pjvms(this);
3466     set_control(_gvn.transform(region));
3467     uncommon_trap(Deoptimization::Reason_intrinsic,
3468                   Deoptimization::Action_maybe_recompile);
3469   }
3470   if (!stopped()) {
3471     set_result(res);
3472   }
3473   return true;
3474 }
3475 
3476 
3477 //--------------------------inline_native_subtype_check------------------------
3478 // This intrinsic takes the JNI calls out of the heart of
3479 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3480 bool LibraryCallKit::inline_native_subtype_check() {
3481   // Pull both arguments off the stack.
3482   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3483   args[0] = argument(0);
3484   args[1] = argument(1);
3485   Node* klasses[2];             // corresponding Klasses: superk, subk
3486   klasses[0] = klasses[1] = top();
3487 
3488   enum {
3489     // A full decision tree on {superc is prim, subc is prim}:
3490     _prim_0_path = 1,           // {P,N} => false
3491                                 // {P,P} & superc!=subc => false
3492     _prim_same_path,            // {P,P} & superc==subc => true
3493     _prim_1_path,               // {N,P} => false
3494     _ref_subtype_path,          // {N,N} & subtype check wins => true
3495     _both_ref_path,             // {N,N} & subtype check loses => false
3496     PATH_LIMIT
3497   };
3498 
3499   RegionNode* region = new RegionNode(PATH_LIMIT);
3500   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3501   record_for_igvn(region);
3502 
3503   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3504   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3505   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3506 
3507   // First null-check both mirrors and load each mirror's klass metaobject.
3508   int which_arg;
3509   for (which_arg = 0; which_arg <= 1; which_arg++) {
3510     Node* arg = args[which_arg];
3511     arg = null_check(arg);
3512     if (stopped())  break;
3513     args[which_arg] = arg;
3514 
3515     Node* p = basic_plus_adr(arg, class_klass_offset);
3516     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3517     klasses[which_arg] = _gvn.transform(kls);
3518   }
3519 
3520   // Resolve oops to stable for CmpP below.
3521   args[0] = access_resolve(args[0], 0);
3522   args[1] = access_resolve(args[1], 0);
3523 
3524   // Having loaded both klasses, test each for null.
3525   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3526   for (which_arg = 0; which_arg <= 1; which_arg++) {
3527     Node* kls = klasses[which_arg];
3528     Node* null_ctl = top();
3529     kls = null_check_oop(kls, &null_ctl, never_see_null);
3530     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3531     region->init_req(prim_path, null_ctl);
3532     if (stopped())  break;
3533     klasses[which_arg] = kls;
3534   }
3535 
3536   if (!stopped()) {
3537     // now we have two reference types, in klasses[0..1]
3538     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3539     Node* superk = klasses[0];  // the receiver
3540     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3541     // now we have a successful reference subtype check
3542     region->set_req(_ref_subtype_path, control());
3543   }
3544 
3545   // If both operands are primitive (both klasses null), then
3546   // we must return true when they are identical primitives.
3547   // It is convenient to test this after the first null klass check.
3548   set_control(region->in(_prim_0_path)); // go back to first null check
3549   if (!stopped()) {
3550     // Since superc is primitive, make a guard for the superc==subc case.
3551     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3552     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3553     generate_guard(bol_eq, region, PROB_FAIR);
3554     if (region->req() == PATH_LIMIT+1) {
3555       // A guard was added.  If the added guard is taken, superc==subc.
3556       region->swap_edges(PATH_LIMIT, _prim_same_path);
3557       region->del_req(PATH_LIMIT);
3558     }
3559     region->set_req(_prim_0_path, control()); // Not equal after all.
3560   }
3561 
3562   // these are the only paths that produce 'true':
3563   phi->set_req(_prim_same_path,   intcon(1));
3564   phi->set_req(_ref_subtype_path, intcon(1));
3565 
3566   // pull together the cases:
3567   assert(region->req() == PATH_LIMIT, "sane region");
3568   for (uint i = 1; i < region->req(); i++) {
3569     Node* ctl = region->in(i);
3570     if (ctl == NULL || ctl == top()) {
3571       region->set_req(i, top());
3572       phi   ->set_req(i, top());
3573     } else if (phi->in(i) == NULL) {
3574       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3575     }
3576   }
3577 
3578   set_control(_gvn.transform(region));
3579   set_result(_gvn.transform(phi));
3580   return true;
3581 }
3582 
3583 //---------------------generate_array_guard_common------------------------
3584 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3585                                                   bool obj_array, bool not_array) {
3586 
3587   if (stopped()) {
3588     return NULL;
3589   }
3590 
3591   // If obj_array/non_array==false/false:
3592   // Branch around if the given klass is in fact an array (either obj or prim).
3593   // If obj_array/non_array==false/true:
3594   // Branch around if the given klass is not an array klass of any kind.
3595   // If obj_array/non_array==true/true:
3596   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3597   // If obj_array/non_array==true/false:
3598   // Branch around if the kls is an oop array (Object[] or subtype)
3599   //
3600   // Like generate_guard, adds a new path onto the region.
3601   jint  layout_con = 0;
3602   Node* layout_val = get_layout_helper(kls, layout_con);
3603   if (layout_val == NULL) {
3604     bool query = (obj_array
3605                   ? Klass::layout_helper_is_objArray(layout_con)
3606                   : Klass::layout_helper_is_array(layout_con));
3607     if (query == not_array) {
3608       return NULL;                       // never a branch
3609     } else {                             // always a branch
3610       Node* always_branch = control();
3611       if (region != NULL)
3612         region->add_req(always_branch);
3613       set_control(top());
3614       return always_branch;
3615     }
3616   }
3617   // Now test the correct condition.
3618   jint  nval = (obj_array
3619                 ? (jint)(Klass::_lh_array_tag_type_value
3620                    <<    Klass::_lh_array_tag_shift)
3621                 : Klass::_lh_neutral_value);
3622   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3623   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3624   // invert the test if we are looking for a non-array
3625   if (not_array)  btest = BoolTest(btest).negate();
3626   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3627   return generate_fair_guard(bol, region);
3628 }
3629 
3630 
3631 //-----------------------inline_native_newArray--------------------------
3632 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3633 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3634 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3635   Node* mirror;
3636   Node* count_val;
3637   if (uninitialized) {
3638     mirror    = argument(1);
3639     count_val = argument(2);
3640   } else {
3641     mirror    = argument(0);
3642     count_val = argument(1);
3643   }
3644 
3645   mirror = null_check(mirror);
3646   // If mirror or obj is dead, only null-path is taken.
3647   if (stopped())  return true;
3648 
3649   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3650   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3651   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3652   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3653   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3654 
3655   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3656   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3657                                                   result_reg, _slow_path);
3658   Node* normal_ctl   = control();
3659   Node* no_array_ctl = result_reg->in(_slow_path);
3660 
3661   // Generate code for the slow case.  We make a call to newArray().
3662   set_control(no_array_ctl);
3663   if (!stopped()) {
3664     // Either the input type is void.class, or else the
3665     // array klass has not yet been cached.  Either the
3666     // ensuing call will throw an exception, or else it
3667     // will cache the array klass for next time.
3668     PreserveJVMState pjvms(this);
3669     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3670     Node* slow_result = set_results_for_java_call(slow_call);
3671     // this->control() comes from set_results_for_java_call
3672     result_reg->set_req(_slow_path, control());
3673     result_val->set_req(_slow_path, slow_result);
3674     result_io ->set_req(_slow_path, i_o());
3675     result_mem->set_req(_slow_path, reset_memory());
3676   }
3677 
3678   set_control(normal_ctl);
3679   if (!stopped()) {
3680     // Normal case:  The array type has been cached in the java.lang.Class.
3681     // The following call works fine even if the array type is polymorphic.
3682     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3683     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3684     result_reg->init_req(_normal_path, control());
3685     result_val->init_req(_normal_path, obj);
3686     result_io ->init_req(_normal_path, i_o());
3687     result_mem->init_req(_normal_path, reset_memory());
3688 
3689     if (uninitialized) {
3690       // Mark the allocation so that zeroing is skipped
3691       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3692       alloc->maybe_set_complete(&_gvn);
3693     }
3694   }
3695 
3696   // Return the combined state.
3697   set_i_o(        _gvn.transform(result_io)  );
3698   set_all_memory( _gvn.transform(result_mem));
3699 
3700   C->set_has_split_ifs(true); // Has chance for split-if optimization
3701   set_result(result_reg, result_val);
3702   return true;
3703 }
3704 
3705 //----------------------inline_native_getLength--------------------------
3706 // public static native int java.lang.reflect.Array.getLength(Object array);
3707 bool LibraryCallKit::inline_native_getLength() {
3708   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3709 
3710   Node* array = null_check(argument(0));
3711   // If array is dead, only null-path is taken.
3712   if (stopped())  return true;
3713 
3714   // Deoptimize if it is a non-array.
3715   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3716 
3717   if (non_array != NULL) {
3718     PreserveJVMState pjvms(this);
3719     set_control(non_array);
3720     uncommon_trap(Deoptimization::Reason_intrinsic,
3721                   Deoptimization::Action_maybe_recompile);
3722   }
3723 
3724   // If control is dead, only non-array-path is taken.
3725   if (stopped())  return true;
3726 
3727   // The works fine even if the array type is polymorphic.
3728   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3729   Node* result = load_array_length(array);
3730 
3731   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3732   set_result(result);
3733   return true;
3734 }
3735 
3736 //------------------------inline_array_copyOf----------------------------
3737 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3738 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3739 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3740   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3741 
3742   // Get the arguments.
3743   Node* original          = argument(0);
3744   Node* start             = is_copyOfRange? argument(1): intcon(0);
3745   Node* end               = is_copyOfRange? argument(2): argument(1);
3746   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3747 
3748   Node* newcopy = NULL;
3749 
3750   // Set the original stack and the reexecute bit for the interpreter to reexecute
3751   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3752   { PreserveReexecuteState preexecs(this);
3753     jvms()->set_should_reexecute(true);
3754 
3755     array_type_mirror = null_check(array_type_mirror);
3756     original          = null_check(original);
3757 
3758     // Check if a null path was taken unconditionally.
3759     if (stopped())  return true;
3760 
3761     Node* orig_length = load_array_length(original);
3762 
3763     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3764     klass_node = null_check(klass_node);
3765 
3766     RegionNode* bailout = new RegionNode(1);
3767     record_for_igvn(bailout);
3768 
3769     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3770     // Bail out if that is so.
3771     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3772     if (not_objArray != NULL) {
3773       // Improve the klass node's type from the new optimistic assumption:
3774       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3775       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3776       Node* cast = new CastPPNode(klass_node, akls);
3777       cast->init_req(0, control());
3778       klass_node = _gvn.transform(cast);
3779     }
3780 
3781     // Bail out if either start or end is negative.
3782     generate_negative_guard(start, bailout, &start);
3783     generate_negative_guard(end,   bailout, &end);
3784 
3785     Node* length = end;
3786     if (_gvn.type(start) != TypeInt::ZERO) {
3787       length = _gvn.transform(new SubINode(end, start));
3788     }
3789 
3790     // Bail out if length is negative.
3791     // Without this the new_array would throw
3792     // NegativeArraySizeException but IllegalArgumentException is what
3793     // should be thrown
3794     generate_negative_guard(length, bailout, &length);
3795 
3796     if (bailout->req() > 1) {
3797       PreserveJVMState pjvms(this);
3798       set_control(_gvn.transform(bailout));
3799       uncommon_trap(Deoptimization::Reason_intrinsic,
3800                     Deoptimization::Action_maybe_recompile);
3801     }
3802 
3803     if (!stopped()) {
3804       // How many elements will we copy from the original?
3805       // The answer is MinI(orig_length - start, length).
3806       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3807       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3808 
3809       original = access_resolve(original, ACCESS_READ);
3810 
3811       // Generate a direct call to the right arraycopy function(s).
3812       // We know the copy is disjoint but we might not know if the
3813       // oop stores need checking.
3814       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3815       // This will fail a store-check if x contains any non-nulls.
3816 
3817       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3818       // loads/stores but it is legal only if we're sure the
3819       // Arrays.copyOf would succeed. So we need all input arguments
3820       // to the copyOf to be validated, including that the copy to the
3821       // new array won't trigger an ArrayStoreException. That subtype
3822       // check can be optimized if we know something on the type of
3823       // the input array from type speculation.
3824       if (_gvn.type(klass_node)->singleton()) {
3825         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3826         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3827 
3828         int test = C->static_subtype_check(superk, subk);
3829         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3830           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3831           if (t_original->speculative_type() != NULL) {
3832             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3833           }
3834         }
3835       }
3836 
3837       bool validated = false;
3838       // Reason_class_check rather than Reason_intrinsic because we
3839       // want to intrinsify even if this traps.
3840       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3841         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3842                                                    klass_node);
3843 
3844         if (not_subtype_ctrl != top()) {
3845           PreserveJVMState pjvms(this);
3846           set_control(not_subtype_ctrl);
3847           uncommon_trap(Deoptimization::Reason_class_check,
3848                         Deoptimization::Action_make_not_entrant);
3849           assert(stopped(), "Should be stopped");
3850         }
3851         validated = true;
3852       }
3853 
3854       if (!stopped()) {
3855         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3856 
3857         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
3858                                                 load_object_klass(original), klass_node);
3859         if (!is_copyOfRange) {
3860           ac->set_copyof(validated);
3861         } else {
3862           ac->set_copyofrange(validated);
3863         }
3864         Node* n = _gvn.transform(ac);
3865         if (n == ac) {
3866           ac->connect_outputs(this);
3867         } else {
3868           assert(validated, "shouldn't transform if all arguments not validated");
3869           set_all_memory(n);
3870         }
3871       }
3872     }
3873   } // original reexecute is set back here
3874 
3875   C->set_has_split_ifs(true); // Has chance for split-if optimization
3876   if (!stopped()) {
3877     set_result(newcopy);
3878   }
3879   return true;
3880 }
3881 
3882 
3883 //----------------------generate_virtual_guard---------------------------
3884 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3885 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3886                                              RegionNode* slow_region) {
3887   ciMethod* method = callee();
3888   int vtable_index = method->vtable_index();
3889   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3890          "bad index %d", vtable_index);
3891   // Get the Method* out of the appropriate vtable entry.
3892   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
3893                      vtable_index*vtableEntry::size_in_bytes() +
3894                      vtableEntry::method_offset_in_bytes();
3895   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3896   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3897 
3898   // Compare the target method with the expected method (e.g., Object.hashCode).
3899   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3900 
3901   Node* native_call = makecon(native_call_addr);
3902   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3903   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3904 
3905   return generate_slow_guard(test_native, slow_region);
3906 }
3907 
3908 //-----------------------generate_method_call----------------------------
3909 // Use generate_method_call to make a slow-call to the real
3910 // method if the fast path fails.  An alternative would be to
3911 // use a stub like OptoRuntime::slow_arraycopy_Java.
3912 // This only works for expanding the current library call,
3913 // not another intrinsic.  (E.g., don't use this for making an
3914 // arraycopy call inside of the copyOf intrinsic.)
3915 CallJavaNode*
3916 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3917   // When compiling the intrinsic method itself, do not use this technique.
3918   guarantee(callee() != C->method(), "cannot make slow-call to self");
3919 
3920   ciMethod* method = callee();
3921   // ensure the JVMS we have will be correct for this call
3922   guarantee(method_id == method->intrinsic_id(), "must match");
3923 
3924   const TypeFunc* tf = TypeFunc::make(method);
3925   CallJavaNode* slow_call;
3926   if (is_static) {
3927     assert(!is_virtual, "");
3928     slow_call = new CallStaticJavaNode(C, tf,
3929                            SharedRuntime::get_resolve_static_call_stub(),
3930                            method, bci());
3931   } else if (is_virtual) {
3932     null_check_receiver();
3933     int vtable_index = Method::invalid_vtable_index;
3934     if (UseInlineCaches) {
3935       // Suppress the vtable call
3936     } else {
3937       // hashCode and clone are not a miranda methods,
3938       // so the vtable index is fixed.
3939       // No need to use the linkResolver to get it.
3940        vtable_index = method->vtable_index();
3941        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3942               "bad index %d", vtable_index);
3943     }
3944     slow_call = new CallDynamicJavaNode(tf,
3945                           SharedRuntime::get_resolve_virtual_call_stub(),
3946                           method, vtable_index, bci());
3947   } else {  // neither virtual nor static:  opt_virtual
3948     null_check_receiver();
3949     slow_call = new CallStaticJavaNode(C, tf,
3950                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3951                                 method, bci());
3952     slow_call->set_optimized_virtual(true);
3953   }
3954   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
3955     // To be able to issue a direct call (optimized virtual or virtual)
3956     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
3957     // about the method being invoked should be attached to the call site to
3958     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
3959     slow_call->set_override_symbolic_info(true);
3960   }
3961   set_arguments_for_java_call(slow_call);
3962   set_edges_for_java_call(slow_call);
3963   return slow_call;
3964 }
3965 
3966 
3967 /**
3968  * Build special case code for calls to hashCode on an object. This call may
3969  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3970  * slightly different code.
3971  */
3972 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3973   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3974   assert(!(is_virtual && is_static), "either virtual, special, or static");
3975 
3976   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3977 
3978   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3979   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3980   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3981   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3982   Node* obj = NULL;
3983   if (!is_static) {
3984     // Check for hashing null object
3985     obj = null_check_receiver();
3986     if (stopped())  return true;        // unconditionally null
3987     result_reg->init_req(_null_path, top());
3988     result_val->init_req(_null_path, top());
3989   } else {
3990     // Do a null check, and return zero if null.
3991     // System.identityHashCode(null) == 0
3992     obj = argument(0);
3993     Node* null_ctl = top();
3994     obj = null_check_oop(obj, &null_ctl);
3995     result_reg->init_req(_null_path, null_ctl);
3996     result_val->init_req(_null_path, _gvn.intcon(0));
3997   }
3998 
3999   // Unconditionally null?  Then return right away.
4000   if (stopped()) {
4001     set_control( result_reg->in(_null_path));
4002     if (!stopped())
4003       set_result(result_val->in(_null_path));
4004     return true;
4005   }
4006 
4007   // We only go to the fast case code if we pass a number of guards.  The
4008   // paths which do not pass are accumulated in the slow_region.
4009   RegionNode* slow_region = new RegionNode(1);
4010   record_for_igvn(slow_region);
4011 
4012   // If this is a virtual call, we generate a funny guard.  We pull out
4013   // the vtable entry corresponding to hashCode() from the target object.
4014   // If the target method which we are calling happens to be the native
4015   // Object hashCode() method, we pass the guard.  We do not need this
4016   // guard for non-virtual calls -- the caller is known to be the native
4017   // Object hashCode().
4018   if (is_virtual) {
4019     // After null check, get the object's klass.
4020     Node* obj_klass = load_object_klass(obj);
4021     generate_virtual_guard(obj_klass, slow_region);
4022   }
4023 
4024   // Get the header out of the object, use LoadMarkNode when available
4025   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4026   // The control of the load must be NULL. Otherwise, the load can move before
4027   // the null check after castPP removal.
4028   Node* no_ctrl = NULL;
4029   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4030 
4031   // Test the header to see if it is unlocked.
4032   Node *lock_mask      = _gvn.MakeConX(markWord::biased_lock_mask_in_place);
4033   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4034   Node *unlocked_val   = _gvn.MakeConX(markWord::unlocked_value);
4035   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4036   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4037 
4038   generate_slow_guard(test_unlocked, slow_region);
4039 
4040   // Get the hash value and check to see that it has been properly assigned.
4041   // We depend on hash_mask being at most 32 bits and avoid the use of
4042   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4043   // vm: see markWord.hpp.
4044   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4045   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4046   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4047   // This hack lets the hash bits live anywhere in the mark object now, as long
4048   // as the shift drops the relevant bits into the low 32 bits.  Note that
4049   // Java spec says that HashCode is an int so there's no point in capturing
4050   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4051   hshifted_header      = ConvX2I(hshifted_header);
4052   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4053 
4054   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
4055   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4056   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4057 
4058   generate_slow_guard(test_assigned, slow_region);
4059 
4060   Node* init_mem = reset_memory();
4061   // fill in the rest of the null path:
4062   result_io ->init_req(_null_path, i_o());
4063   result_mem->init_req(_null_path, init_mem);
4064 
4065   result_val->init_req(_fast_path, hash_val);
4066   result_reg->init_req(_fast_path, control());
4067   result_io ->init_req(_fast_path, i_o());
4068   result_mem->init_req(_fast_path, init_mem);
4069 
4070   // Generate code for the slow case.  We make a call to hashCode().
4071   set_control(_gvn.transform(slow_region));
4072   if (!stopped()) {
4073     // No need for PreserveJVMState, because we're using up the present state.
4074     set_all_memory(init_mem);
4075     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4076     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4077     Node* slow_result = set_results_for_java_call(slow_call);
4078     // this->control() comes from set_results_for_java_call
4079     result_reg->init_req(_slow_path, control());
4080     result_val->init_req(_slow_path, slow_result);
4081     result_io  ->set_req(_slow_path, i_o());
4082     result_mem ->set_req(_slow_path, reset_memory());
4083   }
4084 
4085   // Return the combined state.
4086   set_i_o(        _gvn.transform(result_io)  );
4087   set_all_memory( _gvn.transform(result_mem));
4088 
4089   set_result(result_reg, result_val);
4090   return true;
4091 }
4092 
4093 //---------------------------inline_native_getClass----------------------------
4094 // public final native Class<?> java.lang.Object.getClass();
4095 //
4096 // Build special case code for calls to getClass on an object.
4097 bool LibraryCallKit::inline_native_getClass() {
4098   Node* obj = null_check_receiver();
4099   if (stopped())  return true;
4100   set_result(load_mirror_from_klass(load_object_klass(obj)));
4101   return true;
4102 }
4103 
4104 //-----------------inline_native_Reflection_getCallerClass---------------------
4105 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4106 //
4107 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4108 //
4109 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4110 // in that it must skip particular security frames and checks for
4111 // caller sensitive methods.
4112 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4113 #ifndef PRODUCT
4114   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4115     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4116   }
4117 #endif
4118 
4119   if (!jvms()->has_method()) {
4120 #ifndef PRODUCT
4121     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4122       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4123     }
4124 #endif
4125     return false;
4126   }
4127 
4128   // Walk back up the JVM state to find the caller at the required
4129   // depth.
4130   JVMState* caller_jvms = jvms();
4131 
4132   // Cf. JVM_GetCallerClass
4133   // NOTE: Start the loop at depth 1 because the current JVM state does
4134   // not include the Reflection.getCallerClass() frame.
4135   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4136     ciMethod* m = caller_jvms->method();
4137     switch (n) {
4138     case 0:
4139       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4140       break;
4141     case 1:
4142       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4143       if (!m->caller_sensitive()) {
4144 #ifndef PRODUCT
4145         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4146           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4147         }
4148 #endif
4149         return false;  // bail-out; let JVM_GetCallerClass do the work
4150       }
4151       break;
4152     default:
4153       if (!m->is_ignored_by_security_stack_walk()) {
4154         // We have reached the desired frame; return the holder class.
4155         // Acquire method holder as java.lang.Class and push as constant.
4156         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4157         ciInstance* caller_mirror = caller_klass->java_mirror();
4158         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4159 
4160 #ifndef PRODUCT
4161         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4162           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4163           tty->print_cr("  JVM state at this point:");
4164           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4165             ciMethod* m = jvms()->of_depth(i)->method();
4166             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4167           }
4168         }
4169 #endif
4170         return true;
4171       }
4172       break;
4173     }
4174   }
4175 
4176 #ifndef PRODUCT
4177   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4178     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4179     tty->print_cr("  JVM state at this point:");
4180     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4181       ciMethod* m = jvms()->of_depth(i)->method();
4182       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4183     }
4184   }
4185 #endif
4186 
4187   return false;  // bail-out; let JVM_GetCallerClass do the work
4188 }
4189 
4190 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4191   Node* arg = argument(0);
4192   Node* result = NULL;
4193 
4194   switch (id) {
4195   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4196   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4197   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4198   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4199 
4200   case vmIntrinsics::_doubleToLongBits: {
4201     // two paths (plus control) merge in a wood
4202     RegionNode *r = new RegionNode(3);
4203     Node *phi = new PhiNode(r, TypeLong::LONG);
4204 
4205     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4206     // Build the boolean node
4207     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4208 
4209     // Branch either way.
4210     // NaN case is less traveled, which makes all the difference.
4211     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4212     Node *opt_isnan = _gvn.transform(ifisnan);
4213     assert( opt_isnan->is_If(), "Expect an IfNode");
4214     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4215     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4216 
4217     set_control(iftrue);
4218 
4219     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4220     Node *slow_result = longcon(nan_bits); // return NaN
4221     phi->init_req(1, _gvn.transform( slow_result ));
4222     r->init_req(1, iftrue);
4223 
4224     // Else fall through
4225     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4226     set_control(iffalse);
4227 
4228     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4229     r->init_req(2, iffalse);
4230 
4231     // Post merge
4232     set_control(_gvn.transform(r));
4233     record_for_igvn(r);
4234 
4235     C->set_has_split_ifs(true); // Has chance for split-if optimization
4236     result = phi;
4237     assert(result->bottom_type()->isa_long(), "must be");
4238     break;
4239   }
4240 
4241   case vmIntrinsics::_floatToIntBits: {
4242     // two paths (plus control) merge in a wood
4243     RegionNode *r = new RegionNode(3);
4244     Node *phi = new PhiNode(r, TypeInt::INT);
4245 
4246     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4247     // Build the boolean node
4248     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4249 
4250     // Branch either way.
4251     // NaN case is less traveled, which makes all the difference.
4252     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4253     Node *opt_isnan = _gvn.transform(ifisnan);
4254     assert( opt_isnan->is_If(), "Expect an IfNode");
4255     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4256     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4257 
4258     set_control(iftrue);
4259 
4260     static const jint nan_bits = 0x7fc00000;
4261     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4262     phi->init_req(1, _gvn.transform( slow_result ));
4263     r->init_req(1, iftrue);
4264 
4265     // Else fall through
4266     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4267     set_control(iffalse);
4268 
4269     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4270     r->init_req(2, iffalse);
4271 
4272     // Post merge
4273     set_control(_gvn.transform(r));
4274     record_for_igvn(r);
4275 
4276     C->set_has_split_ifs(true); // Has chance for split-if optimization
4277     result = phi;
4278     assert(result->bottom_type()->isa_int(), "must be");
4279     break;
4280   }
4281 
4282   default:
4283     fatal_unexpected_iid(id);
4284     break;
4285   }
4286   set_result(_gvn.transform(result));
4287   return true;
4288 }
4289 
4290 //----------------------inline_unsafe_copyMemory-------------------------
4291 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4292 bool LibraryCallKit::inline_unsafe_copyMemory() {
4293   if (callee()->is_static())  return false;  // caller must have the capability!
4294   null_check_receiver();  // null-check receiver
4295   if (stopped())  return true;
4296 
4297   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4298 
4299   Node* src_ptr =         argument(1);   // type: oop
4300   Node* src_off = ConvL2X(argument(2));  // type: long
4301   Node* dst_ptr =         argument(4);   // type: oop
4302   Node* dst_off = ConvL2X(argument(5));  // type: long
4303   Node* size    = ConvL2X(argument(7));  // type: long
4304 
4305   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4306          "fieldOffset must be byte-scaled");
4307 
4308   src_ptr = access_resolve(src_ptr, ACCESS_READ);
4309   dst_ptr = access_resolve(dst_ptr, ACCESS_WRITE);
4310   Node* src = make_unsafe_address(src_ptr, src_off, ACCESS_READ);
4311   Node* dst = make_unsafe_address(dst_ptr, dst_off, ACCESS_WRITE);
4312 
4313   // Conservatively insert a memory barrier on all memory slices.
4314   // Do not let writes of the copy source or destination float below the copy.
4315   insert_mem_bar(Op_MemBarCPUOrder);
4316 
4317   Node* thread = _gvn.transform(new ThreadLocalNode());
4318   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
4319   BasicType doing_unsafe_access_bt = T_BYTE;
4320   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
4321 
4322   // update volatile field
4323   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4324 
4325   // Call it.  Note that the length argument is not scaled.
4326   make_runtime_call(RC_LEAF|RC_NO_FP,
4327                     OptoRuntime::fast_arraycopy_Type(),
4328                     StubRoutines::unsafe_arraycopy(),
4329                     "unsafe_arraycopy",
4330                     TypeRawPtr::BOTTOM,
4331                     src, dst, size XTOP);
4332 
4333   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4334 
4335   // Do not let reads of the copy destination float above the copy.
4336   insert_mem_bar(Op_MemBarCPUOrder);
4337 
4338   return true;
4339 }
4340 
4341 //------------------------clone_coping-----------------------------------
4342 // Helper function for inline_native_clone.
4343 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
4344   assert(obj_size != NULL, "");
4345   Node* raw_obj = alloc_obj->in(1);
4346   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4347 
4348   AllocateNode* alloc = NULL;
4349   if (ReduceBulkZeroing) {
4350     // We will be completely responsible for initializing this object -
4351     // mark Initialize node as complete.
4352     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4353     // The object was just allocated - there should be no any stores!
4354     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4355     // Mark as complete_with_arraycopy so that on AllocateNode
4356     // expansion, we know this AllocateNode is initialized by an array
4357     // copy and a StoreStore barrier exists after the array copy.
4358     alloc->initialization()->set_complete_with_arraycopy();
4359   }
4360 
4361   // Copy the fastest available way.
4362   // TODO: generate fields copies for small objects instead.
4363   Node* size = _gvn.transform(obj_size);
4364 
4365   access_clone(obj, alloc_obj, size, is_array);
4366 
4367   // Do not let reads from the cloned object float above the arraycopy.
4368   if (alloc != NULL) {
4369     // Do not let stores that initialize this object be reordered with
4370     // a subsequent store that would make this object accessible by
4371     // other threads.
4372     // Record what AllocateNode this StoreStore protects so that
4373     // escape analysis can go from the MemBarStoreStoreNode to the
4374     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4375     // based on the escape status of the AllocateNode.
4376     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4377   } else {
4378     insert_mem_bar(Op_MemBarCPUOrder);
4379   }
4380 }
4381 
4382 //------------------------inline_native_clone----------------------------
4383 // protected native Object java.lang.Object.clone();
4384 //
4385 // Here are the simple edge cases:
4386 //  null receiver => normal trap
4387 //  virtual and clone was overridden => slow path to out-of-line clone
4388 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4389 //
4390 // The general case has two steps, allocation and copying.
4391 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4392 //
4393 // Copying also has two cases, oop arrays and everything else.
4394 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4395 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4396 //
4397 // These steps fold up nicely if and when the cloned object's klass
4398 // can be sharply typed as an object array, a type array, or an instance.
4399 //
4400 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4401   PhiNode* result_val;
4402 
4403   // Set the reexecute bit for the interpreter to reexecute
4404   // the bytecode that invokes Object.clone if deoptimization happens.
4405   { PreserveReexecuteState preexecs(this);
4406     jvms()->set_should_reexecute(true);
4407 
4408     Node* obj = null_check_receiver();
4409     if (stopped())  return true;
4410 
4411     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4412 
4413     // If we are going to clone an instance, we need its exact type to
4414     // know the number and types of fields to convert the clone to
4415     // loads/stores. Maybe a speculative type can help us.
4416     if (!obj_type->klass_is_exact() &&
4417         obj_type->speculative_type() != NULL &&
4418         obj_type->speculative_type()->is_instance_klass()) {
4419       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4420       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4421           !spec_ik->has_injected_fields()) {
4422         ciKlass* k = obj_type->klass();
4423         if (!k->is_instance_klass() ||
4424             k->as_instance_klass()->is_interface() ||
4425             k->as_instance_klass()->has_subklass()) {
4426           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4427         }
4428       }
4429     }
4430 
4431     Node* obj_klass = load_object_klass(obj);
4432     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4433     const TypeOopPtr*   toop   = ((tklass != NULL)
4434                                 ? tklass->as_instance_type()
4435                                 : TypeInstPtr::NOTNULL);
4436 
4437     // Conservatively insert a memory barrier on all memory slices.
4438     // Do not let writes into the original float below the clone.
4439     insert_mem_bar(Op_MemBarCPUOrder);
4440 
4441     // paths into result_reg:
4442     enum {
4443       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4444       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4445       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4446       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4447       PATH_LIMIT
4448     };
4449     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4450     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4451     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4452     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4453     record_for_igvn(result_reg);
4454 
4455     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4456     if (array_ctl != NULL) {
4457       // It's an array.
4458       PreserveJVMState pjvms(this);
4459       set_control(array_ctl);
4460       Node* obj_length = load_array_length(obj);
4461       Node* obj_size  = NULL;
4462       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4463 
4464       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4465       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Parsing)) {
4466         // If it is an oop array, it requires very special treatment,
4467         // because gc barriers are required when accessing the array.
4468         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4469         if (is_obja != NULL) {
4470           PreserveJVMState pjvms2(this);
4471           set_control(is_obja);
4472           obj = access_resolve(obj, ACCESS_READ);
4473           // Generate a direct call to the right arraycopy function(s).
4474           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4475           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4476           ac->set_cloneoop();
4477           Node* n = _gvn.transform(ac);
4478           assert(n == ac, "cannot disappear");
4479           ac->connect_outputs(this);
4480 
4481           result_reg->init_req(_objArray_path, control());
4482           result_val->init_req(_objArray_path, alloc_obj);
4483           result_i_o ->set_req(_objArray_path, i_o());
4484           result_mem ->set_req(_objArray_path, reset_memory());
4485         }
4486       }
4487       // Otherwise, there are no barriers to worry about.
4488       // (We can dispense with card marks if we know the allocation
4489       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4490       //  causes the non-eden paths to take compensating steps to
4491       //  simulate a fresh allocation, so that no further
4492       //  card marks are required in compiled code to initialize
4493       //  the object.)
4494 
4495       if (!stopped()) {
4496         copy_to_clone(obj, alloc_obj, obj_size, true);
4497 
4498         // Present the results of the copy.
4499         result_reg->init_req(_array_path, control());
4500         result_val->init_req(_array_path, alloc_obj);
4501         result_i_o ->set_req(_array_path, i_o());
4502         result_mem ->set_req(_array_path, reset_memory());
4503       }
4504     }
4505 
4506     // We only go to the instance fast case code if we pass a number of guards.
4507     // The paths which do not pass are accumulated in the slow_region.
4508     RegionNode* slow_region = new RegionNode(1);
4509     record_for_igvn(slow_region);
4510     if (!stopped()) {
4511       // It's an instance (we did array above).  Make the slow-path tests.
4512       // If this is a virtual call, we generate a funny guard.  We grab
4513       // the vtable entry corresponding to clone() from the target object.
4514       // If the target method which we are calling happens to be the
4515       // Object clone() method, we pass the guard.  We do not need this
4516       // guard for non-virtual calls; the caller is known to be the native
4517       // Object clone().
4518       if (is_virtual) {
4519         generate_virtual_guard(obj_klass, slow_region);
4520       }
4521 
4522       // The object must be easily cloneable and must not have a finalizer.
4523       // Both of these conditions may be checked in a single test.
4524       // We could optimize the test further, but we don't care.
4525       generate_access_flags_guard(obj_klass,
4526                                   // Test both conditions:
4527                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4528                                   // Must be cloneable but not finalizer:
4529                                   JVM_ACC_IS_CLONEABLE_FAST,
4530                                   slow_region);
4531     }
4532 
4533     if (!stopped()) {
4534       // It's an instance, and it passed the slow-path tests.
4535       PreserveJVMState pjvms(this);
4536       Node* obj_size  = NULL;
4537       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4538       // is reexecuted if deoptimization occurs and there could be problems when merging
4539       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4540       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4541 
4542       copy_to_clone(obj, alloc_obj, obj_size, false);
4543 
4544       // Present the results of the slow call.
4545       result_reg->init_req(_instance_path, control());
4546       result_val->init_req(_instance_path, alloc_obj);
4547       result_i_o ->set_req(_instance_path, i_o());
4548       result_mem ->set_req(_instance_path, reset_memory());
4549     }
4550 
4551     // Generate code for the slow case.  We make a call to clone().
4552     set_control(_gvn.transform(slow_region));
4553     if (!stopped()) {
4554       PreserveJVMState pjvms(this);
4555       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4556       // We need to deoptimize on exception (see comment above)
4557       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
4558       // this->control() comes from set_results_for_java_call
4559       result_reg->init_req(_slow_path, control());
4560       result_val->init_req(_slow_path, slow_result);
4561       result_i_o ->set_req(_slow_path, i_o());
4562       result_mem ->set_req(_slow_path, reset_memory());
4563     }
4564 
4565     // Return the combined state.
4566     set_control(    _gvn.transform(result_reg));
4567     set_i_o(        _gvn.transform(result_i_o));
4568     set_all_memory( _gvn.transform(result_mem));
4569   } // original reexecute is set back here
4570 
4571   set_result(_gvn.transform(result_val));
4572   return true;
4573 }
4574 
4575 // If we have a tightly coupled allocation, the arraycopy may take care
4576 // of the array initialization. If one of the guards we insert between
4577 // the allocation and the arraycopy causes a deoptimization, an
4578 // unitialized array will escape the compiled method. To prevent that
4579 // we set the JVM state for uncommon traps between the allocation and
4580 // the arraycopy to the state before the allocation so, in case of
4581 // deoptimization, we'll reexecute the allocation and the
4582 // initialization.
4583 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4584   if (alloc != NULL) {
4585     ciMethod* trap_method = alloc->jvms()->method();
4586     int trap_bci = alloc->jvms()->bci();
4587 
4588     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4589         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4590       // Make sure there's no store between the allocation and the
4591       // arraycopy otherwise visible side effects could be rexecuted
4592       // in case of deoptimization and cause incorrect execution.
4593       bool no_interfering_store = true;
4594       Node* mem = alloc->in(TypeFunc::Memory);
4595       if (mem->is_MergeMem()) {
4596         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4597           Node* n = mms.memory();
4598           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4599             assert(n->is_Store(), "what else?");
4600             no_interfering_store = false;
4601             break;
4602           }
4603         }
4604       } else {
4605         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4606           Node* n = mms.memory();
4607           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4608             assert(n->is_Store(), "what else?");
4609             no_interfering_store = false;
4610             break;
4611           }
4612         }
4613       }
4614 
4615       if (no_interfering_store) {
4616         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4617         uint size = alloc->req();
4618         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4619         old_jvms->set_map(sfpt);
4620         for (uint i = 0; i < size; i++) {
4621           sfpt->init_req(i, alloc->in(i));
4622         }
4623         // re-push array length for deoptimization
4624         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4625         old_jvms->set_sp(old_jvms->sp()+1);
4626         old_jvms->set_monoff(old_jvms->monoff()+1);
4627         old_jvms->set_scloff(old_jvms->scloff()+1);
4628         old_jvms->set_endoff(old_jvms->endoff()+1);
4629         old_jvms->set_should_reexecute(true);
4630 
4631         sfpt->set_i_o(map()->i_o());
4632         sfpt->set_memory(map()->memory());
4633         sfpt->set_control(map()->control());
4634 
4635         JVMState* saved_jvms = jvms();
4636         saved_reexecute_sp = _reexecute_sp;
4637 
4638         set_jvms(sfpt->jvms());
4639         _reexecute_sp = jvms()->sp();
4640 
4641         return saved_jvms;
4642       }
4643     }
4644   }
4645   return NULL;
4646 }
4647 
4648 // In case of a deoptimization, we restart execution at the
4649 // allocation, allocating a new array. We would leave an uninitialized
4650 // array in the heap that GCs wouldn't expect. Move the allocation
4651 // after the traps so we don't allocate the array if we
4652 // deoptimize. This is possible because tightly_coupled_allocation()
4653 // guarantees there's no observer of the allocated array at this point
4654 // and the control flow is simple enough.
4655 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4656                                                     int saved_reexecute_sp, uint new_idx) {
4657   if (saved_jvms != NULL && !stopped()) {
4658     assert(alloc != NULL, "only with a tightly coupled allocation");
4659     // restore JVM state to the state at the arraycopy
4660     saved_jvms->map()->set_control(map()->control());
4661     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4662     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4663     // If we've improved the types of some nodes (null check) while
4664     // emitting the guards, propagate them to the current state
4665     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4666     set_jvms(saved_jvms);
4667     _reexecute_sp = saved_reexecute_sp;
4668 
4669     // Remove the allocation from above the guards
4670     CallProjections callprojs;
4671     alloc->extract_projections(&callprojs, true);
4672     InitializeNode* init = alloc->initialization();
4673     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4674     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4675     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4676     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4677 
4678     // move the allocation here (after the guards)
4679     _gvn.hash_delete(alloc);
4680     alloc->set_req(TypeFunc::Control, control());
4681     alloc->set_req(TypeFunc::I_O, i_o());
4682     Node *mem = reset_memory();
4683     set_all_memory(mem);
4684     alloc->set_req(TypeFunc::Memory, mem);
4685     set_control(init->proj_out_or_null(TypeFunc::Control));
4686     set_i_o(callprojs.fallthrough_ioproj);
4687 
4688     // Update memory as done in GraphKit::set_output_for_allocation()
4689     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4690     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4691     if (ary_type->isa_aryptr() && length_type != NULL) {
4692       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4693     }
4694     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4695     int            elemidx  = C->get_alias_index(telemref);
4696     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
4697     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
4698 
4699     Node* allocx = _gvn.transform(alloc);
4700     assert(allocx == alloc, "where has the allocation gone?");
4701     assert(dest->is_CheckCastPP(), "not an allocation result?");
4702 
4703     _gvn.hash_delete(dest);
4704     dest->set_req(0, control());
4705     Node* destx = _gvn.transform(dest);
4706     assert(destx == dest, "where has the allocation result gone?");
4707   }
4708 }
4709 
4710 
4711 //------------------------------inline_arraycopy-----------------------
4712 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4713 //                                                      Object dest, int destPos,
4714 //                                                      int length);
4715 bool LibraryCallKit::inline_arraycopy() {
4716   // Get the arguments.
4717   Node* src         = argument(0);  // type: oop
4718   Node* src_offset  = argument(1);  // type: int
4719   Node* dest        = argument(2);  // type: oop
4720   Node* dest_offset = argument(3);  // type: int
4721   Node* length      = argument(4);  // type: int
4722 
4723   uint new_idx = C->unique();
4724 
4725   // Check for allocation before we add nodes that would confuse
4726   // tightly_coupled_allocation()
4727   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4728 
4729   int saved_reexecute_sp = -1;
4730   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4731   // See arraycopy_restore_alloc_state() comment
4732   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4733   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4734   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
4735   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4736 
4737   // The following tests must be performed
4738   // (1) src and dest are arrays.
4739   // (2) src and dest arrays must have elements of the same BasicType
4740   // (3) src and dest must not be null.
4741   // (4) src_offset must not be negative.
4742   // (5) dest_offset must not be negative.
4743   // (6) length must not be negative.
4744   // (7) src_offset + length must not exceed length of src.
4745   // (8) dest_offset + length must not exceed length of dest.
4746   // (9) each element of an oop array must be assignable
4747 
4748   // (3) src and dest must not be null.
4749   // always do this here because we need the JVM state for uncommon traps
4750   Node* null_ctl = top();
4751   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4752   assert(null_ctl->is_top(), "no null control here");
4753   dest = null_check(dest, T_ARRAY);
4754 
4755   if (!can_emit_guards) {
4756     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4757     // guards but the arraycopy node could still take advantage of a
4758     // tightly allocated allocation. tightly_coupled_allocation() is
4759     // called again to make sure it takes the null check above into
4760     // account: the null check is mandatory and if it caused an
4761     // uncommon trap to be emitted then the allocation can't be
4762     // considered tightly coupled in this context.
4763     alloc = tightly_coupled_allocation(dest, NULL);
4764   }
4765 
4766   bool validated = false;
4767 
4768   const Type* src_type  = _gvn.type(src);
4769   const Type* dest_type = _gvn.type(dest);
4770   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4771   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4772 
4773   // Do we have the type of src?
4774   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4775   // Do we have the type of dest?
4776   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4777   // Is the type for src from speculation?
4778   bool src_spec = false;
4779   // Is the type for dest from speculation?
4780   bool dest_spec = false;
4781 
4782   if ((!has_src || !has_dest) && can_emit_guards) {
4783     // We don't have sufficient type information, let's see if
4784     // speculative types can help. We need to have types for both src
4785     // and dest so that it pays off.
4786 
4787     // Do we already have or could we have type information for src
4788     bool could_have_src = has_src;
4789     // Do we already have or could we have type information for dest
4790     bool could_have_dest = has_dest;
4791 
4792     ciKlass* src_k = NULL;
4793     if (!has_src) {
4794       src_k = src_type->speculative_type_not_null();
4795       if (src_k != NULL && src_k->is_array_klass()) {
4796         could_have_src = true;
4797       }
4798     }
4799 
4800     ciKlass* dest_k = NULL;
4801     if (!has_dest) {
4802       dest_k = dest_type->speculative_type_not_null();
4803       if (dest_k != NULL && dest_k->is_array_klass()) {
4804         could_have_dest = true;
4805       }
4806     }
4807 
4808     if (could_have_src && could_have_dest) {
4809       // This is going to pay off so emit the required guards
4810       if (!has_src) {
4811         src = maybe_cast_profiled_obj(src, src_k, true);
4812         src_type  = _gvn.type(src);
4813         top_src  = src_type->isa_aryptr();
4814         has_src = (top_src != NULL && top_src->klass() != NULL);
4815         src_spec = true;
4816       }
4817       if (!has_dest) {
4818         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4819         dest_type  = _gvn.type(dest);
4820         top_dest  = dest_type->isa_aryptr();
4821         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4822         dest_spec = true;
4823       }
4824     }
4825   }
4826 
4827   if (has_src && has_dest && can_emit_guards) {
4828     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4829     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4830     if (is_reference_type(src_elem))   src_elem  = T_OBJECT;
4831     if (is_reference_type(dest_elem))  dest_elem = T_OBJECT;
4832 
4833     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4834       // If both arrays are object arrays then having the exact types
4835       // for both will remove the need for a subtype check at runtime
4836       // before the call and may make it possible to pick a faster copy
4837       // routine (without a subtype check on every element)
4838       // Do we have the exact type of src?
4839       bool could_have_src = src_spec;
4840       // Do we have the exact type of dest?
4841       bool could_have_dest = dest_spec;
4842       ciKlass* src_k = top_src->klass();
4843       ciKlass* dest_k = top_dest->klass();
4844       if (!src_spec) {
4845         src_k = src_type->speculative_type_not_null();
4846         if (src_k != NULL && src_k->is_array_klass()) {
4847           could_have_src = true;
4848         }
4849       }
4850       if (!dest_spec) {
4851         dest_k = dest_type->speculative_type_not_null();
4852         if (dest_k != NULL && dest_k->is_array_klass()) {
4853           could_have_dest = true;
4854         }
4855       }
4856       if (could_have_src && could_have_dest) {
4857         // If we can have both exact types, emit the missing guards
4858         if (could_have_src && !src_spec) {
4859           src = maybe_cast_profiled_obj(src, src_k, true);
4860         }
4861         if (could_have_dest && !dest_spec) {
4862           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4863         }
4864       }
4865     }
4866   }
4867 
4868   ciMethod* trap_method = method();
4869   int trap_bci = bci();
4870   if (saved_jvms != NULL) {
4871     trap_method = alloc->jvms()->method();
4872     trap_bci = alloc->jvms()->bci();
4873   }
4874 
4875   bool negative_length_guard_generated = false;
4876 
4877   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4878       can_emit_guards &&
4879       !src->is_top() && !dest->is_top()) {
4880     // validate arguments: enables transformation the ArrayCopyNode
4881     validated = true;
4882 
4883     RegionNode* slow_region = new RegionNode(1);
4884     record_for_igvn(slow_region);
4885 
4886     // (1) src and dest are arrays.
4887     generate_non_array_guard(load_object_klass(src), slow_region);
4888     generate_non_array_guard(load_object_klass(dest), slow_region);
4889 
4890     // (2) src and dest arrays must have elements of the same BasicType
4891     // done at macro expansion or at Ideal transformation time
4892 
4893     // (4) src_offset must not be negative.
4894     generate_negative_guard(src_offset, slow_region);
4895 
4896     // (5) dest_offset must not be negative.
4897     generate_negative_guard(dest_offset, slow_region);
4898 
4899     // (7) src_offset + length must not exceed length of src.
4900     generate_limit_guard(src_offset, length,
4901                          load_array_length(src),
4902                          slow_region);
4903 
4904     // (8) dest_offset + length must not exceed length of dest.
4905     generate_limit_guard(dest_offset, length,
4906                          load_array_length(dest),
4907                          slow_region);
4908 
4909     // (6) length must not be negative.
4910     // This is also checked in generate_arraycopy() during macro expansion, but
4911     // we also have to check it here for the case where the ArrayCopyNode will
4912     // be eliminated by Escape Analysis.
4913     if (EliminateAllocations) {
4914       generate_negative_guard(length, slow_region);
4915       negative_length_guard_generated = true;
4916     }
4917 
4918     // (9) each element of an oop array must be assignable
4919     Node* src_klass  = load_object_klass(src);
4920     Node* dest_klass = load_object_klass(dest);
4921     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4922 
4923     if (not_subtype_ctrl != top()) {
4924       PreserveJVMState pjvms(this);
4925       set_control(not_subtype_ctrl);
4926       uncommon_trap(Deoptimization::Reason_intrinsic,
4927                     Deoptimization::Action_make_not_entrant);
4928       assert(stopped(), "Should be stopped");
4929     }
4930     {
4931       PreserveJVMState pjvms(this);
4932       set_control(_gvn.transform(slow_region));
4933       uncommon_trap(Deoptimization::Reason_intrinsic,
4934                     Deoptimization::Action_make_not_entrant);
4935       assert(stopped(), "Should be stopped");
4936     }
4937 
4938     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
4939     const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
4940     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
4941   }
4942 
4943   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
4944 
4945   if (stopped()) {
4946     return true;
4947   }
4948 
4949   Node* new_src = access_resolve(src, ACCESS_READ);
4950   Node* new_dest = access_resolve(dest, ACCESS_WRITE);
4951 
4952   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, new_src, src_offset, new_dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
4953                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4954                                           // so the compiler has a chance to eliminate them: during macro expansion,
4955                                           // we have to set their control (CastPP nodes are eliminated).
4956                                           load_object_klass(src), load_object_klass(dest),
4957                                           load_array_length(src), load_array_length(dest));
4958 
4959   ac->set_arraycopy(validated);
4960 
4961   Node* n = _gvn.transform(ac);
4962   if (n == ac) {
4963     ac->connect_outputs(this);
4964   } else {
4965     assert(validated, "shouldn't transform if all arguments not validated");
4966     set_all_memory(n);
4967   }
4968   clear_upper_avx();
4969 
4970 
4971   return true;
4972 }
4973 
4974 
4975 // Helper function which determines if an arraycopy immediately follows
4976 // an allocation, with no intervening tests or other escapes for the object.
4977 AllocateArrayNode*
4978 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4979                                            RegionNode* slow_region) {
4980   if (stopped())             return NULL;  // no fast path
4981   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4982 
4983   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4984   if (alloc == NULL)  return NULL;
4985 
4986   Node* rawmem = memory(Compile::AliasIdxRaw);
4987   // Is the allocation's memory state untouched?
4988   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4989     // Bail out if there have been raw-memory effects since the allocation.
4990     // (Example:  There might have been a call or safepoint.)
4991     return NULL;
4992   }
4993   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4994   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4995     return NULL;
4996   }
4997 
4998   // There must be no unexpected observers of this allocation.
4999   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5000     Node* obs = ptr->fast_out(i);
5001     if (obs != this->map()) {
5002       return NULL;
5003     }
5004   }
5005 
5006   // This arraycopy must unconditionally follow the allocation of the ptr.
5007   Node* alloc_ctl = ptr->in(0);
5008   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5009 
5010   Node* ctl = control();
5011   while (ctl != alloc_ctl) {
5012     // There may be guards which feed into the slow_region.
5013     // Any other control flow means that we might not get a chance
5014     // to finish initializing the allocated object.
5015     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5016       IfNode* iff = ctl->in(0)->as_If();
5017       Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con);
5018       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5019       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5020         ctl = iff->in(0);       // This test feeds the known slow_region.
5021         continue;
5022       }
5023       // One more try:  Various low-level checks bottom out in
5024       // uncommon traps.  If the debug-info of the trap omits
5025       // any reference to the allocation, as we've already
5026       // observed, then there can be no objection to the trap.
5027       bool found_trap = false;
5028       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5029         Node* obs = not_ctl->fast_out(j);
5030         if (obs->in(0) == not_ctl && obs->is_Call() &&
5031             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5032           found_trap = true; break;
5033         }
5034       }
5035       if (found_trap) {
5036         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5037         continue;
5038       }
5039     }
5040     return NULL;
5041   }
5042 
5043   // If we get this far, we have an allocation which immediately
5044   // precedes the arraycopy, and we can take over zeroing the new object.
5045   // The arraycopy will finish the initialization, and provide
5046   // a new control state to which we will anchor the destination pointer.
5047 
5048   return alloc;
5049 }
5050 
5051 //-------------inline_encodeISOArray-----------------------------------
5052 // encode char[] to byte[] in ISO_8859_1
5053 bool LibraryCallKit::inline_encodeISOArray() {
5054   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5055   // no receiver since it is static method
5056   Node *src         = argument(0);
5057   Node *src_offset  = argument(1);
5058   Node *dst         = argument(2);
5059   Node *dst_offset  = argument(3);
5060   Node *length      = argument(4);
5061 
5062   src = must_be_not_null(src, true);
5063   dst = must_be_not_null(dst, true);
5064 
5065   src = access_resolve(src, ACCESS_READ);
5066   dst = access_resolve(dst, ACCESS_WRITE);
5067 
5068   const Type* src_type = src->Value(&_gvn);
5069   const Type* dst_type = dst->Value(&_gvn);
5070   const TypeAryPtr* top_src = src_type->isa_aryptr();
5071   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5072   if (top_src  == NULL || top_src->klass()  == NULL ||
5073       top_dest == NULL || top_dest->klass() == NULL) {
5074     // failed array check
5075     return false;
5076   }
5077 
5078   // Figure out the size and type of the elements we will be copying.
5079   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5080   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5081   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5082     return false;
5083   }
5084 
5085   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5086   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5087   // 'src_start' points to src array + scaled offset
5088   // 'dst_start' points to dst array + scaled offset
5089 
5090   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5091   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5092   enc = _gvn.transform(enc);
5093   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5094   set_memory(res_mem, mtype);
5095   set_result(enc);
5096   clear_upper_avx();
5097 
5098   return true;
5099 }
5100 
5101 //-------------inline_multiplyToLen-----------------------------------
5102 bool LibraryCallKit::inline_multiplyToLen() {
5103   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5104 
5105   address stubAddr = StubRoutines::multiplyToLen();
5106   if (stubAddr == NULL) {
5107     return false; // Intrinsic's stub is not implemented on this platform
5108   }
5109   const char* stubName = "multiplyToLen";
5110 
5111   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5112 
5113   // no receiver because it is a static method
5114   Node* x    = argument(0);
5115   Node* xlen = argument(1);
5116   Node* y    = argument(2);
5117   Node* ylen = argument(3);
5118   Node* z    = argument(4);
5119 
5120   x = must_be_not_null(x, true);
5121   y = must_be_not_null(y, true);
5122 
5123   x = access_resolve(x, ACCESS_READ);
5124   y = access_resolve(y, ACCESS_READ);
5125   z = access_resolve(z, ACCESS_WRITE);
5126 
5127   const Type* x_type = x->Value(&_gvn);
5128   const Type* y_type = y->Value(&_gvn);
5129   const TypeAryPtr* top_x = x_type->isa_aryptr();
5130   const TypeAryPtr* top_y = y_type->isa_aryptr();
5131   if (top_x  == NULL || top_x->klass()  == NULL ||
5132       top_y == NULL || top_y->klass() == NULL) {
5133     // failed array check
5134     return false;
5135   }
5136 
5137   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5138   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5139   if (x_elem != T_INT || y_elem != T_INT) {
5140     return false;
5141   }
5142 
5143   // Set the original stack and the reexecute bit for the interpreter to reexecute
5144   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5145   // on the return from z array allocation in runtime.
5146   { PreserveReexecuteState preexecs(this);
5147     jvms()->set_should_reexecute(true);
5148 
5149     Node* x_start = array_element_address(x, intcon(0), x_elem);
5150     Node* y_start = array_element_address(y, intcon(0), y_elem);
5151     // 'x_start' points to x array + scaled xlen
5152     // 'y_start' points to y array + scaled ylen
5153 
5154     // Allocate the result array
5155     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5156     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5157     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5158 
5159     IdealKit ideal(this);
5160 
5161 #define __ ideal.
5162      Node* one = __ ConI(1);
5163      Node* zero = __ ConI(0);
5164      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5165      __ set(need_alloc, zero);
5166      __ set(z_alloc, z);
5167      __ if_then(z, BoolTest::eq, null()); {
5168        __ increment (need_alloc, one);
5169      } __ else_(); {
5170        // Update graphKit memory and control from IdealKit.
5171        sync_kit(ideal);
5172        Node *cast = new CastPPNode(z, TypePtr::NOTNULL);
5173        cast->init_req(0, control());
5174        _gvn.set_type(cast, cast->bottom_type());
5175        C->record_for_igvn(cast);
5176 
5177        Node* zlen_arg = load_array_length(cast);
5178        // Update IdealKit memory and control from graphKit.
5179        __ sync_kit(this);
5180        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5181          __ increment (need_alloc, one);
5182        } __ end_if();
5183      } __ end_if();
5184 
5185      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5186        // Update graphKit memory and control from IdealKit.
5187        sync_kit(ideal);
5188        Node * narr = new_array(klass_node, zlen, 1);
5189        // Update IdealKit memory and control from graphKit.
5190        __ sync_kit(this);
5191        __ set(z_alloc, narr);
5192      } __ end_if();
5193 
5194      sync_kit(ideal);
5195      z = __ value(z_alloc);
5196      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5197      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5198      // Final sync IdealKit and GraphKit.
5199      final_sync(ideal);
5200 #undef __
5201 
5202     Node* z_start = array_element_address(z, intcon(0), T_INT);
5203 
5204     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5205                                    OptoRuntime::multiplyToLen_Type(),
5206                                    stubAddr, stubName, TypePtr::BOTTOM,
5207                                    x_start, xlen, y_start, ylen, z_start, zlen);
5208   } // original reexecute is set back here
5209 
5210   C->set_has_split_ifs(true); // Has chance for split-if optimization
5211   set_result(z);
5212   return true;
5213 }
5214 
5215 //-------------inline_squareToLen------------------------------------
5216 bool LibraryCallKit::inline_squareToLen() {
5217   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5218 
5219   address stubAddr = StubRoutines::squareToLen();
5220   if (stubAddr == NULL) {
5221     return false; // Intrinsic's stub is not implemented on this platform
5222   }
5223   const char* stubName = "squareToLen";
5224 
5225   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5226 
5227   Node* x    = argument(0);
5228   Node* len  = argument(1);
5229   Node* z    = argument(2);
5230   Node* zlen = argument(3);
5231 
5232   x = must_be_not_null(x, true);
5233   z = must_be_not_null(z, true);
5234 
5235   x = access_resolve(x, ACCESS_READ);
5236   z = access_resolve(z, ACCESS_WRITE);
5237 
5238   const Type* x_type = x->Value(&_gvn);
5239   const Type* z_type = z->Value(&_gvn);
5240   const TypeAryPtr* top_x = x_type->isa_aryptr();
5241   const TypeAryPtr* top_z = z_type->isa_aryptr();
5242   if (top_x  == NULL || top_x->klass()  == NULL ||
5243       top_z  == NULL || top_z->klass()  == NULL) {
5244     // failed array check
5245     return false;
5246   }
5247 
5248   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5249   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5250   if (x_elem != T_INT || z_elem != T_INT) {
5251     return false;
5252   }
5253 
5254 
5255   Node* x_start = array_element_address(x, intcon(0), x_elem);
5256   Node* z_start = array_element_address(z, intcon(0), z_elem);
5257 
5258   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5259                                   OptoRuntime::squareToLen_Type(),
5260                                   stubAddr, stubName, TypePtr::BOTTOM,
5261                                   x_start, len, z_start, zlen);
5262 
5263   set_result(z);
5264   return true;
5265 }
5266 
5267 //-------------inline_mulAdd------------------------------------------
5268 bool LibraryCallKit::inline_mulAdd() {
5269   assert(UseMulAddIntrinsic, "not implemented on this platform");
5270 
5271   address stubAddr = StubRoutines::mulAdd();
5272   if (stubAddr == NULL) {
5273     return false; // Intrinsic's stub is not implemented on this platform
5274   }
5275   const char* stubName = "mulAdd";
5276 
5277   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5278 
5279   Node* out      = argument(0);
5280   Node* in       = argument(1);
5281   Node* offset   = argument(2);
5282   Node* len      = argument(3);
5283   Node* k        = argument(4);
5284 
5285   out = must_be_not_null(out, true);
5286 
5287   in = access_resolve(in, ACCESS_READ);
5288   out = access_resolve(out, ACCESS_WRITE);
5289 
5290   const Type* out_type = out->Value(&_gvn);
5291   const Type* in_type = in->Value(&_gvn);
5292   const TypeAryPtr* top_out = out_type->isa_aryptr();
5293   const TypeAryPtr* top_in = in_type->isa_aryptr();
5294   if (top_out  == NULL || top_out->klass()  == NULL ||
5295       top_in == NULL || top_in->klass() == NULL) {
5296     // failed array check
5297     return false;
5298   }
5299 
5300   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5301   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5302   if (out_elem != T_INT || in_elem != T_INT) {
5303     return false;
5304   }
5305 
5306   Node* outlen = load_array_length(out);
5307   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5308   Node* out_start = array_element_address(out, intcon(0), out_elem);
5309   Node* in_start = array_element_address(in, intcon(0), in_elem);
5310 
5311   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5312                                   OptoRuntime::mulAdd_Type(),
5313                                   stubAddr, stubName, TypePtr::BOTTOM,
5314                                   out_start,in_start, new_offset, len, k);
5315   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5316   set_result(result);
5317   return true;
5318 }
5319 
5320 //-------------inline_montgomeryMultiply-----------------------------------
5321 bool LibraryCallKit::inline_montgomeryMultiply() {
5322   address stubAddr = StubRoutines::montgomeryMultiply();
5323   if (stubAddr == NULL) {
5324     return false; // Intrinsic's stub is not implemented on this platform
5325   }
5326 
5327   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5328   const char* stubName = "montgomery_multiply";
5329 
5330   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5331 
5332   Node* a    = argument(0);
5333   Node* b    = argument(1);
5334   Node* n    = argument(2);
5335   Node* len  = argument(3);
5336   Node* inv  = argument(4);
5337   Node* m    = argument(6);
5338 
5339   a = access_resolve(a, ACCESS_READ);
5340   b = access_resolve(b, ACCESS_READ);
5341   n = access_resolve(n, ACCESS_READ);
5342   m = access_resolve(m, ACCESS_WRITE);
5343 
5344   const Type* a_type = a->Value(&_gvn);
5345   const TypeAryPtr* top_a = a_type->isa_aryptr();
5346   const Type* b_type = b->Value(&_gvn);
5347   const TypeAryPtr* top_b = b_type->isa_aryptr();
5348   const Type* n_type = a->Value(&_gvn);
5349   const TypeAryPtr* top_n = n_type->isa_aryptr();
5350   const Type* m_type = a->Value(&_gvn);
5351   const TypeAryPtr* top_m = m_type->isa_aryptr();
5352   if (top_a  == NULL || top_a->klass()  == NULL ||
5353       top_b == NULL || top_b->klass()  == NULL ||
5354       top_n == NULL || top_n->klass()  == NULL ||
5355       top_m == NULL || top_m->klass()  == NULL) {
5356     // failed array check
5357     return false;
5358   }
5359 
5360   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5361   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5362   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5363   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5364   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5365     return false;
5366   }
5367 
5368   // Make the call
5369   {
5370     Node* a_start = array_element_address(a, intcon(0), a_elem);
5371     Node* b_start = array_element_address(b, intcon(0), b_elem);
5372     Node* n_start = array_element_address(n, intcon(0), n_elem);
5373     Node* m_start = array_element_address(m, intcon(0), m_elem);
5374 
5375     Node* call = make_runtime_call(RC_LEAF,
5376                                    OptoRuntime::montgomeryMultiply_Type(),
5377                                    stubAddr, stubName, TypePtr::BOTTOM,
5378                                    a_start, b_start, n_start, len, inv, top(),
5379                                    m_start);
5380     set_result(m);
5381   }
5382 
5383   return true;
5384 }
5385 
5386 bool LibraryCallKit::inline_montgomerySquare() {
5387   address stubAddr = StubRoutines::montgomerySquare();
5388   if (stubAddr == NULL) {
5389     return false; // Intrinsic's stub is not implemented on this platform
5390   }
5391 
5392   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5393   const char* stubName = "montgomery_square";
5394 
5395   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5396 
5397   Node* a    = argument(0);
5398   Node* n    = argument(1);
5399   Node* len  = argument(2);
5400   Node* inv  = argument(3);
5401   Node* m    = argument(5);
5402 
5403   a = access_resolve(a, ACCESS_READ);
5404   n = access_resolve(n, ACCESS_READ);
5405   m = access_resolve(m, ACCESS_WRITE);
5406 
5407   const Type* a_type = a->Value(&_gvn);
5408   const TypeAryPtr* top_a = a_type->isa_aryptr();
5409   const Type* n_type = a->Value(&_gvn);
5410   const TypeAryPtr* top_n = n_type->isa_aryptr();
5411   const Type* m_type = a->Value(&_gvn);
5412   const TypeAryPtr* top_m = m_type->isa_aryptr();
5413   if (top_a  == NULL || top_a->klass()  == NULL ||
5414       top_n == NULL || top_n->klass()  == NULL ||
5415       top_m == NULL || top_m->klass()  == NULL) {
5416     // failed array check
5417     return false;
5418   }
5419 
5420   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5421   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5422   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5423   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5424     return false;
5425   }
5426 
5427   // Make the call
5428   {
5429     Node* a_start = array_element_address(a, intcon(0), a_elem);
5430     Node* n_start = array_element_address(n, intcon(0), n_elem);
5431     Node* m_start = array_element_address(m, intcon(0), m_elem);
5432 
5433     Node* call = make_runtime_call(RC_LEAF,
5434                                    OptoRuntime::montgomerySquare_Type(),
5435                                    stubAddr, stubName, TypePtr::BOTTOM,
5436                                    a_start, n_start, len, inv, top(),
5437                                    m_start);
5438     set_result(m);
5439   }
5440 
5441   return true;
5442 }
5443 
5444 //-------------inline_vectorizedMismatch------------------------------
5445 bool LibraryCallKit::inline_vectorizedMismatch() {
5446   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5447 
5448   address stubAddr = StubRoutines::vectorizedMismatch();
5449   if (stubAddr == NULL) {
5450     return false; // Intrinsic's stub is not implemented on this platform
5451   }
5452   const char* stubName = "vectorizedMismatch";
5453   int size_l = callee()->signature()->size();
5454   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5455 
5456   Node* obja = argument(0);
5457   Node* aoffset = argument(1);
5458   Node* objb = argument(3);
5459   Node* boffset = argument(4);
5460   Node* length = argument(6);
5461   Node* scale = argument(7);
5462 
5463   const Type* a_type = obja->Value(&_gvn);
5464   const Type* b_type = objb->Value(&_gvn);
5465   const TypeAryPtr* top_a = a_type->isa_aryptr();
5466   const TypeAryPtr* top_b = b_type->isa_aryptr();
5467   if (top_a == NULL || top_a->klass() == NULL ||
5468     top_b == NULL || top_b->klass() == NULL) {
5469     // failed array check
5470     return false;
5471   }
5472 
5473   Node* call;
5474   jvms()->set_should_reexecute(true);
5475 
5476   obja = access_resolve(obja, ACCESS_READ);
5477   objb = access_resolve(objb, ACCESS_READ);
5478   Node* obja_adr = make_unsafe_address(obja, aoffset, ACCESS_READ);
5479   Node* objb_adr = make_unsafe_address(objb, boffset, ACCESS_READ);
5480 
5481   call = make_runtime_call(RC_LEAF,
5482     OptoRuntime::vectorizedMismatch_Type(),
5483     stubAddr, stubName, TypePtr::BOTTOM,
5484     obja_adr, objb_adr, length, scale);
5485 
5486   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5487   set_result(result);
5488   return true;
5489 }
5490 
5491 /**
5492  * Calculate CRC32 for byte.
5493  * int java.util.zip.CRC32.update(int crc, int b)
5494  */
5495 bool LibraryCallKit::inline_updateCRC32() {
5496   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5497   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5498   // no receiver since it is static method
5499   Node* crc  = argument(0); // type: int
5500   Node* b    = argument(1); // type: int
5501 
5502   /*
5503    *    int c = ~ crc;
5504    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5505    *    b = b ^ (c >>> 8);
5506    *    crc = ~b;
5507    */
5508 
5509   Node* M1 = intcon(-1);
5510   crc = _gvn.transform(new XorINode(crc, M1));
5511   Node* result = _gvn.transform(new XorINode(crc, b));
5512   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5513 
5514   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5515   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5516   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5517   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5518 
5519   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5520   result = _gvn.transform(new XorINode(crc, result));
5521   result = _gvn.transform(new XorINode(result, M1));
5522   set_result(result);
5523   return true;
5524 }
5525 
5526 /**
5527  * Calculate CRC32 for byte[] array.
5528  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5529  */
5530 bool LibraryCallKit::inline_updateBytesCRC32() {
5531   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5532   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5533   // no receiver since it is static method
5534   Node* crc     = argument(0); // type: int
5535   Node* src     = argument(1); // type: oop
5536   Node* offset  = argument(2); // type: int
5537   Node* length  = argument(3); // type: int
5538 
5539   const Type* src_type = src->Value(&_gvn);
5540   const TypeAryPtr* top_src = src_type->isa_aryptr();
5541   if (top_src  == NULL || top_src->klass()  == NULL) {
5542     // failed array check
5543     return false;
5544   }
5545 
5546   // Figure out the size and type of the elements we will be copying.
5547   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5548   if (src_elem != T_BYTE) {
5549     return false;
5550   }
5551 
5552   // 'src_start' points to src array + scaled offset
5553   src = must_be_not_null(src, true);
5554   src = access_resolve(src, ACCESS_READ);
5555   Node* src_start = array_element_address(src, offset, src_elem);
5556 
5557   // We assume that range check is done by caller.
5558   // TODO: generate range check (offset+length < src.length) in debug VM.
5559 
5560   // Call the stub.
5561   address stubAddr = StubRoutines::updateBytesCRC32();
5562   const char *stubName = "updateBytesCRC32";
5563 
5564   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5565                                  stubAddr, stubName, TypePtr::BOTTOM,
5566                                  crc, src_start, length);
5567   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5568   set_result(result);
5569   return true;
5570 }
5571 
5572 /**
5573  * Calculate CRC32 for ByteBuffer.
5574  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5575  */
5576 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5577   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5578   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5579   // no receiver since it is static method
5580   Node* crc     = argument(0); // type: int
5581   Node* src     = argument(1); // type: long
5582   Node* offset  = argument(3); // type: int
5583   Node* length  = argument(4); // type: int
5584 
5585   src = ConvL2X(src);  // adjust Java long to machine word
5586   Node* base = _gvn.transform(new CastX2PNode(src));
5587   offset = ConvI2X(offset);
5588 
5589   // 'src_start' points to src array + scaled offset
5590   Node* src_start = basic_plus_adr(top(), base, offset);
5591 
5592   // Call the stub.
5593   address stubAddr = StubRoutines::updateBytesCRC32();
5594   const char *stubName = "updateBytesCRC32";
5595 
5596   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5597                                  stubAddr, stubName, TypePtr::BOTTOM,
5598                                  crc, src_start, length);
5599   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5600   set_result(result);
5601   return true;
5602 }
5603 
5604 //------------------------------get_table_from_crc32c_class-----------------------
5605 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5606   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5607   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5608 
5609   return table;
5610 }
5611 
5612 //------------------------------inline_updateBytesCRC32C-----------------------
5613 //
5614 // Calculate CRC32C for byte[] array.
5615 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5616 //
5617 bool LibraryCallKit::inline_updateBytesCRC32C() {
5618   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5619   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5620   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5621   // no receiver since it is a static method
5622   Node* crc     = argument(0); // type: int
5623   Node* src     = argument(1); // type: oop
5624   Node* offset  = argument(2); // type: int
5625   Node* end     = argument(3); // type: int
5626 
5627   Node* length = _gvn.transform(new SubINode(end, offset));
5628 
5629   const Type* src_type = src->Value(&_gvn);
5630   const TypeAryPtr* top_src = src_type->isa_aryptr();
5631   if (top_src  == NULL || top_src->klass()  == NULL) {
5632     // failed array check
5633     return false;
5634   }
5635 
5636   // Figure out the size and type of the elements we will be copying.
5637   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5638   if (src_elem != T_BYTE) {
5639     return false;
5640   }
5641 
5642   // 'src_start' points to src array + scaled offset
5643   src = must_be_not_null(src, true);
5644   src = access_resolve(src, ACCESS_READ);
5645   Node* src_start = array_element_address(src, offset, src_elem);
5646 
5647   // static final int[] byteTable in class CRC32C
5648   Node* table = get_table_from_crc32c_class(callee()->holder());
5649   table = must_be_not_null(table, true);
5650   table = access_resolve(table, ACCESS_READ);
5651   Node* table_start = array_element_address(table, intcon(0), T_INT);
5652 
5653   // We assume that range check is done by caller.
5654   // TODO: generate range check (offset+length < src.length) in debug VM.
5655 
5656   // Call the stub.
5657   address stubAddr = StubRoutines::updateBytesCRC32C();
5658   const char *stubName = "updateBytesCRC32C";
5659 
5660   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5661                                  stubAddr, stubName, TypePtr::BOTTOM,
5662                                  crc, src_start, length, table_start);
5663   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5664   set_result(result);
5665   return true;
5666 }
5667 
5668 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5669 //
5670 // Calculate CRC32C for DirectByteBuffer.
5671 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5672 //
5673 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5674   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5675   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5676   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5677   // no receiver since it is a static method
5678   Node* crc     = argument(0); // type: int
5679   Node* src     = argument(1); // type: long
5680   Node* offset  = argument(3); // type: int
5681   Node* end     = argument(4); // type: int
5682 
5683   Node* length = _gvn.transform(new SubINode(end, offset));
5684 
5685   src = ConvL2X(src);  // adjust Java long to machine word
5686   Node* base = _gvn.transform(new CastX2PNode(src));
5687   offset = ConvI2X(offset);
5688 
5689   // 'src_start' points to src array + scaled offset
5690   Node* src_start = basic_plus_adr(top(), base, offset);
5691 
5692   // static final int[] byteTable in class CRC32C
5693   Node* table = get_table_from_crc32c_class(callee()->holder());
5694   table = must_be_not_null(table, true);
5695   table = access_resolve(table, ACCESS_READ);
5696   Node* table_start = array_element_address(table, intcon(0), T_INT);
5697 
5698   // Call the stub.
5699   address stubAddr = StubRoutines::updateBytesCRC32C();
5700   const char *stubName = "updateBytesCRC32C";
5701 
5702   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5703                                  stubAddr, stubName, TypePtr::BOTTOM,
5704                                  crc, src_start, length, table_start);
5705   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5706   set_result(result);
5707   return true;
5708 }
5709 
5710 //------------------------------inline_updateBytesAdler32----------------------
5711 //
5712 // Calculate Adler32 checksum for byte[] array.
5713 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5714 //
5715 bool LibraryCallKit::inline_updateBytesAdler32() {
5716   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5717   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5718   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5719   // no receiver since it is static method
5720   Node* crc     = argument(0); // type: int
5721   Node* src     = argument(1); // type: oop
5722   Node* offset  = argument(2); // type: int
5723   Node* length  = argument(3); // type: int
5724 
5725   const Type* src_type = src->Value(&_gvn);
5726   const TypeAryPtr* top_src = src_type->isa_aryptr();
5727   if (top_src  == NULL || top_src->klass()  == NULL) {
5728     // failed array check
5729     return false;
5730   }
5731 
5732   // Figure out the size and type of the elements we will be copying.
5733   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5734   if (src_elem != T_BYTE) {
5735     return false;
5736   }
5737 
5738   // 'src_start' points to src array + scaled offset
5739   src = access_resolve(src, ACCESS_READ);
5740   Node* src_start = array_element_address(src, offset, src_elem);
5741 
5742   // We assume that range check is done by caller.
5743   // TODO: generate range check (offset+length < src.length) in debug VM.
5744 
5745   // Call the stub.
5746   address stubAddr = StubRoutines::updateBytesAdler32();
5747   const char *stubName = "updateBytesAdler32";
5748 
5749   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5750                                  stubAddr, stubName, TypePtr::BOTTOM,
5751                                  crc, src_start, length);
5752   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5753   set_result(result);
5754   return true;
5755 }
5756 
5757 //------------------------------inline_updateByteBufferAdler32---------------
5758 //
5759 // Calculate Adler32 checksum for DirectByteBuffer.
5760 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5761 //
5762 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5763   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5764   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5765   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5766   // no receiver since it is static method
5767   Node* crc     = argument(0); // type: int
5768   Node* src     = argument(1); // type: long
5769   Node* offset  = argument(3); // type: int
5770   Node* length  = argument(4); // type: int
5771 
5772   src = ConvL2X(src);  // adjust Java long to machine word
5773   Node* base = _gvn.transform(new CastX2PNode(src));
5774   offset = ConvI2X(offset);
5775 
5776   // 'src_start' points to src array + scaled offset
5777   Node* src_start = basic_plus_adr(top(), base, offset);
5778 
5779   // Call the stub.
5780   address stubAddr = StubRoutines::updateBytesAdler32();
5781   const char *stubName = "updateBytesAdler32";
5782 
5783   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5784                                  stubAddr, stubName, TypePtr::BOTTOM,
5785                                  crc, src_start, length);
5786 
5787   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5788   set_result(result);
5789   return true;
5790 }
5791 
5792 //----------------------------inline_reference_get----------------------------
5793 // public T java.lang.ref.Reference.get();
5794 bool LibraryCallKit::inline_reference_get() {
5795   const int referent_offset = java_lang_ref_Reference::referent_offset;
5796   guarantee(referent_offset > 0, "should have already been set");
5797 
5798   // Get the argument:
5799   Node* reference_obj = null_check_receiver();
5800   if (stopped()) return true;
5801 
5802   const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr();
5803   assert(tinst != NULL, "obj is null");
5804   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5805   ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass();
5806   ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"),
5807                                                      ciSymbol::make("Ljava/lang/Object;"),
5808                                                      false);
5809   assert (field != NULL, "undefined field");
5810 
5811   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5812   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5813 
5814   ciInstanceKlass* klass = env()->Object_klass();
5815   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5816 
5817   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
5818   Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators);
5819   // Add memory barrier to prevent commoning reads from this field
5820   // across safepoint since GC can change its value.
5821   insert_mem_bar(Op_MemBarCPUOrder);
5822 
5823   set_result(result);
5824   return true;
5825 }
5826 
5827 
5828 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5829                                               bool is_exact=true, bool is_static=false,
5830                                               ciInstanceKlass * fromKls=NULL) {
5831   if (fromKls == NULL) {
5832     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5833     assert(tinst != NULL, "obj is null");
5834     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5835     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5836     fromKls = tinst->klass()->as_instance_klass();
5837   } else {
5838     assert(is_static, "only for static field access");
5839   }
5840   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5841                                               ciSymbol::make(fieldTypeString),
5842                                               is_static);
5843 
5844   assert (field != NULL, "undefined field");
5845   if (field == NULL) return (Node *) NULL;
5846 
5847   if (is_static) {
5848     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5849     fromObj = makecon(tip);
5850   }
5851 
5852   // Next code  copied from Parse::do_get_xxx():
5853 
5854   // Compute address and memory type.
5855   int offset  = field->offset_in_bytes();
5856   bool is_vol = field->is_volatile();
5857   ciType* field_klass = field->type();
5858   assert(field_klass->is_loaded(), "should be loaded");
5859   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5860   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5861   BasicType bt = field->layout_type();
5862 
5863   // Build the resultant type of the load
5864   const Type *type;
5865   if (bt == T_OBJECT) {
5866     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5867   } else {
5868     type = Type::get_const_basic_type(bt);
5869   }
5870 
5871   DecoratorSet decorators = IN_HEAP;
5872 
5873   if (is_vol) {
5874     decorators |= MO_SEQ_CST;
5875   }
5876 
5877   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
5878 }
5879 
5880 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5881                                                  bool is_exact = true, bool is_static = false,
5882                                                  ciInstanceKlass * fromKls = NULL) {
5883   if (fromKls == NULL) {
5884     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5885     assert(tinst != NULL, "obj is null");
5886     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5887     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5888     fromKls = tinst->klass()->as_instance_klass();
5889   }
5890   else {
5891     assert(is_static, "only for static field access");
5892   }
5893   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5894     ciSymbol::make(fieldTypeString),
5895     is_static);
5896 
5897   assert(field != NULL, "undefined field");
5898   assert(!field->is_volatile(), "not defined for volatile fields");
5899 
5900   if (is_static) {
5901     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5902     fromObj = makecon(tip);
5903   }
5904 
5905   // Next code  copied from Parse::do_get_xxx():
5906 
5907   // Compute address and memory type.
5908   int offset = field->offset_in_bytes();
5909   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5910 
5911   return adr;
5912 }
5913 
5914 //------------------------------inline_aescrypt_Block-----------------------
5915 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5916   address stubAddr = NULL;
5917   const char *stubName;
5918   assert(UseAES, "need AES instruction support");
5919 
5920   switch(id) {
5921   case vmIntrinsics::_aescrypt_encryptBlock:
5922     stubAddr = StubRoutines::aescrypt_encryptBlock();
5923     stubName = "aescrypt_encryptBlock";
5924     break;
5925   case vmIntrinsics::_aescrypt_decryptBlock:
5926     stubAddr = StubRoutines::aescrypt_decryptBlock();
5927     stubName = "aescrypt_decryptBlock";
5928     break;
5929   default:
5930     break;
5931   }
5932   if (stubAddr == NULL) return false;
5933 
5934   Node* aescrypt_object = argument(0);
5935   Node* src             = argument(1);
5936   Node* src_offset      = argument(2);
5937   Node* dest            = argument(3);
5938   Node* dest_offset     = argument(4);
5939 
5940   src = must_be_not_null(src, true);
5941   dest = must_be_not_null(dest, true);
5942 
5943   src = access_resolve(src, ACCESS_READ);
5944   dest = access_resolve(dest, ACCESS_WRITE);
5945 
5946   // (1) src and dest are arrays.
5947   const Type* src_type = src->Value(&_gvn);
5948   const Type* dest_type = dest->Value(&_gvn);
5949   const TypeAryPtr* top_src = src_type->isa_aryptr();
5950   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5951   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5952 
5953   // for the quick and dirty code we will skip all the checks.
5954   // we are just trying to get the call to be generated.
5955   Node* src_start  = src;
5956   Node* dest_start = dest;
5957   if (src_offset != NULL || dest_offset != NULL) {
5958     assert(src_offset != NULL && dest_offset != NULL, "");
5959     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5960     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5961   }
5962 
5963   // now need to get the start of its expanded key array
5964   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5965   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5966   if (k_start == NULL) return false;
5967 
5968   if (Matcher::pass_original_key_for_aes()) {
5969     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5970     // compatibility issues between Java key expansion and SPARC crypto instructions
5971     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5972     if (original_k_start == NULL) return false;
5973 
5974     // Call the stub.
5975     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5976                       stubAddr, stubName, TypePtr::BOTTOM,
5977                       src_start, dest_start, k_start, original_k_start);
5978   } else {
5979     // Call the stub.
5980     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5981                       stubAddr, stubName, TypePtr::BOTTOM,
5982                       src_start, dest_start, k_start);
5983   }
5984 
5985   return true;
5986 }
5987 
5988 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5989 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5990   address stubAddr = NULL;
5991   const char *stubName = NULL;
5992 
5993   assert(UseAES, "need AES instruction support");
5994 
5995   switch(id) {
5996   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5997     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5998     stubName = "cipherBlockChaining_encryptAESCrypt";
5999     break;
6000   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6001     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6002     stubName = "cipherBlockChaining_decryptAESCrypt";
6003     break;
6004   default:
6005     break;
6006   }
6007   if (stubAddr == NULL) return false;
6008 
6009   Node* cipherBlockChaining_object = argument(0);
6010   Node* src                        = argument(1);
6011   Node* src_offset                 = argument(2);
6012   Node* len                        = argument(3);
6013   Node* dest                       = argument(4);
6014   Node* dest_offset                = argument(5);
6015 
6016   src = must_be_not_null(src, false);
6017   dest = must_be_not_null(dest, false);
6018 
6019   src = access_resolve(src, ACCESS_READ);
6020   dest = access_resolve(dest, ACCESS_WRITE);
6021 
6022   // (1) src and dest are arrays.
6023   const Type* src_type = src->Value(&_gvn);
6024   const Type* dest_type = dest->Value(&_gvn);
6025   const TypeAryPtr* top_src = src_type->isa_aryptr();
6026   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6027   assert (top_src  != NULL && top_src->klass()  != NULL
6028           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6029 
6030   // checks are the responsibility of the caller
6031   Node* src_start  = src;
6032   Node* dest_start = dest;
6033   if (src_offset != NULL || dest_offset != NULL) {
6034     assert(src_offset != NULL && dest_offset != NULL, "");
6035     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6036     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6037   }
6038 
6039   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6040   // (because of the predicated logic executed earlier).
6041   // so we cast it here safely.
6042   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6043 
6044   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6045   if (embeddedCipherObj == NULL) return false;
6046 
6047   // cast it to what we know it will be at runtime
6048   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6049   assert(tinst != NULL, "CBC obj is null");
6050   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6051   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6052   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6053 
6054   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6055   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6056   const TypeOopPtr* xtype = aklass->as_instance_type();
6057   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6058   aescrypt_object = _gvn.transform(aescrypt_object);
6059 
6060   // we need to get the start of the aescrypt_object's expanded key array
6061   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6062   if (k_start == NULL) return false;
6063 
6064   // similarly, get the start address of the r vector
6065   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6066   if (objRvec == NULL) return false;
6067   objRvec = access_resolve(objRvec, ACCESS_WRITE);
6068   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6069 
6070   Node* cbcCrypt;
6071   if (Matcher::pass_original_key_for_aes()) {
6072     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6073     // compatibility issues between Java key expansion and SPARC crypto instructions
6074     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6075     if (original_k_start == NULL) return false;
6076 
6077     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6078     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6079                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6080                                  stubAddr, stubName, TypePtr::BOTTOM,
6081                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6082   } else {
6083     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6084     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6085                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6086                                  stubAddr, stubName, TypePtr::BOTTOM,
6087                                  src_start, dest_start, k_start, r_start, len);
6088   }
6089 
6090   // return cipher length (int)
6091   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6092   set_result(retvalue);
6093   return true;
6094 }
6095 
6096 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
6097 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
6098   address stubAddr = NULL;
6099   const char *stubName = NULL;
6100 
6101   assert(UseAES, "need AES instruction support");
6102 
6103   switch (id) {
6104   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
6105     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
6106     stubName = "electronicCodeBook_encryptAESCrypt";
6107     break;
6108   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
6109     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
6110     stubName = "electronicCodeBook_decryptAESCrypt";
6111     break;
6112   default:
6113     break;
6114   }
6115 
6116   if (stubAddr == NULL) return false;
6117 
6118   Node* electronicCodeBook_object = argument(0);
6119   Node* src                       = argument(1);
6120   Node* src_offset                = argument(2);
6121   Node* len                       = argument(3);
6122   Node* dest                      = argument(4);
6123   Node* dest_offset               = argument(5);
6124 
6125   // (1) src and dest are arrays.
6126   const Type* src_type = src->Value(&_gvn);
6127   const Type* dest_type = dest->Value(&_gvn);
6128   const TypeAryPtr* top_src = src_type->isa_aryptr();
6129   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6130   assert(top_src != NULL && top_src->klass() != NULL
6131          &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6132 
6133   // checks are the responsibility of the caller
6134   Node* src_start = src;
6135   Node* dest_start = dest;
6136   if (src_offset != NULL || dest_offset != NULL) {
6137     assert(src_offset != NULL && dest_offset != NULL, "");
6138     src_start = array_element_address(src, src_offset, T_BYTE);
6139     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6140   }
6141 
6142   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6143   // (because of the predicated logic executed earlier).
6144   // so we cast it here safely.
6145   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6146 
6147   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6148   if (embeddedCipherObj == NULL) return false;
6149 
6150   // cast it to what we know it will be at runtime
6151   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
6152   assert(tinst != NULL, "ECB obj is null");
6153   assert(tinst->klass()->is_loaded(), "ECB obj is not loaded");
6154   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6155   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6156 
6157   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6158   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6159   const TypeOopPtr* xtype = aklass->as_instance_type();
6160   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6161   aescrypt_object = _gvn.transform(aescrypt_object);
6162 
6163   // we need to get the start of the aescrypt_object's expanded key array
6164   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6165   if (k_start == NULL) return false;
6166 
6167   Node* ecbCrypt;
6168   if (Matcher::pass_original_key_for_aes()) {
6169     // no SPARC version for AES/ECB intrinsics now.
6170     return false;
6171   }
6172   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6173   ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
6174                                OptoRuntime::electronicCodeBook_aescrypt_Type(),
6175                                stubAddr, stubName, TypePtr::BOTTOM,
6176                                src_start, dest_start, k_start, len);
6177 
6178   // return cipher length (int)
6179   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
6180   set_result(retvalue);
6181   return true;
6182 }
6183 
6184 //------------------------------inline_counterMode_AESCrypt-----------------------
6185 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6186   assert(UseAES, "need AES instruction support");
6187   if (!UseAESCTRIntrinsics) return false;
6188 
6189   address stubAddr = NULL;
6190   const char *stubName = NULL;
6191   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6192     stubAddr = StubRoutines::counterMode_AESCrypt();
6193     stubName = "counterMode_AESCrypt";
6194   }
6195   if (stubAddr == NULL) return false;
6196 
6197   Node* counterMode_object = argument(0);
6198   Node* src = argument(1);
6199   Node* src_offset = argument(2);
6200   Node* len = argument(3);
6201   Node* dest = argument(4);
6202   Node* dest_offset = argument(5);
6203 
6204   src = access_resolve(src, ACCESS_READ);
6205   dest = access_resolve(dest, ACCESS_WRITE);
6206   counterMode_object = access_resolve(counterMode_object, ACCESS_WRITE);
6207 
6208   // (1) src and dest are arrays.
6209   const Type* src_type = src->Value(&_gvn);
6210   const Type* dest_type = dest->Value(&_gvn);
6211   const TypeAryPtr* top_src = src_type->isa_aryptr();
6212   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6213   assert(top_src != NULL && top_src->klass() != NULL &&
6214          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6215 
6216   // checks are the responsibility of the caller
6217   Node* src_start = src;
6218   Node* dest_start = dest;
6219   if (src_offset != NULL || dest_offset != NULL) {
6220     assert(src_offset != NULL && dest_offset != NULL, "");
6221     src_start = array_element_address(src, src_offset, T_BYTE);
6222     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6223   }
6224 
6225   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6226   // (because of the predicated logic executed earlier).
6227   // so we cast it here safely.
6228   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6229   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6230   if (embeddedCipherObj == NULL) return false;
6231   // cast it to what we know it will be at runtime
6232   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6233   assert(tinst != NULL, "CTR obj is null");
6234   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6235   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6236   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6237   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6238   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6239   const TypeOopPtr* xtype = aklass->as_instance_type();
6240   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6241   aescrypt_object = _gvn.transform(aescrypt_object);
6242   // we need to get the start of the aescrypt_object's expanded key array
6243   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6244   if (k_start == NULL) return false;
6245   // similarly, get the start address of the r vector
6246   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6247   if (obj_counter == NULL) return false;
6248   obj_counter = access_resolve(obj_counter, ACCESS_WRITE);
6249   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6250 
6251   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6252   if (saved_encCounter == NULL) return false;
6253   saved_encCounter = access_resolve(saved_encCounter, ACCESS_WRITE);
6254   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6255   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6256 
6257   Node* ctrCrypt;
6258   if (Matcher::pass_original_key_for_aes()) {
6259     // no SPARC version for AES/CTR intrinsics now.
6260     return false;
6261   }
6262   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6263   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6264                                OptoRuntime::counterMode_aescrypt_Type(),
6265                                stubAddr, stubName, TypePtr::BOTTOM,
6266                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6267 
6268   // return cipher length (int)
6269   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6270   set_result(retvalue);
6271   return true;
6272 }
6273 
6274 //------------------------------get_key_start_from_aescrypt_object-----------------------
6275 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6276 #if defined(PPC64) || defined(S390)
6277   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6278   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6279   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6280   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6281   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6282   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6283   if (objSessionK == NULL) {
6284     return (Node *) NULL;
6285   }
6286   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6287 #else
6288   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6289 #endif // PPC64
6290   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6291   if (objAESCryptKey == NULL) return (Node *) NULL;
6292 
6293   // now have the array, need to get the start address of the K array
6294   objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ);
6295   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6296   return k_start;
6297 }
6298 
6299 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6300 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6301   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6302   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6303   if (objAESCryptKey == NULL) return (Node *) NULL;
6304 
6305   // now have the array, need to get the start address of the lastKey array
6306   objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ);
6307   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6308   return original_k_start;
6309 }
6310 
6311 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6312 // Return node representing slow path of predicate check.
6313 // the pseudo code we want to emulate with this predicate is:
6314 // for encryption:
6315 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6316 // for decryption:
6317 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6318 //    note cipher==plain is more conservative than the original java code but that's OK
6319 //
6320 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6321   // The receiver was checked for NULL already.
6322   Node* objCBC = argument(0);
6323 
6324   Node* src = argument(1);
6325   Node* dest = argument(4);
6326 
6327   // Load embeddedCipher field of CipherBlockChaining object.
6328   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6329 
6330   // get AESCrypt klass for instanceOf check
6331   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6332   // will have same classloader as CipherBlockChaining object
6333   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6334   assert(tinst != NULL, "CBCobj is null");
6335   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6336 
6337   // we want to do an instanceof comparison against the AESCrypt class
6338   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6339   if (!klass_AESCrypt->is_loaded()) {
6340     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6341     Node* ctrl = control();
6342     set_control(top()); // no regular fast path
6343     return ctrl;
6344   }
6345 
6346   src = must_be_not_null(src, true);
6347   dest = must_be_not_null(dest, true);
6348 
6349   // Resolve oops to stable for CmpP below.
6350   src = access_resolve(src, 0);
6351   dest = access_resolve(dest, 0);
6352 
6353   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6354 
6355   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6356   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6357   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6358 
6359   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6360 
6361   // for encryption, we are done
6362   if (!decrypting)
6363     return instof_false;  // even if it is NULL
6364 
6365   // for decryption, we need to add a further check to avoid
6366   // taking the intrinsic path when cipher and plain are the same
6367   // see the original java code for why.
6368   RegionNode* region = new RegionNode(3);
6369   region->init_req(1, instof_false);
6370 
6371   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6372   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6373   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6374   region->init_req(2, src_dest_conjoint);
6375 
6376   record_for_igvn(region);
6377   return _gvn.transform(region);
6378 }
6379 
6380 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
6381 // Return node representing slow path of predicate check.
6382 // the pseudo code we want to emulate with this predicate is:
6383 // for encryption:
6384 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6385 // for decryption:
6386 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6387 //    note cipher==plain is more conservative than the original java code but that's OK
6388 //
6389 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
6390   // The receiver was checked for NULL already.
6391   Node* objECB = argument(0);
6392 
6393   // Load embeddedCipher field of ElectronicCodeBook object.
6394   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6395 
6396   // get AESCrypt klass for instanceOf check
6397   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6398   // will have same classloader as ElectronicCodeBook object
6399   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
6400   assert(tinst != NULL, "ECBobj is null");
6401   assert(tinst->klass()->is_loaded(), "ECBobj is not loaded");
6402 
6403   // we want to do an instanceof comparison against the AESCrypt class
6404   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6405   if (!klass_AESCrypt->is_loaded()) {
6406     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6407     Node* ctrl = control();
6408     set_control(top()); // no regular fast path
6409     return ctrl;
6410   }
6411   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6412 
6413   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6414   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6415   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6416 
6417   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6418 
6419   // for encryption, we are done
6420   if (!decrypting)
6421     return instof_false;  // even if it is NULL
6422 
6423   // for decryption, we need to add a further check to avoid
6424   // taking the intrinsic path when cipher and plain are the same
6425   // see the original java code for why.
6426   RegionNode* region = new RegionNode(3);
6427   region->init_req(1, instof_false);
6428   Node* src = argument(1);
6429   Node* dest = argument(4);
6430   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6431   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6432   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6433   region->init_req(2, src_dest_conjoint);
6434 
6435   record_for_igvn(region);
6436   return _gvn.transform(region);
6437 }
6438 
6439 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6440 // Return node representing slow path of predicate check.
6441 // the pseudo code we want to emulate with this predicate is:
6442 // for encryption:
6443 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6444 // for decryption:
6445 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6446 //    note cipher==plain is more conservative than the original java code but that's OK
6447 //
6448 
6449 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6450   // The receiver was checked for NULL already.
6451   Node* objCTR = argument(0);
6452 
6453   // Load embeddedCipher field of CipherBlockChaining object.
6454   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6455 
6456   // get AESCrypt klass for instanceOf check
6457   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6458   // will have same classloader as CipherBlockChaining object
6459   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6460   assert(tinst != NULL, "CTRobj is null");
6461   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6462 
6463   // we want to do an instanceof comparison against the AESCrypt class
6464   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6465   if (!klass_AESCrypt->is_loaded()) {
6466     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6467     Node* ctrl = control();
6468     set_control(top()); // no regular fast path
6469     return ctrl;
6470   }
6471 
6472   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6473   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6474   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6475   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6476   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6477 
6478   return instof_false; // even if it is NULL
6479 }
6480 
6481 //------------------------------inline_ghash_processBlocks
6482 bool LibraryCallKit::inline_ghash_processBlocks() {
6483   address stubAddr;
6484   const char *stubName;
6485   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6486 
6487   stubAddr = StubRoutines::ghash_processBlocks();
6488   stubName = "ghash_processBlocks";
6489 
6490   Node* data           = argument(0);
6491   Node* offset         = argument(1);
6492   Node* len            = argument(2);
6493   Node* state          = argument(3);
6494   Node* subkeyH        = argument(4);
6495 
6496   state = must_be_not_null(state, true);
6497   subkeyH = must_be_not_null(subkeyH, true);
6498   data = must_be_not_null(data, true);
6499 
6500   state = access_resolve(state, ACCESS_WRITE);
6501   subkeyH = access_resolve(subkeyH, ACCESS_READ);
6502   data = access_resolve(data, ACCESS_READ);
6503 
6504   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6505   assert(state_start, "state is NULL");
6506   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6507   assert(subkeyH_start, "subkeyH is NULL");
6508   Node* data_start  = array_element_address(data, offset, T_BYTE);
6509   assert(data_start, "data is NULL");
6510 
6511   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6512                                   OptoRuntime::ghash_processBlocks_Type(),
6513                                   stubAddr, stubName, TypePtr::BOTTOM,
6514                                   state_start, subkeyH_start, data_start, len);
6515   return true;
6516 }
6517 
6518 bool LibraryCallKit::inline_base64_encodeBlock() {
6519   address stubAddr;
6520   const char *stubName;
6521   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
6522   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
6523   stubAddr = StubRoutines::base64_encodeBlock();
6524   stubName = "encodeBlock";
6525 
6526   if (!stubAddr) return false;
6527   Node* base64obj = argument(0);
6528   Node* src = argument(1);
6529   Node* offset = argument(2);
6530   Node* len = argument(3);
6531   Node* dest = argument(4);
6532   Node* dp = argument(5);
6533   Node* isURL = argument(6);
6534 
6535   src = must_be_not_null(src, true);
6536   src = access_resolve(src, ACCESS_READ);
6537   dest = must_be_not_null(dest, true);
6538   dest = access_resolve(dest, ACCESS_WRITE);
6539 
6540   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
6541   assert(src_start, "source array is NULL");
6542   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
6543   assert(dest_start, "destination array is NULL");
6544 
6545   Node* base64 = make_runtime_call(RC_LEAF,
6546                                    OptoRuntime::base64_encodeBlock_Type(),
6547                                    stubAddr, stubName, TypePtr::BOTTOM,
6548                                    src_start, offset, len, dest_start, dp, isURL);
6549   return true;
6550 }
6551 
6552 //------------------------------inline_sha_implCompress-----------------------
6553 //
6554 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6555 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6556 //
6557 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6558 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6559 //
6560 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6561 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6562 //
6563 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6564   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6565 
6566   Node* sha_obj = argument(0);
6567   Node* src     = argument(1); // type oop
6568   Node* ofs     = argument(2); // type int
6569 
6570   const Type* src_type = src->Value(&_gvn);
6571   const TypeAryPtr* top_src = src_type->isa_aryptr();
6572   if (top_src  == NULL || top_src->klass()  == NULL) {
6573     // failed array check
6574     return false;
6575   }
6576   // Figure out the size and type of the elements we will be copying.
6577   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6578   if (src_elem != T_BYTE) {
6579     return false;
6580   }
6581   // 'src_start' points to src array + offset
6582   src = must_be_not_null(src, true);
6583   src = access_resolve(src, ACCESS_READ);
6584   Node* src_start = array_element_address(src, ofs, src_elem);
6585   Node* state = NULL;
6586   address stubAddr;
6587   const char *stubName;
6588 
6589   switch(id) {
6590   case vmIntrinsics::_sha_implCompress:
6591     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6592     state = get_state_from_sha_object(sha_obj);
6593     stubAddr = StubRoutines::sha1_implCompress();
6594     stubName = "sha1_implCompress";
6595     break;
6596   case vmIntrinsics::_sha2_implCompress:
6597     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6598     state = get_state_from_sha_object(sha_obj);
6599     stubAddr = StubRoutines::sha256_implCompress();
6600     stubName = "sha256_implCompress";
6601     break;
6602   case vmIntrinsics::_sha5_implCompress:
6603     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6604     state = get_state_from_sha5_object(sha_obj);
6605     stubAddr = StubRoutines::sha512_implCompress();
6606     stubName = "sha512_implCompress";
6607     break;
6608   default:
6609     fatal_unexpected_iid(id);
6610     return false;
6611   }
6612   if (state == NULL) return false;
6613 
6614   assert(stubAddr != NULL, "Stub is generated");
6615   if (stubAddr == NULL) return false;
6616 
6617   // Call the stub.
6618   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6619                                  stubAddr, stubName, TypePtr::BOTTOM,
6620                                  src_start, state);
6621 
6622   return true;
6623 }
6624 
6625 //------------------------------inline_digestBase_implCompressMB-----------------------
6626 //
6627 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6628 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6629 //
6630 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6631   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6632          "need SHA1/SHA256/SHA512 instruction support");
6633   assert((uint)predicate < 3, "sanity");
6634   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6635 
6636   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6637   Node* src            = argument(1); // byte[] array
6638   Node* ofs            = argument(2); // type int
6639   Node* limit          = argument(3); // type int
6640 
6641   const Type* src_type = src->Value(&_gvn);
6642   const TypeAryPtr* top_src = src_type->isa_aryptr();
6643   if (top_src  == NULL || top_src->klass()  == NULL) {
6644     // failed array check
6645     return false;
6646   }
6647   // Figure out the size and type of the elements we will be copying.
6648   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6649   if (src_elem != T_BYTE) {
6650     return false;
6651   }
6652   // 'src_start' points to src array + offset
6653   src = must_be_not_null(src, false);
6654   src = access_resolve(src, ACCESS_READ);
6655   Node* src_start = array_element_address(src, ofs, src_elem);
6656 
6657   const char* klass_SHA_name = NULL;
6658   const char* stub_name = NULL;
6659   address     stub_addr = NULL;
6660   bool        long_state = false;
6661 
6662   switch (predicate) {
6663   case 0:
6664     if (UseSHA1Intrinsics) {
6665       klass_SHA_name = "sun/security/provider/SHA";
6666       stub_name = "sha1_implCompressMB";
6667       stub_addr = StubRoutines::sha1_implCompressMB();
6668     }
6669     break;
6670   case 1:
6671     if (UseSHA256Intrinsics) {
6672       klass_SHA_name = "sun/security/provider/SHA2";
6673       stub_name = "sha256_implCompressMB";
6674       stub_addr = StubRoutines::sha256_implCompressMB();
6675     }
6676     break;
6677   case 2:
6678     if (UseSHA512Intrinsics) {
6679       klass_SHA_name = "sun/security/provider/SHA5";
6680       stub_name = "sha512_implCompressMB";
6681       stub_addr = StubRoutines::sha512_implCompressMB();
6682       long_state = true;
6683     }
6684     break;
6685   default:
6686     fatal("unknown SHA intrinsic predicate: %d", predicate);
6687   }
6688   if (klass_SHA_name != NULL) {
6689     assert(stub_addr != NULL, "Stub is generated");
6690     if (stub_addr == NULL) return false;
6691 
6692     // get DigestBase klass to lookup for SHA klass
6693     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6694     assert(tinst != NULL, "digestBase_obj is not instance???");
6695     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6696 
6697     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6698     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6699     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6700     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6701   }
6702   return false;
6703 }
6704 //------------------------------inline_sha_implCompressMB-----------------------
6705 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6706                                                bool long_state, address stubAddr, const char *stubName,
6707                                                Node* src_start, Node* ofs, Node* limit) {
6708   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6709   const TypeOopPtr* xtype = aklass->as_instance_type();
6710   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6711   sha_obj = _gvn.transform(sha_obj);
6712 
6713   Node* state;
6714   if (long_state) {
6715     state = get_state_from_sha5_object(sha_obj);
6716   } else {
6717     state = get_state_from_sha_object(sha_obj);
6718   }
6719   if (state == NULL) return false;
6720 
6721   // Call the stub.
6722   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6723                                  OptoRuntime::digestBase_implCompressMB_Type(),
6724                                  stubAddr, stubName, TypePtr::BOTTOM,
6725                                  src_start, state, ofs, limit);
6726   // return ofs (int)
6727   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6728   set_result(result);
6729 
6730   return true;
6731 }
6732 
6733 //------------------------------get_state_from_sha_object-----------------------
6734 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6735   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6736   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6737   if (sha_state == NULL) return (Node *) NULL;
6738 
6739   // now have the array, need to get the start address of the state array
6740   sha_state = access_resolve(sha_state, ACCESS_WRITE);
6741   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6742   return state;
6743 }
6744 
6745 //------------------------------get_state_from_sha5_object-----------------------
6746 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6747   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6748   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6749   if (sha_state == NULL) return (Node *) NULL;
6750 
6751   // now have the array, need to get the start address of the state array
6752   sha_state = access_resolve(sha_state, ACCESS_WRITE);
6753   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6754   return state;
6755 }
6756 
6757 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6758 // Return node representing slow path of predicate check.
6759 // the pseudo code we want to emulate with this predicate is:
6760 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6761 //
6762 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6763   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6764          "need SHA1/SHA256/SHA512 instruction support");
6765   assert((uint)predicate < 3, "sanity");
6766 
6767   // The receiver was checked for NULL already.
6768   Node* digestBaseObj = argument(0);
6769 
6770   // get DigestBase klass for instanceOf check
6771   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6772   assert(tinst != NULL, "digestBaseObj is null");
6773   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6774 
6775   const char* klass_SHA_name = NULL;
6776   switch (predicate) {
6777   case 0:
6778     if (UseSHA1Intrinsics) {
6779       // we want to do an instanceof comparison against the SHA class
6780       klass_SHA_name = "sun/security/provider/SHA";
6781     }
6782     break;
6783   case 1:
6784     if (UseSHA256Intrinsics) {
6785       // we want to do an instanceof comparison against the SHA2 class
6786       klass_SHA_name = "sun/security/provider/SHA2";
6787     }
6788     break;
6789   case 2:
6790     if (UseSHA512Intrinsics) {
6791       // we want to do an instanceof comparison against the SHA5 class
6792       klass_SHA_name = "sun/security/provider/SHA5";
6793     }
6794     break;
6795   default:
6796     fatal("unknown SHA intrinsic predicate: %d", predicate);
6797   }
6798 
6799   ciKlass* klass_SHA = NULL;
6800   if (klass_SHA_name != NULL) {
6801     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6802   }
6803   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6804     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6805     Node* ctrl = control();
6806     set_control(top()); // no intrinsic path
6807     return ctrl;
6808   }
6809   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6810 
6811   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6812   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6813   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6814   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6815 
6816   return instof_false;  // even if it is NULL
6817 }
6818 
6819 //-------------inline_fma-----------------------------------
6820 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6821   Node *a = NULL;
6822   Node *b = NULL;
6823   Node *c = NULL;
6824   Node* result = NULL;
6825   switch (id) {
6826   case vmIntrinsics::_fmaD:
6827     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6828     // no receiver since it is static method
6829     a = round_double_node(argument(0));
6830     b = round_double_node(argument(2));
6831     c = round_double_node(argument(4));
6832     result = _gvn.transform(new FmaDNode(control(), a, b, c));
6833     break;
6834   case vmIntrinsics::_fmaF:
6835     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6836     a = argument(0);
6837     b = argument(1);
6838     c = argument(2);
6839     result = _gvn.transform(new FmaFNode(control(), a, b, c));
6840     break;
6841   default:
6842     fatal_unexpected_iid(id);  break;
6843   }
6844   set_result(result);
6845   return true;
6846 }
6847 
6848 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
6849   // argument(0) is receiver
6850   Node* codePoint = argument(1);
6851   Node* n = NULL;
6852 
6853   switch (id) {
6854     case vmIntrinsics::_isDigit :
6855       n = new DigitNode(control(), codePoint);
6856       break;
6857     case vmIntrinsics::_isLowerCase :
6858       n = new LowerCaseNode(control(), codePoint);
6859       break;
6860     case vmIntrinsics::_isUpperCase :
6861       n = new UpperCaseNode(control(), codePoint);
6862       break;
6863     case vmIntrinsics::_isWhitespace :
6864       n = new WhitespaceNode(control(), codePoint);
6865       break;
6866     default:
6867       fatal_unexpected_iid(id);
6868   }
6869 
6870   set_result(_gvn.transform(n));
6871   return true;
6872 }
6873 
6874 //------------------------------inline_fp_min_max------------------------------
6875 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
6876 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
6877 
6878   // The intrinsic should be used only when the API branches aren't predictable,
6879   // the last one performing the most important comparison. The following heuristic
6880   // uses the branch statistics to eventually bail out if necessary.
6881 
6882   ciMethodData *md = callee()->method_data();
6883 
6884   if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) {
6885     ciCallProfile cp = caller()->call_profile_at_bci(bci());
6886 
6887     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
6888       // Bail out if the call-site didn't contribute enough to the statistics.
6889       return false;
6890     }
6891 
6892     uint taken = 0, not_taken = 0;
6893 
6894     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
6895       if (p->is_BranchData()) {
6896         taken = ((ciBranchData*)p)->taken();
6897         not_taken = ((ciBranchData*)p)->not_taken();
6898       }
6899     }
6900 
6901     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
6902     balance = balance < 0 ? -balance : balance;
6903     if ( balance > 0.2 ) {
6904       // Bail out if the most important branch is predictable enough.
6905       return false;
6906     }
6907   }
6908 */
6909 
6910   Node *a = NULL;
6911   Node *b = NULL;
6912   Node *n = NULL;
6913   switch (id) {
6914   case vmIntrinsics::_maxF:
6915   case vmIntrinsics::_minF:
6916     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
6917     a = argument(0);
6918     b = argument(1);
6919     break;
6920   case vmIntrinsics::_maxD:
6921   case vmIntrinsics::_minD:
6922     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
6923     a = round_double_node(argument(0));
6924     b = round_double_node(argument(2));
6925     break;
6926   default:
6927     fatal_unexpected_iid(id);
6928     break;
6929   }
6930   switch (id) {
6931   case vmIntrinsics::_maxF:  n = new MaxFNode(a, b);  break;
6932   case vmIntrinsics::_minF:  n = new MinFNode(a, b);  break;
6933   case vmIntrinsics::_maxD:  n = new MaxDNode(a, b);  break;
6934   case vmIntrinsics::_minD:  n = new MinDNode(a, b);  break;
6935   default:  fatal_unexpected_iid(id);  break;
6936   }
6937   set_result(_gvn.transform(n));
6938   return true;
6939 }
6940 
6941 bool LibraryCallKit::inline_profileBoolean() {
6942   Node* counts = argument(1);
6943   const TypeAryPtr* ary = NULL;
6944   ciArray* aobj = NULL;
6945   if (counts->is_Con()
6946       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6947       && (aobj = ary->const_oop()->as_array()) != NULL
6948       && (aobj->length() == 2)) {
6949     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6950     jint false_cnt = aobj->element_value(0).as_int();
6951     jint  true_cnt = aobj->element_value(1).as_int();
6952 
6953     if (C->log() != NULL) {
6954       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6955                      false_cnt, true_cnt);
6956     }
6957 
6958     if (false_cnt + true_cnt == 0) {
6959       // According to profile, never executed.
6960       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6961                           Deoptimization::Action_reinterpret);
6962       return true;
6963     }
6964 
6965     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6966     // is a number of each value occurrences.
6967     Node* result = argument(0);
6968     if (false_cnt == 0 || true_cnt == 0) {
6969       // According to profile, one value has been never seen.
6970       int expected_val = (false_cnt == 0) ? 1 : 0;
6971 
6972       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6973       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6974 
6975       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6976       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6977       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6978 
6979       { // Slow path: uncommon trap for never seen value and then reexecute
6980         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6981         // the value has been seen at least once.
6982         PreserveJVMState pjvms(this);
6983         PreserveReexecuteState preexecs(this);
6984         jvms()->set_should_reexecute(true);
6985 
6986         set_control(slow_path);
6987         set_i_o(i_o());
6988 
6989         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6990                             Deoptimization::Action_reinterpret);
6991       }
6992       // The guard for never seen value enables sharpening of the result and
6993       // returning a constant. It allows to eliminate branches on the same value
6994       // later on.
6995       set_control(fast_path);
6996       result = intcon(expected_val);
6997     }
6998     // Stop profiling.
6999     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
7000     // By replacing method body with profile data (represented as ProfileBooleanNode
7001     // on IR level) we effectively disable profiling.
7002     // It enables full speed execution once optimized code is generated.
7003     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
7004     C->record_for_igvn(profile);
7005     set_result(profile);
7006     return true;
7007   } else {
7008     // Continue profiling.
7009     // Profile data isn't available at the moment. So, execute method's bytecode version.
7010     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
7011     // is compiled and counters aren't available since corresponding MethodHandle
7012     // isn't a compile-time constant.
7013     return false;
7014   }
7015 }
7016 
7017 bool LibraryCallKit::inline_isCompileConstant() {
7018   Node* n = argument(0);
7019   set_result(n->is_Con() ? intcon(1) : intcon(0));
7020   return true;
7021 }