1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.jvm;
  27 import java.util.*;
  28 
  29 import javax.lang.model.element.ElementKind;
  30 
  31 import com.sun.tools.javac.util.*;
  32 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  33 import com.sun.tools.javac.util.List;
  34 import com.sun.tools.javac.code.*;
  35 import com.sun.tools.javac.comp.*;
  36 import com.sun.tools.javac.tree.*;
  37 
  38 import com.sun.tools.javac.code.Symbol.*;
  39 import com.sun.tools.javac.code.Type.*;
  40 import com.sun.tools.javac.jvm.Code.*;
  41 import com.sun.tools.javac.jvm.Items.*;
  42 import com.sun.tools.javac.tree.JCTree.*;
  43 
  44 import static com.sun.tools.javac.code.Flags.*;
  45 import static com.sun.tools.javac.code.Kinds.*;
  46 import static com.sun.tools.javac.code.TypeTags.*;
  47 import static com.sun.tools.javac.jvm.ByteCodes.*;
  48 import static com.sun.tools.javac.jvm.CRTFlags.*;
  49 import static com.sun.tools.javac.main.OptionName.*;
  50 
  51 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
  52  *
  53  *  <p><b>This is NOT part of any supported API.
  54  *  If you write code that depends on this, you do so at your own risk.
  55  *  This code and its internal interfaces are subject to change or
  56  *  deletion without notice.</b>
  57  */
  58 public class Gen extends JCTree.Visitor {
  59     protected static final Context.Key<Gen> genKey =
  60         new Context.Key<Gen>();
  61 
  62     private final Log log;
  63     private final Symtab syms;
  64     private final Check chk;
  65     private final Resolve rs;
  66     private final TreeMaker make;
  67     private final Names names;
  68     private final Target target;
  69     private final Type stringBufferType;
  70     private final Map<Type,Symbol> stringBufferAppend;
  71     private Name accessDollar;
  72     private final Types types;
  73 
  74     /** Switch: GJ mode?
  75      */
  76     private final boolean allowGenerics;
  77 
  78     /** Set when Miranda method stubs are to be generated. */
  79     private final boolean generateIproxies;
  80 
  81     /** Format of stackmap tables to be generated. */
  82     private final Code.StackMapFormat stackMap;
  83 
  84     /** A type that serves as the expected type for all method expressions.
  85      */
  86     private final Type methodType;
  87 
  88     public static Gen instance(Context context) {
  89         Gen instance = context.get(genKey);
  90         if (instance == null)
  91             instance = new Gen(context);
  92         return instance;
  93     }
  94 
  95     protected Gen(Context context) {
  96         context.put(genKey, this);
  97 
  98         names = Names.instance(context);
  99         log = Log.instance(context);
 100         syms = Symtab.instance(context);
 101         chk = Check.instance(context);
 102         rs = Resolve.instance(context);
 103         make = TreeMaker.instance(context);
 104         target = Target.instance(context);
 105         types = Types.instance(context);
 106         methodType = new MethodType(null, null, null, syms.methodClass);
 107         allowGenerics = Source.instance(context).allowGenerics();
 108         stringBufferType = target.useStringBuilder()
 109             ? syms.stringBuilderType
 110             : syms.stringBufferType;
 111         stringBufferAppend = new HashMap<Type,Symbol>();
 112         accessDollar = names.
 113             fromString("access" + target.syntheticNameChar());
 114 
 115         Options options = Options.instance(context);
 116         lineDebugInfo =
 117             options.isUnset(G_CUSTOM) ||
 118             options.isSet(G_CUSTOM, "lines");
 119         varDebugInfo =
 120             options.isUnset(G_CUSTOM)
 121             ? options.isSet(G)
 122             : options.isSet(G_CUSTOM, "vars");
 123         genCrt = options.isSet(XJCOV);
 124         debugCode = options.isSet("debugcode");
 125         allowInvokedynamic = target.hasInvokedynamic() || options.isSet("invokedynamic");
 126 
 127         generateIproxies =
 128             target.requiresIproxy() ||
 129             options.isSet("miranda");
 130 
 131         if (target.generateStackMapTable()) {
 132             // ignore cldc because we cannot have both stackmap formats
 133             this.stackMap = StackMapFormat.JSR202;
 134         } else {
 135             if (target.generateCLDCStackmap()) {
 136                 this.stackMap = StackMapFormat.CLDC;
 137             } else {
 138                 this.stackMap = StackMapFormat.NONE;
 139             }
 140         }
 141 
 142         // by default, avoid jsr's for simple finalizers
 143         int setjsrlimit = 50;
 144         String jsrlimitString = options.get("jsrlimit");
 145         if (jsrlimitString != null) {
 146             try {
 147                 setjsrlimit = Integer.parseInt(jsrlimitString);
 148             } catch (NumberFormatException ex) {
 149                 // ignore ill-formed numbers for jsrlimit
 150             }
 151         }
 152         this.jsrlimit = setjsrlimit;
 153         this.useJsrLocally = false; // reset in visitTry
 154     }
 155 
 156     /** Switches
 157      */
 158     private final boolean lineDebugInfo;
 159     private final boolean varDebugInfo;
 160     private final boolean genCrt;
 161     private final boolean debugCode;
 162     private final boolean allowInvokedynamic;
 163 
 164     /** Default limit of (approximate) size of finalizer to inline.
 165      *  Zero means always use jsr.  100 or greater means never use
 166      *  jsr.
 167      */
 168     private final int jsrlimit;
 169 
 170     /** True if jsr is used.
 171      */
 172     private boolean useJsrLocally;
 173 
 174     /* Constant pool, reset by genClass.
 175      */
 176     private Pool pool = new Pool();
 177 
 178     /** Code buffer, set by genMethod.
 179      */
 180     private Code code;
 181 
 182     /** Items structure, set by genMethod.
 183      */
 184     private Items items;
 185 
 186     /** Environment for symbol lookup, set by genClass
 187      */
 188     private Env<AttrContext> attrEnv;
 189 
 190     /** The top level tree.
 191      */
 192     private JCCompilationUnit toplevel;
 193 
 194     /** The number of code-gen errors in this class.
 195      */
 196     private int nerrs = 0;
 197 
 198     /** A hash table mapping syntax trees to their ending source positions.
 199      */
 200     private Map<JCTree, Integer> endPositions;
 201 
 202     /** Generate code to load an integer constant.
 203      *  @param n     The integer to be loaded.
 204      */
 205     void loadIntConst(int n) {
 206         items.makeImmediateItem(syms.intType, n).load();
 207     }
 208 
 209     /** The opcode that loads a zero constant of a given type code.
 210      *  @param tc   The given type code (@see ByteCode).
 211      */
 212     public static int zero(int tc) {
 213         switch(tc) {
 214         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
 215             return iconst_0;
 216         case LONGcode:
 217             return lconst_0;
 218         case FLOATcode:
 219             return fconst_0;
 220         case DOUBLEcode:
 221             return dconst_0;
 222         default:
 223             throw new AssertionError("zero");
 224         }
 225     }
 226 
 227     /** The opcode that loads a one constant of a given type code.
 228      *  @param tc   The given type code (@see ByteCode).
 229      */
 230     public static int one(int tc) {
 231         return zero(tc) + 1;
 232     }
 233 
 234     /** Generate code to load -1 of the given type code (either int or long).
 235      *  @param tc   The given type code (@see ByteCode).
 236      */
 237     void emitMinusOne(int tc) {
 238         if (tc == LONGcode) {
 239             items.makeImmediateItem(syms.longType, new Long(-1)).load();
 240         } else {
 241             code.emitop0(iconst_m1);
 242         }
 243     }
 244 
 245     /** Construct a symbol to reflect the qualifying type that should
 246      *  appear in the byte code as per JLS 13.1.
 247      *
 248      *  For target >= 1.2: Clone a method with the qualifier as owner (except
 249      *  for those cases where we need to work around VM bugs).
 250      *
 251      *  For target <= 1.1: If qualified variable or method is defined in a
 252      *  non-accessible class, clone it with the qualifier class as owner.
 253      *
 254      *  @param sym    The accessed symbol
 255      *  @param site   The qualifier's type.
 256      */
 257     Symbol binaryQualifier(Symbol sym, Type site) {
 258 
 259         if (site.tag == ARRAY) {
 260             if (sym == syms.lengthVar ||
 261                 sym.owner != syms.arrayClass)
 262                 return sym;
 263             // array clone can be qualified by the array type in later targets
 264             Symbol qualifier = target.arrayBinaryCompatibility()
 265                 ? new ClassSymbol(Flags.PUBLIC, site.tsym.name,
 266                                   site, syms.noSymbol)
 267                 : syms.objectType.tsym;
 268             return sym.clone(qualifier);
 269         }
 270 
 271         if (sym.owner == site.tsym ||
 272             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
 273             return sym;
 274         }
 275         if (!target.obeyBinaryCompatibility())
 276             return rs.isAccessible(attrEnv, (TypeSymbol)sym.owner)
 277                 ? sym
 278                 : sym.clone(site.tsym);
 279 
 280         if (!target.interfaceFieldsBinaryCompatibility()) {
 281             if ((sym.owner.flags() & INTERFACE) != 0 && sym.kind == VAR)
 282                 return sym;
 283         }
 284 
 285         // leave alone methods inherited from Object
 286         // JLS 13.1.
 287         if (sym.owner == syms.objectType.tsym)
 288             return sym;
 289 
 290         if (!target.interfaceObjectOverridesBinaryCompatibility()) {
 291             if ((sym.owner.flags() & INTERFACE) != 0 &&
 292                 syms.objectType.tsym.members().lookup(sym.name).scope != null)
 293                 return sym;
 294         }
 295 
 296         return sym.clone(site.tsym);
 297     }
 298 
 299     /** Insert a reference to given type in the constant pool,
 300      *  checking for an array with too many dimensions;
 301      *  return the reference's index.
 302      *  @param type   The type for which a reference is inserted.
 303      */
 304     int makeRef(DiagnosticPosition pos, Type type) {
 305         checkDimension(pos, type);
 306         return pool.put(type.tag == CLASS ? (Object)type.tsym : (Object)type);
 307     }
 308 
 309     /** Check if the given type is an array with too many dimensions.
 310      */
 311     private void checkDimension(DiagnosticPosition pos, Type t) {
 312         switch (t.tag) {
 313         case METHOD:
 314             checkDimension(pos, t.getReturnType());
 315             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
 316                 checkDimension(pos, args.head);
 317             break;
 318         case ARRAY:
 319             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
 320                 log.error(pos, "limit.dimensions");
 321                 nerrs++;
 322             }
 323             break;
 324         default:
 325             break;
 326         }
 327     }
 328 
 329     /** Create a tempory variable.
 330      *  @param type   The variable's type.
 331      */
 332     LocalItem makeTemp(Type type) {
 333         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
 334                                     names.empty,
 335                                     type,
 336                                     env.enclMethod.sym);
 337         code.newLocal(v);
 338         return items.makeLocalItem(v);
 339     }
 340 
 341     /** Generate code to call a non-private method or constructor.
 342      *  @param pos         Position to be used for error reporting.
 343      *  @param site        The type of which the method is a member.
 344      *  @param name        The method's name.
 345      *  @param argtypes    The method's argument types.
 346      *  @param isStatic    A flag that indicates whether we call a
 347      *                     static or instance method.
 348      */
 349     void callMethod(DiagnosticPosition pos,
 350                     Type site, Name name, List<Type> argtypes,
 351                     boolean isStatic) {
 352         Symbol msym = rs.
 353             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
 354         if (isStatic) items.makeStaticItem(msym).invoke();
 355         else items.makeMemberItem(msym, name == names.init).invoke();
 356     }
 357 
 358     /** Is the given method definition an access method
 359      *  resulting from a qualified super? This is signified by an odd
 360      *  access code.
 361      */
 362     private boolean isAccessSuper(JCMethodDecl enclMethod) {
 363         return
 364             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
 365             isOddAccessName(enclMethod.name);
 366     }
 367 
 368     /** Does given name start with "access$" and end in an odd digit?
 369      */
 370     private boolean isOddAccessName(Name name) {
 371         return
 372             name.startsWith(accessDollar) &&
 373             (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
 374     }
 375 
 376 /* ************************************************************************
 377  * Non-local exits
 378  *************************************************************************/
 379 
 380     /** Generate code to invoke the finalizer associated with given
 381      *  environment.
 382      *  Any calls to finalizers are appended to the environments `cont' chain.
 383      *  Mark beginning of gap in catch all range for finalizer.
 384      */
 385     void genFinalizer(Env<GenContext> env) {
 386         if (code.isAlive() && env.info.finalize != null)
 387             env.info.finalize.gen();
 388     }
 389 
 390     /** Generate code to call all finalizers of structures aborted by
 391      *  a non-local
 392      *  exit.  Return target environment of the non-local exit.
 393      *  @param target      The tree representing the structure that's aborted
 394      *  @param env         The environment current at the non-local exit.
 395      */
 396     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
 397         Env<GenContext> env1 = env;
 398         while (true) {
 399             genFinalizer(env1);
 400             if (env1.tree == target) break;
 401             env1 = env1.next;
 402         }
 403         return env1;
 404     }
 405 
 406     /** Mark end of gap in catch-all range for finalizer.
 407      *  @param env   the environment which might contain the finalizer
 408      *               (if it does, env.info.gaps != null).
 409      */
 410     void endFinalizerGap(Env<GenContext> env) {
 411         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
 412             env.info.gaps.append(code.curPc());
 413     }
 414 
 415     /** Mark end of all gaps in catch-all ranges for finalizers of environments
 416      *  lying between, and including to two environments.
 417      *  @param from    the most deeply nested environment to mark
 418      *  @param to      the least deeply nested environment to mark
 419      */
 420     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
 421         Env<GenContext> last = null;
 422         while (last != to) {
 423             endFinalizerGap(from);
 424             last = from;
 425             from = from.next;
 426         }
 427     }
 428 
 429     /** Do any of the structures aborted by a non-local exit have
 430      *  finalizers that require an empty stack?
 431      *  @param target      The tree representing the structure that's aborted
 432      *  @param env         The environment current at the non-local exit.
 433      */
 434     boolean hasFinally(JCTree target, Env<GenContext> env) {
 435         while (env.tree != target) {
 436             if (env.tree.getTag() == JCTree.TRY && env.info.finalize.hasFinalizer())
 437                 return true;
 438             env = env.next;
 439         }
 440         return false;
 441     }
 442 
 443 /* ************************************************************************
 444  * Normalizing class-members.
 445  *************************************************************************/
 446 
 447     /** Distribute member initializer code into constructors and <clinit>
 448      *  method.
 449      *  @param defs         The list of class member declarations.
 450      *  @param c            The enclosing class.
 451      */
 452     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
 453         ListBuffer<JCStatement> initCode = new ListBuffer<JCStatement>();
 454         ListBuffer<JCStatement> clinitCode = new ListBuffer<JCStatement>();
 455         ListBuffer<JCTree> methodDefs = new ListBuffer<JCTree>();
 456         // Sort definitions into three listbuffers:
 457         //  - initCode for instance initializers
 458         //  - clinitCode for class initializers
 459         //  - methodDefs for method definitions
 460         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
 461             JCTree def = l.head;
 462             switch (def.getTag()) {
 463             case JCTree.BLOCK:
 464                 JCBlock block = (JCBlock)def;
 465                 if ((block.flags & STATIC) != 0)
 466                     clinitCode.append(block);
 467                 else
 468                     initCode.append(block);
 469                 break;
 470             case JCTree.METHODDEF:
 471                 methodDefs.append(def);
 472                 break;
 473             case JCTree.VARDEF:
 474                 JCVariableDecl vdef = (JCVariableDecl) def;
 475                 VarSymbol sym = vdef.sym;
 476                 checkDimension(vdef.pos(), sym.type);
 477                 if (vdef.init != null) {
 478                     if ((sym.flags() & STATIC) == 0) {
 479                         // Always initialize instance variables.
 480                         JCStatement init = make.at(vdef.pos()).
 481                             Assignment(sym, vdef.init);
 482                         initCode.append(init);
 483                         if (endPositions != null) {
 484                             Integer endPos = endPositions.remove(vdef);
 485                             if (endPos != null) endPositions.put(init, endPos);
 486                         }
 487                     } else if (sym.getConstValue() == null) {
 488                         // Initialize class (static) variables only if
 489                         // they are not compile-time constants.
 490                         JCStatement init = make.at(vdef.pos).
 491                             Assignment(sym, vdef.init);
 492                         clinitCode.append(init);
 493                         if (endPositions != null) {
 494                             Integer endPos = endPositions.remove(vdef);
 495                             if (endPos != null) endPositions.put(init, endPos);
 496                         }
 497                     } else {
 498                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
 499                     }
 500                 }
 501                 break;
 502             default:
 503                 Assert.error();
 504             }
 505         }
 506         // Insert any instance initializers into all constructors.
 507         if (initCode.length() != 0) {
 508             List<JCStatement> inits = initCode.toList();
 509             for (JCTree t : methodDefs) {
 510                 normalizeMethod((JCMethodDecl)t, inits);
 511             }
 512         }
 513         // If there are class initializers, create a <clinit> method
 514         // that contains them as its body.
 515         if (clinitCode.length() != 0) {
 516             MethodSymbol clinit = new MethodSymbol(
 517                 STATIC, names.clinit,
 518                 new MethodType(
 519                     List.<Type>nil(), syms.voidType,
 520                     List.<Type>nil(), syms.methodClass),
 521                 c);
 522             c.members().enter(clinit);
 523             List<JCStatement> clinitStats = clinitCode.toList();
 524             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
 525             block.endpos = TreeInfo.endPos(clinitStats.last());
 526             methodDefs.append(make.MethodDef(clinit, block));
 527         }
 528         // Return all method definitions.
 529         return methodDefs.toList();
 530     }
 531 
 532     /** Check a constant value and report if it is a string that is
 533      *  too large.
 534      */
 535     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
 536         if (nerrs != 0 || // only complain about a long string once
 537             constValue == null ||
 538             !(constValue instanceof String) ||
 539             ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
 540             return;
 541         log.error(pos, "limit.string");
 542         nerrs++;
 543     }
 544 
 545     /** Insert instance initializer code into initial constructor.
 546      *  @param md        The tree potentially representing a
 547      *                   constructor's definition.
 548      *  @param initCode  The list of instance initializer statements.
 549      */
 550     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode) {
 551         if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
 552             // We are seeing a constructor that does not call another
 553             // constructor of the same class.
 554             List<JCStatement> stats = md.body.stats;
 555             ListBuffer<JCStatement> newstats = new ListBuffer<JCStatement>();
 556 
 557             if (stats.nonEmpty()) {
 558                 // Copy initializers of synthetic variables generated in
 559                 // the translation of inner classes.
 560                 while (TreeInfo.isSyntheticInit(stats.head)) {
 561                     newstats.append(stats.head);
 562                     stats = stats.tail;
 563                 }
 564                 // Copy superclass constructor call
 565                 newstats.append(stats.head);
 566                 stats = stats.tail;
 567                 // Copy remaining synthetic initializers.
 568                 while (stats.nonEmpty() &&
 569                        TreeInfo.isSyntheticInit(stats.head)) {
 570                     newstats.append(stats.head);
 571                     stats = stats.tail;
 572                 }
 573                 // Now insert the initializer code.
 574                 newstats.appendList(initCode);
 575                 // And copy all remaining statements.
 576                 while (stats.nonEmpty()) {
 577                     newstats.append(stats.head);
 578                     stats = stats.tail;
 579                 }
 580             }
 581             md.body.stats = newstats.toList();
 582             if (md.body.endpos == Position.NOPOS)
 583                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
 584         }
 585     }
 586 
 587 /* ********************************************************************
 588  * Adding miranda methods
 589  *********************************************************************/
 590 
 591     /** Add abstract methods for all methods defined in one of
 592      *  the interfaces of a given class,
 593      *  provided they are not already implemented in the class.
 594      *
 595      *  @param c      The class whose interfaces are searched for methods
 596      *                for which Miranda methods should be added.
 597      */
 598     void implementInterfaceMethods(ClassSymbol c) {
 599         implementInterfaceMethods(c, c);
 600     }
 601 
 602     /** Add abstract methods for all methods defined in one of
 603      *  the interfaces of a given class,
 604      *  provided they are not already implemented in the class.
 605      *
 606      *  @param c      The class whose interfaces are searched for methods
 607      *                for which Miranda methods should be added.
 608      *  @param site   The class in which a definition may be needed.
 609      */
 610     void implementInterfaceMethods(ClassSymbol c, ClassSymbol site) {
 611         for (List<Type> l = types.interfaces(c.type); l.nonEmpty(); l = l.tail) {
 612             ClassSymbol i = (ClassSymbol)l.head.tsym;
 613             for (Scope.Entry e = i.members().elems;
 614                  e != null;
 615                  e = e.sibling)
 616             {
 617                 if (e.sym.kind == MTH && (e.sym.flags() & STATIC) == 0)
 618                 {
 619                     MethodSymbol absMeth = (MethodSymbol)e.sym;
 620                     MethodSymbol implMeth = absMeth.binaryImplementation(site, types);
 621                     if (implMeth == null)
 622                         addAbstractMethod(site, absMeth);
 623                     else if ((implMeth.flags() & IPROXY) != 0)
 624                         adjustAbstractMethod(site, implMeth, absMeth);
 625                 }
 626             }
 627             implementInterfaceMethods(i, site);
 628         }
 629     }
 630 
 631     /** Add an abstract methods to a class
 632      *  which implicitly implements a method defined in some interface
 633      *  implemented by the class. These methods are called "Miranda methods".
 634      *  Enter the newly created method into its enclosing class scope.
 635      *  Note that it is not entered into the class tree, as the emitter
 636      *  doesn't need to see it there to emit an abstract method.
 637      *
 638      *  @param c      The class to which the Miranda method is added.
 639      *  @param m      The interface method symbol for which a Miranda method
 640      *                is added.
 641      */
 642     private void addAbstractMethod(ClassSymbol c,
 643                                    MethodSymbol m) {
 644         MethodSymbol absMeth = new MethodSymbol(
 645             m.flags() | IPROXY | SYNTHETIC, m.name,
 646             m.type, // was c.type.memberType(m), but now only !generics supported
 647             c);
 648         c.members().enter(absMeth); // add to symbol table
 649     }
 650 
 651     private void adjustAbstractMethod(ClassSymbol c,
 652                                       MethodSymbol pm,
 653                                       MethodSymbol im) {
 654         MethodType pmt = (MethodType)pm.type;
 655         Type imt = types.memberType(c.type, im);
 656         pmt.thrown = chk.intersect(pmt.getThrownTypes(), imt.getThrownTypes());
 657     }
 658 
 659 /* ************************************************************************
 660  * Traversal methods
 661  *************************************************************************/
 662 
 663     /** Visitor argument: The current environment.
 664      */
 665     Env<GenContext> env;
 666 
 667     /** Visitor argument: The expected type (prototype).
 668      */
 669     Type pt;
 670 
 671     /** Visitor result: The item representing the computed value.
 672      */
 673     Item result;
 674 
 675     /** Visitor method: generate code for a definition, catching and reporting
 676      *  any completion failures.
 677      *  @param tree    The definition to be visited.
 678      *  @param env     The environment current at the definition.
 679      */
 680     public void genDef(JCTree tree, Env<GenContext> env) {
 681         Env<GenContext> prevEnv = this.env;
 682         try {
 683             this.env = env;
 684             tree.accept(this);
 685         } catch (CompletionFailure ex) {
 686             chk.completionError(tree.pos(), ex);
 687         } finally {
 688             this.env = prevEnv;
 689         }
 690     }
 691 
 692     /** Derived visitor method: check whether CharacterRangeTable
 693      *  should be emitted, if so, put a new entry into CRTable
 694      *  and call method to generate bytecode.
 695      *  If not, just call method to generate bytecode.
 696      *  @see    #genStat(Tree, Env)
 697      *
 698      *  @param  tree     The tree to be visited.
 699      *  @param  env      The environment to use.
 700      *  @param  crtFlags The CharacterRangeTable flags
 701      *                   indicating type of the entry.
 702      */
 703     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
 704         if (!genCrt) {
 705             genStat(tree, env);
 706             return;
 707         }
 708         int startpc = code.curPc();
 709         genStat(tree, env);
 710         if (tree.getTag() == JCTree.BLOCK) crtFlags |= CRT_BLOCK;
 711         code.crt.put(tree, crtFlags, startpc, code.curPc());
 712     }
 713 
 714     /** Derived visitor method: generate code for a statement.
 715      */
 716     public void genStat(JCTree tree, Env<GenContext> env) {
 717         if (code.isAlive()) {
 718             code.statBegin(tree.pos);
 719             genDef(tree, env);
 720         } else if (env.info.isSwitch && tree.getTag() == JCTree.VARDEF) {
 721             // variables whose declarations are in a switch
 722             // can be used even if the decl is unreachable.
 723             code.newLocal(((JCVariableDecl) tree).sym);
 724         }
 725     }
 726 
 727     /** Derived visitor method: check whether CharacterRangeTable
 728      *  should be emitted, if so, put a new entry into CRTable
 729      *  and call method to generate bytecode.
 730      *  If not, just call method to generate bytecode.
 731      *  @see    #genStats(List, Env)
 732      *
 733      *  @param  trees    The list of trees to be visited.
 734      *  @param  env      The environment to use.
 735      *  @param  crtFlags The CharacterRangeTable flags
 736      *                   indicating type of the entry.
 737      */
 738     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
 739         if (!genCrt) {
 740             genStats(trees, env);
 741             return;
 742         }
 743         if (trees.length() == 1) {        // mark one statement with the flags
 744             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
 745         } else {
 746             int startpc = code.curPc();
 747             genStats(trees, env);
 748             code.crt.put(trees, crtFlags, startpc, code.curPc());
 749         }
 750     }
 751 
 752     /** Derived visitor method: generate code for a list of statements.
 753      */
 754     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
 755         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 756             genStat(l.head, env, CRT_STATEMENT);
 757     }
 758 
 759     /** Derived visitor method: check whether CharacterRangeTable
 760      *  should be emitted, if so, put a new entry into CRTable
 761      *  and call method to generate bytecode.
 762      *  If not, just call method to generate bytecode.
 763      *  @see    #genCond(Tree,boolean)
 764      *
 765      *  @param  tree     The tree to be visited.
 766      *  @param  crtFlags The CharacterRangeTable flags
 767      *                   indicating type of the entry.
 768      */
 769     public CondItem genCond(JCTree tree, int crtFlags) {
 770         if (!genCrt) return genCond(tree, false);
 771         int startpc = code.curPc();
 772         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
 773         code.crt.put(tree, crtFlags, startpc, code.curPc());
 774         return item;
 775     }
 776 
 777     /** Derived visitor method: generate code for a boolean
 778      *  expression in a control-flow context.
 779      *  @param _tree         The expression to be visited.
 780      *  @param markBranches The flag to indicate that the condition is
 781      *                      a flow controller so produced conditions
 782      *                      should contain a proper tree to generate
 783      *                      CharacterRangeTable branches for them.
 784      */
 785     public CondItem genCond(JCTree _tree, boolean markBranches) {
 786         JCTree inner_tree = TreeInfo.skipParens(_tree);
 787         if (inner_tree.getTag() == JCTree.CONDEXPR) {
 788             JCConditional tree = (JCConditional)inner_tree;
 789             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
 790             if (cond.isTrue()) {
 791                 code.resolve(cond.trueJumps);
 792                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
 793                 if (markBranches) result.tree = tree.truepart;
 794                 return result;
 795             }
 796             if (cond.isFalse()) {
 797                 code.resolve(cond.falseJumps);
 798                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
 799                 if (markBranches) result.tree = tree.falsepart;
 800                 return result;
 801             }
 802             Chain secondJumps = cond.jumpFalse();
 803             code.resolve(cond.trueJumps);
 804             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
 805             if (markBranches) first.tree = tree.truepart;
 806             Chain falseJumps = first.jumpFalse();
 807             code.resolve(first.trueJumps);
 808             Chain trueJumps = code.branch(goto_);
 809             code.resolve(secondJumps);
 810             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
 811             CondItem result = items.makeCondItem(second.opcode,
 812                                       Code.mergeChains(trueJumps, second.trueJumps),
 813                                       Code.mergeChains(falseJumps, second.falseJumps));
 814             if (markBranches) result.tree = tree.falsepart;
 815             return result;
 816         } else {
 817             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
 818             if (markBranches) result.tree = _tree;
 819             return result;
 820         }
 821     }
 822 
 823     /** Visitor method: generate code for an expression, catching and reporting
 824      *  any completion failures.
 825      *  @param tree    The expression to be visited.
 826      *  @param pt      The expression's expected type (proto-type).
 827      */
 828     public Item genExpr(JCTree tree, Type pt) {
 829         Type prevPt = this.pt;
 830         try {
 831             if (tree.type.constValue() != null) {
 832                 // Short circuit any expressions which are constants
 833                 checkStringConstant(tree.pos(), tree.type.constValue());
 834                 result = items.makeImmediateItem(tree.type, tree.type.constValue());
 835             } else {
 836                 this.pt = pt;
 837                 tree.accept(this);
 838             }
 839             return result.coerce(pt);
 840         } catch (CompletionFailure ex) {
 841             chk.completionError(tree.pos(), ex);
 842             code.state.stacksize = 1;
 843             return items.makeStackItem(pt);
 844         } finally {
 845             this.pt = prevPt;
 846         }
 847     }
 848 
 849     /** Derived visitor method: generate code for a list of method arguments.
 850      *  @param trees    The argument expressions to be visited.
 851      *  @param pts      The expression's expected types (i.e. the formal parameter
 852      *                  types of the invoked method).
 853      */
 854     public void genArgs(List<JCExpression> trees, List<Type> pts) {
 855         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
 856             genExpr(l.head, pts.head).load();
 857             pts = pts.tail;
 858         }
 859         // require lists be of same length
 860         Assert.check(pts.isEmpty());
 861     }
 862 
 863 /* ************************************************************************
 864  * Visitor methods for statements and definitions
 865  *************************************************************************/
 866 
 867     /** Thrown when the byte code size exceeds limit.
 868      */
 869     public static class CodeSizeOverflow extends RuntimeException {
 870         private static final long serialVersionUID = 0;
 871         public CodeSizeOverflow() {}
 872     }
 873 
 874     public void visitMethodDef(JCMethodDecl tree) {
 875         // Create a new local environment that points pack at method
 876         // definition.
 877         Env<GenContext> localEnv = env.dup(tree);
 878         localEnv.enclMethod = tree;
 879 
 880         // The expected type of every return statement in this method
 881         // is the method's return type.
 882         this.pt = tree.sym.erasure(types).getReturnType();
 883 
 884         checkDimension(tree.pos(), tree.sym.erasure(types));
 885         genMethod(tree, localEnv, false);
 886     }
 887 //where
 888         /** Generate code for a method.
 889          *  @param tree     The tree representing the method definition.
 890          *  @param env      The environment current for the method body.
 891          *  @param fatcode  A flag that indicates whether all jumps are
 892          *                  within 32K.  We first invoke this method under
 893          *                  the assumption that fatcode == false, i.e. all
 894          *                  jumps are within 32K.  If this fails, fatcode
 895          *                  is set to true and we try again.
 896          */
 897         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 898             MethodSymbol meth = tree.sym;
 899 //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
 900             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes())  +
 901                 (((tree.mods.flags & STATIC) == 0 || meth.isConstructor()) ? 1 : 0) >
 902                 ClassFile.MAX_PARAMETERS) {
 903                 log.error(tree.pos(), "limit.parameters");
 904                 nerrs++;
 905             }
 906 
 907             else if (tree.body != null) {
 908                 // Create a new code structure and initialize it.
 909                 int startpcCrt = initCode(tree, env, fatcode);
 910 
 911                 try {
 912                     genStat(tree.body, env);
 913                 } catch (CodeSizeOverflow e) {
 914                     // Failed due to code limit, try again with jsr/ret
 915                     startpcCrt = initCode(tree, env, fatcode);
 916                     genStat(tree.body, env);
 917                 }
 918 
 919                 if (code.state.stacksize != 0) {
 920                     log.error(tree.body.pos(), "stack.sim.error", tree);
 921                     throw new AssertionError();
 922                 }
 923 
 924                 // If last statement could complete normally, insert a
 925                 // return at the end.
 926                 if (code.isAlive()) {
 927                     code.statBegin(TreeInfo.endPos(tree.body));
 928                     if (env.enclMethod == null ||
 929                         env.enclMethod.sym.type.getReturnType().tag == VOID) {
 930                         code.emitop0(return_);
 931                     } else {
 932                         // sometime dead code seems alive (4415991);
 933                         // generate a small loop instead
 934                         int startpc = code.entryPoint();
 935                         CondItem c = items.makeCondItem(goto_);
 936                         code.resolve(c.jumpTrue(), startpc);
 937                     }
 938                 }
 939                 if (genCrt)
 940                     code.crt.put(tree.body,
 941                                  CRT_BLOCK,
 942                                  startpcCrt,
 943                                  code.curPc());
 944 
 945                 code.endScopes(0);
 946 
 947                 // If we exceeded limits, panic
 948                 if (code.checkLimits(tree.pos(), log)) {
 949                     nerrs++;
 950                     return;
 951                 }
 952 
 953                 // If we generated short code but got a long jump, do it again
 954                 // with fatCode = true.
 955                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
 956 
 957                 // Clean up
 958                 if(stackMap == StackMapFormat.JSR202) {
 959                     code.lastFrame = null;
 960                     code.frameBeforeLast = null;
 961                 }
 962 
 963                 //compress exception table
 964                 code.compressCatchTable();
 965             }
 966         }
 967 
 968         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 969             MethodSymbol meth = tree.sym;
 970 
 971             // Create a new code structure.
 972             meth.code = code = new Code(meth,
 973                                         fatcode,
 974                                         lineDebugInfo ? toplevel.lineMap : null,
 975                                         varDebugInfo,
 976                                         stackMap,
 977                                         debugCode,
 978                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
 979                                                : null,
 980                                         syms,
 981                                         types,
 982                                         pool);
 983             items = new Items(pool, code, syms, types);
 984             if (code.debugCode)
 985                 System.err.println(meth + " for body " + tree);
 986 
 987             // If method is not static, create a new local variable address
 988             // for `this'.
 989             if ((tree.mods.flags & STATIC) == 0) {
 990                 Type selfType = meth.owner.type;
 991                 if (meth.isConstructor() && selfType != syms.objectType)
 992                     selfType = UninitializedType.uninitializedThis(selfType);
 993                 code.setDefined(
 994                         code.newLocal(
 995                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
 996             }
 997 
 998             // Mark all parameters as defined from the beginning of
 999             // the method.
1000             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1001                 checkDimension(l.head.pos(), l.head.sym.type);
1002                 code.setDefined(code.newLocal(l.head.sym));
1003             }
1004 
1005             // Get ready to generate code for method body.
1006             int startpcCrt = genCrt ? code.curPc() : 0;
1007             code.entryPoint();
1008 
1009             // Suppress initial stackmap
1010             code.pendingStackMap = false;
1011 
1012             return startpcCrt;
1013         }
1014 
1015     public void visitVarDef(JCVariableDecl tree) {
1016         VarSymbol v = tree.sym;
1017         code.newLocal(v);
1018         if (tree.init != null) {
1019             checkStringConstant(tree.init.pos(), v.getConstValue());
1020             if (v.getConstValue() == null || varDebugInfo) {
1021                 genExpr(tree.init, v.erasure(types)).load();
1022                 items.makeLocalItem(v).store();
1023             }
1024         }
1025         checkDimension(tree.pos(), v.type);
1026     }
1027 
1028     public void visitSkip(JCSkip tree) {
1029     }
1030 
1031     public void visitBlock(JCBlock tree) {
1032         int limit = code.nextreg;
1033         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1034         genStats(tree.stats, localEnv);
1035         // End the scope of all block-local variables in variable info.
1036         if (env.tree.getTag() != JCTree.METHODDEF) {
1037             code.statBegin(tree.endpos);
1038             code.endScopes(limit);
1039             code.pendingStatPos = Position.NOPOS;
1040         }
1041     }
1042 
1043     public void visitDoLoop(JCDoWhileLoop tree) {
1044         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
1045     }
1046 
1047     public void visitWhileLoop(JCWhileLoop tree) {
1048         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
1049     }
1050 
1051     public void visitForLoop(JCForLoop tree) {
1052         int limit = code.nextreg;
1053         genStats(tree.init, env);
1054         genLoop(tree, tree.body, tree.cond, tree.step, true);
1055         code.endScopes(limit);
1056     }
1057     //where
1058         /** Generate code for a loop.
1059          *  @param loop       The tree representing the loop.
1060          *  @param body       The loop's body.
1061          *  @param cond       The loop's controling condition.
1062          *  @param step       "Step" statements to be inserted at end of
1063          *                    each iteration.
1064          *  @param testFirst  True if the loop test belongs before the body.
1065          */
1066         private void genLoop(JCStatement loop,
1067                              JCStatement body,
1068                              JCExpression cond,
1069                              List<JCExpressionStatement> step,
1070                              boolean testFirst) {
1071             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1072             int startpc = code.entryPoint();
1073             if (testFirst) {
1074                 CondItem c;
1075                 if (cond != null) {
1076                     code.statBegin(cond.pos);
1077                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1078                 } else {
1079                     c = items.makeCondItem(goto_);
1080                 }
1081                 Chain loopDone = c.jumpFalse();
1082                 code.resolve(c.trueJumps);
1083                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1084                 code.resolve(loopEnv.info.cont);
1085                 genStats(step, loopEnv);
1086                 code.resolve(code.branch(goto_), startpc);
1087                 code.resolve(loopDone);
1088             } else {
1089                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1090                 code.resolve(loopEnv.info.cont);
1091                 genStats(step, loopEnv);
1092                 CondItem c;
1093                 if (cond != null) {
1094                     code.statBegin(cond.pos);
1095                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1096                 } else {
1097                     c = items.makeCondItem(goto_);
1098                 }
1099                 code.resolve(c.jumpTrue(), startpc);
1100                 code.resolve(c.falseJumps);
1101             }
1102             code.resolve(loopEnv.info.exit);
1103         }
1104 
1105     public void visitForeachLoop(JCEnhancedForLoop tree) {
1106         throw new AssertionError(); // should have been removed by Lower.
1107     }
1108 
1109     public void visitLabelled(JCLabeledStatement tree) {
1110         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1111         genStat(tree.body, localEnv, CRT_STATEMENT);
1112         code.resolve(localEnv.info.exit);
1113     }
1114 
1115     public void visitSwitch(JCSwitch tree) {
1116         int limit = code.nextreg;
1117         Assert.check(tree.selector.type.tag != CLASS);
1118         int startpcCrt = genCrt ? code.curPc() : 0;
1119         Item sel = genExpr(tree.selector, syms.intType);
1120         List<JCCase> cases = tree.cases;
1121         if (cases.isEmpty()) {
1122             // We are seeing:  switch <sel> {}
1123             sel.load().drop();
1124             if (genCrt)
1125                 code.crt.put(TreeInfo.skipParens(tree.selector),
1126                              CRT_FLOW_CONTROLLER, startpcCrt, code.curPc());
1127         } else {
1128             // We are seeing a nonempty switch.
1129             sel.load();
1130             if (genCrt)
1131                 code.crt.put(TreeInfo.skipParens(tree.selector),
1132                              CRT_FLOW_CONTROLLER, startpcCrt, code.curPc());
1133             Env<GenContext> switchEnv = env.dup(tree, new GenContext());
1134             switchEnv.info.isSwitch = true;
1135 
1136             // Compute number of labels and minimum and maximum label values.
1137             // For each case, store its label in an array.
1138             int lo = Integer.MAX_VALUE;  // minimum label.
1139             int hi = Integer.MIN_VALUE;  // maximum label.
1140             int nlabels = 0;               // number of labels.
1141 
1142             int[] labels = new int[cases.length()];  // the label array.
1143             int defaultIndex = -1;     // the index of the default clause.
1144 
1145             List<JCCase> l = cases;
1146             for (int i = 0; i < labels.length; i++) {
1147                 if (l.head.pat != null) {
1148                     int val = ((Number)l.head.pat.type.constValue()).intValue();
1149                     labels[i] = val;
1150                     if (val < lo) lo = val;
1151                     if (hi < val) hi = val;
1152                     nlabels++;
1153                 } else {
1154                     Assert.check(defaultIndex == -1);
1155                     defaultIndex = i;
1156                 }
1157                 l = l.tail;
1158             }
1159 
1160             // Determine whether to issue a tableswitch or a lookupswitch
1161             // instruction.
1162             long table_space_cost = 4 + ((long) hi - lo + 1); // words
1163             long table_time_cost = 3; // comparisons
1164             long lookup_space_cost = 3 + 2 * (long) nlabels;
1165             long lookup_time_cost = nlabels;
1166             int opcode =
1167                 nlabels > 0 &&
1168                 table_space_cost + 3 * table_time_cost <=
1169                 lookup_space_cost + 3 * lookup_time_cost
1170                 ?
1171                 tableswitch : lookupswitch;
1172 
1173             int startpc = code.curPc();    // the position of the selector operation
1174             code.emitop0(opcode);
1175             code.align(4);
1176             int tableBase = code.curPc();  // the start of the jump table
1177             int[] offsets = null;          // a table of offsets for a lookupswitch
1178             code.emit4(-1);                // leave space for default offset
1179             if (opcode == tableswitch) {
1180                 code.emit4(lo);            // minimum label
1181                 code.emit4(hi);            // maximum label
1182                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
1183                     code.emit4(-1);
1184                 }
1185             } else {
1186                 code.emit4(nlabels);    // number of labels
1187                 for (int i = 0; i < nlabels; i++) {
1188                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
1189                 }
1190                 offsets = new int[labels.length];
1191             }
1192             Code.State stateSwitch = code.state.dup();
1193             code.markDead();
1194 
1195             // For each case do:
1196             l = cases;
1197             for (int i = 0; i < labels.length; i++) {
1198                 JCCase c = l.head;
1199                 l = l.tail;
1200 
1201                 int pc = code.entryPoint(stateSwitch);
1202                 // Insert offset directly into code or else into the
1203                 // offsets table.
1204                 if (i != defaultIndex) {
1205                     if (opcode == tableswitch) {
1206                         code.put4(
1207                             tableBase + 4 * (labels[i] - lo + 3),
1208                             pc - startpc);
1209                     } else {
1210                         offsets[i] = pc - startpc;
1211                     }
1212                 } else {
1213                     code.put4(tableBase, pc - startpc);
1214                 }
1215 
1216                 // Generate code for the statements in this case.
1217                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1218             }
1219 
1220             // Resolve all breaks.
1221             code.resolve(switchEnv.info.exit);
1222 
1223             // If we have not set the default offset, we do so now.
1224             if (code.get4(tableBase) == -1) {
1225                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1226             }
1227 
1228             if (opcode == tableswitch) {
1229                 // Let any unfilled slots point to the default case.
1230                 int defaultOffset = code.get4(tableBase);
1231                 for (long i = lo; i <= hi; i++) {
1232                     int t = (int)(tableBase + 4 * (i - lo + 3));
1233                     if (code.get4(t) == -1)
1234                         code.put4(t, defaultOffset);
1235                 }
1236             } else {
1237                 // Sort non-default offsets and copy into lookup table.
1238                 if (defaultIndex >= 0)
1239                     for (int i = defaultIndex; i < labels.length - 1; i++) {
1240                         labels[i] = labels[i+1];
1241                         offsets[i] = offsets[i+1];
1242                     }
1243                 if (nlabels > 0)
1244                     qsort2(labels, offsets, 0, nlabels - 1);
1245                 for (int i = 0; i < nlabels; i++) {
1246                     int caseidx = tableBase + 8 * (i + 1);
1247                     code.put4(caseidx, labels[i]);
1248                     code.put4(caseidx + 4, offsets[i]);
1249                 }
1250             }
1251         }
1252         code.endScopes(limit);
1253     }
1254 //where
1255         /** Sort (int) arrays of keys and values
1256          */
1257        static void qsort2(int[] keys, int[] values, int lo, int hi) {
1258             int i = lo;
1259             int j = hi;
1260             int pivot = keys[(i+j)/2];
1261             do {
1262                 while (keys[i] < pivot) i++;
1263                 while (pivot < keys[j]) j--;
1264                 if (i <= j) {
1265                     int temp1 = keys[i];
1266                     keys[i] = keys[j];
1267                     keys[j] = temp1;
1268                     int temp2 = values[i];
1269                     values[i] = values[j];
1270                     values[j] = temp2;
1271                     i++;
1272                     j--;
1273                 }
1274             } while (i <= j);
1275             if (lo < j) qsort2(keys, values, lo, j);
1276             if (i < hi) qsort2(keys, values, i, hi);
1277         }
1278 
1279     public void visitSynchronized(JCSynchronized tree) {
1280         int limit = code.nextreg;
1281         // Generate code to evaluate lock and save in temporary variable.
1282         final LocalItem lockVar = makeTemp(syms.objectType);
1283         genExpr(tree.lock, tree.lock.type).load().duplicate();
1284         lockVar.store();
1285 
1286         // Generate code to enter monitor.
1287         code.emitop0(monitorenter);
1288         code.state.lock(lockVar.reg);
1289 
1290         // Generate code for a try statement with given body, no catch clauses
1291         // in a new environment with the "exit-monitor" operation as finalizer.
1292         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1293         syncEnv.info.finalize = new GenFinalizer() {
1294             void gen() {
1295                 genLast();
1296                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1297                 syncEnv.info.gaps.append(code.curPc());
1298             }
1299             void genLast() {
1300                 if (code.isAlive()) {
1301                     lockVar.load();
1302                     code.emitop0(monitorexit);
1303                     code.state.unlock(lockVar.reg);
1304                 }
1305             }
1306         };
1307         syncEnv.info.gaps = new ListBuffer<Integer>();
1308         genTry(tree.body, List.<JCCatch>nil(), syncEnv);
1309         code.endScopes(limit);
1310     }
1311 
1312     public void visitTry(final JCTry tree) {
1313         // Generate code for a try statement with given body and catch clauses,
1314         // in a new environment which calls the finally block if there is one.
1315         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1316         final Env<GenContext> oldEnv = env;
1317         if (!useJsrLocally) {
1318             useJsrLocally =
1319                 (stackMap == StackMapFormat.NONE) &&
1320                 (jsrlimit <= 0 ||
1321                 jsrlimit < 100 &&
1322                 estimateCodeComplexity(tree.finalizer)>jsrlimit);
1323         }
1324         tryEnv.info.finalize = new GenFinalizer() {
1325             void gen() {
1326                 if (useJsrLocally) {
1327                     if (tree.finalizer != null) {
1328                         Code.State jsrState = code.state.dup();
1329                         jsrState.push(Code.jsrReturnValue);
1330                         tryEnv.info.cont =
1331                             new Chain(code.emitJump(jsr),
1332                                       tryEnv.info.cont,
1333                                       jsrState);
1334                     }
1335                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1336                     tryEnv.info.gaps.append(code.curPc());
1337                 } else {
1338                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1339                     tryEnv.info.gaps.append(code.curPc());
1340                     genLast();
1341                 }
1342             }
1343             void genLast() {
1344                 if (tree.finalizer != null)
1345                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1346             }
1347             boolean hasFinalizer() {
1348                 return tree.finalizer != null;
1349             }
1350         };
1351         tryEnv.info.gaps = new ListBuffer<Integer>();
1352         genTry(tree.body, tree.catchers, tryEnv);
1353     }
1354     //where
1355         /** Generate code for a try or synchronized statement
1356          *  @param body      The body of the try or synchronized statement.
1357          *  @param catchers  The lis of catch clauses.
1358          *  @param env       the environment current for the body.
1359          */
1360         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1361             int limit = code.nextreg;
1362             int startpc = code.curPc();
1363             Code.State stateTry = code.state.dup();
1364             genStat(body, env, CRT_BLOCK);
1365             int endpc = code.curPc();
1366             boolean hasFinalizer =
1367                 env.info.finalize != null &&
1368                 env.info.finalize.hasFinalizer();
1369             List<Integer> gaps = env.info.gaps.toList();
1370             code.statBegin(TreeInfo.endPos(body));
1371             genFinalizer(env);
1372             code.statBegin(TreeInfo.endPos(env.tree));
1373             Chain exitChain = code.branch(goto_);
1374             endFinalizerGap(env);
1375             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1376                 // start off with exception on stack
1377                 code.entryPoint(stateTry, l.head.param.sym.type);
1378                 genCatch(l.head, env, startpc, endpc, gaps);
1379                 genFinalizer(env);
1380                 if (hasFinalizer || l.tail.nonEmpty()) {
1381                     code.statBegin(TreeInfo.endPos(env.tree));
1382                     exitChain = Code.mergeChains(exitChain,
1383                                                  code.branch(goto_));
1384                 }
1385                 endFinalizerGap(env);
1386             }
1387             if (hasFinalizer) {
1388                 // Create a new register segement to avoid allocating
1389                 // the same variables in finalizers and other statements.
1390                 code.newRegSegment();
1391 
1392                 // Add a catch-all clause.
1393 
1394                 // start off with exception on stack
1395                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1396 
1397                 // Register all exception ranges for catch all clause.
1398                 // The range of the catch all clause is from the beginning
1399                 // of the try or synchronized block until the present
1400                 // code pointer excluding all gaps in the current
1401                 // environment's GenContext.
1402                 int startseg = startpc;
1403                 while (env.info.gaps.nonEmpty()) {
1404                     int endseg = env.info.gaps.next().intValue();
1405                     registerCatch(body.pos(), startseg, endseg,
1406                                   catchallpc, 0);
1407                     startseg = env.info.gaps.next().intValue();
1408                 }
1409                 code.statBegin(TreeInfo.finalizerPos(env.tree));
1410                 code.markStatBegin();
1411 
1412                 Item excVar = makeTemp(syms.throwableType);
1413                 excVar.store();
1414                 genFinalizer(env);
1415                 excVar.load();
1416                 registerCatch(body.pos(), startseg,
1417                               env.info.gaps.next().intValue(),
1418                               catchallpc, 0);
1419                 code.emitop0(athrow);
1420                 code.markDead();
1421 
1422                 // If there are jsr's to this finalizer, ...
1423                 if (env.info.cont != null) {
1424                     // Resolve all jsr's.
1425                     code.resolve(env.info.cont);
1426 
1427                     // Mark statement line number
1428                     code.statBegin(TreeInfo.finalizerPos(env.tree));
1429                     code.markStatBegin();
1430 
1431                     // Save return address.
1432                     LocalItem retVar = makeTemp(syms.throwableType);
1433                     retVar.store();
1434 
1435                     // Generate finalizer code.
1436                     env.info.finalize.genLast();
1437 
1438                     // Return.
1439                     code.emitop1w(ret, retVar.reg);
1440                     code.markDead();
1441                 }
1442             }
1443             // Resolve all breaks.
1444             code.resolve(exitChain);
1445 
1446             code.endScopes(limit);
1447         }
1448 
1449         /** Generate code for a catch clause.
1450          *  @param tree     The catch clause.
1451          *  @param env      The environment current in the enclosing try.
1452          *  @param startpc  Start pc of try-block.
1453          *  @param endpc    End pc of try-block.
1454          */
1455         void genCatch(JCCatch tree,
1456                       Env<GenContext> env,
1457                       int startpc, int endpc,
1458                       List<Integer> gaps) {
1459             if (startpc != endpc) {
1460                 List<JCExpression> subClauses = TreeInfo.isMultiCatch(tree) ?
1461                         ((JCTypeUnion)tree.param.vartype).alternatives :
1462                         List.of(tree.param.vartype);
1463                 while (gaps.nonEmpty()) {
1464                     for (JCExpression subCatch : subClauses) {
1465                         int catchType = makeRef(tree.pos(), subCatch.type);
1466                         int end = gaps.head.intValue();
1467                         registerCatch(tree.pos(),
1468                                       startpc,  end, code.curPc(),
1469                                       catchType);
1470                     }
1471                     gaps = gaps.tail;
1472                     startpc = gaps.head.intValue();
1473                     gaps = gaps.tail;
1474                 }
1475                 if (startpc < endpc) {
1476                     for (JCExpression subCatch : subClauses) {
1477                         int catchType = makeRef(tree.pos(), subCatch.type);
1478                         registerCatch(tree.pos(),
1479                                       startpc, endpc, code.curPc(),
1480                                       catchType);
1481                     }
1482                 }
1483                 VarSymbol exparam = tree.param.sym;
1484                 code.statBegin(tree.pos);
1485                 code.markStatBegin();
1486                 int limit = code.nextreg;
1487                 int exlocal = code.newLocal(exparam);
1488                 items.makeLocalItem(exparam).store();
1489                 code.statBegin(TreeInfo.firstStatPos(tree.body));
1490                 genStat(tree.body, env, CRT_BLOCK);
1491                 code.endScopes(limit);
1492                 code.statBegin(TreeInfo.endPos(tree.body));
1493             }
1494         }
1495 
1496         /** Register a catch clause in the "Exceptions" code-attribute.
1497          */
1498         void registerCatch(DiagnosticPosition pos,
1499                            int startpc, int endpc,
1500                            int handler_pc, int catch_type) {
1501             char startpc1 = (char)startpc;
1502             char endpc1 = (char)endpc;
1503             char handler_pc1 = (char)handler_pc;
1504             if (startpc1 == startpc &&
1505                 endpc1 == endpc &&
1506                 handler_pc1 == handler_pc) {
1507                 code.addCatch(startpc1, endpc1, handler_pc1,
1508                               (char)catch_type);
1509             } else {
1510                 if (!useJsrLocally && !target.generateStackMapTable()) {
1511                     useJsrLocally = true;
1512                     throw new CodeSizeOverflow();
1513                 } else {
1514                     log.error(pos, "limit.code.too.large.for.try.stmt");
1515                     nerrs++;
1516                 }
1517             }
1518         }
1519 
1520     /** Very roughly estimate the number of instructions needed for
1521      *  the given tree.
1522      */
1523     int estimateCodeComplexity(JCTree tree) {
1524         if (tree == null) return 0;
1525         class ComplexityScanner extends TreeScanner {
1526             int complexity = 0;
1527             public void scan(JCTree tree) {
1528                 if (complexity > jsrlimit) return;
1529                 super.scan(tree);
1530             }
1531             public void visitClassDef(JCClassDecl tree) {}
1532             public void visitDoLoop(JCDoWhileLoop tree)
1533                 { super.visitDoLoop(tree); complexity++; }
1534             public void visitWhileLoop(JCWhileLoop tree)
1535                 { super.visitWhileLoop(tree); complexity++; }
1536             public void visitForLoop(JCForLoop tree)
1537                 { super.visitForLoop(tree); complexity++; }
1538             public void visitSwitch(JCSwitch tree)
1539                 { super.visitSwitch(tree); complexity+=5; }
1540             public void visitCase(JCCase tree)
1541                 { super.visitCase(tree); complexity++; }
1542             public void visitSynchronized(JCSynchronized tree)
1543                 { super.visitSynchronized(tree); complexity+=6; }
1544             public void visitTry(JCTry tree)
1545                 { super.visitTry(tree);
1546                   if (tree.finalizer != null) complexity+=6; }
1547             public void visitCatch(JCCatch tree)
1548                 { super.visitCatch(tree); complexity+=2; }
1549             public void visitConditional(JCConditional tree)
1550                 { super.visitConditional(tree); complexity+=2; }
1551             public void visitIf(JCIf tree)
1552                 { super.visitIf(tree); complexity+=2; }
1553             // note: for break, continue, and return we don't take unwind() into account.
1554             public void visitBreak(JCBreak tree)
1555                 { super.visitBreak(tree); complexity+=1; }
1556             public void visitContinue(JCContinue tree)
1557                 { super.visitContinue(tree); complexity+=1; }
1558             public void visitReturn(JCReturn tree)
1559                 { super.visitReturn(tree); complexity+=1; }
1560             public void visitThrow(JCThrow tree)
1561                 { super.visitThrow(tree); complexity+=1; }
1562             public void visitAssert(JCAssert tree)
1563                 { super.visitAssert(tree); complexity+=5; }
1564             public void visitApply(JCMethodInvocation tree)
1565                 { super.visitApply(tree); complexity+=2; }
1566             public void visitNewClass(JCNewClass tree)
1567                 { scan(tree.encl); scan(tree.args); complexity+=2; }
1568             public void visitNewArray(JCNewArray tree)
1569                 { super.visitNewArray(tree); complexity+=5; }
1570             public void visitAssign(JCAssign tree)
1571                 { super.visitAssign(tree); complexity+=1; }
1572             public void visitAssignop(JCAssignOp tree)
1573                 { super.visitAssignop(tree); complexity+=2; }
1574             public void visitUnary(JCUnary tree)
1575                 { complexity+=1;
1576                   if (tree.type.constValue() == null) super.visitUnary(tree); }
1577             public void visitBinary(JCBinary tree)
1578                 { complexity+=1;
1579                   if (tree.type.constValue() == null) super.visitBinary(tree); }
1580             public void visitTypeTest(JCInstanceOf tree)
1581                 { super.visitTypeTest(tree); complexity+=1; }
1582             public void visitIndexed(JCArrayAccess tree)
1583                 { super.visitIndexed(tree); complexity+=1; }
1584             public void visitSelect(JCFieldAccess tree)
1585                 { super.visitSelect(tree);
1586                   if (tree.sym.kind == VAR) complexity+=1; }
1587             public void visitIdent(JCIdent tree) {
1588                 if (tree.sym.kind == VAR) {
1589                     complexity+=1;
1590                     if (tree.type.constValue() == null &&
1591                         tree.sym.owner.kind == TYP)
1592                         complexity+=1;
1593                 }
1594             }
1595             public void visitLiteral(JCLiteral tree)
1596                 { complexity+=1; }
1597             public void visitTree(JCTree tree) {}
1598             public void visitWildcard(JCWildcard tree) {
1599                 throw new AssertionError(this.getClass().getName());
1600             }
1601         }
1602         ComplexityScanner scanner = new ComplexityScanner();
1603         tree.accept(scanner);
1604         return scanner.complexity;
1605     }
1606 
1607     public void visitIf(JCIf tree) {
1608         int limit = code.nextreg;
1609         Chain thenExit = null;
1610         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1611                              CRT_FLOW_CONTROLLER);
1612         Chain elseChain = c.jumpFalse();
1613         if (!c.isFalse()) {
1614             code.resolve(c.trueJumps);
1615             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1616             thenExit = code.branch(goto_);
1617         }
1618         if (elseChain != null) {
1619             code.resolve(elseChain);
1620             if (tree.elsepart != null)
1621                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1622         }
1623         code.resolve(thenExit);
1624         code.endScopes(limit);
1625     }
1626 
1627     public void visitExec(JCExpressionStatement tree) {
1628         // Optimize x++ to ++x and x-- to --x.
1629         JCExpression e = tree.expr;
1630         switch (e.getTag()) {
1631             case JCTree.POSTINC:
1632                 ((JCUnary) e).setTag(JCTree.PREINC);
1633                 break;
1634             case JCTree.POSTDEC:
1635                 ((JCUnary) e).setTag(JCTree.PREDEC);
1636                 break;
1637         }
1638         genExpr(tree.expr, tree.expr.type).drop();
1639     }
1640 
1641     public void visitBreak(JCBreak tree) {
1642         Env<GenContext> targetEnv = unwind(tree.target, env);
1643         Assert.check(code.state.stacksize == 0);
1644         targetEnv.info.addExit(code.branch(goto_));
1645         endFinalizerGaps(env, targetEnv);
1646     }
1647 
1648     public void visitContinue(JCContinue tree) {
1649         Env<GenContext> targetEnv = unwind(tree.target, env);
1650         Assert.check(code.state.stacksize == 0);
1651         targetEnv.info.addCont(code.branch(goto_));
1652         endFinalizerGaps(env, targetEnv);
1653     }
1654 
1655     public void visitReturn(JCReturn tree) {
1656         int limit = code.nextreg;
1657         final Env<GenContext> targetEnv;
1658         if (tree.expr != null) {
1659             Item r = genExpr(tree.expr, pt).load();
1660             if (hasFinally(env.enclMethod, env)) {
1661                 r = makeTemp(pt);
1662                 r.store();
1663             }
1664             targetEnv = unwind(env.enclMethod, env);
1665             r.load();
1666             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1667         } else {
1668             targetEnv = unwind(env.enclMethod, env);
1669             code.emitop0(return_);
1670         }
1671         endFinalizerGaps(env, targetEnv);
1672         code.endScopes(limit);
1673     }
1674 
1675     public void visitThrow(JCThrow tree) {
1676         genExpr(tree.expr, tree.expr.type).load();
1677         code.emitop0(athrow);
1678     }
1679 
1680 /* ************************************************************************
1681  * Visitor methods for expressions
1682  *************************************************************************/
1683 
1684     public void visitApply(JCMethodInvocation tree) {
1685         // Generate code for method.
1686         Item m = genExpr(tree.meth, methodType);
1687         // Generate code for all arguments, where the expected types are
1688         // the parameters of the method's external type (that is, any implicit
1689         // outer instance of a super(...) call appears as first parameter).
1690         genArgs(tree.args,
1691                 TreeInfo.symbol(tree.meth).externalType(types).getParameterTypes());
1692         code.statBegin(tree.pos);
1693         code.markStatBegin();
1694         result = m.invoke();
1695     }
1696 
1697     public void visitConditional(JCConditional tree) {
1698         Chain thenExit = null;
1699         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1700         Chain elseChain = c.jumpFalse();
1701         if (!c.isFalse()) {
1702             code.resolve(c.trueJumps);
1703             int startpc = genCrt ? code.curPc() : 0;
1704             genExpr(tree.truepart, pt).load();
1705             code.state.forceStackTop(tree.type);
1706             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1707                                      startpc, code.curPc());
1708             thenExit = code.branch(goto_);
1709         }
1710         if (elseChain != null) {
1711             code.resolve(elseChain);
1712             int startpc = genCrt ? code.curPc() : 0;
1713             genExpr(tree.falsepart, pt).load();
1714             code.state.forceStackTop(tree.type);
1715             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1716                                      startpc, code.curPc());
1717         }
1718         code.resolve(thenExit);
1719         result = items.makeStackItem(pt);
1720     }
1721 
1722     public void visitNewClass(JCNewClass tree) {
1723         // Enclosing instances or anonymous classes should have been eliminated
1724         // by now.
1725         Assert.check(tree.encl == null && tree.def == null);
1726 
1727         code.emitop2(new_, makeRef(tree.pos(), tree.type));
1728         code.emitop0(dup);
1729 
1730         // Generate code for all arguments, where the expected types are
1731         // the parameters of the constructor's external type (that is,
1732         // any implicit outer instance appears as first parameter).
1733         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
1734 
1735         items.makeMemberItem(tree.constructor, true).invoke();
1736         result = items.makeStackItem(tree.type);
1737     }
1738 
1739     public void visitNewArray(JCNewArray tree) {
1740 
1741         if (tree.elems != null) {
1742             Type elemtype = types.elemtype(tree.type);
1743             loadIntConst(tree.elems.length());
1744             Item arr = makeNewArray(tree.pos(), tree.type, 1);
1745             int i = 0;
1746             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
1747                 arr.duplicate();
1748                 loadIntConst(i);
1749                 i++;
1750                 genExpr(l.head, elemtype).load();
1751                 items.makeIndexedItem(elemtype).store();
1752             }
1753             result = arr;
1754         } else {
1755             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1756                 genExpr(l.head, syms.intType).load();
1757             }
1758             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
1759         }
1760     }
1761 //where
1762         /** Generate code to create an array with given element type and number
1763          *  of dimensions.
1764          */
1765         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
1766             Type elemtype = types.elemtype(type);
1767             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
1768                 log.error(pos, "limit.dimensions");
1769                 nerrs++;
1770             }
1771             int elemcode = Code.arraycode(elemtype);
1772             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
1773                 code.emitAnewarray(makeRef(pos, elemtype), type);
1774             } else if (elemcode == 1) {
1775                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
1776             } else {
1777                 code.emitNewarray(elemcode, type);
1778             }
1779             return items.makeStackItem(type);
1780         }
1781 
1782     public void visitParens(JCParens tree) {
1783         result = genExpr(tree.expr, tree.expr.type);
1784     }
1785 
1786     public void visitAssign(JCAssign tree) {
1787         Item l = genExpr(tree.lhs, tree.lhs.type);
1788         genExpr(tree.rhs, tree.lhs.type).load();
1789         result = items.makeAssignItem(l);
1790     }
1791 
1792     public void visitAssignop(JCAssignOp tree) {
1793         OperatorSymbol operator = (OperatorSymbol) tree.operator;
1794         Item l;
1795         if (operator.opcode == string_add) {
1796             // Generate code to make a string buffer
1797             makeStringBuffer(tree.pos());
1798 
1799             // Generate code for first string, possibly save one
1800             // copy under buffer
1801             l = genExpr(tree.lhs, tree.lhs.type);
1802             if (l.width() > 0) {
1803                 code.emitop0(dup_x1 + 3 * (l.width() - 1));
1804             }
1805 
1806             // Load first string and append to buffer.
1807             l.load();
1808             appendString(tree.lhs);
1809 
1810             // Append all other strings to buffer.
1811             appendStrings(tree.rhs);
1812 
1813             // Convert buffer to string.
1814             bufferToString(tree.pos());
1815         } else {
1816             // Generate code for first expression
1817             l = genExpr(tree.lhs, tree.lhs.type);
1818 
1819             // If we have an increment of -32768 to +32767 of a local
1820             // int variable we can use an incr instruction instead of
1821             // proceeding further.
1822             if ((tree.getTag() == JCTree.PLUS_ASG || tree.getTag() == JCTree.MINUS_ASG) &&
1823                 l instanceof LocalItem &&
1824                 tree.lhs.type.tag <= INT &&
1825                 tree.rhs.type.tag <= INT &&
1826                 tree.rhs.type.constValue() != null) {
1827                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
1828                 if (tree.getTag() == JCTree.MINUS_ASG) ival = -ival;
1829                 ((LocalItem)l).incr(ival);
1830                 result = l;
1831                 return;
1832             }
1833             // Otherwise, duplicate expression, load one copy
1834             // and complete binary operation.
1835             l.duplicate();
1836             l.coerce(operator.type.getParameterTypes().head).load();
1837             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
1838         }
1839         result = items.makeAssignItem(l);
1840     }
1841 
1842     public void visitUnary(JCUnary tree) {
1843         OperatorSymbol operator = (OperatorSymbol)tree.operator;
1844         if (tree.getTag() == JCTree.NOT) {
1845             CondItem od = genCond(tree.arg, false);
1846             result = od.negate();
1847         } else {
1848             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
1849             switch (tree.getTag()) {
1850             case JCTree.POS:
1851                 result = od.load();
1852                 break;
1853             case JCTree.NEG:
1854                 result = od.load();
1855                 code.emitop0(operator.opcode);
1856                 break;
1857             case JCTree.COMPL:
1858                 result = od.load();
1859                 emitMinusOne(od.typecode);
1860                 code.emitop0(operator.opcode);
1861                 break;
1862             case JCTree.PREINC: case JCTree.PREDEC:
1863                 od.duplicate();
1864                 if (od instanceof LocalItem &&
1865                     (operator.opcode == iadd || operator.opcode == isub)) {
1866                     ((LocalItem)od).incr(tree.getTag() == JCTree.PREINC ? 1 : -1);
1867                     result = od;
1868                 } else {
1869                     od.load();
1870                     code.emitop0(one(od.typecode));
1871                     code.emitop0(operator.opcode);
1872                     // Perform narrowing primitive conversion if byte,
1873                     // char, or short.  Fix for 4304655.
1874                     if (od.typecode != INTcode &&
1875                         Code.truncate(od.typecode) == INTcode)
1876                       code.emitop0(int2byte + od.typecode - BYTEcode);
1877                     result = items.makeAssignItem(od);
1878                 }
1879                 break;
1880             case JCTree.POSTINC: case JCTree.POSTDEC:
1881                 od.duplicate();
1882                 if (od instanceof LocalItem &&
1883                     (operator.opcode == iadd || operator.opcode == isub)) {
1884                     Item res = od.load();
1885                     ((LocalItem)od).incr(tree.getTag() == JCTree.POSTINC ? 1 : -1);
1886                     result = res;
1887                 } else {
1888                     Item res = od.load();
1889                     od.stash(od.typecode);
1890                     code.emitop0(one(od.typecode));
1891                     code.emitop0(operator.opcode);
1892                     // Perform narrowing primitive conversion if byte,
1893                     // char, or short.  Fix for 4304655.
1894                     if (od.typecode != INTcode &&
1895                         Code.truncate(od.typecode) == INTcode)
1896                       code.emitop0(int2byte + od.typecode - BYTEcode);
1897                     od.store();
1898                     result = res;
1899                 }
1900                 break;
1901             case JCTree.NULLCHK:
1902                 result = od.load();
1903                 code.emitop0(dup);
1904                 genNullCheck(tree.pos());
1905                 break;
1906             default:
1907                 Assert.error();
1908             }
1909         }
1910     }
1911 
1912     /** Generate a null check from the object value at stack top. */
1913     private void genNullCheck(DiagnosticPosition pos) {
1914         callMethod(pos, syms.objectType, names.getClass,
1915                    List.<Type>nil(), false);
1916         code.emitop0(pop);
1917     }
1918 
1919     public void visitBinary(JCBinary tree) {
1920         OperatorSymbol operator = (OperatorSymbol)tree.operator;
1921         if (operator.opcode == string_add) {
1922             // Create a string buffer.
1923             makeStringBuffer(tree.pos());
1924             // Append all strings to buffer.
1925             appendStrings(tree);
1926             // Convert buffer to string.
1927             bufferToString(tree.pos());
1928             result = items.makeStackItem(syms.stringType);
1929         } else if (tree.getTag() == JCTree.AND) {
1930             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
1931             if (!lcond.isFalse()) {
1932                 Chain falseJumps = lcond.jumpFalse();
1933                 code.resolve(lcond.trueJumps);
1934                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
1935                 result = items.
1936                     makeCondItem(rcond.opcode,
1937                                  rcond.trueJumps,
1938                                  Code.mergeChains(falseJumps,
1939                                                   rcond.falseJumps));
1940             } else {
1941                 result = lcond;
1942             }
1943         } else if (tree.getTag() == JCTree.OR) {
1944             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
1945             if (!lcond.isTrue()) {
1946                 Chain trueJumps = lcond.jumpTrue();
1947                 code.resolve(lcond.falseJumps);
1948                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
1949                 result = items.
1950                     makeCondItem(rcond.opcode,
1951                                  Code.mergeChains(trueJumps, rcond.trueJumps),
1952                                  rcond.falseJumps);
1953             } else {
1954                 result = lcond;
1955             }
1956         } else {
1957             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
1958             od.load();
1959             result = completeBinop(tree.lhs, tree.rhs, operator);
1960         }
1961     }
1962 //where
1963         /** Make a new string buffer.
1964          */
1965         void makeStringBuffer(DiagnosticPosition pos) {
1966             code.emitop2(new_, makeRef(pos, stringBufferType));
1967             code.emitop0(dup);
1968             callMethod(
1969                 pos, stringBufferType, names.init, List.<Type>nil(), false);
1970         }
1971 
1972         /** Append value (on tos) to string buffer (on tos - 1).
1973          */
1974         void appendString(JCTree tree) {
1975             Type t = tree.type.baseType();
1976             if (t.tag > lastBaseTag && t.tsym != syms.stringType.tsym) {
1977                 t = syms.objectType;
1978             }
1979             items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke();
1980         }
1981         Symbol getStringBufferAppend(JCTree tree, Type t) {
1982             Assert.checkNull(t.constValue());
1983             Symbol method = stringBufferAppend.get(t);
1984             if (method == null) {
1985                 method = rs.resolveInternalMethod(tree.pos(),
1986                                                   attrEnv,
1987                                                   stringBufferType,
1988                                                   names.append,
1989                                                   List.of(t),
1990                                                   null);
1991                 stringBufferAppend.put(t, method);
1992             }
1993             return method;
1994         }
1995 
1996         /** Add all strings in tree to string buffer.
1997          */
1998         void appendStrings(JCTree tree) {
1999             tree = TreeInfo.skipParens(tree);
2000             if (tree.getTag() == JCTree.PLUS && tree.type.constValue() == null) {
2001                 JCBinary op = (JCBinary) tree;
2002                 if (op.operator.kind == MTH &&
2003                     ((OperatorSymbol) op.operator).opcode == string_add) {
2004                     appendStrings(op.lhs);
2005                     appendStrings(op.rhs);
2006                     return;
2007                 }
2008             }
2009             genExpr(tree, tree.type).load();
2010             appendString(tree);
2011         }
2012 
2013         /** Convert string buffer on tos to string.
2014          */
2015         void bufferToString(DiagnosticPosition pos) {
2016             callMethod(
2017                 pos,
2018                 stringBufferType,
2019                 names.toString,
2020                 List.<Type>nil(),
2021                 false);
2022         }
2023 
2024         /** Complete generating code for operation, with left operand
2025          *  already on stack.
2026          *  @param lhs       The tree representing the left operand.
2027          *  @param rhs       The tree representing the right operand.
2028          *  @param operator  The operator symbol.
2029          */
2030         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2031             MethodType optype = (MethodType)operator.type;
2032             int opcode = operator.opcode;
2033             if (opcode >= if_icmpeq && opcode <= if_icmple &&
2034                 rhs.type.constValue() instanceof Number &&
2035                 ((Number) rhs.type.constValue()).intValue() == 0) {
2036                 opcode = opcode + (ifeq - if_icmpeq);
2037             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2038                        TreeInfo.isNull(rhs)) {
2039                 opcode = opcode + (if_acmp_null - if_acmpeq);
2040             } else {
2041                 // The expected type of the right operand is
2042                 // the second parameter type of the operator, except for
2043                 // shifts with long shiftcount, where we convert the opcode
2044                 // to a short shift and the expected type to int.
2045                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2046                 if (opcode >= ishll && opcode <= lushrl) {
2047                     opcode = opcode + (ishl - ishll);
2048                     rtype = syms.intType;
2049                 }
2050                 // Generate code for right operand and load.
2051                 genExpr(rhs, rtype).load();
2052                 // If there are two consecutive opcode instructions,
2053                 // emit the first now.
2054                 if (opcode >= (1 << preShift)) {
2055                     code.emitop0(opcode >> preShift);
2056                     opcode = opcode & 0xFF;
2057                 }
2058             }
2059             if (opcode >= ifeq && opcode <= if_acmpne ||
2060                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2061                 return items.makeCondItem(opcode);
2062             } else {
2063                 code.emitop0(opcode);
2064                 return items.makeStackItem(optype.restype);
2065             }
2066         }
2067 
2068     public void visitTypeCast(JCTypeCast tree) {
2069         result = genExpr(tree.expr, tree.clazz.type).load();
2070         // Additional code is only needed if we cast to a reference type
2071         // which is not statically a supertype of the expression's type.
2072         // For basic types, the coerce(...) in genExpr(...) will do
2073         // the conversion.
2074         if (tree.clazz.type.tag > lastBaseTag &&
2075             types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2076             code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
2077         }
2078     }
2079 
2080     public void visitWildcard(JCWildcard tree) {
2081         throw new AssertionError(this.getClass().getName());
2082     }
2083 
2084     public void visitTypeTest(JCInstanceOf tree) {
2085         genExpr(tree.expr, tree.expr.type).load();
2086         code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
2087         result = items.makeStackItem(syms.booleanType);
2088     }
2089 
2090     public void visitIndexed(JCArrayAccess tree) {
2091         genExpr(tree.indexed, tree.indexed.type).load();
2092         genExpr(tree.index, syms.intType).load();
2093         result = items.makeIndexedItem(tree.type);
2094     }
2095 
2096     public void visitIdent(JCIdent tree) {
2097         Symbol sym = tree.sym;
2098         if (tree.name == names._this || tree.name == names._super) {
2099             Item res = tree.name == names._this
2100                 ? items.makeThisItem()
2101                 : items.makeSuperItem();
2102             if (sym.kind == MTH) {
2103                 // Generate code to address the constructor.
2104                 res.load();
2105                 res = items.makeMemberItem(sym, true);
2106             }
2107             result = res;
2108         } else if (sym.kind == VAR && sym.owner.kind == MTH) {
2109             result = items.makeLocalItem((VarSymbol)sym);
2110         } else if ((sym.flags() & STATIC) != 0) {
2111             if (!isAccessSuper(env.enclMethod))
2112                 sym = binaryQualifier(sym, env.enclClass.type);
2113             result = items.makeStaticItem(sym);
2114         } else {
2115             items.makeThisItem().load();
2116             sym = binaryQualifier(sym, env.enclClass.type);
2117             result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
2118         }
2119     }
2120 
2121     public void visitSelect(JCFieldAccess tree) {
2122         Symbol sym = tree.sym;
2123 
2124         if (tree.name == names._class) {
2125             Assert.check(target.hasClassLiterals());
2126             code.emitop2(ldc2, makeRef(tree.pos(), tree.selected.type));
2127             result = items.makeStackItem(pt);
2128             return;
2129         }
2130 
2131         Symbol ssym = TreeInfo.symbol(tree.selected);
2132 
2133         // Are we selecting via super?
2134         boolean selectSuper =
2135             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2136 
2137         // Are we accessing a member of the superclass in an access method
2138         // resulting from a qualified super?
2139         boolean accessSuper = isAccessSuper(env.enclMethod);
2140 
2141         Item base = (selectSuper)
2142             ? items.makeSuperItem()
2143             : genExpr(tree.selected, tree.selected.type);
2144 
2145         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2146             // We are seeing a variable that is constant but its selecting
2147             // expression is not.
2148             if ((sym.flags() & STATIC) != 0) {
2149                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2150                     base = base.load();
2151                 base.drop();
2152             } else {
2153                 base.load();
2154                 genNullCheck(tree.selected.pos());
2155             }
2156             result = items.
2157                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2158         } else {
2159             if (!accessSuper)
2160                 sym = binaryQualifier(sym, tree.selected.type);
2161             if ((sym.flags() & STATIC) != 0) {
2162                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2163                     base = base.load();
2164                 base.drop();
2165                 result = items.makeStaticItem(sym);
2166             } else {
2167                 base.load();
2168                 if (sym == syms.lengthVar) {
2169                     code.emitop0(arraylength);
2170                     result = items.makeStackItem(syms.intType);
2171                 } else {
2172                     result = items.
2173                         makeMemberItem(sym,
2174                                        (sym.flags() & PRIVATE) != 0 ||
2175                                        selectSuper || accessSuper);
2176                 }
2177             }
2178         }
2179     }
2180 
2181     public void visitLiteral(JCLiteral tree) {
2182         if (tree.type.tag == TypeTags.BOT) {
2183             code.emitop0(aconst_null);
2184             if (types.dimensions(pt) > 1) {
2185                 code.emitop2(checkcast, makeRef(tree.pos(), pt));
2186                 result = items.makeStackItem(pt);
2187             } else {
2188                 result = items.makeStackItem(tree.type);
2189             }
2190         }
2191         else
2192             result = items.makeImmediateItem(tree.type, tree.value);
2193     }
2194 
2195     public void visitLetExpr(LetExpr tree) {
2196         int limit = code.nextreg;
2197         genStats(tree.defs, env);
2198         result = genExpr(tree.expr, tree.expr.type).load();
2199         code.endScopes(limit);
2200     }
2201 
2202 /* ************************************************************************
2203  * main method
2204  *************************************************************************/
2205 
2206     /** Generate code for a class definition.
2207      *  @param env   The attribution environment that belongs to the
2208      *               outermost class containing this class definition.
2209      *               We need this for resolving some additional symbols.
2210      *  @param cdef  The tree representing the class definition.
2211      *  @return      True if code is generated with no errors.
2212      */
2213     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2214         try {
2215             attrEnv = env;
2216             ClassSymbol c = cdef.sym;
2217             this.toplevel = env.toplevel;
2218             this.endPositions = toplevel.endPositions;
2219             // If this is a class definition requiring Miranda methods,
2220             // add them.
2221             if (generateIproxies &&
2222                 (c.flags() & (INTERFACE|ABSTRACT)) == ABSTRACT
2223                 && !allowGenerics // no Miranda methods available with generics
2224                 )
2225                 implementInterfaceMethods(c);
2226             cdef.defs = normalizeDefs(cdef.defs, c);
2227             c.pool = pool;
2228             pool.reset();
2229             Env<GenContext> localEnv =
2230                 new Env<GenContext>(cdef, new GenContext());
2231             localEnv.toplevel = env.toplevel;
2232             localEnv.enclClass = cdef;
2233             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2234                 genDef(l.head, localEnv);
2235             }
2236             if (pool.numEntries() > Pool.MAX_ENTRIES) {
2237                 log.error(cdef.pos(), "limit.pool");
2238                 nerrs++;
2239             }
2240             if (nerrs != 0) {
2241                 // if errors, discard code
2242                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2243                     if (l.head.getTag() == JCTree.METHODDEF)
2244                         ((JCMethodDecl) l.head).sym.code = null;
2245                 }
2246             }
2247             cdef.defs = List.nil(); // discard trees
2248             return nerrs == 0;
2249         } finally {
2250             // note: this method does NOT support recursion.
2251             attrEnv = null;
2252             this.env = null;
2253             toplevel = null;
2254             endPositions = null;
2255             nerrs = 0;
2256         }
2257     }
2258 
2259 /* ************************************************************************
2260  * Auxiliary classes
2261  *************************************************************************/
2262 
2263     /** An abstract class for finalizer generation.
2264      */
2265     abstract class GenFinalizer {
2266         /** Generate code to clean up when unwinding. */
2267         abstract void gen();
2268 
2269         /** Generate code to clean up at last. */
2270         abstract void genLast();
2271 
2272         /** Does this finalizer have some nontrivial cleanup to perform? */
2273         boolean hasFinalizer() { return true; }
2274     }
2275 
2276     /** code generation contexts,
2277      *  to be used as type parameter for environments.
2278      */
2279     static class GenContext {
2280 
2281         /** A chain for all unresolved jumps that exit the current environment.
2282          */
2283         Chain exit = null;
2284 
2285         /** A chain for all unresolved jumps that continue in the
2286          *  current environment.
2287          */
2288         Chain cont = null;
2289 
2290         /** A closure that generates the finalizer of the current environment.
2291          *  Only set for Synchronized and Try contexts.
2292          */
2293         GenFinalizer finalize = null;
2294 
2295         /** Is this a switch statement?  If so, allocate registers
2296          * even when the variable declaration is unreachable.
2297          */
2298         boolean isSwitch = false;
2299 
2300         /** A list buffer containing all gaps in the finalizer range,
2301          *  where a catch all exception should not apply.
2302          */
2303         ListBuffer<Integer> gaps = null;
2304 
2305         /** Add given chain to exit chain.
2306          */
2307         void addExit(Chain c)  {
2308             exit = Code.mergeChains(c, exit);
2309         }
2310 
2311         /** Add given chain to cont chain.
2312          */
2313         void addCont(Chain c) {
2314             cont = Code.mergeChains(c, cont);
2315         }
2316     }
2317 }