1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import com.sun.tools.javac.code.*;
  31 import com.sun.tools.javac.code.Kinds.KindSelector;
  32 import com.sun.tools.javac.code.Scope.WriteableScope;
  33 import com.sun.tools.javac.jvm.*;
  34 import com.sun.tools.javac.main.Option.PkgInfo;
  35 import com.sun.tools.javac.tree.*;
  36 import com.sun.tools.javac.util.*;
  37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  38 import com.sun.tools.javac.util.List;
  39 
  40 import com.sun.tools.javac.code.Symbol.*;
  41 import com.sun.tools.javac.code.Symbol.OperatorSymbol.AccessCode;
  42 import com.sun.tools.javac.tree.JCTree.*;
  43 import com.sun.tools.javac.code.Type.*;
  44 
  45 import com.sun.tools.javac.jvm.Target;
  46 import com.sun.tools.javac.tree.EndPosTable;
  47 
  48 import static com.sun.tools.javac.code.Flags.*;
  49 import static com.sun.tools.javac.code.Flags.BLOCK;
  50 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  51 import static com.sun.tools.javac.code.TypeTag.*;
  52 import static com.sun.tools.javac.code.Kinds.Kind.*;
  53 import static com.sun.tools.javac.code.Symbol.OperatorSymbol.AccessCode.DEREF;
  54 import static com.sun.tools.javac.jvm.ByteCodes.*;
  55 import static com.sun.tools.javac.tree.JCTree.JCOperatorExpression.OperandPos.LEFT;
  56 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  57 
  58 /** This pass translates away some syntactic sugar: inner classes,
  59  *  class literals, assertions, foreach loops, etc.
  60  *
  61  *  <p><b>This is NOT part of any supported API.
  62  *  If you write code that depends on this, you do so at your own risk.
  63  *  This code and its internal interfaces are subject to change or
  64  *  deletion without notice.</b>
  65  */
  66 public class Lower extends TreeTranslator {
  67     protected static final Context.Key<Lower> lowerKey = new Context.Key<>();
  68 
  69     public static Lower instance(Context context) {
  70         Lower instance = context.get(lowerKey);
  71         if (instance == null)
  72             instance = new Lower(context);
  73         return instance;
  74     }
  75 
  76     private final Names names;
  77     private final Log log;
  78     private final Symtab syms;
  79     private final Resolve rs;
  80     private final Operators operators;
  81     private final Check chk;
  82     private final Attr attr;
  83     private TreeMaker make;
  84     private DiagnosticPosition make_pos;
  85     private final ClassWriter writer;
  86     private final ConstFold cfolder;
  87     private final Target target;
  88     private final Source source;
  89     private final TypeEnvs typeEnvs;
  90     private final Name dollarAssertionsDisabled;
  91     private final Name classDollar;
  92     private final Name dollarCloseResource;
  93     private final Types types;
  94     private final boolean debugLower;
  95     private final PkgInfo pkginfoOpt;
  96 
  97     protected Lower(Context context) {
  98         context.put(lowerKey, this);
  99         names = Names.instance(context);
 100         log = Log.instance(context);
 101         syms = Symtab.instance(context);
 102         rs = Resolve.instance(context);
 103         operators = Operators.instance(context);
 104         chk = Check.instance(context);
 105         attr = Attr.instance(context);
 106         make = TreeMaker.instance(context);
 107         writer = ClassWriter.instance(context);
 108         cfolder = ConstFold.instance(context);
 109         target = Target.instance(context);
 110         source = Source.instance(context);
 111         typeEnvs = TypeEnvs.instance(context);
 112         dollarAssertionsDisabled = names.
 113             fromString(target.syntheticNameChar() + "assertionsDisabled");
 114         classDollar = names.
 115             fromString("class" + target.syntheticNameChar());
 116         dollarCloseResource = names.
 117             fromString(target.syntheticNameChar() + "closeResource");
 118 
 119         types = Types.instance(context);
 120         Options options = Options.instance(context);
 121         debugLower = options.isSet("debuglower");
 122         pkginfoOpt = PkgInfo.get(options);
 123     }
 124 
 125     /** The currently enclosing class.
 126      */
 127     ClassSymbol currentClass;
 128 
 129     /** A queue of all translated classes.
 130      */
 131     ListBuffer<JCTree> translated;
 132 
 133     /** Environment for symbol lookup, set by translateTopLevelClass.
 134      */
 135     Env<AttrContext> attrEnv;
 136 
 137     /** A hash table mapping syntax trees to their ending source positions.
 138      */
 139     EndPosTable endPosTable;
 140 
 141 /**************************************************************************
 142  * Global mappings
 143  *************************************************************************/
 144 
 145     /** A hash table mapping local classes to their definitions.
 146      */
 147     Map<ClassSymbol, JCClassDecl> classdefs;
 148 
 149     /** A hash table mapping local classes to a list of pruned trees.
 150      */
 151     public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<>();
 152 
 153     /** A hash table mapping virtual accessed symbols in outer subclasses
 154      *  to the actually referred symbol in superclasses.
 155      */
 156     Map<Symbol,Symbol> actualSymbols;
 157 
 158     /** The current method definition.
 159      */
 160     JCMethodDecl currentMethodDef;
 161 
 162     /** The current method symbol.
 163      */
 164     MethodSymbol currentMethodSym;
 165 
 166     /** The currently enclosing outermost class definition.
 167      */
 168     JCClassDecl outermostClassDef;
 169 
 170     /** The currently enclosing outermost member definition.
 171      */
 172     JCTree outermostMemberDef;
 173 
 174     /** A map from local variable symbols to their translation (as per LambdaToMethod).
 175      * This is required when a capturing local class is created from a lambda (in which
 176      * case the captured symbols should be replaced with the translated lambda symbols).
 177      */
 178     Map<Symbol, Symbol> lambdaTranslationMap = null;
 179 
 180     /** A navigator class for assembling a mapping from local class symbols
 181      *  to class definition trees.
 182      *  There is only one case; all other cases simply traverse down the tree.
 183      */
 184     class ClassMap extends TreeScanner {
 185 
 186         /** All encountered class defs are entered into classdefs table.
 187          */
 188         public void visitClassDef(JCClassDecl tree) {
 189             classdefs.put(tree.sym, tree);
 190             super.visitClassDef(tree);
 191         }
 192     }
 193     ClassMap classMap = new ClassMap();
 194 
 195     /** Map a class symbol to its definition.
 196      *  @param c    The class symbol of which we want to determine the definition.
 197      */
 198     JCClassDecl classDef(ClassSymbol c) {
 199         // First lookup the class in the classdefs table.
 200         JCClassDecl def = classdefs.get(c);
 201         if (def == null && outermostMemberDef != null) {
 202             // If this fails, traverse outermost member definition, entering all
 203             // local classes into classdefs, and try again.
 204             classMap.scan(outermostMemberDef);
 205             def = classdefs.get(c);
 206         }
 207         if (def == null) {
 208             // If this fails, traverse outermost class definition, entering all
 209             // local classes into classdefs, and try again.
 210             classMap.scan(outermostClassDef);
 211             def = classdefs.get(c);
 212         }
 213         return def;
 214     }
 215 
 216     /** A hash table mapping class symbols to lists of free variables.
 217      *  accessed by them. Only free variables of the method immediately containing
 218      *  a class are associated with that class.
 219      */
 220     Map<ClassSymbol,List<VarSymbol>> freevarCache;
 221 
 222     /** A navigator class for collecting the free variables accessed
 223      *  from a local class. There is only one case; all other cases simply
 224      *  traverse down the tree. This class doesn't deal with the specific
 225      *  of Lower - it's an abstract visitor that is meant to be reused in
 226      *  order to share the local variable capture logic.
 227      */
 228     abstract class BasicFreeVarCollector extends TreeScanner {
 229 
 230         /** Add all free variables of class c to fvs list
 231          *  unless they are already there.
 232          */
 233         abstract void addFreeVars(ClassSymbol c);
 234 
 235         /** If tree refers to a variable in owner of local class, add it to
 236          *  free variables list.
 237          */
 238         public void visitIdent(JCIdent tree) {
 239             visitSymbol(tree.sym);
 240         }
 241         // where
 242         abstract void visitSymbol(Symbol _sym);
 243 
 244         /** If tree refers to a class instance creation expression
 245          *  add all free variables of the freshly created class.
 246          */
 247         public void visitNewClass(JCNewClass tree) {
 248             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 249             addFreeVars(c);
 250             super.visitNewClass(tree);
 251         }
 252 
 253         /** If tree refers to a superclass constructor call,
 254          *  add all free variables of the superclass.
 255          */
 256         public void visitApply(JCMethodInvocation tree) {
 257             if (TreeInfo.name(tree.meth) == names._super) {
 258                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
 259             }
 260             super.visitApply(tree);
 261         }
 262     }
 263 
 264     /**
 265      * Lower-specific subclass of {@code BasicFreeVarCollector}.
 266      */
 267     class FreeVarCollector extends BasicFreeVarCollector {
 268 
 269         /** The owner of the local class.
 270          */
 271         Symbol owner;
 272 
 273         /** The local class.
 274          */
 275         ClassSymbol clazz;
 276 
 277         /** The list of owner's variables accessed from within the local class,
 278          *  without any duplicates.
 279          */
 280         List<VarSymbol> fvs;
 281 
 282         FreeVarCollector(ClassSymbol clazz) {
 283             this.clazz = clazz;
 284             this.owner = clazz.owner;
 285             this.fvs = List.nil();
 286         }
 287 
 288         /** Add free variable to fvs list unless it is already there.
 289          */
 290         private void addFreeVar(VarSymbol v) {
 291             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
 292                 if (l.head == v) return;
 293             fvs = fvs.prepend(v);
 294         }
 295 
 296         @Override
 297         void addFreeVars(ClassSymbol c) {
 298             List<VarSymbol> fvs = freevarCache.get(c);
 299             if (fvs != null) {
 300                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
 301                     addFreeVar(l.head);
 302                 }
 303             }
 304         }
 305 
 306         @Override
 307         void visitSymbol(Symbol _sym) {
 308             Symbol sym = _sym;
 309             if (sym.kind == VAR || sym.kind == MTH) {
 310                 while (sym != null && sym.owner != owner)
 311                     sym = proxies.findFirst(proxyName(sym.name));
 312                 if (sym != null && sym.owner == owner) {
 313                     VarSymbol v = (VarSymbol)sym;
 314                     if (v.getConstValue() == null) {
 315                         addFreeVar(v);
 316                     }
 317                 } else {
 318                     if (outerThisStack.head != null &&
 319                         outerThisStack.head != _sym)
 320                         visitSymbol(outerThisStack.head);
 321                 }
 322             }
 323         }
 324 
 325         /** If tree refers to a class instance creation expression
 326          *  add all free variables of the freshly created class.
 327          */
 328         public void visitNewClass(JCNewClass tree) {
 329             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 330             if (tree.encl == null &&
 331                 c.hasOuterInstance() &&
 332                 outerThisStack.head != null)
 333                 visitSymbol(outerThisStack.head);
 334             super.visitNewClass(tree);
 335         }
 336 
 337         /** If tree refers to a qualified this or super expression
 338          *  for anything but the current class, add the outer this
 339          *  stack as a free variable.
 340          */
 341         public void visitSelect(JCFieldAccess tree) {
 342             if ((tree.name == names._this || tree.name == names._super) &&
 343                 tree.selected.type.tsym != clazz &&
 344                 outerThisStack.head != null)
 345                 visitSymbol(outerThisStack.head);
 346             super.visitSelect(tree);
 347         }
 348 
 349         /** If tree refers to a superclass constructor call,
 350          *  add all free variables of the superclass.
 351          */
 352         public void visitApply(JCMethodInvocation tree) {
 353             if (TreeInfo.name(tree.meth) == names._super) {
 354                 Symbol constructor = TreeInfo.symbol(tree.meth);
 355                 ClassSymbol c = (ClassSymbol)constructor.owner;
 356                 if (c.hasOuterInstance() &&
 357                     !tree.meth.hasTag(SELECT) &&
 358                     outerThisStack.head != null)
 359                     visitSymbol(outerThisStack.head);
 360             }
 361             super.visitApply(tree);
 362         }
 363     }
 364 
 365     ClassSymbol ownerToCopyFreeVarsFrom(ClassSymbol c) {
 366         if (!c.isLocal()) {
 367             return null;
 368         }
 369         Symbol currentOwner = c.owner;
 370         while (currentOwner.owner.kind.matches(KindSelector.TYP) && currentOwner.isLocal()) {
 371             currentOwner = currentOwner.owner;
 372         }
 373         if (currentOwner.owner.kind.matches(KindSelector.VAL_MTH) && c.isSubClass(currentOwner, types)) {
 374             return (ClassSymbol)currentOwner;
 375         }
 376         return null;
 377     }
 378 
 379     /** Return the variables accessed from within a local class, which
 380      *  are declared in the local class' owner.
 381      *  (in reverse order of first access).
 382      */
 383     List<VarSymbol> freevars(ClassSymbol c)  {
 384         List<VarSymbol> fvs = freevarCache.get(c);
 385         if (fvs != null) {
 386             return fvs;
 387         }
 388         if (c.owner.kind.matches(KindSelector.VAL_MTH)) {
 389             FreeVarCollector collector = new FreeVarCollector(c);
 390             collector.scan(classDef(c));
 391             fvs = collector.fvs;
 392             freevarCache.put(c, fvs);
 393             return fvs;
 394         } else {
 395             ClassSymbol owner = ownerToCopyFreeVarsFrom(c);
 396             if (owner != null) {
 397                 fvs = freevarCache.get(owner);
 398                 freevarCache.put(c, fvs);
 399                 return fvs;
 400             } else {
 401                 return List.nil();
 402             }
 403         }
 404     }
 405 
 406     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<>();
 407 
 408     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
 409         EnumMapping map = enumSwitchMap.get(enumClass);
 410         if (map == null)
 411             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
 412         return map;
 413     }
 414 
 415     /** This map gives a translation table to be used for enum
 416      *  switches.
 417      *
 418      *  <p>For each enum that appears as the type of a switch
 419      *  expression, we maintain an EnumMapping to assist in the
 420      *  translation, as exemplified by the following example:
 421      *
 422      *  <p>we translate
 423      *  <pre>
 424      *          switch(colorExpression) {
 425      *          case red: stmt1;
 426      *          case green: stmt2;
 427      *          }
 428      *  </pre>
 429      *  into
 430      *  <pre>
 431      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
 432      *          case 1: stmt1;
 433      *          case 2: stmt2
 434      *          }
 435      *  </pre>
 436      *  with the auxiliary table initialized as follows:
 437      *  <pre>
 438      *          class Outer$0 {
 439      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
 440      *              static {
 441      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
 442      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
 443      *              }
 444      *          }
 445      *  </pre>
 446      *  class EnumMapping provides mapping data and support methods for this translation.
 447      */
 448     class EnumMapping {
 449         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
 450             this.forEnum = forEnum;
 451             this.values = new LinkedHashMap<>();
 452             this.pos = pos;
 453             Name varName = names
 454                 .fromString(target.syntheticNameChar() +
 455                             "SwitchMap" +
 456                             target.syntheticNameChar() +
 457                             writer.xClassName(forEnum.type).toString()
 458                             .replace('/', '.')
 459                             .replace('.', target.syntheticNameChar()));
 460             ClassSymbol outerCacheClass = outerCacheClass();
 461             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
 462                                         varName,
 463                                         new ArrayType(syms.intType, syms.arrayClass),
 464                                         outerCacheClass);
 465             enterSynthetic(pos, mapVar, outerCacheClass.members());
 466         }
 467 
 468         DiagnosticPosition pos = null;
 469 
 470         // the next value to use
 471         int next = 1; // 0 (unused map elements) go to the default label
 472 
 473         // the enum for which this is a map
 474         final TypeSymbol forEnum;
 475 
 476         // the field containing the map
 477         final VarSymbol mapVar;
 478 
 479         // the mapped values
 480         final Map<VarSymbol,Integer> values;
 481 
 482         JCLiteral forConstant(VarSymbol v) {
 483             Integer result = values.get(v);
 484             if (result == null)
 485                 values.put(v, result = next++);
 486             return make.Literal(result);
 487         }
 488 
 489         // generate the field initializer for the map
 490         void translate() {
 491             make.at(pos.getStartPosition());
 492             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
 493 
 494             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
 495             MethodSymbol valuesMethod = lookupMethod(pos,
 496                                                      names.values,
 497                                                      forEnum.type,
 498                                                      List.<Type>nil());
 499             JCExpression size = make // Color.values().length
 500                 .Select(make.App(make.QualIdent(valuesMethod)),
 501                         syms.lengthVar);
 502             JCExpression mapVarInit = make
 503                 .NewArray(make.Type(syms.intType), List.of(size), null)
 504                 .setType(new ArrayType(syms.intType, syms.arrayClass));
 505 
 506             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
 507             ListBuffer<JCStatement> stmts = new ListBuffer<>();
 508             Symbol ordinalMethod = lookupMethod(pos,
 509                                                 names.ordinal,
 510                                                 forEnum.type,
 511                                                 List.<Type>nil());
 512             List<JCCatch> catcher = List.<JCCatch>nil()
 513                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
 514                                                               syms.noSuchFieldErrorType,
 515                                                               syms.noSymbol),
 516                                                 null),
 517                                     make.Block(0, List.<JCStatement>nil())));
 518             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
 519                 VarSymbol enumerator = e.getKey();
 520                 Integer mappedValue = e.getValue();
 521                 JCExpression assign = make
 522                     .Assign(make.Indexed(mapVar,
 523                                          make.App(make.Select(make.QualIdent(enumerator),
 524                                                               ordinalMethod))),
 525                             make.Literal(mappedValue))
 526                     .setType(syms.intType);
 527                 JCStatement exec = make.Exec(assign);
 528                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
 529                 stmts.append(_try);
 530             }
 531 
 532             owner.defs = owner.defs
 533                 .prepend(make.Block(STATIC, stmts.toList()))
 534                 .prepend(make.VarDef(mapVar, mapVarInit));
 535         }
 536     }
 537 
 538 
 539 /**************************************************************************
 540  * Tree building blocks
 541  *************************************************************************/
 542 
 543     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
 544      *  pos as make_pos, for use in diagnostics.
 545      **/
 546     TreeMaker make_at(DiagnosticPosition pos) {
 547         make_pos = pos;
 548         return make.at(pos);
 549     }
 550 
 551     /** Make an attributed tree representing a literal. This will be an
 552      *  Ident node in the case of boolean literals, a Literal node in all
 553      *  other cases.
 554      *  @param type       The literal's type.
 555      *  @param value      The literal's value.
 556      */
 557     JCExpression makeLit(Type type, Object value) {
 558         return make.Literal(type.getTag(), value).setType(type.constType(value));
 559     }
 560 
 561     /** Make an attributed tree representing null.
 562      */
 563     JCExpression makeNull() {
 564         return makeLit(syms.botType, null);
 565     }
 566 
 567     /** Make an attributed class instance creation expression.
 568      *  @param ctype    The class type.
 569      *  @param args     The constructor arguments.
 570      */
 571     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
 572         JCNewClass tree = make.NewClass(null,
 573             null, make.QualIdent(ctype.tsym), args, null);
 574         tree.constructor = rs.resolveConstructor(
 575             make_pos, attrEnv, ctype, TreeInfo.types(args), List.<Type>nil());
 576         tree.type = ctype;
 577         return tree;
 578     }
 579 
 580     /** Make an attributed unary expression.
 581      *  @param optag    The operators tree tag.
 582      *  @param arg      The operator's argument.
 583      */
 584     JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
 585         JCUnary tree = make.Unary(optag, arg);
 586         tree.operator = operators.resolveUnary(tree, optag, arg.type);
 587         tree.type = tree.operator.type.getReturnType();
 588         return tree;
 589     }
 590 
 591     /** Make an attributed binary expression.
 592      *  @param optag    The operators tree tag.
 593      *  @param lhs      The operator's left argument.
 594      *  @param rhs      The operator's right argument.
 595      */
 596     JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
 597         JCBinary tree = make.Binary(optag, lhs, rhs);
 598         tree.operator = operators.resolveBinary(tree, optag, lhs.type, rhs.type);
 599         tree.type = tree.operator.type.getReturnType();
 600         return tree;
 601     }
 602 
 603     /** Make an attributed assignop expression.
 604      *  @param optag    The operators tree tag.
 605      *  @param lhs      The operator's left argument.
 606      *  @param rhs      The operator's right argument.
 607      */
 608     JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
 609         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
 610         tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), lhs.type, rhs.type);
 611         tree.type = lhs.type;
 612         return tree;
 613     }
 614 
 615     /** Convert tree into string object, unless it has already a
 616      *  reference type..
 617      */
 618     JCExpression makeString(JCExpression tree) {
 619         if (!tree.type.isPrimitiveOrVoid()) {
 620             return tree;
 621         } else {
 622             Symbol valueOfSym = lookupMethod(tree.pos(),
 623                                              names.valueOf,
 624                                              syms.stringType,
 625                                              List.of(tree.type));
 626             return make.App(make.QualIdent(valueOfSym), List.of(tree));
 627         }
 628     }
 629 
 630     /** Create an empty anonymous class definition and enter and complete
 631      *  its symbol. Return the class definition's symbol.
 632      *  and create
 633      *  @param flags    The class symbol's flags
 634      *  @param owner    The class symbol's owner
 635      */
 636     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
 637         return makeEmptyClass(flags, owner, null, true);
 638     }
 639 
 640     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
 641             boolean addToDefs) {
 642         // Create class symbol.
 643         ClassSymbol c = syms.defineClass(names.empty, owner);
 644         if (flatname != null) {
 645             c.flatname = flatname;
 646         } else {
 647             c.flatname = chk.localClassName(c);
 648         }
 649         c.sourcefile = owner.sourcefile;
 650         c.completer = Completer.NULL_COMPLETER;
 651         c.members_field = WriteableScope.create(c);
 652         c.flags_field = flags;
 653         ClassType ctype = (ClassType) c.type;
 654         ctype.supertype_field = syms.objectType;
 655         ctype.interfaces_field = List.nil();
 656 
 657         JCClassDecl odef = classDef(owner);
 658 
 659         // Enter class symbol in owner scope and compiled table.
 660         enterSynthetic(odef.pos(), c, owner.members());
 661         chk.putCompiled(c);
 662 
 663         // Create class definition tree.
 664         JCClassDecl cdef = make.ClassDef(
 665             make.Modifiers(flags), names.empty,
 666             List.<JCTypeParameter>nil(),
 667             null, List.<JCExpression>nil(), List.<JCTree>nil());
 668         cdef.sym = c;
 669         cdef.type = c.type;
 670 
 671         // Append class definition tree to owner's definitions.
 672         if (addToDefs) odef.defs = odef.defs.prepend(cdef);
 673         return cdef;
 674     }
 675 
 676 /**************************************************************************
 677  * Symbol manipulation utilities
 678  *************************************************************************/
 679 
 680     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
 681      *  @param pos           Position for error reporting.
 682      *  @param sym           The symbol.
 683      *  @param s             The scope.
 684      */
 685     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, WriteableScope s) {
 686         s.enter(sym);
 687     }
 688 
 689     /** Create a fresh synthetic name within a given scope - the unique name is
 690      *  obtained by appending '$' chars at the end of the name until no match
 691      *  is found.
 692      *
 693      * @param name base name
 694      * @param s scope in which the name has to be unique
 695      * @return fresh synthetic name
 696      */
 697     private Name makeSyntheticName(Name name, Scope s) {
 698         do {
 699             name = name.append(
 700                     target.syntheticNameChar(),
 701                     names.empty);
 702         } while (lookupSynthetic(name, s) != null);
 703         return name;
 704     }
 705 
 706     /** Check whether synthetic symbols generated during lowering conflict
 707      *  with user-defined symbols.
 708      *
 709      *  @param translatedTrees lowered class trees
 710      */
 711     void checkConflicts(List<JCTree> translatedTrees) {
 712         for (JCTree t : translatedTrees) {
 713             t.accept(conflictsChecker);
 714         }
 715     }
 716 
 717     JCTree.Visitor conflictsChecker = new TreeScanner() {
 718 
 719         TypeSymbol currentClass;
 720 
 721         @Override
 722         public void visitMethodDef(JCMethodDecl that) {
 723             chk.checkConflicts(that.pos(), that.sym, currentClass);
 724             super.visitMethodDef(that);
 725         }
 726 
 727         @Override
 728         public void visitVarDef(JCVariableDecl that) {
 729             if (that.sym.owner.kind == TYP) {
 730                 chk.checkConflicts(that.pos(), that.sym, currentClass);
 731             }
 732             super.visitVarDef(that);
 733         }
 734 
 735         @Override
 736         public void visitClassDef(JCClassDecl that) {
 737             TypeSymbol prevCurrentClass = currentClass;
 738             currentClass = that.sym;
 739             try {
 740                 super.visitClassDef(that);
 741             }
 742             finally {
 743                 currentClass = prevCurrentClass;
 744             }
 745         }
 746     };
 747 
 748     /** Look up a synthetic name in a given scope.
 749      *  @param s            The scope.
 750      *  @param name         The name.
 751      */
 752     private Symbol lookupSynthetic(Name name, Scope s) {
 753         Symbol sym = s.findFirst(name);
 754         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
 755     }
 756 
 757     /** Look up a method in a given scope.
 758      */
 759     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
 760         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.<Type>nil());
 761     }
 762 
 763     /** Look up a constructor.
 764      */
 765     private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
 766         return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
 767     }
 768 
 769     /** Look up a field.
 770      */
 771     private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
 772         return rs.resolveInternalField(pos, attrEnv, qual, name);
 773     }
 774 
 775     /** Anon inner classes are used as access constructor tags.
 776      * accessConstructorTag will use an existing anon class if one is available,
 777      * and synthethise a class (with makeEmptyClass) if one is not available.
 778      * However, there is a small possibility that an existing class will not
 779      * be generated as expected if it is inside a conditional with a constant
 780      * expression. If that is found to be the case, create an empty class tree here.
 781      */
 782     private void checkAccessConstructorTags() {
 783         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
 784             ClassSymbol c = l.head;
 785             if (isTranslatedClassAvailable(c))
 786                 continue;
 787             // Create class definition tree.
 788             JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC,
 789                     c.outermostClass(), c.flatname, false);
 790             swapAccessConstructorTag(c, cdec.sym);
 791             translated.append(cdec);
 792         }
 793     }
 794     // where
 795     private boolean isTranslatedClassAvailable(ClassSymbol c) {
 796         for (JCTree tree: translated) {
 797             if (tree.hasTag(CLASSDEF)
 798                     && ((JCClassDecl) tree).sym == c) {
 799                 return true;
 800             }
 801         }
 802         return false;
 803     }
 804 
 805     void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
 806         for (MethodSymbol methodSymbol : accessConstrs.values()) {
 807             Assert.check(methodSymbol.type.hasTag(METHOD));
 808             MethodType oldMethodType =
 809                     (MethodType)methodSymbol.type;
 810             if (oldMethodType.argtypes.head.tsym == oldCTag)
 811                 methodSymbol.type =
 812                     types.createMethodTypeWithParameters(oldMethodType,
 813                         oldMethodType.getParameterTypes().tail
 814                             .prepend(newCTag.erasure(types)));
 815         }
 816     }
 817 
 818 /**************************************************************************
 819  * Access methods
 820  *************************************************************************/
 821 
 822     /** A mapping from symbols to their access numbers.
 823      */
 824     private Map<Symbol,Integer> accessNums;
 825 
 826     /** A mapping from symbols to an array of access symbols, indexed by
 827      *  access code.
 828      */
 829     private Map<Symbol,MethodSymbol[]> accessSyms;
 830 
 831     /** A mapping from (constructor) symbols to access constructor symbols.
 832      */
 833     private Map<Symbol,MethodSymbol> accessConstrs;
 834 
 835     /** A list of all class symbols used for access constructor tags.
 836      */
 837     private List<ClassSymbol> accessConstrTags;
 838 
 839     /** A queue for all accessed symbols.
 840      */
 841     private ListBuffer<Symbol> accessed;
 842 
 843     /** return access code for identifier,
 844      *  @param tree     The tree representing the identifier use.
 845      *  @param enclOp   The closest enclosing operation node of tree,
 846      *                  null if tree is not a subtree of an operation.
 847      */
 848     private static int accessCode(JCTree tree, JCTree enclOp) {
 849         if (enclOp == null)
 850             return AccessCode.DEREF.code;
 851         else if (enclOp.hasTag(ASSIGN) &&
 852                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
 853             return AccessCode.ASSIGN.code;
 854         else if ((enclOp.getTag().isIncOrDecUnaryOp() || enclOp.getTag().isAssignop()) &&
 855                 tree == TreeInfo.skipParens(((JCOperatorExpression) enclOp).getOperand(LEFT)))
 856             return (((JCOperatorExpression) enclOp).operator).getAccessCode(enclOp.getTag());
 857         else
 858             return AccessCode.DEREF.code;
 859     }
 860 
 861     /** Return binary operator that corresponds to given access code.
 862      */
 863     private OperatorSymbol binaryAccessOperator(int acode, Tag tag) {
 864         return operators.lookupBinaryOp(op -> op.getAccessCode(tag) == acode);
 865     }
 866 
 867     /** Return tree tag for assignment operation corresponding
 868      *  to given binary operator.
 869      */
 870     private static JCTree.Tag treeTag(OperatorSymbol operator) {
 871         switch (operator.opcode) {
 872         case ByteCodes.ior: case ByteCodes.lor:
 873             return BITOR_ASG;
 874         case ByteCodes.ixor: case ByteCodes.lxor:
 875             return BITXOR_ASG;
 876         case ByteCodes.iand: case ByteCodes.land:
 877             return BITAND_ASG;
 878         case ByteCodes.ishl: case ByteCodes.lshl:
 879         case ByteCodes.ishll: case ByteCodes.lshll:
 880             return SL_ASG;
 881         case ByteCodes.ishr: case ByteCodes.lshr:
 882         case ByteCodes.ishrl: case ByteCodes.lshrl:
 883             return SR_ASG;
 884         case ByteCodes.iushr: case ByteCodes.lushr:
 885         case ByteCodes.iushrl: case ByteCodes.lushrl:
 886             return USR_ASG;
 887         case ByteCodes.iadd: case ByteCodes.ladd:
 888         case ByteCodes.fadd: case ByteCodes.dadd:
 889         case ByteCodes.string_add:
 890             return PLUS_ASG;
 891         case ByteCodes.isub: case ByteCodes.lsub:
 892         case ByteCodes.fsub: case ByteCodes.dsub:
 893             return MINUS_ASG;
 894         case ByteCodes.imul: case ByteCodes.lmul:
 895         case ByteCodes.fmul: case ByteCodes.dmul:
 896             return MUL_ASG;
 897         case ByteCodes.idiv: case ByteCodes.ldiv:
 898         case ByteCodes.fdiv: case ByteCodes.ddiv:
 899             return DIV_ASG;
 900         case ByteCodes.imod: case ByteCodes.lmod:
 901         case ByteCodes.fmod: case ByteCodes.dmod:
 902             return MOD_ASG;
 903         default:
 904             throw new AssertionError();
 905         }
 906     }
 907 
 908     /** The name of the access method with number `anum' and access code `acode'.
 909      */
 910     Name accessName(int anum, int acode) {
 911         return names.fromString(
 912             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
 913     }
 914 
 915     /** Return access symbol for a private or protected symbol from an inner class.
 916      *  @param sym        The accessed private symbol.
 917      *  @param tree       The accessing tree.
 918      *  @param enclOp     The closest enclosing operation node of tree,
 919      *                    null if tree is not a subtree of an operation.
 920      *  @param protAccess Is access to a protected symbol in another
 921      *                    package?
 922      *  @param refSuper   Is access via a (qualified) C.super?
 923      */
 924     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
 925                               boolean protAccess, boolean refSuper) {
 926         ClassSymbol accOwner = refSuper && protAccess
 927             // For access via qualified super (T.super.x), place the
 928             // access symbol on T.
 929             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
 930             // Otherwise pretend that the owner of an accessed
 931             // protected symbol is the enclosing class of the current
 932             // class which is a subclass of the symbol's owner.
 933             : accessClass(sym, protAccess, tree);
 934 
 935         Symbol vsym = sym;
 936         if (sym.owner != accOwner) {
 937             vsym = sym.clone(accOwner);
 938             actualSymbols.put(vsym, sym);
 939         }
 940 
 941         Integer anum              // The access number of the access method.
 942             = accessNums.get(vsym);
 943         if (anum == null) {
 944             anum = accessed.length();
 945             accessNums.put(vsym, anum);
 946             accessSyms.put(vsym, new MethodSymbol[AccessCode.numberOfAccessCodes]);
 947             accessed.append(vsym);
 948             // System.out.println("accessing " + vsym + " in " + vsym.location());
 949         }
 950 
 951         int acode;                // The access code of the access method.
 952         List<Type> argtypes;      // The argument types of the access method.
 953         Type restype;             // The result type of the access method.
 954         List<Type> thrown;        // The thrown exceptions of the access method.
 955         switch (vsym.kind) {
 956         case VAR:
 957             acode = accessCode(tree, enclOp);
 958             if (acode >= AccessCode.FIRSTASGOP.code) {
 959                 OperatorSymbol operator = binaryAccessOperator(acode, enclOp.getTag());
 960                 if (operator.opcode == string_add)
 961                     argtypes = List.of(syms.objectType);
 962                 else
 963                     argtypes = operator.type.getParameterTypes().tail;
 964             } else if (acode == AccessCode.ASSIGN.code)
 965                 argtypes = List.of(vsym.erasure(types));
 966             else
 967                 argtypes = List.nil();
 968             restype = vsym.erasure(types);
 969             thrown = List.nil();
 970             break;
 971         case MTH:
 972             acode = AccessCode.DEREF.code;
 973             argtypes = vsym.erasure(types).getParameterTypes();
 974             restype = vsym.erasure(types).getReturnType();
 975             thrown = vsym.type.getThrownTypes();
 976             break;
 977         default:
 978             throw new AssertionError();
 979         }
 980 
 981         // For references via qualified super, increment acode by one,
 982         // making it odd.
 983         if (protAccess && refSuper) acode++;
 984 
 985         // Instance access methods get instance as first parameter.
 986         // For protected symbols this needs to be the instance as a member
 987         // of the type containing the accessed symbol, not the class
 988         // containing the access method.
 989         if ((vsym.flags() & STATIC) == 0) {
 990             argtypes = argtypes.prepend(vsym.owner.erasure(types));
 991         }
 992         MethodSymbol[] accessors = accessSyms.get(vsym);
 993         MethodSymbol accessor = accessors[acode];
 994         if (accessor == null) {
 995             accessor = new MethodSymbol(
 996                 STATIC | SYNTHETIC | (accOwner.isInterface() ? PUBLIC : 0),
 997                 accessName(anum.intValue(), acode),
 998                 new MethodType(argtypes, restype, thrown, syms.methodClass),
 999                 accOwner);
1000             enterSynthetic(tree.pos(), accessor, accOwner.members());
1001             accessors[acode] = accessor;
1002         }
1003         return accessor;
1004     }
1005 
1006     /** The qualifier to be used for accessing a symbol in an outer class.
1007      *  This is either C.sym or C.this.sym, depending on whether or not
1008      *  sym is static.
1009      *  @param sym   The accessed symbol.
1010      */
1011     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
1012         return (sym.flags() & STATIC) != 0
1013             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
1014             : makeOwnerThis(pos, sym, true);
1015     }
1016 
1017     /** Do we need an access method to reference private symbol?
1018      */
1019     boolean needsPrivateAccess(Symbol sym) {
1020         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
1021             return false;
1022         } else if (sym.name == names.init && sym.owner.isLocal()) {
1023             // private constructor in local class: relax protection
1024             sym.flags_field &= ~PRIVATE;
1025             return false;
1026         } else {
1027             return true;
1028         }
1029     }
1030 
1031     /** Do we need an access method to reference symbol in other package?
1032      */
1033     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
1034         if ((sym.flags() & PROTECTED) == 0 ||
1035             sym.owner.owner == currentClass.owner || // fast special case
1036             sym.packge() == currentClass.packge())
1037             return false;
1038         if (!currentClass.isSubClass(sym.owner, types))
1039             return true;
1040         if ((sym.flags() & STATIC) != 0 ||
1041             !tree.hasTag(SELECT) ||
1042             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
1043             return false;
1044         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
1045     }
1046 
1047     /** The class in which an access method for given symbol goes.
1048      *  @param sym        The access symbol
1049      *  @param protAccess Is access to a protected symbol in another
1050      *                    package?
1051      */
1052     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
1053         if (protAccess) {
1054             Symbol qualifier = null;
1055             ClassSymbol c = currentClass;
1056             if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
1057                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
1058                 while (!qualifier.isSubClass(c, types)) {
1059                     c = c.owner.enclClass();
1060                 }
1061                 return c;
1062             } else {
1063                 while (!c.isSubClass(sym.owner, types)) {
1064                     c = c.owner.enclClass();
1065                 }
1066             }
1067             return c;
1068         } else {
1069             // the symbol is private
1070             return sym.owner.enclClass();
1071         }
1072     }
1073 
1074     private void addPrunedInfo(JCTree tree) {
1075         List<JCTree> infoList = prunedTree.get(currentClass);
1076         infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
1077         prunedTree.put(currentClass, infoList);
1078     }
1079 
1080     /** Ensure that identifier is accessible, return tree accessing the identifier.
1081      *  @param sym      The accessed symbol.
1082      *  @param tree     The tree referring to the symbol.
1083      *  @param enclOp   The closest enclosing operation node of tree,
1084      *                  null if tree is not a subtree of an operation.
1085      *  @param refSuper Is access via a (qualified) C.super?
1086      */
1087     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
1088         // Access a free variable via its proxy, or its proxy's proxy
1089         while (sym.kind == VAR && sym.owner.kind == MTH &&
1090             sym.owner.enclClass() != currentClass) {
1091             // A constant is replaced by its constant value.
1092             Object cv = ((VarSymbol)sym).getConstValue();
1093             if (cv != null) {
1094                 make.at(tree.pos);
1095                 return makeLit(sym.type, cv);
1096             }
1097             // Otherwise replace the variable by its proxy.
1098             sym = proxies.findFirst(proxyName(sym.name));
1099             Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
1100             tree = make.at(tree.pos).Ident(sym);
1101         }
1102         JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
1103         switch (sym.kind) {
1104         case TYP:
1105             if (sym.owner.kind != PCK) {
1106                 // Convert type idents to
1107                 // <flat name> or <package name> . <flat name>
1108                 Name flatname = Convert.shortName(sym.flatName());
1109                 while (base != null &&
1110                        TreeInfo.symbol(base) != null &&
1111                        TreeInfo.symbol(base).kind != PCK) {
1112                     base = (base.hasTag(SELECT))
1113                         ? ((JCFieldAccess) base).selected
1114                         : null;
1115                 }
1116                 if (tree.hasTag(IDENT)) {
1117                     ((JCIdent) tree).name = flatname;
1118                 } else if (base == null) {
1119                     tree = make.at(tree.pos).Ident(sym);
1120                     ((JCIdent) tree).name = flatname;
1121                 } else {
1122                     ((JCFieldAccess) tree).selected = base;
1123                     ((JCFieldAccess) tree).name = flatname;
1124                 }
1125             }
1126             break;
1127         case MTH: case VAR:
1128             if (sym.owner.kind == TYP) {
1129 
1130                 // Access methods are required for
1131                 //  - private members,
1132                 //  - protected members in a superclass of an
1133                 //    enclosing class contained in another package.
1134                 //  - all non-private members accessed via a qualified super.
1135                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
1136                     || needsProtectedAccess(sym, tree);
1137                 boolean accReq = protAccess || needsPrivateAccess(sym);
1138 
1139                 // A base has to be supplied for
1140                 //  - simple identifiers accessing variables in outer classes.
1141                 boolean baseReq =
1142                     base == null &&
1143                     sym.owner != syms.predefClass &&
1144                     !sym.isMemberOf(currentClass, types);
1145 
1146                 if (accReq || baseReq) {
1147                     make.at(tree.pos);
1148 
1149                     // Constants are replaced by their constant value.
1150                     if (sym.kind == VAR) {
1151                         Object cv = ((VarSymbol)sym).getConstValue();
1152                         if (cv != null) {
1153                             addPrunedInfo(tree);
1154                             return makeLit(sym.type, cv);
1155                         }
1156                     }
1157 
1158                     // Private variables and methods are replaced by calls
1159                     // to their access methods.
1160                     if (accReq) {
1161                         List<JCExpression> args = List.nil();
1162                         if ((sym.flags() & STATIC) == 0) {
1163                             // Instance access methods get instance
1164                             // as first parameter.
1165                             if (base == null)
1166                                 base = makeOwnerThis(tree.pos(), sym, true);
1167                             args = args.prepend(base);
1168                             base = null;   // so we don't duplicate code
1169                         }
1170                         Symbol access = accessSymbol(sym, tree,
1171                                                      enclOp, protAccess,
1172                                                      refSuper);
1173                         JCExpression receiver = make.Select(
1174                             base != null ? base : make.QualIdent(access.owner),
1175                             access);
1176                         return make.App(receiver, args);
1177 
1178                     // Other accesses to members of outer classes get a
1179                     // qualifier.
1180                     } else if (baseReq) {
1181                         return make.at(tree.pos).Select(
1182                             accessBase(tree.pos(), sym), sym).setType(tree.type);
1183                     }
1184                 }
1185             } else if (sym.owner.kind == MTH && lambdaTranslationMap != null) {
1186                 //sym is a local variable - check the lambda translation map to
1187                 //see if sym has been translated to something else in the current
1188                 //scope (by LambdaToMethod)
1189                 Symbol translatedSym = lambdaTranslationMap.get(sym);
1190                 if (translatedSym != null) {
1191                     tree = make.at(tree.pos).Ident(translatedSym);
1192                 }
1193             }
1194         }
1195         return tree;
1196     }
1197 
1198     /** Ensure that identifier is accessible, return tree accessing the identifier.
1199      *  @param tree     The identifier tree.
1200      */
1201     JCExpression access(JCExpression tree) {
1202         Symbol sym = TreeInfo.symbol(tree);
1203         return sym == null ? tree : access(sym, tree, null, false);
1204     }
1205 
1206     /** Return access constructor for a private constructor,
1207      *  or the constructor itself, if no access constructor is needed.
1208      *  @param pos       The position to report diagnostics, if any.
1209      *  @param constr    The private constructor.
1210      */
1211     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
1212         if (needsPrivateAccess(constr)) {
1213             ClassSymbol accOwner = constr.owner.enclClass();
1214             MethodSymbol aconstr = accessConstrs.get(constr);
1215             if (aconstr == null) {
1216                 List<Type> argtypes = constr.type.getParameterTypes();
1217                 if ((accOwner.flags_field & ENUM) != 0)
1218                     argtypes = argtypes
1219                         .prepend(syms.intType)
1220                         .prepend(syms.stringType);
1221                 aconstr = new MethodSymbol(
1222                     SYNTHETIC,
1223                     names.init,
1224                     new MethodType(
1225                         argtypes.append(
1226                             accessConstructorTag().erasure(types)),
1227                         constr.type.getReturnType(),
1228                         constr.type.getThrownTypes(),
1229                         syms.methodClass),
1230                     accOwner);
1231                 enterSynthetic(pos, aconstr, accOwner.members());
1232                 accessConstrs.put(constr, aconstr);
1233                 accessed.append(constr);
1234             }
1235             return aconstr;
1236         } else {
1237             return constr;
1238         }
1239     }
1240 
1241     /** Return an anonymous class nested in this toplevel class.
1242      */
1243     ClassSymbol accessConstructorTag() {
1244         ClassSymbol topClass = currentClass.outermostClass();
1245         ModuleSymbol topModle = topClass.packge().modle;
1246         Name flatname = names.fromString("" + topClass.getQualifiedName() +
1247                                          target.syntheticNameChar() +
1248                                          "1");
1249         ClassSymbol ctag = chk.getCompiled(topModle, flatname);
1250         if (ctag == null)
1251             ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass).sym;
1252         // keep a record of all tags, to verify that all are generated as required
1253         accessConstrTags = accessConstrTags.prepend(ctag);
1254         return ctag;
1255     }
1256 
1257     /** Add all required access methods for a private symbol to enclosing class.
1258      *  @param sym       The symbol.
1259      */
1260     void makeAccessible(Symbol sym) {
1261         JCClassDecl cdef = classDef(sym.owner.enclClass());
1262         if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
1263         if (sym.name == names.init) {
1264             cdef.defs = cdef.defs.prepend(
1265                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
1266         } else {
1267             MethodSymbol[] accessors = accessSyms.get(sym);
1268             for (int i = 0; i < AccessCode.numberOfAccessCodes; i++) {
1269                 if (accessors[i] != null)
1270                     cdef.defs = cdef.defs.prepend(
1271                         accessDef(cdef.pos, sym, accessors[i], i));
1272             }
1273         }
1274     }
1275 
1276     /** Construct definition of an access method.
1277      *  @param pos        The source code position of the definition.
1278      *  @param vsym       The private or protected symbol.
1279      *  @param accessor   The access method for the symbol.
1280      *  @param acode      The access code.
1281      */
1282     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
1283 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
1284         currentClass = vsym.owner.enclClass();
1285         make.at(pos);
1286         JCMethodDecl md = make.MethodDef(accessor, null);
1287 
1288         // Find actual symbol
1289         Symbol sym = actualSymbols.get(vsym);
1290         if (sym == null) sym = vsym;
1291 
1292         JCExpression ref;           // The tree referencing the private symbol.
1293         List<JCExpression> args;    // Any additional arguments to be passed along.
1294         if ((sym.flags() & STATIC) != 0) {
1295             ref = make.Ident(sym);
1296             args = make.Idents(md.params);
1297         } else {
1298             JCExpression site = make.Ident(md.params.head);
1299             if (acode % 2 != 0) {
1300                 //odd access codes represent qualified super accesses - need to
1301                 //emit reference to the direct superclass, even if the refered
1302                 //member is from an indirect superclass (JLS 13.1)
1303                 site.setType(types.erasure(types.supertype(vsym.owner.enclClass().type)));
1304             }
1305             ref = make.Select(site, sym);
1306             args = make.Idents(md.params.tail);
1307         }
1308         JCStatement stat;          // The statement accessing the private symbol.
1309         if (sym.kind == VAR) {
1310             // Normalize out all odd access codes by taking floor modulo 2:
1311             int acode1 = acode - (acode & 1);
1312 
1313             JCExpression expr;      // The access method's return value.
1314             AccessCode aCode = AccessCode.getFromCode(acode1);
1315             switch (aCode) {
1316             case DEREF:
1317                 expr = ref;
1318                 break;
1319             case ASSIGN:
1320                 expr = make.Assign(ref, args.head);
1321                 break;
1322             case PREINC: case POSTINC: case PREDEC: case POSTDEC:
1323                 expr = makeUnary(aCode.tag, ref);
1324                 break;
1325             default:
1326                 expr = make.Assignop(
1327                     treeTag(binaryAccessOperator(acode1, JCTree.Tag.NO_TAG)), ref, args.head);
1328                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1, JCTree.Tag.NO_TAG);
1329             }
1330             stat = make.Return(expr.setType(sym.type));
1331         } else {
1332             stat = make.Call(make.App(ref, args));
1333         }
1334         md.body = make.Block(0, List.of(stat));
1335 
1336         // Make sure all parameters, result types and thrown exceptions
1337         // are accessible.
1338         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
1339             l.head.vartype = access(l.head.vartype);
1340         md.restype = access(md.restype);
1341         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
1342             l.head = access(l.head);
1343 
1344         return md;
1345     }
1346 
1347     /** Construct definition of an access constructor.
1348      *  @param pos        The source code position of the definition.
1349      *  @param constr     The private constructor.
1350      *  @param accessor   The access method for the constructor.
1351      */
1352     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
1353         make.at(pos);
1354         JCMethodDecl md = make.MethodDef(accessor,
1355                                       accessor.externalType(types),
1356                                       null);
1357         JCIdent callee = make.Ident(names._this);
1358         callee.sym = constr;
1359         callee.type = constr.type;
1360         md.body =
1361             make.Block(0, List.<JCStatement>of(
1362                 make.Call(
1363                     make.App(
1364                         callee,
1365                         make.Idents(md.params.reverse().tail.reverse())))));
1366         return md;
1367     }
1368 
1369 /**************************************************************************
1370  * Free variables proxies and this$n
1371  *************************************************************************/
1372 
1373     /** A scope containing all free variable proxies for currently translated
1374      *  class, as well as its this$n symbol (if needed).
1375      *  Proxy scopes are nested in the same way classes are.
1376      *  Inside a constructor, proxies and any this$n symbol are duplicated
1377      *  in an additional innermost scope, where they represent the constructor
1378      *  parameters.
1379      */
1380     WriteableScope proxies;
1381 
1382     /** A scope containing all unnamed resource variables/saved
1383      *  exception variables for translated TWR blocks
1384      */
1385     WriteableScope twrVars;
1386 
1387     /** A stack containing the this$n field of the currently translated
1388      *  classes (if needed) in innermost first order.
1389      *  Inside a constructor, proxies and any this$n symbol are duplicated
1390      *  in an additional innermost scope, where they represent the constructor
1391      *  parameters.
1392      */
1393     List<VarSymbol> outerThisStack;
1394 
1395     /** The name of a free variable proxy.
1396      */
1397     Name proxyName(Name name) {
1398         return names.fromString("val" + target.syntheticNameChar() + name);
1399     }
1400 
1401     /** Proxy definitions for all free variables in given list, in reverse order.
1402      *  @param pos        The source code position of the definition.
1403      *  @param freevars   The free variables.
1404      *  @param owner      The class in which the definitions go.
1405      */
1406     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
1407         return freevarDefs(pos, freevars, owner, 0);
1408     }
1409 
1410     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner,
1411             long additionalFlags) {
1412         long flags = FINAL | SYNTHETIC | additionalFlags;
1413         List<JCVariableDecl> defs = List.nil();
1414         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
1415             VarSymbol v = l.head;
1416             VarSymbol proxy = new VarSymbol(
1417                 flags, proxyName(v.name), v.erasure(types), owner);
1418             proxies.enter(proxy);
1419             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
1420             vd.vartype = access(vd.vartype);
1421             defs = defs.prepend(vd);
1422         }
1423         return defs;
1424     }
1425 
1426     /** The name of a this$n field
1427      *  @param type   The class referenced by the this$n field
1428      */
1429     Name outerThisName(Type type, Symbol owner) {
1430         Type t = type.getEnclosingType();
1431         int nestingLevel = 0;
1432         while (t.hasTag(CLASS)) {
1433             t = t.getEnclosingType();
1434             nestingLevel++;
1435         }
1436         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
1437         while (owner.kind == TYP && ((ClassSymbol)owner).members().findFirst(result) != null)
1438             result = names.fromString(result.toString() + target.syntheticNameChar());
1439         return result;
1440     }
1441 
1442     private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
1443         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
1444         VarSymbol outerThis =
1445             new VarSymbol(flags, outerThisName(target, owner), target, owner);
1446         outerThisStack = outerThisStack.prepend(outerThis);
1447         return outerThis;
1448     }
1449 
1450     private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
1451         JCVariableDecl vd = make.at(pos).VarDef(sym, null);
1452         vd.vartype = access(vd.vartype);
1453         return vd;
1454     }
1455 
1456     /** Definition for this$n field.
1457      *  @param pos        The source code position of the definition.
1458      *  @param owner      The method in which the definition goes.
1459      */
1460     JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
1461         ClassSymbol c = owner.enclClass();
1462         boolean isMandated =
1463             // Anonymous constructors
1464             (owner.isConstructor() && owner.isAnonymous()) ||
1465             // Constructors of non-private inner member classes
1466             (owner.isConstructor() && c.isInner() &&
1467              !c.isPrivate() && !c.isStatic());
1468         long flags =
1469             FINAL | (isMandated ? MANDATED : SYNTHETIC) | PARAMETER;
1470         VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
1471         owner.extraParams = owner.extraParams.prepend(outerThis);
1472         return makeOuterThisVarDecl(pos, outerThis);
1473     }
1474 
1475     /** Definition for this$n field.
1476      *  @param pos        The source code position of the definition.
1477      *  @param owner      The class in which the definition goes.
1478      */
1479     JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
1480         VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC);
1481         return makeOuterThisVarDecl(pos, outerThis);
1482     }
1483 
1484     /** Return a list of trees that load the free variables in given list,
1485      *  in reverse order.
1486      *  @param pos          The source code position to be used for the trees.
1487      *  @param freevars     The list of free variables.
1488      */
1489     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
1490         List<JCExpression> args = List.nil();
1491         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
1492             args = args.prepend(loadFreevar(pos, l.head));
1493         return args;
1494     }
1495 //where
1496         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
1497             return access(v, make.at(pos).Ident(v), null, false);
1498         }
1499 
1500     /** Construct a tree simulating the expression {@code C.this}.
1501      *  @param pos           The source code position to be used for the tree.
1502      *  @param c             The qualifier class.
1503      */
1504     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
1505         if (currentClass == c) {
1506             // in this case, `this' works fine
1507             return make.at(pos).This(c.erasure(types));
1508         } else {
1509             // need to go via this$n
1510             return makeOuterThis(pos, c);
1511         }
1512     }
1513 
1514     /**
1515      * Optionally replace a try statement with the desugaring of a
1516      * try-with-resources statement.  The canonical desugaring of
1517      *
1518      * try ResourceSpecification
1519      *   Block
1520      *
1521      * is
1522      *
1523      * {
1524      *   final VariableModifiers_minus_final R #resource = Expression;
1525      *   Throwable #primaryException = null;
1526      *
1527      *   try ResourceSpecificationtail
1528      *     Block
1529      *   catch (Throwable #t) {
1530      *     #primaryException = t;
1531      *     throw #t;
1532      *   } finally {
1533      *     if (#resource != null) {
1534      *       if (#primaryException != null) {
1535      *         try {
1536      *           #resource.close();
1537      *         } catch(Throwable #suppressedException) {
1538      *           #primaryException.addSuppressed(#suppressedException);
1539      *         }
1540      *       } else {
1541      *         #resource.close();
1542      *       }
1543      *     }
1544      *   }
1545      *
1546      * @param tree  The try statement to inspect.
1547      * @return A a desugared try-with-resources tree, or the original
1548      * try block if there are no resources to manage.
1549      */
1550     JCTree makeTwrTry(JCTry tree) {
1551         make_at(tree.pos());
1552         twrVars = twrVars.dup();
1553         JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body,
1554                 tree.finallyCanCompleteNormally, 0);
1555         if (tree.catchers.isEmpty() && tree.finalizer == null)
1556             result = translate(twrBlock);
1557         else
1558             result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
1559         twrVars = twrVars.leave();
1560         return result;
1561     }
1562 
1563     private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block,
1564             boolean finallyCanCompleteNormally, int depth) {
1565         if (resources.isEmpty())
1566             return block;
1567 
1568         // Add resource declaration or expression to block statements
1569         ListBuffer<JCStatement> stats = new ListBuffer<>();
1570         JCTree resource = resources.head;
1571         JCExpression expr = null;
1572         boolean resourceNonNull;
1573         if (resource instanceof JCVariableDecl) {
1574             JCVariableDecl var = (JCVariableDecl) resource;
1575             expr = make.Ident(var.sym).setType(resource.type);
1576             resourceNonNull = var.init != null && TreeInfo.skipParens(var.init).hasTag(NEWCLASS);
1577             stats.add(var);
1578         } else {
1579             Assert.check(resource instanceof JCExpression);
1580             VarSymbol syntheticTwrVar =
1581             new VarSymbol(SYNTHETIC | FINAL,
1582                           makeSyntheticName(names.fromString("twrVar" +
1583                                            depth), twrVars),
1584                           (resource.type.hasTag(BOT)) ?
1585                           syms.autoCloseableType : resource.type,
1586                           currentMethodSym);
1587             twrVars.enter(syntheticTwrVar);
1588             JCVariableDecl syntheticTwrVarDecl =
1589                 make.VarDef(syntheticTwrVar, (JCExpression)resource);
1590             expr = (JCExpression)make.Ident(syntheticTwrVar);
1591             resourceNonNull = TreeInfo.skipParens(resource).hasTag(NEWCLASS);
1592             stats.add(syntheticTwrVarDecl);
1593         }
1594 
1595         // Add primaryException declaration
1596         VarSymbol primaryException =
1597             new VarSymbol(SYNTHETIC,
1598                           makeSyntheticName(names.fromString("primaryException" +
1599                           depth), twrVars),
1600                           syms.throwableType,
1601                           currentMethodSym);
1602         twrVars.enter(primaryException);
1603         JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
1604         stats.add(primaryExceptionTreeDecl);
1605 
1606         // Create catch clause that saves exception and then rethrows it
1607         VarSymbol param =
1608             new VarSymbol(FINAL|SYNTHETIC,
1609                           names.fromString("t" +
1610                                            target.syntheticNameChar()),
1611                           syms.throwableType,
1612                           currentMethodSym);
1613         JCVariableDecl paramTree = make.VarDef(param, null);
1614         JCStatement assign = make.Assignment(primaryException, make.Ident(param));
1615         JCStatement rethrowStat = make.Throw(make.Ident(param));
1616         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
1617         JCCatch catchClause = make.Catch(paramTree, catchBlock);
1618 
1619         int oldPos = make.pos;
1620         make.at(TreeInfo.endPos(block));
1621         JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr, resourceNonNull);
1622         make.at(oldPos);
1623         JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block,
1624                                     finallyCanCompleteNormally, depth + 1),
1625                                   List.<JCCatch>of(catchClause),
1626                                   finallyClause);
1627         outerTry.finallyCanCompleteNormally = finallyCanCompleteNormally;
1628         stats.add(outerTry);
1629         JCBlock newBlock = make.Block(0L, stats.toList());
1630         return newBlock;
1631     }
1632 
1633     /**If the estimated number of copies the close resource code in a single class is above this
1634      * threshold, generate and use a method for the close resource code, leading to smaller code.
1635      * As generating a method has overhead on its own, generating the method for cases below the
1636      * threshold could lead to an increase in code size.
1637      */
1638     public static final int USE_CLOSE_RESOURCE_METHOD_THRESHOLD = 4;
1639 
1640     private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource,
1641             boolean resourceNonNull) {
1642         MethodSymbol closeResource = (MethodSymbol)lookupSynthetic(dollarCloseResource,
1643                                                                    currentClass.members());
1644 
1645         if (closeResource == null && shouldUseCloseResourceMethod()) {
1646             closeResource = new MethodSymbol(
1647                 PRIVATE | STATIC | SYNTHETIC,
1648                 dollarCloseResource,
1649                 new MethodType(
1650                     List.of(syms.throwableType, syms.autoCloseableType),
1651                     syms.voidType,
1652                     List.<Type>nil(),
1653                     syms.methodClass),
1654                 currentClass);
1655             enterSynthetic(resource.pos(), closeResource, currentClass.members());
1656 
1657             JCMethodDecl md = make.MethodDef(closeResource, null);
1658             List<JCVariableDecl> params = md.getParameters();
1659             md.body = make.Block(0, List.<JCStatement>of(makeTwrCloseStatement(params.get(0).sym,
1660                                                                                make.Ident(params.get(1)))));
1661 
1662             JCClassDecl currentClassDecl = classDef(currentClass);
1663             currentClassDecl.defs = currentClassDecl.defs.prepend(md);
1664         }
1665 
1666         JCStatement closeStatement;
1667 
1668         if (closeResource != null) {
1669             //$closeResource(#primaryException, #resource)
1670             closeStatement = make.Exec(make.Apply(List.<JCExpression>nil(),
1671                                                   make.Ident(closeResource),
1672                                                   List.of(make.Ident(primaryException),
1673                                                           resource)
1674                                                  ).setType(syms.voidType));
1675         } else {
1676             closeStatement = makeTwrCloseStatement(primaryException, resource);
1677         }
1678 
1679         JCStatement finallyStatement;
1680 
1681         if (resourceNonNull) {
1682             finallyStatement = closeStatement;
1683         } else {
1684             // if (#resource != null) { $closeResource(...); }
1685             finallyStatement = make.If(makeNonNullCheck(resource),
1686                                        closeStatement,
1687                                        null);
1688         }
1689 
1690         return make.Block(0L,
1691                           List.<JCStatement>of(finallyStatement));
1692     }
1693         //where:
1694         private boolean shouldUseCloseResourceMethod() {
1695             class TryFinder extends TreeScanner {
1696                 int closeCount;
1697                 @Override
1698                 public void visitTry(JCTry tree) {
1699                     boolean empty = tree.body.stats.isEmpty();
1700 
1701                     for (JCTree r : tree.resources) {
1702                         closeCount += empty ? 1 : 2;
1703                         empty = false; //with multiple resources, only the innermost try can be empty.
1704                     }
1705                     super.visitTry(tree);
1706                 }
1707                 @Override
1708                 public void scan(JCTree tree) {
1709                     if (useCloseResourceMethod())
1710                         return;
1711                     super.scan(tree);
1712                 }
1713                 boolean useCloseResourceMethod() {
1714                     return closeCount >= USE_CLOSE_RESOURCE_METHOD_THRESHOLD;
1715                 }
1716             }
1717             TryFinder tryFinder = new TryFinder();
1718             tryFinder.scan(classDef(currentClass));
1719             return tryFinder.useCloseResourceMethod();
1720         }
1721 
1722     private JCStatement makeTwrCloseStatement(Symbol primaryException, JCExpression resource) {
1723         // primaryException.addSuppressed(catchException);
1724         VarSymbol catchException =
1725             new VarSymbol(SYNTHETIC, make.paramName(2),
1726                           syms.throwableType,
1727                           currentMethodSym);
1728         JCStatement addSuppressionStatement =
1729             make.Exec(makeCall(make.Ident(primaryException),
1730                                names.addSuppressed,
1731                                List.<JCExpression>of(make.Ident(catchException))));
1732 
1733         // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
1734         JCBlock tryBlock =
1735             make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
1736         JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
1737         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
1738         List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
1739         JCTry tryTree = make.Try(tryBlock, catchClauses, null);
1740         tryTree.finallyCanCompleteNormally = true;
1741 
1742         // if (primaryException != null) {try...} else resourceClose;
1743         JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
1744                                         tryTree,
1745                                         makeResourceCloseInvocation(resource));
1746 
1747         return closeIfStatement;
1748     }
1749 
1750     private JCStatement makeResourceCloseInvocation(JCExpression resource) {
1751         // convert to AutoCloseable if needed
1752         if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
1753             resource = convert(resource, syms.autoCloseableType);
1754         }
1755 
1756         // create resource.close() method invocation
1757         JCExpression resourceClose = makeCall(resource,
1758                                               names.close,
1759                                               List.<JCExpression>nil());
1760         return make.Exec(resourceClose);
1761     }
1762 
1763     private JCExpression makeNonNullCheck(JCExpression expression) {
1764         return makeBinary(NE, expression, makeNull());
1765     }
1766 
1767     /** Construct a tree that represents the outer instance
1768      *  {@code C.this}. Never pick the current `this'.
1769      *  @param pos           The source code position to be used for the tree.
1770      *  @param c             The qualifier class.
1771      */
1772     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
1773         List<VarSymbol> ots = outerThisStack;
1774         if (ots.isEmpty()) {
1775             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1776             Assert.error();
1777             return makeNull();
1778         }
1779         VarSymbol ot = ots.head;
1780         JCExpression tree = access(make.at(pos).Ident(ot));
1781         TypeSymbol otc = ot.type.tsym;
1782         while (otc != c) {
1783             do {
1784                 ots = ots.tail;
1785                 if (ots.isEmpty()) {
1786                     log.error(pos,
1787                               "no.encl.instance.of.type.in.scope",
1788                               c);
1789                     Assert.error(); // should have been caught in Attr
1790                     return tree;
1791                 }
1792                 ot = ots.head;
1793             } while (ot.owner != otc);
1794             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
1795                 chk.earlyRefError(pos, c);
1796                 Assert.error(); // should have been caught in Attr
1797                 return makeNull();
1798             }
1799             tree = access(make.at(pos).Select(tree, ot));
1800             otc = ot.type.tsym;
1801         }
1802         return tree;
1803     }
1804 
1805     /** Construct a tree that represents the closest outer instance
1806      *  {@code C.this} such that the given symbol is a member of C.
1807      *  @param pos           The source code position to be used for the tree.
1808      *  @param sym           The accessed symbol.
1809      *  @param preciseMatch  should we accept a type that is a subtype of
1810      *                       sym's owner, even if it doesn't contain sym
1811      *                       due to hiding, overriding, or non-inheritance
1812      *                       due to protection?
1813      */
1814     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1815         Symbol c = sym.owner;
1816         if (preciseMatch ? sym.isMemberOf(currentClass, types)
1817                          : currentClass.isSubClass(sym.owner, types)) {
1818             // in this case, `this' works fine
1819             return make.at(pos).This(c.erasure(types));
1820         } else {
1821             // need to go via this$n
1822             return makeOwnerThisN(pos, sym, preciseMatch);
1823         }
1824     }
1825 
1826     /**
1827      * Similar to makeOwnerThis but will never pick "this".
1828      */
1829     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1830         Symbol c = sym.owner;
1831         List<VarSymbol> ots = outerThisStack;
1832         if (ots.isEmpty()) {
1833             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1834             Assert.error();
1835             return makeNull();
1836         }
1837         VarSymbol ot = ots.head;
1838         JCExpression tree = access(make.at(pos).Ident(ot));
1839         TypeSymbol otc = ot.type.tsym;
1840         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
1841             do {
1842                 ots = ots.tail;
1843                 if (ots.isEmpty()) {
1844                     log.error(pos,
1845                         "no.encl.instance.of.type.in.scope",
1846                         c);
1847                     Assert.error();
1848                     return tree;
1849                 }
1850                 ot = ots.head;
1851             } while (ot.owner != otc);
1852             tree = access(make.at(pos).Select(tree, ot));
1853             otc = ot.type.tsym;
1854         }
1855         return tree;
1856     }
1857 
1858     /** Return tree simulating the assignment {@code this.name = name}, where
1859      *  name is the name of a free variable.
1860      */
1861     JCStatement initField(int pos, Name name) {
1862         Iterator<Symbol> it = proxies.getSymbolsByName(name).iterator();
1863         Symbol rhs = it.next();
1864         Assert.check(rhs.owner.kind == MTH);
1865         Symbol lhs = it.next();
1866         Assert.check(rhs.owner.owner == lhs.owner);
1867         make.at(pos);
1868         return
1869             make.Exec(
1870                 make.Assign(
1871                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1872                     make.Ident(rhs)).setType(lhs.erasure(types)));
1873     }
1874 
1875     /** Return tree simulating the assignment {@code this.this$n = this$n}.
1876      */
1877     JCStatement initOuterThis(int pos) {
1878         VarSymbol rhs = outerThisStack.head;
1879         Assert.check(rhs.owner.kind == MTH);
1880         VarSymbol lhs = outerThisStack.tail.head;
1881         Assert.check(rhs.owner.owner == lhs.owner);
1882         make.at(pos);
1883         return
1884             make.Exec(
1885                 make.Assign(
1886                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1887                     make.Ident(rhs)).setType(lhs.erasure(types)));
1888     }
1889 
1890 /**************************************************************************
1891  * Code for .class
1892  *************************************************************************/
1893 
1894     /** Return the symbol of a class to contain a cache of
1895      *  compiler-generated statics such as class$ and the
1896      *  $assertionsDisabled flag.  We create an anonymous nested class
1897      *  (unless one already exists) and return its symbol.  However,
1898      *  for backward compatibility in 1.4 and earlier we use the
1899      *  top-level class itself.
1900      */
1901     private ClassSymbol outerCacheClass() {
1902         ClassSymbol clazz = outermostClassDef.sym;
1903         Scope s = clazz.members();
1904         for (Symbol sym : s.getSymbols(NON_RECURSIVE))
1905             if (sym.kind == TYP &&
1906                 sym.name == names.empty &&
1907                 (sym.flags() & INTERFACE) == 0) return (ClassSymbol) sym;
1908         return makeEmptyClass(STATIC | SYNTHETIC, clazz).sym;
1909     }
1910 
1911     /** Return symbol for "class$" method. If there is no method definition
1912      *  for class$, construct one as follows:
1913      *
1914      *    class class$(String x0) {
1915      *      try {
1916      *        return Class.forName(x0);
1917      *      } catch (ClassNotFoundException x1) {
1918      *        throw new NoClassDefFoundError(x1.getMessage());
1919      *      }
1920      *    }
1921      */
1922     private MethodSymbol classDollarSym(DiagnosticPosition pos) {
1923         ClassSymbol outerCacheClass = outerCacheClass();
1924         MethodSymbol classDollarSym =
1925             (MethodSymbol)lookupSynthetic(classDollar,
1926                                           outerCacheClass.members());
1927         if (classDollarSym == null) {
1928             classDollarSym = new MethodSymbol(
1929                 STATIC | SYNTHETIC,
1930                 classDollar,
1931                 new MethodType(
1932                     List.of(syms.stringType),
1933                     types.erasure(syms.classType),
1934                     List.<Type>nil(),
1935                     syms.methodClass),
1936                 outerCacheClass);
1937             enterSynthetic(pos, classDollarSym, outerCacheClass.members());
1938 
1939             JCMethodDecl md = make.MethodDef(classDollarSym, null);
1940             try {
1941                 md.body = classDollarSymBody(pos, md);
1942             } catch (CompletionFailure ex) {
1943                 md.body = make.Block(0, List.<JCStatement>nil());
1944                 chk.completionError(pos, ex);
1945             }
1946             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1947             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
1948         }
1949         return classDollarSym;
1950     }
1951 
1952     /** Generate code for class$(String name). */
1953     JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
1954         MethodSymbol classDollarSym = md.sym;
1955         ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
1956 
1957         JCBlock returnResult;
1958 
1959         // cache the current loader in cl$
1960         // clsym = "private static ClassLoader cl$"
1961         VarSymbol clsym = new VarSymbol(STATIC | SYNTHETIC,
1962                                         names.fromString("cl" + target.syntheticNameChar()),
1963                                         syms.classLoaderType,
1964                                         outerCacheClass);
1965         enterSynthetic(pos, clsym, outerCacheClass.members());
1966 
1967         // emit "private static ClassLoader cl$;"
1968         JCVariableDecl cldef = make.VarDef(clsym, null);
1969         JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1970         outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
1971 
1972         // newcache := "new cache$1[0]"
1973         JCNewArray newcache = make.NewArray(make.Type(outerCacheClass.type),
1974                                             List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
1975                                             null);
1976         newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
1977                                       syms.arrayClass);
1978 
1979         // forNameSym := java.lang.Class.forName(
1980         //     String s,boolean init,ClassLoader loader)
1981         Symbol forNameSym = lookupMethod(make_pos, names.forName,
1982                                          types.erasure(syms.classType),
1983                                          List.of(syms.stringType,
1984                                                  syms.booleanType,
1985                                                  syms.classLoaderType));
1986         // clvalue := "(cl$ == null) ?
1987         // $newcache.getClass().getComponentType().getClassLoader() : cl$"
1988         JCExpression clvalue =
1989                 make.Conditional(
1990                         makeBinary(EQ, make.Ident(clsym), makeNull()),
1991                         make.Assign(make.Ident(clsym),
1992                                     makeCall(
1993                                             makeCall(makeCall(newcache,
1994                                                               names.getClass,
1995                                                               List.<JCExpression>nil()),
1996                                                      names.getComponentType,
1997                                                      List.<JCExpression>nil()),
1998                                             names.getClassLoader,
1999                                             List.<JCExpression>nil())).setType(syms.classLoaderType),
2000                         make.Ident(clsym)).setType(syms.classLoaderType);
2001 
2002         // returnResult := "{ return Class.forName(param1, false, cl$); }"
2003         List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
2004                                           makeLit(syms.booleanType, 0),
2005                                           clvalue);
2006         returnResult = make.Block(0, List.<JCStatement>of(make.Call(make.App(make.Ident(forNameSym), args))));
2007 
2008         // catchParam := ClassNotFoundException e1
2009         VarSymbol catchParam =
2010             new VarSymbol(SYNTHETIC, make.paramName(1),
2011                           syms.classNotFoundExceptionType,
2012                           classDollarSym);
2013 
2014         JCStatement rethrow;
2015         // rethrow = "throw new NoClassDefFoundError().initCause(e);
2016         JCExpression throwExpr =
2017             makeCall(makeNewClass(syms.noClassDefFoundErrorType,
2018                                   List.<JCExpression>nil()),
2019                      names.initCause,
2020                      List.<JCExpression>of(make.Ident(catchParam)));
2021         rethrow = make.Throw(throwExpr);
2022 
2023         // rethrowStmt := "( $rethrow )"
2024         JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
2025 
2026         // catchBlock := "catch ($catchParam) $rethrowStmt"
2027         JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
2028                                       rethrowStmt);
2029 
2030         // tryCatch := "try $returnResult $catchBlock"
2031         JCStatement tryCatch = make.Try(returnResult,
2032                                         List.of(catchBlock), null);
2033 
2034         return make.Block(0, List.of(tryCatch));
2035     }
2036     // where
2037         /** Create an attributed tree of the form left.name(). */
2038         private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
2039             Assert.checkNonNull(left.type);
2040             Symbol funcsym = lookupMethod(make_pos, name, left.type,
2041                                           TreeInfo.types(args));
2042             return make.App(make.Select(left, funcsym), args);
2043         }
2044 
2045     /** The Name Of The variable to cache T.class values.
2046      *  @param sig      The signature of type T.
2047      */
2048     private Name cacheName(String sig) {
2049         StringBuilder buf = new StringBuilder();
2050         if (sig.startsWith("[")) {
2051             buf = buf.append("array");
2052             while (sig.startsWith("[")) {
2053                 buf = buf.append(target.syntheticNameChar());
2054                 sig = sig.substring(1);
2055             }
2056             if (sig.startsWith("L")) {
2057                 sig = sig.substring(0, sig.length() - 1);
2058             }
2059         } else {
2060             buf = buf.append("class" + target.syntheticNameChar());
2061         }
2062         buf = buf.append(sig.replace('.', target.syntheticNameChar()));
2063         return names.fromString(buf.toString());
2064     }
2065 
2066     /** The variable symbol that caches T.class values.
2067      *  If none exists yet, create a definition.
2068      *  @param sig      The signature of type T.
2069      *  @param pos      The position to report diagnostics, if any.
2070      */
2071     private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
2072         ClassSymbol outerCacheClass = outerCacheClass();
2073         Name cname = cacheName(sig);
2074         VarSymbol cacheSym =
2075             (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
2076         if (cacheSym == null) {
2077             cacheSym = new VarSymbol(
2078                 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
2079             enterSynthetic(pos, cacheSym, outerCacheClass.members());
2080 
2081             JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
2082             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
2083             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
2084         }
2085         return cacheSym;
2086     }
2087 
2088     /** The tree simulating a T.class expression.
2089      *  @param clazz      The tree identifying type T.
2090      */
2091     private JCExpression classOf(JCTree clazz) {
2092         return classOfType(clazz.type, clazz.pos());
2093     }
2094 
2095     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
2096         switch (type.getTag()) {
2097         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
2098         case DOUBLE: case BOOLEAN: case VOID:
2099             // replace with <BoxedClass>.TYPE
2100             ClassSymbol c = types.boxedClass(type);
2101             Symbol typeSym =
2102                 rs.accessBase(
2103                     rs.findIdentInType(attrEnv, c.type, names.TYPE, KindSelector.VAR),
2104                     pos, c.type, names.TYPE, true);
2105             if (typeSym.kind == VAR)
2106                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
2107             return make.QualIdent(typeSym);
2108         case CLASS: case ARRAY:
2109                 VarSymbol sym = new VarSymbol(
2110                         STATIC | PUBLIC | FINAL, names._class,
2111                         syms.classType, type.tsym);
2112                 return make_at(pos).Select(make.Type(type), sym);
2113         default:
2114             throw new AssertionError();
2115         }
2116     }
2117 
2118 /**************************************************************************
2119  * Code for enabling/disabling assertions.
2120  *************************************************************************/
2121 
2122     private ClassSymbol assertionsDisabledClassCache;
2123 
2124     /**Used to create an auxiliary class to hold $assertionsDisabled for interfaces.
2125      */
2126     private ClassSymbol assertionsDisabledClass() {
2127         if (assertionsDisabledClassCache != null) return assertionsDisabledClassCache;
2128 
2129         assertionsDisabledClassCache = makeEmptyClass(STATIC | SYNTHETIC, outermostClassDef.sym).sym;
2130 
2131         return assertionsDisabledClassCache;
2132     }
2133 
2134     // This code is not particularly robust if the user has
2135     // previously declared a member named '$assertionsDisabled'.
2136     // The same faulty idiom also appears in the translation of
2137     // class literals above.  We should report an error if a
2138     // previous declaration is not synthetic.
2139 
2140     private JCExpression assertFlagTest(DiagnosticPosition pos) {
2141         // Outermost class may be either true class or an interface.
2142         ClassSymbol outermostClass = outermostClassDef.sym;
2143 
2144         //only classes can hold a non-public field, look for a usable one:
2145         ClassSymbol container = !currentClass.isInterface() ? currentClass :
2146                 assertionsDisabledClass();
2147 
2148         VarSymbol assertDisabledSym =
2149             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
2150                                        container.members());
2151         if (assertDisabledSym == null) {
2152             assertDisabledSym =
2153                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
2154                               dollarAssertionsDisabled,
2155                               syms.booleanType,
2156                               container);
2157             enterSynthetic(pos, assertDisabledSym, container.members());
2158             Symbol desiredAssertionStatusSym = lookupMethod(pos,
2159                                                             names.desiredAssertionStatus,
2160                                                             types.erasure(syms.classType),
2161                                                             List.<Type>nil());
2162             JCClassDecl containerDef = classDef(container);
2163             make_at(containerDef.pos());
2164             JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
2165                     classOfType(types.erasure(outermostClass.type),
2166                                 containerDef.pos()),
2167                     desiredAssertionStatusSym)));
2168             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
2169                                                    notStatus);
2170             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
2171 
2172             if (currentClass.isInterface()) {
2173                 //need to load the assertions enabled/disabled state while
2174                 //initializing the interface:
2175                 JCClassDecl currentClassDef = classDef(currentClass);
2176                 make_at(currentClassDef.pos());
2177                 JCStatement dummy = make.If(make.QualIdent(assertDisabledSym), make.Skip(), null);
2178                 JCBlock clinit = make.Block(STATIC, List.<JCStatement>of(dummy));
2179                 currentClassDef.defs = currentClassDef.defs.prepend(clinit);
2180             }
2181         }
2182         make_at(pos);
2183         return makeUnary(NOT, make.Ident(assertDisabledSym));
2184     }
2185 
2186 
2187 /**************************************************************************
2188  * Building blocks for let expressions
2189  *************************************************************************/
2190 
2191     interface TreeBuilder {
2192         JCExpression build(JCExpression arg);
2193     }
2194 
2195     /** Construct an expression using the builder, with the given rval
2196      *  expression as an argument to the builder.  However, the rval
2197      *  expression must be computed only once, even if used multiple
2198      *  times in the result of the builder.  We do that by
2199      *  constructing a "let" expression that saves the rvalue into a
2200      *  temporary variable and then uses the temporary variable in
2201      *  place of the expression built by the builder.  The complete
2202      *  resulting expression is of the form
2203      *  <pre>
2204      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
2205      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
2206      *  </pre>
2207      *  where <code><b>TEMP</b></code> is a newly declared variable
2208      *  in the let expression.
2209      */
2210     JCExpression abstractRval(JCExpression rval, Type type, TreeBuilder builder) {
2211         rval = TreeInfo.skipParens(rval);
2212         switch (rval.getTag()) {
2213         case LITERAL:
2214             return builder.build(rval);
2215         case IDENT:
2216             JCIdent id = (JCIdent) rval;
2217             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
2218                 return builder.build(rval);
2219         }
2220         Name name = TreeInfo.name(rval);
2221         if (name == names._super || name == names._this)
2222             return builder.build(rval);
2223         VarSymbol var =
2224             new VarSymbol(FINAL|SYNTHETIC,
2225                           names.fromString(
2226                                           target.syntheticNameChar()
2227                                           + "" + rval.hashCode()),
2228                                       type,
2229                                       currentMethodSym);
2230         rval = convert(rval,type);
2231         JCVariableDecl def = make.VarDef(var, rval); // XXX cast
2232         JCExpression built = builder.build(make.Ident(var));
2233         JCExpression res = make.LetExpr(def, built);
2234         res.type = built.type;
2235         return res;
2236     }
2237 
2238     // same as above, with the type of the temporary variable computed
2239     JCExpression abstractRval(JCExpression rval, TreeBuilder builder) {
2240         return abstractRval(rval, rval.type, builder);
2241     }
2242 
2243     // same as above, but for an expression that may be used as either
2244     // an rvalue or an lvalue.  This requires special handling for
2245     // Select expressions, where we place the left-hand-side of the
2246     // select in a temporary, and for Indexed expressions, where we
2247     // place both the indexed expression and the index value in temps.
2248     JCExpression abstractLval(JCExpression lval, final TreeBuilder builder) {
2249         lval = TreeInfo.skipParens(lval);
2250         switch (lval.getTag()) {
2251         case IDENT:
2252             return builder.build(lval);
2253         case SELECT: {
2254             final JCFieldAccess s = (JCFieldAccess)lval;
2255             Symbol lid = TreeInfo.symbol(s.selected);
2256             if (lid != null && lid.kind == TYP) return builder.build(lval);
2257             return abstractRval(s.selected, new TreeBuilder() {
2258                     public JCExpression build(final JCExpression selected) {
2259                         return builder.build(make.Select(selected, s.sym));
2260                     }
2261                 });
2262         }
2263         case INDEXED: {
2264             final JCArrayAccess i = (JCArrayAccess)lval;
2265             return abstractRval(i.indexed, new TreeBuilder() {
2266                     public JCExpression build(final JCExpression indexed) {
2267                         return abstractRval(i.index, syms.intType, new TreeBuilder() {
2268                                 public JCExpression build(final JCExpression index) {
2269                                     JCExpression newLval = make.Indexed(indexed, index);
2270                                     newLval.setType(i.type);
2271                                     return builder.build(newLval);
2272                                 }
2273                             });
2274                     }
2275                 });
2276         }
2277         case TYPECAST: {
2278             return abstractLval(((JCTypeCast)lval).expr, builder);
2279         }
2280         }
2281         throw new AssertionError(lval);
2282     }
2283 
2284     // evaluate and discard the first expression, then evaluate the second.
2285     JCExpression makeComma(final JCExpression expr1, final JCExpression expr2) {
2286         return abstractRval(expr1, new TreeBuilder() {
2287                 public JCExpression build(final JCExpression discarded) {
2288                     return expr2;
2289                 }
2290             });
2291     }
2292 
2293 /**************************************************************************
2294  * Translation methods
2295  *************************************************************************/
2296 
2297     /** Visitor argument: enclosing operator node.
2298      */
2299     private JCExpression enclOp;
2300 
2301     /** Visitor method: Translate a single node.
2302      *  Attach the source position from the old tree to its replacement tree.
2303      */
2304     @Override
2305     public <T extends JCTree> T translate(T tree) {
2306         if (tree == null) {
2307             return null;
2308         } else {
2309             make_at(tree.pos());
2310             T result = super.translate(tree);
2311             if (endPosTable != null && result != tree) {
2312                 endPosTable.replaceTree(tree, result);
2313             }
2314             return result;
2315         }
2316     }
2317 
2318     /** Visitor method: Translate a single node, boxing or unboxing if needed.
2319      */
2320     public <T extends JCExpression> T translate(T tree, Type type) {
2321         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
2322     }
2323 
2324     /** Visitor method: Translate tree.
2325      */
2326     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
2327         JCExpression prevEnclOp = this.enclOp;
2328         this.enclOp = enclOp;
2329         T res = translate(tree);
2330         this.enclOp = prevEnclOp;
2331         return res;
2332     }
2333 
2334     /** Visitor method: Translate list of trees.
2335      */
2336     public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
2337         JCExpression prevEnclOp = this.enclOp;
2338         this.enclOp = enclOp;
2339         List<T> res = translate(trees);
2340         this.enclOp = prevEnclOp;
2341         return res;
2342     }
2343 
2344     /** Visitor method: Translate list of trees.
2345      */
2346     public <T extends JCExpression> List<T> translate(List<T> trees, Type type) {
2347         if (trees == null) return null;
2348         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
2349             l.head = translate(l.head, type);
2350         return trees;
2351     }
2352 
2353     public void visitPackageDef(JCPackageDecl tree) {
2354         if (!needPackageInfoClass(tree))
2355                         return;
2356 
2357         long flags = Flags.ABSTRACT | Flags.INTERFACE;
2358         // package-info is marked SYNTHETIC in JDK 1.6 and later releases
2359         flags = flags | Flags.SYNTHETIC;
2360         ClassSymbol c = tree.packge.package_info;
2361         c.setAttributes(tree.packge);
2362         c.flags_field |= flags;
2363         ClassType ctype = (ClassType) c.type;
2364         ctype.supertype_field = syms.objectType;
2365         ctype.interfaces_field = List.nil();
2366         createInfoClass(tree.annotations, c);
2367     }
2368     // where
2369     private boolean needPackageInfoClass(JCPackageDecl pd) {
2370         switch (pkginfoOpt) {
2371             case ALWAYS:
2372                 return true;
2373             case LEGACY:
2374                 return pd.getAnnotations().nonEmpty();
2375             case NONEMPTY:
2376                 for (Attribute.Compound a :
2377                          pd.packge.getDeclarationAttributes()) {
2378                     Attribute.RetentionPolicy p = types.getRetention(a);
2379                     if (p != Attribute.RetentionPolicy.SOURCE)
2380                         return true;
2381                 }
2382                 return false;
2383         }
2384         throw new AssertionError();
2385     }
2386 
2387     public void visitModuleDef(JCModuleDecl tree) {
2388         ModuleSymbol msym = tree.sym;
2389         ClassSymbol c = msym.module_info;
2390         c.flags_field |= Flags.MODULE;
2391         createInfoClass(List.<JCAnnotation>nil(), tree.sym.module_info);
2392     }
2393 
2394     private void createInfoClass(List<JCAnnotation> annots, ClassSymbol c) {
2395         long flags = Flags.ABSTRACT | Flags.INTERFACE;
2396         JCClassDecl infoClass =
2397                 make.ClassDef(make.Modifiers(flags, annots),
2398                     c.name, List.<JCTypeParameter>nil(),
2399                     null, List.<JCExpression>nil(), List.<JCTree>nil());
2400         infoClass.sym = c;
2401         translated.append(infoClass);
2402     }
2403 
2404     public void visitClassDef(JCClassDecl tree) {
2405         Env<AttrContext> prevEnv = attrEnv;
2406         ClassSymbol currentClassPrev = currentClass;
2407         MethodSymbol currentMethodSymPrev = currentMethodSym;
2408 
2409         currentClass = tree.sym;
2410         currentMethodSym = null;
2411         attrEnv = typeEnvs.remove(currentClass);
2412         if (attrEnv == null)
2413             attrEnv = prevEnv;
2414 
2415         classdefs.put(currentClass, tree);
2416 
2417         proxies = proxies.dup(currentClass);
2418         List<VarSymbol> prevOuterThisStack = outerThisStack;
2419 
2420         // If this is an enum definition
2421         if ((tree.mods.flags & ENUM) != 0 &&
2422             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
2423             visitEnumDef(tree);
2424 
2425         // If this is a nested class, define a this$n field for
2426         // it and add to proxies.
2427         JCVariableDecl otdef = null;
2428         if (currentClass.hasOuterInstance())
2429             otdef = outerThisDef(tree.pos, currentClass);
2430 
2431         // If this is a local class, define proxies for all its free variables.
2432         List<JCVariableDecl> fvdefs = freevarDefs(
2433             tree.pos, freevars(currentClass), currentClass);
2434 
2435         // Recursively translate superclass, interfaces.
2436         tree.extending = translate(tree.extending);
2437         tree.implementing = translate(tree.implementing);
2438 
2439         if (currentClass.isLocal()) {
2440             ClassSymbol encl = currentClass.owner.enclClass();
2441             if (encl.trans_local == null) {
2442                 encl.trans_local = List.nil();
2443             }
2444             encl.trans_local = encl.trans_local.prepend(currentClass);
2445         }
2446 
2447         // Recursively translate members, taking into account that new members
2448         // might be created during the translation and prepended to the member
2449         // list `tree.defs'.
2450         List<JCTree> seen = List.nil();
2451         while (tree.defs != seen) {
2452             List<JCTree> unseen = tree.defs;
2453             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
2454                 JCTree outermostMemberDefPrev = outermostMemberDef;
2455                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
2456                 l.head = translate(l.head);
2457                 outermostMemberDef = outermostMemberDefPrev;
2458             }
2459             seen = unseen;
2460         }
2461 
2462         // Convert a protected modifier to public, mask static modifier.
2463         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
2464         tree.mods.flags &= ClassFlags;
2465 
2466         // Convert name to flat representation, replacing '.' by '$'.
2467         tree.name = Convert.shortName(currentClass.flatName());
2468 
2469         // Add this$n and free variables proxy definitions to class.
2470 
2471         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
2472             tree.defs = tree.defs.prepend(l.head);
2473             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
2474         }
2475         if (currentClass.hasOuterInstance()) {
2476             tree.defs = tree.defs.prepend(otdef);
2477             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
2478         }
2479 
2480         proxies = proxies.leave();
2481         outerThisStack = prevOuterThisStack;
2482 
2483         // Append translated tree to `translated' queue.
2484         translated.append(tree);
2485 
2486         attrEnv = prevEnv;
2487         currentClass = currentClassPrev;
2488         currentMethodSym = currentMethodSymPrev;
2489 
2490         // Return empty block {} as a placeholder for an inner class.
2491         result = make_at(tree.pos()).Block(SYNTHETIC, List.<JCStatement>nil());
2492     }
2493 
2494     /** Translate an enum class. */
2495     private void visitEnumDef(JCClassDecl tree) {
2496         make_at(tree.pos());
2497 
2498         // add the supertype, if needed
2499         if (tree.extending == null)
2500             tree.extending = make.Type(types.supertype(tree.type));
2501 
2502         // classOfType adds a cache field to tree.defs
2503         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
2504             setType(types.erasure(syms.classType));
2505 
2506         // process each enumeration constant, adding implicit constructor parameters
2507         int nextOrdinal = 0;
2508         ListBuffer<JCExpression> values = new ListBuffer<>();
2509         ListBuffer<JCTree> enumDefs = new ListBuffer<>();
2510         ListBuffer<JCTree> otherDefs = new ListBuffer<>();
2511         for (List<JCTree> defs = tree.defs;
2512              defs.nonEmpty();
2513              defs=defs.tail) {
2514             if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
2515                 JCVariableDecl var = (JCVariableDecl)defs.head;
2516                 visitEnumConstantDef(var, nextOrdinal++);
2517                 values.append(make.QualIdent(var.sym));
2518                 enumDefs.append(var);
2519             } else {
2520                 otherDefs.append(defs.head);
2521             }
2522         }
2523 
2524         // private static final T[] #VALUES = { a, b, c };
2525         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
2526         while (tree.sym.members().findFirst(valuesName) != null) // avoid name clash
2527             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
2528         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
2529         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
2530                                             valuesName,
2531                                             arrayType,
2532                                             tree.type.tsym);
2533         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
2534                                           List.<JCExpression>nil(),
2535                                           values.toList());
2536         newArray.type = arrayType;
2537         enumDefs.append(make.VarDef(valuesVar, newArray));
2538         tree.sym.members().enter(valuesVar);
2539 
2540         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
2541                                         tree.type, List.<Type>nil());
2542         List<JCStatement> valuesBody;
2543         if (useClone()) {
2544             // return (T[]) $VALUES.clone();
2545             JCTypeCast valuesResult =
2546                 make.TypeCast(valuesSym.type.getReturnType(),
2547                               make.App(make.Select(make.Ident(valuesVar),
2548                                                    syms.arrayCloneMethod)));
2549             valuesBody = List.<JCStatement>of(make.Return(valuesResult));
2550         } else {
2551             // template: T[] $result = new T[$values.length];
2552             Name resultName = names.fromString(target.syntheticNameChar() + "result");
2553             while (tree.sym.members().findFirst(resultName) != null) // avoid name clash
2554                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
2555             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
2556                                                 resultName,
2557                                                 arrayType,
2558                                                 valuesSym);
2559             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
2560                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
2561                                   null);
2562             resultArray.type = arrayType;
2563             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
2564 
2565             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
2566             if (systemArraycopyMethod == null) {
2567                 systemArraycopyMethod =
2568                     new MethodSymbol(PUBLIC | STATIC,
2569                                      names.fromString("arraycopy"),
2570                                      new MethodType(List.<Type>of(syms.objectType,
2571                                                             syms.intType,
2572                                                             syms.objectType,
2573                                                             syms.intType,
2574                                                             syms.intType),
2575                                                     syms.voidType,
2576                                                     List.<Type>nil(),
2577                                                     syms.methodClass),
2578                                      syms.systemType.tsym);
2579             }
2580             JCStatement copy =
2581                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
2582                                                systemArraycopyMethod),
2583                           List.of(make.Ident(valuesVar), make.Literal(0),
2584                                   make.Ident(resultVar), make.Literal(0),
2585                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
2586 
2587             // template: return $result;
2588             JCStatement ret = make.Return(make.Ident(resultVar));
2589             valuesBody = List.<JCStatement>of(decl, copy, ret);
2590         }
2591 
2592         JCMethodDecl valuesDef =
2593              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
2594 
2595         enumDefs.append(valuesDef);
2596 
2597         if (debugLower)
2598             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
2599 
2600         /** The template for the following code is:
2601          *
2602          *     public static E valueOf(String name) {
2603          *         return (E)Enum.valueOf(E.class, name);
2604          *     }
2605          *
2606          *  where E is tree.sym
2607          */
2608         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
2609                          names.valueOf,
2610                          tree.sym.type,
2611                          List.of(syms.stringType));
2612         Assert.check((valueOfSym.flags() & STATIC) != 0);
2613         VarSymbol nameArgSym = valueOfSym.params.head;
2614         JCIdent nameVal = make.Ident(nameArgSym);
2615         JCStatement enum_ValueOf =
2616             make.Return(make.TypeCast(tree.sym.type,
2617                                       makeCall(make.Ident(syms.enumSym),
2618                                                names.valueOf,
2619                                                List.of(e_class, nameVal))));
2620         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
2621                                            make.Block(0, List.of(enum_ValueOf)));
2622         nameVal.sym = valueOf.params.head.sym;
2623         if (debugLower)
2624             System.err.println(tree.sym + ".valueOf = " + valueOf);
2625         enumDefs.append(valueOf);
2626 
2627         enumDefs.appendList(otherDefs.toList());
2628         tree.defs = enumDefs.toList();
2629     }
2630         // where
2631         private MethodSymbol systemArraycopyMethod;
2632         private boolean useClone() {
2633             try {
2634                 return syms.objectType.tsym.members().findFirst(names.clone) != null;
2635             }
2636             catch (CompletionFailure e) {
2637                 return false;
2638             }
2639         }
2640 
2641     /** Translate an enumeration constant and its initializer. */
2642     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
2643         JCNewClass varDef = (JCNewClass)var.init;
2644         varDef.args = varDef.args.
2645             prepend(makeLit(syms.intType, ordinal)).
2646             prepend(makeLit(syms.stringType, var.name.toString()));
2647     }
2648 
2649     public void visitMethodDef(JCMethodDecl tree) {
2650         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
2651             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
2652             // argument list for each constructor of an enum.
2653             JCVariableDecl nameParam = make_at(tree.pos()).
2654                 Param(names.fromString(target.syntheticNameChar() +
2655                                        "enum" + target.syntheticNameChar() + "name"),
2656                       syms.stringType, tree.sym);
2657             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
2658             JCVariableDecl ordParam = make.
2659                 Param(names.fromString(target.syntheticNameChar() +
2660                                        "enum" + target.syntheticNameChar() +
2661                                        "ordinal"),
2662                       syms.intType, tree.sym);
2663             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
2664 
2665             MethodSymbol m = tree.sym;
2666             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
2667 
2668             m.extraParams = m.extraParams.prepend(ordParam.sym);
2669             m.extraParams = m.extraParams.prepend(nameParam.sym);
2670             Type olderasure = m.erasure(types);
2671             m.erasure_field = new MethodType(
2672                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
2673                 olderasure.getReturnType(),
2674                 olderasure.getThrownTypes(),
2675                 syms.methodClass);
2676         }
2677 
2678         JCMethodDecl prevMethodDef = currentMethodDef;
2679         MethodSymbol prevMethodSym = currentMethodSym;
2680         try {
2681             currentMethodDef = tree;
2682             currentMethodSym = tree.sym;
2683             visitMethodDefInternal(tree);
2684         } finally {
2685             currentMethodDef = prevMethodDef;
2686             currentMethodSym = prevMethodSym;
2687         }
2688     }
2689 
2690     private void visitMethodDefInternal(JCMethodDecl tree) {
2691         if (tree.name == names.init &&
2692             (currentClass.isInner() || currentClass.isLocal())) {
2693             // We are seeing a constructor of an inner class.
2694             MethodSymbol m = tree.sym;
2695 
2696             // Push a new proxy scope for constructor parameters.
2697             // and create definitions for any this$n and proxy parameters.
2698             proxies = proxies.dup(m);
2699             List<VarSymbol> prevOuterThisStack = outerThisStack;
2700             List<VarSymbol> fvs = freevars(currentClass);
2701             JCVariableDecl otdef = null;
2702             if (currentClass.hasOuterInstance())
2703                 otdef = outerThisDef(tree.pos, m);
2704             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m, PARAMETER);
2705 
2706             // Recursively translate result type, parameters and thrown list.
2707             tree.restype = translate(tree.restype);
2708             tree.params = translateVarDefs(tree.params);
2709             tree.thrown = translate(tree.thrown);
2710 
2711             // when compiling stubs, don't process body
2712             if (tree.body == null) {
2713                 result = tree;
2714                 return;
2715             }
2716 
2717             // Add this$n (if needed) in front of and free variables behind
2718             // constructor parameter list.
2719             tree.params = tree.params.appendList(fvdefs);
2720             if (currentClass.hasOuterInstance()) {
2721                 tree.params = tree.params.prepend(otdef);
2722             }
2723 
2724             // If this is an initial constructor, i.e., it does not start with
2725             // this(...), insert initializers for this$n and proxies
2726             // before (pre-1.4, after) the call to superclass constructor.
2727             JCStatement selfCall = translate(tree.body.stats.head);
2728 
2729             List<JCStatement> added = List.nil();
2730             if (fvs.nonEmpty()) {
2731                 List<Type> addedargtypes = List.nil();
2732                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
2733                     final Name pName = proxyName(l.head.name);
2734                     m.capturedLocals =
2735                         m.capturedLocals.prepend((VarSymbol)
2736                                                 (proxies.findFirst(pName)));
2737                     if (TreeInfo.isInitialConstructor(tree)) {
2738                         added = added.prepend(
2739                           initField(tree.body.pos, pName));
2740                     }
2741                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
2742                 }
2743                 Type olderasure = m.erasure(types);
2744                 m.erasure_field = new MethodType(
2745                     olderasure.getParameterTypes().appendList(addedargtypes),
2746                     olderasure.getReturnType(),
2747                     olderasure.getThrownTypes(),
2748                     syms.methodClass);
2749             }
2750             if (currentClass.hasOuterInstance() &&
2751                 TreeInfo.isInitialConstructor(tree))
2752             {
2753                 added = added.prepend(initOuterThis(tree.body.pos));
2754             }
2755 
2756             // pop local variables from proxy stack
2757             proxies = proxies.leave();
2758 
2759             // recursively translate following local statements and
2760             // combine with this- or super-call
2761             List<JCStatement> stats = translate(tree.body.stats.tail);
2762             tree.body.stats = stats.prepend(selfCall).prependList(added);
2763             outerThisStack = prevOuterThisStack;
2764         } else {
2765             Map<Symbol, Symbol> prevLambdaTranslationMap =
2766                     lambdaTranslationMap;
2767             try {
2768                 lambdaTranslationMap = (tree.sym.flags() & SYNTHETIC) != 0 &&
2769                         tree.sym.name.startsWith(names.lambda) ?
2770                         makeTranslationMap(tree) : null;
2771                 super.visitMethodDef(tree);
2772             } finally {
2773                 lambdaTranslationMap = prevLambdaTranslationMap;
2774             }
2775         }
2776         result = tree;
2777     }
2778     //where
2779         private Map<Symbol, Symbol> makeTranslationMap(JCMethodDecl tree) {
2780             Map<Symbol, Symbol> translationMap = new HashMap<>();
2781             for (JCVariableDecl vd : tree.params) {
2782                 Symbol p = vd.sym;
2783                 if (p != p.baseSymbol()) {
2784                     translationMap.put(p.baseSymbol(), p);
2785                 }
2786             }
2787             return translationMap;
2788         }
2789 
2790     public void visitTypeCast(JCTypeCast tree) {
2791         tree.clazz = translate(tree.clazz);
2792         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
2793             tree.expr = translate(tree.expr, tree.type);
2794         else
2795             tree.expr = translate(tree.expr);
2796         result = tree;
2797     }
2798 
2799     public void visitNewClass(JCNewClass tree) {
2800         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
2801 
2802         // Box arguments, if necessary
2803         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
2804         List<Type> argTypes = tree.constructor.type.getParameterTypes();
2805         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
2806         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
2807         tree.varargsElement = null;
2808 
2809         // If created class is local, add free variables after
2810         // explicit constructor arguments.
2811         if (c.isLocal()) {
2812             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2813         }
2814 
2815         // If an access constructor is used, append null as a last argument.
2816         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
2817         if (constructor != tree.constructor) {
2818             tree.args = tree.args.append(makeNull());
2819             tree.constructor = constructor;
2820         }
2821 
2822         // If created class has an outer instance, and new is qualified, pass
2823         // qualifier as first argument. If new is not qualified, pass the
2824         // correct outer instance as first argument.
2825         if (c.hasOuterInstance()) {
2826             JCExpression thisArg;
2827             if (tree.encl != null) {
2828                 thisArg = attr.makeNullCheck(translate(tree.encl));
2829                 thisArg.type = tree.encl.type;
2830             } else if (c.isLocal()) {
2831                 // local class
2832                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
2833             } else {
2834                 // nested class
2835                 thisArg = makeOwnerThis(tree.pos(), c, false);
2836             }
2837             tree.args = tree.args.prepend(thisArg);
2838         }
2839         tree.encl = null;
2840 
2841         // If we have an anonymous class, create its flat version, rather
2842         // than the class or interface following new.
2843         if (tree.def != null) {
2844             translate(tree.def);
2845             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
2846             tree.def = null;
2847         } else {
2848             tree.clazz = access(c, tree.clazz, enclOp, false);
2849         }
2850         result = tree;
2851     }
2852 
2853     // Simplify conditionals with known constant controlling expressions.
2854     // This allows us to avoid generating supporting declarations for
2855     // the dead code, which will not be eliminated during code generation.
2856     // Note that Flow.isFalse and Flow.isTrue only return true
2857     // for constant expressions in the sense of JLS 15.27, which
2858     // are guaranteed to have no side-effects.  More aggressive
2859     // constant propagation would require that we take care to
2860     // preserve possible side-effects in the condition expression.
2861 
2862     // One common case is equality expressions involving a constant and null.
2863     // Since null is not a constant expression (because null cannot be
2864     // represented in the constant pool), equality checks involving null are
2865     // not captured by Flow.isTrue/isFalse.
2866     // Equality checks involving a constant and null, e.g.
2867     //     "" == null
2868     // are safe to simplify as no side-effects can occur.
2869 
2870     private boolean isTrue(JCTree exp) {
2871         if (exp.type.isTrue())
2872             return true;
2873         Boolean b = expValue(exp);
2874         return b == null ? false : b;
2875     }
2876     private boolean isFalse(JCTree exp) {
2877         if (exp.type.isFalse())
2878             return true;
2879         Boolean b = expValue(exp);
2880         return b == null ? false : !b;
2881     }
2882     /* look for (in)equality relations involving null.
2883      * return true - if expression is always true
2884      *       false - if expression is always false
2885      *        null - if expression cannot be eliminated
2886      */
2887     private Boolean expValue(JCTree exp) {
2888         while (exp.hasTag(PARENS))
2889             exp = ((JCParens)exp).expr;
2890 
2891         boolean eq;
2892         switch (exp.getTag()) {
2893         case EQ: eq = true;  break;
2894         case NE: eq = false; break;
2895         default:
2896             return null;
2897         }
2898 
2899         // we have a JCBinary(EQ|NE)
2900         // check if we have two literals (constants or null)
2901         JCBinary b = (JCBinary)exp;
2902         if (b.lhs.type.hasTag(BOT)) return expValueIsNull(eq, b.rhs);
2903         if (b.rhs.type.hasTag(BOT)) return expValueIsNull(eq, b.lhs);
2904         return null;
2905     }
2906     private Boolean expValueIsNull(boolean eq, JCTree t) {
2907         if (t.type.hasTag(BOT)) return Boolean.valueOf(eq);
2908         if (t.hasTag(LITERAL))  return Boolean.valueOf(!eq);
2909         return null;
2910     }
2911 
2912     /** Visitor method for conditional expressions.
2913      */
2914     @Override
2915     public void visitConditional(JCConditional tree) {
2916         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2917         if (isTrue(cond)) {
2918             result = convert(translate(tree.truepart, tree.type), tree.type);
2919             addPrunedInfo(cond);
2920         } else if (isFalse(cond)) {
2921             result = convert(translate(tree.falsepart, tree.type), tree.type);
2922             addPrunedInfo(cond);
2923         } else {
2924             // Condition is not a compile-time constant.
2925             tree.truepart = translate(tree.truepart, tree.type);
2926             tree.falsepart = translate(tree.falsepart, tree.type);
2927             result = tree;
2928         }
2929     }
2930 //where
2931     private JCExpression convert(JCExpression tree, Type pt) {
2932         if (tree.type == pt || tree.type.hasTag(BOT))
2933             return tree;
2934         JCExpression result = make_at(tree.pos()).TypeCast(make.Type(pt), tree);
2935         result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
2936                                                        : pt;
2937         return result;
2938     }
2939 
2940     /** Visitor method for if statements.
2941      */
2942     public void visitIf(JCIf tree) {
2943         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2944         if (isTrue(cond)) {
2945             result = translate(tree.thenpart);
2946             addPrunedInfo(cond);
2947         } else if (isFalse(cond)) {
2948             if (tree.elsepart != null) {
2949                 result = translate(tree.elsepart);
2950             } else {
2951                 result = make.Skip();
2952             }
2953             addPrunedInfo(cond);
2954         } else {
2955             // Condition is not a compile-time constant.
2956             tree.thenpart = translate(tree.thenpart);
2957             tree.elsepart = translate(tree.elsepart);
2958             result = tree;
2959         }
2960     }
2961 
2962     /** Visitor method for assert statements. Translate them away.
2963      */
2964     public void visitAssert(JCAssert tree) {
2965         DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
2966         tree.cond = translate(tree.cond, syms.booleanType);
2967         if (!tree.cond.type.isTrue()) {
2968             JCExpression cond = assertFlagTest(tree.pos());
2969             List<JCExpression> exnArgs = (tree.detail == null) ?
2970                 List.<JCExpression>nil() : List.of(translate(tree.detail));
2971             if (!tree.cond.type.isFalse()) {
2972                 cond = makeBinary
2973                     (AND,
2974                      cond,
2975                      makeUnary(NOT, tree.cond));
2976             }
2977             result =
2978                 make.If(cond,
2979                         make_at(tree).
2980                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
2981                         null);
2982         } else {
2983             result = make.Skip();
2984         }
2985     }
2986 
2987     public void visitApply(JCMethodInvocation tree) {
2988         Symbol meth = TreeInfo.symbol(tree.meth);
2989         List<Type> argtypes = meth.type.getParameterTypes();
2990         if (meth.name == names.init && meth.owner == syms.enumSym)
2991             argtypes = argtypes.tail.tail;
2992         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
2993         tree.varargsElement = null;
2994         Name methName = TreeInfo.name(tree.meth);
2995         if (meth.name==names.init) {
2996             // We are seeing a this(...) or super(...) constructor call.
2997             // If an access constructor is used, append null as a last argument.
2998             Symbol constructor = accessConstructor(tree.pos(), meth);
2999             if (constructor != meth) {
3000                 tree.args = tree.args.append(makeNull());
3001                 TreeInfo.setSymbol(tree.meth, constructor);
3002             }
3003 
3004             // If we are calling a constructor of a local class, add
3005             // free variables after explicit constructor arguments.
3006             ClassSymbol c = (ClassSymbol)constructor.owner;
3007             if (c.isLocal()) {
3008                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
3009             }
3010 
3011             // If we are calling a constructor of an enum class, pass
3012             // along the name and ordinal arguments
3013             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
3014                 List<JCVariableDecl> params = currentMethodDef.params;
3015                 if (currentMethodSym.owner.hasOuterInstance())
3016                     params = params.tail; // drop this$n
3017                 tree.args = tree.args
3018                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
3019                     .prepend(make.Ident(params.head.sym)); // name
3020             }
3021 
3022             // If we are calling a constructor of a class with an outer
3023             // instance, and the call
3024             // is qualified, pass qualifier as first argument in front of
3025             // the explicit constructor arguments. If the call
3026             // is not qualified, pass the correct outer instance as
3027             // first argument.
3028             if (c.hasOuterInstance()) {
3029                 JCExpression thisArg;
3030                 if (tree.meth.hasTag(SELECT)) {
3031                     thisArg = attr.
3032                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
3033                     tree.meth = make.Ident(constructor);
3034                     ((JCIdent) tree.meth).name = methName;
3035                 } else if (c.isLocal() || methName == names._this){
3036                     // local class or this() call
3037                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
3038                 } else {
3039                     // super() call of nested class - never pick 'this'
3040                     thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
3041                 }
3042                 tree.args = tree.args.prepend(thisArg);
3043             }
3044         } else {
3045             // We are seeing a normal method invocation; translate this as usual.
3046             tree.meth = translate(tree.meth);
3047 
3048             // If the translated method itself is an Apply tree, we are
3049             // seeing an access method invocation. In this case, append
3050             // the method arguments to the arguments of the access method.
3051             if (tree.meth.hasTag(APPLY)) {
3052                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
3053                 app.args = tree.args.prependList(app.args);
3054                 result = app;
3055                 return;
3056             }
3057         }
3058         result = tree;
3059     }
3060 
3061     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
3062         List<JCExpression> args = _args;
3063         if (parameters.isEmpty()) return args;
3064         boolean anyChanges = false;
3065         ListBuffer<JCExpression> result = new ListBuffer<>();
3066         while (parameters.tail.nonEmpty()) {
3067             JCExpression arg = translate(args.head, parameters.head);
3068             anyChanges |= (arg != args.head);
3069             result.append(arg);
3070             args = args.tail;
3071             parameters = parameters.tail;
3072         }
3073         Type parameter = parameters.head;
3074         if (varargsElement != null) {
3075             anyChanges = true;
3076             ListBuffer<JCExpression> elems = new ListBuffer<>();
3077             while (args.nonEmpty()) {
3078                 JCExpression arg = translate(args.head, varargsElement);
3079                 elems.append(arg);
3080                 args = args.tail;
3081             }
3082             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
3083                                                List.<JCExpression>nil(),
3084                                                elems.toList());
3085             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
3086             result.append(boxedArgs);
3087         } else {
3088             if (args.length() != 1) throw new AssertionError(args);
3089             JCExpression arg = translate(args.head, parameter);
3090             anyChanges |= (arg != args.head);
3091             result.append(arg);
3092             if (!anyChanges) return _args;
3093         }
3094         return result.toList();
3095     }
3096 
3097     /** Expand a boxing or unboxing conversion if needed. */
3098     @SuppressWarnings("unchecked") // XXX unchecked
3099     <T extends JCExpression> T boxIfNeeded(T tree, Type type) {
3100         boolean havePrimitive = tree.type.isPrimitive();
3101         if (havePrimitive == type.isPrimitive())
3102             return tree;
3103         if (havePrimitive) {
3104             Type unboxedTarget = types.unboxedType(type);
3105             if (!unboxedTarget.hasTag(NONE)) {
3106                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
3107                     tree.type = unboxedTarget.constType(tree.type.constValue());
3108                 return (T)boxPrimitive(tree, types.erasure(type));
3109             } else {
3110                 tree = (T)boxPrimitive(tree);
3111             }
3112         } else {
3113             tree = (T)unbox(tree, type);
3114         }
3115         return tree;
3116     }
3117 
3118     /** Box up a single primitive expression. */
3119     JCExpression boxPrimitive(JCExpression tree) {
3120         return boxPrimitive(tree, types.boxedClass(tree.type).type);
3121     }
3122 
3123     /** Box up a single primitive expression. */
3124     JCExpression boxPrimitive(JCExpression tree, Type box) {
3125         make_at(tree.pos());
3126         Symbol valueOfSym = lookupMethod(tree.pos(),
3127                                          names.valueOf,
3128                                          box,
3129                                          List.<Type>nil()
3130                                          .prepend(tree.type));
3131         return make.App(make.QualIdent(valueOfSym), List.of(tree));
3132     }
3133 
3134     /** Unbox an object to a primitive value. */
3135     JCExpression unbox(JCExpression tree, Type primitive) {
3136         Type unboxedType = types.unboxedType(tree.type);
3137         if (unboxedType.hasTag(NONE)) {
3138             unboxedType = primitive;
3139             if (!unboxedType.isPrimitive())
3140                 throw new AssertionError(unboxedType);
3141             make_at(tree.pos());
3142             tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
3143         } else {
3144             // There must be a conversion from unboxedType to primitive.
3145             if (!types.isSubtype(unboxedType, primitive))
3146                 throw new AssertionError(tree);
3147         }
3148         make_at(tree.pos());
3149         Symbol valueSym = lookupMethod(tree.pos(),
3150                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
3151                                        tree.type,
3152                                        List.<Type>nil());
3153         return make.App(make.Select(tree, valueSym));
3154     }
3155 
3156     /** Visitor method for parenthesized expressions.
3157      *  If the subexpression has changed, omit the parens.
3158      */
3159     public void visitParens(JCParens tree) {
3160         JCTree expr = translate(tree.expr);
3161         result = ((expr == tree.expr) ? tree : expr);
3162     }
3163 
3164     public void visitIndexed(JCArrayAccess tree) {
3165         tree.indexed = translate(tree.indexed);
3166         tree.index = translate(tree.index, syms.intType);
3167         result = tree;
3168     }
3169 
3170     public void visitAssign(JCAssign tree) {
3171         tree.lhs = translate(tree.lhs, tree);
3172         tree.rhs = translate(tree.rhs, tree.lhs.type);
3173 
3174         // If translated left hand side is an Apply, we are
3175         // seeing an access method invocation. In this case, append
3176         // right hand side as last argument of the access method.
3177         if (tree.lhs.hasTag(APPLY)) {
3178             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
3179             app.args = List.of(tree.rhs).prependList(app.args);
3180             result = app;
3181         } else {
3182             result = tree;
3183         }
3184     }
3185 
3186     public void visitAssignop(final JCAssignOp tree) {
3187         final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
3188             tree.operator.type.getReturnType().isPrimitive();
3189 
3190         AssignopDependencyScanner depScanner = new AssignopDependencyScanner(tree);
3191         depScanner.scan(tree.rhs);
3192 
3193         if (boxingReq || depScanner.dependencyFound) {
3194             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
3195             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
3196             // (but without recomputing x)
3197             JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
3198                     public JCExpression build(final JCExpression lhs) {
3199                         JCTree.Tag newTag = tree.getTag().noAssignOp();
3200                         // Erasure (TransTypes) can change the type of
3201                         // tree.lhs.  However, we can still get the
3202                         // unerased type of tree.lhs as it is stored
3203                         // in tree.type in Attr.
3204                         OperatorSymbol newOperator = operators.resolveBinary(tree,
3205                                                                       newTag,
3206                                                                       tree.type,
3207                                                                       tree.rhs.type);
3208                         JCExpression expr = (JCExpression) lhs.clone();
3209                         if (expr.type != tree.type)
3210                             expr = make.TypeCast(tree.type, expr);
3211                         JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
3212                         opResult.operator = newOperator;
3213                         opResult.type = newOperator.type.getReturnType();
3214                         JCExpression newRhs = boxingReq ?
3215                             make.TypeCast(types.unboxedType(tree.type), opResult) :
3216                             opResult;
3217                         return make.Assign(lhs, newRhs).setType(tree.type);
3218                     }
3219                 });
3220             result = translate(newTree);
3221             return;
3222         }
3223         tree.lhs = translate(tree.lhs, tree);
3224         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
3225 
3226         // If translated left hand side is an Apply, we are
3227         // seeing an access method invocation. In this case, append
3228         // right hand side as last argument of the access method.
3229         if (tree.lhs.hasTag(APPLY)) {
3230             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
3231             // if operation is a += on strings,
3232             // make sure to convert argument to string
3233             JCExpression rhs = tree.operator.opcode == string_add
3234               ? makeString(tree.rhs)
3235               : tree.rhs;
3236             app.args = List.of(rhs).prependList(app.args);
3237             result = app;
3238         } else {
3239             result = tree;
3240         }
3241     }
3242 
3243     class AssignopDependencyScanner extends TreeScanner {
3244 
3245         Symbol sym;
3246         boolean dependencyFound = false;
3247 
3248         AssignopDependencyScanner(JCAssignOp tree) {
3249             this.sym = TreeInfo.symbol(tree.lhs);
3250         }
3251 
3252         @Override
3253         public void scan(JCTree tree) {
3254             if (tree != null && sym != null) {
3255                 tree.accept(this);
3256             }
3257         }
3258 
3259         @Override
3260         public void visitAssignop(JCAssignOp tree) {
3261             if (TreeInfo.symbol(tree.lhs) == sym) {
3262                 dependencyFound = true;
3263                 return;
3264             }
3265             super.visitAssignop(tree);
3266         }
3267 
3268         @Override
3269         public void visitUnary(JCUnary tree) {
3270             if (TreeInfo.symbol(tree.arg) == sym) {
3271                 dependencyFound = true;
3272                 return;
3273             }
3274             super.visitUnary(tree);
3275         }
3276     }
3277 
3278     /** Lower a tree of the form e++ or e-- where e is an object type */
3279     JCExpression lowerBoxedPostop(final JCUnary tree) {
3280         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
3281         // or
3282         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
3283         // where OP is += or -=
3284         final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
3285         return abstractLval(tree.arg, new TreeBuilder() {
3286                 public JCExpression build(final JCExpression tmp1) {
3287                     return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
3288                             public JCExpression build(final JCExpression tmp2) {
3289                                 JCTree.Tag opcode = (tree.hasTag(POSTINC))
3290                                     ? PLUS_ASG : MINUS_ASG;
3291                                 JCExpression lhs = (JCExpression)tmp1.clone();
3292                                 lhs = cast
3293                                     ? make.TypeCast(tree.arg.type, lhs)
3294                                     : lhs;
3295                                 JCExpression update = makeAssignop(opcode,
3296                                                              lhs,
3297                                                              make.Literal(1));
3298                                 return makeComma(update, tmp2);
3299                             }
3300                         });
3301                 }
3302             });
3303     }
3304 
3305     public void visitUnary(JCUnary tree) {
3306         boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
3307         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
3308             switch(tree.getTag()) {
3309             case PREINC:            // ++ e
3310                     // translate to e += 1
3311             case PREDEC:            // -- e
3312                     // translate to e -= 1
3313                 {
3314                     JCTree.Tag opcode = (tree.hasTag(PREINC))
3315                         ? PLUS_ASG : MINUS_ASG;
3316                     JCAssignOp newTree = makeAssignop(opcode,
3317                                                     tree.arg,
3318                                                     make.Literal(1));
3319                     result = translate(newTree, tree.type);
3320                     return;
3321                 }
3322             case POSTINC:           // e ++
3323             case POSTDEC:           // e --
3324                 {
3325                     result = translate(lowerBoxedPostop(tree), tree.type);
3326                     return;
3327                 }
3328             }
3329             throw new AssertionError(tree);
3330         }
3331 
3332         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
3333 
3334         if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
3335             tree.type = cfolder.fold1(bool_not, tree.arg.type);
3336         }
3337 
3338         // If translated left hand side is an Apply, we are
3339         // seeing an access method invocation. In this case, return
3340         // that access method invocation as result.
3341         if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
3342             result = tree.arg;
3343         } else {
3344             result = tree;
3345         }
3346     }
3347 
3348     public void visitBinary(JCBinary tree) {
3349         List<Type> formals = tree.operator.type.getParameterTypes();
3350         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
3351         switch (tree.getTag()) {
3352         case OR:
3353             if (isTrue(lhs)) {
3354                 result = lhs;
3355                 return;
3356             }
3357             if (isFalse(lhs)) {
3358                 result = translate(tree.rhs, formals.tail.head);
3359                 return;
3360             }
3361             break;
3362         case AND:
3363             if (isFalse(lhs)) {
3364                 result = lhs;
3365                 return;
3366             }
3367             if (isTrue(lhs)) {
3368                 result = translate(tree.rhs, formals.tail.head);
3369                 return;
3370             }
3371             break;
3372         }
3373         tree.rhs = translate(tree.rhs, formals.tail.head);
3374         result = tree;
3375     }
3376 
3377     public void visitIdent(JCIdent tree) {
3378         result = access(tree.sym, tree, enclOp, false);
3379     }
3380 
3381     /** Translate away the foreach loop.  */
3382     public void visitForeachLoop(JCEnhancedForLoop tree) {
3383         if (types.elemtype(tree.expr.type) == null)
3384             visitIterableForeachLoop(tree);
3385         else
3386             visitArrayForeachLoop(tree);
3387     }
3388         // where
3389         /**
3390          * A statement of the form
3391          *
3392          * <pre>
3393          *     for ( T v : arrayexpr ) stmt;
3394          * </pre>
3395          *
3396          * (where arrayexpr is of an array type) gets translated to
3397          *
3398          * <pre>{@code
3399          *     for ( { arraytype #arr = arrayexpr;
3400          *             int #len = array.length;
3401          *             int #i = 0; };
3402          *           #i < #len; i$++ ) {
3403          *         T v = arr$[#i];
3404          *         stmt;
3405          *     }
3406          * }</pre>
3407          *
3408          * where #arr, #len, and #i are freshly named synthetic local variables.
3409          */
3410         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
3411             make_at(tree.expr.pos());
3412             VarSymbol arraycache = new VarSymbol(SYNTHETIC,
3413                                                  names.fromString("arr" + target.syntheticNameChar()),
3414                                                  tree.expr.type,
3415                                                  currentMethodSym);
3416             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
3417             VarSymbol lencache = new VarSymbol(SYNTHETIC,
3418                                                names.fromString("len" + target.syntheticNameChar()),
3419                                                syms.intType,
3420                                                currentMethodSym);
3421             JCStatement lencachedef = make.
3422                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
3423             VarSymbol index = new VarSymbol(SYNTHETIC,
3424                                             names.fromString("i" + target.syntheticNameChar()),
3425                                             syms.intType,
3426                                             currentMethodSym);
3427 
3428             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
3429             indexdef.init.type = indexdef.type = syms.intType.constType(0);
3430 
3431             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
3432             JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
3433 
3434             JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
3435 
3436             Type elemtype = types.elemtype(tree.expr.type);
3437             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
3438                                                     make.Ident(index)).setType(elemtype);
3439             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
3440                                                   tree.var.name,
3441                                                   tree.var.vartype,
3442                                                   loopvarinit).setType(tree.var.type);
3443             loopvardef.sym = tree.var.sym;
3444             JCBlock body = make.
3445                 Block(0, List.of(loopvardef, tree.body));
3446 
3447             result = translate(make.
3448                                ForLoop(loopinit,
3449                                        cond,
3450                                        List.of(step),
3451                                        body));
3452             patchTargets(body, tree, result);
3453         }
3454         /** Patch up break and continue targets. */
3455         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
3456             class Patcher extends TreeScanner {
3457                 public void visitBreak(JCBreak tree) {
3458                     if (tree.target == src)
3459                         tree.target = dest;
3460                 }
3461                 public void visitContinue(JCContinue tree) {
3462                     if (tree.target == src)
3463                         tree.target = dest;
3464                 }
3465                 public void visitClassDef(JCClassDecl tree) {}
3466             }
3467             new Patcher().scan(body);
3468         }
3469         /**
3470          * A statement of the form
3471          *
3472          * <pre>
3473          *     for ( T v : coll ) stmt ;
3474          * </pre>
3475          *
3476          * (where coll implements {@code Iterable<? extends T>}) gets translated to
3477          *
3478          * <pre>{@code
3479          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
3480          *         T v = (T) #i.next();
3481          *         stmt;
3482          *     }
3483          * }</pre>
3484          *
3485          * where #i is a freshly named synthetic local variable.
3486          */
3487         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
3488             make_at(tree.expr.pos());
3489             Type iteratorTarget = syms.objectType;
3490             Type iterableType = types.asSuper(types.cvarUpperBound(tree.expr.type),
3491                                               syms.iterableType.tsym);
3492             if (iterableType.getTypeArguments().nonEmpty())
3493                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
3494             Type eType = types.skipTypeVars(tree.expr.type, false);
3495             tree.expr.type = types.erasure(eType);
3496             if (eType.isCompound())
3497                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
3498             Symbol iterator = lookupMethod(tree.expr.pos(),
3499                                            names.iterator,
3500                                            eType,
3501                                            List.<Type>nil());
3502             VarSymbol itvar = new VarSymbol(SYNTHETIC, names.fromString("i" + target.syntheticNameChar()),
3503                                             types.erasure(types.asSuper(iterator.type.getReturnType(), syms.iteratorType.tsym)),
3504                                             currentMethodSym);
3505 
3506              JCStatement init = make.
3507                 VarDef(itvar, make.App(make.Select(tree.expr, iterator)
3508                      .setType(types.erasure(iterator.type))));
3509 
3510             Symbol hasNext = lookupMethod(tree.expr.pos(),
3511                                           names.hasNext,
3512                                           itvar.type,
3513                                           List.<Type>nil());
3514             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
3515             Symbol next = lookupMethod(tree.expr.pos(),
3516                                        names.next,
3517                                        itvar.type,
3518                                        List.<Type>nil());
3519             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
3520             if (tree.var.type.isPrimitive())
3521                 vardefinit = make.TypeCast(types.cvarUpperBound(iteratorTarget), vardefinit);
3522             else
3523                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
3524             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
3525                                                   tree.var.name,
3526                                                   tree.var.vartype,
3527                                                   vardefinit).setType(tree.var.type);
3528             indexDef.sym = tree.var.sym;
3529             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
3530             body.endpos = TreeInfo.endPos(tree.body);
3531             result = translate(make.
3532                 ForLoop(List.of(init),
3533                         cond,
3534                         List.<JCExpressionStatement>nil(),
3535                         body));
3536             patchTargets(body, tree, result);
3537         }
3538 
3539     public void visitVarDef(JCVariableDecl tree) {
3540         MethodSymbol oldMethodSym = currentMethodSym;
3541         tree.mods = translate(tree.mods);
3542         tree.vartype = translate(tree.vartype);
3543         if (currentMethodSym == null) {
3544             // A class or instance field initializer.
3545             currentMethodSym =
3546                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
3547                                  names.empty, null,
3548                                  currentClass);
3549         }
3550         if (tree.init != null) tree.init = translate(tree.init, tree.type);
3551         result = tree;
3552         currentMethodSym = oldMethodSym;
3553     }
3554 
3555     public void visitBlock(JCBlock tree) {
3556         MethodSymbol oldMethodSym = currentMethodSym;
3557         if (currentMethodSym == null) {
3558             // Block is a static or instance initializer.
3559             currentMethodSym =
3560                 new MethodSymbol(tree.flags | BLOCK,
3561                                  names.empty, null,
3562                                  currentClass);
3563         }
3564         super.visitBlock(tree);
3565         currentMethodSym = oldMethodSym;
3566     }
3567 
3568     public void visitDoLoop(JCDoWhileLoop tree) {
3569         tree.body = translate(tree.body);
3570         tree.cond = translate(tree.cond, syms.booleanType);
3571         result = tree;
3572     }
3573 
3574     public void visitWhileLoop(JCWhileLoop tree) {
3575         tree.cond = translate(tree.cond, syms.booleanType);
3576         tree.body = translate(tree.body);
3577         result = tree;
3578     }
3579 
3580     public void visitForLoop(JCForLoop tree) {
3581         tree.init = translate(tree.init);
3582         if (tree.cond != null)
3583             tree.cond = translate(tree.cond, syms.booleanType);
3584         tree.step = translate(tree.step);
3585         tree.body = translate(tree.body);
3586         result = tree;
3587     }
3588 
3589     public void visitReturn(JCReturn tree) {
3590         if (tree.expr != null)
3591             tree.expr = translate(tree.expr,
3592                                   types.erasure(currentMethodDef
3593                                                 .restype.type));
3594         result = tree;
3595     }
3596 
3597     public void visitSwitch(JCSwitch tree) {
3598         Type selsuper = types.supertype(tree.selector.type);
3599         boolean enumSwitch = selsuper != null &&
3600             (tree.selector.type.tsym.flags() & ENUM) != 0;
3601         boolean stringSwitch = selsuper != null &&
3602             types.isSameType(tree.selector.type, syms.stringType);
3603         Type target = enumSwitch ? tree.selector.type :
3604             (stringSwitch? syms.stringType : syms.intType);
3605         tree.selector = translate(tree.selector, target);
3606         tree.cases = translateCases(tree.cases);
3607         if (enumSwitch) {
3608             result = visitEnumSwitch(tree);
3609         } else if (stringSwitch) {
3610             result = visitStringSwitch(tree);
3611         } else {
3612             result = tree;
3613         }
3614     }
3615 
3616     public JCTree visitEnumSwitch(JCSwitch tree) {
3617         TypeSymbol enumSym = tree.selector.type.tsym;
3618         EnumMapping map = mapForEnum(tree.pos(), enumSym);
3619         make_at(tree.pos());
3620         Symbol ordinalMethod = lookupMethod(tree.pos(),
3621                                             names.ordinal,
3622                                             tree.selector.type,
3623                                             List.<Type>nil());
3624         JCArrayAccess selector = make.Indexed(map.mapVar,
3625                                         make.App(make.Select(tree.selector,
3626                                                              ordinalMethod)));
3627         ListBuffer<JCCase> cases = new ListBuffer<>();
3628         for (JCCase c : tree.cases) {
3629             if (c.pat != null) {
3630                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
3631                 JCLiteral pat = map.forConstant(label);
3632                 cases.append(make.Case(pat, c.stats));
3633             } else {
3634                 cases.append(c);
3635             }
3636         }
3637         JCSwitch enumSwitch = make.Switch(selector, cases.toList());
3638         patchTargets(enumSwitch, tree, enumSwitch);
3639         return enumSwitch;
3640     }
3641 
3642     public JCTree visitStringSwitch(JCSwitch tree) {
3643         List<JCCase> caseList = tree.getCases();
3644         int alternatives = caseList.size();
3645 
3646         if (alternatives == 0) { // Strange but legal possibility
3647             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
3648         } else {
3649             /*
3650              * The general approach used is to translate a single
3651              * string switch statement into a series of two chained
3652              * switch statements: the first a synthesized statement
3653              * switching on the argument string's hash value and
3654              * computing a string's position in the list of original
3655              * case labels, if any, followed by a second switch on the
3656              * computed integer value.  The second switch has the same
3657              * code structure as the original string switch statement
3658              * except that the string case labels are replaced with
3659              * positional integer constants starting at 0.
3660              *
3661              * The first switch statement can be thought of as an
3662              * inlined map from strings to their position in the case
3663              * label list.  An alternate implementation would use an
3664              * actual Map for this purpose, as done for enum switches.
3665              *
3666              * With some additional effort, it would be possible to
3667              * use a single switch statement on the hash code of the
3668              * argument, but care would need to be taken to preserve
3669              * the proper control flow in the presence of hash
3670              * collisions and other complications, such as
3671              * fallthroughs.  Switch statements with one or two
3672              * alternatives could also be specially translated into
3673              * if-then statements to omit the computation of the hash
3674              * code.
3675              *
3676              * The generated code assumes that the hashing algorithm
3677              * of String is the same in the compilation environment as
3678              * in the environment the code will run in.  The string
3679              * hashing algorithm in the SE JDK has been unchanged
3680              * since at least JDK 1.2.  Since the algorithm has been
3681              * specified since that release as well, it is very
3682              * unlikely to be changed in the future.
3683              *
3684              * Different hashing algorithms, such as the length of the
3685              * strings or a perfect hashing algorithm over the
3686              * particular set of case labels, could potentially be
3687              * used instead of String.hashCode.
3688              */
3689 
3690             ListBuffer<JCStatement> stmtList = new ListBuffer<>();
3691 
3692             // Map from String case labels to their original position in
3693             // the list of case labels.
3694             Map<String, Integer> caseLabelToPosition = new LinkedHashMap<>(alternatives + 1, 1.0f);
3695 
3696             // Map of hash codes to the string case labels having that hashCode.
3697             Map<Integer, Set<String>> hashToString = new LinkedHashMap<>(alternatives + 1, 1.0f);
3698 
3699             int casePosition = 0;
3700             for(JCCase oneCase : caseList) {
3701                 JCExpression expression = oneCase.getExpression();
3702 
3703                 if (expression != null) { // expression for a "default" case is null
3704                     String labelExpr = (String) expression.type.constValue();
3705                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
3706                     Assert.checkNull(mapping);
3707                     int hashCode = labelExpr.hashCode();
3708 
3709                     Set<String> stringSet = hashToString.get(hashCode);
3710                     if (stringSet == null) {
3711                         stringSet = new LinkedHashSet<>(1, 1.0f);
3712                         stringSet.add(labelExpr);
3713                         hashToString.put(hashCode, stringSet);
3714                     } else {
3715                         boolean added = stringSet.add(labelExpr);
3716                         Assert.check(added);
3717                     }
3718                 }
3719                 casePosition++;
3720             }
3721 
3722             // Synthesize a switch statement that has the effect of
3723             // mapping from a string to the integer position of that
3724             // string in the list of case labels.  This is done by
3725             // switching on the hashCode of the string followed by an
3726             // if-then-else chain comparing the input for equality
3727             // with all the case labels having that hash value.
3728 
3729             /*
3730              * s$ = top of stack;
3731              * tmp$ = -1;
3732              * switch($s.hashCode()) {
3733              *     case caseLabel.hashCode:
3734              *         if (s$.equals("caseLabel_1")
3735              *           tmp$ = caseLabelToPosition("caseLabel_1");
3736              *         else if (s$.equals("caseLabel_2"))
3737              *           tmp$ = caseLabelToPosition("caseLabel_2");
3738              *         ...
3739              *         break;
3740              * ...
3741              * }
3742              */
3743 
3744             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
3745                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
3746                                                syms.stringType,
3747                                                currentMethodSym);
3748             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
3749 
3750             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
3751                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
3752                                                  syms.intType,
3753                                                  currentMethodSym);
3754             JCVariableDecl dollar_tmp_def =
3755                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
3756             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
3757             stmtList.append(dollar_tmp_def);
3758             ListBuffer<JCCase> caseBuffer = new ListBuffer<>();
3759             // hashCode will trigger nullcheck on original switch expression
3760             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
3761                                                        names.hashCode,
3762                                                        List.<JCExpression>nil()).setType(syms.intType);
3763             JCSwitch switch1 = make.Switch(hashCodeCall,
3764                                         caseBuffer.toList());
3765             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
3766                 int hashCode = entry.getKey();
3767                 Set<String> stringsWithHashCode = entry.getValue();
3768                 Assert.check(stringsWithHashCode.size() >= 1);
3769 
3770                 JCStatement elsepart = null;
3771                 for(String caseLabel : stringsWithHashCode ) {
3772                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
3773                                                                    names.equals,
3774                                                                    List.<JCExpression>of(make.Literal(caseLabel)));
3775                     elsepart = make.If(stringEqualsCall,
3776                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
3777                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
3778                                                  setType(dollar_tmp.type)),
3779                                        elsepart);
3780                 }
3781 
3782                 ListBuffer<JCStatement> lb = new ListBuffer<>();
3783                 JCBreak breakStmt = make.Break(null);
3784                 breakStmt.target = switch1;
3785                 lb.append(elsepart).append(breakStmt);
3786 
3787                 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
3788             }
3789 
3790             switch1.cases = caseBuffer.toList();
3791             stmtList.append(switch1);
3792 
3793             // Make isomorphic switch tree replacing string labels
3794             // with corresponding integer ones from the label to
3795             // position map.
3796 
3797             ListBuffer<JCCase> lb = new ListBuffer<>();
3798             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
3799             for(JCCase oneCase : caseList ) {
3800                 // Rewire up old unlabeled break statements to the
3801                 // replacement switch being created.
3802                 patchTargets(oneCase, tree, switch2);
3803 
3804                 boolean isDefault = (oneCase.getExpression() == null);
3805                 JCExpression caseExpr;
3806                 if (isDefault)
3807                     caseExpr = null;
3808                 else {
3809                     caseExpr = make.Literal(caseLabelToPosition.get((String)TreeInfo.skipParens(oneCase.
3810                                                                                                 getExpression()).
3811                                                                     type.constValue()));
3812                 }
3813 
3814                 lb.append(make.Case(caseExpr,
3815                                     oneCase.getStatements()));
3816             }
3817 
3818             switch2.cases = lb.toList();
3819             stmtList.append(switch2);
3820 
3821             return make.Block(0L, stmtList.toList());
3822         }
3823     }
3824 
3825     public void visitNewArray(JCNewArray tree) {
3826         tree.elemtype = translate(tree.elemtype);
3827         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
3828             if (t.head != null) t.head = translate(t.head, syms.intType);
3829         tree.elems = translate(tree.elems, types.elemtype(tree.type));
3830         result = tree;
3831     }
3832 
3833     public void visitSelect(JCFieldAccess tree) {
3834         // need to special case-access of the form C.super.x
3835         // these will always need an access method, unless C
3836         // is a default interface subclassed by the current class.
3837         boolean qualifiedSuperAccess =
3838             tree.selected.hasTag(SELECT) &&
3839             TreeInfo.name(tree.selected) == names._super &&
3840             !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
3841         tree.selected = translate(tree.selected);
3842         if (tree.name == names._class) {
3843             result = classOf(tree.selected);
3844         }
3845         else if (tree.name == names._super &&
3846                 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
3847             //default super call!! Not a classic qualified super call
3848             TypeSymbol supSym = tree.selected.type.tsym;
3849             Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
3850             result = tree;
3851         }
3852         else if (tree.name == names._this || tree.name == names._super) {
3853             result = makeThis(tree.pos(), tree.selected.type.tsym);
3854         }
3855         else
3856             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
3857     }
3858 
3859     public void visitLetExpr(LetExpr tree) {
3860         tree.defs = translateVarDefs(tree.defs);
3861         tree.expr = translate(tree.expr, tree.type);
3862         result = tree;
3863     }
3864 
3865     // There ought to be nothing to rewrite here;
3866     // we don't generate code.
3867     public void visitAnnotation(JCAnnotation tree) {
3868         result = tree;
3869     }
3870 
3871     @Override
3872     public void visitTry(JCTry tree) {
3873         if (tree.resources.nonEmpty()) {
3874             result = makeTwrTry(tree);
3875             return;
3876         }
3877 
3878         boolean hasBody = tree.body.getStatements().nonEmpty();
3879         boolean hasCatchers = tree.catchers.nonEmpty();
3880         boolean hasFinally = tree.finalizer != null &&
3881                 tree.finalizer.getStatements().nonEmpty();
3882 
3883         if (!hasCatchers && !hasFinally) {
3884             result = translate(tree.body);
3885             return;
3886         }
3887 
3888         if (!hasBody) {
3889             if (hasFinally) {
3890                 result = translate(tree.finalizer);
3891             } else {
3892                 result = translate(tree.body);
3893             }
3894             return;
3895         }
3896 
3897         // no optimizations possible
3898         super.visitTry(tree);
3899     }
3900 
3901 /**************************************************************************
3902  * main method
3903  *************************************************************************/
3904 
3905     /** Translate a toplevel class and return a list consisting of
3906      *  the translated class and translated versions of all inner classes.
3907      *  @param env   The attribution environment current at the class definition.
3908      *               We need this for resolving some additional symbols.
3909      *  @param cdef  The tree representing the class definition.
3910      */
3911     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
3912         ListBuffer<JCTree> translated = null;
3913         try {
3914             attrEnv = env;
3915             this.make = make;
3916             endPosTable = env.toplevel.endPositions;
3917             currentClass = null;
3918             currentMethodDef = null;
3919             outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
3920             outermostMemberDef = null;
3921             this.translated = new ListBuffer<>();
3922             classdefs = new HashMap<>();
3923             actualSymbols = new HashMap<>();
3924             freevarCache = new HashMap<>();
3925             proxies = WriteableScope.create(syms.noSymbol);
3926             twrVars = WriteableScope.create(syms.noSymbol);
3927             outerThisStack = List.nil();
3928             accessNums = new HashMap<>();
3929             accessSyms = new HashMap<>();
3930             accessConstrs = new HashMap<>();
3931             accessConstrTags = List.nil();
3932             accessed = new ListBuffer<>();
3933             translate(cdef, (JCExpression)null);
3934             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
3935                 makeAccessible(l.head);
3936             for (EnumMapping map : enumSwitchMap.values())
3937                 map.translate();
3938             checkConflicts(this.translated.toList());
3939             checkAccessConstructorTags();
3940             translated = this.translated;
3941         } finally {
3942             // note that recursive invocations of this method fail hard
3943             attrEnv = null;
3944             this.make = null;
3945             endPosTable = null;
3946             currentClass = null;
3947             currentMethodDef = null;
3948             outermostClassDef = null;
3949             outermostMemberDef = null;
3950             this.translated = null;
3951             classdefs = null;
3952             actualSymbols = null;
3953             freevarCache = null;
3954             proxies = null;
3955             outerThisStack = null;
3956             accessNums = null;
3957             accessSyms = null;
3958             accessConstrs = null;
3959             accessConstrTags = null;
3960             accessed = null;
3961             enumSwitchMap.clear();
3962             assertionsDisabledClassCache = null;
3963         }
3964         return translated.toList();
3965     }
3966 }