1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.lang.model.element.ElementKind;
  31 import javax.tools.JavaFileObject;
  32 
  33 import com.sun.source.tree.IdentifierTree;
  34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  35 import com.sun.source.tree.MemberSelectTree;
  36 import com.sun.source.tree.TreeVisitor;
  37 import com.sun.source.util.SimpleTreeVisitor;
  38 import com.sun.tools.javac.code.*;
  39 import com.sun.tools.javac.code.Directive.RequiresFlag;
  40 import com.sun.tools.javac.code.Lint.LintCategory;
  41 import com.sun.tools.javac.code.Scope.WriteableScope;
  42 import com.sun.tools.javac.code.Symbol.*;
  43 import com.sun.tools.javac.code.Type.*;
  44 import com.sun.tools.javac.code.TypeMetadata.Annotations;
  45 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  46 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  47 import com.sun.tools.javac.comp.Check.CheckContext;
  48 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  49 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
  50 import com.sun.tools.javac.jvm.*;
  51 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  52 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  53 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  54 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  55 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  56 import com.sun.tools.javac.tree.*;
  57 import com.sun.tools.javac.tree.JCTree.*;
  58 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  59 import com.sun.tools.javac.util.*;
  60 import com.sun.tools.javac.util.DefinedBy.Api;
  61 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  62 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  63 import com.sun.tools.javac.util.List;
  64 
  65 import static com.sun.tools.javac.code.Flags.*;
  66 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  67 import static com.sun.tools.javac.code.Flags.BLOCK;
  68 import static com.sun.tools.javac.code.Kinds.*;
  69 import static com.sun.tools.javac.code.Kinds.Kind.*;
  70 import static com.sun.tools.javac.code.TypeTag.*;
  71 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  72 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  73 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  74 
  75 /** This is the main context-dependent analysis phase in GJC. It
  76  *  encompasses name resolution, type checking and constant folding as
  77  *  subtasks. Some subtasks involve auxiliary classes.
  78  *  @see Check
  79  *  @see Resolve
  80  *  @see ConstFold
  81  *  @see Infer
  82  *
  83  *  <p><b>This is NOT part of any supported API.
  84  *  If you write code that depends on this, you do so at your own risk.
  85  *  This code and its internal interfaces are subject to change or
  86  *  deletion without notice.</b>
  87  */
  88 public class Attr extends JCTree.Visitor {
  89     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  90 
  91     final Names names;
  92     final Log log;
  93     final Symtab syms;
  94     final Resolve rs;
  95     final Operators operators;
  96     final Infer infer;
  97     final Analyzer analyzer;
  98     final DeferredAttr deferredAttr;
  99     final Check chk;
 100     final Flow flow;
 101     final MemberEnter memberEnter;
 102     final TypeEnter typeEnter;
 103     final TreeMaker make;
 104     final ConstFold cfolder;
 105     final Enter enter;
 106     final Target target;
 107     final Types types;
 108     final JCDiagnostic.Factory diags;
 109     final TypeAnnotations typeAnnotations;
 110     final DeferredLintHandler deferredLintHandler;
 111     final TypeEnvs typeEnvs;
 112     final Dependencies dependencies;
 113     final Annotate annotate;
 114     final ArgumentAttr argumentAttr;
 115 
 116     public static Attr instance(Context context) {
 117         Attr instance = context.get(attrKey);
 118         if (instance == null)
 119             instance = new Attr(context);
 120         return instance;
 121     }
 122 
 123     protected Attr(Context context) {
 124         context.put(attrKey, this);
 125 
 126         names = Names.instance(context);
 127         log = Log.instance(context);
 128         syms = Symtab.instance(context);
 129         rs = Resolve.instance(context);
 130         operators = Operators.instance(context);
 131         chk = Check.instance(context);
 132         flow = Flow.instance(context);
 133         memberEnter = MemberEnter.instance(context);
 134         typeEnter = TypeEnter.instance(context);
 135         make = TreeMaker.instance(context);
 136         enter = Enter.instance(context);
 137         infer = Infer.instance(context);
 138         analyzer = Analyzer.instance(context);
 139         deferredAttr = DeferredAttr.instance(context);
 140         cfolder = ConstFold.instance(context);
 141         target = Target.instance(context);
 142         types = Types.instance(context);
 143         diags = JCDiagnostic.Factory.instance(context);
 144         annotate = Annotate.instance(context);
 145         typeAnnotations = TypeAnnotations.instance(context);
 146         deferredLintHandler = DeferredLintHandler.instance(context);
 147         typeEnvs = TypeEnvs.instance(context);
 148         dependencies = Dependencies.instance(context);
 149         argumentAttr = ArgumentAttr.instance(context);
 150 
 151         Options options = Options.instance(context);
 152 
 153         Source source = Source.instance(context);
 154         allowStringsInSwitch = source.allowStringsInSwitch();
 155         allowPoly = source.allowPoly();
 156         allowTypeAnnos = source.allowTypeAnnotations();
 157         allowLambda = source.allowLambda();
 158         allowDefaultMethods = source.allowDefaultMethods();
 159         allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
 160         sourceName = source.name;
 161         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 162 
 163         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 164         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 165         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 166         methodAttrInfo = new MethodAttrInfo();
 167         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 168         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 169         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 170     }
 171 
 172     /** Switch: support target-typing inference
 173      */
 174     boolean allowPoly;
 175 
 176     /** Switch: support type annotations.
 177      */
 178     boolean allowTypeAnnos;
 179 
 180     /** Switch: support lambda expressions ?
 181      */
 182     boolean allowLambda;
 183 
 184     /** Switch: support default methods ?
 185      */
 186     boolean allowDefaultMethods;
 187 
 188     /** Switch: static interface methods enabled?
 189      */
 190     boolean allowStaticInterfaceMethods;
 191 
 192     /**
 193      * Switch: warn about use of variable before declaration?
 194      * RFE: 6425594
 195      */
 196     boolean useBeforeDeclarationWarning;
 197 
 198     /**
 199      * Switch: allow strings in switch?
 200      */
 201     boolean allowStringsInSwitch;
 202 
 203     /**
 204      * Switch: name of source level; used for error reporting.
 205      */
 206     String sourceName;
 207 
 208     /** Check kind and type of given tree against protokind and prototype.
 209      *  If check succeeds, store type in tree and return it.
 210      *  If check fails, store errType in tree and return it.
 211      *  No checks are performed if the prototype is a method type.
 212      *  It is not necessary in this case since we know that kind and type
 213      *  are correct.
 214      *
 215      *  @param tree     The tree whose kind and type is checked
 216      *  @param found    The computed type of the tree
 217      *  @param ownkind  The computed kind of the tree
 218      *  @param resultInfo  The expected result of the tree
 219      */
 220     Type check(final JCTree tree,
 221                final Type found,
 222                final KindSelector ownkind,
 223                final ResultInfo resultInfo) {
 224         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 225         Type owntype;
 226         boolean shouldCheck = !found.hasTag(ERROR) &&
 227                 !resultInfo.pt.hasTag(METHOD) &&
 228                 !resultInfo.pt.hasTag(FORALL);
 229         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 230             log.error(tree.pos(), "unexpected.type",
 231             resultInfo.pkind.kindNames(),
 232             ownkind.kindNames());
 233             owntype = types.createErrorType(found);
 234         } else if (allowPoly && inferenceContext.free(found)) {
 235             //delay the check if there are inference variables in the found type
 236             //this means we are dealing with a partially inferred poly expression
 237             owntype = shouldCheck ? resultInfo.pt : found;
 238             if (resultInfo.checkMode.installPostInferenceHook()) {
 239                 inferenceContext.addFreeTypeListener(List.of(found),
 240                         instantiatedContext -> {
 241                             ResultInfo pendingResult =
 242                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 243                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 244                         });
 245             }
 246         } else {
 247             owntype = shouldCheck ?
 248             resultInfo.check(tree, found) :
 249             found;
 250         }
 251         if (resultInfo.checkMode.updateTreeType()) {
 252             tree.type = owntype;
 253         }
 254         return owntype;
 255     }
 256 
 257     /** Is given blank final variable assignable, i.e. in a scope where it
 258      *  may be assigned to even though it is final?
 259      *  @param v      The blank final variable.
 260      *  @param env    The current environment.
 261      */
 262     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 263         Symbol owner = env.info.scope.owner;
 264            // owner refers to the innermost variable, method or
 265            // initializer block declaration at this point.
 266         return
 267             v.owner == owner
 268             ||
 269             ((owner.name == names.init ||    // i.e. we are in a constructor
 270               owner.kind == VAR ||           // i.e. we are in a variable initializer
 271               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 272              &&
 273              v.owner == owner.owner
 274              &&
 275              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 276     }
 277 
 278     /** Check that variable can be assigned to.
 279      *  @param pos    The current source code position.
 280      *  @param v      The assigned variable
 281      *  @param base   If the variable is referred to in a Select, the part
 282      *                to the left of the `.', null otherwise.
 283      *  @param env    The current environment.
 284      */
 285     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 286         if (v.name == names._this) {
 287             log.error(pos, Errors.CantAssignValToThis);
 288         } else if ((v.flags() & FINAL) != 0 &&
 289             ((v.flags() & HASINIT) != 0
 290              ||
 291              !((base == null ||
 292                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
 293                isAssignableAsBlankFinal(v, env)))) {
 294             if (v.isResourceVariable()) { //TWR resource
 295                 log.error(pos, "try.resource.may.not.be.assigned", v);
 296             } else {
 297                 log.error(pos, "cant.assign.val.to.final.var", v);
 298             }
 299         }
 300     }
 301 
 302     /** Does tree represent a static reference to an identifier?
 303      *  It is assumed that tree is either a SELECT or an IDENT.
 304      *  We have to weed out selects from non-type names here.
 305      *  @param tree    The candidate tree.
 306      */
 307     boolean isStaticReference(JCTree tree) {
 308         if (tree.hasTag(SELECT)) {
 309             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 310             if (lsym == null || lsym.kind != TYP) {
 311                 return false;
 312             }
 313         }
 314         return true;
 315     }
 316 
 317     /** Is this symbol a type?
 318      */
 319     static boolean isType(Symbol sym) {
 320         return sym != null && sym.kind == TYP;
 321     }
 322 
 323     /** The current `this' symbol.
 324      *  @param env    The current environment.
 325      */
 326     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 327         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 328     }
 329 
 330     /** Attribute a parsed identifier.
 331      * @param tree Parsed identifier name
 332      * @param topLevel The toplevel to use
 333      */
 334     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 335         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 336         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 337                                            syms.errSymbol.name,
 338                                            null, null, null, null);
 339         localEnv.enclClass.sym = syms.errSymbol;
 340         return attribIdent(tree, localEnv);
 341     }
 342 
 343     /** Attribute a parsed identifier.
 344      * @param tree Parsed identifier name
 345      * @param env The env to use
 346      */
 347     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 348         return tree.accept(identAttributer, env);
 349     }
 350     // where
 351         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 352         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 353             @Override @DefinedBy(Api.COMPILER_TREE)
 354             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 355                 Symbol site = visit(node.getExpression(), env);
 356                 if (site.kind == ERR || site.kind == ABSENT_TYP)
 357                     return site;
 358                 Name name = (Name)node.getIdentifier();
 359                 if (site.kind == PCK) {
 360                     env.toplevel.packge = (PackageSymbol)site;
 361                     return rs.findIdentInPackage(env, (TypeSymbol)site, name,
 362                             KindSelector.TYP_PCK);
 363                 } else {
 364                     env.enclClass.sym = (ClassSymbol)site;
 365                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 366                 }
 367             }
 368 
 369             @Override @DefinedBy(Api.COMPILER_TREE)
 370             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 371                 return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
 372             }
 373         }
 374 
 375     public Type coerce(Type etype, Type ttype) {
 376         return cfolder.coerce(etype, ttype);
 377     }
 378 
 379     public Type attribType(JCTree node, TypeSymbol sym) {
 380         Env<AttrContext> env = typeEnvs.get(sym);
 381         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 382         return attribTree(node, localEnv, unknownTypeInfo);
 383     }
 384 
 385     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 386         // Attribute qualifying package or class.
 387         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 388         return attribTree(s.selected, env,
 389                           new ResultInfo(tree.staticImport ?
 390                                          KindSelector.TYP : KindSelector.TYP_PCK,
 391                        Type.noType));
 392     }
 393 
 394     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 395         breakTree = tree;
 396         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 397         try {
 398             attribExpr(expr, env);
 399         } catch (BreakAttr b) {
 400             return b.env;
 401         } catch (AssertionError ae) {
 402             if (ae.getCause() instanceof BreakAttr) {
 403                 return ((BreakAttr)(ae.getCause())).env;
 404             } else {
 405                 throw ae;
 406             }
 407         } finally {
 408             breakTree = null;
 409             log.useSource(prev);
 410         }
 411         return env;
 412     }
 413 
 414     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 415         breakTree = tree;
 416         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 417         try {
 418             attribStat(stmt, env);
 419         } catch (BreakAttr b) {
 420             return b.env;
 421         } catch (AssertionError ae) {
 422             if (ae.getCause() instanceof BreakAttr) {
 423                 return ((BreakAttr)(ae.getCause())).env;
 424             } else {
 425                 throw ae;
 426             }
 427         } finally {
 428             breakTree = null;
 429             log.useSource(prev);
 430         }
 431         return env;
 432     }
 433 
 434     private JCTree breakTree = null;
 435 
 436     private static class BreakAttr extends RuntimeException {
 437         static final long serialVersionUID = -6924771130405446405L;
 438         private Env<AttrContext> env;
 439         private BreakAttr(Env<AttrContext> env) {
 440             this.env = env;
 441         }
 442     }
 443 
 444     /**
 445      * Mode controlling behavior of Attr.Check
 446      */
 447     enum CheckMode {
 448 
 449         NORMAL,
 450 
 451         NO_TREE_UPDATE {     // Mode signalling 'fake check' - skip tree update
 452             @Override
 453             public boolean updateTreeType() {
 454                 return false;
 455             }
 456         },
 457         NO_INFERENCE_HOOK { // Mode signalling that caller will manage free types in tree decorations.
 458             @Override
 459             public boolean installPostInferenceHook() {
 460                 return false;
 461             }
 462         };
 463 
 464         public boolean updateTreeType() {
 465             return true;
 466         }
 467         public boolean installPostInferenceHook() {
 468             return true;
 469         }
 470     }
 471 
 472 
 473     class ResultInfo {
 474         final KindSelector pkind;
 475         final Type pt;
 476         final CheckContext checkContext;
 477         final CheckMode checkMode;
 478 
 479         ResultInfo(KindSelector pkind, Type pt) {
 480             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 481         }
 482 
 483         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 484             this(pkind, pt, chk.basicHandler, checkMode);
 485         }
 486 
 487         protected ResultInfo(KindSelector pkind,
 488                              Type pt, CheckContext checkContext) {
 489             this(pkind, pt, checkContext, CheckMode.NORMAL);
 490         }
 491 
 492         protected ResultInfo(KindSelector pkind,
 493                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 494             this.pkind = pkind;
 495             this.pt = pt;
 496             this.checkContext = checkContext;
 497             this.checkMode = checkMode;
 498         }
 499 
 500         protected void attr(JCTree tree, Env<AttrContext> env) {
 501             tree.accept(Attr.this);
 502         }
 503 
 504         protected Type check(final DiagnosticPosition pos, final Type found) {
 505             return chk.checkType(pos, found, pt, checkContext);
 506         }
 507 
 508         protected ResultInfo dup(Type newPt) {
 509             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 510         }
 511 
 512         protected ResultInfo dup(CheckContext newContext) {
 513             return new ResultInfo(pkind, pt, newContext, checkMode);
 514         }
 515 
 516         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 517             return new ResultInfo(pkind, newPt, newContext, checkMode);
 518         }
 519 
 520         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 521             return new ResultInfo(pkind, newPt, newContext, newMode);
 522         }
 523 
 524         protected ResultInfo dup(CheckMode newMode) {
 525             return new ResultInfo(pkind, pt, checkContext, newMode);
 526         }
 527 
 528         @Override
 529         public String toString() {
 530             if (pt != null) {
 531                 return pt.toString();
 532             } else {
 533                 return "";
 534             }
 535         }
 536     }
 537 
 538     class MethodAttrInfo extends ResultInfo {
 539         public MethodAttrInfo() {
 540             this(chk.basicHandler);
 541         }
 542 
 543         public MethodAttrInfo(CheckContext checkContext) {
 544             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 545         }
 546 
 547         @Override
 548         protected void attr(JCTree tree, Env<AttrContext> env) {
 549             result = argumentAttr.attribArg(tree, env);
 550         }
 551 
 552         protected ResultInfo dup(Type newPt) {
 553             throw new IllegalStateException();
 554         }
 555 
 556         protected ResultInfo dup(CheckContext newContext) {
 557             return new MethodAttrInfo(newContext);
 558         }
 559 
 560         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 561             throw new IllegalStateException();
 562         }
 563 
 564         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 565             throw new IllegalStateException();
 566         }
 567 
 568         protected ResultInfo dup(CheckMode newMode) {
 569             throw new IllegalStateException();
 570         }
 571     }
 572 
 573     class RecoveryInfo extends ResultInfo {
 574 
 575         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 576             super(KindSelector.VAL, Type.recoveryType,
 577                   new Check.NestedCheckContext(chk.basicHandler) {
 578                 @Override
 579                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 580                     return deferredAttrContext;
 581                 }
 582                 @Override
 583                 public boolean compatible(Type found, Type req, Warner warn) {
 584                     return true;
 585                 }
 586                 @Override
 587                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 588                     chk.basicHandler.report(pos, details);
 589                 }
 590             });
 591         }
 592     }
 593 
 594     final ResultInfo statInfo;
 595     final ResultInfo varAssignmentInfo;
 596     final ResultInfo methodAttrInfo;
 597     final ResultInfo unknownExprInfo;
 598     final ResultInfo unknownTypeInfo;
 599     final ResultInfo unknownTypeExprInfo;
 600     final ResultInfo recoveryInfo;
 601 
 602     Type pt() {
 603         return resultInfo.pt;
 604     }
 605 
 606     KindSelector pkind() {
 607         return resultInfo.pkind;
 608     }
 609 
 610 /* ************************************************************************
 611  * Visitor methods
 612  *************************************************************************/
 613 
 614     /** Visitor argument: the current environment.
 615      */
 616     Env<AttrContext> env;
 617 
 618     /** Visitor argument: the currently expected attribution result.
 619      */
 620     ResultInfo resultInfo;
 621 
 622     /** Visitor result: the computed type.
 623      */
 624     Type result;
 625 
 626     /** Visitor method: attribute a tree, catching any completion failure
 627      *  exceptions. Return the tree's type.
 628      *
 629      *  @param tree    The tree to be visited.
 630      *  @param env     The environment visitor argument.
 631      *  @param resultInfo   The result info visitor argument.
 632      */
 633     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 634         Env<AttrContext> prevEnv = this.env;
 635         ResultInfo prevResult = this.resultInfo;
 636         try {
 637             this.env = env;
 638             this.resultInfo = resultInfo;
 639             resultInfo.attr(tree, env);
 640             if (tree == breakTree &&
 641                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 642                 throw new BreakAttr(copyEnv(env));
 643             }
 644             return result;
 645         } catch (CompletionFailure ex) {
 646             tree.type = syms.errType;
 647             return chk.completionError(tree.pos(), ex);
 648         } finally {
 649             this.env = prevEnv;
 650             this.resultInfo = prevResult;
 651         }
 652     }
 653 
 654     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 655         Env<AttrContext> newEnv =
 656                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 657         if (newEnv.outer != null) {
 658             newEnv.outer = copyEnv(newEnv.outer);
 659         }
 660         return newEnv;
 661     }
 662 
 663     WriteableScope copyScope(WriteableScope sc) {
 664         WriteableScope newScope = WriteableScope.create(sc.owner);
 665         List<Symbol> elemsList = List.nil();
 666         for (Symbol sym : sc.getSymbols()) {
 667             elemsList = elemsList.prepend(sym);
 668         }
 669         for (Symbol s : elemsList) {
 670             newScope.enter(s);
 671         }
 672         return newScope;
 673     }
 674 
 675     /** Derived visitor method: attribute an expression tree.
 676      */
 677     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 678         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 679     }
 680 
 681     /** Derived visitor method: attribute an expression tree with
 682      *  no constraints on the computed type.
 683      */
 684     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 685         return attribTree(tree, env, unknownExprInfo);
 686     }
 687 
 688     /** Derived visitor method: attribute a type tree.
 689      */
 690     public Type attribType(JCTree tree, Env<AttrContext> env) {
 691         Type result = attribType(tree, env, Type.noType);
 692         return result;
 693     }
 694 
 695     /** Derived visitor method: attribute a type tree.
 696      */
 697     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 698         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 699         return result;
 700     }
 701 
 702     /** Derived visitor method: attribute a statement or definition tree.
 703      */
 704     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 705         Env<AttrContext> analyzeEnv =
 706                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
 707         try {
 708             return attribTree(tree, env, statInfo);
 709         } finally {
 710             analyzer.analyzeIfNeeded(tree, analyzeEnv);
 711         }
 712     }
 713 
 714     /** Attribute a list of expressions, returning a list of types.
 715      */
 716     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 717         ListBuffer<Type> ts = new ListBuffer<>();
 718         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 719             ts.append(attribExpr(l.head, env, pt));
 720         return ts.toList();
 721     }
 722 
 723     /** Attribute a list of statements, returning nothing.
 724      */
 725     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 726         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 727             attribStat(l.head, env);
 728     }
 729 
 730     /** Attribute the arguments in a method call, returning the method kind.
 731      */
 732     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 733         KindSelector kind = initialKind;
 734         for (JCExpression arg : trees) {
 735             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
 736             if (argtype.hasTag(DEFERRED)) {
 737                 kind = KindSelector.of(KindSelector.POLY, kind);
 738             }
 739             argtypes.append(argtype);
 740         }
 741         return kind;
 742     }
 743 
 744     /** Attribute a type argument list, returning a list of types.
 745      *  Caller is responsible for calling checkRefTypes.
 746      */
 747     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 748         ListBuffer<Type> argtypes = new ListBuffer<>();
 749         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 750             argtypes.append(attribType(l.head, env));
 751         return argtypes.toList();
 752     }
 753 
 754     /** Attribute a type argument list, returning a list of types.
 755      *  Check that all the types are references.
 756      */
 757     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 758         List<Type> types = attribAnyTypes(trees, env);
 759         return chk.checkRefTypes(trees, types);
 760     }
 761 
 762     /**
 763      * Attribute type variables (of generic classes or methods).
 764      * Compound types are attributed later in attribBounds.
 765      * @param typarams the type variables to enter
 766      * @param env      the current environment
 767      */
 768     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 769         for (JCTypeParameter tvar : typarams) {
 770             TypeVar a = (TypeVar)tvar.type;
 771             a.tsym.flags_field |= UNATTRIBUTED;
 772             a.bound = Type.noType;
 773             if (!tvar.bounds.isEmpty()) {
 774                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 775                 for (JCExpression bound : tvar.bounds.tail)
 776                     bounds = bounds.prepend(attribType(bound, env));
 777                 types.setBounds(a, bounds.reverse());
 778             } else {
 779                 // if no bounds are given, assume a single bound of
 780                 // java.lang.Object.
 781                 types.setBounds(a, List.of(syms.objectType));
 782             }
 783             a.tsym.flags_field &= ~UNATTRIBUTED;
 784         }
 785         for (JCTypeParameter tvar : typarams) {
 786             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 787         }
 788     }
 789 
 790     /**
 791      * Attribute the type references in a list of annotations.
 792      */
 793     void attribAnnotationTypes(List<JCAnnotation> annotations,
 794                                Env<AttrContext> env) {
 795         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 796             JCAnnotation a = al.head;
 797             attribType(a.annotationType, env);
 798         }
 799     }
 800 
 801     /**
 802      * Attribute a "lazy constant value".
 803      *  @param env         The env for the const value
 804      *  @param variable    The initializer for the const value
 805      *  @param type        The expected type, or null
 806      *  @see VarSymbol#setLazyConstValue
 807      */
 808     public Object attribLazyConstantValue(Env<AttrContext> env,
 809                                       JCVariableDecl variable,
 810                                       Type type) {
 811 
 812         DiagnosticPosition prevLintPos
 813                 = deferredLintHandler.setPos(variable.pos());
 814 
 815         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 816         try {
 817             Type itype = attribExpr(variable.init, env, type);
 818             if (itype.constValue() != null) {
 819                 return coerce(itype, type).constValue();
 820             } else {
 821                 return null;
 822             }
 823         } finally {
 824             log.useSource(prevSource);
 825             deferredLintHandler.setPos(prevLintPos);
 826         }
 827     }
 828 
 829     /** Attribute type reference in an `extends' or `implements' clause.
 830      *  Supertypes of anonymous inner classes are usually already attributed.
 831      *
 832      *  @param tree              The tree making up the type reference.
 833      *  @param env               The environment current at the reference.
 834      *  @param classExpected     true if only a class is expected here.
 835      *  @param interfaceExpected true if only an interface is expected here.
 836      */
 837     Type attribBase(JCTree tree,
 838                     Env<AttrContext> env,
 839                     boolean classExpected,
 840                     boolean interfaceExpected,
 841                     boolean checkExtensible) {
 842         Type t = tree.type != null ?
 843             tree.type :
 844             attribType(tree, env);
 845         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 846     }
 847     Type checkBase(Type t,
 848                    JCTree tree,
 849                    Env<AttrContext> env,
 850                    boolean classExpected,
 851                    boolean interfaceExpected,
 852                    boolean checkExtensible) {
 853         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 854                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 855         if (t.tsym.isAnonymous()) {
 856             log.error(pos, "cant.inherit.from.anon");
 857             return types.createErrorType(t);
 858         }
 859         if (t.isErroneous())
 860             return t;
 861         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 862             // check that type variable is already visible
 863             if (t.getUpperBound() == null) {
 864                 log.error(pos, "illegal.forward.ref");
 865                 return types.createErrorType(t);
 866             }
 867         } else {
 868             t = chk.checkClassType(pos, t, checkExtensible);
 869         }
 870         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 871             log.error(pos, "intf.expected.here");
 872             // return errType is necessary since otherwise there might
 873             // be undetected cycles which cause attribution to loop
 874             return types.createErrorType(t);
 875         } else if (checkExtensible &&
 876                    classExpected &&
 877                    (t.tsym.flags() & INTERFACE) != 0) {
 878             log.error(pos, "no.intf.expected.here");
 879             return types.createErrorType(t);
 880         }
 881         if (checkExtensible &&
 882             ((t.tsym.flags() & FINAL) != 0)) {
 883             log.error(pos,
 884                       "cant.inherit.from.final", t.tsym);
 885         }
 886         chk.checkNonCyclic(pos, t);
 887         return t;
 888     }
 889 
 890     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 891         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 892         id.type = env.info.scope.owner.enclClass().type;
 893         id.sym = env.info.scope.owner.enclClass();
 894         return id.type;
 895     }
 896 
 897     public void visitClassDef(JCClassDecl tree) {
 898         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 899                 Optional.ofNullable(env.info.isSpeculative ?
 900                         argumentAttr.withLocalCacheContext() : null);
 901         try {
 902             // Local and anonymous classes have not been entered yet, so we need to
 903             // do it now.
 904             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 905                 enter.classEnter(tree, env);
 906             } else {
 907                 // If this class declaration is part of a class level annotation,
 908                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 909                 // order to simplify later steps and allow for sensible error
 910                 // messages.
 911                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 912                     enter.classEnter(tree, env);
 913             }
 914 
 915             ClassSymbol c = tree.sym;
 916             if (c == null) {
 917                 // exit in case something drastic went wrong during enter.
 918                 result = null;
 919             } else {
 920                 // make sure class has been completed:
 921                 c.complete();
 922 
 923                 // If this class appears as an anonymous class
 924                 // in a superclass constructor call where
 925                 // no explicit outer instance is given,
 926                 // disable implicit outer instance from being passed.
 927                 // (This would be an illegal access to "this before super").
 928                 if (env.info.isSelfCall &&
 929                         env.tree.hasTag(NEWCLASS) &&
 930                         ((JCNewClass)env.tree).encl == null) {
 931                     c.flags_field |= NOOUTERTHIS;
 932                 }
 933                 attribClass(tree.pos(), c);
 934                 result = tree.type = c.type;
 935             }
 936         } finally {
 937             localCacheContext.ifPresent(LocalCacheContext::leave);
 938         }
 939     }
 940 
 941     public void visitMethodDef(JCMethodDecl tree) {
 942         MethodSymbol m = tree.sym;
 943         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 944 
 945         Lint lint = env.info.lint.augment(m);
 946         Lint prevLint = chk.setLint(lint);
 947         MethodSymbol prevMethod = chk.setMethod(m);
 948         try {
 949             deferredLintHandler.flush(tree.pos());
 950             chk.checkDeprecatedAnnotation(tree.pos(), m);
 951 
 952 
 953             // Create a new environment with local scope
 954             // for attributing the method.
 955             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 956             localEnv.info.lint = lint;
 957 
 958             attribStats(tree.typarams, localEnv);
 959 
 960             // If we override any other methods, check that we do so properly.
 961             // JLS ???
 962             if (m.isStatic()) {
 963                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 964             } else {
 965                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 966             }
 967             chk.checkOverride(env, tree, m);
 968 
 969             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
 970                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
 971             }
 972 
 973             // Enter all type parameters into the local method scope.
 974             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
 975                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
 976 
 977             ClassSymbol owner = env.enclClass.sym;
 978             if ((owner.flags() & ANNOTATION) != 0 &&
 979                     tree.params.nonEmpty())
 980                 log.error(tree.params.head.pos(),
 981                         "intf.annotation.members.cant.have.params");
 982 
 983             // Attribute all value parameters.
 984             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 985                 attribStat(l.head, localEnv);
 986             }
 987 
 988             chk.checkVarargsMethodDecl(localEnv, tree);
 989 
 990             // Check that type parameters are well-formed.
 991             chk.validate(tree.typarams, localEnv);
 992 
 993             // Check that result type is well-formed.
 994             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
 995                 chk.validate(tree.restype, localEnv);
 996 
 997             // Check that receiver type is well-formed.
 998             if (tree.recvparam != null) {
 999                 // Use a new environment to check the receiver parameter.
1000                 // Otherwise I get "might not have been initialized" errors.
1001                 // Is there a better way?
1002                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1003                 attribType(tree.recvparam, newEnv);
1004                 chk.validate(tree.recvparam, newEnv);
1005             }
1006 
1007             // annotation method checks
1008             if ((owner.flags() & ANNOTATION) != 0) {
1009                 // annotation method cannot have throws clause
1010                 if (tree.thrown.nonEmpty()) {
1011                     log.error(tree.thrown.head.pos(),
1012                             "throws.not.allowed.in.intf.annotation");
1013                 }
1014                 // annotation method cannot declare type-parameters
1015                 if (tree.typarams.nonEmpty()) {
1016                     log.error(tree.typarams.head.pos(),
1017                             "intf.annotation.members.cant.have.type.params");
1018                 }
1019                 // validate annotation method's return type (could be an annotation type)
1020                 chk.validateAnnotationType(tree.restype);
1021                 // ensure that annotation method does not clash with members of Object/Annotation
1022                 chk.validateAnnotationMethod(tree.pos(), m);
1023             }
1024 
1025             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1026                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1027 
1028             if (tree.body == null) {
1029                 // Empty bodies are only allowed for
1030                 // abstract, native, or interface methods, or for methods
1031                 // in a retrofit signature class.
1032                 if (tree.defaultValue != null) {
1033                     if ((owner.flags() & ANNOTATION) == 0)
1034                         log.error(tree.pos(),
1035                                   "default.allowed.in.intf.annotation.member");
1036                 }
1037                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1038                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
1039             } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1040                 if ((owner.flags() & INTERFACE) != 0) {
1041                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
1042                 } else {
1043                     log.error(tree.pos(), "abstract.meth.cant.have.body");
1044                 }
1045             } else if ((tree.mods.flags & NATIVE) != 0) {
1046                 log.error(tree.pos(), "native.meth.cant.have.body");
1047             } else {
1048                 // Add an implicit super() call unless an explicit call to
1049                 // super(...) or this(...) is given
1050                 // or we are compiling class java.lang.Object.
1051                 if (tree.name == names.init && owner.type != syms.objectType) {
1052                     JCBlock body = tree.body;
1053                     if (body.stats.isEmpty() ||
1054                             !TreeInfo.isSelfCall(body.stats.head)) {
1055                         body.stats = body.stats.
1056                                 prepend(typeEnter.SuperCall(make.at(body.pos),
1057                                         List.<Type>nil(),
1058                                         List.<JCVariableDecl>nil(),
1059                                         false));
1060                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1061                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1062                             TreeInfo.isSuperCall(body.stats.head)) {
1063                         // enum constructors are not allowed to call super
1064                         // directly, so make sure there aren't any super calls
1065                         // in enum constructors, except in the compiler
1066                         // generated one.
1067                         log.error(tree.body.stats.head.pos(),
1068                                 "call.to.super.not.allowed.in.enum.ctor",
1069                                 env.enclClass.sym);
1070                     }
1071                 }
1072 
1073                 // Attribute all type annotations in the body
1074                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1075                 annotate.flush();
1076 
1077                 // Attribute method body.
1078                 attribStat(tree.body, localEnv);
1079             }
1080 
1081             localEnv.info.scope.leave();
1082             result = tree.type = m.type;
1083         } finally {
1084             chk.setLint(prevLint);
1085             chk.setMethod(prevMethod);
1086         }
1087     }
1088 
1089     public void visitVarDef(JCVariableDecl tree) {
1090         // Local variables have not been entered yet, so we need to do it now:
1091         if (env.info.scope.owner.kind == MTH) {
1092             if (tree.sym != null) {
1093                 // parameters have already been entered
1094                 env.info.scope.enter(tree.sym);
1095             } else {
1096                 try {
1097                     annotate.blockAnnotations();
1098                     memberEnter.memberEnter(tree, env);
1099                 } finally {
1100                     annotate.unblockAnnotations();
1101                 }
1102             }
1103         } else {
1104             if (tree.init != null) {
1105                 // Field initializer expression need to be entered.
1106                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1107                 annotate.flush();
1108             }
1109         }
1110 
1111         VarSymbol v = tree.sym;
1112         Lint lint = env.info.lint.augment(v);
1113         Lint prevLint = chk.setLint(lint);
1114 
1115         // Check that the variable's declared type is well-formed.
1116         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1117                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1118                 (tree.sym.flags() & PARAMETER) != 0;
1119         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1120 
1121         try {
1122             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1123             deferredLintHandler.flush(tree.pos());
1124             chk.checkDeprecatedAnnotation(tree.pos(), v);
1125 
1126             if (tree.init != null) {
1127                 if ((v.flags_field & FINAL) == 0 ||
1128                     !memberEnter.needsLazyConstValue(tree.init)) {
1129                     // Not a compile-time constant
1130                     // Attribute initializer in a new environment
1131                     // with the declared variable as owner.
1132                     // Check that initializer conforms to variable's declared type.
1133                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1134                     initEnv.info.lint = lint;
1135                     // In order to catch self-references, we set the variable's
1136                     // declaration position to maximal possible value, effectively
1137                     // marking the variable as undefined.
1138                     initEnv.info.enclVar = v;
1139                     attribExpr(tree.init, initEnv, v.type);
1140                 }
1141             }
1142             result = tree.type = v.type;
1143         }
1144         finally {
1145             chk.setLint(prevLint);
1146         }
1147     }
1148 
1149     public void visitSkip(JCSkip tree) {
1150         result = null;
1151     }
1152 
1153     public void visitBlock(JCBlock tree) {
1154         if (env.info.scope.owner.kind == TYP) {
1155             // Block is a static or instance initializer;
1156             // let the owner of the environment be a freshly
1157             // created BLOCK-method.
1158             Symbol fakeOwner =
1159                 new MethodSymbol(tree.flags | BLOCK |
1160                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1161                     env.info.scope.owner);
1162             final Env<AttrContext> localEnv =
1163                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1164 
1165             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1166             // Attribute all type annotations in the block
1167             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1168             annotate.flush();
1169             attribStats(tree.stats, localEnv);
1170 
1171             {
1172                 // Store init and clinit type annotations with the ClassSymbol
1173                 // to allow output in Gen.normalizeDefs.
1174                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1175                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1176                 if ((tree.flags & STATIC) != 0) {
1177                     cs.appendClassInitTypeAttributes(tas);
1178                 } else {
1179                     cs.appendInitTypeAttributes(tas);
1180                 }
1181             }
1182         } else {
1183             // Create a new local environment with a local scope.
1184             Env<AttrContext> localEnv =
1185                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1186             try {
1187                 attribStats(tree.stats, localEnv);
1188             } finally {
1189                 localEnv.info.scope.leave();
1190             }
1191         }
1192         result = null;
1193     }
1194 
1195     public void visitDoLoop(JCDoWhileLoop tree) {
1196         attribStat(tree.body, env.dup(tree));
1197         attribExpr(tree.cond, env, syms.booleanType);
1198         result = null;
1199     }
1200 
1201     public void visitWhileLoop(JCWhileLoop tree) {
1202         attribExpr(tree.cond, env, syms.booleanType);
1203         attribStat(tree.body, env.dup(tree));
1204         result = null;
1205     }
1206 
1207     public void visitForLoop(JCForLoop tree) {
1208         Env<AttrContext> loopEnv =
1209             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1210         try {
1211             attribStats(tree.init, loopEnv);
1212             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1213             loopEnv.tree = tree; // before, we were not in loop!
1214             attribStats(tree.step, loopEnv);
1215             attribStat(tree.body, loopEnv);
1216             result = null;
1217         }
1218         finally {
1219             loopEnv.info.scope.leave();
1220         }
1221     }
1222 
1223     public void visitForeachLoop(JCEnhancedForLoop tree) {
1224         Env<AttrContext> loopEnv =
1225             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1226         try {
1227             //the Formal Parameter of a for-each loop is not in the scope when
1228             //attributing the for-each expression; we mimick this by attributing
1229             //the for-each expression first (against original scope).
1230             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1231             attribStat(tree.var, loopEnv);
1232             chk.checkNonVoid(tree.pos(), exprType);
1233             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1234             if (elemtype == null) {
1235                 // or perhaps expr implements Iterable<T>?
1236                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1237                 if (base == null) {
1238                     log.error(tree.expr.pos(),
1239                             "foreach.not.applicable.to.type",
1240                             exprType,
1241                             diags.fragment("type.req.array.or.iterable"));
1242                     elemtype = types.createErrorType(exprType);
1243                 } else {
1244                     List<Type> iterableParams = base.allparams();
1245                     elemtype = iterableParams.isEmpty()
1246                         ? syms.objectType
1247                         : types.wildUpperBound(iterableParams.head);
1248                 }
1249             }
1250             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1251             loopEnv.tree = tree; // before, we were not in loop!
1252             attribStat(tree.body, loopEnv);
1253             result = null;
1254         }
1255         finally {
1256             loopEnv.info.scope.leave();
1257         }
1258     }
1259 
1260     public void visitLabelled(JCLabeledStatement tree) {
1261         // Check that label is not used in an enclosing statement
1262         Env<AttrContext> env1 = env;
1263         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1264             if (env1.tree.hasTag(LABELLED) &&
1265                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1266                 log.error(tree.pos(), "label.already.in.use",
1267                           tree.label);
1268                 break;
1269             }
1270             env1 = env1.next;
1271         }
1272 
1273         attribStat(tree.body, env.dup(tree));
1274         result = null;
1275     }
1276 
1277     public void visitSwitch(JCSwitch tree) {
1278         Type seltype = attribExpr(tree.selector, env);
1279 
1280         Env<AttrContext> switchEnv =
1281             env.dup(tree, env.info.dup(env.info.scope.dup()));
1282 
1283         try {
1284 
1285             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1286             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1287             if (stringSwitch && !allowStringsInSwitch) {
1288                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1289             }
1290             if (!enumSwitch && !stringSwitch)
1291                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1292 
1293             // Attribute all cases and
1294             // check that there are no duplicate case labels or default clauses.
1295             Set<Object> labels = new HashSet<>(); // The set of case labels.
1296             boolean hasDefault = false;      // Is there a default label?
1297             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1298                 JCCase c = l.head;
1299                 if (c.pat != null) {
1300                     if (enumSwitch) {
1301                         Symbol sym = enumConstant(c.pat, seltype);
1302                         if (sym == null) {
1303                             log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1304                         } else if (!labels.add(sym)) {
1305                             log.error(c.pos(), "duplicate.case.label");
1306                         }
1307                     } else {
1308                         Type pattype = attribExpr(c.pat, switchEnv, seltype);
1309                         if (!pattype.hasTag(ERROR)) {
1310                             if (pattype.constValue() == null) {
1311                                 log.error(c.pat.pos(),
1312                                           (stringSwitch ? "string.const.req" : "const.expr.req"));
1313                             } else if (!labels.add(pattype.constValue())) {
1314                                 log.error(c.pos(), "duplicate.case.label");
1315                             }
1316                         }
1317                     }
1318                 } else if (hasDefault) {
1319                     log.error(c.pos(), "duplicate.default.label");
1320                 } else {
1321                     hasDefault = true;
1322                 }
1323                 Env<AttrContext> caseEnv =
1324                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1325                 try {
1326                     attribStats(c.stats, caseEnv);
1327                 } finally {
1328                     caseEnv.info.scope.leave();
1329                     addVars(c.stats, switchEnv.info.scope);
1330                 }
1331             }
1332 
1333             result = null;
1334         }
1335         finally {
1336             switchEnv.info.scope.leave();
1337         }
1338     }
1339     // where
1340         /** Add any variables defined in stats to the switch scope. */
1341         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1342             for (;stats.nonEmpty(); stats = stats.tail) {
1343                 JCTree stat = stats.head;
1344                 if (stat.hasTag(VARDEF))
1345                     switchScope.enter(((JCVariableDecl) stat).sym);
1346             }
1347         }
1348     // where
1349     /** Return the selected enumeration constant symbol, or null. */
1350     private Symbol enumConstant(JCTree tree, Type enumType) {
1351         if (tree.hasTag(IDENT)) {
1352             JCIdent ident = (JCIdent)tree;
1353             Name name = ident.name;
1354             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1355                 if (sym.kind == VAR) {
1356                     Symbol s = ident.sym = sym;
1357                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1358                     ident.type = s.type;
1359                     return ((s.flags_field & Flags.ENUM) == 0)
1360                         ? null : s;
1361                 }
1362             }
1363         }
1364         return null;
1365     }
1366 
1367     public void visitSynchronized(JCSynchronized tree) {
1368         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1369         attribStat(tree.body, env);
1370         result = null;
1371     }
1372 
1373     public void visitTry(JCTry tree) {
1374         // Create a new local environment with a local
1375         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1376         try {
1377             boolean isTryWithResource = tree.resources.nonEmpty();
1378             // Create a nested environment for attributing the try block if needed
1379             Env<AttrContext> tryEnv = isTryWithResource ?
1380                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1381                 localEnv;
1382             try {
1383                 // Attribute resource declarations
1384                 for (JCTree resource : tree.resources) {
1385                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1386                         @Override
1387                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1388                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1389                         }
1390                     };
1391                     ResultInfo twrResult =
1392                         new ResultInfo(KindSelector.VAR,
1393                                        syms.autoCloseableType,
1394                                        twrContext);
1395                     if (resource.hasTag(VARDEF)) {
1396                         attribStat(resource, tryEnv);
1397                         twrResult.check(resource, resource.type);
1398 
1399                         //check that resource type cannot throw InterruptedException
1400                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1401 
1402                         VarSymbol var = ((JCVariableDecl) resource).sym;
1403                         var.setData(ElementKind.RESOURCE_VARIABLE);
1404                     } else {
1405                         attribTree(resource, tryEnv, twrResult);
1406                     }
1407                 }
1408                 // Attribute body
1409                 attribStat(tree.body, tryEnv);
1410             } finally {
1411                 if (isTryWithResource)
1412                     tryEnv.info.scope.leave();
1413             }
1414 
1415             // Attribute catch clauses
1416             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1417                 JCCatch c = l.head;
1418                 Env<AttrContext> catchEnv =
1419                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1420                 try {
1421                     Type ctype = attribStat(c.param, catchEnv);
1422                     if (TreeInfo.isMultiCatch(c)) {
1423                         //multi-catch parameter is implicitly marked as final
1424                         c.param.sym.flags_field |= FINAL | UNION;
1425                     }
1426                     if (c.param.sym.kind == VAR) {
1427                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1428                     }
1429                     chk.checkType(c.param.vartype.pos(),
1430                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1431                                   syms.throwableType);
1432                     attribStat(c.body, catchEnv);
1433                 } finally {
1434                     catchEnv.info.scope.leave();
1435                 }
1436             }
1437 
1438             // Attribute finalizer
1439             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1440             result = null;
1441         }
1442         finally {
1443             localEnv.info.scope.leave();
1444         }
1445     }
1446 
1447     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1448         if (!resource.isErroneous() &&
1449             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1450             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1451             Symbol close = syms.noSymbol;
1452             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1453             try {
1454                 close = rs.resolveQualifiedMethod(pos,
1455                         env,
1456                         resource,
1457                         names.close,
1458                         List.<Type>nil(),
1459                         List.<Type>nil());
1460             }
1461             finally {
1462                 log.popDiagnosticHandler(discardHandler);
1463             }
1464             if (close.kind == MTH &&
1465                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1466                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1467                     env.info.lint.isEnabled(LintCategory.TRY)) {
1468                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1469             }
1470         }
1471     }
1472 
1473     public void visitConditional(JCConditional tree) {
1474         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1475 
1476         tree.polyKind = (!allowPoly ||
1477                 pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1478                 isBooleanOrNumeric(env, tree)) ?
1479                 PolyKind.STANDALONE : PolyKind.POLY;
1480 
1481         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1482             //this means we are returning a poly conditional from void-compatible lambda expression
1483             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1484             result = tree.type = types.createErrorType(resultInfo.pt);
1485             return;
1486         }
1487 
1488         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1489                 unknownExprInfo :
1490                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
1491 
1492         Type truetype = attribTree(tree.truepart, env, condInfo);
1493         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1494 
1495         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1496         if (condtype.constValue() != null &&
1497                 truetype.constValue() != null &&
1498                 falsetype.constValue() != null &&
1499                 !owntype.hasTag(NONE)) {
1500             //constant folding
1501             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1502         }
1503         result = check(tree, owntype, KindSelector.VAL, resultInfo);
1504     }
1505     //where
1506         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1507             switch (tree.getTag()) {
1508                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1509                               ((JCLiteral)tree).typetag == BOOLEAN ||
1510                               ((JCLiteral)tree).typetag == BOT;
1511                 case LAMBDA: case REFERENCE: return false;
1512                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1513                 case CONDEXPR:
1514                     JCConditional condTree = (JCConditional)tree;
1515                     return isBooleanOrNumeric(env, condTree.truepart) &&
1516                             isBooleanOrNumeric(env, condTree.falsepart);
1517                 case APPLY:
1518                     JCMethodInvocation speculativeMethodTree =
1519                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1520                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1521                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1522                             env.enclClass.type :
1523                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1524                     Type owntype = types.memberType(receiverType, msym).getReturnType();
1525                     return primitiveOrBoxed(owntype);
1526                 case NEWCLASS:
1527                     JCExpression className =
1528                             removeClassParams.translate(((JCNewClass)tree).clazz);
1529                     JCExpression speculativeNewClassTree =
1530                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1531                     return primitiveOrBoxed(speculativeNewClassTree.type);
1532                 default:
1533                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1534                     return primitiveOrBoxed(speculativeType);
1535             }
1536         }
1537         //where
1538             boolean primitiveOrBoxed(Type t) {
1539                 return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1540             }
1541 
1542             TreeTranslator removeClassParams = new TreeTranslator() {
1543                 @Override
1544                 public void visitTypeApply(JCTypeApply tree) {
1545                     result = translate(tree.clazz);
1546                 }
1547             };
1548 
1549         CheckContext conditionalContext(CheckContext checkContext) {
1550             return new Check.NestedCheckContext(checkContext) {
1551                 //this will use enclosing check context to check compatibility of
1552                 //subexpression against target type; if we are in a method check context,
1553                 //depending on whether boxing is allowed, we could have incompatibilities
1554                 @Override
1555                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1556                     enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1557                 }
1558             };
1559         }
1560 
1561         /** Compute the type of a conditional expression, after
1562          *  checking that it exists.  See JLS 15.25. Does not take into
1563          *  account the special case where condition and both arms
1564          *  are constants.
1565          *
1566          *  @param pos      The source position to be used for error
1567          *                  diagnostics.
1568          *  @param thentype The type of the expression's then-part.
1569          *  @param elsetype The type of the expression's else-part.
1570          */
1571         Type condType(DiagnosticPosition pos,
1572                                Type thentype, Type elsetype) {
1573             // If same type, that is the result
1574             if (types.isSameType(thentype, elsetype))
1575                 return thentype.baseType();
1576 
1577             Type thenUnboxed = (thentype.isPrimitive())
1578                 ? thentype : types.unboxedType(thentype);
1579             Type elseUnboxed = (elsetype.isPrimitive())
1580                 ? elsetype : types.unboxedType(elsetype);
1581 
1582             // Otherwise, if both arms can be converted to a numeric
1583             // type, return the least numeric type that fits both arms
1584             // (i.e. return larger of the two, or return int if one
1585             // arm is short, the other is char).
1586             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1587                 // If one arm has an integer subrange type (i.e., byte,
1588                 // short, or char), and the other is an integer constant
1589                 // that fits into the subrange, return the subrange type.
1590                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1591                     elseUnboxed.hasTag(INT) &&
1592                     types.isAssignable(elseUnboxed, thenUnboxed)) {
1593                     return thenUnboxed.baseType();
1594                 }
1595                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1596                     thenUnboxed.hasTag(INT) &&
1597                     types.isAssignable(thenUnboxed, elseUnboxed)) {
1598                     return elseUnboxed.baseType();
1599                 }
1600 
1601                 for (TypeTag tag : primitiveTags) {
1602                     Type candidate = syms.typeOfTag[tag.ordinal()];
1603                     if (types.isSubtype(thenUnboxed, candidate) &&
1604                         types.isSubtype(elseUnboxed, candidate)) {
1605                         return candidate;
1606                     }
1607                 }
1608             }
1609 
1610             // Those were all the cases that could result in a primitive
1611             if (thentype.isPrimitive())
1612                 thentype = types.boxedClass(thentype).type;
1613             if (elsetype.isPrimitive())
1614                 elsetype = types.boxedClass(elsetype).type;
1615 
1616             if (types.isSubtype(thentype, elsetype))
1617                 return elsetype.baseType();
1618             if (types.isSubtype(elsetype, thentype))
1619                 return thentype.baseType();
1620 
1621             if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1622                 log.error(pos, "neither.conditional.subtype",
1623                           thentype, elsetype);
1624                 return thentype.baseType();
1625             }
1626 
1627             // both are known to be reference types.  The result is
1628             // lub(thentype,elsetype). This cannot fail, as it will
1629             // always be possible to infer "Object" if nothing better.
1630             return types.lub(thentype.baseType(), elsetype.baseType());
1631         }
1632 
1633     final static TypeTag[] primitiveTags = new TypeTag[]{
1634         BYTE,
1635         CHAR,
1636         SHORT,
1637         INT,
1638         LONG,
1639         FLOAT,
1640         DOUBLE,
1641         BOOLEAN,
1642     };
1643 
1644     public void visitIf(JCIf tree) {
1645         attribExpr(tree.cond, env, syms.booleanType);
1646         attribStat(tree.thenpart, env);
1647         if (tree.elsepart != null)
1648             attribStat(tree.elsepart, env);
1649         chk.checkEmptyIf(tree);
1650         result = null;
1651     }
1652 
1653     public void visitExec(JCExpressionStatement tree) {
1654         //a fresh environment is required for 292 inference to work properly ---
1655         //see Infer.instantiatePolymorphicSignatureInstance()
1656         Env<AttrContext> localEnv = env.dup(tree);
1657         attribExpr(tree.expr, localEnv);
1658         result = null;
1659     }
1660 
1661     public void visitBreak(JCBreak tree) {
1662         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1663         result = null;
1664     }
1665 
1666     public void visitContinue(JCContinue tree) {
1667         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1668         result = null;
1669     }
1670     //where
1671         /** Return the target of a break or continue statement, if it exists,
1672          *  report an error if not.
1673          *  Note: The target of a labelled break or continue is the
1674          *  (non-labelled) statement tree referred to by the label,
1675          *  not the tree representing the labelled statement itself.
1676          *
1677          *  @param pos     The position to be used for error diagnostics
1678          *  @param tag     The tag of the jump statement. This is either
1679          *                 Tree.BREAK or Tree.CONTINUE.
1680          *  @param label   The label of the jump statement, or null if no
1681          *                 label is given.
1682          *  @param env     The environment current at the jump statement.
1683          */
1684         private JCTree findJumpTarget(DiagnosticPosition pos,
1685                                     JCTree.Tag tag,
1686                                     Name label,
1687                                     Env<AttrContext> env) {
1688             // Search environments outwards from the point of jump.
1689             Env<AttrContext> env1 = env;
1690             LOOP:
1691             while (env1 != null) {
1692                 switch (env1.tree.getTag()) {
1693                     case LABELLED:
1694                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1695                         if (label == labelled.label) {
1696                             // If jump is a continue, check that target is a loop.
1697                             if (tag == CONTINUE) {
1698                                 if (!labelled.body.hasTag(DOLOOP) &&
1699                                         !labelled.body.hasTag(WHILELOOP) &&
1700                                         !labelled.body.hasTag(FORLOOP) &&
1701                                         !labelled.body.hasTag(FOREACHLOOP))
1702                                     log.error(pos, "not.loop.label", label);
1703                                 // Found labelled statement target, now go inwards
1704                                 // to next non-labelled tree.
1705                                 return TreeInfo.referencedStatement(labelled);
1706                             } else {
1707                                 return labelled;
1708                             }
1709                         }
1710                         break;
1711                     case DOLOOP:
1712                     case WHILELOOP:
1713                     case FORLOOP:
1714                     case FOREACHLOOP:
1715                         if (label == null) return env1.tree;
1716                         break;
1717                     case SWITCH:
1718                         if (label == null && tag == BREAK) return env1.tree;
1719                         break;
1720                     case LAMBDA:
1721                     case METHODDEF:
1722                     case CLASSDEF:
1723                         break LOOP;
1724                     default:
1725                 }
1726                 env1 = env1.next;
1727             }
1728             if (label != null)
1729                 log.error(pos, "undef.label", label);
1730             else if (tag == CONTINUE)
1731                 log.error(pos, "cont.outside.loop");
1732             else
1733                 log.error(pos, "break.outside.switch.loop");
1734             return null;
1735         }
1736 
1737     public void visitReturn(JCReturn tree) {
1738         // Check that there is an enclosing method which is
1739         // nested within than the enclosing class.
1740         if (env.info.returnResult == null) {
1741             log.error(tree.pos(), "ret.outside.meth");
1742         } else {
1743             // Attribute return expression, if it exists, and check that
1744             // it conforms to result type of enclosing method.
1745             if (tree.expr != null) {
1746                 if (env.info.returnResult.pt.hasTag(VOID)) {
1747                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1748                               diags.fragment("unexpected.ret.val"));
1749                 }
1750                 attribTree(tree.expr, env, env.info.returnResult);
1751             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1752                     !env.info.returnResult.pt.hasTag(NONE)) {
1753                 env.info.returnResult.checkContext.report(tree.pos(),
1754                               diags.fragment("missing.ret.val"));
1755             }
1756         }
1757         result = null;
1758     }
1759 
1760     public void visitThrow(JCThrow tree) {
1761         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1762         if (allowPoly) {
1763             chk.checkType(tree, owntype, syms.throwableType);
1764         }
1765         result = null;
1766     }
1767 
1768     public void visitAssert(JCAssert tree) {
1769         attribExpr(tree.cond, env, syms.booleanType);
1770         if (tree.detail != null) {
1771             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1772         }
1773         result = null;
1774     }
1775 
1776      /** Visitor method for method invocations.
1777      *  NOTE: The method part of an application will have in its type field
1778      *        the return type of the method, not the method's type itself!
1779      */
1780     public void visitApply(JCMethodInvocation tree) {
1781         // The local environment of a method application is
1782         // a new environment nested in the current one.
1783         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1784 
1785         // The types of the actual method arguments.
1786         List<Type> argtypes;
1787 
1788         // The types of the actual method type arguments.
1789         List<Type> typeargtypes = null;
1790 
1791         Name methName = TreeInfo.name(tree.meth);
1792 
1793         boolean isConstructorCall =
1794             methName == names._this || methName == names._super;
1795 
1796         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1797         if (isConstructorCall) {
1798             // We are seeing a ...this(...) or ...super(...) call.
1799             // Check that this is the first statement in a constructor.
1800             if (checkFirstConstructorStat(tree, env)) {
1801 
1802                 // Record the fact
1803                 // that this is a constructor call (using isSelfCall).
1804                 localEnv.info.isSelfCall = true;
1805 
1806                 // Attribute arguments, yielding list of argument types.
1807                 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1808                 argtypes = argtypesBuf.toList();
1809                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1810 
1811                 // Variable `site' points to the class in which the called
1812                 // constructor is defined.
1813                 Type site = env.enclClass.sym.type;
1814                 if (methName == names._super) {
1815                     if (site == syms.objectType) {
1816                         log.error(tree.meth.pos(), "no.superclass", site);
1817                         site = types.createErrorType(syms.objectType);
1818                     } else {
1819                         site = types.supertype(site);
1820                     }
1821                 }
1822 
1823                 if (site.hasTag(CLASS)) {
1824                     Type encl = site.getEnclosingType();
1825                     while (encl != null && encl.hasTag(TYPEVAR))
1826                         encl = encl.getUpperBound();
1827                     if (encl.hasTag(CLASS)) {
1828                         // we are calling a nested class
1829 
1830                         if (tree.meth.hasTag(SELECT)) {
1831                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1832 
1833                             // We are seeing a prefixed call, of the form
1834                             //     <expr>.super(...).
1835                             // Check that the prefix expression conforms
1836                             // to the outer instance type of the class.
1837                             chk.checkRefType(qualifier.pos(),
1838                                              attribExpr(qualifier, localEnv,
1839                                                         encl));
1840                         } else if (methName == names._super) {
1841                             // qualifier omitted; check for existence
1842                             // of an appropriate implicit qualifier.
1843                             rs.resolveImplicitThis(tree.meth.pos(),
1844                                                    localEnv, site, true);
1845                         }
1846                     } else if (tree.meth.hasTag(SELECT)) {
1847                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
1848                                   site.tsym);
1849                     }
1850 
1851                     // if we're calling a java.lang.Enum constructor,
1852                     // prefix the implicit String and int parameters
1853                     if (site.tsym == syms.enumSym)
1854                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1855 
1856                     // Resolve the called constructor under the assumption
1857                     // that we are referring to a superclass instance of the
1858                     // current instance (JLS ???).
1859                     boolean selectSuperPrev = localEnv.info.selectSuper;
1860                     localEnv.info.selectSuper = true;
1861                     localEnv.info.pendingResolutionPhase = null;
1862                     Symbol sym = rs.resolveConstructor(
1863                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1864                     localEnv.info.selectSuper = selectSuperPrev;
1865 
1866                     // Set method symbol to resolved constructor...
1867                     TreeInfo.setSymbol(tree.meth, sym);
1868 
1869                     // ...and check that it is legal in the current context.
1870                     // (this will also set the tree's type)
1871                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1872                     checkId(tree.meth, site, sym, localEnv,
1873                             new ResultInfo(kind, mpt));
1874                 }
1875                 // Otherwise, `site' is an error type and we do nothing
1876             }
1877             result = tree.type = syms.voidType;
1878         } else {
1879             // Otherwise, we are seeing a regular method call.
1880             // Attribute the arguments, yielding list of argument types, ...
1881             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1882             argtypes = argtypesBuf.toList();
1883             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1884 
1885             // ... and attribute the method using as a prototype a methodtype
1886             // whose formal argument types is exactly the list of actual
1887             // arguments (this will also set the method symbol).
1888             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1889             localEnv.info.pendingResolutionPhase = null;
1890             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1891 
1892             // Compute the result type.
1893             Type restype = mtype.getReturnType();
1894             if (restype.hasTag(WILDCARD))
1895                 throw new AssertionError(mtype);
1896 
1897             Type qualifier = (tree.meth.hasTag(SELECT))
1898                     ? ((JCFieldAccess) tree.meth).selected.type
1899                     : env.enclClass.sym.type;
1900             Symbol msym = TreeInfo.symbol(tree.meth);
1901             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
1902 
1903             chk.checkRefTypes(tree.typeargs, typeargtypes);
1904 
1905             // Check that value of resulting type is admissible in the
1906             // current context.  Also, capture the return type
1907             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
1908             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
1909         }
1910         chk.validate(tree.typeargs, localEnv);
1911     }
1912     //where
1913         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1914             if (msym != null &&
1915                     msym.owner == syms.objectType.tsym &&
1916                     methodName == names.getClass &&
1917                     argtypes.isEmpty()) {
1918                 // as a special case, x.getClass() has type Class<? extends |X|>
1919                 return new ClassType(restype.getEnclosingType(),
1920                         List.<Type>of(new WildcardType(types.erasure(qualifierType),
1921                                 BoundKind.EXTENDS,
1922                                 syms.boundClass)),
1923                         restype.tsym,
1924                         restype.getMetadata());
1925             } else if (msym != null &&
1926                     msym.owner == syms.arrayClass &&
1927                     methodName == names.clone &&
1928                     types.isArray(qualifierType)) {
1929                 // as a special case, array.clone() has a result that is
1930                 // the same as static type of the array being cloned
1931                 return qualifierType;
1932             } else {
1933                 return restype;
1934             }
1935         }
1936 
1937         /** Check that given application node appears as first statement
1938          *  in a constructor call.
1939          *  @param tree   The application node
1940          *  @param env    The environment current at the application.
1941          */
1942         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1943             JCMethodDecl enclMethod = env.enclMethod;
1944             if (enclMethod != null && enclMethod.name == names.init) {
1945                 JCBlock body = enclMethod.body;
1946                 if (body.stats.head.hasTag(EXEC) &&
1947                     ((JCExpressionStatement) body.stats.head).expr == tree)
1948                     return true;
1949             }
1950             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1951                       TreeInfo.name(tree.meth));
1952             return false;
1953         }
1954 
1955         /** Obtain a method type with given argument types.
1956          */
1957         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1958             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1959             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1960         }
1961 
1962     public void visitNewClass(final JCNewClass tree) {
1963         Type owntype = types.createErrorType(tree.type);
1964 
1965         // The local environment of a class creation is
1966         // a new environment nested in the current one.
1967         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1968 
1969         // The anonymous inner class definition of the new expression,
1970         // if one is defined by it.
1971         JCClassDecl cdef = tree.def;
1972 
1973         // If enclosing class is given, attribute it, and
1974         // complete class name to be fully qualified
1975         JCExpression clazz = tree.clazz; // Class field following new
1976         JCExpression clazzid;            // Identifier in class field
1977         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1978         annoclazzid = null;
1979 
1980         if (clazz.hasTag(TYPEAPPLY)) {
1981             clazzid = ((JCTypeApply) clazz).clazz;
1982             if (clazzid.hasTag(ANNOTATED_TYPE)) {
1983                 annoclazzid = (JCAnnotatedType) clazzid;
1984                 clazzid = annoclazzid.underlyingType;
1985             }
1986         } else {
1987             if (clazz.hasTag(ANNOTATED_TYPE)) {
1988                 annoclazzid = (JCAnnotatedType) clazz;
1989                 clazzid = annoclazzid.underlyingType;
1990             } else {
1991                 clazzid = clazz;
1992             }
1993         }
1994 
1995         JCExpression clazzid1 = clazzid; // The same in fully qualified form
1996 
1997         if (tree.encl != null) {
1998             // We are seeing a qualified new, of the form
1999             //    <expr>.new C <...> (...) ...
2000             // In this case, we let clazz stand for the name of the
2001             // allocated class C prefixed with the type of the qualifier
2002             // expression, so that we can
2003             // resolve it with standard techniques later. I.e., if
2004             // <expr> has type T, then <expr>.new C <...> (...)
2005             // yields a clazz T.C.
2006             Type encltype = chk.checkRefType(tree.encl.pos(),
2007                                              attribExpr(tree.encl, env));
2008             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2009             // from expr to the combined type, or not? Yes, do this.
2010             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2011                                                  ((JCIdent) clazzid).name);
2012 
2013             EndPosTable endPosTable = this.env.toplevel.endPositions;
2014             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2015             if (clazz.hasTag(ANNOTATED_TYPE)) {
2016                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2017                 List<JCAnnotation> annos = annoType.annotations;
2018 
2019                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2020                     clazzid1 = make.at(tree.pos).
2021                         TypeApply(clazzid1,
2022                                   ((JCTypeApply) clazz).arguments);
2023                 }
2024 
2025                 clazzid1 = make.at(tree.pos).
2026                     AnnotatedType(annos, clazzid1);
2027             } else if (clazz.hasTag(TYPEAPPLY)) {
2028                 clazzid1 = make.at(tree.pos).
2029                     TypeApply(clazzid1,
2030                               ((JCTypeApply) clazz).arguments);
2031             }
2032 
2033             clazz = clazzid1;
2034         }
2035 
2036         // Attribute clazz expression and store
2037         // symbol + type back into the attributed tree.
2038         Type clazztype;
2039 
2040         try {
2041             env.info.isNewClass = true;
2042             clazztype = TreeInfo.isEnumInit(env.tree) ?
2043                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2044                 attribType(clazz, env);
2045         } finally {
2046             env.info.isNewClass = false;
2047         }
2048 
2049         clazztype = chk.checkDiamond(tree, clazztype);
2050         chk.validate(clazz, localEnv);
2051         if (tree.encl != null) {
2052             // We have to work in this case to store
2053             // symbol + type back into the attributed tree.
2054             tree.clazz.type = clazztype;
2055             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2056             clazzid.type = ((JCIdent) clazzid).sym.type;
2057             if (annoclazzid != null) {
2058                 annoclazzid.type = clazzid.type;
2059             }
2060             if (!clazztype.isErroneous()) {
2061                 if (cdef != null && clazztype.tsym.isInterface()) {
2062                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
2063                 } else if (clazztype.tsym.isStatic()) {
2064                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
2065                 }
2066             }
2067         } else if (!clazztype.tsym.isInterface() &&
2068                    clazztype.getEnclosingType().hasTag(CLASS)) {
2069             // Check for the existence of an apropos outer instance
2070             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2071         }
2072 
2073         // Attribute constructor arguments.
2074         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2075         final KindSelector pkind =
2076             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2077         List<Type> argtypes = argtypesBuf.toList();
2078         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2079 
2080         // If we have made no mistakes in the class type...
2081         if (clazztype.hasTag(CLASS)) {
2082             // Enums may not be instantiated except implicitly
2083             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2084                 (!env.tree.hasTag(VARDEF) ||
2085                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2086                  ((JCVariableDecl) env.tree).init != tree))
2087                 log.error(tree.pos(), "enum.cant.be.instantiated");
2088 
2089             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2090                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2091             boolean skipNonDiamondPath = false;
2092             // Check that class is not abstract
2093             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2094                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2095                 log.error(tree.pos(), "abstract.cant.be.instantiated",
2096                           clazztype.tsym);
2097                 skipNonDiamondPath = true;
2098             } else if (cdef != null && clazztype.tsym.isInterface()) {
2099                 // Check that no constructor arguments are given to
2100                 // anonymous classes implementing an interface
2101                 if (!argtypes.isEmpty())
2102                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
2103 
2104                 if (!typeargtypes.isEmpty())
2105                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
2106 
2107                 // Error recovery: pretend no arguments were supplied.
2108                 argtypes = List.nil();
2109                 typeargtypes = List.nil();
2110                 skipNonDiamondPath = true;
2111             }
2112             if (TreeInfo.isDiamond(tree)) {
2113                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2114                             clazztype.tsym.type.getTypeArguments(),
2115                                                clazztype.tsym,
2116                                                clazztype.getMetadata());
2117 
2118                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2119                 diamondEnv.info.selectSuper = cdef != null;
2120                 diamondEnv.info.pendingResolutionPhase = null;
2121 
2122                 //if the type of the instance creation expression is a class type
2123                 //apply method resolution inference (JLS 15.12.2.7). The return type
2124                 //of the resolved constructor will be a partially instantiated type
2125                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2126                             diamondEnv,
2127                             site,
2128                             argtypes,
2129                             typeargtypes);
2130                 tree.constructor = constructor.baseSymbol();
2131 
2132                 final TypeSymbol csym = clazztype.tsym;
2133                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2134                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2135                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2136                 constructorType = checkId(tree, site,
2137                         constructor,
2138                         diamondEnv,
2139                         diamondResult);
2140 
2141                 tree.clazz.type = types.createErrorType(clazztype);
2142                 if (!constructorType.isErroneous()) {
2143                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2144                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2145                 }
2146                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2147             }
2148 
2149             // Resolve the called constructor under the assumption
2150             // that we are referring to a superclass instance of the
2151             // current instance (JLS ???).
2152             else if (!skipNonDiamondPath) {
2153                 //the following code alters some of the fields in the current
2154                 //AttrContext - hence, the current context must be dup'ed in
2155                 //order to avoid downstream failures
2156                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2157                 rsEnv.info.selectSuper = cdef != null;
2158                 rsEnv.info.pendingResolutionPhase = null;
2159                 tree.constructor = rs.resolveConstructor(
2160                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2161                 if (cdef == null) { //do not check twice!
2162                     tree.constructorType = checkId(tree,
2163                             clazztype,
2164                             tree.constructor,
2165                             rsEnv,
2166                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2167                     if (rsEnv.info.lastResolveVarargs())
2168                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2169                 }
2170             }
2171 
2172             if (cdef != null) {
2173                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2174                 return;
2175             }
2176 
2177             if (tree.constructor != null && tree.constructor.kind == MTH)
2178                 owntype = clazztype;
2179         }
2180         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2181         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2182         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2183             //we need to wait for inference to finish and then replace inference vars in the constructor type
2184             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2185                     instantiatedContext -> {
2186                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2187                     });
2188         }
2189         chk.validate(tree.typeargs, localEnv);
2190     }
2191 
2192         // where
2193         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2194                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2195                                                    List<Type> argtypes, List<Type> typeargtypes,
2196                                                    KindSelector pkind) {
2197             // We are seeing an anonymous class instance creation.
2198             // In this case, the class instance creation
2199             // expression
2200             //
2201             //    E.new <typeargs1>C<typargs2>(args) { ... }
2202             //
2203             // is represented internally as
2204             //
2205             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2206             //
2207             // This expression is then *transformed* as follows:
2208             //
2209             // (1) add an extends or implements clause
2210             // (2) add a constructor.
2211             //
2212             // For instance, if C is a class, and ET is the type of E,
2213             // the expression
2214             //
2215             //    E.new <typeargs1>C<typargs2>(args) { ... }
2216             //
2217             // is translated to (where X is a fresh name and typarams is the
2218             // parameter list of the super constructor):
2219             //
2220             //   new <typeargs1>X(<*nullchk*>E, args) where
2221             //     X extends C<typargs2> {
2222             //       <typarams> X(ET e, args) {
2223             //         e.<typeargs1>super(args)
2224             //       }
2225             //       ...
2226             //     }
2227             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2228             final boolean isDiamond = TreeInfo.isDiamond(tree);
2229             if (isDiamond
2230                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2231                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2232                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2233                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2234                         instantiatedContext -> {
2235                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2236                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2237                             ResultInfo prevResult = this.resultInfo;
2238                             try {
2239                                 this.resultInfo = resultInfoForClassDefinition;
2240                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2241                                                             localEnv, argtypes, typeargtypes, pkind);
2242                             } finally {
2243                                 this.resultInfo = prevResult;
2244                             }
2245                         });
2246             } else {
2247                 if (isDiamond && clazztype.hasTag(CLASS)) {
2248                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2249                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2250                         // One or more types inferred in the previous steps is non-denotable.
2251                         Fragment fragment = Diamond(clazztype.tsym);
2252                         log.error(tree.clazz.pos(),
2253                                 Errors.CantApplyDiamond1(
2254                                         fragment,
2255                                         invalidDiamondArgs.size() > 1 ?
2256                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2257                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
2258                     }
2259                     // For <>(){}, inferred types must also be accessible.
2260                     for (Type t : clazztype.getTypeArguments()) {
2261                         rs.checkAccessibleType(env, t);
2262                     }
2263                 }
2264 
2265                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2266                 // false for isInterface call even when the original type is an interface.
2267                 boolean implementing = clazztype.tsym.isInterface() ||
2268                         clazztype.isErroneous() && clazztype.getOriginalType().tsym.isInterface();
2269 
2270                 if (implementing) {
2271                     cdef.implementing = List.of(clazz);
2272                 } else {
2273                     cdef.extending = clazz;
2274                 }
2275 
2276                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2277                     isSerializable(clazztype)) {
2278                     localEnv.info.isSerializable = true;
2279                 }
2280 
2281                 attribStat(cdef, localEnv);
2282 
2283                 List<Type> finalargtypes;
2284                 // If an outer instance is given,
2285                 // prefix it to the constructor arguments
2286                 // and delete it from the new expression
2287                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2288                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2289                     finalargtypes = argtypes.prepend(tree.encl.type);
2290                     tree.encl = null;
2291                 } else {
2292                     finalargtypes = argtypes;
2293                 }
2294 
2295                 // Reassign clazztype and recompute constructor. As this necessarily involves
2296                 // another attribution pass for deferred types in the case of <>, replicate
2297                 // them. Original arguments have right decorations already.
2298                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
2299                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2300                 }
2301 
2302                 clazztype = cdef.sym.type;
2303                 Symbol sym = tree.constructor = rs.resolveConstructor(
2304                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2305                 Assert.check(!sym.kind.isResolutionError());
2306                 tree.constructor = sym;
2307                 tree.constructorType = checkId(tree,
2308                         clazztype,
2309                         tree.constructor,
2310                         localEnv,
2311                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2312             }
2313             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2314                                 clazztype : types.createErrorType(tree.type);
2315             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2316             chk.validate(tree.typeargs, localEnv);
2317         }
2318 
2319         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2320             return new Check.NestedCheckContext(checkContext) {
2321                 @Override
2322                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2323                     enclosingContext.report(clazz.clazz,
2324                             diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", tsym), details));
2325                 }
2326             };
2327         }
2328 
2329     /** Make an attributed null check tree.
2330      */
2331     public JCExpression makeNullCheck(JCExpression arg) {
2332         // optimization: X.this is never null; skip null check
2333         Name name = TreeInfo.name(arg);
2334         if (name == names._this || name == names._super) return arg;
2335 
2336         JCTree.Tag optag = NULLCHK;
2337         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2338         tree.operator = operators.resolveUnary(arg, optag, arg.type);
2339         tree.type = arg.type;
2340         return tree;
2341     }
2342 
2343     public void visitNewArray(JCNewArray tree) {
2344         Type owntype = types.createErrorType(tree.type);
2345         Env<AttrContext> localEnv = env.dup(tree);
2346         Type elemtype;
2347         if (tree.elemtype != null) {
2348             elemtype = attribType(tree.elemtype, localEnv);
2349             chk.validate(tree.elemtype, localEnv);
2350             owntype = elemtype;
2351             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2352                 attribExpr(l.head, localEnv, syms.intType);
2353                 owntype = new ArrayType(owntype, syms.arrayClass);
2354             }
2355         } else {
2356             // we are seeing an untyped aggregate { ... }
2357             // this is allowed only if the prototype is an array
2358             if (pt().hasTag(ARRAY)) {
2359                 elemtype = types.elemtype(pt());
2360             } else {
2361                 if (!pt().hasTag(ERROR)) {
2362                     log.error(tree.pos(), "illegal.initializer.for.type",
2363                               pt());
2364                 }
2365                 elemtype = types.createErrorType(pt());
2366             }
2367         }
2368         if (tree.elems != null) {
2369             attribExprs(tree.elems, localEnv, elemtype);
2370             owntype = new ArrayType(elemtype, syms.arrayClass);
2371         }
2372         if (!types.isReifiable(elemtype))
2373             log.error(tree.pos(), "generic.array.creation");
2374         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2375     }
2376 
2377     /*
2378      * A lambda expression can only be attributed when a target-type is available.
2379      * In addition, if the target-type is that of a functional interface whose
2380      * descriptor contains inference variables in argument position the lambda expression
2381      * is 'stuck' (see DeferredAttr).
2382      */
2383     @Override
2384     public void visitLambda(final JCLambda that) {
2385         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2386             if (pt().hasTag(NONE)) {
2387                 //lambda only allowed in assignment or method invocation/cast context
2388                 log.error(that.pos(), "unexpected.lambda");
2389             }
2390             result = that.type = types.createErrorType(pt());
2391             return;
2392         }
2393         //create an environment for attribution of the lambda expression
2394         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2395         boolean needsRecovery =
2396                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2397         try {
2398             if (needsRecovery && isSerializable(pt())) {
2399                 localEnv.info.isSerializable = true;
2400             }
2401             List<Type> explicitParamTypes = null;
2402             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2403                 //attribute lambda parameters
2404                 attribStats(that.params, localEnv);
2405                 explicitParamTypes = TreeInfo.types(that.params);
2406             }
2407 
2408             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2409             Type currentTarget = targetInfo.target;
2410             Type lambdaType = targetInfo.descriptor;
2411 
2412             if (currentTarget.isErroneous()) {
2413                 result = that.type = currentTarget;
2414                 return;
2415             }
2416 
2417             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2418 
2419             if (lambdaType.hasTag(FORALL)) {
2420                 //lambda expression target desc cannot be a generic method
2421                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2422                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2423                 result = that.type = types.createErrorType(pt());
2424                 return;
2425             }
2426 
2427             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2428                 //add param type info in the AST
2429                 List<Type> actuals = lambdaType.getParameterTypes();
2430                 List<JCVariableDecl> params = that.params;
2431 
2432                 boolean arityMismatch = false;
2433 
2434                 while (params.nonEmpty()) {
2435                     if (actuals.isEmpty()) {
2436                         //not enough actuals to perform lambda parameter inference
2437                         arityMismatch = true;
2438                     }
2439                     //reset previously set info
2440                     Type argType = arityMismatch ?
2441                             syms.errType :
2442                             actuals.head;
2443                     params.head.vartype = make.at(params.head).Type(argType);
2444                     params.head.sym = null;
2445                     actuals = actuals.isEmpty() ?
2446                             actuals :
2447                             actuals.tail;
2448                     params = params.tail;
2449                 }
2450 
2451                 //attribute lambda parameters
2452                 attribStats(that.params, localEnv);
2453 
2454                 if (arityMismatch) {
2455                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2456                         result = that.type = types.createErrorType(currentTarget);
2457                         return;
2458                 }
2459             }
2460 
2461             //from this point on, no recovery is needed; if we are in assignment context
2462             //we will be able to attribute the whole lambda body, regardless of errors;
2463             //if we are in a 'check' method context, and the lambda is not compatible
2464             //with the target-type, it will be recovered anyway in Attr.checkId
2465             needsRecovery = false;
2466 
2467             ResultInfo bodyResultInfo = localEnv.info.returnResult =
2468                     lambdaBodyResult(that, lambdaType, resultInfo);
2469 
2470             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2471                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2472             } else {
2473                 JCBlock body = (JCBlock)that.body;
2474                 attribStats(body.stats, localEnv);
2475             }
2476 
2477             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2478 
2479             boolean isSpeculativeRound =
2480                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2481 
2482             preFlow(that);
2483             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2484 
2485             that.type = currentTarget; //avoids recovery at this stage
2486             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2487 
2488             if (!isSpeculativeRound) {
2489                 //add thrown types as bounds to the thrown types free variables if needed:
2490                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2491                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2492                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2493 
2494                     chk.unhandled(inferredThrownTypes, thrownTypes);
2495                 }
2496 
2497                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2498             }
2499             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2500         } catch (Types.FunctionDescriptorLookupError ex) {
2501             JCDiagnostic cause = ex.getDiagnostic();
2502             resultInfo.checkContext.report(that, cause);
2503             result = that.type = types.createErrorType(pt());
2504             return;
2505         } catch (Throwable t) {
2506             //when an unexpected exception happens, avoid attempts to attribute the same tree again
2507             //as that would likely cause the same exception again.
2508             needsRecovery = false;
2509             throw t;
2510         } finally {
2511             localEnv.info.scope.leave();
2512             if (needsRecovery) {
2513                 attribTree(that, env, recoveryInfo);
2514             }
2515         }
2516     }
2517     //where
2518         class TargetInfo {
2519             Type target;
2520             Type descriptor;
2521 
2522             public TargetInfo(Type target, Type descriptor) {
2523                 this.target = target;
2524                 this.descriptor = descriptor;
2525             }
2526         }
2527 
2528         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
2529             Type lambdaType;
2530             Type currentTarget = resultInfo.pt;
2531             if (resultInfo.pt != Type.recoveryType) {
2532                 /* We need to adjust the target. If the target is an
2533                  * intersection type, for example: SAM & I1 & I2 ...
2534                  * the target will be updated to SAM
2535                  */
2536                 currentTarget = targetChecker.visit(currentTarget, that);
2537                 if (explicitParamTypes != null) {
2538                     currentTarget = infer.instantiateFunctionalInterface(that,
2539                             currentTarget, explicitParamTypes, resultInfo.checkContext);
2540                 }
2541                 currentTarget = types.removeWildcards(currentTarget);
2542                 lambdaType = types.findDescriptorType(currentTarget);
2543             } else {
2544                 currentTarget = Type.recoveryType;
2545                 lambdaType = fallbackDescriptorType(that);
2546             }
2547             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
2548                 //lambda expression target desc cannot be a generic method
2549                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2550                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2551                 currentTarget = types.createErrorType(pt());
2552             }
2553             return new TargetInfo(currentTarget, lambdaType);
2554         }
2555 
2556         void preFlow(JCLambda tree) {
2557             new PostAttrAnalyzer() {
2558                 @Override
2559                 public void scan(JCTree tree) {
2560                     if (tree == null ||
2561                             (tree.type != null &&
2562                             tree.type == Type.stuckType)) {
2563                         //don't touch stuck expressions!
2564                         return;
2565                     }
2566                     super.scan(tree);
2567                 }
2568             }.scan(tree);
2569         }
2570 
2571         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2572 
2573             @Override
2574             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2575                 return t.isIntersection() ?
2576                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2577             }
2578 
2579             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2580                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2581                 Type target = null;
2582                 for (Type bound : ict.getExplicitComponents()) {
2583                     TypeSymbol boundSym = bound.tsym;
2584                     if (types.isFunctionalInterface(boundSym) &&
2585                             types.findDescriptorSymbol(boundSym) == desc) {
2586                         target = bound;
2587                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2588                         //bound must be an interface
2589                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
2590                     }
2591                 }
2592                 return target != null ?
2593                         target :
2594                         ict.getExplicitComponents().head; //error recovery
2595             }
2596 
2597             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2598                 ListBuffer<Type> targs = new ListBuffer<>();
2599                 ListBuffer<Type> supertypes = new ListBuffer<>();
2600                 for (Type i : ict.interfaces_field) {
2601                     if (i.isParameterized()) {
2602                         targs.appendList(i.tsym.type.allparams());
2603                     }
2604                     supertypes.append(i.tsym.type);
2605                 }
2606                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2607                 notionalIntf.allparams_field = targs.toList();
2608                 notionalIntf.tsym.flags_field |= INTERFACE;
2609                 return notionalIntf.tsym;
2610             }
2611 
2612             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2613                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2614                         diags.fragment(key, args)));
2615             }
2616         };
2617 
2618         private Type fallbackDescriptorType(JCExpression tree) {
2619             switch (tree.getTag()) {
2620                 case LAMBDA:
2621                     JCLambda lambda = (JCLambda)tree;
2622                     List<Type> argtypes = List.nil();
2623                     for (JCVariableDecl param : lambda.params) {
2624                         argtypes = param.vartype != null ?
2625                                 argtypes.append(param.vartype.type) :
2626                                 argtypes.append(syms.errType);
2627                     }
2628                     return new MethodType(argtypes, Type.recoveryType,
2629                             List.of(syms.throwableType), syms.methodClass);
2630                 case REFERENCE:
2631                     return new MethodType(List.<Type>nil(), Type.recoveryType,
2632                             List.of(syms.throwableType), syms.methodClass);
2633                 default:
2634                     Assert.error("Cannot get here!");
2635             }
2636             return null;
2637         }
2638 
2639         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2640                 final InferenceContext inferenceContext, final Type... ts) {
2641             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2642         }
2643 
2644         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2645                 final InferenceContext inferenceContext, final List<Type> ts) {
2646             if (inferenceContext.free(ts)) {
2647                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2648                     @Override
2649                     public void typesInferred(InferenceContext inferenceContext) {
2650                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2651                     }
2652                 });
2653             } else {
2654                 for (Type t : ts) {
2655                     rs.checkAccessibleType(env, t);
2656                 }
2657             }
2658         }
2659 
2660         /**
2661          * Lambda/method reference have a special check context that ensures
2662          * that i.e. a lambda return type is compatible with the expected
2663          * type according to both the inherited context and the assignment
2664          * context.
2665          */
2666         class FunctionalReturnContext extends Check.NestedCheckContext {
2667 
2668             FunctionalReturnContext(CheckContext enclosingContext) {
2669                 super(enclosingContext);
2670             }
2671 
2672             @Override
2673             public boolean compatible(Type found, Type req, Warner warn) {
2674                 //return type must be compatible in both current context and assignment context
2675                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
2676             }
2677 
2678             @Override
2679             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2680                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2681             }
2682         }
2683 
2684         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2685 
2686             JCExpression expr;
2687             boolean expStmtExpected;
2688 
2689             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2690                 super(enclosingContext);
2691                 this.expr = expr;
2692             }
2693 
2694             @Override
2695             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2696                 if (expStmtExpected) {
2697                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
2698                 } else {
2699                     super.report(pos, details);
2700                 }
2701             }
2702 
2703             @Override
2704             public boolean compatible(Type found, Type req, Warner warn) {
2705                 //a void return is compatible with an expression statement lambda
2706                 if (req.hasTag(VOID)) {
2707                     expStmtExpected = true;
2708                     return TreeInfo.isExpressionStatement(expr);
2709                 } else {
2710                     return super.compatible(found, req, warn);
2711                 }
2712             }
2713         }
2714 
2715         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
2716             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2717                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2718                     new FunctionalReturnContext(resultInfo.checkContext);
2719 
2720             return descriptor.getReturnType() == Type.recoveryType ?
2721                     recoveryInfo :
2722                     new ResultInfo(KindSelector.VAL,
2723                             descriptor.getReturnType(), funcContext);
2724         }
2725 
2726         /**
2727         * Lambda compatibility. Check that given return types, thrown types, parameter types
2728         * are compatible with the expected functional interface descriptor. This means that:
2729         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2730         * types must be compatible with the return type of the expected descriptor.
2731         */
2732         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2733             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2734 
2735             //return values have already been checked - but if lambda has no return
2736             //values, we must ensure that void/value compatibility is correct;
2737             //this amounts at checking that, if a lambda body can complete normally,
2738             //the descriptor's return type must be void
2739             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2740                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2741                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2742                         diags.fragment("missing.ret.val", returnType)));
2743             }
2744 
2745             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2746             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2747                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2748             }
2749         }
2750 
2751         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2752          * static field and that lambda has type annotations, these annotations will
2753          * also be stored at these fake clinit methods.
2754          *
2755          * LambdaToMethod also use fake clinit methods so they can be reused.
2756          * Also as LTM is a phase subsequent to attribution, the methods from
2757          * clinits can be safely removed by LTM to save memory.
2758          */
2759         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2760 
2761         public MethodSymbol removeClinit(ClassSymbol sym) {
2762             return clinits.remove(sym);
2763         }
2764 
2765         /* This method returns an environment to be used to attribute a lambda
2766          * expression.
2767          *
2768          * The owner of this environment is a method symbol. If the current owner
2769          * is not a method, for example if the lambda is used to initialize
2770          * a field, then if the field is:
2771          *
2772          * - an instance field, we use the first constructor.
2773          * - a static field, we create a fake clinit method.
2774          */
2775         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2776             Env<AttrContext> lambdaEnv;
2777             Symbol owner = env.info.scope.owner;
2778             if (owner.kind == VAR && owner.owner.kind == TYP) {
2779                 //field initializer
2780                 ClassSymbol enclClass = owner.enclClass();
2781                 Symbol newScopeOwner = env.info.scope.owner;
2782                 /* if the field isn't static, then we can get the first constructor
2783                  * and use it as the owner of the environment. This is what
2784                  * LTM code is doing to look for type annotations so we are fine.
2785                  */
2786                 if ((owner.flags() & STATIC) == 0) {
2787                     for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2788                         newScopeOwner = s;
2789                         break;
2790                     }
2791                 } else {
2792                     /* if the field is static then we need to create a fake clinit
2793                      * method, this method can later be reused by LTM.
2794                      */
2795                     MethodSymbol clinit = clinits.get(enclClass);
2796                     if (clinit == null) {
2797                         Type clinitType = new MethodType(List.<Type>nil(),
2798                                 syms.voidType, List.<Type>nil(), syms.methodClass);
2799                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2800                                 names.clinit, clinitType, enclClass);
2801                         clinit.params = List.<VarSymbol>nil();
2802                         clinits.put(enclClass, clinit);
2803                     }
2804                     newScopeOwner = clinit;
2805                 }
2806                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2807             } else {
2808                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2809             }
2810             return lambdaEnv;
2811         }
2812 
2813     @Override
2814     public void visitReference(final JCMemberReference that) {
2815         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2816             if (pt().hasTag(NONE)) {
2817                 //method reference only allowed in assignment or method invocation/cast context
2818                 log.error(that.pos(), "unexpected.mref");
2819             }
2820             result = that.type = types.createErrorType(pt());
2821             return;
2822         }
2823         final Env<AttrContext> localEnv = env.dup(that);
2824         try {
2825             //attribute member reference qualifier - if this is a constructor
2826             //reference, the expected kind must be a type
2827             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2828 
2829             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2830                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2831                 if (!exprType.isErroneous() &&
2832                     exprType.isRaw() &&
2833                     that.typeargs != null) {
2834                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2835                         diags.fragment("mref.infer.and.explicit.params"));
2836                     exprType = types.createErrorType(exprType);
2837                 }
2838             }
2839 
2840             if (exprType.isErroneous()) {
2841                 //if the qualifier expression contains problems,
2842                 //give up attribution of method reference
2843                 result = that.type = exprType;
2844                 return;
2845             }
2846 
2847             if (TreeInfo.isStaticSelector(that.expr, names)) {
2848                 //if the qualifier is a type, validate it; raw warning check is
2849                 //omitted as we don't know at this stage as to whether this is a
2850                 //raw selector (because of inference)
2851                 chk.validate(that.expr, env, false);
2852             } else {
2853                 Symbol lhsSym = TreeInfo.symbol(that.expr);
2854                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
2855             }
2856             //attrib type-arguments
2857             List<Type> typeargtypes = List.nil();
2858             if (that.typeargs != null) {
2859                 typeargtypes = attribTypes(that.typeargs, localEnv);
2860             }
2861 
2862             boolean isTargetSerializable =
2863                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2864                     isSerializable(pt());
2865             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
2866             Type currentTarget = targetInfo.target;
2867             Type desc = targetInfo.descriptor;
2868 
2869             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2870             List<Type> argtypes = desc.getParameterTypes();
2871             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2872 
2873             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2874                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2875             }
2876 
2877             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2878             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2879             try {
2880                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2881                         that.name, argtypes, typeargtypes, referenceCheck,
2882                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
2883             } finally {
2884                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2885             }
2886 
2887             Symbol refSym = refResult.fst;
2888             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2889 
2890             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
2891              *  JDK-8075541
2892              */
2893             if (refSym.kind != MTH) {
2894                 boolean targetError;
2895                 switch (refSym.kind) {
2896                     case ABSENT_MTH:
2897                     case MISSING_ENCL:
2898                         targetError = false;
2899                         break;
2900                     case WRONG_MTH:
2901                     case WRONG_MTHS:
2902                     case AMBIGUOUS:
2903                     case HIDDEN:
2904                     case STATICERR:
2905                         targetError = true;
2906                         break;
2907                     default:
2908                         Assert.error("unexpected result kind " + refSym.kind);
2909                         targetError = false;
2910                 }
2911 
2912                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2913                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2914 
2915                 JCDiagnostic.DiagnosticType diagKind = targetError ?
2916                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2917 
2918                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2919                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2920 
2921                 if (targetError && currentTarget == Type.recoveryType) {
2922                     //a target error doesn't make sense during recovery stage
2923                     //as we don't know what actual parameter types are
2924                     result = that.type = currentTarget;
2925                     return;
2926                 } else {
2927                     if (targetError) {
2928                         resultInfo.checkContext.report(that, diag);
2929                     } else {
2930                         log.report(diag);
2931                     }
2932                     result = that.type = types.createErrorType(currentTarget);
2933                     return;
2934                 }
2935             }
2936 
2937             that.sym = refSym.baseSymbol();
2938             that.kind = lookupHelper.referenceKind(that.sym);
2939             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2940 
2941             if (desc.getReturnType() == Type.recoveryType) {
2942                 // stop here
2943                 result = that.type = currentTarget;
2944                 return;
2945             }
2946 
2947             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2948 
2949                 if (that.getMode() == ReferenceMode.INVOKE &&
2950                         TreeInfo.isStaticSelector(that.expr, names) &&
2951                         that.kind.isUnbound() &&
2952                         !desc.getParameterTypes().head.isParameterized()) {
2953                     chk.checkRaw(that.expr, localEnv);
2954                 }
2955 
2956                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2957                         exprType.getTypeArguments().nonEmpty()) {
2958                     //static ref with class type-args
2959                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2960                             diags.fragment("static.mref.with.targs"));
2961                     result = that.type = types.createErrorType(currentTarget);
2962                     return;
2963                 }
2964 
2965                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2966                     // Check that super-qualified symbols are not abstract (JLS)
2967                     rs.checkNonAbstract(that.pos(), that.sym);
2968                 }
2969 
2970                 if (isTargetSerializable) {
2971                     chk.checkElemAccessFromSerializableLambda(that);
2972                 }
2973             }
2974 
2975             ResultInfo checkInfo =
2976                     resultInfo.dup(newMethodTemplate(
2977                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2978                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
2979                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2980 
2981             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2982 
2983             if (that.kind.isUnbound() &&
2984                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2985                 //re-generate inference constraints for unbound receiver
2986                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
2987                     //cannot happen as this has already been checked - we just need
2988                     //to regenerate the inference constraints, as that has been lost
2989                     //as a result of the call to inferenceContext.save()
2990                     Assert.error("Can't get here");
2991                 }
2992             }
2993 
2994             if (!refType.isErroneous()) {
2995                 refType = types.createMethodTypeWithReturn(refType,
2996                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2997             }
2998 
2999             //go ahead with standard method reference compatibility check - note that param check
3000             //is a no-op (as this has been taken care during method applicability)
3001             boolean isSpeculativeRound =
3002                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3003 
3004             that.type = currentTarget; //avoids recovery at this stage
3005             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3006             if (!isSpeculativeRound) {
3007                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3008             }
3009             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3010         } catch (Types.FunctionDescriptorLookupError ex) {
3011             JCDiagnostic cause = ex.getDiagnostic();
3012             resultInfo.checkContext.report(that, cause);
3013             result = that.type = types.createErrorType(pt());
3014             return;
3015         }
3016     }
3017     //where
3018         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3019             //if this is a constructor reference, the expected kind must be a type
3020             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3021                                   KindSelector.VAL_TYP : KindSelector.TYP,
3022                                   Type.noType);
3023         }
3024 
3025 
3026     @SuppressWarnings("fallthrough")
3027     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3028         InferenceContext inferenceContext = checkContext.inferenceContext();
3029         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3030 
3031         Type resType;
3032         switch (tree.getMode()) {
3033             case NEW:
3034                 if (!tree.expr.type.isRaw()) {
3035                     resType = tree.expr.type;
3036                     break;
3037                 }
3038             default:
3039                 resType = refType.getReturnType();
3040         }
3041 
3042         Type incompatibleReturnType = resType;
3043 
3044         if (returnType.hasTag(VOID)) {
3045             incompatibleReturnType = null;
3046         }
3047 
3048         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3049             if (resType.isErroneous() ||
3050                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
3051                 incompatibleReturnType = null;
3052             }
3053         }
3054 
3055         if (incompatibleReturnType != null) {
3056             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
3057                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
3058         } else {
3059             if (inferenceContext.free(refType)) {
3060                 // we need to wait for inference to finish and then replace inference vars in the referent type
3061                 inferenceContext.addFreeTypeListener(List.of(refType),
3062                         instantiatedContext -> {
3063                             tree.referentType = instantiatedContext.asInstType(refType);
3064                         });
3065             } else {
3066                 tree.referentType = refType;
3067             }
3068         }
3069 
3070         if (!speculativeAttr) {
3071             List<Type> thrownTypes = inferenceContext.asUndetVars(descriptor.getThrownTypes());
3072             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
3073                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
3074             }
3075         }
3076     }
3077 
3078     /**
3079      * Set functional type info on the underlying AST. Note: as the target descriptor
3080      * might contain inference variables, we might need to register an hook in the
3081      * current inference context.
3082      */
3083     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3084             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3085         if (checkContext.inferenceContext().free(descriptorType)) {
3086             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
3087                 public void typesInferred(InferenceContext inferenceContext) {
3088                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3089                             inferenceContext.asInstType(primaryTarget), checkContext);
3090                 }
3091             });
3092         } else {
3093             ListBuffer<Type> targets = new ListBuffer<>();
3094             if (pt.hasTag(CLASS)) {
3095                 if (pt.isCompound()) {
3096                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
3097                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
3098                         if (t != primaryTarget) {
3099                             targets.append(types.removeWildcards(t));
3100                         }
3101                     }
3102                 } else {
3103                     targets.append(types.removeWildcards(primaryTarget));
3104                 }
3105             }
3106             fExpr.targets = targets.toList();
3107             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3108                     pt != Type.recoveryType) {
3109                 //check that functional interface class is well-formed
3110                 try {
3111                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3112                      * when it's executed post-inference. See the listener code
3113                      * above.
3114                      */
3115                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3116                             names.empty, List.of(fExpr.targets.head), ABSTRACT);
3117                     if (csym != null) {
3118                         chk.checkImplementations(env.tree, csym, csym);
3119                         try {
3120                             //perform an additional functional interface check on the synthetic class,
3121                             //as there may be spurious errors for raw targets - because of existing issues
3122                             //with membership and inheritance (see JDK-8074570).
3123                             csym.flags_field |= INTERFACE;
3124                             types.findDescriptorType(csym.type);
3125                         } catch (FunctionDescriptorLookupError err) {
3126                             resultInfo.checkContext.report(fExpr,
3127                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.targets.head)));
3128                         }
3129                     }
3130                 } catch (Types.FunctionDescriptorLookupError ex) {
3131                     JCDiagnostic cause = ex.getDiagnostic();
3132                     resultInfo.checkContext.report(env.tree, cause);
3133                 }
3134             }
3135         }
3136     }
3137 
3138     public void visitParens(JCParens tree) {
3139         Type owntype = attribTree(tree.expr, env, resultInfo);
3140         result = check(tree, owntype, pkind(), resultInfo);
3141         Symbol sym = TreeInfo.symbol(tree);
3142         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3143             log.error(tree.pos(), "illegal.start.of.type");
3144     }
3145 
3146     public void visitAssign(JCAssign tree) {
3147         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3148         Type capturedType = capture(owntype);
3149         attribExpr(tree.rhs, env, owntype);
3150         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3151     }
3152 
3153     public void visitAssignop(JCAssignOp tree) {
3154         // Attribute arguments.
3155         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3156         Type operand = attribExpr(tree.rhs, env);
3157         // Find operator.
3158         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3159         if (operator != operators.noOpSymbol &&
3160                 !owntype.isErroneous() &&
3161                 !operand.isErroneous()) {
3162             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3163             chk.checkCastable(tree.rhs.pos(),
3164                               operator.type.getReturnType(),
3165                               owntype);
3166         }
3167         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3168     }
3169 
3170     public void visitUnary(JCUnary tree) {
3171         // Attribute arguments.
3172         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3173             ? attribTree(tree.arg, env, varAssignmentInfo)
3174             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3175 
3176         // Find operator.
3177         Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3178         Type owntype = types.createErrorType(tree.type);
3179         if (operator != operators.noOpSymbol &&
3180                 !argtype.isErroneous()) {
3181             owntype = (tree.getTag().isIncOrDecUnaryOp())
3182                 ? tree.arg.type
3183                 : operator.type.getReturnType();
3184             int opc = ((OperatorSymbol)operator).opcode;
3185 
3186             // If the argument is constant, fold it.
3187             if (argtype.constValue() != null) {
3188                 Type ctype = cfolder.fold1(opc, argtype);
3189                 if (ctype != null) {
3190                     owntype = cfolder.coerce(ctype, owntype);
3191                 }
3192             }
3193         }
3194         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3195     }
3196 
3197     public void visitBinary(JCBinary tree) {
3198         // Attribute arguments.
3199         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3200         Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3201         // Find operator.
3202         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3203         Type owntype = types.createErrorType(tree.type);
3204         if (operator != operators.noOpSymbol &&
3205                 !left.isErroneous() &&
3206                 !right.isErroneous()) {
3207             owntype = operator.type.getReturnType();
3208             int opc = ((OperatorSymbol)operator).opcode;
3209             // If both arguments are constants, fold them.
3210             if (left.constValue() != null && right.constValue() != null) {
3211                 Type ctype = cfolder.fold2(opc, left, right);
3212                 if (ctype != null) {
3213                     owntype = cfolder.coerce(ctype, owntype);
3214                 }
3215             }
3216 
3217             // Check that argument types of a reference ==, != are
3218             // castable to each other, (JLS 15.21).  Note: unboxing
3219             // comparisons will not have an acmp* opc at this point.
3220             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3221                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3222                     log.error(tree.pos(), "incomparable.types", left, right);
3223                 }
3224             }
3225 
3226             chk.checkDivZero(tree.rhs.pos(), operator, right);
3227         }
3228         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3229     }
3230 
3231     public void visitTypeCast(final JCTypeCast tree) {
3232         Type clazztype = attribType(tree.clazz, env);
3233         chk.validate(tree.clazz, env, false);
3234         //a fresh environment is required for 292 inference to work properly ---
3235         //see Infer.instantiatePolymorphicSignatureInstance()
3236         Env<AttrContext> localEnv = env.dup(tree);
3237         //should we propagate the target type?
3238         final ResultInfo castInfo;
3239         JCExpression expr = TreeInfo.skipParens(tree.expr);
3240         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3241         if (isPoly) {
3242             //expression is a poly - we need to propagate target type info
3243             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3244                                       new Check.NestedCheckContext(resultInfo.checkContext) {
3245                 @Override
3246                 public boolean compatible(Type found, Type req, Warner warn) {
3247                     return types.isCastable(found, req, warn);
3248                 }
3249             });
3250         } else {
3251             //standalone cast - target-type info is not propagated
3252             castInfo = unknownExprInfo;
3253         }
3254         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3255         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3256         if (exprtype.constValue() != null)
3257             owntype = cfolder.coerce(exprtype, owntype);
3258         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3259         if (!isPoly)
3260             chk.checkRedundantCast(localEnv, tree);
3261     }
3262 
3263     public void visitTypeTest(JCInstanceOf tree) {
3264         Type exprtype = chk.checkNullOrRefType(
3265                 tree.expr.pos(), attribExpr(tree.expr, env));
3266         Type clazztype = attribType(tree.clazz, env);
3267         if (!clazztype.hasTag(TYPEVAR)) {
3268             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3269         }
3270         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3271             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3272             clazztype = types.createErrorType(clazztype);
3273         }
3274         chk.validate(tree.clazz, env, false);
3275         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3276         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3277     }
3278 
3279     public void visitIndexed(JCArrayAccess tree) {
3280         Type owntype = types.createErrorType(tree.type);
3281         Type atype = attribExpr(tree.indexed, env);
3282         attribExpr(tree.index, env, syms.intType);
3283         if (types.isArray(atype))
3284             owntype = types.elemtype(atype);
3285         else if (!atype.hasTag(ERROR))
3286             log.error(tree.pos(), "array.req.but.found", atype);
3287         if (!pkind().contains(KindSelector.VAL))
3288             owntype = capture(owntype);
3289         result = check(tree, owntype, KindSelector.VAR, resultInfo);
3290     }
3291 
3292     public void visitIdent(JCIdent tree) {
3293         Symbol sym;
3294 
3295         // Find symbol
3296         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3297             // If we are looking for a method, the prototype `pt' will be a
3298             // method type with the type of the call's arguments as parameters.
3299             env.info.pendingResolutionPhase = null;
3300             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3301         } else if (tree.sym != null && tree.sym.kind != VAR) {
3302             sym = tree.sym;
3303         } else {
3304             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3305         }
3306         tree.sym = sym;
3307 
3308         // (1) Also find the environment current for the class where
3309         //     sym is defined (`symEnv').
3310         // Only for pre-tiger versions (1.4 and earlier):
3311         // (2) Also determine whether we access symbol out of an anonymous
3312         //     class in a this or super call.  This is illegal for instance
3313         //     members since such classes don't carry a this$n link.
3314         //     (`noOuterThisPath').
3315         Env<AttrContext> symEnv = env;
3316         boolean noOuterThisPath = false;
3317         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3318             sym.kind.matches(KindSelector.VAL_MTH) &&
3319             sym.owner.kind == TYP &&
3320             tree.name != names._this && tree.name != names._super) {
3321 
3322             // Find environment in which identifier is defined.
3323             while (symEnv.outer != null &&
3324                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3325                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3326                     noOuterThisPath = false;
3327                 symEnv = symEnv.outer;
3328             }
3329         }
3330 
3331         // If symbol is a variable, ...
3332         if (sym.kind == VAR) {
3333             VarSymbol v = (VarSymbol)sym;
3334 
3335             // ..., evaluate its initializer, if it has one, and check for
3336             // illegal forward reference.
3337             checkInit(tree, env, v, false);
3338 
3339             // If we are expecting a variable (as opposed to a value), check
3340             // that the variable is assignable in the current environment.
3341             if (KindSelector.ASG.subset(pkind()))
3342                 checkAssignable(tree.pos(), v, null, env);
3343         }
3344 
3345         // In a constructor body,
3346         // if symbol is a field or instance method, check that it is
3347         // not accessed before the supertype constructor is called.
3348         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3349             sym.kind.matches(KindSelector.VAL_MTH) &&
3350             sym.owner.kind == TYP &&
3351             (sym.flags() & STATIC) == 0) {
3352             chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3353                                           sym : thisSym(tree.pos(), env));
3354         }
3355         Env<AttrContext> env1 = env;
3356         if (sym.kind != ERR && sym.kind != TYP &&
3357             sym.owner != null && sym.owner != env1.enclClass.sym) {
3358             // If the found symbol is inaccessible, then it is
3359             // accessed through an enclosing instance.  Locate this
3360             // enclosing instance:
3361             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3362                 env1 = env1.outer;
3363         }
3364 
3365         if (env.info.isSerializable) {
3366             chk.checkElemAccessFromSerializableLambda(tree);
3367         }
3368 
3369         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3370     }
3371 
3372     public void visitSelect(JCFieldAccess tree) {
3373         // Determine the expected kind of the qualifier expression.
3374         KindSelector skind = KindSelector.NIL;
3375         if (tree.name == names._this || tree.name == names._super ||
3376                 tree.name == names._class)
3377         {
3378             skind = KindSelector.TYP;
3379         } else {
3380             if (pkind().contains(KindSelector.PCK))
3381                 skind = KindSelector.of(skind, KindSelector.PCK);
3382             if (pkind().contains(KindSelector.TYP))
3383                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3384             if (pkind().contains(KindSelector.VAL_MTH))
3385                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3386         }
3387 
3388         // Attribute the qualifier expression, and determine its symbol (if any).
3389         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
3390         if (!pkind().contains(KindSelector.TYP_PCK))
3391             site = capture(site); // Capture field access
3392 
3393         // don't allow T.class T[].class, etc
3394         if (skind == KindSelector.TYP) {
3395             Type elt = site;
3396             while (elt.hasTag(ARRAY))
3397                 elt = ((ArrayType)elt).elemtype;
3398             if (elt.hasTag(TYPEVAR)) {
3399                 log.error(tree.pos(), "type.var.cant.be.deref");
3400                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3401                 tree.sym = tree.type.tsym;
3402                 return ;
3403             }
3404         }
3405 
3406         // If qualifier symbol is a type or `super', assert `selectSuper'
3407         // for the selection. This is relevant for determining whether
3408         // protected symbols are accessible.
3409         Symbol sitesym = TreeInfo.symbol(tree.selected);
3410         boolean selectSuperPrev = env.info.selectSuper;
3411         env.info.selectSuper =
3412             sitesym != null &&
3413             sitesym.name == names._super;
3414 
3415         // Determine the symbol represented by the selection.
3416         env.info.pendingResolutionPhase = null;
3417         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3418         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3419             log.error(tree.selected.pos(), "not.encl.class", site.tsym);
3420             sym = syms.errSymbol;
3421         }
3422         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3423             site = capture(site);
3424             sym = selectSym(tree, sitesym, site, env, resultInfo);
3425         }
3426         boolean varArgs = env.info.lastResolveVarargs();
3427         tree.sym = sym;
3428 
3429         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3430             site = types.skipTypeVars(site, true);
3431         }
3432 
3433         // If that symbol is a variable, ...
3434         if (sym.kind == VAR) {
3435             VarSymbol v = (VarSymbol)sym;
3436 
3437             // ..., evaluate its initializer, if it has one, and check for
3438             // illegal forward reference.
3439             checkInit(tree, env, v, true);
3440 
3441             // If we are expecting a variable (as opposed to a value), check
3442             // that the variable is assignable in the current environment.
3443             if (KindSelector.ASG.subset(pkind()))
3444                 checkAssignable(tree.pos(), v, tree.selected, env);
3445         }
3446 
3447         if (sitesym != null &&
3448                 sitesym.kind == VAR &&
3449                 ((VarSymbol)sitesym).isResourceVariable() &&
3450                 sym.kind == MTH &&
3451                 sym.name.equals(names.close) &&
3452                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3453                 env.info.lint.isEnabled(LintCategory.TRY)) {
3454             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3455         }
3456 
3457         // Disallow selecting a type from an expression
3458         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3459             tree.type = check(tree.selected, pt(),
3460                               sitesym == null ?
3461                                       KindSelector.VAL : sitesym.kind.toSelector(),
3462                               new ResultInfo(KindSelector.TYP_PCK, pt()));
3463         }
3464 
3465         if (isType(sitesym)) {
3466             if (sym.name == names._this) {
3467                 // If `C' is the currently compiled class, check that
3468                 // C.this' does not appear in a call to a super(...)
3469                 if (env.info.isSelfCall &&
3470                     site.tsym == env.enclClass.sym) {
3471                     chk.earlyRefError(tree.pos(), sym);
3472                 }
3473             } else {
3474                 // Check if type-qualified fields or methods are static (JLS)
3475                 if ((sym.flags() & STATIC) == 0 &&
3476                     sym.name != names._super &&
3477                     (sym.kind == VAR || sym.kind == MTH)) {
3478                     rs.accessBase(rs.new StaticError(sym),
3479                               tree.pos(), site, sym.name, true);
3480                 }
3481             }
3482             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3483                     sym.isStatic() && sym.kind == MTH) {
3484                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
3485             }
3486         } else if (sym.kind != ERR &&
3487                    (sym.flags() & STATIC) != 0 &&
3488                    sym.name != names._class) {
3489             // If the qualified item is not a type and the selected item is static, report
3490             // a warning. Make allowance for the class of an array type e.g. Object[].class)
3491             chk.warnStatic(tree, "static.not.qualified.by.type",
3492                            sym.kind.kindName(), sym.owner);
3493         }
3494 
3495         // If we are selecting an instance member via a `super', ...
3496         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3497 
3498             // Check that super-qualified symbols are not abstract (JLS)
3499             rs.checkNonAbstract(tree.pos(), sym);
3500 
3501             if (site.isRaw()) {
3502                 // Determine argument types for site.
3503                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3504                 if (site1 != null) site = site1;
3505             }
3506         }
3507 
3508         if (env.info.isSerializable) {
3509             chk.checkElemAccessFromSerializableLambda(tree);
3510         }
3511 
3512         env.info.selectSuper = selectSuperPrev;
3513         result = checkId(tree, site, sym, env, resultInfo);
3514     }
3515     //where
3516         /** Determine symbol referenced by a Select expression,
3517          *
3518          *  @param tree   The select tree.
3519          *  @param site   The type of the selected expression,
3520          *  @param env    The current environment.
3521          *  @param resultInfo The current result.
3522          */
3523         private Symbol selectSym(JCFieldAccess tree,
3524                                  Symbol location,
3525                                  Type site,
3526                                  Env<AttrContext> env,
3527                                  ResultInfo resultInfo) {
3528             DiagnosticPosition pos = tree.pos();
3529             Name name = tree.name;
3530             switch (site.getTag()) {
3531             case PACKAGE:
3532                 return rs.accessBase(
3533                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3534                     pos, location, site, name, true);
3535             case ARRAY:
3536             case CLASS:
3537                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3538                     return rs.resolveQualifiedMethod(
3539                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3540                 } else if (name == names._this || name == names._super) {
3541                     return rs.resolveSelf(pos, env, site.tsym, name);
3542                 } else if (name == names._class) {
3543                     // In this case, we have already made sure in
3544                     // visitSelect that qualifier expression is a type.
3545                     Type t = syms.classType;
3546                     List<Type> typeargs = List.of(types.erasure(site));
3547                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3548                     return new VarSymbol(
3549                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3550                 } else {
3551                     // We are seeing a plain identifier as selector.
3552                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3553                         sym = rs.accessBase(sym, pos, location, site, name, true);
3554                     return sym;
3555                 }
3556             case WILDCARD:
3557                 throw new AssertionError(tree);
3558             case TYPEVAR:
3559                 // Normally, site.getUpperBound() shouldn't be null.
3560                 // It should only happen during memberEnter/attribBase
3561                 // when determining the super type which *must* beac
3562                 // done before attributing the type variables.  In
3563                 // other words, we are seeing this illegal program:
3564                 // class B<T> extends A<T.foo> {}
3565                 Symbol sym = (site.getUpperBound() != null)
3566                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3567                     : null;
3568                 if (sym == null) {
3569                     log.error(pos, "type.var.cant.be.deref");
3570                     return syms.errSymbol;
3571                 } else {
3572                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3573                         rs.new AccessError(env, site, sym) :
3574                                 sym;
3575                     rs.accessBase(sym2, pos, location, site, name, true);
3576                     return sym;
3577                 }
3578             case ERROR:
3579                 // preserve identifier names through errors
3580                 return types.createErrorType(name, site.tsym, site).tsym;
3581             default:
3582                 // The qualifier expression is of a primitive type -- only
3583                 // .class is allowed for these.
3584                 if (name == names._class) {
3585                     // In this case, we have already made sure in Select that
3586                     // qualifier expression is a type.
3587                     Type t = syms.classType;
3588                     Type arg = types.boxedClass(site).type;
3589                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3590                     return new VarSymbol(
3591                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3592                 } else {
3593                     log.error(pos, "cant.deref", site);
3594                     return syms.errSymbol;
3595                 }
3596             }
3597         }
3598 
3599         /** Determine type of identifier or select expression and check that
3600          *  (1) the referenced symbol is not deprecated
3601          *  (2) the symbol's type is safe (@see checkSafe)
3602          *  (3) if symbol is a variable, check that its type and kind are
3603          *      compatible with the prototype and protokind.
3604          *  (4) if symbol is an instance field of a raw type,
3605          *      which is being assigned to, issue an unchecked warning if its
3606          *      type changes under erasure.
3607          *  (5) if symbol is an instance method of a raw type, issue an
3608          *      unchecked warning if its argument types change under erasure.
3609          *  If checks succeed:
3610          *    If symbol is a constant, return its constant type
3611          *    else if symbol is a method, return its result type
3612          *    otherwise return its type.
3613          *  Otherwise return errType.
3614          *
3615          *  @param tree       The syntax tree representing the identifier
3616          *  @param site       If this is a select, the type of the selected
3617          *                    expression, otherwise the type of the current class.
3618          *  @param sym        The symbol representing the identifier.
3619          *  @param env        The current environment.
3620          *  @param resultInfo    The expected result
3621          */
3622         Type checkId(JCTree tree,
3623                      Type site,
3624                      Symbol sym,
3625                      Env<AttrContext> env,
3626                      ResultInfo resultInfo) {
3627             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3628                     checkMethodId(tree, site, sym, env, resultInfo) :
3629                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3630         }
3631 
3632         Type checkMethodId(JCTree tree,
3633                      Type site,
3634                      Symbol sym,
3635                      Env<AttrContext> env,
3636                      ResultInfo resultInfo) {
3637             boolean isPolymorhicSignature =
3638                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3639             return isPolymorhicSignature ?
3640                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3641                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
3642         }
3643 
3644         Type checkSigPolyMethodId(JCTree tree,
3645                      Type site,
3646                      Symbol sym,
3647                      Env<AttrContext> env,
3648                      ResultInfo resultInfo) {
3649             //recover original symbol for signature polymorphic methods
3650             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3651             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3652             return sym.type;
3653         }
3654 
3655         Type checkMethodIdInternal(JCTree tree,
3656                      Type site,
3657                      Symbol sym,
3658                      Env<AttrContext> env,
3659                      ResultInfo resultInfo) {
3660             if (resultInfo.pkind.contains(KindSelector.POLY)) {
3661                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3662                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3663                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3664                 return owntype;
3665             } else {
3666                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3667             }
3668         }
3669 
3670         Type checkIdInternal(JCTree tree,
3671                      Type site,
3672                      Symbol sym,
3673                      Type pt,
3674                      Env<AttrContext> env,
3675                      ResultInfo resultInfo) {
3676             if (pt.isErroneous()) {
3677                 return types.createErrorType(site);
3678             }
3679             Type owntype; // The computed type of this identifier occurrence.
3680             switch (sym.kind) {
3681             case TYP:
3682                 // For types, the computed type equals the symbol's type,
3683                 // except for two situations:
3684                 owntype = sym.type;
3685                 if (owntype.hasTag(CLASS)) {
3686                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3687                     Type ownOuter = owntype.getEnclosingType();
3688 
3689                     // (a) If the symbol's type is parameterized, erase it
3690                     // because no type parameters were given.
3691                     // We recover generic outer type later in visitTypeApply.
3692                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3693                         owntype = types.erasure(owntype);
3694                     }
3695 
3696                     // (b) If the symbol's type is an inner class, then
3697                     // we have to interpret its outer type as a superclass
3698                     // of the site type. Example:
3699                     //
3700                     // class Tree<A> { class Visitor { ... } }
3701                     // class PointTree extends Tree<Point> { ... }
3702                     // ...PointTree.Visitor...
3703                     //
3704                     // Then the type of the last expression above is
3705                     // Tree<Point>.Visitor.
3706                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3707                         Type normOuter = site;
3708                         if (normOuter.hasTag(CLASS)) {
3709                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3710                         }
3711                         if (normOuter == null) // perhaps from an import
3712                             normOuter = types.erasure(ownOuter);
3713                         if (normOuter != ownOuter)
3714                             owntype = new ClassType(
3715                                 normOuter, List.<Type>nil(), owntype.tsym,
3716                                 owntype.getMetadata());
3717                     }
3718                 }
3719                 break;
3720             case VAR:
3721                 VarSymbol v = (VarSymbol)sym;
3722                 // Test (4): if symbol is an instance field of a raw type,
3723                 // which is being assigned to, issue an unchecked warning if
3724                 // its type changes under erasure.
3725                 if (KindSelector.ASG.subset(pkind()) &&
3726                     v.owner.kind == TYP &&
3727                     (v.flags() & STATIC) == 0 &&
3728                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3729                     Type s = types.asOuterSuper(site, v.owner);
3730                     if (s != null &&
3731                         s.isRaw() &&
3732                         !types.isSameType(v.type, v.erasure(types))) {
3733                         chk.warnUnchecked(tree.pos(),
3734                                           "unchecked.assign.to.var",
3735                                           v, s);
3736                     }
3737                 }
3738                 // The computed type of a variable is the type of the
3739                 // variable symbol, taken as a member of the site type.
3740                 owntype = (sym.owner.kind == TYP &&
3741                            sym.name != names._this && sym.name != names._super)
3742                     ? types.memberType(site, sym)
3743                     : sym.type;
3744 
3745                 // If the variable is a constant, record constant value in
3746                 // computed type.
3747                 if (v.getConstValue() != null && isStaticReference(tree))
3748                     owntype = owntype.constType(v.getConstValue());
3749 
3750                 if (resultInfo.pkind == KindSelector.VAL) {
3751                     owntype = capture(owntype); // capture "names as expressions"
3752                 }
3753                 break;
3754             case MTH: {
3755                 owntype = checkMethod(site, sym,
3756                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3757                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3758                         resultInfo.pt.getTypeArguments());
3759                 break;
3760             }
3761             case PCK: case ERR:
3762                 owntype = sym.type;
3763                 break;
3764             default:
3765                 throw new AssertionError("unexpected kind: " + sym.kind +
3766                                          " in tree " + tree);
3767             }
3768 
3769             // Emit a `deprecation' warning if symbol is deprecated.
3770             // (for constructors (but not for constructor references), the error
3771             // was given when the constructor was resolved)
3772 
3773             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
3774                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3775                 chk.checkSunAPI(tree.pos(), sym);
3776                 chk.checkProfile(tree.pos(), sym);
3777             }
3778 
3779             // If symbol is a variable, check that its type and
3780             // kind are compatible with the prototype and protokind.
3781             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3782         }
3783 
3784         /** Check that variable is initialized and evaluate the variable's
3785          *  initializer, if not yet done. Also check that variable is not
3786          *  referenced before it is defined.
3787          *  @param tree    The tree making up the variable reference.
3788          *  @param env     The current environment.
3789          *  @param v       The variable's symbol.
3790          */
3791         private void checkInit(JCTree tree,
3792                                Env<AttrContext> env,
3793                                VarSymbol v,
3794                                boolean onlyWarning) {
3795             // A forward reference is diagnosed if the declaration position
3796             // of the variable is greater than the current tree position
3797             // and the tree and variable definition occur in the same class
3798             // definition.  Note that writes don't count as references.
3799             // This check applies only to class and instance
3800             // variables.  Local variables follow different scope rules,
3801             // and are subject to definite assignment checking.
3802             Env<AttrContext> initEnv = enclosingInitEnv(env);
3803             if (initEnv != null &&
3804                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
3805                 v.owner.kind == TYP &&
3806                 v.owner == env.info.scope.owner.enclClass() &&
3807                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3808                 (!env.tree.hasTag(ASSIGN) ||
3809                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3810                 String suffix = (initEnv.info.enclVar == v) ?
3811                                 "self.ref" : "forward.ref";
3812                 if (!onlyWarning || isStaticEnumField(v)) {
3813                     log.error(tree.pos(), "illegal." + suffix);
3814                 } else if (useBeforeDeclarationWarning) {
3815                     log.warning(tree.pos(), suffix, v);
3816                 }
3817             }
3818 
3819             v.getConstValue(); // ensure initializer is evaluated
3820 
3821             checkEnumInitializer(tree, env, v);
3822         }
3823 
3824         /**
3825          * Returns the enclosing init environment associated with this env (if any). An init env
3826          * can be either a field declaration env or a static/instance initializer env.
3827          */
3828         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3829             while (true) {
3830                 switch (env.tree.getTag()) {
3831                     case VARDEF:
3832                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3833                         if (vdecl.sym.owner.kind == TYP) {
3834                             //field
3835                             return env;
3836                         }
3837                         break;
3838                     case BLOCK:
3839                         if (env.next.tree.hasTag(CLASSDEF)) {
3840                             //instance/static initializer
3841                             return env;
3842                         }
3843                         break;
3844                     case METHODDEF:
3845                     case CLASSDEF:
3846                     case TOPLEVEL:
3847                         return null;
3848                 }
3849                 Assert.checkNonNull(env.next);
3850                 env = env.next;
3851             }
3852         }
3853 
3854         /**
3855          * Check for illegal references to static members of enum.  In
3856          * an enum type, constructors and initializers may not
3857          * reference its static members unless they are constant.
3858          *
3859          * @param tree    The tree making up the variable reference.
3860          * @param env     The current environment.
3861          * @param v       The variable's symbol.
3862          * @jls  section 8.9 Enums
3863          */
3864         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3865             // JLS:
3866             //
3867             // "It is a compile-time error to reference a static field
3868             // of an enum type that is not a compile-time constant
3869             // (15.28) from constructors, instance initializer blocks,
3870             // or instance variable initializer expressions of that
3871             // type. It is a compile-time error for the constructors,
3872             // instance initializer blocks, or instance variable
3873             // initializer expressions of an enum constant e to refer
3874             // to itself or to an enum constant of the same type that
3875             // is declared to the right of e."
3876             if (isStaticEnumField(v)) {
3877                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
3878 
3879                 if (enclClass == null || enclClass.owner == null)
3880                     return;
3881 
3882                 // See if the enclosing class is the enum (or a
3883                 // subclass thereof) declaring v.  If not, this
3884                 // reference is OK.
3885                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3886                     return;
3887 
3888                 // If the reference isn't from an initializer, then
3889                 // the reference is OK.
3890                 if (!Resolve.isInitializer(env))
3891                     return;
3892 
3893                 log.error(tree.pos(), "illegal.enum.static.ref");
3894             }
3895         }
3896 
3897         /** Is the given symbol a static, non-constant field of an Enum?
3898          *  Note: enum literals should not be regarded as such
3899          */
3900         private boolean isStaticEnumField(VarSymbol v) {
3901             return Flags.isEnum(v.owner) &&
3902                    Flags.isStatic(v) &&
3903                    !Flags.isConstant(v) &&
3904                    v.name != names._class;
3905         }
3906 
3907     /**
3908      * Check that method arguments conform to its instantiation.
3909      **/
3910     public Type checkMethod(Type site,
3911                             final Symbol sym,
3912                             ResultInfo resultInfo,
3913                             Env<AttrContext> env,
3914                             final List<JCExpression> argtrees,
3915                             List<Type> argtypes,
3916                             List<Type> typeargtypes) {
3917         // Test (5): if symbol is an instance method of a raw type, issue
3918         // an unchecked warning if its argument types change under erasure.
3919         if ((sym.flags() & STATIC) == 0 &&
3920             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3921             Type s = types.asOuterSuper(site, sym.owner);
3922             if (s != null && s.isRaw() &&
3923                 !types.isSameTypes(sym.type.getParameterTypes(),
3924                                    sym.erasure(types).getParameterTypes())) {
3925                 chk.warnUnchecked(env.tree.pos(),
3926                                   "unchecked.call.mbr.of.raw.type",
3927                                   sym, s);
3928             }
3929         }
3930 
3931         if (env.info.defaultSuperCallSite != null) {
3932             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3933                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3934                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3935                 List<MethodSymbol> icand_sup =
3936                         types.interfaceCandidates(sup, (MethodSymbol)sym);
3937                 if (icand_sup.nonEmpty() &&
3938                         icand_sup.head != sym &&
3939                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3940                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3941                         diags.fragment("overridden.default", sym, sup));
3942                     break;
3943                 }
3944             }
3945             env.info.defaultSuperCallSite = null;
3946         }
3947 
3948         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3949             JCMethodInvocation app = (JCMethodInvocation)env.tree;
3950             if (app.meth.hasTag(SELECT) &&
3951                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3952                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3953             }
3954         }
3955 
3956         // Compute the identifier's instantiated type.
3957         // For methods, we need to compute the instance type by
3958         // Resolve.instantiate from the symbol's type as well as
3959         // any type arguments and value arguments.
3960         Warner noteWarner = new Warner();
3961         try {
3962             Type owntype = rs.checkMethod(
3963                     env,
3964                     site,
3965                     sym,
3966                     resultInfo,
3967                     argtypes,
3968                     typeargtypes,
3969                     noteWarner);
3970 
3971             DeferredAttr.DeferredTypeMap checkDeferredMap =
3972                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3973 
3974             argtypes = argtypes.map(checkDeferredMap);
3975 
3976             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3977                 chk.warnUnchecked(env.tree.pos(),
3978                         "unchecked.meth.invocation.applied",
3979                         kindName(sym),
3980                         sym.name,
3981                         rs.methodArguments(sym.type.getParameterTypes()),
3982                         rs.methodArguments(argtypes.map(checkDeferredMap)),
3983                         kindName(sym.location()),
3984                         sym.location());
3985                owntype = new MethodType(owntype.getParameterTypes(),
3986                        types.erasure(owntype.getReturnType()),
3987                        types.erasure(owntype.getThrownTypes()),
3988                        syms.methodClass);
3989             }
3990 
3991             PolyKind pkind = (sym.type.hasTag(FORALL) &&
3992                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
3993                  PolyKind.POLY : PolyKind.STANDALONE;
3994             TreeInfo.setPolyKind(env.tree, pkind);
3995 
3996             return (resultInfo.pt == Infer.anyPoly) ?
3997                     owntype :
3998                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3999                             resultInfo.checkContext.inferenceContext());
4000         } catch (Infer.InferenceException ex) {
4001             //invalid target type - propagate exception outwards or report error
4002             //depending on the current check context
4003             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4004             return types.createErrorType(site);
4005         } catch (Resolve.InapplicableMethodException ex) {
4006             final JCDiagnostic diag = ex.getDiagnostic();
4007             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4008                 @Override
4009                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4010                     return new Pair<>(sym, diag);
4011                 }
4012             };
4013             List<Type> argtypes2 = argtypes.map(
4014                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4015             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4016                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4017             log.report(errDiag);
4018             return types.createErrorType(site);
4019         }
4020     }
4021 
4022     public void visitLiteral(JCLiteral tree) {
4023         result = check(tree, litType(tree.typetag).constType(tree.value),
4024                 KindSelector.VAL, resultInfo);
4025     }
4026     //where
4027     /** Return the type of a literal with given type tag.
4028      */
4029     Type litType(TypeTag tag) {
4030         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4031     }
4032 
4033     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4034         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4035     }
4036 
4037     public void visitTypeArray(JCArrayTypeTree tree) {
4038         Type etype = attribType(tree.elemtype, env);
4039         Type type = new ArrayType(etype, syms.arrayClass);
4040         result = check(tree, type, KindSelector.TYP, resultInfo);
4041     }
4042 
4043     /** Visitor method for parameterized types.
4044      *  Bound checking is left until later, since types are attributed
4045      *  before supertype structure is completely known
4046      */
4047     public void visitTypeApply(JCTypeApply tree) {
4048         Type owntype = types.createErrorType(tree.type);
4049 
4050         // Attribute functor part of application and make sure it's a class.
4051         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4052 
4053         // Attribute type parameters
4054         List<Type> actuals = attribTypes(tree.arguments, env);
4055 
4056         if (clazztype.hasTag(CLASS)) {
4057             List<Type> formals = clazztype.tsym.type.getTypeArguments();
4058             if (actuals.isEmpty()) //diamond
4059                 actuals = formals;
4060 
4061             if (actuals.length() == formals.length()) {
4062                 List<Type> a = actuals;
4063                 List<Type> f = formals;
4064                 while (a.nonEmpty()) {
4065                     a.head = a.head.withTypeVar(f.head);
4066                     a = a.tail;
4067                     f = f.tail;
4068                 }
4069                 // Compute the proper generic outer
4070                 Type clazzOuter = clazztype.getEnclosingType();
4071                 if (clazzOuter.hasTag(CLASS)) {
4072                     Type site;
4073                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4074                     if (clazz.hasTag(IDENT)) {
4075                         site = env.enclClass.sym.type;
4076                     } else if (clazz.hasTag(SELECT)) {
4077                         site = ((JCFieldAccess) clazz).selected.type;
4078                     } else throw new AssertionError(""+tree);
4079                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4080                         if (site.hasTag(CLASS))
4081                             site = types.asOuterSuper(site, clazzOuter.tsym);
4082                         if (site == null)
4083                             site = types.erasure(clazzOuter);
4084                         clazzOuter = site;
4085                     }
4086                 }
4087                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4088                                         clazztype.getMetadata());
4089             } else {
4090                 if (formals.length() != 0) {
4091                     log.error(tree.pos(), "wrong.number.type.args",
4092                               Integer.toString(formals.length()));
4093                 } else {
4094                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
4095                 }
4096                 owntype = types.createErrorType(tree.type);
4097             }
4098         }
4099         result = check(tree, owntype, KindSelector.TYP, resultInfo);
4100     }
4101 
4102     public void visitTypeUnion(JCTypeUnion tree) {
4103         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4104         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4105         for (JCExpression typeTree : tree.alternatives) {
4106             Type ctype = attribType(typeTree, env);
4107             ctype = chk.checkType(typeTree.pos(),
4108                           chk.checkClassType(typeTree.pos(), ctype),
4109                           syms.throwableType);
4110             if (!ctype.isErroneous()) {
4111                 //check that alternatives of a union type are pairwise
4112                 //unrelated w.r.t. subtyping
4113                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
4114                     for (Type t : multicatchTypes) {
4115                         boolean sub = types.isSubtype(ctype, t);
4116                         boolean sup = types.isSubtype(t, ctype);
4117                         if (sub || sup) {
4118                             //assume 'a' <: 'b'
4119                             Type a = sub ? ctype : t;
4120                             Type b = sub ? t : ctype;
4121                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
4122                         }
4123                     }
4124                 }
4125                 multicatchTypes.append(ctype);
4126                 if (all_multicatchTypes != null)
4127                     all_multicatchTypes.append(ctype);
4128             } else {
4129                 if (all_multicatchTypes == null) {
4130                     all_multicatchTypes = new ListBuffer<>();
4131                     all_multicatchTypes.appendList(multicatchTypes);
4132                 }
4133                 all_multicatchTypes.append(ctype);
4134             }
4135         }
4136         Type t = check(tree, types.lub(multicatchTypes.toList()),
4137                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4138         if (t.hasTag(CLASS)) {
4139             List<Type> alternatives =
4140                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4141             t = new UnionClassType((ClassType) t, alternatives);
4142         }
4143         tree.type = result = t;
4144     }
4145 
4146     public void visitTypeIntersection(JCTypeIntersection tree) {
4147         attribTypes(tree.bounds, env);
4148         tree.type = result = checkIntersection(tree, tree.bounds);
4149     }
4150 
4151     public void visitTypeParameter(JCTypeParameter tree) {
4152         TypeVar typeVar = (TypeVar) tree.type;
4153 
4154         if (tree.annotations != null && tree.annotations.nonEmpty()) {
4155             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4156         }
4157 
4158         if (!typeVar.bound.isErroneous()) {
4159             //fixup type-parameter bound computed in 'attribTypeVariables'
4160             typeVar.bound = checkIntersection(tree, tree.bounds);
4161         }
4162     }
4163 
4164     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4165         Set<Type> boundSet = new HashSet<>();
4166         if (bounds.nonEmpty()) {
4167             // accept class or interface or typevar as first bound.
4168             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4169             boundSet.add(types.erasure(bounds.head.type));
4170             if (bounds.head.type.isErroneous()) {
4171                 return bounds.head.type;
4172             }
4173             else if (bounds.head.type.hasTag(TYPEVAR)) {
4174                 // if first bound was a typevar, do not accept further bounds.
4175                 if (bounds.tail.nonEmpty()) {
4176                     log.error(bounds.tail.head.pos(),
4177                               "type.var.may.not.be.followed.by.other.bounds");
4178                     return bounds.head.type;
4179                 }
4180             } else {
4181                 // if first bound was a class or interface, accept only interfaces
4182                 // as further bounds.
4183                 for (JCExpression bound : bounds.tail) {
4184                     bound.type = checkBase(bound.type, bound, env, false, true, false);
4185                     if (bound.type.isErroneous()) {
4186                         bounds = List.of(bound);
4187                     }
4188                     else if (bound.type.hasTag(CLASS)) {
4189                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4190                     }
4191                 }
4192             }
4193         }
4194 
4195         if (bounds.length() == 0) {
4196             return syms.objectType;
4197         } else if (bounds.length() == 1) {
4198             return bounds.head.type;
4199         } else {
4200             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4201             // ... the variable's bound is a class type flagged COMPOUND
4202             // (see comment for TypeVar.bound).
4203             // In this case, generate a class tree that represents the
4204             // bound class, ...
4205             JCExpression extending;
4206             List<JCExpression> implementing;
4207             if (!bounds.head.type.isInterface()) {
4208                 extending = bounds.head;
4209                 implementing = bounds.tail;
4210             } else {
4211                 extending = null;
4212                 implementing = bounds;
4213             }
4214             JCClassDecl cd = make.at(tree).ClassDef(
4215                 make.Modifiers(PUBLIC | ABSTRACT),
4216                 names.empty, List.<JCTypeParameter>nil(),
4217                 extending, implementing, List.<JCTree>nil());
4218 
4219             ClassSymbol c = (ClassSymbol)owntype.tsym;
4220             Assert.check((c.flags() & COMPOUND) != 0);
4221             cd.sym = c;
4222             c.sourcefile = env.toplevel.sourcefile;
4223 
4224             // ... and attribute the bound class
4225             c.flags_field |= UNATTRIBUTED;
4226             Env<AttrContext> cenv = enter.classEnv(cd, env);
4227             typeEnvs.put(c, cenv);
4228             attribClass(c);
4229             return owntype;
4230         }
4231     }
4232 
4233     public void visitWildcard(JCWildcard tree) {
4234         //- System.err.println("visitWildcard("+tree+");");//DEBUG
4235         Type type = (tree.kind.kind == BoundKind.UNBOUND)
4236             ? syms.objectType
4237             : attribType(tree.inner, env);
4238         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4239                                               tree.kind.kind,
4240                                               syms.boundClass),
4241                 KindSelector.TYP, resultInfo);
4242     }
4243 
4244     public void visitAnnotation(JCAnnotation tree) {
4245         Assert.error("should be handled in annotate");
4246     }
4247 
4248     public void visitAnnotatedType(JCAnnotatedType tree) {
4249         attribAnnotationTypes(tree.annotations, env);
4250         Type underlyingType = attribType(tree.underlyingType, env);
4251         Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4252 
4253         if (!env.info.isNewClass)
4254             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4255         result = tree.type = annotatedType;
4256     }
4257 
4258     public void visitErroneous(JCErroneous tree) {
4259         if (tree.errs != null)
4260             for (JCTree err : tree.errs)
4261                 attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4262         result = tree.type = syms.errType;
4263     }
4264 
4265     /** Default visitor method for all other trees.
4266      */
4267     public void visitTree(JCTree tree) {
4268         throw new AssertionError();
4269     }
4270 
4271     /**
4272      * Attribute an env for either a top level tree or class or module declaration.
4273      */
4274     public void attrib(Env<AttrContext> env) {
4275         switch (env.tree.getTag()) {
4276             case MODULEDEF:
4277                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
4278                 break;
4279             case TOPLEVEL:
4280                 attribTopLevel(env);
4281                 break;
4282             case PACKAGEDEF:
4283                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
4284                 break;
4285             default:
4286                 attribClass(env.tree.pos(), env.enclClass.sym);
4287         }
4288     }
4289 
4290     /**
4291      * Attribute a top level tree. These trees are encountered when the
4292      * package declaration has annotations.
4293      */
4294     public void attribTopLevel(Env<AttrContext> env) {
4295         JCCompilationUnit toplevel = env.toplevel;
4296         try {
4297             annotate.flush();
4298         } catch (CompletionFailure ex) {
4299             chk.completionError(toplevel.pos(), ex);
4300         }
4301     }
4302 
4303     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
4304         try {
4305             annotate.flush();
4306             attribPackage(p);
4307         } catch (CompletionFailure ex) {
4308             chk.completionError(pos, ex);
4309         }
4310     }
4311 
4312     void attribPackage(PackageSymbol p) {
4313         Env<AttrContext> env = typeEnvs.get(p);
4314         chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p);
4315     }
4316 
4317     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
4318         try {
4319             annotate.flush();
4320             attribModule(m);
4321         } catch (CompletionFailure ex) {
4322             chk.completionError(pos, ex);
4323         }
4324     }
4325 
4326     void attribModule(ModuleSymbol m) {
4327         // Get environment current at the point of module definition.
4328         Env<AttrContext> env = enter.typeEnvs.get(m);
4329         attribStat(env.tree, env);
4330     }
4331 
4332     /** Main method: attribute class definition associated with given class symbol.
4333      *  reporting completion failures at the given position.
4334      *  @param pos The source position at which completion errors are to be
4335      *             reported.
4336      *  @param c   The class symbol whose definition will be attributed.
4337      */
4338     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4339         try {
4340             annotate.flush();
4341             attribClass(c);
4342         } catch (CompletionFailure ex) {
4343             chk.completionError(pos, ex);
4344         }
4345     }
4346 
4347     /** Attribute class definition associated with given class symbol.
4348      *  @param c   The class symbol whose definition will be attributed.
4349      */
4350     void attribClass(ClassSymbol c) throws CompletionFailure {
4351         if (c.type.hasTag(ERROR)) return;
4352 
4353         // Check for cycles in the inheritance graph, which can arise from
4354         // ill-formed class files.
4355         chk.checkNonCyclic(null, c.type);
4356 
4357         Type st = types.supertype(c.type);
4358         if ((c.flags_field & Flags.COMPOUND) == 0) {
4359             // First, attribute superclass.
4360             if (st.hasTag(CLASS))
4361                 attribClass((ClassSymbol)st.tsym);
4362 
4363             // Next attribute owner, if it is a class.
4364             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4365                 attribClass((ClassSymbol)c.owner);
4366         }
4367 
4368         // The previous operations might have attributed the current class
4369         // if there was a cycle. So we test first whether the class is still
4370         // UNATTRIBUTED.
4371         if ((c.flags_field & UNATTRIBUTED) != 0) {
4372             c.flags_field &= ~UNATTRIBUTED;
4373 
4374             // Get environment current at the point of class definition.
4375             Env<AttrContext> env = typeEnvs.get(c);
4376 
4377             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4378             // because the annotations were not available at the time the env was created. Therefore,
4379             // we look up the environment chain for the first enclosing environment for which the
4380             // lint value is set. Typically, this is the parent env, but might be further if there
4381             // are any envs created as a result of TypeParameter nodes.
4382             Env<AttrContext> lintEnv = env;
4383             while (lintEnv.info.lint == null)
4384                 lintEnv = lintEnv.next;
4385 
4386             // Having found the enclosing lint value, we can initialize the lint value for this class
4387             env.info.lint = lintEnv.info.lint.augment(c);
4388 
4389             Lint prevLint = chk.setLint(env.info.lint);
4390             JavaFileObject prev = log.useSource(c.sourcefile);
4391             ResultInfo prevReturnRes = env.info.returnResult;
4392 
4393             try {
4394                 deferredLintHandler.flush(env.tree);
4395                 env.info.returnResult = null;
4396                 // java.lang.Enum may not be subclassed by a non-enum
4397                 if (st.tsym == syms.enumSym &&
4398                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4399                     log.error(env.tree.pos(), "enum.no.subclassing");
4400 
4401                 // Enums may not be extended by source-level classes
4402                 if (st.tsym != null &&
4403                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4404                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4405                     log.error(env.tree.pos(), "enum.types.not.extensible");
4406                 }
4407 
4408                 if (isSerializable(c.type)) {
4409                     env.info.isSerializable = true;
4410                 }
4411 
4412                 attribClassBody(env, c);
4413 
4414                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4415                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4416                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4417             } finally {
4418                 env.info.returnResult = prevReturnRes;
4419                 log.useSource(prev);
4420                 chk.setLint(prevLint);
4421             }
4422 
4423         }
4424     }
4425 
4426     public void visitImport(JCImport tree) {
4427         // nothing to do
4428     }
4429 
4430     public void visitModuleDef(JCModuleDecl tree) {
4431         tree.sym.completeUsesProvides();
4432     }
4433 
4434     /** Finish the attribution of a class. */
4435     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4436         JCClassDecl tree = (JCClassDecl)env.tree;
4437         Assert.check(c == tree.sym);
4438 
4439         // Validate type parameters, supertype and interfaces.
4440         attribStats(tree.typarams, env);
4441         if (!c.isAnonymous()) {
4442             //already checked if anonymous
4443             chk.validate(tree.typarams, env);
4444             chk.validate(tree.extending, env);
4445             chk.validate(tree.implementing, env);
4446         }
4447 
4448         c.markAbstractIfNeeded(types);
4449 
4450         // If this is a non-abstract class, check that it has no abstract
4451         // methods or unimplemented methods of an implemented interface.
4452         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4453             chk.checkAllDefined(tree.pos(), c);
4454         }
4455 
4456         if ((c.flags() & ANNOTATION) != 0) {
4457             if (tree.implementing.nonEmpty())
4458                 log.error(tree.implementing.head.pos(),
4459                           "cant.extend.intf.annotation");
4460             if (tree.typarams.nonEmpty())
4461                 log.error(tree.typarams.head.pos(),
4462                           "intf.annotation.cant.have.type.params");
4463 
4464             // If this annotation type has a @Repeatable, validate
4465             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4466             // If this annotation type has a @Repeatable, validate
4467             if (repeatable != null) {
4468                 // get diagnostic position for error reporting
4469                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4470                 Assert.checkNonNull(cbPos);
4471 
4472                 chk.validateRepeatable(c, repeatable, cbPos);
4473             }
4474         } else {
4475             // Check that all extended classes and interfaces
4476             // are compatible (i.e. no two define methods with same arguments
4477             // yet different return types).  (JLS 8.4.6.3)
4478             chk.checkCompatibleSupertypes(tree.pos(), c.type);
4479             if (allowDefaultMethods) {
4480                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
4481             }
4482         }
4483 
4484         // Check that class does not import the same parameterized interface
4485         // with two different argument lists.
4486         chk.checkClassBounds(tree.pos(), c.type);
4487 
4488         tree.type = c.type;
4489 
4490         for (List<JCTypeParameter> l = tree.typarams;
4491              l.nonEmpty(); l = l.tail) {
4492              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4493         }
4494 
4495         // Check that a generic class doesn't extend Throwable
4496         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4497             log.error(tree.extending.pos(), "generic.throwable");
4498 
4499         // Check that all methods which implement some
4500         // method conform to the method they implement.
4501         chk.checkImplementations(tree);
4502 
4503         //check that a resource implementing AutoCloseable cannot throw InterruptedException
4504         checkAutoCloseable(tree.pos(), env, c.type);
4505 
4506         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4507             // Attribute declaration
4508             attribStat(l.head, env);
4509             // Check that declarations in inner classes are not static (JLS 8.1.2)
4510             // Make an exception for static constants.
4511             if (c.owner.kind != PCK &&
4512                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4513                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4514                 Symbol sym = null;
4515                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4516                 if (sym == null ||
4517                     sym.kind != VAR ||
4518                     ((VarSymbol) sym).getConstValue() == null)
4519                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4520             }
4521         }
4522 
4523         // Check for cycles among non-initial constructors.
4524         chk.checkCyclicConstructors(tree);
4525 
4526         // Check for cycles among annotation elements.
4527         chk.checkNonCyclicElements(tree);
4528 
4529         // Check for proper use of serialVersionUID
4530         if (env.info.lint.isEnabled(LintCategory.SERIAL)
4531                 && isSerializable(c.type)
4532                 && (c.flags() & Flags.ENUM) == 0
4533                 && !c.isAnonymous()
4534                 && checkForSerial(c)) {
4535             checkSerialVersionUID(tree, c);
4536         }
4537         if (allowTypeAnnos) {
4538             // Correctly organize the postions of the type annotations
4539             typeAnnotations.organizeTypeAnnotationsBodies(tree);
4540 
4541             // Check type annotations applicability rules
4542             validateTypeAnnotations(tree, false);
4543         }
4544     }
4545         // where
4546         boolean checkForSerial(ClassSymbol c) {
4547             if ((c.flags() & ABSTRACT) == 0) {
4548                 return true;
4549             } else {
4550                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4551             }
4552         }
4553 
4554         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4555             @Override
4556             public boolean accepts(Symbol s) {
4557                 return s.kind == MTH &&
4558                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4559             }
4560         };
4561 
4562         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4563         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4564             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4565                 if (types.isSameType(al.head.annotationType.type, t))
4566                     return al.head.pos();
4567             }
4568 
4569             return null;
4570         }
4571 
4572         /** check if a type is a subtype of Serializable, if that is available. */
4573         boolean isSerializable(Type t) {
4574             try {
4575                 syms.serializableType.complete();
4576             }
4577             catch (CompletionFailure e) {
4578                 return false;
4579             }
4580             return types.isSubtype(t, syms.serializableType);
4581         }
4582 
4583         /** Check that an appropriate serialVersionUID member is defined. */
4584         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4585 
4586             // check for presence of serialVersionUID
4587             VarSymbol svuid = null;
4588             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4589                 if (sym.kind == VAR) {
4590                     svuid = (VarSymbol)sym;
4591                     break;
4592                 }
4593             }
4594 
4595             if (svuid == null) {
4596                 log.warning(LintCategory.SERIAL,
4597                         tree.pos(), "missing.SVUID", c);
4598                 return;
4599             }
4600 
4601             // check that it is static final
4602             if ((svuid.flags() & (STATIC | FINAL)) !=
4603                 (STATIC | FINAL))
4604                 log.warning(LintCategory.SERIAL,
4605                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4606 
4607             // check that it is long
4608             else if (!svuid.type.hasTag(LONG))
4609                 log.warning(LintCategory.SERIAL,
4610                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4611 
4612             // check constant
4613             else if (svuid.getConstValue() == null)
4614                 log.warning(LintCategory.SERIAL,
4615                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4616         }
4617 
4618     private Type capture(Type type) {
4619         return types.capture(type);
4620     }
4621 
4622     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4623         tree.accept(new TypeAnnotationsValidator(sigOnly));
4624     }
4625     //where
4626     private final class TypeAnnotationsValidator extends TreeScanner {
4627 
4628         private final boolean sigOnly;
4629         public TypeAnnotationsValidator(boolean sigOnly) {
4630             this.sigOnly = sigOnly;
4631         }
4632 
4633         public void visitAnnotation(JCAnnotation tree) {
4634             chk.validateTypeAnnotation(tree, false);
4635             super.visitAnnotation(tree);
4636         }
4637         public void visitAnnotatedType(JCAnnotatedType tree) {
4638             if (!tree.underlyingType.type.isErroneous()) {
4639                 super.visitAnnotatedType(tree);
4640             }
4641         }
4642         public void visitTypeParameter(JCTypeParameter tree) {
4643             chk.validateTypeAnnotations(tree.annotations, true);
4644             scan(tree.bounds);
4645             // Don't call super.
4646             // This is needed because above we call validateTypeAnnotation with
4647             // false, which would forbid annotations on type parameters.
4648             // super.visitTypeParameter(tree);
4649         }
4650         public void visitMethodDef(JCMethodDecl tree) {
4651             if (tree.recvparam != null &&
4652                     !tree.recvparam.vartype.type.isErroneous()) {
4653                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4654                         tree.recvparam.vartype.type.tsym);
4655             }
4656             if (tree.restype != null && tree.restype.type != null) {
4657                 validateAnnotatedType(tree.restype, tree.restype.type);
4658             }
4659             if (sigOnly) {
4660                 scan(tree.mods);
4661                 scan(tree.restype);
4662                 scan(tree.typarams);
4663                 scan(tree.recvparam);
4664                 scan(tree.params);
4665                 scan(tree.thrown);
4666             } else {
4667                 scan(tree.defaultValue);
4668                 scan(tree.body);
4669             }
4670         }
4671         public void visitVarDef(final JCVariableDecl tree) {
4672             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4673             if (tree.sym != null && tree.sym.type != null)
4674                 validateAnnotatedType(tree.vartype, tree.sym.type);
4675             scan(tree.mods);
4676             scan(tree.vartype);
4677             if (!sigOnly) {
4678                 scan(tree.init);
4679             }
4680         }
4681         public void visitTypeCast(JCTypeCast tree) {
4682             if (tree.clazz != null && tree.clazz.type != null)
4683                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4684             super.visitTypeCast(tree);
4685         }
4686         public void visitTypeTest(JCInstanceOf tree) {
4687             if (tree.clazz != null && tree.clazz.type != null)
4688                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4689             super.visitTypeTest(tree);
4690         }
4691         public void visitNewClass(JCNewClass tree) {
4692             if (tree.clazz != null && tree.clazz.type != null) {
4693                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4694                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4695                             tree.clazz.type.tsym);
4696                 }
4697                 if (tree.def != null) {
4698                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4699                 }
4700 
4701                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4702             }
4703             super.visitNewClass(tree);
4704         }
4705         public void visitNewArray(JCNewArray tree) {
4706             if (tree.elemtype != null && tree.elemtype.type != null) {
4707                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4708                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4709                             tree.elemtype.type.tsym);
4710                 }
4711                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4712             }
4713             super.visitNewArray(tree);
4714         }
4715         public void visitClassDef(JCClassDecl tree) {
4716             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4717             if (sigOnly) {
4718                 scan(tree.mods);
4719                 scan(tree.typarams);
4720                 scan(tree.extending);
4721                 scan(tree.implementing);
4722             }
4723             for (JCTree member : tree.defs) {
4724                 if (member.hasTag(Tag.CLASSDEF)) {
4725                     continue;
4726                 }
4727                 scan(member);
4728             }
4729         }
4730         public void visitBlock(JCBlock tree) {
4731             if (!sigOnly) {
4732                 scan(tree.stats);
4733             }
4734         }
4735 
4736         /* I would want to model this after
4737          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4738          * and override visitSelect and visitTypeApply.
4739          * However, we only set the annotated type in the top-level type
4740          * of the symbol.
4741          * Therefore, we need to override each individual location where a type
4742          * can occur.
4743          */
4744         private void validateAnnotatedType(final JCTree errtree, final Type type) {
4745             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4746 
4747             if (type.isPrimitiveOrVoid()) {
4748                 return;
4749             }
4750 
4751             JCTree enclTr = errtree;
4752             Type enclTy = type;
4753 
4754             boolean repeat = true;
4755             while (repeat) {
4756                 if (enclTr.hasTag(TYPEAPPLY)) {
4757                     List<Type> tyargs = enclTy.getTypeArguments();
4758                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4759                     if (trargs.length() > 0) {
4760                         // Nothing to do for diamonds
4761                         if (tyargs.length() == trargs.length()) {
4762                             for (int i = 0; i < tyargs.length(); ++i) {
4763                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
4764                             }
4765                         }
4766                         // If the lengths don't match, it's either a diamond
4767                         // or some nested type that redundantly provides
4768                         // type arguments in the tree.
4769                     }
4770 
4771                     // Look at the clazz part of a generic type
4772                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4773                 }
4774 
4775                 if (enclTr.hasTag(SELECT)) {
4776                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4777                     if (enclTy != null &&
4778                             !enclTy.hasTag(NONE)) {
4779                         enclTy = enclTy.getEnclosingType();
4780                     }
4781                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4782                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4783                     if (enclTy == null || enclTy.hasTag(NONE)) {
4784                         if (at.getAnnotations().size() == 1) {
4785                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4786                         } else {
4787                             ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4788                             for (JCAnnotation an : at.getAnnotations()) {
4789                                 comps.add(an.attribute);
4790                             }
4791                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4792                         }
4793                         repeat = false;
4794                     }
4795                     enclTr = at.underlyingType;
4796                     // enclTy doesn't need to be changed
4797                 } else if (enclTr.hasTag(IDENT)) {
4798                     repeat = false;
4799                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4800                     JCWildcard wc = (JCWildcard) enclTr;
4801                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4802                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4803                     } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4804                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4805                     } else {
4806                         // Nothing to do for UNBOUND
4807                     }
4808                     repeat = false;
4809                 } else if (enclTr.hasTag(TYPEARRAY)) {
4810                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4811                     validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4812                     repeat = false;
4813                 } else if (enclTr.hasTag(TYPEUNION)) {
4814                     JCTypeUnion ut = (JCTypeUnion) enclTr;
4815                     for (JCTree t : ut.getTypeAlternatives()) {
4816                         validateAnnotatedType(t, t.type);
4817                     }
4818                     repeat = false;
4819                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4820                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
4821                     for (JCTree t : it.getBounds()) {
4822                         validateAnnotatedType(t, t.type);
4823                     }
4824                     repeat = false;
4825                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4826                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4827                     repeat = false;
4828                 } else {
4829                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4830                             " within: "+ errtree + " with kind: " + errtree.getKind());
4831                 }
4832             }
4833         }
4834 
4835         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4836                 Symbol sym) {
4837             // Ensure that no declaration annotations are present.
4838             // Note that a tree type might be an AnnotatedType with
4839             // empty annotations, if only declaration annotations were given.
4840             // This method will raise an error for such a type.
4841             for (JCAnnotation ai : annotations) {
4842                 if (!ai.type.isErroneous() &&
4843                         typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4844                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
4845                 }
4846             }
4847         }
4848     }
4849 
4850     // <editor-fold desc="post-attribution visitor">
4851 
4852     /**
4853      * Handle missing types/symbols in an AST. This routine is useful when
4854      * the compiler has encountered some errors (which might have ended up
4855      * terminating attribution abruptly); if the compiler is used in fail-over
4856      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4857      * prevents NPE to be progagated during subsequent compilation steps.
4858      */
4859     public void postAttr(JCTree tree) {
4860         new PostAttrAnalyzer().scan(tree);
4861     }
4862 
4863     class PostAttrAnalyzer extends TreeScanner {
4864 
4865         private void initTypeIfNeeded(JCTree that) {
4866             if (that.type == null) {
4867                 if (that.hasTag(METHODDEF)) {
4868                     that.type = dummyMethodType((JCMethodDecl)that);
4869                 } else {
4870                     that.type = syms.unknownType;
4871                 }
4872             }
4873         }
4874 
4875         /* Construct a dummy method type. If we have a method declaration,
4876          * and the declared return type is void, then use that return type
4877          * instead of UNKNOWN to avoid spurious error messages in lambda
4878          * bodies (see:JDK-8041704).
4879          */
4880         private Type dummyMethodType(JCMethodDecl md) {
4881             Type restype = syms.unknownType;
4882             if (md != null && md.restype.hasTag(TYPEIDENT)) {
4883                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4884                 if (prim.typetag == VOID)
4885                     restype = syms.voidType;
4886             }
4887             return new MethodType(List.<Type>nil(), restype,
4888                                   List.<Type>nil(), syms.methodClass);
4889         }
4890         private Type dummyMethodType() {
4891             return dummyMethodType(null);
4892         }
4893 
4894         @Override
4895         public void scan(JCTree tree) {
4896             if (tree == null) return;
4897             if (tree instanceof JCExpression) {
4898                 initTypeIfNeeded(tree);
4899             }
4900             super.scan(tree);
4901         }
4902 
4903         @Override
4904         public void visitIdent(JCIdent that) {
4905             if (that.sym == null) {
4906                 that.sym = syms.unknownSymbol;
4907             }
4908         }
4909 
4910         @Override
4911         public void visitSelect(JCFieldAccess that) {
4912             if (that.sym == null) {
4913                 that.sym = syms.unknownSymbol;
4914             }
4915             super.visitSelect(that);
4916         }
4917 
4918         @Override
4919         public void visitClassDef(JCClassDecl that) {
4920             initTypeIfNeeded(that);
4921             if (that.sym == null) {
4922                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4923             }
4924             super.visitClassDef(that);
4925         }
4926 
4927         @Override
4928         public void visitMethodDef(JCMethodDecl that) {
4929             initTypeIfNeeded(that);
4930             if (that.sym == null) {
4931                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4932             }
4933             super.visitMethodDef(that);
4934         }
4935 
4936         @Override
4937         public void visitVarDef(JCVariableDecl that) {
4938             initTypeIfNeeded(that);
4939             if (that.sym == null) {
4940                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4941                 that.sym.adr = 0;
4942             }
4943             super.visitVarDef(that);
4944         }
4945 
4946         @Override
4947         public void visitNewClass(JCNewClass that) {
4948             if (that.constructor == null) {
4949                 that.constructor = new MethodSymbol(0, names.init,
4950                         dummyMethodType(), syms.noSymbol);
4951             }
4952             if (that.constructorType == null) {
4953                 that.constructorType = syms.unknownType;
4954             }
4955             super.visitNewClass(that);
4956         }
4957 
4958         @Override
4959         public void visitAssignop(JCAssignOp that) {
4960             if (that.operator == null) {
4961                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4962                         -1, syms.noSymbol);
4963             }
4964             super.visitAssignop(that);
4965         }
4966 
4967         @Override
4968         public void visitBinary(JCBinary that) {
4969             if (that.operator == null) {
4970                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4971                         -1, syms.noSymbol);
4972             }
4973             super.visitBinary(that);
4974         }
4975 
4976         @Override
4977         public void visitUnary(JCUnary that) {
4978             if (that.operator == null) {
4979                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4980                         -1, syms.noSymbol);
4981             }
4982             super.visitUnary(that);
4983         }
4984 
4985         @Override
4986         public void visitLambda(JCLambda that) {
4987             super.visitLambda(that);
4988             if (that.targets == null) {
4989                 that.targets = List.nil();
4990             }
4991         }
4992 
4993         @Override
4994         public void visitReference(JCMemberReference that) {
4995             super.visitReference(that);
4996             if (that.sym == null) {
4997                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4998                         syms.noSymbol);
4999             }
5000             if (that.targets == null) {
5001                 that.targets = List.nil();
5002             }
5003         }
5004     }
5005     // </editor-fold>
5006 
5007     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
5008         new TreeScanner() {
5009             Symbol packge = pkg;
5010             @Override
5011             public void visitIdent(JCIdent that) {
5012                 that.sym = packge;
5013             }
5014 
5015             @Override
5016             public void visitSelect(JCFieldAccess that) {
5017                 that.sym = packge;
5018                 packge = packge.owner;
5019                 super.visitSelect(that);
5020             }
5021         }.scan(pid);
5022     }
5023 
5024 }