1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.tools.JavaFileManager;
  31 
  32 import com.sun.tools.javac.code.*;
  33 import com.sun.tools.javac.code.Attribute.Compound;
  34 import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
  35 import com.sun.tools.javac.jvm.*;
  36 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  37 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  38 import com.sun.tools.javac.tree.*;
  39 import com.sun.tools.javac.util.*;
  40 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  41 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  42 import com.sun.tools.javac.util.List;
  43 
  44 import com.sun.tools.javac.code.Lint;
  45 import com.sun.tools.javac.code.Lint.LintCategory;
  46 import com.sun.tools.javac.code.Scope.WriteableScope;
  47 import com.sun.tools.javac.code.Type.*;
  48 import com.sun.tools.javac.code.Symbol.*;
  49 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  50 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
  51 import com.sun.tools.javac.tree.JCTree.*;
  52 
  53 import static com.sun.tools.javac.code.Flags.*;
  54 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  55 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  56 import static com.sun.tools.javac.code.Kinds.*;
  57 import static com.sun.tools.javac.code.Kinds.Kind.*;
  58 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  59 import static com.sun.tools.javac.code.TypeTag.*;
  60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  61 
  62 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  63 
  64 /** Type checking helper class for the attribution phase.
  65  *
  66  *  <p><b>This is NOT part of any supported API.
  67  *  If you write code that depends on this, you do so at your own risk.
  68  *  This code and its internal interfaces are subject to change or
  69  *  deletion without notice.</b>
  70  */
  71 public class Check {
  72     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  73 
  74     private final Names names;
  75     private final Log log;
  76     private final Resolve rs;
  77     private final Symtab syms;
  78     private final Enter enter;
  79     private final DeferredAttr deferredAttr;
  80     private final Infer infer;
  81     private final Types types;
  82     private final TypeAnnotations typeAnnotations;
  83     private final JCDiagnostic.Factory diags;
  84     private final JavaFileManager fileManager;
  85     private final Source source;
  86     private final Profile profile;
  87     private final boolean warnOnAccessToSensitiveMembers;
  88 
  89     // The set of lint options currently in effect. It is initialized
  90     // from the context, and then is set/reset as needed by Attr as it
  91     // visits all the various parts of the trees during attribution.
  92     private Lint lint;
  93 
  94     // The method being analyzed in Attr - it is set/reset as needed by
  95     // Attr as it visits new method declarations.
  96     private MethodSymbol method;
  97 
  98     public static Check instance(Context context) {
  99         Check instance = context.get(checkKey);
 100         if (instance == null)
 101             instance = new Check(context);
 102         return instance;
 103     }
 104 
 105     protected Check(Context context) {
 106         context.put(checkKey, this);
 107 
 108         names = Names.instance(context);
 109         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
 110             names.FIELD, names.METHOD, names.CONSTRUCTOR,
 111             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
 112         log = Log.instance(context);
 113         rs = Resolve.instance(context);
 114         syms = Symtab.instance(context);
 115         enter = Enter.instance(context);
 116         deferredAttr = DeferredAttr.instance(context);
 117         infer = Infer.instance(context);
 118         types = Types.instance(context);
 119         typeAnnotations = TypeAnnotations.instance(context);
 120         diags = JCDiagnostic.Factory.instance(context);
 121         Options options = Options.instance(context);
 122         lint = Lint.instance(context);
 123         fileManager = context.get(JavaFileManager.class);
 124 
 125         source = Source.instance(context);
 126         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
 127         allowDefaultMethods = source.allowDefaultMethods();
 128         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
 129         allowPrivateSafeVarargs = source.allowPrivateSafeVarargs();
 130         allowDiamondWithAnonymousClassCreation = source.allowDiamondWithAnonymousClassCreation();
 131         warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
 132 
 133         Target target = Target.instance(context);
 134         syntheticNameChar = target.syntheticNameChar();
 135 
 136         profile = Profile.instance(context);
 137 
 138         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 139         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 140         boolean enforceMandatoryWarnings = true;
 141 
 142         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
 143                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
 144         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
 145                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
 146         sunApiHandler = new MandatoryWarningHandler(log, false,
 147                 enforceMandatoryWarnings, "sunapi", null);
 148 
 149         deferredLintHandler = DeferredLintHandler.instance(context);
 150     }
 151 
 152     /** Switch: simplified varargs enabled?
 153      */
 154     boolean allowSimplifiedVarargs;
 155 
 156     /** Switch: default methods enabled?
 157      */
 158     boolean allowDefaultMethods;
 159 
 160     /** Switch: should unrelated return types trigger a method clash?
 161      */
 162     boolean allowStrictMethodClashCheck;
 163 
 164     /** Switch: can the @SafeVarargs annotation be applied to private methods?
 165      */
 166     boolean allowPrivateSafeVarargs;
 167 
 168     /** Switch: can diamond inference be used in anonymous instance creation ?
 169      */
 170     boolean allowDiamondWithAnonymousClassCreation;
 171 
 172     /** Character for synthetic names
 173      */
 174     char syntheticNameChar;
 175 
 176     /** A table mapping flat names of all compiled classes for each module in this run
 177      *  to their symbols; maintained from outside.
 178      */
 179     private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
 180 
 181     /** A handler for messages about deprecated usage.
 182      */
 183     private MandatoryWarningHandler deprecationHandler;
 184 
 185     /** A handler for messages about unchecked or unsafe usage.
 186      */
 187     private MandatoryWarningHandler uncheckedHandler;
 188 
 189     /** A handler for messages about using proprietary API.
 190      */
 191     private MandatoryWarningHandler sunApiHandler;
 192 
 193     /** A handler for deferred lint warnings.
 194      */
 195     private DeferredLintHandler deferredLintHandler;
 196 
 197 /* *************************************************************************
 198  * Errors and Warnings
 199  **************************************************************************/
 200 
 201     Lint setLint(Lint newLint) {
 202         Lint prev = lint;
 203         lint = newLint;
 204         return prev;
 205     }
 206 
 207     MethodSymbol setMethod(MethodSymbol newMethod) {
 208         MethodSymbol prev = method;
 209         method = newMethod;
 210         return prev;
 211     }
 212 
 213     /** Warn about deprecated symbol.
 214      *  @param pos        Position to be used for error reporting.
 215      *  @param sym        The deprecated symbol.
 216      */
 217     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 218         if (!lint.isSuppressed(LintCategory.DEPRECATION))
 219             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
 220     }
 221 
 222     /** Warn about unchecked operation.
 223      *  @param pos        Position to be used for error reporting.
 224      *  @param msg        A string describing the problem.
 225      */
 226     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
 227         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 228             uncheckedHandler.report(pos, msg, args);
 229     }
 230 
 231     /** Warn about unsafe vararg method decl.
 232      *  @param pos        Position to be used for error reporting.
 233      */
 234     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
 235         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
 236             log.warning(LintCategory.VARARGS, pos, key, args);
 237     }
 238 
 239     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
 240         if (lint.isEnabled(LintCategory.STATIC))
 241             log.warning(LintCategory.STATIC, pos, msg, args);
 242     }
 243 
 244     /** Warn about division by integer constant zero.
 245      *  @param pos        Position to be used for error reporting.
 246      */
 247     void warnDivZero(DiagnosticPosition pos) {
 248         if (lint.isEnabled(LintCategory.DIVZERO))
 249             log.warning(LintCategory.DIVZERO, pos, "div.zero");
 250     }
 251 
 252     /**
 253      * Report any deferred diagnostics.
 254      */
 255     public void reportDeferredDiagnostics() {
 256         deprecationHandler.reportDeferredDiagnostic();
 257         uncheckedHandler.reportDeferredDiagnostic();
 258         sunApiHandler.reportDeferredDiagnostic();
 259     }
 260 
 261 
 262     /** Report a failure to complete a class.
 263      *  @param pos        Position to be used for error reporting.
 264      *  @param ex         The failure to report.
 265      */
 266     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 267         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
 268         if (ex instanceof ClassFinder.BadClassFile) throw new Abort();
 269         else return syms.errType;
 270     }
 271 
 272     /** Report an error that wrong type tag was found.
 273      *  @param pos        Position to be used for error reporting.
 274      *  @param required   An internationalized string describing the type tag
 275      *                    required.
 276      *  @param found      The type that was found.
 277      */
 278     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
 279         // this error used to be raised by the parser,
 280         // but has been delayed to this point:
 281         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
 282             log.error(pos, "illegal.start.of.type");
 283             return syms.errType;
 284         }
 285         log.error(pos, "type.found.req", found, required);
 286         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
 287     }
 288 
 289     /** Report an error that symbol cannot be referenced before super
 290      *  has been called.
 291      *  @param pos        Position to be used for error reporting.
 292      *  @param sym        The referenced symbol.
 293      */
 294     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
 295         log.error(pos, "cant.ref.before.ctor.called", sym);
 296     }
 297 
 298     /** Report duplicate declaration error.
 299      */
 300     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 301         if (!sym.type.isErroneous()) {
 302             Symbol location = sym.location();
 303             if (location.kind == MTH &&
 304                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 305                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
 306                         kindName(sym.location()), kindName(sym.location().enclClass()),
 307                         sym.location().enclClass());
 308             } else {
 309                 log.error(pos, "already.defined", kindName(sym), sym,
 310                         kindName(sym.location()), sym.location());
 311             }
 312         }
 313     }
 314 
 315     /** Report array/varargs duplicate declaration
 316      */
 317     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 318         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 319             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
 320         }
 321     }
 322 
 323 /* ************************************************************************
 324  * duplicate declaration checking
 325  *************************************************************************/
 326 
 327     /** Check that variable does not hide variable with same name in
 328      *  immediately enclosing local scope.
 329      *  @param pos           Position for error reporting.
 330      *  @param v             The symbol.
 331      *  @param s             The scope.
 332      */
 333     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 334         for (Symbol sym : s.getSymbolsByName(v.name)) {
 335             if (sym.owner != v.owner) break;
 336             if (sym.kind == VAR &&
 337                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 338                 v.name != names.error) {
 339                 duplicateError(pos, sym);
 340                 return;
 341             }
 342         }
 343     }
 344 
 345     /** Check that a class or interface does not hide a class or
 346      *  interface with same name in immediately enclosing local scope.
 347      *  @param pos           Position for error reporting.
 348      *  @param c             The symbol.
 349      *  @param s             The scope.
 350      */
 351     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 352         for (Symbol sym : s.getSymbolsByName(c.name)) {
 353             if (sym.owner != c.owner) break;
 354             if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
 355                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 356                 c.name != names.error) {
 357                 duplicateError(pos, sym);
 358                 return;
 359             }
 360         }
 361     }
 362 
 363     /** Check that class does not have the same name as one of
 364      *  its enclosing classes, or as a class defined in its enclosing scope.
 365      *  return true if class is unique in its enclosing scope.
 366      *  @param pos           Position for error reporting.
 367      *  @param name          The class name.
 368      *  @param s             The enclosing scope.
 369      */
 370     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 371         for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
 372             if (sym.kind == TYP && sym.name != names.error) {
 373                 duplicateError(pos, sym);
 374                 return false;
 375             }
 376         }
 377         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 378             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
 379                 duplicateError(pos, sym);
 380                 return true;
 381             }
 382         }
 383         return true;
 384     }
 385 
 386 /* *************************************************************************
 387  * Class name generation
 388  **************************************************************************/
 389 
 390 
 391     private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
 392 
 393     /** Return name of local class.
 394      *  This is of the form   {@code <enclClass> $ n <classname> }
 395      *  where
 396      *    enclClass is the flat name of the enclosing class,
 397      *    classname is the simple name of the local class
 398      */
 399     Name localClassName(ClassSymbol c) {
 400         Name enclFlatname = c.owner.enclClass().flatname;
 401         String enclFlatnameStr = enclFlatname.toString();
 402         Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
 403         Integer index = localClassNameIndexes.get(key);
 404         for (int i = (index == null) ? 1 : index; ; i++) {
 405             Name flatname = names.fromString(enclFlatnameStr
 406                     + syntheticNameChar + i + c.name);
 407             if (getCompiled(c.packge().modle, flatname) == null) {
 408                 localClassNameIndexes.put(key, i + 1);
 409                 return flatname;
 410             }
 411         }
 412     }
 413 
 414     void clearLocalClassNameIndexes(ClassSymbol c) {
 415         localClassNameIndexes.remove(new Pair<>(
 416                 c.owner.enclClass().flatname, c.name));
 417     }
 418 
 419     public void newRound() {
 420         compiled.clear();
 421         localClassNameIndexes.clear();
 422     }
 423 
 424     public void putCompiled(ClassSymbol csym) {
 425         compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
 426     }
 427 
 428     public ClassSymbol getCompiled(ClassSymbol csym) {
 429         return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
 430     }
 431 
 432     public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
 433         return compiled.get(Pair.of(msym, flatname));
 434     }
 435 
 436     public void removeCompiled(ClassSymbol csym) {
 437         compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
 438     }
 439 
 440 /* *************************************************************************
 441  * Type Checking
 442  **************************************************************************/
 443 
 444     /**
 445      * A check context is an object that can be used to perform compatibility
 446      * checks - depending on the check context, meaning of 'compatibility' might
 447      * vary significantly.
 448      */
 449     public interface CheckContext {
 450         /**
 451          * Is type 'found' compatible with type 'req' in given context
 452          */
 453         boolean compatible(Type found, Type req, Warner warn);
 454         /**
 455          * Report a check error
 456          */
 457         void report(DiagnosticPosition pos, JCDiagnostic details);
 458         /**
 459          * Obtain a warner for this check context
 460          */
 461         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 462 
 463         public InferenceContext inferenceContext();
 464 
 465         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 466     }
 467 
 468     /**
 469      * This class represent a check context that is nested within another check
 470      * context - useful to check sub-expressions. The default behavior simply
 471      * redirects all method calls to the enclosing check context leveraging
 472      * the forwarding pattern.
 473      */
 474     static class NestedCheckContext implements CheckContext {
 475         CheckContext enclosingContext;
 476 
 477         NestedCheckContext(CheckContext enclosingContext) {
 478             this.enclosingContext = enclosingContext;
 479         }
 480 
 481         public boolean compatible(Type found, Type req, Warner warn) {
 482             return enclosingContext.compatible(found, req, warn);
 483         }
 484 
 485         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 486             enclosingContext.report(pos, details);
 487         }
 488 
 489         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 490             return enclosingContext.checkWarner(pos, found, req);
 491         }
 492 
 493         public InferenceContext inferenceContext() {
 494             return enclosingContext.inferenceContext();
 495         }
 496 
 497         public DeferredAttrContext deferredAttrContext() {
 498             return enclosingContext.deferredAttrContext();
 499         }
 500     }
 501 
 502     /**
 503      * Check context to be used when evaluating assignment/return statements
 504      */
 505     CheckContext basicHandler = new CheckContext() {
 506         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 507             log.error(pos, "prob.found.req", details);
 508         }
 509         public boolean compatible(Type found, Type req, Warner warn) {
 510             return types.isAssignable(found, req, warn);
 511         }
 512 
 513         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 514             return convertWarner(pos, found, req);
 515         }
 516 
 517         public InferenceContext inferenceContext() {
 518             return infer.emptyContext;
 519         }
 520 
 521         public DeferredAttrContext deferredAttrContext() {
 522             return deferredAttr.emptyDeferredAttrContext;
 523         }
 524 
 525         @Override
 526         public String toString() {
 527             return "CheckContext: basicHandler";
 528         }
 529     };
 530 
 531     /** Check that a given type is assignable to a given proto-type.
 532      *  If it is, return the type, otherwise return errType.
 533      *  @param pos        Position to be used for error reporting.
 534      *  @param found      The type that was found.
 535      *  @param req        The type that was required.
 536      */
 537     public Type checkType(DiagnosticPosition pos, Type found, Type req) {
 538         return checkType(pos, found, req, basicHandler);
 539     }
 540 
 541     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 542         final InferenceContext inferenceContext = checkContext.inferenceContext();
 543         if (inferenceContext.free(req) || inferenceContext.free(found)) {
 544             inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
 545                 @Override
 546                 public void typesInferred(InferenceContext inferenceContext) {
 547                     checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
 548                 }
 549             });
 550         }
 551         if (req.hasTag(ERROR))
 552             return req;
 553         if (req.hasTag(NONE))
 554             return found;
 555         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 556             return found;
 557         } else {
 558             if (found.isNumeric() && req.isNumeric()) {
 559                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
 560                 return types.createErrorType(found);
 561             }
 562             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
 563             return types.createErrorType(found);
 564         }
 565     }
 566 
 567     /** Check that a given type can be cast to a given target type.
 568      *  Return the result of the cast.
 569      *  @param pos        Position to be used for error reporting.
 570      *  @param found      The type that is being cast.
 571      *  @param req        The target type of the cast.
 572      */
 573     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 574         return checkCastable(pos, found, req, basicHandler);
 575     }
 576     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 577         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 578             return req;
 579         } else {
 580             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
 581             return types.createErrorType(found);
 582         }
 583     }
 584 
 585     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 586      * The problem should only be reported for non-292 cast
 587      */
 588     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 589         if (!tree.type.isErroneous()
 590                 && types.isSameType(tree.expr.type, tree.clazz.type)
 591                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 592                 && !is292targetTypeCast(tree)) {
 593             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
 594                 @Override
 595                 public void report() {
 596                     if (lint.isEnabled(Lint.LintCategory.CAST))
 597                         log.warning(Lint.LintCategory.CAST,
 598                                 tree.pos(), "redundant.cast", tree.clazz.type);
 599                 }
 600             });
 601         }
 602     }
 603     //where
 604         private boolean is292targetTypeCast(JCTypeCast tree) {
 605             boolean is292targetTypeCast = false;
 606             JCExpression expr = TreeInfo.skipParens(tree.expr);
 607             if (expr.hasTag(APPLY)) {
 608                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 609                 Symbol sym = TreeInfo.symbol(apply.meth);
 610                 is292targetTypeCast = sym != null &&
 611                     sym.kind == MTH &&
 612                     (sym.flags() & HYPOTHETICAL) != 0;
 613             }
 614             return is292targetTypeCast;
 615         }
 616 
 617         private static final boolean ignoreAnnotatedCasts = true;
 618 
 619     /** Check that a type is within some bounds.
 620      *
 621      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 622      *  type argument.
 623      *  @param a             The type that should be bounded by bs.
 624      *  @param bound         The bound.
 625      */
 626     private boolean checkExtends(Type a, Type bound) {
 627          if (a.isUnbound()) {
 628              return true;
 629          } else if (!a.hasTag(WILDCARD)) {
 630              a = types.cvarUpperBound(a);
 631              return types.isSubtype(a, bound);
 632          } else if (a.isExtendsBound()) {
 633              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 634          } else if (a.isSuperBound()) {
 635              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 636          }
 637          return true;
 638      }
 639 
 640     /** Check that type is different from 'void'.
 641      *  @param pos           Position to be used for error reporting.
 642      *  @param t             The type to be checked.
 643      */
 644     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 645         if (t.hasTag(VOID)) {
 646             log.error(pos, "void.not.allowed.here");
 647             return types.createErrorType(t);
 648         } else {
 649             return t;
 650         }
 651     }
 652 
 653     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 654         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 655             return typeTagError(pos,
 656                                 diags.fragment("type.req.class.array"),
 657                                 asTypeParam(t));
 658         } else {
 659             return t;
 660         }
 661     }
 662 
 663     /** Check that type is a class or interface type.
 664      *  @param pos           Position to be used for error reporting.
 665      *  @param t             The type to be checked.
 666      */
 667     Type checkClassType(DiagnosticPosition pos, Type t) {
 668         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 669             return typeTagError(pos,
 670                                 diags.fragment("type.req.class"),
 671                                 asTypeParam(t));
 672         } else {
 673             return t;
 674         }
 675     }
 676     //where
 677         private Object asTypeParam(Type t) {
 678             return (t.hasTag(TYPEVAR))
 679                                     ? diags.fragment("type.parameter", t)
 680                                     : t;
 681         }
 682 
 683     /** Check that type is a valid qualifier for a constructor reference expression
 684      */
 685     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 686         t = checkClassOrArrayType(pos, t);
 687         if (t.hasTag(CLASS)) {
 688             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 689                 log.error(pos, "abstract.cant.be.instantiated", t.tsym);
 690                 t = types.createErrorType(t);
 691             } else if ((t.tsym.flags() & ENUM) != 0) {
 692                 log.error(pos, "enum.cant.be.instantiated");
 693                 t = types.createErrorType(t);
 694             } else {
 695                 t = checkClassType(pos, t, true);
 696             }
 697         } else if (t.hasTag(ARRAY)) {
 698             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 699                 log.error(pos, "generic.array.creation");
 700                 t = types.createErrorType(t);
 701             }
 702         }
 703         return t;
 704     }
 705 
 706     /** Check that type is a class or interface type.
 707      *  @param pos           Position to be used for error reporting.
 708      *  @param t             The type to be checked.
 709      *  @param noBounds    True if type bounds are illegal here.
 710      */
 711     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 712         t = checkClassType(pos, t);
 713         if (noBounds && t.isParameterized()) {
 714             List<Type> args = t.getTypeArguments();
 715             while (args.nonEmpty()) {
 716                 if (args.head.hasTag(WILDCARD))
 717                     return typeTagError(pos,
 718                                         diags.fragment("type.req.exact"),
 719                                         args.head);
 720                 args = args.tail;
 721             }
 722         }
 723         return t;
 724     }
 725 
 726     /** Check that type is a reference type, i.e. a class, interface or array type
 727      *  or a type variable.
 728      *  @param pos           Position to be used for error reporting.
 729      *  @param t             The type to be checked.
 730      */
 731     Type checkRefType(DiagnosticPosition pos, Type t) {
 732         if (t.isReference())
 733             return t;
 734         else
 735             return typeTagError(pos,
 736                                 diags.fragment("type.req.ref"),
 737                                 t);
 738     }
 739 
 740     /** Check that each type is a reference type, i.e. a class, interface or array type
 741      *  or a type variable.
 742      *  @param trees         Original trees, used for error reporting.
 743      *  @param types         The types to be checked.
 744      */
 745     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 746         List<JCExpression> tl = trees;
 747         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 748             l.head = checkRefType(tl.head.pos(), l.head);
 749             tl = tl.tail;
 750         }
 751         return types;
 752     }
 753 
 754     /** Check that type is a null or reference type.
 755      *  @param pos           Position to be used for error reporting.
 756      *  @param t             The type to be checked.
 757      */
 758     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 759         if (t.isReference() || t.hasTag(BOT))
 760             return t;
 761         else
 762             return typeTagError(pos,
 763                                 diags.fragment("type.req.ref"),
 764                                 t);
 765     }
 766 
 767     /** Check that flag set does not contain elements of two conflicting sets. s
 768      *  Return true if it doesn't.
 769      *  @param pos           Position to be used for error reporting.
 770      *  @param flags         The set of flags to be checked.
 771      *  @param set1          Conflicting flags set #1.
 772      *  @param set2          Conflicting flags set #2.
 773      */
 774     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 775         if ((flags & set1) != 0 && (flags & set2) != 0) {
 776             log.error(pos,
 777                       "illegal.combination.of.modifiers",
 778                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
 779                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
 780             return false;
 781         } else
 782             return true;
 783     }
 784 
 785     /** Check that usage of diamond operator is correct (i.e. diamond should not
 786      * be used with non-generic classes or in anonymous class creation expressions)
 787      */
 788     Type checkDiamond(JCNewClass tree, Type t) {
 789         if (!TreeInfo.isDiamond(tree) ||
 790                 t.isErroneous()) {
 791             return checkClassType(tree.clazz.pos(), t, true);
 792         } else {
 793             if (tree.def != null && !allowDiamondWithAnonymousClassCreation) {
 794                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
 795                         Errors.CantApplyDiamond1(t, Fragments.DiamondAndAnonClassNotSupportedInSource(source.name)));
 796             }
 797             if (t.tsym.type.getTypeArguments().isEmpty()) {
 798                 log.error(tree.clazz.pos(),
 799                     "cant.apply.diamond.1",
 800                     t, diags.fragment("diamond.non.generic", t));
 801                 return types.createErrorType(t);
 802             } else if (tree.typeargs != null &&
 803                     tree.typeargs.nonEmpty()) {
 804                 log.error(tree.clazz.pos(),
 805                     "cant.apply.diamond.1",
 806                     t, diags.fragment("diamond.and.explicit.params", t));
 807                 return types.createErrorType(t);
 808             } else {
 809                 return t;
 810             }
 811         }
 812     }
 813 
 814     /** Check that the type inferred using the diamond operator does not contain
 815      *  non-denotable types such as captured types or intersection types.
 816      *  @param t the type inferred using the diamond operator
 817      *  @return  the (possibly empty) list of non-denotable types.
 818      */
 819     List<Type> checkDiamondDenotable(ClassType t) {
 820         ListBuffer<Type> buf = new ListBuffer<>();
 821         for (Type arg : t.allparams()) {
 822             if (!diamondTypeChecker.visit(arg, null)) {
 823                 buf.append(arg);
 824             }
 825         }
 826         return buf.toList();
 827     }
 828         // where
 829 
 830         /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
 831          *  types. The visit methods return false as soon as a non-denotable type is encountered and true
 832          *  otherwise.
 833          */
 834         private static final Types.SimpleVisitor<Boolean, Void> diamondTypeChecker = new Types.SimpleVisitor<Boolean, Void>() {
 835             @Override
 836             public Boolean visitType(Type t, Void s) {
 837                 return true;
 838             }
 839             @Override
 840             public Boolean visitClassType(ClassType t, Void s) {
 841                 if (t.isCompound()) {
 842                     return false;
 843                 }
 844                 for (Type targ : t.allparams()) {
 845                     if (!visit(targ, s)) {
 846                         return false;
 847                     }
 848                 }
 849                 return true;
 850             }
 851 
 852             @Override
 853             public Boolean visitTypeVar(TypeVar t, Void s) {
 854                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 855                   (i.e cannot have been produced by inference (18.4))
 856                 */
 857                 return t.tsym.owner.type.getTypeArguments().contains(t);
 858             }
 859 
 860             @Override
 861             public Boolean visitCapturedType(CapturedType t, Void s) {
 862                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 863                   (i.e cannot have been produced by capture conversion (5.1.10))
 864                 */
 865                 return false;
 866             }
 867 
 868             @Override
 869             public Boolean visitArrayType(ArrayType t, Void s) {
 870                 return visit(t.elemtype, s);
 871             }
 872 
 873             @Override
 874             public Boolean visitWildcardType(WildcardType t, Void s) {
 875                 return visit(t.type, s);
 876             }
 877         };
 878 
 879     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
 880         MethodSymbol m = tree.sym;
 881         if (!allowSimplifiedVarargs) return;
 882         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
 883         Type varargElemType = null;
 884         if (m.isVarArgs()) {
 885             varargElemType = types.elemtype(tree.params.last().type);
 886         }
 887         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
 888             if (varargElemType != null) {
 889                 log.error(tree,
 890                         "varargs.invalid.trustme.anno",
 891                           syms.trustMeType.tsym,
 892                           allowPrivateSafeVarargs ?
 893                           diags.fragment("varargs.trustme.on.virtual.varargs", m) :
 894                           diags.fragment("varargs.trustme.on.virtual.varargs.final.only", m));
 895             } else {
 896                 log.error(tree,
 897                             "varargs.invalid.trustme.anno",
 898                             syms.trustMeType.tsym,
 899                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
 900             }
 901         } else if (hasTrustMeAnno && varargElemType != null &&
 902                             types.isReifiable(varargElemType)) {
 903             warnUnsafeVararg(tree,
 904                             "varargs.redundant.trustme.anno",
 905                             syms.trustMeType.tsym,
 906                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
 907         }
 908         else if (!hasTrustMeAnno && varargElemType != null &&
 909                 !types.isReifiable(varargElemType)) {
 910             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
 911         }
 912     }
 913     //where
 914         private boolean isTrustMeAllowedOnMethod(Symbol s) {
 915             return (s.flags() & VARARGS) != 0 &&
 916                 (s.isConstructor() ||
 917                     (s.flags() & (STATIC | FINAL |
 918                                   (allowPrivateSafeVarargs ? PRIVATE : 0) )) != 0);
 919         }
 920 
 921     Type checkMethod(final Type mtype,
 922             final Symbol sym,
 923             final Env<AttrContext> env,
 924             final List<JCExpression> argtrees,
 925             final List<Type> argtypes,
 926             final boolean useVarargs,
 927             InferenceContext inferenceContext) {
 928         // System.out.println("call   : " + env.tree);
 929         // System.out.println("method : " + owntype);
 930         // System.out.println("actuals: " + argtypes);
 931         if (inferenceContext.free(mtype)) {
 932             inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
 933                 public void typesInferred(InferenceContext inferenceContext) {
 934                     checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
 935                 }
 936             });
 937             return mtype;
 938         }
 939         Type owntype = mtype;
 940         List<Type> formals = owntype.getParameterTypes();
 941         List<Type> nonInferred = sym.type.getParameterTypes();
 942         if (nonInferred.length() != formals.length()) nonInferred = formals;
 943         Type last = useVarargs ? formals.last() : null;
 944         if (sym.name == names.init && sym.owner == syms.enumSym) {
 945             formals = formals.tail.tail;
 946             nonInferred = nonInferred.tail.tail;
 947         }
 948         List<JCExpression> args = argtrees;
 949         if (args != null) {
 950             //this is null when type-checking a method reference
 951             while (formals.head != last) {
 952                 JCTree arg = args.head;
 953                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
 954                 assertConvertible(arg, arg.type, formals.head, warn);
 955                 args = args.tail;
 956                 formals = formals.tail;
 957                 nonInferred = nonInferred.tail;
 958             }
 959             if (useVarargs) {
 960                 Type varArg = types.elemtype(last);
 961                 while (args.tail != null) {
 962                     JCTree arg = args.head;
 963                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
 964                     assertConvertible(arg, arg.type, varArg, warn);
 965                     args = args.tail;
 966                 }
 967             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
 968                 // non-varargs call to varargs method
 969                 Type varParam = owntype.getParameterTypes().last();
 970                 Type lastArg = argtypes.last();
 971                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
 972                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
 973                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
 974                                 types.elemtype(varParam), varParam);
 975             }
 976         }
 977         if (useVarargs) {
 978             Type argtype = owntype.getParameterTypes().last();
 979             if (!types.isReifiable(argtype) &&
 980                 (!allowSimplifiedVarargs ||
 981                  sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
 982                  !isTrustMeAllowedOnMethod(sym))) {
 983                 warnUnchecked(env.tree.pos(),
 984                                   "unchecked.generic.array.creation",
 985                                   argtype);
 986             }
 987             if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
 988                 TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
 989             }
 990          }
 991          return owntype;
 992     }
 993     //where
 994     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
 995         if (types.isConvertible(actual, formal, warn))
 996             return;
 997 
 998         if (formal.isCompound()
 999             && types.isSubtype(actual, types.supertype(formal))
1000             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
1001             return;
1002     }
1003 
1004     /**
1005      * Check that type 't' is a valid instantiation of a generic class
1006      * (see JLS 4.5)
1007      *
1008      * @param t class type to be checked
1009      * @return true if 't' is well-formed
1010      */
1011     public boolean checkValidGenericType(Type t) {
1012         return firstIncompatibleTypeArg(t) == null;
1013     }
1014     //WHERE
1015         private Type firstIncompatibleTypeArg(Type type) {
1016             List<Type> formals = type.tsym.type.allparams();
1017             List<Type> actuals = type.allparams();
1018             List<Type> args = type.getTypeArguments();
1019             List<Type> forms = type.tsym.type.getTypeArguments();
1020             ListBuffer<Type> bounds_buf = new ListBuffer<>();
1021 
1022             // For matching pairs of actual argument types `a' and
1023             // formal type parameters with declared bound `b' ...
1024             while (args.nonEmpty() && forms.nonEmpty()) {
1025                 // exact type arguments needs to know their
1026                 // bounds (for upper and lower bound
1027                 // calculations).  So we create new bounds where
1028                 // type-parameters are replaced with actuals argument types.
1029                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1030                 args = args.tail;
1031                 forms = forms.tail;
1032             }
1033 
1034             args = type.getTypeArguments();
1035             List<Type> tvars_cap = types.substBounds(formals,
1036                                       formals,
1037                                       types.capture(type).allparams());
1038             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1039                 // Let the actual arguments know their bound
1040                 args.head.withTypeVar((TypeVar)tvars_cap.head);
1041                 args = args.tail;
1042                 tvars_cap = tvars_cap.tail;
1043             }
1044 
1045             args = type.getTypeArguments();
1046             List<Type> bounds = bounds_buf.toList();
1047 
1048             while (args.nonEmpty() && bounds.nonEmpty()) {
1049                 Type actual = args.head;
1050                 if (!isTypeArgErroneous(actual) &&
1051                         !bounds.head.isErroneous() &&
1052                         !checkExtends(actual, bounds.head)) {
1053                     return args.head;
1054                 }
1055                 args = args.tail;
1056                 bounds = bounds.tail;
1057             }
1058 
1059             args = type.getTypeArguments();
1060             bounds = bounds_buf.toList();
1061 
1062             for (Type arg : types.capture(type).getTypeArguments()) {
1063                 if (arg.hasTag(TYPEVAR) &&
1064                         arg.getUpperBound().isErroneous() &&
1065                         !bounds.head.isErroneous() &&
1066                         !isTypeArgErroneous(args.head)) {
1067                     return args.head;
1068                 }
1069                 bounds = bounds.tail;
1070                 args = args.tail;
1071             }
1072 
1073             return null;
1074         }
1075         //where
1076         boolean isTypeArgErroneous(Type t) {
1077             return isTypeArgErroneous.visit(t);
1078         }
1079 
1080         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1081             public Boolean visitType(Type t, Void s) {
1082                 return t.isErroneous();
1083             }
1084             @Override
1085             public Boolean visitTypeVar(TypeVar t, Void s) {
1086                 return visit(t.getUpperBound());
1087             }
1088             @Override
1089             public Boolean visitCapturedType(CapturedType t, Void s) {
1090                 return visit(t.getUpperBound()) ||
1091                         visit(t.getLowerBound());
1092             }
1093             @Override
1094             public Boolean visitWildcardType(WildcardType t, Void s) {
1095                 return visit(t.type);
1096             }
1097         };
1098 
1099     /** Check that given modifiers are legal for given symbol and
1100      *  return modifiers together with any implicit modifiers for that symbol.
1101      *  Warning: we can't use flags() here since this method
1102      *  is called during class enter, when flags() would cause a premature
1103      *  completion.
1104      *  @param pos           Position to be used for error reporting.
1105      *  @param flags         The set of modifiers given in a definition.
1106      *  @param sym           The defined symbol.
1107      */
1108     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1109         long mask;
1110         long implicit = 0;
1111 
1112         switch (sym.kind) {
1113         case VAR:
1114             if (TreeInfo.isReceiverParam(tree))
1115                 mask = ReceiverParamFlags;
1116             else if (sym.owner.kind != TYP)
1117                 mask = LocalVarFlags;
1118             else if ((sym.owner.flags_field & INTERFACE) != 0)
1119                 mask = implicit = InterfaceVarFlags;
1120             else
1121                 mask = VarFlags;
1122             break;
1123         case MTH:
1124             if (sym.name == names.init) {
1125                 if ((sym.owner.flags_field & ENUM) != 0) {
1126                     // enum constructors cannot be declared public or
1127                     // protected and must be implicitly or explicitly
1128                     // private
1129                     implicit = PRIVATE;
1130                     mask = PRIVATE;
1131                 } else
1132                     mask = ConstructorFlags;
1133             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1134                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1135                     mask = AnnotationTypeElementMask;
1136                     implicit = PUBLIC | ABSTRACT;
1137                 } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1138                     mask = InterfaceMethodMask;
1139                     implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1140                     if ((flags & DEFAULT) != 0) {
1141                         implicit |= ABSTRACT;
1142                     }
1143                 } else {
1144                     mask = implicit = InterfaceMethodFlags;
1145                 }
1146             } else {
1147                 mask = MethodFlags;
1148             }
1149             // Imply STRICTFP if owner has STRICTFP set.
1150             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1151                 ((flags) & Flags.DEFAULT) != 0)
1152                 implicit |= sym.owner.flags_field & STRICTFP;
1153             break;
1154         case TYP:
1155             if (sym.isLocal()) {
1156                 mask = LocalClassFlags;
1157                 if ((sym.owner.flags_field & STATIC) == 0 &&
1158                     (flags & ENUM) != 0)
1159                     log.error(pos, "enums.must.be.static");
1160             } else if (sym.owner.kind == TYP) {
1161                 mask = MemberClassFlags;
1162                 if (sym.owner.owner.kind == PCK ||
1163                     (sym.owner.flags_field & STATIC) != 0)
1164                     mask |= STATIC;
1165                 else if ((flags & ENUM) != 0)
1166                     log.error(pos, "enums.must.be.static");
1167                 // Nested interfaces and enums are always STATIC (Spec ???)
1168                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1169             } else {
1170                 mask = ClassFlags;
1171             }
1172             // Interfaces are always ABSTRACT
1173             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1174 
1175             if ((flags & ENUM) != 0) {
1176                 // enums can't be declared abstract or final
1177                 mask &= ~(ABSTRACT | FINAL);
1178                 implicit |= implicitEnumFinalFlag(tree);
1179             }
1180             // Imply STRICTFP if owner has STRICTFP set.
1181             implicit |= sym.owner.flags_field & STRICTFP;
1182             break;
1183         default:
1184             throw new AssertionError();
1185         }
1186         long illegal = flags & ExtendedStandardFlags & ~mask;
1187         if (illegal != 0) {
1188             if ((illegal & INTERFACE) != 0) {
1189                 log.error(pos, "intf.not.allowed.here");
1190                 mask |= INTERFACE;
1191             }
1192             else {
1193                 log.error(pos,
1194                           "mod.not.allowed.here", asFlagSet(illegal));
1195             }
1196         }
1197         else if ((sym.kind == TYP ||
1198                   // ISSUE: Disallowing abstract&private is no longer appropriate
1199                   // in the presence of inner classes. Should it be deleted here?
1200                   checkDisjoint(pos, flags,
1201                                 ABSTRACT,
1202                                 PRIVATE | STATIC | DEFAULT))
1203                  &&
1204                  checkDisjoint(pos, flags,
1205                                 STATIC | PRIVATE,
1206                                 DEFAULT)
1207                  &&
1208                  checkDisjoint(pos, flags,
1209                                ABSTRACT | INTERFACE,
1210                                FINAL | NATIVE | SYNCHRONIZED)
1211                  &&
1212                  checkDisjoint(pos, flags,
1213                                PUBLIC,
1214                                PRIVATE | PROTECTED)
1215                  &&
1216                  checkDisjoint(pos, flags,
1217                                PRIVATE,
1218                                PUBLIC | PROTECTED)
1219                  &&
1220                  checkDisjoint(pos, flags,
1221                                FINAL,
1222                                VOLATILE)
1223                  &&
1224                  (sym.kind == TYP ||
1225                   checkDisjoint(pos, flags,
1226                                 ABSTRACT | NATIVE,
1227                                 STRICTFP))) {
1228             // skip
1229         }
1230         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1231     }
1232 
1233 
1234     /** Determine if this enum should be implicitly final.
1235      *
1236      *  If the enum has no specialized enum contants, it is final.
1237      *
1238      *  If the enum does have specialized enum contants, it is
1239      *  <i>not</i> final.
1240      */
1241     private long implicitEnumFinalFlag(JCTree tree) {
1242         if (!tree.hasTag(CLASSDEF)) return 0;
1243         class SpecialTreeVisitor extends JCTree.Visitor {
1244             boolean specialized;
1245             SpecialTreeVisitor() {
1246                 this.specialized = false;
1247             }
1248 
1249             @Override
1250             public void visitTree(JCTree tree) { /* no-op */ }
1251 
1252             @Override
1253             public void visitVarDef(JCVariableDecl tree) {
1254                 if ((tree.mods.flags & ENUM) != 0) {
1255                     if (tree.init instanceof JCNewClass &&
1256                         ((JCNewClass) tree.init).def != null) {
1257                         specialized = true;
1258                     }
1259                 }
1260             }
1261         }
1262 
1263         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1264         JCClassDecl cdef = (JCClassDecl) tree;
1265         for (JCTree defs: cdef.defs) {
1266             defs.accept(sts);
1267             if (sts.specialized) return 0;
1268         }
1269         return FINAL;
1270     }
1271 
1272 /* *************************************************************************
1273  * Type Validation
1274  **************************************************************************/
1275 
1276     /** Validate a type expression. That is,
1277      *  check that all type arguments of a parametric type are within
1278      *  their bounds. This must be done in a second phase after type attribution
1279      *  since a class might have a subclass as type parameter bound. E.g:
1280      *
1281      *  <pre>{@code
1282      *  class B<A extends C> { ... }
1283      *  class C extends B<C> { ... }
1284      *  }</pre>
1285      *
1286      *  and we can't make sure that the bound is already attributed because
1287      *  of possible cycles.
1288      *
1289      * Visitor method: Validate a type expression, if it is not null, catching
1290      *  and reporting any completion failures.
1291      */
1292     void validate(JCTree tree, Env<AttrContext> env) {
1293         validate(tree, env, true);
1294     }
1295     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1296         new Validator(env).validateTree(tree, checkRaw, true);
1297     }
1298 
1299     /** Visitor method: Validate a list of type expressions.
1300      */
1301     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1302         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1303             validate(l.head, env);
1304     }
1305 
1306     /** A visitor class for type validation.
1307      */
1308     class Validator extends JCTree.Visitor {
1309 
1310         boolean checkRaw;
1311         boolean isOuter;
1312         Env<AttrContext> env;
1313 
1314         Validator(Env<AttrContext> env) {
1315             this.env = env;
1316         }
1317 
1318         @Override
1319         public void visitTypeArray(JCArrayTypeTree tree) {
1320             validateTree(tree.elemtype, checkRaw, isOuter);
1321         }
1322 
1323         @Override
1324         public void visitTypeApply(JCTypeApply tree) {
1325             if (tree.type.hasTag(CLASS)) {
1326                 List<JCExpression> args = tree.arguments;
1327                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1328 
1329                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1330                 if (incompatibleArg != null) {
1331                     for (JCTree arg : tree.arguments) {
1332                         if (arg.type == incompatibleArg) {
1333                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1334                         }
1335                         forms = forms.tail;
1336                      }
1337                  }
1338 
1339                 forms = tree.type.tsym.type.getTypeArguments();
1340 
1341                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1342 
1343                 // For matching pairs of actual argument types `a' and
1344                 // formal type parameters with declared bound `b' ...
1345                 while (args.nonEmpty() && forms.nonEmpty()) {
1346                     validateTree(args.head,
1347                             !(isOuter && is_java_lang_Class),
1348                             false);
1349                     args = args.tail;
1350                     forms = forms.tail;
1351                 }
1352 
1353                 // Check that this type is either fully parameterized, or
1354                 // not parameterized at all.
1355                 if (tree.type.getEnclosingType().isRaw())
1356                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1357                 if (tree.clazz.hasTag(SELECT))
1358                     visitSelectInternal((JCFieldAccess)tree.clazz);
1359             }
1360         }
1361 
1362         @Override
1363         public void visitTypeParameter(JCTypeParameter tree) {
1364             validateTrees(tree.bounds, true, isOuter);
1365             checkClassBounds(tree.pos(), tree.type);
1366         }
1367 
1368         @Override
1369         public void visitWildcard(JCWildcard tree) {
1370             if (tree.inner != null)
1371                 validateTree(tree.inner, true, isOuter);
1372         }
1373 
1374         @Override
1375         public void visitSelect(JCFieldAccess tree) {
1376             if (tree.type.hasTag(CLASS)) {
1377                 visitSelectInternal(tree);
1378 
1379                 // Check that this type is either fully parameterized, or
1380                 // not parameterized at all.
1381                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1382                     log.error(tree.pos(), "improperly.formed.type.param.missing");
1383             }
1384         }
1385 
1386         public void visitSelectInternal(JCFieldAccess tree) {
1387             if (tree.type.tsym.isStatic() &&
1388                 tree.selected.type.isParameterized()) {
1389                 // The enclosing type is not a class, so we are
1390                 // looking at a static member type.  However, the
1391                 // qualifying expression is parameterized.
1392                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
1393             } else {
1394                 // otherwise validate the rest of the expression
1395                 tree.selected.accept(this);
1396             }
1397         }
1398 
1399         @Override
1400         public void visitAnnotatedType(JCAnnotatedType tree) {
1401             tree.underlyingType.accept(this);
1402         }
1403 
1404         @Override
1405         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1406             if (that.type.hasTag(TypeTag.VOID)) {
1407                 log.error(that.pos(), "void.not.allowed.here");
1408             }
1409             super.visitTypeIdent(that);
1410         }
1411 
1412         /** Default visitor method: do nothing.
1413          */
1414         @Override
1415         public void visitTree(JCTree tree) {
1416         }
1417 
1418         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1419             if (tree != null) {
1420                 boolean prevCheckRaw = this.checkRaw;
1421                 this.checkRaw = checkRaw;
1422                 this.isOuter = isOuter;
1423 
1424                 try {
1425                     tree.accept(this);
1426                     if (checkRaw)
1427                         checkRaw(tree, env);
1428                 } catch (CompletionFailure ex) {
1429                     completionError(tree.pos(), ex);
1430                 } finally {
1431                     this.checkRaw = prevCheckRaw;
1432                 }
1433             }
1434         }
1435 
1436         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1437             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1438                 validateTree(l.head, checkRaw, isOuter);
1439         }
1440     }
1441 
1442     void checkRaw(JCTree tree, Env<AttrContext> env) {
1443         if (lint.isEnabled(LintCategory.RAW) &&
1444             tree.type.hasTag(CLASS) &&
1445             !TreeInfo.isDiamond(tree) &&
1446             !withinAnonConstr(env) &&
1447             tree.type.isRaw()) {
1448             log.warning(LintCategory.RAW,
1449                     tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1450         }
1451     }
1452     //where
1453         private boolean withinAnonConstr(Env<AttrContext> env) {
1454             return env.enclClass.name.isEmpty() &&
1455                     env.enclMethod != null && env.enclMethod.name == names.init;
1456         }
1457 
1458 /* *************************************************************************
1459  * Exception checking
1460  **************************************************************************/
1461 
1462     /* The following methods treat classes as sets that contain
1463      * the class itself and all their subclasses
1464      */
1465 
1466     /** Is given type a subtype of some of the types in given list?
1467      */
1468     boolean subset(Type t, List<Type> ts) {
1469         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1470             if (types.isSubtype(t, l.head)) return true;
1471         return false;
1472     }
1473 
1474     /** Is given type a subtype or supertype of
1475      *  some of the types in given list?
1476      */
1477     boolean intersects(Type t, List<Type> ts) {
1478         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1479             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1480         return false;
1481     }
1482 
1483     /** Add type set to given type list, unless it is a subclass of some class
1484      *  in the list.
1485      */
1486     List<Type> incl(Type t, List<Type> ts) {
1487         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1488     }
1489 
1490     /** Remove type set from type set list.
1491      */
1492     List<Type> excl(Type t, List<Type> ts) {
1493         if (ts.isEmpty()) {
1494             return ts;
1495         } else {
1496             List<Type> ts1 = excl(t, ts.tail);
1497             if (types.isSubtype(ts.head, t)) return ts1;
1498             else if (ts1 == ts.tail) return ts;
1499             else return ts1.prepend(ts.head);
1500         }
1501     }
1502 
1503     /** Form the union of two type set lists.
1504      */
1505     List<Type> union(List<Type> ts1, List<Type> ts2) {
1506         List<Type> ts = ts1;
1507         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1508             ts = incl(l.head, ts);
1509         return ts;
1510     }
1511 
1512     /** Form the difference of two type lists.
1513      */
1514     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1515         List<Type> ts = ts1;
1516         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1517             ts = excl(l.head, ts);
1518         return ts;
1519     }
1520 
1521     /** Form the intersection of two type lists.
1522      */
1523     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1524         List<Type> ts = List.nil();
1525         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1526             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1527         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1528             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1529         return ts;
1530     }
1531 
1532     /** Is exc an exception symbol that need not be declared?
1533      */
1534     boolean isUnchecked(ClassSymbol exc) {
1535         return
1536             exc.kind == ERR ||
1537             exc.isSubClass(syms.errorType.tsym, types) ||
1538             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1539     }
1540 
1541     /** Is exc an exception type that need not be declared?
1542      */
1543     boolean isUnchecked(Type exc) {
1544         return
1545             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1546             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1547             exc.hasTag(BOT);
1548     }
1549 
1550     /** Same, but handling completion failures.
1551      */
1552     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1553         try {
1554             return isUnchecked(exc);
1555         } catch (CompletionFailure ex) {
1556             completionError(pos, ex);
1557             return true;
1558         }
1559     }
1560 
1561     /** Is exc handled by given exception list?
1562      */
1563     boolean isHandled(Type exc, List<Type> handled) {
1564         return isUnchecked(exc) || subset(exc, handled);
1565     }
1566 
1567     /** Return all exceptions in thrown list that are not in handled list.
1568      *  @param thrown     The list of thrown exceptions.
1569      *  @param handled    The list of handled exceptions.
1570      */
1571     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1572         List<Type> unhandled = List.nil();
1573         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1574             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1575         return unhandled;
1576     }
1577 
1578 /* *************************************************************************
1579  * Overriding/Implementation checking
1580  **************************************************************************/
1581 
1582     /** The level of access protection given by a flag set,
1583      *  where PRIVATE is highest and PUBLIC is lowest.
1584      */
1585     static int protection(long flags) {
1586         switch ((short)(flags & AccessFlags)) {
1587         case PRIVATE: return 3;
1588         case PROTECTED: return 1;
1589         default:
1590         case PUBLIC: return 0;
1591         case 0: return 2;
1592         }
1593     }
1594 
1595     /** A customized "cannot override" error message.
1596      *  @param m      The overriding method.
1597      *  @param other  The overridden method.
1598      *  @return       An internationalized string.
1599      */
1600     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1601         String key;
1602         if ((other.owner.flags() & INTERFACE) == 0)
1603             key = "cant.override";
1604         else if ((m.owner.flags() & INTERFACE) == 0)
1605             key = "cant.implement";
1606         else
1607             key = "clashes.with";
1608         return diags.fragment(key, m, m.location(), other, other.location());
1609     }
1610 
1611     /** A customized "override" warning message.
1612      *  @param m      The overriding method.
1613      *  @param other  The overridden method.
1614      *  @return       An internationalized string.
1615      */
1616     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1617         String key;
1618         if ((other.owner.flags() & INTERFACE) == 0)
1619             key = "unchecked.override";
1620         else if ((m.owner.flags() & INTERFACE) == 0)
1621             key = "unchecked.implement";
1622         else
1623             key = "unchecked.clash.with";
1624         return diags.fragment(key, m, m.location(), other, other.location());
1625     }
1626 
1627     /** A customized "override" warning message.
1628      *  @param m      The overriding method.
1629      *  @param other  The overridden method.
1630      *  @return       An internationalized string.
1631      */
1632     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1633         String key;
1634         if ((other.owner.flags() & INTERFACE) == 0)
1635             key = "varargs.override";
1636         else  if ((m.owner.flags() & INTERFACE) == 0)
1637             key = "varargs.implement";
1638         else
1639             key = "varargs.clash.with";
1640         return diags.fragment(key, m, m.location(), other, other.location());
1641     }
1642 
1643     /** Check that this method conforms with overridden method 'other'.
1644      *  where `origin' is the class where checking started.
1645      *  Complications:
1646      *  (1) Do not check overriding of synthetic methods
1647      *      (reason: they might be final).
1648      *      todo: check whether this is still necessary.
1649      *  (2) Admit the case where an interface proxy throws fewer exceptions
1650      *      than the method it implements. Augment the proxy methods with the
1651      *      undeclared exceptions in this case.
1652      *  (3) When generics are enabled, admit the case where an interface proxy
1653      *      has a result type
1654      *      extended by the result type of the method it implements.
1655      *      Change the proxies result type to the smaller type in this case.
1656      *
1657      *  @param tree         The tree from which positions
1658      *                      are extracted for errors.
1659      *  @param m            The overriding method.
1660      *  @param other        The overridden method.
1661      *  @param origin       The class of which the overriding method
1662      *                      is a member.
1663      */
1664     void checkOverride(JCTree tree,
1665                        MethodSymbol m,
1666                        MethodSymbol other,
1667                        ClassSymbol origin) {
1668         // Don't check overriding of synthetic methods or by bridge methods.
1669         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1670             return;
1671         }
1672 
1673         // Error if static method overrides instance method (JLS 8.4.6.2).
1674         if ((m.flags() & STATIC) != 0 &&
1675                    (other.flags() & STATIC) == 0) {
1676             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1677                       cannotOverride(m, other));
1678             m.flags_field |= BAD_OVERRIDE;
1679             return;
1680         }
1681 
1682         // Error if instance method overrides static or final
1683         // method (JLS 8.4.6.1).
1684         if ((other.flags() & FINAL) != 0 ||
1685                  (m.flags() & STATIC) == 0 &&
1686                  (other.flags() & STATIC) != 0) {
1687             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1688                       cannotOverride(m, other),
1689                       asFlagSet(other.flags() & (FINAL | STATIC)));
1690             m.flags_field |= BAD_OVERRIDE;
1691             return;
1692         }
1693 
1694         if ((m.owner.flags() & ANNOTATION) != 0) {
1695             // handled in validateAnnotationMethod
1696             return;
1697         }
1698 
1699         // Error if overriding method has weaker access (JLS 8.4.6.3).
1700         if (protection(m.flags()) > protection(other.flags())) {
1701             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1702                       cannotOverride(m, other),
1703                       (other.flags() & AccessFlags) == 0 ?
1704                           "package" :
1705                           asFlagSet(other.flags() & AccessFlags));
1706             m.flags_field |= BAD_OVERRIDE;
1707             return;
1708         }
1709 
1710         Type mt = types.memberType(origin.type, m);
1711         Type ot = types.memberType(origin.type, other);
1712         // Error if overriding result type is different
1713         // (or, in the case of generics mode, not a subtype) of
1714         // overridden result type. We have to rename any type parameters
1715         // before comparing types.
1716         List<Type> mtvars = mt.getTypeArguments();
1717         List<Type> otvars = ot.getTypeArguments();
1718         Type mtres = mt.getReturnType();
1719         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1720 
1721         overrideWarner.clear();
1722         boolean resultTypesOK =
1723             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1724         if (!resultTypesOK) {
1725             if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1726                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1727                         Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1728                                         other.location()), mtres, otres));
1729                 m.flags_field |= BAD_OVERRIDE;
1730             } else {
1731                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1732                         "override.incompatible.ret",
1733                         cannotOverride(m, other),
1734                         mtres, otres);
1735                 m.flags_field |= BAD_OVERRIDE;
1736             }
1737             return;
1738         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1739             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1740                     "override.unchecked.ret",
1741                     uncheckedOverrides(m, other),
1742                     mtres, otres);
1743         }
1744 
1745         // Error if overriding method throws an exception not reported
1746         // by overridden method.
1747         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1748         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1749         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1750         if (unhandledErased.nonEmpty()) {
1751             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1752                       "override.meth.doesnt.throw",
1753                       cannotOverride(m, other),
1754                       unhandledUnerased.head);
1755             m.flags_field |= BAD_OVERRIDE;
1756             return;
1757         }
1758         else if (unhandledUnerased.nonEmpty()) {
1759             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1760                           "override.unchecked.thrown",
1761                          cannotOverride(m, other),
1762                          unhandledUnerased.head);
1763             return;
1764         }
1765 
1766         // Optional warning if varargs don't agree
1767         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1768             && lint.isEnabled(LintCategory.OVERRIDES)) {
1769             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1770                         ((m.flags() & Flags.VARARGS) != 0)
1771                         ? "override.varargs.missing"
1772                         : "override.varargs.extra",
1773                         varargsOverrides(m, other));
1774         }
1775 
1776         // Warn if instance method overrides bridge method (compiler spec ??)
1777         if ((other.flags() & BRIDGE) != 0) {
1778             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1779                         uncheckedOverrides(m, other));
1780         }
1781 
1782         // Warn if a deprecated method overridden by a non-deprecated one.
1783         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1784             Lint prevLint = setLint(lint.augment(m));
1785             try {
1786                 checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1787             } finally {
1788                 setLint(prevLint);
1789             }
1790         }
1791     }
1792     // where
1793         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1794             // If the method, m, is defined in an interface, then ignore the issue if the method
1795             // is only inherited via a supertype and also implemented in the supertype,
1796             // because in that case, we will rediscover the issue when examining the method
1797             // in the supertype.
1798             // If the method, m, is not defined in an interface, then the only time we need to
1799             // address the issue is when the method is the supertype implemementation: any other
1800             // case, we will have dealt with when examining the supertype classes
1801             ClassSymbol mc = m.enclClass();
1802             Type st = types.supertype(origin.type);
1803             if (!st.hasTag(CLASS))
1804                 return true;
1805             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1806 
1807             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1808                 List<Type> intfs = types.interfaces(origin.type);
1809                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1810             }
1811             else
1812                 return (stimpl != m);
1813         }
1814 
1815 
1816     // used to check if there were any unchecked conversions
1817     Warner overrideWarner = new Warner();
1818 
1819     /** Check that a class does not inherit two concrete methods
1820      *  with the same signature.
1821      *  @param pos          Position to be used for error reporting.
1822      *  @param site         The class type to be checked.
1823      */
1824     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1825         Type sup = types.supertype(site);
1826         if (!sup.hasTag(CLASS)) return;
1827 
1828         for (Type t1 = sup;
1829              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1830              t1 = types.supertype(t1)) {
1831             for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1832                 if (s1.kind != MTH ||
1833                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1834                     !s1.isInheritedIn(site.tsym, types) ||
1835                     ((MethodSymbol)s1).implementation(site.tsym,
1836                                                       types,
1837                                                       true) != s1)
1838                     continue;
1839                 Type st1 = types.memberType(t1, s1);
1840                 int s1ArgsLength = st1.getParameterTypes().length();
1841                 if (st1 == s1.type) continue;
1842 
1843                 for (Type t2 = sup;
1844                      t2.hasTag(CLASS);
1845                      t2 = types.supertype(t2)) {
1846                     for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1847                         if (s2 == s1 ||
1848                             s2.kind != MTH ||
1849                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1850                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1851                             !s2.isInheritedIn(site.tsym, types) ||
1852                             ((MethodSymbol)s2).implementation(site.tsym,
1853                                                               types,
1854                                                               true) != s2)
1855                             continue;
1856                         Type st2 = types.memberType(t2, s2);
1857                         if (types.overrideEquivalent(st1, st2))
1858                             log.error(pos, "concrete.inheritance.conflict",
1859                                       s1, t1, s2, t2, sup);
1860                     }
1861                 }
1862             }
1863         }
1864     }
1865 
1866     /** Check that classes (or interfaces) do not each define an abstract
1867      *  method with same name and arguments but incompatible return types.
1868      *  @param pos          Position to be used for error reporting.
1869      *  @param t1           The first argument type.
1870      *  @param t2           The second argument type.
1871      */
1872     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1873                                             Type t1,
1874                                             Type t2,
1875                                             Type site) {
1876         if ((site.tsym.flags() & COMPOUND) != 0) {
1877             // special case for intersections: need to eliminate wildcards in supertypes
1878             t1 = types.capture(t1);
1879             t2 = types.capture(t2);
1880         }
1881         return firstIncompatibility(pos, t1, t2, site) == null;
1882     }
1883 
1884     /** Return the first method which is defined with same args
1885      *  but different return types in two given interfaces, or null if none
1886      *  exists.
1887      *  @param t1     The first type.
1888      *  @param t2     The second type.
1889      *  @param site   The most derived type.
1890      *  @returns symbol from t2 that conflicts with one in t1.
1891      */
1892     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1893         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1894         closure(t1, interfaces1);
1895         Map<TypeSymbol,Type> interfaces2;
1896         if (t1 == t2)
1897             interfaces2 = interfaces1;
1898         else
1899             closure(t2, interfaces1, interfaces2 = new HashMap<>());
1900 
1901         for (Type t3 : interfaces1.values()) {
1902             for (Type t4 : interfaces2.values()) {
1903                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1904                 if (s != null) return s;
1905             }
1906         }
1907         return null;
1908     }
1909 
1910     /** Compute all the supertypes of t, indexed by type symbol. */
1911     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1912         if (!t.hasTag(CLASS)) return;
1913         if (typeMap.put(t.tsym, t) == null) {
1914             closure(types.supertype(t), typeMap);
1915             for (Type i : types.interfaces(t))
1916                 closure(i, typeMap);
1917         }
1918     }
1919 
1920     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1921     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1922         if (!t.hasTag(CLASS)) return;
1923         if (typesSkip.get(t.tsym) != null) return;
1924         if (typeMap.put(t.tsym, t) == null) {
1925             closure(types.supertype(t), typesSkip, typeMap);
1926             for (Type i : types.interfaces(t))
1927                 closure(i, typesSkip, typeMap);
1928         }
1929     }
1930 
1931     /** Return the first method in t2 that conflicts with a method from t1. */
1932     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1933         for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1934             Type st1 = null;
1935             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1936                     (s1.flags() & SYNTHETIC) != 0) continue;
1937             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1938             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1939             for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1940                 if (s1 == s2) continue;
1941                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1942                         (s2.flags() & SYNTHETIC) != 0) continue;
1943                 if (st1 == null) st1 = types.memberType(t1, s1);
1944                 Type st2 = types.memberType(t2, s2);
1945                 if (types.overrideEquivalent(st1, st2)) {
1946                     List<Type> tvars1 = st1.getTypeArguments();
1947                     List<Type> tvars2 = st2.getTypeArguments();
1948                     Type rt1 = st1.getReturnType();
1949                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1950                     boolean compat =
1951                         types.isSameType(rt1, rt2) ||
1952                         !rt1.isPrimitiveOrVoid() &&
1953                         !rt2.isPrimitiveOrVoid() &&
1954                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1955                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1956                          checkCommonOverriderIn(s1,s2,site);
1957                     if (!compat) {
1958                         log.error(pos, "types.incompatible.diff.ret",
1959                             t1, t2, s2.name +
1960                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1961                         return s2;
1962                     }
1963                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1964                         !checkCommonOverriderIn(s1, s2, site)) {
1965                     log.error(pos,
1966                             "name.clash.same.erasure.no.override",
1967                             s1, s1.location(),
1968                             s2, s2.location());
1969                     return s2;
1970                 }
1971             }
1972         }
1973         return null;
1974     }
1975     //WHERE
1976     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1977         Map<TypeSymbol,Type> supertypes = new HashMap<>();
1978         Type st1 = types.memberType(site, s1);
1979         Type st2 = types.memberType(site, s2);
1980         closure(site, supertypes);
1981         for (Type t : supertypes.values()) {
1982             for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
1983                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1984                 Type st3 = types.memberType(site,s3);
1985                 if (types.overrideEquivalent(st3, st1) &&
1986                         types.overrideEquivalent(st3, st2) &&
1987                         types.returnTypeSubstitutable(st3, st1) &&
1988                         types.returnTypeSubstitutable(st3, st2)) {
1989                     return true;
1990                 }
1991             }
1992         }
1993         return false;
1994     }
1995 
1996     /** Check that a given method conforms with any method it overrides.
1997      *  @param tree         The tree from which positions are extracted
1998      *                      for errors.
1999      *  @param m            The overriding method.
2000      */
2001     void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2002         ClassSymbol origin = (ClassSymbol)m.owner;
2003         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
2004             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2005                 log.error(tree.pos(), "enum.no.finalize");
2006                 return;
2007             }
2008         for (Type t = origin.type; t.hasTag(CLASS);
2009              t = types.supertype(t)) {
2010             if (t != origin.type) {
2011                 checkOverride(tree, t, origin, m);
2012             }
2013             for (Type t2 : types.interfaces(t)) {
2014                 checkOverride(tree, t2, origin, m);
2015             }
2016         }
2017 
2018         final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2019         // Check if this method must override a super method due to being annotated with @Override
2020         // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2021         // be treated "as if as they were annotated" with @Override.
2022         boolean mustOverride = explicitOverride ||
2023                 (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2024         if (mustOverride && !isOverrider(m)) {
2025             DiagnosticPosition pos = tree.pos();
2026             for (JCAnnotation a : tree.getModifiers().annotations) {
2027                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2028                     pos = a.pos();
2029                     break;
2030                 }
2031             }
2032             log.error(pos,
2033                       explicitOverride ? Errors.MethodDoesNotOverrideSuperclass :
2034                                 Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2035         }
2036     }
2037 
2038     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2039         TypeSymbol c = site.tsym;
2040         for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2041             if (m.overrides(sym, origin, types, false)) {
2042                 if ((sym.flags() & ABSTRACT) == 0) {
2043                     checkOverride(tree, m, (MethodSymbol)sym, origin);
2044                 }
2045             }
2046         }
2047     }
2048 
2049     private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
2050         public boolean accepts(Symbol s) {
2051             return MethodSymbol.implementation_filter.accepts(s) &&
2052                     (s.flags() & BAD_OVERRIDE) == 0;
2053 
2054         }
2055     };
2056 
2057     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2058             ClassSymbol someClass) {
2059         /* At present, annotations cannot possibly have a method that is override
2060          * equivalent with Object.equals(Object) but in any case the condition is
2061          * fine for completeness.
2062          */
2063         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2064             someClass.isInterface() || someClass.isEnum() ||
2065             (someClass.flags() & ANNOTATION) != 0 ||
2066             (someClass.flags() & ABSTRACT) != 0) return;
2067         //anonymous inner classes implementing interfaces need especial treatment
2068         if (someClass.isAnonymous()) {
2069             List<Type> interfaces =  types.interfaces(someClass.type);
2070             if (interfaces != null && !interfaces.isEmpty() &&
2071                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2072         }
2073         checkClassOverrideEqualsAndHash(pos, someClass);
2074     }
2075 
2076     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2077             ClassSymbol someClass) {
2078         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2079             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2080                     .tsym.members().findFirst(names.equals);
2081             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2082                     .tsym.members().findFirst(names.hashCode);
2083             boolean overridesEquals = types.implementation(equalsAtObject,
2084                 someClass, false, equalsHasCodeFilter).owner == someClass;
2085             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2086                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2087 
2088             if (overridesEquals && !overridesHashCode) {
2089                 log.warning(LintCategory.OVERRIDES, pos,
2090                         "override.equals.but.not.hashcode", someClass);
2091             }
2092         }
2093     }
2094 
2095     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2096         ClashFilter cf = new ClashFilter(origin.type);
2097         return (cf.accepts(s1) &&
2098                 cf.accepts(s2) &&
2099                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2100     }
2101 
2102 
2103     /** Check that all abstract members of given class have definitions.
2104      *  @param pos          Position to be used for error reporting.
2105      *  @param c            The class.
2106      */
2107     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2108         MethodSymbol undef = types.firstUnimplementedAbstract(c);
2109         if (undef != null) {
2110             MethodSymbol undef1 =
2111                 new MethodSymbol(undef.flags(), undef.name,
2112                                  types.memberType(c.type, undef), undef.owner);
2113             log.error(pos, "does.not.override.abstract",
2114                       c, undef1, undef1.location());
2115         }
2116     }
2117 
2118     void checkNonCyclicDecl(JCClassDecl tree) {
2119         CycleChecker cc = new CycleChecker();
2120         cc.scan(tree);
2121         if (!cc.errorFound && !cc.partialCheck) {
2122             tree.sym.flags_field |= ACYCLIC;
2123         }
2124     }
2125 
2126     class CycleChecker extends TreeScanner {
2127 
2128         List<Symbol> seenClasses = List.nil();
2129         boolean errorFound = false;
2130         boolean partialCheck = false;
2131 
2132         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2133             if (sym != null && sym.kind == TYP) {
2134                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2135                 if (classEnv != null) {
2136                     DiagnosticSource prevSource = log.currentSource();
2137                     try {
2138                         log.useSource(classEnv.toplevel.sourcefile);
2139                         scan(classEnv.tree);
2140                     }
2141                     finally {
2142                         log.useSource(prevSource.getFile());
2143                     }
2144                 } else if (sym.kind == TYP) {
2145                     checkClass(pos, sym, List.<JCTree>nil());
2146                 }
2147             } else {
2148                 //not completed yet
2149                 partialCheck = true;
2150             }
2151         }
2152 
2153         @Override
2154         public void visitSelect(JCFieldAccess tree) {
2155             super.visitSelect(tree);
2156             checkSymbol(tree.pos(), tree.sym);
2157         }
2158 
2159         @Override
2160         public void visitIdent(JCIdent tree) {
2161             checkSymbol(tree.pos(), tree.sym);
2162         }
2163 
2164         @Override
2165         public void visitTypeApply(JCTypeApply tree) {
2166             scan(tree.clazz);
2167         }
2168 
2169         @Override
2170         public void visitTypeArray(JCArrayTypeTree tree) {
2171             scan(tree.elemtype);
2172         }
2173 
2174         @Override
2175         public void visitClassDef(JCClassDecl tree) {
2176             List<JCTree> supertypes = List.nil();
2177             if (tree.getExtendsClause() != null) {
2178                 supertypes = supertypes.prepend(tree.getExtendsClause());
2179             }
2180             if (tree.getImplementsClause() != null) {
2181                 for (JCTree intf : tree.getImplementsClause()) {
2182                     supertypes = supertypes.prepend(intf);
2183                 }
2184             }
2185             checkClass(tree.pos(), tree.sym, supertypes);
2186         }
2187 
2188         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2189             if ((c.flags_field & ACYCLIC) != 0)
2190                 return;
2191             if (seenClasses.contains(c)) {
2192                 errorFound = true;
2193                 noteCyclic(pos, (ClassSymbol)c);
2194             } else if (!c.type.isErroneous()) {
2195                 try {
2196                     seenClasses = seenClasses.prepend(c);
2197                     if (c.type.hasTag(CLASS)) {
2198                         if (supertypes.nonEmpty()) {
2199                             scan(supertypes);
2200                         }
2201                         else {
2202                             ClassType ct = (ClassType)c.type;
2203                             if (ct.supertype_field == null ||
2204                                     ct.interfaces_field == null) {
2205                                 //not completed yet
2206                                 partialCheck = true;
2207                                 return;
2208                             }
2209                             checkSymbol(pos, ct.supertype_field.tsym);
2210                             for (Type intf : ct.interfaces_field) {
2211                                 checkSymbol(pos, intf.tsym);
2212                             }
2213                         }
2214                         if (c.owner.kind == TYP) {
2215                             checkSymbol(pos, c.owner);
2216                         }
2217                     }
2218                 } finally {
2219                     seenClasses = seenClasses.tail;
2220                 }
2221             }
2222         }
2223     }
2224 
2225     /** Check for cyclic references. Issue an error if the
2226      *  symbol of the type referred to has a LOCKED flag set.
2227      *
2228      *  @param pos      Position to be used for error reporting.
2229      *  @param t        The type referred to.
2230      */
2231     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2232         checkNonCyclicInternal(pos, t);
2233     }
2234 
2235 
2236     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2237         checkNonCyclic1(pos, t, List.<TypeVar>nil());
2238     }
2239 
2240     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2241         final TypeVar tv;
2242         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2243             return;
2244         if (seen.contains(t)) {
2245             tv = (TypeVar)t;
2246             tv.bound = types.createErrorType(t);
2247             log.error(pos, "cyclic.inheritance", t);
2248         } else if (t.hasTag(TYPEVAR)) {
2249             tv = (TypeVar)t;
2250             seen = seen.prepend(tv);
2251             for (Type b : types.getBounds(tv))
2252                 checkNonCyclic1(pos, b, seen);
2253         }
2254     }
2255 
2256     /** Check for cyclic references. Issue an error if the
2257      *  symbol of the type referred to has a LOCKED flag set.
2258      *
2259      *  @param pos      Position to be used for error reporting.
2260      *  @param t        The type referred to.
2261      *  @returns        True if the check completed on all attributed classes
2262      */
2263     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2264         boolean complete = true; // was the check complete?
2265         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2266         Symbol c = t.tsym;
2267         if ((c.flags_field & ACYCLIC) != 0) return true;
2268 
2269         if ((c.flags_field & LOCKED) != 0) {
2270             noteCyclic(pos, (ClassSymbol)c);
2271         } else if (!c.type.isErroneous()) {
2272             try {
2273                 c.flags_field |= LOCKED;
2274                 if (c.type.hasTag(CLASS)) {
2275                     ClassType clazz = (ClassType)c.type;
2276                     if (clazz.interfaces_field != null)
2277                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2278                             complete &= checkNonCyclicInternal(pos, l.head);
2279                     if (clazz.supertype_field != null) {
2280                         Type st = clazz.supertype_field;
2281                         if (st != null && st.hasTag(CLASS))
2282                             complete &= checkNonCyclicInternal(pos, st);
2283                     }
2284                     if (c.owner.kind == TYP)
2285                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2286                 }
2287             } finally {
2288                 c.flags_field &= ~LOCKED;
2289             }
2290         }
2291         if (complete)
2292             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2293         if (complete) c.flags_field |= ACYCLIC;
2294         return complete;
2295     }
2296 
2297     /** Note that we found an inheritance cycle. */
2298     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2299         log.error(pos, "cyclic.inheritance", c);
2300         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2301             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2302         Type st = types.supertype(c.type);
2303         if (st.hasTag(CLASS))
2304             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2305         c.type = types.createErrorType(c, c.type);
2306         c.flags_field |= ACYCLIC;
2307     }
2308 
2309     /** Check that all methods which implement some
2310      *  method conform to the method they implement.
2311      *  @param tree         The class definition whose members are checked.
2312      */
2313     void checkImplementations(JCClassDecl tree) {
2314         checkImplementations(tree, tree.sym, tree.sym);
2315     }
2316     //where
2317         /** Check that all methods which implement some
2318          *  method in `ic' conform to the method they implement.
2319          */
2320         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2321             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2322                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2323                 if ((lc.flags() & ABSTRACT) != 0) {
2324                     for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2325                         if (sym.kind == MTH &&
2326                             (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2327                             MethodSymbol absmeth = (MethodSymbol)sym;
2328                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2329                             if (implmeth != null && implmeth != absmeth &&
2330                                 (implmeth.owner.flags() & INTERFACE) ==
2331                                 (origin.flags() & INTERFACE)) {
2332                                 // don't check if implmeth is in a class, yet
2333                                 // origin is an interface. This case arises only
2334                                 // if implmeth is declared in Object. The reason is
2335                                 // that interfaces really don't inherit from
2336                                 // Object it's just that the compiler represents
2337                                 // things that way.
2338                                 checkOverride(tree, implmeth, absmeth, origin);
2339                             }
2340                         }
2341                     }
2342                 }
2343             }
2344         }
2345 
2346     /** Check that all abstract methods implemented by a class are
2347      *  mutually compatible.
2348      *  @param pos          Position to be used for error reporting.
2349      *  @param c            The class whose interfaces are checked.
2350      */
2351     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2352         List<Type> supertypes = types.interfaces(c);
2353         Type supertype = types.supertype(c);
2354         if (supertype.hasTag(CLASS) &&
2355             (supertype.tsym.flags() & ABSTRACT) != 0)
2356             supertypes = supertypes.prepend(supertype);
2357         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2358             if (!l.head.getTypeArguments().isEmpty() &&
2359                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2360                 return;
2361             for (List<Type> m = supertypes; m != l; m = m.tail)
2362                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2363                     return;
2364         }
2365         checkCompatibleConcretes(pos, c);
2366     }
2367 
2368     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2369         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2370             for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
2371                 // VM allows methods and variables with differing types
2372                 if (sym.kind == sym2.kind &&
2373                     types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
2374                     sym != sym2 &&
2375                     (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
2376                     (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
2377                     syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
2378                     return;
2379                 }
2380             }
2381         }
2382     }
2383 
2384     /** Check that all non-override equivalent methods accessible from 'site'
2385      *  are mutually compatible (JLS 8.4.8/9.4.1).
2386      *
2387      *  @param pos  Position to be used for error reporting.
2388      *  @param site The class whose methods are checked.
2389      *  @param sym  The method symbol to be checked.
2390      */
2391     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2392          ClashFilter cf = new ClashFilter(site);
2393         //for each method m1 that is overridden (directly or indirectly)
2394         //by method 'sym' in 'site'...
2395 
2396         List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2397         boolean overridesAny = false;
2398         for (Symbol m1 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2399             if (!sym.overrides(m1, site.tsym, types, false)) {
2400                 if (m1 == sym) {
2401                     continue;
2402                 }
2403 
2404                 if (!overridesAny) {
2405                     potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2406                 }
2407                 continue;
2408             }
2409 
2410             if (m1 != sym) {
2411                 overridesAny = true;
2412                 potentiallyAmbiguousList = List.nil();
2413             }
2414 
2415             //...check each method m2 that is a member of 'site'
2416             for (Symbol m2 : types.membersClosure(site, false).getSymbolsByName(sym.name, cf)) {
2417                 if (m2 == m1) continue;
2418                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2419                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2420                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2421                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2422                     sym.flags_field |= CLASH;
2423                     String key = m1 == sym ?
2424                             "name.clash.same.erasure.no.override" :
2425                             "name.clash.same.erasure.no.override.1";
2426                     log.error(pos,
2427                             key,
2428                             sym, sym.location(),
2429                             m2, m2.location(),
2430                             m1, m1.location());
2431                     return;
2432                 }
2433             }
2434         }
2435 
2436         if (!overridesAny) {
2437             for (MethodSymbol m: potentiallyAmbiguousList) {
2438                 checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2439             }
2440         }
2441     }
2442 
2443     /** Check that all static methods accessible from 'site' are
2444      *  mutually compatible (JLS 8.4.8).
2445      *
2446      *  @param pos  Position to be used for error reporting.
2447      *  @param site The class whose methods are checked.
2448      *  @param sym  The method symbol to be checked.
2449      */
2450     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2451         ClashFilter cf = new ClashFilter(site);
2452         //for each method m1 that is a member of 'site'...
2453         for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2454             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2455             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2456             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2457                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2458                     log.error(pos,
2459                             "name.clash.same.erasure.no.hide",
2460                             sym, sym.location(),
2461                             s, s.location());
2462                     return;
2463                 } else {
2464                     checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2465                 }
2466             }
2467          }
2468      }
2469 
2470      //where
2471      private class ClashFilter implements Filter<Symbol> {
2472 
2473          Type site;
2474 
2475          ClashFilter(Type site) {
2476              this.site = site;
2477          }
2478 
2479          boolean shouldSkip(Symbol s) {
2480              return (s.flags() & CLASH) != 0 &&
2481                 s.owner == site.tsym;
2482          }
2483 
2484          public boolean accepts(Symbol s) {
2485              return s.kind == MTH &&
2486                      (s.flags() & SYNTHETIC) == 0 &&
2487                      !shouldSkip(s) &&
2488                      s.isInheritedIn(site.tsym, types) &&
2489                      !s.isConstructor();
2490          }
2491      }
2492 
2493     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2494         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2495         for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2496             Assert.check(m.kind == MTH);
2497             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2498             if (prov.size() > 1) {
2499                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2500                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2501                 for (MethodSymbol provSym : prov) {
2502                     if ((provSym.flags() & DEFAULT) != 0) {
2503                         defaults = defaults.append(provSym);
2504                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2505                         abstracts = abstracts.append(provSym);
2506                     }
2507                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2508                         //strong semantics - issue an error if two sibling interfaces
2509                         //have two override-equivalent defaults - or if one is abstract
2510                         //and the other is default
2511                         String errKey;
2512                         Symbol s1 = defaults.first();
2513                         Symbol s2;
2514                         if (defaults.size() > 1) {
2515                             errKey = "types.incompatible.unrelated.defaults";
2516                             s2 = defaults.toList().tail.head;
2517                         } else {
2518                             errKey = "types.incompatible.abstract.default";
2519                             s2 = abstracts.first();
2520                         }
2521                         log.error(pos, errKey,
2522                                 Kinds.kindName(site.tsym), site,
2523                                 m.name, types.memberType(site, m).getParameterTypes(),
2524                                 s1.location(), s2.location());
2525                         break;
2526                     }
2527                 }
2528             }
2529         }
2530     }
2531 
2532     //where
2533      private class DefaultMethodClashFilter implements Filter<Symbol> {
2534 
2535          Type site;
2536 
2537          DefaultMethodClashFilter(Type site) {
2538              this.site = site;
2539          }
2540 
2541          public boolean accepts(Symbol s) {
2542              return s.kind == MTH &&
2543                      (s.flags() & DEFAULT) != 0 &&
2544                      s.isInheritedIn(site.tsym, types) &&
2545                      !s.isConstructor();
2546          }
2547      }
2548 
2549     /**
2550       * Report warnings for potentially ambiguous method declarations. Two declarations
2551       * are potentially ambiguous if they feature two unrelated functional interface
2552       * in same argument position (in which case, a call site passing an implicit
2553       * lambda would be ambiguous).
2554       */
2555     void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2556             MethodSymbol msym1, MethodSymbol msym2) {
2557         if (msym1 != msym2 &&
2558                 allowDefaultMethods &&
2559                 lint.isEnabled(LintCategory.OVERLOADS) &&
2560                 (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2561                 (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2562             Type mt1 = types.memberType(site, msym1);
2563             Type mt2 = types.memberType(site, msym2);
2564             //if both generic methods, adjust type variables
2565             if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2566                     types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2567                 mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2568             }
2569             //expand varargs methods if needed
2570             int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2571             List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2572             List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2573             //if arities don't match, exit
2574             if (args1.length() != args2.length()) return;
2575             boolean potentiallyAmbiguous = false;
2576             while (args1.nonEmpty() && args2.nonEmpty()) {
2577                 Type s = args1.head;
2578                 Type t = args2.head;
2579                 if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2580                     if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2581                             types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2582                             types.findDescriptorType(s).getParameterTypes().length() ==
2583                             types.findDescriptorType(t).getParameterTypes().length()) {
2584                         potentiallyAmbiguous = true;
2585                     } else {
2586                         break;
2587                     }
2588                 }
2589                 args1 = args1.tail;
2590                 args2 = args2.tail;
2591             }
2592             if (potentiallyAmbiguous) {
2593                 //we found two incompatible functional interfaces with same arity
2594                 //this means a call site passing an implicit lambda would be ambigiuous
2595                 msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2596                 msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2597                 log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2598                             msym1, msym1.location(),
2599                             msym2, msym2.location());
2600                 return;
2601             }
2602         }
2603     }
2604 
2605     void checkElemAccessFromSerializableLambda(final JCTree tree) {
2606         if (warnOnAccessToSensitiveMembers) {
2607             Symbol sym = TreeInfo.symbol(tree);
2608             if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2609                 return;
2610             }
2611 
2612             if (sym.kind == VAR) {
2613                 if ((sym.flags() & PARAMETER) != 0 ||
2614                     sym.isLocal() ||
2615                     sym.name == names._this ||
2616                     sym.name == names._super) {
2617                     return;
2618                 }
2619             }
2620 
2621             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2622                     isEffectivelyNonPublic(sym)) {
2623                 log.warning(tree.pos(),
2624                         "access.to.sensitive.member.from.serializable.element", sym);
2625             }
2626         }
2627     }
2628 
2629     private boolean isEffectivelyNonPublic(Symbol sym) {
2630         if (sym.packge() == syms.rootPackage) {
2631             return false;
2632         }
2633 
2634         while (sym.kind != PCK) {
2635             if ((sym.flags() & PUBLIC) == 0) {
2636                 return true;
2637             }
2638             sym = sym.owner;
2639         }
2640         return false;
2641     }
2642 
2643     /** Report a conflict between a user symbol and a synthetic symbol.
2644      */
2645     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2646         if (!sym.type.isErroneous()) {
2647             log.error(pos, "synthetic.name.conflict", sym, sym.location());
2648         }
2649     }
2650 
2651     /** Check that class c does not implement directly or indirectly
2652      *  the same parameterized interface with two different argument lists.
2653      *  @param pos          Position to be used for error reporting.
2654      *  @param type         The type whose interfaces are checked.
2655      */
2656     void checkClassBounds(DiagnosticPosition pos, Type type) {
2657         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2658     }
2659 //where
2660         /** Enter all interfaces of type `type' into the hash table `seensofar'
2661          *  with their class symbol as key and their type as value. Make
2662          *  sure no class is entered with two different types.
2663          */
2664         void checkClassBounds(DiagnosticPosition pos,
2665                               Map<TypeSymbol,Type> seensofar,
2666                               Type type) {
2667             if (type.isErroneous()) return;
2668             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2669                 Type it = l.head;
2670                 Type oldit = seensofar.put(it.tsym, it);
2671                 if (oldit != null) {
2672                     List<Type> oldparams = oldit.allparams();
2673                     List<Type> newparams = it.allparams();
2674                     if (!types.containsTypeEquivalent(oldparams, newparams))
2675                         log.error(pos, "cant.inherit.diff.arg",
2676                                   it.tsym, Type.toString(oldparams),
2677                                   Type.toString(newparams));
2678                 }
2679                 checkClassBounds(pos, seensofar, it);
2680             }
2681             Type st = types.supertype(type);
2682             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2683         }
2684 
2685     /** Enter interface into into set.
2686      *  If it existed already, issue a "repeated interface" error.
2687      */
2688     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2689         if (its.contains(it))
2690             log.error(pos, "repeated.interface");
2691         else {
2692             its.add(it);
2693         }
2694     }
2695 
2696 /* *************************************************************************
2697  * Check annotations
2698  **************************************************************************/
2699 
2700     /**
2701      * Recursively validate annotations values
2702      */
2703     void validateAnnotationTree(JCTree tree) {
2704         class AnnotationValidator extends TreeScanner {
2705             @Override
2706             public void visitAnnotation(JCAnnotation tree) {
2707                 if (!tree.type.isErroneous()) {
2708                     super.visitAnnotation(tree);
2709                     validateAnnotation(tree);
2710                 }
2711             }
2712         }
2713         tree.accept(new AnnotationValidator());
2714     }
2715 
2716     /**
2717      *  {@literal
2718      *  Annotation types are restricted to primitives, String, an
2719      *  enum, an annotation, Class, Class<?>, Class<? extends
2720      *  Anything>, arrays of the preceding.
2721      *  }
2722      */
2723     void validateAnnotationType(JCTree restype) {
2724         // restype may be null if an error occurred, so don't bother validating it
2725         if (restype != null) {
2726             validateAnnotationType(restype.pos(), restype.type);
2727         }
2728     }
2729 
2730     void validateAnnotationType(DiagnosticPosition pos, Type type) {
2731         if (type.isPrimitive()) return;
2732         if (types.isSameType(type, syms.stringType)) return;
2733         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2734         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2735         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2736         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2737             validateAnnotationType(pos, types.elemtype(type));
2738             return;
2739         }
2740         log.error(pos, "invalid.annotation.member.type");
2741     }
2742 
2743     /**
2744      * "It is also a compile-time error if any method declared in an
2745      * annotation type has a signature that is override-equivalent to
2746      * that of any public or protected method declared in class Object
2747      * or in the interface annotation.Annotation."
2748      *
2749      * @jls 9.6 Annotation Types
2750      */
2751     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2752         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2753             Scope s = sup.tsym.members();
2754             for (Symbol sym : s.getSymbolsByName(m.name)) {
2755                 if (sym.kind == MTH &&
2756                     (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2757                     types.overrideEquivalent(m.type, sym.type))
2758                     log.error(pos, "intf.annotation.member.clash", sym, sup);
2759             }
2760         }
2761     }
2762 
2763     /** Check the annotations of a symbol.
2764      */
2765     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2766         for (JCAnnotation a : annotations)
2767             validateAnnotation(a, s);
2768     }
2769 
2770     /** Check the type annotations.
2771      */
2772     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2773         for (JCAnnotation a : annotations)
2774             validateTypeAnnotation(a, isTypeParameter);
2775     }
2776 
2777     /** Check an annotation of a symbol.
2778      */
2779     private void validateAnnotation(JCAnnotation a, Symbol s) {
2780         validateAnnotationTree(a);
2781 
2782         if (!annotationApplicable(a, s))
2783             log.error(a.pos(), "annotation.type.not.applicable");
2784 
2785         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2786             if (s.kind != TYP) {
2787                 log.error(a.pos(), "bad.functional.intf.anno");
2788             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2789                 log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2790             }
2791         }
2792     }
2793 
2794     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2795         Assert.checkNonNull(a.type);
2796         validateAnnotationTree(a);
2797 
2798         if (a.hasTag(TYPE_ANNOTATION) &&
2799                 !a.annotationType.type.isErroneous() &&
2800                 !isTypeAnnotation(a, isTypeParameter)) {
2801             log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
2802         }
2803     }
2804 
2805     /**
2806      * Validate the proposed container 'repeatable' on the
2807      * annotation type symbol 's'. Report errors at position
2808      * 'pos'.
2809      *
2810      * @param s The (annotation)type declaration annotated with a @Repeatable
2811      * @param repeatable the @Repeatable on 's'
2812      * @param pos where to report errors
2813      */
2814     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2815         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2816 
2817         Type t = null;
2818         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2819         if (!l.isEmpty()) {
2820             Assert.check(l.head.fst.name == names.value);
2821             t = ((Attribute.Class)l.head.snd).getValue();
2822         }
2823 
2824         if (t == null) {
2825             // errors should already have been reported during Annotate
2826             return;
2827         }
2828 
2829         validateValue(t.tsym, s, pos);
2830         validateRetention(t.tsym, s, pos);
2831         validateDocumented(t.tsym, s, pos);
2832         validateInherited(t.tsym, s, pos);
2833         validateTarget(t.tsym, s, pos);
2834         validateDefault(t.tsym, pos);
2835     }
2836 
2837     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2838         Symbol sym = container.members().findFirst(names.value);
2839         if (sym != null && sym.kind == MTH) {
2840             MethodSymbol m = (MethodSymbol) sym;
2841             Type ret = m.getReturnType();
2842             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2843                 log.error(pos, "invalid.repeatable.annotation.value.return",
2844                         container, ret, types.makeArrayType(contained.type));
2845             }
2846         } else {
2847             log.error(pos, "invalid.repeatable.annotation.no.value", container);
2848         }
2849     }
2850 
2851     private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2852         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2853         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2854 
2855         boolean error = false;
2856         switch (containedRetention) {
2857         case RUNTIME:
2858             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2859                 error = true;
2860             }
2861             break;
2862         case CLASS:
2863             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2864                 error = true;
2865             }
2866         }
2867         if (error ) {
2868             log.error(pos, "invalid.repeatable.annotation.retention",
2869                       container, containerRetention,
2870                       contained, containedRetention);
2871         }
2872     }
2873 
2874     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2875         if (contained.attribute(syms.documentedType.tsym) != null) {
2876             if (container.attribute(syms.documentedType.tsym) == null) {
2877                 log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2878             }
2879         }
2880     }
2881 
2882     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2883         if (contained.attribute(syms.inheritedType.tsym) != null) {
2884             if (container.attribute(syms.inheritedType.tsym) == null) {
2885                 log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2886             }
2887         }
2888     }
2889 
2890     private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2891         // The set of targets the container is applicable to must be a subset
2892         // (with respect to annotation target semantics) of the set of targets
2893         // the contained is applicable to. The target sets may be implicit or
2894         // explicit.
2895 
2896         Set<Name> containerTargets;
2897         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2898         if (containerTarget == null) {
2899             containerTargets = getDefaultTargetSet();
2900         } else {
2901             containerTargets = new HashSet<>();
2902             for (Attribute app : containerTarget.values) {
2903                 if (!(app instanceof Attribute.Enum)) {
2904                     continue; // recovery
2905                 }
2906                 Attribute.Enum e = (Attribute.Enum)app;
2907                 containerTargets.add(e.value.name);
2908             }
2909         }
2910 
2911         Set<Name> containedTargets;
2912         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2913         if (containedTarget == null) {
2914             containedTargets = getDefaultTargetSet();
2915         } else {
2916             containedTargets = new HashSet<>();
2917             for (Attribute app : containedTarget.values) {
2918                 if (!(app instanceof Attribute.Enum)) {
2919                     continue; // recovery
2920                 }
2921                 Attribute.Enum e = (Attribute.Enum)app;
2922                 containedTargets.add(e.value.name);
2923             }
2924         }
2925 
2926         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2927             log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2928         }
2929     }
2930 
2931     /* get a set of names for the default target */
2932     private Set<Name> getDefaultTargetSet() {
2933         if (defaultTargets == null) {
2934             Set<Name> targets = new HashSet<>();
2935             targets.add(names.ANNOTATION_TYPE);
2936             targets.add(names.CONSTRUCTOR);
2937             targets.add(names.FIELD);
2938             targets.add(names.LOCAL_VARIABLE);
2939             targets.add(names.METHOD);
2940             targets.add(names.PACKAGE);
2941             targets.add(names.PARAMETER);
2942             targets.add(names.TYPE);
2943 
2944             defaultTargets = java.util.Collections.unmodifiableSet(targets);
2945         }
2946 
2947         return defaultTargets;
2948     }
2949     private Set<Name> defaultTargets;
2950 
2951 
2952     /** Checks that s is a subset of t, with respect to ElementType
2953      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2954      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2955      * TYPE_PARAMETER}.
2956      */
2957     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2958         // Check that all elements in s are present in t
2959         for (Name n2 : s) {
2960             boolean currentElementOk = false;
2961             for (Name n1 : t) {
2962                 if (n1 == n2) {
2963                     currentElementOk = true;
2964                     break;
2965                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2966                     currentElementOk = true;
2967                     break;
2968                 } else if (n1 == names.TYPE_USE &&
2969                         (n2 == names.TYPE ||
2970                          n2 == names.ANNOTATION_TYPE ||
2971                          n2 == names.TYPE_PARAMETER)) {
2972                     currentElementOk = true;
2973                     break;
2974                 }
2975             }
2976             if (!currentElementOk)
2977                 return false;
2978         }
2979         return true;
2980     }
2981 
2982     private void validateDefault(Symbol container, DiagnosticPosition pos) {
2983         // validate that all other elements of containing type has defaults
2984         Scope scope = container.members();
2985         for(Symbol elm : scope.getSymbols()) {
2986             if (elm.name != names.value &&
2987                 elm.kind == MTH &&
2988                 ((MethodSymbol)elm).defaultValue == null) {
2989                 log.error(pos,
2990                           "invalid.repeatable.annotation.elem.nondefault",
2991                           container,
2992                           elm);
2993             }
2994         }
2995     }
2996 
2997     /** Is s a method symbol that overrides a method in a superclass? */
2998     boolean isOverrider(Symbol s) {
2999         if (s.kind != MTH || s.isStatic())
3000             return false;
3001         MethodSymbol m = (MethodSymbol)s;
3002         TypeSymbol owner = (TypeSymbol)m.owner;
3003         for (Type sup : types.closure(owner.type)) {
3004             if (sup == owner.type)
3005                 continue; // skip "this"
3006             Scope scope = sup.tsym.members();
3007             for (Symbol sym : scope.getSymbolsByName(m.name)) {
3008                 if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3009                     return true;
3010             }
3011         }
3012         return false;
3013     }
3014 
3015     /** Is the annotation applicable to types? */
3016     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3017         List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3018         return (targets == null) ?
3019                 false :
3020                 targets.stream()
3021                         .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3022     }
3023     //where
3024         boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3025             Attribute.Enum e = (Attribute.Enum)a;
3026             return (e.value.name == names.TYPE_USE ||
3027                     (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3028         }
3029 
3030     /** Is the annotation applicable to the symbol? */
3031     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3032         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3033         Name[] targets;
3034 
3035         if (arr == null) {
3036             targets = defaultTargetMetaInfo(a, s);
3037         } else {
3038             // TODO: can we optimize this?
3039             targets = new Name[arr.values.length];
3040             for (int i=0; i<arr.values.length; ++i) {
3041                 Attribute app = arr.values[i];
3042                 if (!(app instanceof Attribute.Enum)) {
3043                     return true; // recovery
3044                 }
3045                 Attribute.Enum e = (Attribute.Enum) app;
3046                 targets[i] = e.value.name;
3047             }
3048         }
3049         for (Name target : targets) {
3050             if (target == names.TYPE) {
3051                 if (s.kind == TYP)
3052                     return true;
3053             } else if (target == names.FIELD) {
3054                 if (s.kind == VAR && s.owner.kind != MTH)
3055                     return true;
3056             } else if (target == names.METHOD) {
3057                 if (s.kind == MTH && !s.isConstructor())
3058                     return true;
3059             } else if (target == names.PARAMETER) {
3060                 if (s.kind == VAR && s.owner.kind == MTH &&
3061                       (s.flags() & PARAMETER) != 0) {
3062                     return true;
3063                 }
3064             } else if (target == names.CONSTRUCTOR) {
3065                 if (s.kind == MTH && s.isConstructor())
3066                     return true;
3067             } else if (target == names.LOCAL_VARIABLE) {
3068                 if (s.kind == VAR && s.owner.kind == MTH &&
3069                       (s.flags() & PARAMETER) == 0) {
3070                     return true;
3071                 }
3072             } else if (target == names.ANNOTATION_TYPE) {
3073                 if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3074                     return true;
3075                 }
3076             } else if (target == names.PACKAGE) {
3077                 if (s.kind == PCK)
3078                     return true;
3079             } else if (target == names.TYPE_USE) {
3080                 if (s.kind == TYP || s.kind == VAR ||
3081                         (s.kind == MTH && !s.isConstructor() &&
3082                                 !s.type.getReturnType().hasTag(VOID)) ||
3083                         (s.kind == MTH && s.isConstructor())) {
3084                     return true;
3085                 }
3086             } else if (target == names.TYPE_PARAMETER) {
3087                 if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3088                     return true;
3089             } else
3090                 return true; // Unknown ElementType. This should be an error at declaration site,
3091                              // assume applicable.
3092         }
3093         return false;
3094     }
3095 
3096 
3097     Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3098         Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3099         if (atTarget == null) return null; // ok, is applicable
3100         Attribute atValue = atTarget.member(names.value);
3101         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3102         return (Attribute.Array) atValue;
3103     }
3104 
3105     private final Name[] dfltTargetMeta;
3106     private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3107         return dfltTargetMeta;
3108     }
3109 
3110     /** Check an annotation value.
3111      *
3112      * @param a The annotation tree to check
3113      * @return true if this annotation tree is valid, otherwise false
3114      */
3115     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3116         boolean res = false;
3117         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3118         try {
3119             res = validateAnnotation(a);
3120         } finally {
3121             log.popDiagnosticHandler(diagHandler);
3122         }
3123         return res;
3124     }
3125 
3126     private boolean validateAnnotation(JCAnnotation a) {
3127         boolean isValid = true;
3128         AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3129 
3130         // collect an inventory of the annotation elements
3131         Set<MethodSymbol> elements = metadata.getAnnotationElements();
3132 
3133         // remove the ones that are assigned values
3134         for (JCTree arg : a.args) {
3135             if (!arg.hasTag(ASSIGN)) continue; // recovery
3136             JCAssign assign = (JCAssign)arg;
3137             Symbol m = TreeInfo.symbol(assign.lhs);
3138             if (m == null || m.type.isErroneous()) continue;
3139             if (!elements.remove(m)) {
3140                 isValid = false;
3141                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3142                         m.name, a.type);
3143             }
3144         }
3145 
3146         // all the remaining ones better have default values
3147         List<Name> missingDefaults = List.nil();
3148         Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3149         for (MethodSymbol m : elements) {
3150             if (m.type.isErroneous())
3151                 continue;
3152 
3153             if (!membersWithDefault.contains(m))
3154                 missingDefaults = missingDefaults.append(m.name);
3155         }
3156         missingDefaults = missingDefaults.reverse();
3157         if (missingDefaults.nonEmpty()) {
3158             isValid = false;
3159             String key = (missingDefaults.size() > 1)
3160                     ? "annotation.missing.default.value.1"
3161                     : "annotation.missing.default.value";
3162             log.error(a.pos(), key, a.type, missingDefaults);
3163         }
3164 
3165         return isValid && validateTargetAnnotationValue(a);
3166     }
3167 
3168     /* Validate the special java.lang.annotation.Target annotation */
3169     boolean validateTargetAnnotationValue(JCAnnotation a) {
3170         // special case: java.lang.annotation.Target must not have
3171         // repeated values in its value member
3172         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3173                 a.args.tail == null)
3174             return true;
3175 
3176         boolean isValid = true;
3177         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3178         JCAssign assign = (JCAssign) a.args.head;
3179         Symbol m = TreeInfo.symbol(assign.lhs);
3180         if (m.name != names.value) return false;
3181         JCTree rhs = assign.rhs;
3182         if (!rhs.hasTag(NEWARRAY)) return false;
3183         JCNewArray na = (JCNewArray) rhs;
3184         Set<Symbol> targets = new HashSet<>();
3185         for (JCTree elem : na.elems) {
3186             if (!targets.add(TreeInfo.symbol(elem))) {
3187                 isValid = false;
3188                 log.error(elem.pos(), "repeated.annotation.target");
3189             }
3190         }
3191         return isValid;
3192     }
3193 
3194     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3195         if (lint.isEnabled(LintCategory.DEP_ANN) &&
3196             (s.flags() & DEPRECATED) != 0 &&
3197             !syms.deprecatedType.isErroneous() &&
3198             s.attribute(syms.deprecatedType.tsym) == null) {
3199             log.warning(LintCategory.DEP_ANN,
3200                     pos, "missing.deprecated.annotation");
3201         }
3202         // Note: @Deprecated has no effect on local variables, parameters and package decls.
3203         if (lint.isEnabled(LintCategory.DEPRECATION)) {
3204             if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3205                 switch (s.getKind()) {
3206                     case LOCAL_VARIABLE:
3207                     case PACKAGE:
3208                     case PARAMETER:
3209                     case RESOURCE_VARIABLE:
3210                     case EXCEPTION_PARAMETER:
3211                         log.warning(LintCategory.DEPRECATION, pos,
3212                                 "deprecated.annotation.has.no.effect", Kinds.kindName(s));
3213                         break;
3214                 }
3215             }
3216         }
3217     }
3218 
3219     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3220         if ((s.flags() & DEPRECATED) != 0 &&
3221                 (other.flags() & DEPRECATED) == 0 &&
3222                 s.outermostClass() != other.outermostClass()) {
3223             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3224                 @Override
3225                 public void report() {
3226                     warnDeprecated(pos, s);
3227                 }
3228             });
3229         }
3230     }
3231 
3232     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3233         if ((s.flags() & PROPRIETARY) != 0) {
3234             deferredLintHandler.report(() -> {
3235                 log.mandatoryWarning(pos, "sun.proprietary", s);
3236             });
3237         }
3238     }
3239 
3240     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3241         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3242             log.error(pos, "not.in.profile", s, profile);
3243         }
3244     }
3245 
3246 /* *************************************************************************
3247  * Check for recursive annotation elements.
3248  **************************************************************************/
3249 
3250     /** Check for cycles in the graph of annotation elements.
3251      */
3252     void checkNonCyclicElements(JCClassDecl tree) {
3253         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3254         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3255         try {
3256             tree.sym.flags_field |= LOCKED;
3257             for (JCTree def : tree.defs) {
3258                 if (!def.hasTag(METHODDEF)) continue;
3259                 JCMethodDecl meth = (JCMethodDecl)def;
3260                 checkAnnotationResType(meth.pos(), meth.restype.type);
3261             }
3262         } finally {
3263             tree.sym.flags_field &= ~LOCKED;
3264             tree.sym.flags_field |= ACYCLIC_ANN;
3265         }
3266     }
3267 
3268     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3269         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3270             return;
3271         if ((tsym.flags_field & LOCKED) != 0) {
3272             log.error(pos, "cyclic.annotation.element");
3273             return;
3274         }
3275         try {
3276             tsym.flags_field |= LOCKED;
3277             for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3278                 if (s.kind != MTH)
3279                     continue;
3280                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3281             }
3282         } finally {
3283             tsym.flags_field &= ~LOCKED;
3284             tsym.flags_field |= ACYCLIC_ANN;
3285         }
3286     }
3287 
3288     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3289         switch (type.getTag()) {
3290         case CLASS:
3291             if ((type.tsym.flags() & ANNOTATION) != 0)
3292                 checkNonCyclicElementsInternal(pos, type.tsym);
3293             break;
3294         case ARRAY:
3295             checkAnnotationResType(pos, types.elemtype(type));
3296             break;
3297         default:
3298             break; // int etc
3299         }
3300     }
3301 
3302 /* *************************************************************************
3303  * Check for cycles in the constructor call graph.
3304  **************************************************************************/
3305 
3306     /** Check for cycles in the graph of constructors calling other
3307      *  constructors.
3308      */
3309     void checkCyclicConstructors(JCClassDecl tree) {
3310         Map<Symbol,Symbol> callMap = new HashMap<>();
3311 
3312         // enter each constructor this-call into the map
3313         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3314             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3315             if (app == null) continue;
3316             JCMethodDecl meth = (JCMethodDecl) l.head;
3317             if (TreeInfo.name(app.meth) == names._this) {
3318                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3319             } else {
3320                 meth.sym.flags_field |= ACYCLIC;
3321             }
3322         }
3323 
3324         // Check for cycles in the map
3325         Symbol[] ctors = new Symbol[0];
3326         ctors = callMap.keySet().toArray(ctors);
3327         for (Symbol caller : ctors) {
3328             checkCyclicConstructor(tree, caller, callMap);
3329         }
3330     }
3331 
3332     /** Look in the map to see if the given constructor is part of a
3333      *  call cycle.
3334      */
3335     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3336                                         Map<Symbol,Symbol> callMap) {
3337         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3338             if ((ctor.flags_field & LOCKED) != 0) {
3339                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3340                           "recursive.ctor.invocation");
3341             } else {
3342                 ctor.flags_field |= LOCKED;
3343                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3344                 ctor.flags_field &= ~LOCKED;
3345             }
3346             ctor.flags_field |= ACYCLIC;
3347         }
3348     }
3349 
3350 /* *************************************************************************
3351  * Miscellaneous
3352  **************************************************************************/
3353 
3354     /**
3355      *  Check for division by integer constant zero
3356      *  @param pos           Position for error reporting.
3357      *  @param operator      The operator for the expression
3358      *  @param operand       The right hand operand for the expression
3359      */
3360     void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3361         if (operand.constValue() != null
3362             && operand.getTag().isSubRangeOf(LONG)
3363             && ((Number) (operand.constValue())).longValue() == 0) {
3364             int opc = ((OperatorSymbol)operator).opcode;
3365             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3366                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3367                 deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3368                     @Override
3369                     public void report() {
3370                         warnDivZero(pos);
3371                     }
3372                 });
3373             }
3374         }
3375     }
3376 
3377     /**
3378      * Check for empty statements after if
3379      */
3380     void checkEmptyIf(JCIf tree) {
3381         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3382                 lint.isEnabled(LintCategory.EMPTY))
3383             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3384     }
3385 
3386     /** Check that symbol is unique in given scope.
3387      *  @param pos           Position for error reporting.
3388      *  @param sym           The symbol.
3389      *  @param s             The scope.
3390      */
3391     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3392         if (sym.type.isErroneous())
3393             return true;
3394         if (sym.owner.name == names.any) return false;
3395         for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3396             if (sym != byName &&
3397                     (byName.flags() & CLASH) == 0 &&
3398                     sym.kind == byName.kind &&
3399                     sym.name != names.error &&
3400                     (sym.kind != MTH ||
3401                      types.hasSameArgs(sym.type, byName.type) ||
3402                      types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3403                 if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3404                     varargsDuplicateError(pos, sym, byName);
3405                     return true;
3406                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3407                     duplicateErasureError(pos, sym, byName);
3408                     sym.flags_field |= CLASH;
3409                     return true;
3410                 } else {
3411                     duplicateError(pos, byName);
3412                     return false;
3413                 }
3414             }
3415         }
3416         return true;
3417     }
3418 
3419     /** Report duplicate declaration error.
3420      */
3421     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3422         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3423             log.error(pos, "name.clash.same.erasure", sym1, sym2);
3424         }
3425     }
3426 
3427     /**Check that types imported through the ordinary imports don't clash with types imported
3428      * by other (static or ordinary) imports. Note that two static imports may import two clashing
3429      * types without an error on the imports.
3430      * @param toplevel       The toplevel tree for which the test should be performed.
3431      */
3432     void checkImportsUnique(JCCompilationUnit toplevel) {
3433         WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3434         WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3435         WriteableScope topLevelScope = toplevel.toplevelScope;
3436 
3437         for (JCTree def : toplevel.defs) {
3438             if (!def.hasTag(IMPORT))
3439                 continue;
3440 
3441             JCImport imp = (JCImport) def;
3442 
3443             if (imp.importScope == null)
3444                 continue;
3445 
3446             for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3447                 if (imp.isStatic()) {
3448                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3449                     staticallyImportedSoFar.enter(sym);
3450                 } else {
3451                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3452                     ordinallyImportedSoFar.enter(sym);
3453                 }
3454             }
3455 
3456             imp.importScope = null;
3457         }
3458     }
3459 
3460     /** Check that single-type import is not already imported or top-level defined,
3461      *  but make an exception for two single-type imports which denote the same type.
3462      *  @param pos                     Position for error reporting.
3463      *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3464      *                                 ordinary imports.
3465      *  @param staticallyImportedSoFar A Scope containing types imported so far through
3466      *                                 static imports.
3467      *  @param topLevelScope           The current file's top-level Scope
3468      *  @param sym                     The symbol.
3469      *  @param staticImport            Whether or not this was a static import
3470      */
3471     private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3472                                       Scope staticallyImportedSoFar, Scope topLevelScope,
3473                                       Symbol sym, boolean staticImport) {
3474         Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3475         Symbol clashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3476         if (clashing == null && !staticImport) {
3477             clashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3478         }
3479         if (clashing != null) {
3480             if (staticImport)
3481                 log.error(pos, "already.defined.static.single.import", clashing);
3482             else
3483                 log.error(pos, "already.defined.single.import", clashing);
3484             return false;
3485         }
3486         clashing = topLevelScope.findFirst(sym.name, duplicates);
3487         if (clashing != null) {
3488             log.error(pos, "already.defined.this.unit", clashing);
3489             return false;
3490         }
3491         return true;
3492     }
3493 
3494     /** Check that a qualified name is in canonical form (for import decls).
3495      */
3496     public void checkCanonical(JCTree tree) {
3497         if (!isCanonical(tree))
3498             log.error(tree.pos(), "import.requires.canonical",
3499                       TreeInfo.symbol(tree));
3500     }
3501         // where
3502         private boolean isCanonical(JCTree tree) {
3503             while (tree.hasTag(SELECT)) {
3504                 JCFieldAccess s = (JCFieldAccess) tree;
3505                 if (s.sym.owner.name != TreeInfo.symbol(s.selected).name)
3506                     return false;
3507                 tree = s.selected;
3508             }
3509             return true;
3510         }
3511 
3512     /** Check that an auxiliary class is not accessed from any other file than its own.
3513      */
3514     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3515         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3516             (c.flags() & AUXILIARY) != 0 &&
3517             rs.isAccessible(env, c) &&
3518             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3519         {
3520             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3521                         c, c.sourcefile);
3522         }
3523     }
3524 
3525     private class ConversionWarner extends Warner {
3526         final String uncheckedKey;
3527         final Type found;
3528         final Type expected;
3529         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3530             super(pos);
3531             this.uncheckedKey = uncheckedKey;
3532             this.found = found;
3533             this.expected = expected;
3534         }
3535 
3536         @Override
3537         public void warn(LintCategory lint) {
3538             boolean warned = this.warned;
3539             super.warn(lint);
3540             if (warned) return; // suppress redundant diagnostics
3541             switch (lint) {
3542                 case UNCHECKED:
3543                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3544                     break;
3545                 case VARARGS:
3546                     if (method != null &&
3547                             method.attribute(syms.trustMeType.tsym) != null &&
3548                             isTrustMeAllowedOnMethod(method) &&
3549                             !types.isReifiable(method.type.getParameterTypes().last())) {
3550                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3551                     }
3552                     break;
3553                 default:
3554                     throw new AssertionError("Unexpected lint: " + lint);
3555             }
3556         }
3557     }
3558 
3559     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3560         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3561     }
3562 
3563     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3564         return new ConversionWarner(pos, "unchecked.assign", found, expected);
3565     }
3566 
3567     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3568         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3569 
3570         if (functionalType != null) {
3571             try {
3572                 types.findDescriptorSymbol((TypeSymbol)cs);
3573             } catch (Types.FunctionDescriptorLookupError ex) {
3574                 DiagnosticPosition pos = tree.pos();
3575                 for (JCAnnotation a : tree.getModifiers().annotations) {
3576                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3577                         pos = a.pos();
3578                         break;
3579                     }
3580                 }
3581                 log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3582             }
3583         }
3584     }
3585 
3586     public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3587         for (final JCImport imp : toplevel.getImports()) {
3588             if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3589                 continue;
3590             final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3591             final Symbol origin;
3592             if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3593                 continue;
3594 
3595             TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3596             if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3597                 log.error(imp.pos(), "cant.resolve.location",
3598                           KindName.STATIC,
3599                           select.name, List.<Type>nil(), List.<Type>nil(),
3600                           Kinds.typeKindName(TreeInfo.symbol(select.selected).type),
3601                           TreeInfo.symbol(select.selected).type);
3602             }
3603         }
3604     }
3605 
3606     // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
3607     public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
3608         OUTER: for (JCImport imp : toplevel.getImports()) {
3609             if (!imp.staticImport && TreeInfo.name(imp.qualid) == names.asterisk) {
3610                 TypeSymbol tsym = ((JCFieldAccess)imp.qualid).selected.type.tsym;
3611                 if (toplevel.modle.visiblePackages != null) {
3612                     //TODO - unclear: selects like javax.* will get resolved from the current module
3613                     //(as javax is not an exported package from any module). And as javax in the current
3614                     //module typically does not contain any classes or subpackages, we need to go through
3615                     //the visible packages to find a sub-package:
3616                     for (PackageSymbol known : toplevel.modle.visiblePackages.values()) {
3617                         if (Convert.packagePart(known.fullname) == tsym.flatName())
3618                             continue OUTER;
3619                     }
3620                 }
3621                 if (tsym.kind == PCK && tsym.members().isEmpty() && !tsym.exists()) {
3622                     log.error(DiagnosticFlag.RESOLVE_ERROR, imp.pos, "doesnt.exist", tsym);
3623                 }
3624             }
3625         }
3626     }
3627 
3628     private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3629         if (tsym == null || !processed.add(tsym))
3630             return false;
3631 
3632             // also search through inherited names
3633         if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3634             return true;
3635 
3636         for (Type t : types.interfaces(tsym.type))
3637             if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3638                 return true;
3639 
3640         for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3641             if (sym.isStatic() &&
3642                 importAccessible(sym, packge) &&
3643                 sym.isMemberOf(origin, types)) {
3644                 return true;
3645             }
3646         }
3647 
3648         return false;
3649     }
3650 
3651     // is the sym accessible everywhere in packge?
3652     public boolean importAccessible(Symbol sym, PackageSymbol packge) {
3653         try {
3654             int flags = (int)(sym.flags() & AccessFlags);
3655             switch (flags) {
3656             default:
3657             case PUBLIC:
3658                 return true;
3659             case PRIVATE:
3660                 return false;
3661             case 0:
3662             case PROTECTED:
3663                 return sym.packge() == packge;
3664             }
3665         } catch (ClassFinder.BadClassFile err) {
3666             throw err;
3667         } catch (CompletionFailure ex) {
3668             return false;
3669         }
3670     }
3671 
3672 }