1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.lang.model.element.ElementKind;
  31 import javax.tools.JavaFileObject;
  32 
  33 import com.sun.source.tree.IdentifierTree;
  34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  35 import com.sun.source.tree.MemberSelectTree;
  36 import com.sun.source.tree.TreeVisitor;
  37 import com.sun.source.util.SimpleTreeVisitor;
  38 import com.sun.tools.javac.code.*;
  39 import com.sun.tools.javac.code.Lint.LintCategory;
  40 import com.sun.tools.javac.code.Scope.WriteableScope;
  41 import com.sun.tools.javac.code.Source.Feature;
  42 import com.sun.tools.javac.code.Symbol.*;
  43 import com.sun.tools.javac.code.Type.*;
  44 import com.sun.tools.javac.code.TypeMetadata.Annotations;
  45 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  46 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  47 import com.sun.tools.javac.comp.Check.CheckContext;
  48 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  49 import com.sun.tools.javac.jvm.*;
  50 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  51 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  52 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  53 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  54 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  55 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  56 import com.sun.tools.javac.tree.*;
  57 import com.sun.tools.javac.tree.JCTree.*;
  58 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  59 import com.sun.tools.javac.util.*;
  60 import com.sun.tools.javac.util.DefinedBy.Api;
  61 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  62 import com.sun.tools.javac.util.JCDiagnostic.Error;
  63 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  64 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  65 import com.sun.tools.javac.util.List;
  66 
  67 import static com.sun.tools.javac.code.Flags.*;
  68 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  69 import static com.sun.tools.javac.code.Flags.BLOCK;
  70 import static com.sun.tools.javac.code.Kinds.*;
  71 import static com.sun.tools.javac.code.Kinds.Kind.*;
  72 import static com.sun.tools.javac.code.TypeTag.*;
  73 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  74 import com.sun.tools.javac.comp.Analyzer.AnalyzerMode;
  75 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  76 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  77 
  78 /** This is the main context-dependent analysis phase in GJC. It
  79  *  encompasses name resolution, type checking and constant folding as
  80  *  subtasks. Some subtasks involve auxiliary classes.
  81  *  @see Check
  82  *  @see Resolve
  83  *  @see ConstFold
  84  *  @see Infer
  85  *
  86  *  <p><b>This is NOT part of any supported API.
  87  *  If you write code that depends on this, you do so at your own risk.
  88  *  This code and its internal interfaces are subject to change or
  89  *  deletion without notice.</b>
  90  */
  91 public class Attr extends JCTree.Visitor {
  92     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  93 
  94     final Names names;
  95     final Log log;
  96     final Symtab syms;
  97     final Resolve rs;
  98     final Operators operators;
  99     final Infer infer;
 100     final Analyzer analyzer;
 101     final DeferredAttr deferredAttr;
 102     final Check chk;
 103     final Flow flow;
 104     final MemberEnter memberEnter;
 105     final TypeEnter typeEnter;
 106     final TreeMaker make;
 107     final ConstFold cfolder;
 108     final Enter enter;
 109     final Target target;
 110     final Types types;
 111     final JCDiagnostic.Factory diags;
 112     final TypeAnnotations typeAnnotations;
 113     final DeferredLintHandler deferredLintHandler;
 114     final TypeEnvs typeEnvs;
 115     final Dependencies dependencies;
 116     final Annotate annotate;
 117     final ArgumentAttr argumentAttr;
 118 
 119     public static Attr instance(Context context) {
 120         Attr instance = context.get(attrKey);
 121         if (instance == null)
 122             instance = new Attr(context);
 123         return instance;
 124     }
 125 
 126     protected Attr(Context context) {
 127         context.put(attrKey, this);
 128 
 129         names = Names.instance(context);
 130         log = Log.instance(context);
 131         syms = Symtab.instance(context);
 132         rs = Resolve.instance(context);
 133         operators = Operators.instance(context);
 134         chk = Check.instance(context);
 135         flow = Flow.instance(context);
 136         memberEnter = MemberEnter.instance(context);
 137         typeEnter = TypeEnter.instance(context);
 138         make = TreeMaker.instance(context);
 139         enter = Enter.instance(context);
 140         infer = Infer.instance(context);
 141         analyzer = Analyzer.instance(context);
 142         deferredAttr = DeferredAttr.instance(context);
 143         cfolder = ConstFold.instance(context);
 144         target = Target.instance(context);
 145         types = Types.instance(context);
 146         diags = JCDiagnostic.Factory.instance(context);
 147         annotate = Annotate.instance(context);
 148         typeAnnotations = TypeAnnotations.instance(context);
 149         deferredLintHandler = DeferredLintHandler.instance(context);
 150         typeEnvs = TypeEnvs.instance(context);
 151         dependencies = Dependencies.instance(context);
 152         argumentAttr = ArgumentAttr.instance(context);
 153 
 154         Options options = Options.instance(context);
 155 
 156         Source source = Source.instance(context);
 157         allowPoly = Feature.POLY.allowedInSource(source);
 158         allowTypeAnnos = Feature.TYPE_ANNOTATIONS.allowedInSource(source);
 159         allowLambda = Feature.LAMBDA.allowedInSource(source);
 160         allowDefaultMethods = Feature.DEFAULT_METHODS.allowedInSource(source);
 161         allowStaticInterfaceMethods = Feature.STATIC_INTERFACE_METHODS.allowedInSource(source);
 162         sourceName = source.name;
 163         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 164 
 165         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 166         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 167         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 168         methodAttrInfo = new MethodAttrInfo();
 169         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 170         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 171         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 172     }
 173 
 174     /** Switch: support target-typing inference
 175      */
 176     boolean allowPoly;
 177 
 178     /** Switch: support type annotations.
 179      */
 180     boolean allowTypeAnnos;
 181 
 182     /** Switch: support lambda expressions ?
 183      */
 184     boolean allowLambda;
 185 
 186     /** Switch: support default methods ?
 187      */
 188     boolean allowDefaultMethods;
 189 
 190     /** Switch: static interface methods enabled?
 191      */
 192     boolean allowStaticInterfaceMethods;
 193 
 194     /**
 195      * Switch: warn about use of variable before declaration?
 196      * RFE: 6425594
 197      */
 198     boolean useBeforeDeclarationWarning;
 199 
 200     /**
 201      * Switch: name of source level; used for error reporting.
 202      */
 203     String sourceName;
 204 
 205     /** Check kind and type of given tree against protokind and prototype.
 206      *  If check succeeds, store type in tree and return it.
 207      *  If check fails, store errType in tree and return it.
 208      *  No checks are performed if the prototype is a method type.
 209      *  It is not necessary in this case since we know that kind and type
 210      *  are correct.
 211      *
 212      *  @param tree     The tree whose kind and type is checked
 213      *  @param found    The computed type of the tree
 214      *  @param ownkind  The computed kind of the tree
 215      *  @param resultInfo  The expected result of the tree
 216      */
 217     Type check(final JCTree tree,
 218                final Type found,
 219                final KindSelector ownkind,
 220                final ResultInfo resultInfo) {
 221         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 222         Type owntype;
 223         boolean shouldCheck = !found.hasTag(ERROR) &&
 224                 !resultInfo.pt.hasTag(METHOD) &&
 225                 !resultInfo.pt.hasTag(FORALL);
 226         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 227             log.error(tree.pos(),
 228                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 229                                             ownkind.kindNames()));
 230             owntype = types.createErrorType(found);
 231         } else if (allowPoly && inferenceContext.free(found)) {
 232             //delay the check if there are inference variables in the found type
 233             //this means we are dealing with a partially inferred poly expression
 234             owntype = shouldCheck ? resultInfo.pt : found;
 235             if (resultInfo.checkMode.installPostInferenceHook()) {
 236                 inferenceContext.addFreeTypeListener(List.of(found),
 237                         instantiatedContext -> {
 238                             ResultInfo pendingResult =
 239                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 240                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 241                         });
 242             }
 243         } else {
 244             owntype = shouldCheck ?
 245             resultInfo.check(tree, found) :
 246             found;
 247         }
 248         if (resultInfo.checkMode.updateTreeType()) {
 249             tree.type = owntype;
 250         }
 251         return owntype;
 252     }
 253 
 254     /** Is given blank final variable assignable, i.e. in a scope where it
 255      *  may be assigned to even though it is final?
 256      *  @param v      The blank final variable.
 257      *  @param env    The current environment.
 258      */
 259     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 260         Symbol owner = env.info.scope.owner;
 261            // owner refers to the innermost variable, method or
 262            // initializer block declaration at this point.
 263         return
 264             v.owner == owner
 265             ||
 266             ((owner.name == names.init ||    // i.e. we are in a constructor
 267               owner.kind == VAR ||           // i.e. we are in a variable initializer
 268               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 269              &&
 270              v.owner == owner.owner
 271              &&
 272              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 273     }
 274 
 275     /** Check that variable can be assigned to.
 276      *  @param pos    The current source code position.
 277      *  @param v      The assigned variable
 278      *  @param base   If the variable is referred to in a Select, the part
 279      *                to the left of the `.', null otherwise.
 280      *  @param env    The current environment.
 281      */
 282     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 283         if (v.name == names._this) {
 284             log.error(pos, Errors.CantAssignValToThis);
 285         } else if ((v.flags() & FINAL) != 0 &&
 286             ((v.flags() & HASINIT) != 0
 287              ||
 288              !((base == null ||
 289                TreeInfo.isThisQualifier(base)) &&
 290                isAssignableAsBlankFinal(v, env)))) {
 291             if (v.isResourceVariable()) { //TWR resource
 292                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 293             } else {
 294                 log.error(pos, Errors.CantAssignValToFinalVar(v));
 295             }
 296         }
 297     }
 298 
 299     /** Does tree represent a static reference to an identifier?
 300      *  It is assumed that tree is either a SELECT or an IDENT.
 301      *  We have to weed out selects from non-type names here.
 302      *  @param tree    The candidate tree.
 303      */
 304     boolean isStaticReference(JCTree tree) {
 305         if (tree.hasTag(SELECT)) {
 306             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 307             if (lsym == null || lsym.kind != TYP) {
 308                 return false;
 309             }
 310         }
 311         return true;
 312     }
 313 
 314     /** Is this symbol a type?
 315      */
 316     static boolean isType(Symbol sym) {
 317         return sym != null && sym.kind == TYP;
 318     }
 319 
 320     /** The current `this' symbol.
 321      *  @param env    The current environment.
 322      */
 323     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 324         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 325     }
 326 
 327     /** Attribute a parsed identifier.
 328      * @param tree Parsed identifier name
 329      * @param topLevel The toplevel to use
 330      */
 331     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 332         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 333         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 334                                            syms.errSymbol.name,
 335                                            null, null, null, null);
 336         localEnv.enclClass.sym = syms.errSymbol;
 337         return attribIdent(tree, localEnv);
 338     }
 339 
 340     /** Attribute a parsed identifier.
 341      * @param tree Parsed identifier name
 342      * @param env The env to use
 343      */
 344     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 345         return tree.accept(identAttributer, env);
 346     }
 347     // where
 348         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 349         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 350             @Override @DefinedBy(Api.COMPILER_TREE)
 351             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 352                 Symbol site = visit(node.getExpression(), env);
 353                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 354                     return site;
 355                 Name name = (Name)node.getIdentifier();
 356                 if (site.kind == PCK) {
 357                     env.toplevel.packge = (PackageSymbol)site;
 358                     return rs.findIdentInPackage(env, (TypeSymbol)site, name,
 359                             KindSelector.TYP_PCK);
 360                 } else {
 361                     env.enclClass.sym = (ClassSymbol)site;
 362                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 363                 }
 364             }
 365 
 366             @Override @DefinedBy(Api.COMPILER_TREE)
 367             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 368                 return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
 369             }
 370         }
 371 
 372     public Type coerce(Type etype, Type ttype) {
 373         return cfolder.coerce(etype, ttype);
 374     }
 375 
 376     public Type attribType(JCTree node, TypeSymbol sym) {
 377         Env<AttrContext> env = typeEnvs.get(sym);
 378         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 379         return attribTree(node, localEnv, unknownTypeInfo);
 380     }
 381 
 382     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 383         // Attribute qualifying package or class.
 384         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 385         return attribTree(s.selected, env,
 386                           new ResultInfo(tree.staticImport ?
 387                                          KindSelector.TYP : KindSelector.TYP_PCK,
 388                        Type.noType));
 389     }
 390 
 391     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 392         breakTree = tree;
 393         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 394         EnumSet<AnalyzerMode> analyzerModes = EnumSet.copyOf(analyzer.analyzerModes);
 395         try {
 396             analyzer.analyzerModes.clear();
 397             attribExpr(expr, env);
 398         } catch (BreakAttr b) {
 399             return b.env;
 400         } catch (AssertionError ae) {
 401             if (ae.getCause() instanceof BreakAttr) {
 402                 return ((BreakAttr)(ae.getCause())).env;
 403             } else {
 404                 throw ae;
 405             }
 406         } finally {
 407             breakTree = null;
 408             log.useSource(prev);
 409             analyzer.analyzerModes.addAll(analyzerModes);
 410         }
 411         return env;
 412     }
 413 
 414     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 415         breakTree = tree;
 416         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 417         EnumSet<AnalyzerMode> analyzerModes = EnumSet.copyOf(analyzer.analyzerModes);
 418         try {
 419             analyzer.analyzerModes.clear();
 420             attribStat(stmt, env);
 421         } catch (BreakAttr b) {
 422             return b.env;
 423         } catch (AssertionError ae) {
 424             if (ae.getCause() instanceof BreakAttr) {
 425                 return ((BreakAttr)(ae.getCause())).env;
 426             } else {
 427                 throw ae;
 428             }
 429         } finally {
 430             breakTree = null;
 431             log.useSource(prev);
 432             analyzer.analyzerModes.addAll(analyzerModes);
 433         }
 434         return env;
 435     }
 436 
 437     private JCTree breakTree = null;
 438 
 439     private static class BreakAttr extends RuntimeException {
 440         static final long serialVersionUID = -6924771130405446405L;
 441         private Env<AttrContext> env;
 442         private BreakAttr(Env<AttrContext> env) {
 443             this.env = env;
 444         }
 445     }
 446 
 447     /**
 448      * Mode controlling behavior of Attr.Check
 449      */
 450     enum CheckMode {
 451 
 452         NORMAL,
 453 
 454         /**
 455          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 456          * that the captured var cache in {@code InferenceContext} will be used in read-only
 457          * mode when performing inference checks.
 458          */
 459         NO_TREE_UPDATE {
 460             @Override
 461             public boolean updateTreeType() {
 462                 return false;
 463             }
 464         },
 465         /**
 466          * Mode signalling that caller will manage free types in tree decorations.
 467          */
 468         NO_INFERENCE_HOOK {
 469             @Override
 470             public boolean installPostInferenceHook() {
 471                 return false;
 472             }
 473         };
 474 
 475         public boolean updateTreeType() {
 476             return true;
 477         }
 478         public boolean installPostInferenceHook() {
 479             return true;
 480         }
 481     }
 482 
 483 
 484     class ResultInfo {
 485         final KindSelector pkind;
 486         final Type pt;
 487         final CheckContext checkContext;
 488         final CheckMode checkMode;
 489 
 490         ResultInfo(KindSelector pkind, Type pt) {
 491             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 492         }
 493 
 494         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 495             this(pkind, pt, chk.basicHandler, checkMode);
 496         }
 497 
 498         protected ResultInfo(KindSelector pkind,
 499                              Type pt, CheckContext checkContext) {
 500             this(pkind, pt, checkContext, CheckMode.NORMAL);
 501         }
 502 
 503         protected ResultInfo(KindSelector pkind,
 504                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 505             this.pkind = pkind;
 506             this.pt = pt;
 507             this.checkContext = checkContext;
 508             this.checkMode = checkMode;
 509         }
 510 
 511         /**
 512          * Should {@link Attr#attribTree} use the {@ArgumentAttr} visitor instead of this one?
 513          * @param tree The tree to be type-checked.
 514          * @return true if {@ArgumentAttr} should be used.
 515          */
 516         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 517 
 518         protected Type check(final DiagnosticPosition pos, final Type found) {
 519             return chk.checkType(pos, found, pt, checkContext);
 520         }
 521 
 522         protected ResultInfo dup(Type newPt) {
 523             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 524         }
 525 
 526         protected ResultInfo dup(CheckContext newContext) {
 527             return new ResultInfo(pkind, pt, newContext, checkMode);
 528         }
 529 
 530         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 531             return new ResultInfo(pkind, newPt, newContext, checkMode);
 532         }
 533 
 534         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 535             return new ResultInfo(pkind, newPt, newContext, newMode);
 536         }
 537 
 538         protected ResultInfo dup(CheckMode newMode) {
 539             return new ResultInfo(pkind, pt, checkContext, newMode);
 540         }
 541 
 542         @Override
 543         public String toString() {
 544             if (pt != null) {
 545                 return pt.toString();
 546             } else {
 547                 return "";
 548             }
 549         }
 550     }
 551 
 552     class MethodAttrInfo extends ResultInfo {
 553         public MethodAttrInfo() {
 554             this(chk.basicHandler);
 555         }
 556 
 557         public MethodAttrInfo(CheckContext checkContext) {
 558             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 559         }
 560 
 561         @Override
 562         protected boolean needsArgumentAttr(JCTree tree) {
 563             return true;
 564         }
 565 
 566         protected ResultInfo dup(Type newPt) {
 567             throw new IllegalStateException();
 568         }
 569 
 570         protected ResultInfo dup(CheckContext newContext) {
 571             return new MethodAttrInfo(newContext);
 572         }
 573 
 574         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 575             throw new IllegalStateException();
 576         }
 577 
 578         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 579             throw new IllegalStateException();
 580         }
 581 
 582         protected ResultInfo dup(CheckMode newMode) {
 583             throw new IllegalStateException();
 584         }
 585     }
 586 
 587     class RecoveryInfo extends ResultInfo {
 588 
 589         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 590             this(deferredAttrContext, Type.recoveryType);
 591         }
 592 
 593         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 594             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 595                 @Override
 596                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 597                     return deferredAttrContext;
 598                 }
 599                 @Override
 600                 public boolean compatible(Type found, Type req, Warner warn) {
 601                     return true;
 602                 }
 603                 @Override
 604                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 605                     if (pt == Type.recoveryType) {
 606                         chk.basicHandler.report(pos, details);
 607                     }
 608                 }
 609             });
 610         }
 611     }
 612 
 613     final ResultInfo statInfo;
 614     final ResultInfo varAssignmentInfo;
 615     final ResultInfo methodAttrInfo;
 616     final ResultInfo unknownExprInfo;
 617     final ResultInfo unknownTypeInfo;
 618     final ResultInfo unknownTypeExprInfo;
 619     final ResultInfo recoveryInfo;
 620 
 621     Type pt() {
 622         return resultInfo.pt;
 623     }
 624 
 625     KindSelector pkind() {
 626         return resultInfo.pkind;
 627     }
 628 
 629 /* ************************************************************************
 630  * Visitor methods
 631  *************************************************************************/
 632 
 633     /** Visitor argument: the current environment.
 634      */
 635     Env<AttrContext> env;
 636 
 637     /** Visitor argument: the currently expected attribution result.
 638      */
 639     ResultInfo resultInfo;
 640 
 641     /** Visitor result: the computed type.
 642      */
 643     Type result;
 644 
 645     /** Visitor method: attribute a tree, catching any completion failure
 646      *  exceptions. Return the tree's type.
 647      *
 648      *  @param tree    The tree to be visited.
 649      *  @param env     The environment visitor argument.
 650      *  @param resultInfo   The result info visitor argument.
 651      */
 652     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 653         Env<AttrContext> prevEnv = this.env;
 654         ResultInfo prevResult = this.resultInfo;
 655         try {
 656             this.env = env;
 657             this.resultInfo = resultInfo;
 658             if (resultInfo.needsArgumentAttr(tree)) {
 659                 result = argumentAttr.attribArg(tree, env);
 660             } else {
 661                 tree.accept(this);
 662             }
 663             if (tree == breakTree &&
 664                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 665                 breakTreeFound(copyEnv(env));
 666             }
 667             return result;
 668         } catch (CompletionFailure ex) {
 669             tree.type = syms.errType;
 670             return chk.completionError(tree.pos(), ex);
 671         } finally {
 672             this.env = prevEnv;
 673             this.resultInfo = prevResult;
 674         }
 675     }
 676 
 677     protected void breakTreeFound(Env<AttrContext> env) {
 678         throw new BreakAttr(env);
 679     }
 680 
 681     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 682         Env<AttrContext> newEnv =
 683                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 684         if (newEnv.outer != null) {
 685             newEnv.outer = copyEnv(newEnv.outer);
 686         }
 687         return newEnv;
 688     }
 689 
 690     WriteableScope copyScope(WriteableScope sc) {
 691         WriteableScope newScope = WriteableScope.create(sc.owner);
 692         List<Symbol> elemsList = List.nil();
 693         for (Symbol sym : sc.getSymbols()) {
 694             elemsList = elemsList.prepend(sym);
 695         }
 696         for (Symbol s : elemsList) {
 697             newScope.enter(s);
 698         }
 699         return newScope;
 700     }
 701 
 702     /** Derived visitor method: attribute an expression tree.
 703      */
 704     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 705         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 706     }
 707 
 708     /** Derived visitor method: attribute an expression tree with
 709      *  no constraints on the computed type.
 710      */
 711     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 712         return attribTree(tree, env, unknownExprInfo);
 713     }
 714 
 715     /** Derived visitor method: attribute a type tree.
 716      */
 717     public Type attribType(JCTree tree, Env<AttrContext> env) {
 718         Type result = attribType(tree, env, Type.noType);
 719         return result;
 720     }
 721 
 722     /** Derived visitor method: attribute a type tree.
 723      */
 724     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 725         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 726         return result;
 727     }
 728 
 729     /** Derived visitor method: attribute a statement or definition tree.
 730      */
 731     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 732         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 733         try {
 734             return attribTree(tree, env, statInfo);
 735         } finally {
 736             analyzer.analyzeIfNeeded(tree, analyzeEnv);
 737         }
 738     }
 739 
 740     /** Attribute a list of expressions, returning a list of types.
 741      */
 742     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 743         ListBuffer<Type> ts = new ListBuffer<>();
 744         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 745             ts.append(attribExpr(l.head, env, pt));
 746         return ts.toList();
 747     }
 748 
 749     /** Attribute a list of statements, returning nothing.
 750      */
 751     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 752         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 753             attribStat(l.head, env);
 754     }
 755 
 756     /** Attribute the arguments in a method call, returning the method kind.
 757      */
 758     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 759         KindSelector kind = initialKind;
 760         for (JCExpression arg : trees) {
 761             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
 762             if (argtype.hasTag(DEFERRED)) {
 763                 kind = KindSelector.of(KindSelector.POLY, kind);
 764             }
 765             argtypes.append(argtype);
 766         }
 767         return kind;
 768     }
 769 
 770     /** Attribute a type argument list, returning a list of types.
 771      *  Caller is responsible for calling checkRefTypes.
 772      */
 773     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 774         ListBuffer<Type> argtypes = new ListBuffer<>();
 775         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 776             argtypes.append(attribType(l.head, env));
 777         return argtypes.toList();
 778     }
 779 
 780     /** Attribute a type argument list, returning a list of types.
 781      *  Check that all the types are references.
 782      */
 783     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 784         List<Type> types = attribAnyTypes(trees, env);
 785         return chk.checkRefTypes(trees, types);
 786     }
 787 
 788     /**
 789      * Attribute type variables (of generic classes or methods).
 790      * Compound types are attributed later in attribBounds.
 791      * @param typarams the type variables to enter
 792      * @param env      the current environment
 793      */
 794     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 795         for (JCTypeParameter tvar : typarams) {
 796             TypeVar a = (TypeVar)tvar.type;
 797             a.tsym.flags_field |= UNATTRIBUTED;
 798             a.bound = Type.noType;
 799             if (!tvar.bounds.isEmpty()) {
 800                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 801                 for (JCExpression bound : tvar.bounds.tail)
 802                     bounds = bounds.prepend(attribType(bound, env));
 803                 types.setBounds(a, bounds.reverse());
 804             } else {
 805                 // if no bounds are given, assume a single bound of
 806                 // java.lang.Object.
 807                 types.setBounds(a, List.of(syms.objectType));
 808             }
 809             a.tsym.flags_field &= ~UNATTRIBUTED;
 810         }
 811         for (JCTypeParameter tvar : typarams) {
 812             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 813         }
 814     }
 815 
 816     /**
 817      * Attribute the type references in a list of annotations.
 818      */
 819     void attribAnnotationTypes(List<JCAnnotation> annotations,
 820                                Env<AttrContext> env) {
 821         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 822             JCAnnotation a = al.head;
 823             attribType(a.annotationType, env);
 824         }
 825     }
 826 
 827     /**
 828      * Attribute a "lazy constant value".
 829      *  @param env         The env for the const value
 830      *  @param variable    The initializer for the const value
 831      *  @param type        The expected type, or null
 832      *  @see VarSymbol#setLazyConstValue
 833      */
 834     public Object attribLazyConstantValue(Env<AttrContext> env,
 835                                       JCVariableDecl variable,
 836                                       Type type) {
 837 
 838         DiagnosticPosition prevLintPos
 839                 = deferredLintHandler.setPos(variable.pos());
 840 
 841         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 842         try {
 843             Type itype = attribExpr(variable.init, env, type);
 844             if (variable.isImplicitlyTyped()) {
 845                 //fixup local variable type
 846                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype.baseType(), variable.name);
 847             }
 848             if (itype.constValue() != null) {
 849                 return coerce(itype, type).constValue();
 850             } else {
 851                 return null;
 852             }
 853         } finally {
 854             log.useSource(prevSource);
 855             deferredLintHandler.setPos(prevLintPos);
 856         }
 857     }
 858 
 859     /** Attribute type reference in an `extends' or `implements' clause.
 860      *  Supertypes of anonymous inner classes are usually already attributed.
 861      *
 862      *  @param tree              The tree making up the type reference.
 863      *  @param env               The environment current at the reference.
 864      *  @param classExpected     true if only a class is expected here.
 865      *  @param interfaceExpected true if only an interface is expected here.
 866      */
 867     Type attribBase(JCTree tree,
 868                     Env<AttrContext> env,
 869                     boolean classExpected,
 870                     boolean interfaceExpected,
 871                     boolean checkExtensible) {
 872         Type t = tree.type != null ?
 873             tree.type :
 874             attribType(tree, env);
 875         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 876     }
 877     Type checkBase(Type t,
 878                    JCTree tree,
 879                    Env<AttrContext> env,
 880                    boolean classExpected,
 881                    boolean interfaceExpected,
 882                    boolean checkExtensible) {
 883         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 884                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 885         if (t.tsym.isAnonymous()) {
 886             log.error(pos, Errors.CantInheritFromAnon);
 887             return types.createErrorType(t);
 888         }
 889         if (t.isErroneous())
 890             return t;
 891         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 892             // check that type variable is already visible
 893             if (t.getUpperBound() == null) {
 894                 log.error(pos, Errors.IllegalForwardRef);
 895                 return types.createErrorType(t);
 896             }
 897         } else {
 898             t = chk.checkClassType(pos, t, checkExtensible);
 899         }
 900         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 901             log.error(pos, Errors.IntfExpectedHere);
 902             // return errType is necessary since otherwise there might
 903             // be undetected cycles which cause attribution to loop
 904             return types.createErrorType(t);
 905         } else if (checkExtensible &&
 906                    classExpected &&
 907                    (t.tsym.flags() & INTERFACE) != 0) {
 908             log.error(pos, Errors.NoIntfExpectedHere);
 909             return types.createErrorType(t);
 910         }
 911         if (checkExtensible &&
 912             ((t.tsym.flags() & FINAL) != 0)) {
 913             log.error(pos,
 914                       Errors.CantInheritFromFinal(t.tsym));
 915         }
 916         chk.checkNonCyclic(pos, t);
 917         return t;
 918     }
 919 
 920     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 921         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 922         id.type = env.info.scope.owner.enclClass().type;
 923         id.sym = env.info.scope.owner.enclClass();
 924         return id.type;
 925     }
 926 
 927     public void visitClassDef(JCClassDecl tree) {
 928         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 929                 Optional.ofNullable(env.info.isSpeculative ?
 930                         argumentAttr.withLocalCacheContext() : null);
 931         try {
 932             // Local and anonymous classes have not been entered yet, so we need to
 933             // do it now.
 934             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 935                 enter.classEnter(tree, env);
 936             } else {
 937                 // If this class declaration is part of a class level annotation,
 938                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 939                 // order to simplify later steps and allow for sensible error
 940                 // messages.
 941                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 942                     enter.classEnter(tree, env);
 943             }
 944 
 945             ClassSymbol c = tree.sym;
 946             if (c == null) {
 947                 // exit in case something drastic went wrong during enter.
 948                 result = null;
 949             } else {
 950                 // make sure class has been completed:
 951                 c.complete();
 952 
 953                 // If this class appears as an anonymous class
 954                 // in a superclass constructor call
 955                 // disable implicit outer instance from being passed.
 956                 // (This would be an illegal access to "this before super").
 957                 if (env.info.isSelfCall &&
 958                         env.tree.hasTag(NEWCLASS)) {
 959                     c.flags_field |= NOOUTERTHIS;
 960                 }
 961                 attribClass(tree.pos(), c);
 962                 result = tree.type = c.type;
 963             }
 964         } finally {
 965             localCacheContext.ifPresent(LocalCacheContext::leave);
 966         }
 967     }
 968 
 969     public void visitMethodDef(JCMethodDecl tree) {
 970         MethodSymbol m = tree.sym;
 971         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 972 
 973         Lint lint = env.info.lint.augment(m);
 974         Lint prevLint = chk.setLint(lint);
 975         MethodSymbol prevMethod = chk.setMethod(m);
 976         try {
 977             deferredLintHandler.flush(tree.pos());
 978             chk.checkDeprecatedAnnotation(tree.pos(), m);
 979 
 980 
 981             // Create a new environment with local scope
 982             // for attributing the method.
 983             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 984             localEnv.info.lint = lint;
 985 
 986             attribStats(tree.typarams, localEnv);
 987 
 988             // If we override any other methods, check that we do so properly.
 989             // JLS ???
 990             if (m.isStatic()) {
 991                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 992             } else {
 993                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 994             }
 995             chk.checkOverride(env, tree, m);
 996 
 997             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
 998                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
 999             }
1000 
1001             // Enter all type parameters into the local method scope.
1002             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1003                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1004 
1005             ClassSymbol owner = env.enclClass.sym;
1006             if ((owner.flags() & ANNOTATION) != 0 &&
1007                     (tree.params.nonEmpty() ||
1008                     tree.recvparam != null))
1009                 log.error(tree.params.nonEmpty() ?
1010                         tree.params.head.pos() :
1011                         tree.recvparam.pos(),
1012                         Errors.IntfAnnotationMembersCantHaveParams);
1013 
1014             // Attribute all value parameters.
1015             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1016                 attribStat(l.head, localEnv);
1017             }
1018 
1019             chk.checkVarargsMethodDecl(localEnv, tree);
1020 
1021             // Check that type parameters are well-formed.
1022             chk.validate(tree.typarams, localEnv);
1023 
1024             // Check that result type is well-formed.
1025             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1026                 chk.validate(tree.restype, localEnv);
1027 
1028             // Check that receiver type is well-formed.
1029             if (tree.recvparam != null) {
1030                 // Use a new environment to check the receiver parameter.
1031                 // Otherwise I get "might not have been initialized" errors.
1032                 // Is there a better way?
1033                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1034                 attribType(tree.recvparam, newEnv);
1035                 chk.validate(tree.recvparam, newEnv);
1036             }
1037 
1038             // annotation method checks
1039             if ((owner.flags() & ANNOTATION) != 0) {
1040                 // annotation method cannot have throws clause
1041                 if (tree.thrown.nonEmpty()) {
1042                     log.error(tree.thrown.head.pos(),
1043                               Errors.ThrowsNotAllowedInIntfAnnotation);
1044                 }
1045                 // annotation method cannot declare type-parameters
1046                 if (tree.typarams.nonEmpty()) {
1047                     log.error(tree.typarams.head.pos(),
1048                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1049                 }
1050                 // validate annotation method's return type (could be an annotation type)
1051                 chk.validateAnnotationType(tree.restype);
1052                 // ensure that annotation method does not clash with members of Object/Annotation
1053                 chk.validateAnnotationMethod(tree.pos(), m);
1054             }
1055 
1056             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1057                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1058 
1059             if (tree.body == null) {
1060                 // Empty bodies are only allowed for
1061                 // abstract, native, or interface methods, or for methods
1062                 // in a retrofit signature class.
1063                 if (tree.defaultValue != null) {
1064                     if ((owner.flags() & ANNOTATION) == 0)
1065                         log.error(tree.pos(),
1066                                   Errors.DefaultAllowedInIntfAnnotationMember);
1067                 }
1068                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1069                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1070             } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1071                 if ((owner.flags() & INTERFACE) != 0) {
1072                     log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1073                 } else {
1074                     log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1075                 }
1076             } else if ((tree.mods.flags & NATIVE) != 0) {
1077                 log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1078             } else {
1079                 // Add an implicit super() call unless an explicit call to
1080                 // super(...) or this(...) is given
1081                 // or we are compiling class java.lang.Object.
1082                 if (tree.name == names.init && owner.type != syms.objectType) {
1083                     JCBlock body = tree.body;
1084                     if (body.stats.isEmpty() ||
1085                             !TreeInfo.isSelfCall(body.stats.head)) {
1086                         body.stats = body.stats.
1087                                 prepend(typeEnter.SuperCall(make.at(body.pos),
1088                                         List.nil(),
1089                                         List.nil(),
1090                                         false));
1091                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1092                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1093                             TreeInfo.isSuperCall(body.stats.head)) {
1094                         // enum constructors are not allowed to call super
1095                         // directly, so make sure there aren't any super calls
1096                         // in enum constructors, except in the compiler
1097                         // generated one.
1098                         log.error(tree.body.stats.head.pos(),
1099                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1100                     }
1101                 }
1102 
1103                 // Attribute all type annotations in the body
1104                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1105                 annotate.flush();
1106 
1107                 // Attribute method body.
1108                 attribStat(tree.body, localEnv);
1109             }
1110 
1111             localEnv.info.scope.leave();
1112             result = tree.type = m.type;
1113         } finally {
1114             chk.setLint(prevLint);
1115             chk.setMethod(prevMethod);
1116         }
1117     }
1118 
1119     public void visitVarDef(JCVariableDecl tree) {
1120         // Local variables have not been entered yet, so we need to do it now:
1121         if (env.info.scope.owner.kind == MTH) {
1122             if (tree.sym != null) {
1123                 // parameters have already been entered
1124                 env.info.scope.enter(tree.sym);
1125             } else {
1126                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1127                     if (tree.init == null) {
1128                         //cannot use 'var' without initializer
1129                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1130                         tree.vartype = make.Erroneous();
1131                     } else {
1132                         Fragment msg = canInferLocalVarType(tree);
1133                         if (msg != null) {
1134                             //cannot use 'var' with initializer which require an explicit target
1135                             //(e.g. lambda, method reference, array initializer).
1136                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1137                             tree.vartype = make.Erroneous();
1138                         }
1139                     }
1140                 }
1141                 try {
1142                     annotate.blockAnnotations();
1143                     memberEnter.memberEnter(tree, env);
1144                 } finally {
1145                     annotate.unblockAnnotations();
1146                 }
1147             }
1148         } else {
1149             if (tree.init != null) {
1150                 // Field initializer expression need to be entered.
1151                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1152                 annotate.flush();
1153             }
1154         }
1155 
1156         VarSymbol v = tree.sym;
1157         Lint lint = env.info.lint.augment(v);
1158         Lint prevLint = chk.setLint(lint);
1159 
1160         // Check that the variable's declared type is well-formed.
1161         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1162                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1163                 (tree.sym.flags() & PARAMETER) != 0;
1164         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1165 
1166         try {
1167             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1168             deferredLintHandler.flush(tree.pos());
1169             chk.checkDeprecatedAnnotation(tree.pos(), v);
1170 
1171             if (tree.init != null) {
1172                 if ((v.flags_field & FINAL) == 0 ||
1173                     !memberEnter.needsLazyConstValue(tree.init)) {
1174                     // Not a compile-time constant
1175                     // Attribute initializer in a new environment
1176                     // with the declared variable as owner.
1177                     // Check that initializer conforms to variable's declared type.
1178                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1179                     initEnv.info.lint = lint;
1180                     // In order to catch self-references, we set the variable's
1181                     // declaration position to maximal possible value, effectively
1182                     // marking the variable as undefined.
1183                     initEnv.info.enclVar = v;
1184                     attribExpr(tree.init, initEnv, v.type);
1185                     if (tree.isImplicitlyTyped()) {
1186                         //fixup local variable type
1187                         v.type = chk.checkLocalVarType(tree, tree.init.type.baseType(), tree.name);
1188                     }
1189                 }
1190                 if (tree.isImplicitlyTyped()) {
1191                     setSyntheticVariableType(tree, v.type);
1192                 }
1193             }
1194             result = tree.type = v.type;
1195         }
1196         finally {
1197             chk.setLint(prevLint);
1198         }
1199     }
1200 
1201     Fragment canInferLocalVarType(JCVariableDecl tree) {
1202         LocalInitScanner lis = new LocalInitScanner();
1203         lis.scan(tree.init);
1204         return lis.badInferenceMsg;
1205     }
1206 
1207     static class LocalInitScanner extends TreeScanner {
1208         Fragment badInferenceMsg = null;
1209         boolean needsTarget = true;
1210 
1211         @Override
1212         public void visitNewArray(JCNewArray tree) {
1213             if (tree.elemtype == null && needsTarget) {
1214                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1215             }
1216         }
1217 
1218         @Override
1219         public void visitLambda(JCLambda tree) {
1220             if (needsTarget) {
1221                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1222             }
1223         }
1224 
1225         @Override
1226         public void visitTypeCast(JCTypeCast tree) {
1227             boolean prevNeedsTarget = needsTarget;
1228             try {
1229                 needsTarget = false;
1230                 super.visitTypeCast(tree);
1231             } finally {
1232                 needsTarget = prevNeedsTarget;
1233             }
1234         }
1235 
1236         @Override
1237         public void visitReference(JCMemberReference tree) {
1238             if (needsTarget) {
1239                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1240             }
1241         }
1242 
1243         @Override
1244         public void visitNewClass(JCNewClass tree) {
1245             boolean prevNeedsTarget = needsTarget;
1246             try {
1247                 needsTarget = false;
1248                 super.visitNewClass(tree);
1249             } finally {
1250                 needsTarget = prevNeedsTarget;
1251             }
1252         }
1253 
1254         @Override
1255         public void visitApply(JCMethodInvocation tree) {
1256             boolean prevNeedsTarget = needsTarget;
1257             try {
1258                 needsTarget = false;
1259                 super.visitApply(tree);
1260             } finally {
1261                 needsTarget = prevNeedsTarget;
1262             }
1263         }
1264     }
1265 
1266     public void visitSkip(JCSkip tree) {
1267         result = null;
1268     }
1269 
1270     public void visitBlock(JCBlock tree) {
1271         if (env.info.scope.owner.kind == TYP) {
1272             // Block is a static or instance initializer;
1273             // let the owner of the environment be a freshly
1274             // created BLOCK-method.
1275             Symbol fakeOwner =
1276                 new MethodSymbol(tree.flags | BLOCK |
1277                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1278                     env.info.scope.owner);
1279             final Env<AttrContext> localEnv =
1280                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1281 
1282             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1283             // Attribute all type annotations in the block
1284             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1285             annotate.flush();
1286             attribStats(tree.stats, localEnv);
1287 
1288             {
1289                 // Store init and clinit type annotations with the ClassSymbol
1290                 // to allow output in Gen.normalizeDefs.
1291                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1292                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1293                 if ((tree.flags & STATIC) != 0) {
1294                     cs.appendClassInitTypeAttributes(tas);
1295                 } else {
1296                     cs.appendInitTypeAttributes(tas);
1297                 }
1298             }
1299         } else {
1300             // Create a new local environment with a local scope.
1301             Env<AttrContext> localEnv =
1302                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1303             try {
1304                 attribStats(tree.stats, localEnv);
1305             } finally {
1306                 localEnv.info.scope.leave();
1307             }
1308         }
1309         result = null;
1310     }
1311 
1312     public void visitDoLoop(JCDoWhileLoop tree) {
1313         attribStat(tree.body, env.dup(tree));
1314         attribExpr(tree.cond, env, syms.booleanType);
1315         result = null;
1316     }
1317 
1318     public void visitWhileLoop(JCWhileLoop tree) {
1319         attribExpr(tree.cond, env, syms.booleanType);
1320         attribStat(tree.body, env.dup(tree));
1321         result = null;
1322     }
1323 
1324     public void visitForLoop(JCForLoop tree) {
1325         Env<AttrContext> loopEnv =
1326             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1327         try {
1328             attribStats(tree.init, loopEnv);
1329             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1330             loopEnv.tree = tree; // before, we were not in loop!
1331             attribStats(tree.step, loopEnv);
1332             attribStat(tree.body, loopEnv);
1333             result = null;
1334         }
1335         finally {
1336             loopEnv.info.scope.leave();
1337         }
1338     }
1339 
1340     public void visitForeachLoop(JCEnhancedForLoop tree) {
1341         Env<AttrContext> loopEnv =
1342             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1343         try {
1344             //the Formal Parameter of a for-each loop is not in the scope when
1345             //attributing the for-each expression; we mimick this by attributing
1346             //the for-each expression first (against original scope).
1347             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1348             chk.checkNonVoid(tree.pos(), exprType);
1349             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1350             if (elemtype == null) {
1351                 // or perhaps expr implements Iterable<T>?
1352                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1353                 if (base == null) {
1354                     log.error(tree.expr.pos(),
1355                               Errors.ForeachNotApplicableToType(exprType,
1356                                                                 Fragments.TypeReqArrayOrIterable));
1357                     elemtype = types.createErrorType(exprType);
1358                 } else {
1359                     List<Type> iterableParams = base.allparams();
1360                     elemtype = iterableParams.isEmpty()
1361                         ? syms.objectType
1362                         : types.wildUpperBound(iterableParams.head);
1363                 }
1364             }
1365             if (tree.var.isImplicitlyTyped()) {
1366                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1367                 setSyntheticVariableType(tree.var, inferredType);
1368             }
1369             attribStat(tree.var, loopEnv);
1370             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1371             loopEnv.tree = tree; // before, we were not in loop!
1372             attribStat(tree.body, loopEnv);
1373             result = null;
1374         }
1375         finally {
1376             loopEnv.info.scope.leave();
1377         }
1378     }
1379 
1380     public void visitLabelled(JCLabeledStatement tree) {
1381         // Check that label is not used in an enclosing statement
1382         Env<AttrContext> env1 = env;
1383         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1384             if (env1.tree.hasTag(LABELLED) &&
1385                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1386                 log.error(tree.pos(),
1387                           Errors.LabelAlreadyInUse(tree.label));
1388                 break;
1389             }
1390             env1 = env1.next;
1391         }
1392 
1393         attribStat(tree.body, env.dup(tree));
1394         result = null;
1395     }
1396 
1397     public void visitSwitch(JCSwitch tree) {
1398         Type seltype = attribExpr(tree.selector, env);
1399 
1400         Env<AttrContext> switchEnv =
1401             env.dup(tree, env.info.dup(env.info.scope.dup()));
1402 
1403         try {
1404 
1405             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1406             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1407             if (!enumSwitch && !stringSwitch)
1408                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1409 
1410             // Attribute all cases and
1411             // check that there are no duplicate case labels or default clauses.
1412             Set<Object> labels = new HashSet<>(); // The set of case labels.
1413             boolean hasDefault = false;      // Is there a default label?
1414             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1415                 JCCase c = l.head;
1416                 if (c.pat != null) {
1417                     if (enumSwitch) {
1418                         Symbol sym = enumConstant(c.pat, seltype);
1419                         if (sym == null) {
1420                             log.error(c.pat.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1421                         } else if (!labels.add(sym)) {
1422                             log.error(c.pos(), Errors.DuplicateCaseLabel);
1423                         }
1424                     } else {
1425                         Type pattype = attribExpr(c.pat, switchEnv, seltype);
1426                         if (!pattype.hasTag(ERROR)) {
1427                             if (pattype.constValue() == null) {
1428                                 log.error(c.pat.pos(),
1429                                           (stringSwitch ? Errors.StringConstReq : Errors.ConstExprReq));
1430                             } else if (!labels.add(pattype.constValue())) {
1431                                 log.error(c.pos(), Errors.DuplicateCaseLabel);
1432                             }
1433                         }
1434                     }
1435                 } else if (hasDefault) {
1436                     log.error(c.pos(), Errors.DuplicateDefaultLabel);
1437                 } else {
1438                     hasDefault = true;
1439                 }
1440                 Env<AttrContext> caseEnv =
1441                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1442                 try {
1443                     attribStats(c.stats, caseEnv);
1444                 } finally {
1445                     caseEnv.info.scope.leave();
1446                     addVars(c.stats, switchEnv.info.scope);
1447                 }
1448             }
1449 
1450             result = null;
1451         }
1452         finally {
1453             switchEnv.info.scope.leave();
1454         }
1455     }
1456     // where
1457         /** Add any variables defined in stats to the switch scope. */
1458         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1459             for (;stats.nonEmpty(); stats = stats.tail) {
1460                 JCTree stat = stats.head;
1461                 if (stat.hasTag(VARDEF))
1462                     switchScope.enter(((JCVariableDecl) stat).sym);
1463             }
1464         }
1465     // where
1466     /** Return the selected enumeration constant symbol, or null. */
1467     private Symbol enumConstant(JCTree tree, Type enumType) {
1468         if (tree.hasTag(IDENT)) {
1469             JCIdent ident = (JCIdent)tree;
1470             Name name = ident.name;
1471             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1472                 if (sym.kind == VAR) {
1473                     Symbol s = ident.sym = sym;
1474                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1475                     ident.type = s.type;
1476                     return ((s.flags_field & Flags.ENUM) == 0)
1477                         ? null : s;
1478                 }
1479             }
1480         }
1481         return null;
1482     }
1483 
1484     public void visitSynchronized(JCSynchronized tree) {
1485         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1486         attribStat(tree.body, env);
1487         result = null;
1488     }
1489 
1490     public void visitTry(JCTry tree) {
1491         // Create a new local environment with a local
1492         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1493         try {
1494             boolean isTryWithResource = tree.resources.nonEmpty();
1495             // Create a nested environment for attributing the try block if needed
1496             Env<AttrContext> tryEnv = isTryWithResource ?
1497                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1498                 localEnv;
1499             try {
1500                 // Attribute resource declarations
1501                 for (JCTree resource : tree.resources) {
1502                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1503                         @Override
1504                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1505                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1506                         }
1507                     };
1508                     ResultInfo twrResult =
1509                         new ResultInfo(KindSelector.VAR,
1510                                        syms.autoCloseableType,
1511                                        twrContext);
1512                     if (resource.hasTag(VARDEF)) {
1513                         attribStat(resource, tryEnv);
1514                         twrResult.check(resource, resource.type);
1515 
1516                         //check that resource type cannot throw InterruptedException
1517                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1518 
1519                         VarSymbol var = ((JCVariableDecl) resource).sym;
1520                         var.setData(ElementKind.RESOURCE_VARIABLE);
1521                     } else {
1522                         attribTree(resource, tryEnv, twrResult);
1523                     }
1524                 }
1525                 // Attribute body
1526                 attribStat(tree.body, tryEnv);
1527             } finally {
1528                 if (isTryWithResource)
1529                     tryEnv.info.scope.leave();
1530             }
1531 
1532             // Attribute catch clauses
1533             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1534                 JCCatch c = l.head;
1535                 Env<AttrContext> catchEnv =
1536                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1537                 try {
1538                     Type ctype = attribStat(c.param, catchEnv);
1539                     if (TreeInfo.isMultiCatch(c)) {
1540                         //multi-catch parameter is implicitly marked as final
1541                         c.param.sym.flags_field |= FINAL | UNION;
1542                     }
1543                     if (c.param.sym.kind == VAR) {
1544                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1545                     }
1546                     chk.checkType(c.param.vartype.pos(),
1547                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1548                                   syms.throwableType);
1549                     attribStat(c.body, catchEnv);
1550                 } finally {
1551                     catchEnv.info.scope.leave();
1552                 }
1553             }
1554 
1555             // Attribute finalizer
1556             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1557             result = null;
1558         }
1559         finally {
1560             localEnv.info.scope.leave();
1561         }
1562     }
1563 
1564     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1565         if (!resource.isErroneous() &&
1566             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1567             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1568             Symbol close = syms.noSymbol;
1569             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1570             try {
1571                 close = rs.resolveQualifiedMethod(pos,
1572                         env,
1573                         types.skipTypeVars(resource, false),
1574                         names.close,
1575                         List.nil(),
1576                         List.nil());
1577             }
1578             finally {
1579                 log.popDiagnosticHandler(discardHandler);
1580             }
1581             if (close.kind == MTH &&
1582                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1583                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1584                     env.info.lint.isEnabled(LintCategory.TRY)) {
1585                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
1586             }
1587         }
1588     }
1589 
1590     public void visitConditional(JCConditional tree) {
1591         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1592 
1593         tree.polyKind = (!allowPoly ||
1594                 pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1595                 isBooleanOrNumeric(env, tree)) ?
1596                 PolyKind.STANDALONE : PolyKind.POLY;
1597 
1598         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1599             //this means we are returning a poly conditional from void-compatible lambda expression
1600             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
1601             result = tree.type = types.createErrorType(resultInfo.pt);
1602             return;
1603         }
1604 
1605         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1606                 unknownExprInfo :
1607                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
1608 
1609         Type truetype = attribTree(tree.truepart, env, condInfo);
1610         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1611 
1612         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1613         if (condtype.constValue() != null &&
1614                 truetype.constValue() != null &&
1615                 falsetype.constValue() != null &&
1616                 !owntype.hasTag(NONE)) {
1617             //constant folding
1618             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1619         }
1620         result = check(tree, owntype, KindSelector.VAL, resultInfo);
1621     }
1622     //where
1623         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1624             switch (tree.getTag()) {
1625                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1626                               ((JCLiteral)tree).typetag == BOOLEAN ||
1627                               ((JCLiteral)tree).typetag == BOT;
1628                 case LAMBDA: case REFERENCE: return false;
1629                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1630                 case CONDEXPR:
1631                     JCConditional condTree = (JCConditional)tree;
1632                     return isBooleanOrNumeric(env, condTree.truepart) &&
1633                             isBooleanOrNumeric(env, condTree.falsepart);
1634                 case APPLY:
1635                     JCMethodInvocation speculativeMethodTree =
1636                             (JCMethodInvocation)deferredAttr.attribSpeculative(
1637                                     tree, env, unknownExprInfo,
1638                                     argumentAttr.withLocalCacheContext());
1639                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1640                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1641                             env.enclClass.type :
1642                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1643                     Type owntype = types.memberType(receiverType, msym).getReturnType();
1644                     return primitiveOrBoxed(owntype);
1645                 case NEWCLASS:
1646                     JCExpression className =
1647                             removeClassParams.translate(((JCNewClass)tree).clazz);
1648                     JCExpression speculativeNewClassTree =
1649                             (JCExpression)deferredAttr.attribSpeculative(
1650                                     className, env, unknownTypeInfo,
1651                                     argumentAttr.withLocalCacheContext());
1652                     return primitiveOrBoxed(speculativeNewClassTree.type);
1653                 default:
1654                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
1655                             argumentAttr.withLocalCacheContext()).type;
1656                     return primitiveOrBoxed(speculativeType);
1657             }
1658         }
1659         //where
1660             boolean primitiveOrBoxed(Type t) {
1661                 return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1662             }
1663 
1664             TreeTranslator removeClassParams = new TreeTranslator() {
1665                 @Override
1666                 public void visitTypeApply(JCTypeApply tree) {
1667                     result = translate(tree.clazz);
1668                 }
1669             };
1670 
1671         CheckContext conditionalContext(CheckContext checkContext) {
1672             return new Check.NestedCheckContext(checkContext) {
1673                 //this will use enclosing check context to check compatibility of
1674                 //subexpression against target type; if we are in a method check context,
1675                 //depending on whether boxing is allowed, we could have incompatibilities
1676                 @Override
1677                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1678                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
1679                 }
1680             };
1681         }
1682 
1683         /** Compute the type of a conditional expression, after
1684          *  checking that it exists.  See JLS 15.25. Does not take into
1685          *  account the special case where condition and both arms
1686          *  are constants.
1687          *
1688          *  @param pos      The source position to be used for error
1689          *                  diagnostics.
1690          *  @param thentype The type of the expression's then-part.
1691          *  @param elsetype The type of the expression's else-part.
1692          */
1693         Type condType(DiagnosticPosition pos,
1694                                Type thentype, Type elsetype) {
1695             // If same type, that is the result
1696             if (types.isSameType(thentype, elsetype))
1697                 return thentype.baseType();
1698 
1699             Type thenUnboxed = (thentype.isPrimitive())
1700                 ? thentype : types.unboxedType(thentype);
1701             Type elseUnboxed = (elsetype.isPrimitive())
1702                 ? elsetype : types.unboxedType(elsetype);
1703 
1704             // Otherwise, if both arms can be converted to a numeric
1705             // type, return the least numeric type that fits both arms
1706             // (i.e. return larger of the two, or return int if one
1707             // arm is short, the other is char).
1708             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1709                 // If one arm has an integer subrange type (i.e., byte,
1710                 // short, or char), and the other is an integer constant
1711                 // that fits into the subrange, return the subrange type.
1712                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1713                     elseUnboxed.hasTag(INT) &&
1714                     types.isAssignable(elseUnboxed, thenUnboxed)) {
1715                     return thenUnboxed.baseType();
1716                 }
1717                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1718                     thenUnboxed.hasTag(INT) &&
1719                     types.isAssignable(thenUnboxed, elseUnboxed)) {
1720                     return elseUnboxed.baseType();
1721                 }
1722 
1723                 for (TypeTag tag : primitiveTags) {
1724                     Type candidate = syms.typeOfTag[tag.ordinal()];
1725                     if (types.isSubtype(thenUnboxed, candidate) &&
1726                         types.isSubtype(elseUnboxed, candidate)) {
1727                         return candidate;
1728                     }
1729                 }
1730             }
1731 
1732             // Those were all the cases that could result in a primitive
1733             if (thentype.isPrimitive())
1734                 thentype = types.boxedClass(thentype).type;
1735             if (elsetype.isPrimitive())
1736                 elsetype = types.boxedClass(elsetype).type;
1737 
1738             if (types.isSubtype(thentype, elsetype))
1739                 return elsetype.baseType();
1740             if (types.isSubtype(elsetype, thentype))
1741                 return thentype.baseType();
1742 
1743             if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1744                 log.error(pos,
1745                           Errors.NeitherConditionalSubtype(thentype,
1746                                                            elsetype));
1747                 return thentype.baseType();
1748             }
1749 
1750             // both are known to be reference types.  The result is
1751             // lub(thentype,elsetype). This cannot fail, as it will
1752             // always be possible to infer "Object" if nothing better.
1753             return types.lub(thentype.baseType(), elsetype.baseType());
1754         }
1755 
1756     final static TypeTag[] primitiveTags = new TypeTag[]{
1757         BYTE,
1758         CHAR,
1759         SHORT,
1760         INT,
1761         LONG,
1762         FLOAT,
1763         DOUBLE,
1764         BOOLEAN,
1765     };
1766 
1767     public void visitIf(JCIf tree) {
1768         attribExpr(tree.cond, env, syms.booleanType);
1769         attribStat(tree.thenpart, env);
1770         if (tree.elsepart != null)
1771             attribStat(tree.elsepart, env);
1772         chk.checkEmptyIf(tree);
1773         result = null;
1774     }
1775 
1776     public void visitExec(JCExpressionStatement tree) {
1777         //a fresh environment is required for 292 inference to work properly ---
1778         //see Infer.instantiatePolymorphicSignatureInstance()
1779         Env<AttrContext> localEnv = env.dup(tree);
1780         attribExpr(tree.expr, localEnv);
1781         result = null;
1782     }
1783 
1784     public void visitBreak(JCBreak tree) {
1785         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1786         result = null;
1787     }
1788 
1789     public void visitContinue(JCContinue tree) {
1790         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1791         result = null;
1792     }
1793     //where
1794         /** Return the target of a break or continue statement, if it exists,
1795          *  report an error if not.
1796          *  Note: The target of a labelled break or continue is the
1797          *  (non-labelled) statement tree referred to by the label,
1798          *  not the tree representing the labelled statement itself.
1799          *
1800          *  @param pos     The position to be used for error diagnostics
1801          *  @param tag     The tag of the jump statement. This is either
1802          *                 Tree.BREAK or Tree.CONTINUE.
1803          *  @param label   The label of the jump statement, or null if no
1804          *                 label is given.
1805          *  @param env     The environment current at the jump statement.
1806          */
1807         private JCTree findJumpTarget(DiagnosticPosition pos,
1808                                     JCTree.Tag tag,
1809                                     Name label,
1810                                     Env<AttrContext> env) {
1811             // Search environments outwards from the point of jump.
1812             Env<AttrContext> env1 = env;
1813             LOOP:
1814             while (env1 != null) {
1815                 switch (env1.tree.getTag()) {
1816                     case LABELLED:
1817                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1818                         if (label == labelled.label) {
1819                             // If jump is a continue, check that target is a loop.
1820                             if (tag == CONTINUE) {
1821                                 if (!labelled.body.hasTag(DOLOOP) &&
1822                                         !labelled.body.hasTag(WHILELOOP) &&
1823                                         !labelled.body.hasTag(FORLOOP) &&
1824                                         !labelled.body.hasTag(FOREACHLOOP))
1825                                     log.error(pos, Errors.NotLoopLabel(label));
1826                                 // Found labelled statement target, now go inwards
1827                                 // to next non-labelled tree.
1828                                 return TreeInfo.referencedStatement(labelled);
1829                             } else {
1830                                 return labelled;
1831                             }
1832                         }
1833                         break;
1834                     case DOLOOP:
1835                     case WHILELOOP:
1836                     case FORLOOP:
1837                     case FOREACHLOOP:
1838                         if (label == null) return env1.tree;
1839                         break;
1840                     case SWITCH:
1841                         if (label == null && tag == BREAK) return env1.tree;
1842                         break;
1843                     case LAMBDA:
1844                     case METHODDEF:
1845                     case CLASSDEF:
1846                         break LOOP;
1847                     default:
1848                 }
1849                 env1 = env1.next;
1850             }
1851             if (label != null)
1852                 log.error(pos, Errors.UndefLabel(label));
1853             else if (tag == CONTINUE)
1854                 log.error(pos, Errors.ContOutsideLoop);
1855             else
1856                 log.error(pos, Errors.BreakOutsideSwitchLoop);
1857             return null;
1858         }
1859 
1860     public void visitReturn(JCReturn tree) {
1861         // Check that there is an enclosing method which is
1862         // nested within than the enclosing class.
1863         if (env.info.returnResult == null) {
1864             log.error(tree.pos(), Errors.RetOutsideMeth);
1865         } else {
1866             // Attribute return expression, if it exists, and check that
1867             // it conforms to result type of enclosing method.
1868             if (tree.expr != null) {
1869                 if (env.info.returnResult.pt.hasTag(VOID)) {
1870                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1871                               diags.fragment(Fragments.UnexpectedRetVal));
1872                 }
1873                 attribTree(tree.expr, env, env.info.returnResult);
1874             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1875                     !env.info.returnResult.pt.hasTag(NONE)) {
1876                 env.info.returnResult.checkContext.report(tree.pos(),
1877                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
1878             }
1879         }
1880         result = null;
1881     }
1882 
1883     public void visitThrow(JCThrow tree) {
1884         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1885         if (allowPoly) {
1886             chk.checkType(tree, owntype, syms.throwableType);
1887         }
1888         result = null;
1889     }
1890 
1891     public void visitAssert(JCAssert tree) {
1892         attribExpr(tree.cond, env, syms.booleanType);
1893         if (tree.detail != null) {
1894             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1895         }
1896         result = null;
1897     }
1898 
1899      /** Visitor method for method invocations.
1900      *  NOTE: The method part of an application will have in its type field
1901      *        the return type of the method, not the method's type itself!
1902      */
1903     public void visitApply(JCMethodInvocation tree) {
1904         // The local environment of a method application is
1905         // a new environment nested in the current one.
1906         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1907 
1908         // The types of the actual method arguments.
1909         List<Type> argtypes;
1910 
1911         // The types of the actual method type arguments.
1912         List<Type> typeargtypes = null;
1913 
1914         Name methName = TreeInfo.name(tree.meth);
1915 
1916         boolean isConstructorCall =
1917             methName == names._this || methName == names._super;
1918 
1919         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1920         if (isConstructorCall) {
1921             // We are seeing a ...this(...) or ...super(...) call.
1922             // Check that this is the first statement in a constructor.
1923             if (checkFirstConstructorStat(tree, env)) {
1924 
1925                 // Record the fact
1926                 // that this is a constructor call (using isSelfCall).
1927                 localEnv.info.isSelfCall = true;
1928 
1929                 // Attribute arguments, yielding list of argument types.
1930                 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1931                 argtypes = argtypesBuf.toList();
1932                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1933 
1934                 // Variable `site' points to the class in which the called
1935                 // constructor is defined.
1936                 Type site = env.enclClass.sym.type;
1937                 if (methName == names._super) {
1938                     if (site == syms.objectType) {
1939                         log.error(tree.meth.pos(), Errors.NoSuperclass(site));
1940                         site = types.createErrorType(syms.objectType);
1941                     } else {
1942                         site = types.supertype(site);
1943                     }
1944                 }
1945 
1946                 if (site.hasTag(CLASS)) {
1947                     Type encl = site.getEnclosingType();
1948                     while (encl != null && encl.hasTag(TYPEVAR))
1949                         encl = encl.getUpperBound();
1950                     if (encl.hasTag(CLASS)) {
1951                         // we are calling a nested class
1952 
1953                         if (tree.meth.hasTag(SELECT)) {
1954                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1955 
1956                             // We are seeing a prefixed call, of the form
1957                             //     <expr>.super(...).
1958                             // Check that the prefix expression conforms
1959                             // to the outer instance type of the class.
1960                             chk.checkRefType(qualifier.pos(),
1961                                              attribExpr(qualifier, localEnv,
1962                                                         encl));
1963                         } else if (methName == names._super) {
1964                             // qualifier omitted; check for existence
1965                             // of an appropriate implicit qualifier.
1966                             rs.resolveImplicitThis(tree.meth.pos(),
1967                                                    localEnv, site, true);
1968                         }
1969                     } else if (tree.meth.hasTag(SELECT)) {
1970                         log.error(tree.meth.pos(),
1971                                   Errors.IllegalQualNotIcls(site.tsym));
1972                     }
1973 
1974                     // if we're calling a java.lang.Enum constructor,
1975                     // prefix the implicit String and int parameters
1976                     if (site.tsym == syms.enumSym)
1977                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1978 
1979                     // Resolve the called constructor under the assumption
1980                     // that we are referring to a superclass instance of the
1981                     // current instance (JLS ???).
1982                     boolean selectSuperPrev = localEnv.info.selectSuper;
1983                     localEnv.info.selectSuper = true;
1984                     localEnv.info.pendingResolutionPhase = null;
1985                     Symbol sym = rs.resolveConstructor(
1986                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1987                     localEnv.info.selectSuper = selectSuperPrev;
1988 
1989                     // Set method symbol to resolved constructor...
1990                     TreeInfo.setSymbol(tree.meth, sym);
1991 
1992                     // ...and check that it is legal in the current context.
1993                     // (this will also set the tree's type)
1994                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1995                     checkId(tree.meth, site, sym, localEnv,
1996                             new ResultInfo(kind, mpt));
1997                 }
1998                 // Otherwise, `site' is an error type and we do nothing
1999             }
2000             result = tree.type = syms.voidType;
2001         } else {
2002             // Otherwise, we are seeing a regular method call.
2003             // Attribute the arguments, yielding list of argument types, ...
2004             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2005             argtypes = argtypesBuf.toList();
2006             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2007 
2008             // ... and attribute the method using as a prototype a methodtype
2009             // whose formal argument types is exactly the list of actual
2010             // arguments (this will also set the method symbol).
2011             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2012             localEnv.info.pendingResolutionPhase = null;
2013             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2014 
2015             // Compute the result type.
2016             Type restype = mtype.getReturnType();
2017             if (restype.hasTag(WILDCARD))
2018                 throw new AssertionError(mtype);
2019 
2020             Type qualifier = (tree.meth.hasTag(SELECT))
2021                     ? ((JCFieldAccess) tree.meth).selected.type
2022                     : env.enclClass.sym.type;
2023             Symbol msym = TreeInfo.symbol(tree.meth);
2024             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2025 
2026             chk.checkRefTypes(tree.typeargs, typeargtypes);
2027 
2028             // Check that value of resulting type is admissible in the
2029             // current context.  Also, capture the return type
2030             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2031             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2032         }
2033         chk.validate(tree.typeargs, localEnv);
2034     }
2035     //where
2036         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2037             if (msym != null &&
2038                     msym.owner == syms.objectType.tsym &&
2039                     methodName == names.getClass &&
2040                     argtypes.isEmpty()) {
2041                 // as a special case, x.getClass() has type Class<? extends |X|>
2042                 return new ClassType(restype.getEnclosingType(),
2043                         List.of(new WildcardType(types.erasure(qualifierType),
2044                                 BoundKind.EXTENDS,
2045                                 syms.boundClass)),
2046                         restype.tsym,
2047                         restype.getMetadata());
2048             } else if (msym != null &&
2049                     msym.owner == syms.arrayClass &&
2050                     methodName == names.clone &&
2051                     types.isArray(qualifierType)) {
2052                 // as a special case, array.clone() has a result that is
2053                 // the same as static type of the array being cloned
2054                 return qualifierType;
2055             } else {
2056                 return restype;
2057             }
2058         }
2059 
2060         /** Check that given application node appears as first statement
2061          *  in a constructor call.
2062          *  @param tree   The application node
2063          *  @param env    The environment current at the application.
2064          */
2065         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
2066             JCMethodDecl enclMethod = env.enclMethod;
2067             if (enclMethod != null && enclMethod.name == names.init) {
2068                 JCBlock body = enclMethod.body;
2069                 if (body.stats.head.hasTag(EXEC) &&
2070                     ((JCExpressionStatement) body.stats.head).expr == tree)
2071                     return true;
2072             }
2073             log.error(tree.pos(),
2074                       Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth)));
2075             return false;
2076         }
2077 
2078         /** Obtain a method type with given argument types.
2079          */
2080         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2081             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2082             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2083         }
2084 
2085     public void visitNewClass(final JCNewClass tree) {
2086         Type owntype = types.createErrorType(tree.type);
2087 
2088         // The local environment of a class creation is
2089         // a new environment nested in the current one.
2090         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2091 
2092         // The anonymous inner class definition of the new expression,
2093         // if one is defined by it.
2094         JCClassDecl cdef = tree.def;
2095 
2096         // If enclosing class is given, attribute it, and
2097         // complete class name to be fully qualified
2098         JCExpression clazz = tree.clazz; // Class field following new
2099         JCExpression clazzid;            // Identifier in class field
2100         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2101         annoclazzid = null;
2102 
2103         if (clazz.hasTag(TYPEAPPLY)) {
2104             clazzid = ((JCTypeApply) clazz).clazz;
2105             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2106                 annoclazzid = (JCAnnotatedType) clazzid;
2107                 clazzid = annoclazzid.underlyingType;
2108             }
2109         } else {
2110             if (clazz.hasTag(ANNOTATED_TYPE)) {
2111                 annoclazzid = (JCAnnotatedType) clazz;
2112                 clazzid = annoclazzid.underlyingType;
2113             } else {
2114                 clazzid = clazz;
2115             }
2116         }
2117 
2118         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2119 
2120         if (tree.encl != null) {
2121             // We are seeing a qualified new, of the form
2122             //    <expr>.new C <...> (...) ...
2123             // In this case, we let clazz stand for the name of the
2124             // allocated class C prefixed with the type of the qualifier
2125             // expression, so that we can
2126             // resolve it with standard techniques later. I.e., if
2127             // <expr> has type T, then <expr>.new C <...> (...)
2128             // yields a clazz T.C.
2129             Type encltype = chk.checkRefType(tree.encl.pos(),
2130                                              attribExpr(tree.encl, env));
2131             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2132             // from expr to the combined type, or not? Yes, do this.
2133             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2134                                                  ((JCIdent) clazzid).name);
2135 
2136             EndPosTable endPosTable = this.env.toplevel.endPositions;
2137             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2138             if (clazz.hasTag(ANNOTATED_TYPE)) {
2139                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2140                 List<JCAnnotation> annos = annoType.annotations;
2141 
2142                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2143                     clazzid1 = make.at(tree.pos).
2144                         TypeApply(clazzid1,
2145                                   ((JCTypeApply) clazz).arguments);
2146                 }
2147 
2148                 clazzid1 = make.at(tree.pos).
2149                     AnnotatedType(annos, clazzid1);
2150             } else if (clazz.hasTag(TYPEAPPLY)) {
2151                 clazzid1 = make.at(tree.pos).
2152                     TypeApply(clazzid1,
2153                               ((JCTypeApply) clazz).arguments);
2154             }
2155 
2156             clazz = clazzid1;
2157         }
2158 
2159         // Attribute clazz expression and store
2160         // symbol + type back into the attributed tree.
2161         Type clazztype;
2162 
2163         try {
2164             env.info.isNewClass = true;
2165             clazztype = TreeInfo.isEnumInit(env.tree) ?
2166                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2167                 attribType(clazz, env);
2168         } finally {
2169             env.info.isNewClass = false;
2170         }
2171 
2172         clazztype = chk.checkDiamond(tree, clazztype);
2173         chk.validate(clazz, localEnv);
2174         if (tree.encl != null) {
2175             // We have to work in this case to store
2176             // symbol + type back into the attributed tree.
2177             tree.clazz.type = clazztype;
2178             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2179             clazzid.type = ((JCIdent) clazzid).sym.type;
2180             if (annoclazzid != null) {
2181                 annoclazzid.type = clazzid.type;
2182             }
2183             if (!clazztype.isErroneous()) {
2184                 if (cdef != null && clazztype.tsym.isInterface()) {
2185                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2186                 } else if (clazztype.tsym.isStatic()) {
2187                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2188                 }
2189             }
2190         } else if (!clazztype.tsym.isInterface() &&
2191                    clazztype.getEnclosingType().hasTag(CLASS)) {
2192             // Check for the existence of an apropos outer instance
2193             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2194         }
2195 
2196         // Attribute constructor arguments.
2197         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2198         final KindSelector pkind =
2199             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2200         List<Type> argtypes = argtypesBuf.toList();
2201         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2202 
2203         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2204             // Enums may not be instantiated except implicitly
2205             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2206                 (!env.tree.hasTag(VARDEF) ||
2207                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2208                  ((JCVariableDecl) env.tree).init != tree))
2209                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2210 
2211             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2212                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2213             boolean skipNonDiamondPath = false;
2214             // Check that class is not abstract
2215             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2216                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2217                 log.error(tree.pos(),
2218                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2219                 skipNonDiamondPath = true;
2220             } else if (cdef != null && clazztype.tsym.isInterface()) {
2221                 // Check that no constructor arguments are given to
2222                 // anonymous classes implementing an interface
2223                 if (!argtypes.isEmpty())
2224                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2225 
2226                 if (!typeargtypes.isEmpty())
2227                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2228 
2229                 // Error recovery: pretend no arguments were supplied.
2230                 argtypes = List.nil();
2231                 typeargtypes = List.nil();
2232                 skipNonDiamondPath = true;
2233             }
2234             if (TreeInfo.isDiamond(tree)) {
2235                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2236                             clazztype.tsym.type.getTypeArguments(),
2237                                                clazztype.tsym,
2238                                                clazztype.getMetadata());
2239 
2240                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2241                 diamondEnv.info.selectSuper = cdef != null;
2242                 diamondEnv.info.pendingResolutionPhase = null;
2243 
2244                 //if the type of the instance creation expression is a class type
2245                 //apply method resolution inference (JLS 15.12.2.7). The return type
2246                 //of the resolved constructor will be a partially instantiated type
2247                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2248                             diamondEnv,
2249                             site,
2250                             argtypes,
2251                             typeargtypes);
2252                 tree.constructor = constructor.baseSymbol();
2253 
2254                 final TypeSymbol csym = clazztype.tsym;
2255                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2256                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2257                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2258                 constructorType = checkId(tree, site,
2259                         constructor,
2260                         diamondEnv,
2261                         diamondResult);
2262 
2263                 tree.clazz.type = types.createErrorType(clazztype);
2264                 if (!constructorType.isErroneous()) {
2265                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2266                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2267                 }
2268                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2269             }
2270 
2271             // Resolve the called constructor under the assumption
2272             // that we are referring to a superclass instance of the
2273             // current instance (JLS ???).
2274             else if (!skipNonDiamondPath) {
2275                 //the following code alters some of the fields in the current
2276                 //AttrContext - hence, the current context must be dup'ed in
2277                 //order to avoid downstream failures
2278                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2279                 rsEnv.info.selectSuper = cdef != null;
2280                 rsEnv.info.pendingResolutionPhase = null;
2281                 tree.constructor = rs.resolveConstructor(
2282                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2283                 if (cdef == null) { //do not check twice!
2284                     tree.constructorType = checkId(tree,
2285                             clazztype,
2286                             tree.constructor,
2287                             rsEnv,
2288                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2289                     if (rsEnv.info.lastResolveVarargs())
2290                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2291                 }
2292             }
2293 
2294             if (cdef != null) {
2295                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2296                 return;
2297             }
2298 
2299             if (tree.constructor != null && tree.constructor.kind == MTH)
2300                 owntype = clazztype;
2301         }
2302         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2303         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2304         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2305             //we need to wait for inference to finish and then replace inference vars in the constructor type
2306             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2307                     instantiatedContext -> {
2308                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2309                     });
2310         }
2311         chk.validate(tree.typeargs, localEnv);
2312     }
2313 
2314         // where
2315         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2316                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2317                                                    List<Type> argtypes, List<Type> typeargtypes,
2318                                                    KindSelector pkind) {
2319             // We are seeing an anonymous class instance creation.
2320             // In this case, the class instance creation
2321             // expression
2322             //
2323             //    E.new <typeargs1>C<typargs2>(args) { ... }
2324             //
2325             // is represented internally as
2326             //
2327             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2328             //
2329             // This expression is then *transformed* as follows:
2330             //
2331             // (1) add an extends or implements clause
2332             // (2) add a constructor.
2333             //
2334             // For instance, if C is a class, and ET is the type of E,
2335             // the expression
2336             //
2337             //    E.new <typeargs1>C<typargs2>(args) { ... }
2338             //
2339             // is translated to (where X is a fresh name and typarams is the
2340             // parameter list of the super constructor):
2341             //
2342             //   new <typeargs1>X(<*nullchk*>E, args) where
2343             //     X extends C<typargs2> {
2344             //       <typarams> X(ET e, args) {
2345             //         e.<typeargs1>super(args)
2346             //       }
2347             //       ...
2348             //     }
2349             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2350             final boolean isDiamond = TreeInfo.isDiamond(tree);
2351             if (isDiamond
2352                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2353                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2354                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2355                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2356                         instantiatedContext -> {
2357                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2358                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2359                             ResultInfo prevResult = this.resultInfo;
2360                             try {
2361                                 this.resultInfo = resultInfoForClassDefinition;
2362                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2363                                                             localEnv, argtypes, typeargtypes, pkind);
2364                             } finally {
2365                                 this.resultInfo = prevResult;
2366                             }
2367                         });
2368             } else {
2369                 if (isDiamond && clazztype.hasTag(CLASS)) {
2370                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2371                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2372                         // One or more types inferred in the previous steps is non-denotable.
2373                         Fragment fragment = Diamond(clazztype.tsym);
2374                         log.error(tree.clazz.pos(),
2375                                 Errors.CantApplyDiamond1(
2376                                         fragment,
2377                                         invalidDiamondArgs.size() > 1 ?
2378                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2379                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
2380                     }
2381                     // For <>(){}, inferred types must also be accessible.
2382                     for (Type t : clazztype.getTypeArguments()) {
2383                         rs.checkAccessibleType(env, t);
2384                     }
2385                 }
2386 
2387                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2388                 // false for isInterface call even when the original type is an interface.
2389                 boolean implementing = clazztype.tsym.isInterface() ||
2390                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
2391                         clazztype.getOriginalType().tsym.isInterface();
2392 
2393                 if (implementing) {
2394                     cdef.implementing = List.of(clazz);
2395                 } else {
2396                     cdef.extending = clazz;
2397                 }
2398 
2399                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2400                     isSerializable(clazztype)) {
2401                     localEnv.info.isSerializable = true;
2402                 }
2403 
2404                 attribStat(cdef, localEnv);
2405 
2406                 List<Type> finalargtypes;
2407                 // If an outer instance is given,
2408                 // prefix it to the constructor arguments
2409                 // and delete it from the new expression
2410                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2411                     finalargtypes = argtypes.prepend(tree.encl.type);
2412                 } else {
2413                     finalargtypes = argtypes;
2414                 }
2415 
2416                 // Reassign clazztype and recompute constructor. As this necessarily involves
2417                 // another attribution pass for deferred types in the case of <>, replicate
2418                 // them. Original arguments have right decorations already.
2419                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
2420                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2421                 }
2422 
2423                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
2424                                                     : cdef.sym.type;
2425                 Symbol sym = tree.constructor = rs.resolveConstructor(
2426                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2427                 Assert.check(!sym.kind.isResolutionError());
2428                 tree.constructor = sym;
2429                 tree.constructorType = checkId(tree,
2430                         clazztype,
2431                         tree.constructor,
2432                         localEnv,
2433                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2434             }
2435             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2436                                 clazztype : types.createErrorType(tree.type);
2437             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2438             chk.validate(tree.typeargs, localEnv);
2439         }
2440 
2441         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2442             return new Check.NestedCheckContext(checkContext) {
2443                 @Override
2444                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2445                     enclosingContext.report(clazz.clazz,
2446                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
2447                 }
2448             };
2449         }
2450 
2451     /** Make an attributed null check tree.
2452      */
2453     public JCExpression makeNullCheck(JCExpression arg) {
2454         // optimization: new Outer() can never be null; skip null check
2455         if (arg.getTag() == NEWCLASS)
2456             return arg;
2457         // optimization: X.this is never null; skip null check
2458         Name name = TreeInfo.name(arg);
2459         if (name == names._this || name == names._super) return arg;
2460 
2461         JCTree.Tag optag = NULLCHK;
2462         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2463         tree.operator = operators.resolveUnary(arg, optag, arg.type);
2464         tree.type = arg.type;
2465         return tree;
2466     }
2467 
2468     public void visitNewArray(JCNewArray tree) {
2469         Type owntype = types.createErrorType(tree.type);
2470         Env<AttrContext> localEnv = env.dup(tree);
2471         Type elemtype;
2472         if (tree.elemtype != null) {
2473             elemtype = attribType(tree.elemtype, localEnv);
2474             chk.validate(tree.elemtype, localEnv);
2475             owntype = elemtype;
2476             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2477                 attribExpr(l.head, localEnv, syms.intType);
2478                 owntype = new ArrayType(owntype, syms.arrayClass);
2479             }
2480         } else {
2481             // we are seeing an untyped aggregate { ... }
2482             // this is allowed only if the prototype is an array
2483             if (pt().hasTag(ARRAY)) {
2484                 elemtype = types.elemtype(pt());
2485             } else {
2486                 if (!pt().hasTag(ERROR) &&
2487                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2488                     log.error(tree.pos(),
2489                               Errors.IllegalInitializerForType(pt()));
2490                 }
2491                 elemtype = types.createErrorType(pt());
2492             }
2493         }
2494         if (tree.elems != null) {
2495             attribExprs(tree.elems, localEnv, elemtype);
2496             owntype = new ArrayType(elemtype, syms.arrayClass);
2497         }
2498         if (!types.isReifiable(elemtype))
2499             log.error(tree.pos(), Errors.GenericArrayCreation);
2500         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2501     }
2502 
2503     /*
2504      * A lambda expression can only be attributed when a target-type is available.
2505      * In addition, if the target-type is that of a functional interface whose
2506      * descriptor contains inference variables in argument position the lambda expression
2507      * is 'stuck' (see DeferredAttr).
2508      */
2509     @Override
2510     public void visitLambda(final JCLambda that) {
2511         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2512             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2513                 //lambda only allowed in assignment or method invocation/cast context
2514                 log.error(that.pos(), Errors.UnexpectedLambda);
2515             }
2516             resultInfo = recoveryInfo;
2517         }
2518         //create an environment for attribution of the lambda expression
2519         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2520         boolean needsRecovery =
2521                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2522         try {
2523             if (needsRecovery && isSerializable(pt())) {
2524                 localEnv.info.isSerializable = true;
2525                 localEnv.info.isLambda = true;
2526             }
2527             List<Type> explicitParamTypes = null;
2528             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2529                 //attribute lambda parameters
2530                 attribStats(that.params, localEnv);
2531                 explicitParamTypes = TreeInfo.types(that.params);
2532             }
2533 
2534             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2535             Type currentTarget = targetInfo.target;
2536             Type lambdaType = targetInfo.descriptor;
2537 
2538             if (currentTarget.isErroneous()) {
2539                 result = that.type = currentTarget;
2540                 return;
2541             }
2542 
2543             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2544 
2545             if (lambdaType.hasTag(FORALL)) {
2546                 //lambda expression target desc cannot be a generic method
2547                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2548                                                                     kindName(currentTarget.tsym),
2549                                                                     currentTarget.tsym);
2550                 resultInfo.checkContext.report(that, diags.fragment(msg));
2551                 result = that.type = types.createErrorType(pt());
2552                 return;
2553             }
2554 
2555             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2556                 //add param type info in the AST
2557                 List<Type> actuals = lambdaType.getParameterTypes();
2558                 List<JCVariableDecl> params = that.params;
2559 
2560                 boolean arityMismatch = false;
2561 
2562                 while (params.nonEmpty()) {
2563                     if (actuals.isEmpty()) {
2564                         //not enough actuals to perform lambda parameter inference
2565                         arityMismatch = true;
2566                     }
2567                     //reset previously set info
2568                     Type argType = arityMismatch ?
2569                             syms.errType :
2570                             actuals.head;
2571                     if (params.head.isImplicitlyTyped()) {
2572                         setSyntheticVariableType(params.head, argType);
2573                     }
2574                     params.head.sym = null;
2575                     actuals = actuals.isEmpty() ?
2576                             actuals :
2577                             actuals.tail;
2578                     params = params.tail;
2579                 }
2580 
2581                 //attribute lambda parameters
2582                 attribStats(that.params, localEnv);
2583 
2584                 if (arityMismatch) {
2585                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2586                         result = that.type = types.createErrorType(currentTarget);
2587                         return;
2588                 }
2589             }
2590 
2591             //from this point on, no recovery is needed; if we are in assignment context
2592             //we will be able to attribute the whole lambda body, regardless of errors;
2593             //if we are in a 'check' method context, and the lambda is not compatible
2594             //with the target-type, it will be recovered anyway in Attr.checkId
2595             needsRecovery = false;
2596 
2597             ResultInfo bodyResultInfo = localEnv.info.returnResult =
2598                     lambdaBodyResult(that, lambdaType, resultInfo);
2599 
2600             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2601                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2602             } else {
2603                 JCBlock body = (JCBlock)that.body;
2604                 if (body == breakTree &&
2605                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2606                     breakTreeFound(copyEnv(localEnv));
2607                 }
2608                 attribStats(body.stats, localEnv);
2609             }
2610 
2611             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2612 
2613             boolean isSpeculativeRound =
2614                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2615 
2616             preFlow(that);
2617             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2618 
2619             that.type = currentTarget; //avoids recovery at this stage
2620             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2621 
2622             if (!isSpeculativeRound) {
2623                 //add thrown types as bounds to the thrown types free variables if needed:
2624                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2625                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2626                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
2627                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
2628                     }
2629                 }
2630 
2631                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2632             }
2633             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2634         } catch (Types.FunctionDescriptorLookupError ex) {
2635             JCDiagnostic cause = ex.getDiagnostic();
2636             resultInfo.checkContext.report(that, cause);
2637             result = that.type = types.createErrorType(pt());
2638             return;
2639         } catch (Throwable t) {
2640             //when an unexpected exception happens, avoid attempts to attribute the same tree again
2641             //as that would likely cause the same exception again.
2642             needsRecovery = false;
2643             throw t;
2644         } finally {
2645             localEnv.info.scope.leave();
2646             if (needsRecovery) {
2647                 attribTree(that, env, recoveryInfo);
2648             }
2649         }
2650     }
2651     //where
2652         class TargetInfo {
2653             Type target;
2654             Type descriptor;
2655 
2656             public TargetInfo(Type target, Type descriptor) {
2657                 this.target = target;
2658                 this.descriptor = descriptor;
2659             }
2660         }
2661 
2662         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
2663             Type lambdaType;
2664             Type currentTarget = resultInfo.pt;
2665             if (resultInfo.pt != Type.recoveryType) {
2666                 /* We need to adjust the target. If the target is an
2667                  * intersection type, for example: SAM & I1 & I2 ...
2668                  * the target will be updated to SAM
2669                  */
2670                 currentTarget = targetChecker.visit(currentTarget, that);
2671                 if (!currentTarget.isIntersection()) {
2672                     if (explicitParamTypes != null) {
2673                         currentTarget = infer.instantiateFunctionalInterface(that,
2674                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
2675                     }
2676                     currentTarget = types.removeWildcards(currentTarget);
2677                     lambdaType = types.findDescriptorType(currentTarget);
2678                 } else {
2679                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
2680                     ListBuffer<Type> components = new ListBuffer<>();
2681                     for (Type bound : ict.getExplicitComponents()) {
2682                         if (explicitParamTypes != null) {
2683                             try {
2684                                 bound = infer.instantiateFunctionalInterface(that,
2685                                         bound, explicitParamTypes, resultInfo.checkContext);
2686                             } catch (FunctionDescriptorLookupError t) {
2687                                 // do nothing
2688                             }
2689                         }
2690                         bound = types.removeWildcards(bound);
2691                         components.add(bound);
2692                     }
2693                     currentTarget = types.makeIntersectionType(components.toList());
2694                     currentTarget.tsym.flags_field |= INTERFACE;
2695                     lambdaType = types.findDescriptorType(currentTarget);
2696                 }
2697 
2698             } else {
2699                 currentTarget = Type.recoveryType;
2700                 lambdaType = fallbackDescriptorType(that);
2701             }
2702             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
2703                 //lambda expression target desc cannot be a generic method
2704                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2705                                                                     kindName(currentTarget.tsym),
2706                                                                     currentTarget.tsym);
2707                 resultInfo.checkContext.report(that, diags.fragment(msg));
2708                 currentTarget = types.createErrorType(pt());
2709             }
2710             return new TargetInfo(currentTarget, lambdaType);
2711         }
2712 
2713         void preFlow(JCLambda tree) {
2714             new PostAttrAnalyzer() {
2715                 @Override
2716                 public void scan(JCTree tree) {
2717                     if (tree == null ||
2718                             (tree.type != null &&
2719                             tree.type == Type.stuckType)) {
2720                         //don't touch stuck expressions!
2721                         return;
2722                     }
2723                     super.scan(tree);
2724                 }
2725             }.scan(tree);
2726         }
2727 
2728         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2729 
2730             @Override
2731             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2732                 return t.isIntersection() ?
2733                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2734             }
2735 
2736             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2737                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
2738                 return ict;
2739             }
2740 
2741             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
2742                 ListBuffer<Type> targs = new ListBuffer<>();
2743                 ListBuffer<Type> supertypes = new ListBuffer<>();
2744                 for (Type i : ict.interfaces_field) {
2745                     if (i.isParameterized()) {
2746                         targs.appendList(i.tsym.type.allparams());
2747                     }
2748                     supertypes.append(i.tsym.type);
2749                 }
2750                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2751                 notionalIntf.allparams_field = targs.toList();
2752                 notionalIntf.tsym.flags_field |= INTERFACE;
2753                 return notionalIntf.tsym;
2754             }
2755         };
2756 
2757         private Type fallbackDescriptorType(JCExpression tree) {
2758             switch (tree.getTag()) {
2759                 case LAMBDA:
2760                     JCLambda lambda = (JCLambda)tree;
2761                     List<Type> argtypes = List.nil();
2762                     for (JCVariableDecl param : lambda.params) {
2763                         argtypes = param.vartype != null && param.vartype.type != null ?
2764                                 argtypes.append(param.vartype.type) :
2765                                 argtypes.append(syms.errType);
2766                     }
2767                     return new MethodType(argtypes, Type.recoveryType,
2768                             List.of(syms.throwableType), syms.methodClass);
2769                 case REFERENCE:
2770                     return new MethodType(List.nil(), Type.recoveryType,
2771                             List.of(syms.throwableType), syms.methodClass);
2772                 default:
2773                     Assert.error("Cannot get here!");
2774             }
2775             return null;
2776         }
2777 
2778         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2779                 final InferenceContext inferenceContext, final Type... ts) {
2780             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2781         }
2782 
2783         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2784                 final InferenceContext inferenceContext, final List<Type> ts) {
2785             if (inferenceContext.free(ts)) {
2786                 inferenceContext.addFreeTypeListener(ts,
2787                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
2788             } else {
2789                 for (Type t : ts) {
2790                     rs.checkAccessibleType(env, t);
2791                 }
2792             }
2793         }
2794 
2795         /**
2796          * Lambda/method reference have a special check context that ensures
2797          * that i.e. a lambda return type is compatible with the expected
2798          * type according to both the inherited context and the assignment
2799          * context.
2800          */
2801         class FunctionalReturnContext extends Check.NestedCheckContext {
2802 
2803             FunctionalReturnContext(CheckContext enclosingContext) {
2804                 super(enclosingContext);
2805             }
2806 
2807             @Override
2808             public boolean compatible(Type found, Type req, Warner warn) {
2809                 //return type must be compatible in both current context and assignment context
2810                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
2811             }
2812 
2813             @Override
2814             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2815                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
2816             }
2817         }
2818 
2819         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2820 
2821             JCExpression expr;
2822             boolean expStmtExpected;
2823 
2824             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2825                 super(enclosingContext);
2826                 this.expr = expr;
2827             }
2828 
2829             @Override
2830             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2831                 if (expStmtExpected) {
2832                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
2833                 } else {
2834                     super.report(pos, details);
2835                 }
2836             }
2837 
2838             @Override
2839             public boolean compatible(Type found, Type req, Warner warn) {
2840                 //a void return is compatible with an expression statement lambda
2841                 if (req.hasTag(VOID)) {
2842                     expStmtExpected = true;
2843                     return TreeInfo.isExpressionStatement(expr);
2844                 } else {
2845                     return super.compatible(found, req, warn);
2846                 }
2847             }
2848         }
2849 
2850         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
2851             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2852                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2853                     new FunctionalReturnContext(resultInfo.checkContext);
2854 
2855             return descriptor.getReturnType() == Type.recoveryType ?
2856                     recoveryInfo :
2857                     new ResultInfo(KindSelector.VAL,
2858                             descriptor.getReturnType(), funcContext);
2859         }
2860 
2861         /**
2862         * Lambda compatibility. Check that given return types, thrown types, parameter types
2863         * are compatible with the expected functional interface descriptor. This means that:
2864         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2865         * types must be compatible with the return type of the expected descriptor.
2866         */
2867         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2868             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2869 
2870             //return values have already been checked - but if lambda has no return
2871             //values, we must ensure that void/value compatibility is correct;
2872             //this amounts at checking that, if a lambda body can complete normally,
2873             //the descriptor's return type must be void
2874             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2875                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2876                 Fragment msg =
2877                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
2878                 checkContext.report(tree,
2879                                     diags.fragment(msg));
2880             }
2881 
2882             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2883             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2884                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2885             }
2886         }
2887 
2888         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2889          * static field and that lambda has type annotations, these annotations will
2890          * also be stored at these fake clinit methods.
2891          *
2892          * LambdaToMethod also use fake clinit methods so they can be reused.
2893          * Also as LTM is a phase subsequent to attribution, the methods from
2894          * clinits can be safely removed by LTM to save memory.
2895          */
2896         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2897 
2898         public MethodSymbol removeClinit(ClassSymbol sym) {
2899             return clinits.remove(sym);
2900         }
2901 
2902         /* This method returns an environment to be used to attribute a lambda
2903          * expression.
2904          *
2905          * The owner of this environment is a method symbol. If the current owner
2906          * is not a method, for example if the lambda is used to initialize
2907          * a field, then if the field is:
2908          *
2909          * - an instance field, we use the first constructor.
2910          * - a static field, we create a fake clinit method.
2911          */
2912         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2913             Env<AttrContext> lambdaEnv;
2914             Symbol owner = env.info.scope.owner;
2915             if (owner.kind == VAR && owner.owner.kind == TYP) {
2916                 //field initializer
2917                 ClassSymbol enclClass = owner.enclClass();
2918                 Symbol newScopeOwner = env.info.scope.owner;
2919                 /* if the field isn't static, then we can get the first constructor
2920                  * and use it as the owner of the environment. This is what
2921                  * LTM code is doing to look for type annotations so we are fine.
2922                  */
2923                 if ((owner.flags() & STATIC) == 0) {
2924                     for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2925                         newScopeOwner = s;
2926                         break;
2927                     }
2928                 } else {
2929                     /* if the field is static then we need to create a fake clinit
2930                      * method, this method can later be reused by LTM.
2931                      */
2932                     MethodSymbol clinit = clinits.get(enclClass);
2933                     if (clinit == null) {
2934                         Type clinitType = new MethodType(List.nil(),
2935                                 syms.voidType, List.nil(), syms.methodClass);
2936                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2937                                 names.clinit, clinitType, enclClass);
2938                         clinit.params = List.nil();
2939                         clinits.put(enclClass, clinit);
2940                     }
2941                     newScopeOwner = clinit;
2942                 }
2943                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2944             } else {
2945                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2946             }
2947             return lambdaEnv;
2948         }
2949 
2950     @Override
2951     public void visitReference(final JCMemberReference that) {
2952         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2953             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2954                 //method reference only allowed in assignment or method invocation/cast context
2955                 log.error(that.pos(), Errors.UnexpectedMref);
2956             }
2957             result = that.type = types.createErrorType(pt());
2958             return;
2959         }
2960         final Env<AttrContext> localEnv = env.dup(that);
2961         try {
2962             //attribute member reference qualifier - if this is a constructor
2963             //reference, the expected kind must be a type
2964             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2965 
2966             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2967                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2968                 if (!exprType.isErroneous() &&
2969                     exprType.isRaw() &&
2970                     that.typeargs != null) {
2971                     log.error(that.expr.pos(),
2972                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
2973                                                  Fragments.MrefInferAndExplicitParams));
2974                     exprType = types.createErrorType(exprType);
2975                 }
2976             }
2977 
2978             if (exprType.isErroneous()) {
2979                 //if the qualifier expression contains problems,
2980                 //give up attribution of method reference
2981                 result = that.type = exprType;
2982                 return;
2983             }
2984 
2985             if (TreeInfo.isStaticSelector(that.expr, names)) {
2986                 //if the qualifier is a type, validate it; raw warning check is
2987                 //omitted as we don't know at this stage as to whether this is a
2988                 //raw selector (because of inference)
2989                 chk.validate(that.expr, env, false);
2990             } else {
2991                 Symbol lhsSym = TreeInfo.symbol(that.expr);
2992                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
2993             }
2994             //attrib type-arguments
2995             List<Type> typeargtypes = List.nil();
2996             if (that.typeargs != null) {
2997                 typeargtypes = attribTypes(that.typeargs, localEnv);
2998             }
2999 
3000             boolean isTargetSerializable =
3001                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3002                     isSerializable(pt());
3003             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3004             Type currentTarget = targetInfo.target;
3005             Type desc = targetInfo.descriptor;
3006 
3007             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3008             List<Type> argtypes = desc.getParameterTypes();
3009             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3010 
3011             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3012                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3013             }
3014 
3015             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3016             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3017             try {
3018                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3019                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3020                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3021             } finally {
3022                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3023             }
3024 
3025             Symbol refSym = refResult.fst;
3026             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3027 
3028             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3029              *  JDK-8075541
3030              */
3031             if (refSym.kind != MTH) {
3032                 boolean targetError;
3033                 switch (refSym.kind) {
3034                     case ABSENT_MTH:
3035                     case MISSING_ENCL:
3036                         targetError = false;
3037                         break;
3038                     case WRONG_MTH:
3039                     case WRONG_MTHS:
3040                     case AMBIGUOUS:
3041                     case HIDDEN:
3042                     case STATICERR:
3043                         targetError = true;
3044                         break;
3045                     default:
3046                         Assert.error("unexpected result kind " + refSym.kind);
3047                         targetError = false;
3048                 }
3049 
3050                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3051                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3052                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3053 
3054                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3055                         targetError ?
3056                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3057                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3058 
3059                 if (targetError && currentTarget == Type.recoveryType) {
3060                     //a target error doesn't make sense during recovery stage
3061                     //as we don't know what actual parameter types are
3062                     result = that.type = currentTarget;
3063                     return;
3064                 } else {
3065                     if (targetError) {
3066                         resultInfo.checkContext.report(that, diag);
3067                     } else {
3068                         log.report(diag);
3069                     }
3070                     result = that.type = types.createErrorType(currentTarget);
3071                     return;
3072                 }
3073             }
3074 
3075             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3076             that.kind = lookupHelper.referenceKind(that.sym);
3077             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3078 
3079             if (desc.getReturnType() == Type.recoveryType) {
3080                 // stop here
3081                 result = that.type = currentTarget;
3082                 return;
3083             }
3084 
3085             if (!env.info.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3086                 Type enclosingType = exprType.getEnclosingType();
3087                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3088                     // Check for the existence of an apropriate outer instance
3089                     rs.resolveImplicitThis(that.pos(), env, exprType);
3090                 }
3091             }
3092 
3093             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3094 
3095                 if (that.getMode() == ReferenceMode.INVOKE &&
3096                         TreeInfo.isStaticSelector(that.expr, names) &&
3097                         that.kind.isUnbound() &&
3098                         lookupHelper.site.isRaw()) {
3099                     chk.checkRaw(that.expr, localEnv);
3100                 }
3101 
3102                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3103                         exprType.getTypeArguments().nonEmpty()) {
3104                     //static ref with class type-args
3105                     log.error(that.expr.pos(),
3106                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3107                                                  Fragments.StaticMrefWithTargs));
3108                     result = that.type = types.createErrorType(currentTarget);
3109                     return;
3110                 }
3111 
3112                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3113                     // Check that super-qualified symbols are not abstract (JLS)
3114                     rs.checkNonAbstract(that.pos(), that.sym);
3115                 }
3116 
3117                 if (isTargetSerializable) {
3118                     chk.checkAccessFromSerializableElement(that, true);
3119                 }
3120             }
3121 
3122             ResultInfo checkInfo =
3123                     resultInfo.dup(newMethodTemplate(
3124                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3125                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3126                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3127 
3128             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3129 
3130             if (that.kind.isUnbound() &&
3131                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3132                 //re-generate inference constraints for unbound receiver
3133                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3134                     //cannot happen as this has already been checked - we just need
3135                     //to regenerate the inference constraints, as that has been lost
3136                     //as a result of the call to inferenceContext.save()
3137                     Assert.error("Can't get here");
3138                 }
3139             }
3140 
3141             if (!refType.isErroneous()) {
3142                 refType = types.createMethodTypeWithReturn(refType,
3143                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3144             }
3145 
3146             //go ahead with standard method reference compatibility check - note that param check
3147             //is a no-op (as this has been taken care during method applicability)
3148             boolean isSpeculativeRound =
3149                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3150 
3151             that.type = currentTarget; //avoids recovery at this stage
3152             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3153             if (!isSpeculativeRound) {
3154                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3155             }
3156             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3157         } catch (Types.FunctionDescriptorLookupError ex) {
3158             JCDiagnostic cause = ex.getDiagnostic();
3159             resultInfo.checkContext.report(that, cause);
3160             result = that.type = types.createErrorType(pt());
3161             return;
3162         }
3163     }
3164     //where
3165         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3166             //if this is a constructor reference, the expected kind must be a type
3167             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3168                                   KindSelector.VAL_TYP : KindSelector.TYP,
3169                                   Type.noType);
3170         }
3171 
3172 
3173     @SuppressWarnings("fallthrough")
3174     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3175         InferenceContext inferenceContext = checkContext.inferenceContext();
3176         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3177 
3178         Type resType;
3179         switch (tree.getMode()) {
3180             case NEW:
3181                 if (!tree.expr.type.isRaw()) {
3182                     resType = tree.expr.type;
3183                     break;
3184                 }
3185             default:
3186                 resType = refType.getReturnType();
3187         }
3188 
3189         Type incompatibleReturnType = resType;
3190 
3191         if (returnType.hasTag(VOID)) {
3192             incompatibleReturnType = null;
3193         }
3194 
3195         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3196             if (resType.isErroneous() ||
3197                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3198                             checkContext.checkWarner(tree, resType, returnType))) {
3199                 incompatibleReturnType = null;
3200             }
3201         }
3202 
3203         if (incompatibleReturnType != null) {
3204             Fragment msg =
3205                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3206             checkContext.report(tree, diags.fragment(msg));
3207         } else {
3208             if (inferenceContext.free(refType)) {
3209                 // we need to wait for inference to finish and then replace inference vars in the referent type
3210                 inferenceContext.addFreeTypeListener(List.of(refType),
3211                         instantiatedContext -> {
3212                             tree.referentType = instantiatedContext.asInstType(refType);
3213                         });
3214             } else {
3215                 tree.referentType = refType;
3216             }
3217         }
3218 
3219         if (!speculativeAttr) {
3220             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3221                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3222             }
3223         }
3224     }
3225 
3226     boolean checkExConstraints(
3227             List<Type> thrownByFuncExpr,
3228             List<Type> thrownAtFuncType,
3229             InferenceContext inferenceContext) {
3230         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3231          *  are not proper types
3232          */
3233         List<Type> nonProperList = thrownAtFuncType.stream()
3234                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3235         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3236 
3237         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3238          *  in the throws clause of the invocation type of the method reference's compile-time
3239          *  declaration
3240          */
3241         List<Type> checkedList = thrownByFuncExpr.stream()
3242                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3243 
3244         /** If n = 0 (the function type's throws clause consists only of proper types), then
3245          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3246          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3247          *  reduces to true
3248          */
3249         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3250         for (Type checked : checkedList) {
3251             boolean isSubtype = false;
3252             for (Type proper : properList) {
3253                 if (types.isSubtype(checked, proper)) {
3254                     isSubtype = true;
3255                     break;
3256                 }
3257             }
3258             if (!isSubtype) {
3259                 uncaughtByProperTypes.add(checked);
3260             }
3261         }
3262 
3263         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3264             return false;
3265         }
3266 
3267         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3268          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3269          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3270          */
3271         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3272         uncaughtByProperTypes.forEach(checkedEx -> {
3273             nonProperAsUndet.forEach(nonProper -> {
3274                 types.isSubtype(checkedEx, nonProper);
3275             });
3276         });
3277 
3278         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
3279          */
3280         nonProperAsUndet.stream()
3281                 .filter(t -> t.hasTag(UNDETVAR))
3282                 .forEach(t -> ((UndetVar)t).setThrow());
3283         return true;
3284     }
3285 
3286     /**
3287      * Set functional type info on the underlying AST. Note: as the target descriptor
3288      * might contain inference variables, we might need to register an hook in the
3289      * current inference context.
3290      */
3291     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3292             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3293         if (checkContext.inferenceContext().free(descriptorType)) {
3294             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3295                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3296                     inferenceContext.asInstType(primaryTarget), checkContext));
3297         } else {
3298             if (pt.hasTag(CLASS)) {
3299                 fExpr.target = primaryTarget;
3300             }
3301             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3302                     pt != Type.recoveryType) {
3303                 //check that functional interface class is well-formed
3304                 try {
3305                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3306                      * when it's executed post-inference. See the listener code
3307                      * above.
3308                      */
3309                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3310                             names.empty, fExpr.target, ABSTRACT);
3311                     if (csym != null) {
3312                         chk.checkImplementations(env.tree, csym, csym);
3313                         try {
3314                             //perform an additional functional interface check on the synthetic class,
3315                             //as there may be spurious errors for raw targets - because of existing issues
3316                             //with membership and inheritance (see JDK-8074570).
3317                             csym.flags_field |= INTERFACE;
3318                             types.findDescriptorType(csym.type);
3319                         } catch (FunctionDescriptorLookupError err) {
3320                             resultInfo.checkContext.report(fExpr,
3321                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
3322                         }
3323                     }
3324                 } catch (Types.FunctionDescriptorLookupError ex) {
3325                     JCDiagnostic cause = ex.getDiagnostic();
3326                     resultInfo.checkContext.report(env.tree, cause);
3327                 }
3328             }
3329         }
3330     }
3331 
3332     public void visitParens(JCParens tree) {
3333         Type owntype = attribTree(tree.expr, env, resultInfo);
3334         result = check(tree, owntype, pkind(), resultInfo);
3335         Symbol sym = TreeInfo.symbol(tree);
3336         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3337             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3338     }
3339 
3340     public void visitAssign(JCAssign tree) {
3341         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3342         Type capturedType = capture(owntype);
3343         attribExpr(tree.rhs, env, owntype);
3344         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3345     }
3346 
3347     public void visitAssignop(JCAssignOp tree) {
3348         // Attribute arguments.
3349         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3350         Type operand = attribExpr(tree.rhs, env);
3351         // Find operator.
3352         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3353         if (operator != operators.noOpSymbol &&
3354                 !owntype.isErroneous() &&
3355                 !operand.isErroneous()) {
3356             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3357             chk.checkCastable(tree.rhs.pos(),
3358                               operator.type.getReturnType(),
3359                               owntype);
3360         }
3361         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3362     }
3363 
3364     public void visitUnary(JCUnary tree) {
3365         // Attribute arguments.
3366         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3367             ? attribTree(tree.arg, env, varAssignmentInfo)
3368             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3369 
3370         // Find operator.
3371         Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3372         Type owntype = types.createErrorType(tree.type);
3373         if (operator != operators.noOpSymbol &&
3374                 !argtype.isErroneous()) {
3375             owntype = (tree.getTag().isIncOrDecUnaryOp())
3376                 ? tree.arg.type
3377                 : operator.type.getReturnType();
3378             int opc = ((OperatorSymbol)operator).opcode;
3379 
3380             // If the argument is constant, fold it.
3381             if (argtype.constValue() != null) {
3382                 Type ctype = cfolder.fold1(opc, argtype);
3383                 if (ctype != null) {
3384                     owntype = cfolder.coerce(ctype, owntype);
3385                 }
3386             }
3387         }
3388         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3389     }
3390 
3391     public void visitBinary(JCBinary tree) {
3392         // Attribute arguments.
3393         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3394         Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3395         // Find operator.
3396         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3397         Type owntype = types.createErrorType(tree.type);
3398         if (operator != operators.noOpSymbol &&
3399                 !left.isErroneous() &&
3400                 !right.isErroneous()) {
3401             owntype = operator.type.getReturnType();
3402             int opc = ((OperatorSymbol)operator).opcode;
3403             // If both arguments are constants, fold them.
3404             if (left.constValue() != null && right.constValue() != null) {
3405                 Type ctype = cfolder.fold2(opc, left, right);
3406                 if (ctype != null) {
3407                     owntype = cfolder.coerce(ctype, owntype);
3408                 }
3409             }
3410 
3411             // Check that argument types of a reference ==, != are
3412             // castable to each other, (JLS 15.21).  Note: unboxing
3413             // comparisons will not have an acmp* opc at this point.
3414             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3415                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3416                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
3417                 }
3418             }
3419 
3420             chk.checkDivZero(tree.rhs.pos(), operator, right);
3421         }
3422         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3423     }
3424 
3425     public void visitTypeCast(final JCTypeCast tree) {
3426         Type clazztype = attribType(tree.clazz, env);
3427         chk.validate(tree.clazz, env, false);
3428         //a fresh environment is required for 292 inference to work properly ---
3429         //see Infer.instantiatePolymorphicSignatureInstance()
3430         Env<AttrContext> localEnv = env.dup(tree);
3431         //should we propagate the target type?
3432         final ResultInfo castInfo;
3433         JCExpression expr = TreeInfo.skipParens(tree.expr);
3434         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3435         if (isPoly) {
3436             //expression is a poly - we need to propagate target type info
3437             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3438                                       new Check.NestedCheckContext(resultInfo.checkContext) {
3439                 @Override
3440                 public boolean compatible(Type found, Type req, Warner warn) {
3441                     return types.isCastable(found, req, warn);
3442                 }
3443             });
3444         } else {
3445             //standalone cast - target-type info is not propagated
3446             castInfo = unknownExprInfo;
3447         }
3448         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3449         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3450         if (exprtype.constValue() != null)
3451             owntype = cfolder.coerce(exprtype, owntype);
3452         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3453         if (!isPoly)
3454             chk.checkRedundantCast(localEnv, tree);
3455     }
3456 
3457     public void visitTypeTest(JCInstanceOf tree) {
3458         Type exprtype = chk.checkNullOrRefType(
3459                 tree.expr.pos(), attribExpr(tree.expr, env));
3460         Type clazztype = attribType(tree.clazz, env);
3461         if (!clazztype.hasTag(TYPEVAR)) {
3462             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3463         }
3464         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3465             log.error(tree.clazz.pos(), Errors.IllegalGenericTypeForInstof);
3466             clazztype = types.createErrorType(clazztype);
3467         }
3468         chk.validate(tree.clazz, env, false);
3469         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3470         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3471     }
3472 
3473     public void visitIndexed(JCArrayAccess tree) {
3474         Type owntype = types.createErrorType(tree.type);
3475         Type atype = attribExpr(tree.indexed, env);
3476         attribExpr(tree.index, env, syms.intType);
3477         if (types.isArray(atype))
3478             owntype = types.elemtype(atype);
3479         else if (!atype.hasTag(ERROR))
3480             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
3481         if (!pkind().contains(KindSelector.VAL))
3482             owntype = capture(owntype);
3483         result = check(tree, owntype, KindSelector.VAR, resultInfo);
3484     }
3485 
3486     public void visitIdent(JCIdent tree) {
3487         Symbol sym;
3488 
3489         // Find symbol
3490         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3491             // If we are looking for a method, the prototype `pt' will be a
3492             // method type with the type of the call's arguments as parameters.
3493             env.info.pendingResolutionPhase = null;
3494             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3495         } else if (tree.sym != null && tree.sym.kind != VAR) {
3496             sym = tree.sym;
3497         } else {
3498             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3499         }
3500         tree.sym = sym;
3501 
3502         // (1) Also find the environment current for the class where
3503         //     sym is defined (`symEnv').
3504         // Only for pre-tiger versions (1.4 and earlier):
3505         // (2) Also determine whether we access symbol out of an anonymous
3506         //     class in a this or super call.  This is illegal for instance
3507         //     members since such classes don't carry a this$n link.
3508         //     (`noOuterThisPath').
3509         Env<AttrContext> symEnv = env;
3510         boolean noOuterThisPath = false;
3511         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3512             sym.kind.matches(KindSelector.VAL_MTH) &&
3513             sym.owner.kind == TYP &&
3514             tree.name != names._this && tree.name != names._super) {
3515 
3516             // Find environment in which identifier is defined.
3517             while (symEnv.outer != null &&
3518                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3519                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3520                     noOuterThisPath = false;
3521                 symEnv = symEnv.outer;
3522             }
3523         }
3524 
3525         // If symbol is a variable, ...
3526         if (sym.kind == VAR) {
3527             VarSymbol v = (VarSymbol)sym;
3528 
3529             // ..., evaluate its initializer, if it has one, and check for
3530             // illegal forward reference.
3531             checkInit(tree, env, v, false);
3532 
3533             // If we are expecting a variable (as opposed to a value), check
3534             // that the variable is assignable in the current environment.
3535             if (KindSelector.ASG.subset(pkind()))
3536                 checkAssignable(tree.pos(), v, null, env);
3537         }
3538 
3539         // In a constructor body,
3540         // if symbol is a field or instance method, check that it is
3541         // not accessed before the supertype constructor is called.
3542         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3543             sym.kind.matches(KindSelector.VAL_MTH) &&
3544             sym.owner.kind == TYP &&
3545             (sym.flags() & STATIC) == 0) {
3546             chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3547                                           sym : thisSym(tree.pos(), env));
3548         }
3549         Env<AttrContext> env1 = env;
3550         if (sym.kind != ERR && sym.kind != TYP &&
3551             sym.owner != null && sym.owner != env1.enclClass.sym) {
3552             // If the found symbol is inaccessible, then it is
3553             // accessed through an enclosing instance.  Locate this
3554             // enclosing instance:
3555             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3556                 env1 = env1.outer;
3557         }
3558 
3559         if (env.info.isSerializable) {
3560             chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3561         }
3562 
3563         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3564     }
3565 
3566     public void visitSelect(JCFieldAccess tree) {
3567         // Determine the expected kind of the qualifier expression.
3568         KindSelector skind = KindSelector.NIL;
3569         if (tree.name == names._this || tree.name == names._super ||
3570                 tree.name == names._class)
3571         {
3572             skind = KindSelector.TYP;
3573         } else {
3574             if (pkind().contains(KindSelector.PCK))
3575                 skind = KindSelector.of(skind, KindSelector.PCK);
3576             if (pkind().contains(KindSelector.TYP))
3577                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3578             if (pkind().contains(KindSelector.VAL_MTH))
3579                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3580         }
3581 
3582         // Attribute the qualifier expression, and determine its symbol (if any).
3583         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
3584         if (!pkind().contains(KindSelector.TYP_PCK))
3585             site = capture(site); // Capture field access
3586 
3587         // don't allow T.class T[].class, etc
3588         if (skind == KindSelector.TYP) {
3589             Type elt = site;
3590             while (elt.hasTag(ARRAY))
3591                 elt = ((ArrayType)elt).elemtype;
3592             if (elt.hasTag(TYPEVAR)) {
3593                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
3594                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3595                 tree.sym = tree.type.tsym;
3596                 return ;
3597             }
3598         }
3599 
3600         // If qualifier symbol is a type or `super', assert `selectSuper'
3601         // for the selection. This is relevant for determining whether
3602         // protected symbols are accessible.
3603         Symbol sitesym = TreeInfo.symbol(tree.selected);
3604         boolean selectSuperPrev = env.info.selectSuper;
3605         env.info.selectSuper =
3606             sitesym != null &&
3607             sitesym.name == names._super;
3608 
3609         // Determine the symbol represented by the selection.
3610         env.info.pendingResolutionPhase = null;
3611         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3612         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3613             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
3614             sym = syms.errSymbol;
3615         }
3616         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3617             site = capture(site);
3618             sym = selectSym(tree, sitesym, site, env, resultInfo);
3619         }
3620         boolean varArgs = env.info.lastResolveVarargs();
3621         tree.sym = sym;
3622 
3623         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3624             site = types.skipTypeVars(site, true);
3625         }
3626 
3627         // If that symbol is a variable, ...
3628         if (sym.kind == VAR) {
3629             VarSymbol v = (VarSymbol)sym;
3630 
3631             // ..., evaluate its initializer, if it has one, and check for
3632             // illegal forward reference.
3633             checkInit(tree, env, v, true);
3634 
3635             // If we are expecting a variable (as opposed to a value), check
3636             // that the variable is assignable in the current environment.
3637             if (KindSelector.ASG.subset(pkind()))
3638                 checkAssignable(tree.pos(), v, tree.selected, env);
3639         }
3640 
3641         if (sitesym != null &&
3642                 sitesym.kind == VAR &&
3643                 ((VarSymbol)sitesym).isResourceVariable() &&
3644                 sym.kind == MTH &&
3645                 sym.name.equals(names.close) &&
3646                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3647                 env.info.lint.isEnabled(LintCategory.TRY)) {
3648             log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
3649         }
3650 
3651         // Disallow selecting a type from an expression
3652         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3653             tree.type = check(tree.selected, pt(),
3654                               sitesym == null ?
3655                                       KindSelector.VAL : sitesym.kind.toSelector(),
3656                               new ResultInfo(KindSelector.TYP_PCK, pt()));
3657         }
3658 
3659         if (isType(sitesym)) {
3660             if (sym.name == names._this) {
3661                 // If `C' is the currently compiled class, check that
3662                 // C.this' does not appear in a call to a super(...)
3663                 if (env.info.isSelfCall &&
3664                     site.tsym == env.enclClass.sym) {
3665                     chk.earlyRefError(tree.pos(), sym);
3666                 }
3667             } else {
3668                 // Check if type-qualified fields or methods are static (JLS)
3669                 if ((sym.flags() & STATIC) == 0 &&
3670                     sym.name != names._super &&
3671                     (sym.kind == VAR || sym.kind == MTH)) {
3672                     rs.accessBase(rs.new StaticError(sym),
3673                               tree.pos(), site, sym.name, true);
3674                 }
3675             }
3676             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3677                     sym.isStatic() && sym.kind == MTH) {
3678                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), Feature.STATIC_INTERFACE_METHODS_INVOKE.error(sourceName));
3679             }
3680         } else if (sym.kind != ERR &&
3681                    (sym.flags() & STATIC) != 0 &&
3682                    sym.name != names._class) {
3683             // If the qualified item is not a type and the selected item is static, report
3684             // a warning. Make allowance for the class of an array type e.g. Object[].class)
3685             chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
3686         }
3687 
3688         // If we are selecting an instance member via a `super', ...
3689         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3690 
3691             // Check that super-qualified symbols are not abstract (JLS)
3692             rs.checkNonAbstract(tree.pos(), sym);
3693 
3694             if (site.isRaw()) {
3695                 // Determine argument types for site.
3696                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3697                 if (site1 != null) site = site1;
3698             }
3699         }
3700 
3701         if (env.info.isSerializable) {
3702             chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3703         }
3704 
3705         env.info.selectSuper = selectSuperPrev;
3706         result = checkId(tree, site, sym, env, resultInfo);
3707     }
3708     //where
3709         /** Determine symbol referenced by a Select expression,
3710          *
3711          *  @param tree   The select tree.
3712          *  @param site   The type of the selected expression,
3713          *  @param env    The current environment.
3714          *  @param resultInfo The current result.
3715          */
3716         private Symbol selectSym(JCFieldAccess tree,
3717                                  Symbol location,
3718                                  Type site,
3719                                  Env<AttrContext> env,
3720                                  ResultInfo resultInfo) {
3721             DiagnosticPosition pos = tree.pos();
3722             Name name = tree.name;
3723             switch (site.getTag()) {
3724             case PACKAGE:
3725                 return rs.accessBase(
3726                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3727                     pos, location, site, name, true);
3728             case ARRAY:
3729             case CLASS:
3730                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3731                     return rs.resolveQualifiedMethod(
3732                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3733                 } else if (name == names._this || name == names._super) {
3734                     return rs.resolveSelf(pos, env, site.tsym, name);
3735                 } else if (name == names._class) {
3736                     // In this case, we have already made sure in
3737                     // visitSelect that qualifier expression is a type.
3738                     return syms.getClassField(site, types);
3739                 } else {
3740                     // We are seeing a plain identifier as selector.
3741                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3742                         sym = rs.accessBase(sym, pos, location, site, name, true);
3743                     return sym;
3744                 }
3745             case WILDCARD:
3746                 throw new AssertionError(tree);
3747             case TYPEVAR:
3748                 // Normally, site.getUpperBound() shouldn't be null.
3749                 // It should only happen during memberEnter/attribBase
3750                 // when determining the super type which *must* beac
3751                 // done before attributing the type variables.  In
3752                 // other words, we are seeing this illegal program:
3753                 // class B<T> extends A<T.foo> {}
3754                 Symbol sym = (site.getUpperBound() != null)
3755                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3756                     : null;
3757                 if (sym == null) {
3758                     log.error(pos, Errors.TypeVarCantBeDeref);
3759                     return syms.errSymbol;
3760                 } else {
3761                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3762                         rs.new AccessError(env, site, sym) :
3763                                 sym;
3764                     rs.accessBase(sym2, pos, location, site, name, true);
3765                     return sym;
3766                 }
3767             case ERROR:
3768                 // preserve identifier names through errors
3769                 return types.createErrorType(name, site.tsym, site).tsym;
3770             default:
3771                 // The qualifier expression is of a primitive type -- only
3772                 // .class is allowed for these.
3773                 if (name == names._class) {
3774                     // In this case, we have already made sure in Select that
3775                     // qualifier expression is a type.
3776                     return syms.getClassField(site, types);
3777                 } else {
3778                     log.error(pos, Errors.CantDeref(site));
3779                     return syms.errSymbol;
3780                 }
3781             }
3782         }
3783 
3784         /** Determine type of identifier or select expression and check that
3785          *  (1) the referenced symbol is not deprecated
3786          *  (2) the symbol's type is safe (@see checkSafe)
3787          *  (3) if symbol is a variable, check that its type and kind are
3788          *      compatible with the prototype and protokind.
3789          *  (4) if symbol is an instance field of a raw type,
3790          *      which is being assigned to, issue an unchecked warning if its
3791          *      type changes under erasure.
3792          *  (5) if symbol is an instance method of a raw type, issue an
3793          *      unchecked warning if its argument types change under erasure.
3794          *  If checks succeed:
3795          *    If symbol is a constant, return its constant type
3796          *    else if symbol is a method, return its result type
3797          *    otherwise return its type.
3798          *  Otherwise return errType.
3799          *
3800          *  @param tree       The syntax tree representing the identifier
3801          *  @param site       If this is a select, the type of the selected
3802          *                    expression, otherwise the type of the current class.
3803          *  @param sym        The symbol representing the identifier.
3804          *  @param env        The current environment.
3805          *  @param resultInfo    The expected result
3806          */
3807         Type checkId(JCTree tree,
3808                      Type site,
3809                      Symbol sym,
3810                      Env<AttrContext> env,
3811                      ResultInfo resultInfo) {
3812             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3813                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
3814                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3815         }
3816 
3817         Type checkMethodIdInternal(JCTree tree,
3818                      Type site,
3819                      Symbol sym,
3820                      Env<AttrContext> env,
3821                      ResultInfo resultInfo) {
3822             if (resultInfo.pkind.contains(KindSelector.POLY)) {
3823                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3824                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3825                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3826                 return owntype;
3827             } else {
3828                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3829             }
3830         }
3831 
3832         Type checkIdInternal(JCTree tree,
3833                      Type site,
3834                      Symbol sym,
3835                      Type pt,
3836                      Env<AttrContext> env,
3837                      ResultInfo resultInfo) {
3838             if (pt.isErroneous()) {
3839                 return types.createErrorType(site);
3840             }
3841             Type owntype; // The computed type of this identifier occurrence.
3842             switch (sym.kind) {
3843             case TYP:
3844                 // For types, the computed type equals the symbol's type,
3845                 // except for two situations:
3846                 owntype = sym.type;
3847                 if (owntype.hasTag(CLASS)) {
3848                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3849                     Type ownOuter = owntype.getEnclosingType();
3850 
3851                     // (a) If the symbol's type is parameterized, erase it
3852                     // because no type parameters were given.
3853                     // We recover generic outer type later in visitTypeApply.
3854                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3855                         owntype = types.erasure(owntype);
3856                     }
3857 
3858                     // (b) If the symbol's type is an inner class, then
3859                     // we have to interpret its outer type as a superclass
3860                     // of the site type. Example:
3861                     //
3862                     // class Tree<A> { class Visitor { ... } }
3863                     // class PointTree extends Tree<Point> { ... }
3864                     // ...PointTree.Visitor...
3865                     //
3866                     // Then the type of the last expression above is
3867                     // Tree<Point>.Visitor.
3868                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3869                         Type normOuter = site;
3870                         if (normOuter.hasTag(CLASS)) {
3871                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3872                         }
3873                         if (normOuter == null) // perhaps from an import
3874                             normOuter = types.erasure(ownOuter);
3875                         if (normOuter != ownOuter)
3876                             owntype = new ClassType(
3877                                 normOuter, List.nil(), owntype.tsym,
3878                                 owntype.getMetadata());
3879                     }
3880                 }
3881                 break;
3882             case VAR:
3883                 VarSymbol v = (VarSymbol)sym;
3884 
3885                 if (env.info.enclVar != null
3886                         && v.type.hasTag(NONE)) {
3887                     //self reference to implicitly typed variable declaration
3888                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
3889                     return v.type = types.createErrorType(v.type);
3890                 }
3891 
3892                 // Test (4): if symbol is an instance field of a raw type,
3893                 // which is being assigned to, issue an unchecked warning if
3894                 // its type changes under erasure.
3895                 if (KindSelector.ASG.subset(pkind()) &&
3896                     v.owner.kind == TYP &&
3897                     (v.flags() & STATIC) == 0 &&
3898                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3899                     Type s = types.asOuterSuper(site, v.owner);
3900                     if (s != null &&
3901                         s.isRaw() &&
3902                         !types.isSameType(v.type, v.erasure(types))) {
3903                         chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s));
3904                     }
3905                 }
3906                 // The computed type of a variable is the type of the
3907                 // variable symbol, taken as a member of the site type.
3908                 owntype = (sym.owner.kind == TYP &&
3909                            sym.name != names._this && sym.name != names._super)
3910                     ? types.memberType(site, sym)
3911                     : sym.type;
3912 
3913                 // If the variable is a constant, record constant value in
3914                 // computed type.
3915                 if (v.getConstValue() != null && isStaticReference(tree))
3916                     owntype = owntype.constType(v.getConstValue());
3917 
3918                 if (resultInfo.pkind == KindSelector.VAL) {
3919                     owntype = capture(owntype); // capture "names as expressions"
3920                 }
3921                 break;
3922             case MTH: {
3923                 owntype = checkMethod(site, sym,
3924                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
3925                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3926                         resultInfo.pt.getTypeArguments());
3927                 break;
3928             }
3929             case PCK: case ERR:
3930                 owntype = sym.type;
3931                 break;
3932             default:
3933                 throw new AssertionError("unexpected kind: " + sym.kind +
3934                                          " in tree " + tree);
3935             }
3936 
3937             // Emit a `deprecation' warning if symbol is deprecated.
3938             // (for constructors (but not for constructor references), the error
3939             // was given when the constructor was resolved)
3940 
3941             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
3942                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3943                 chk.checkSunAPI(tree.pos(), sym);
3944                 chk.checkProfile(tree.pos(), sym);
3945             }
3946 
3947             // If symbol is a variable, check that its type and
3948             // kind are compatible with the prototype and protokind.
3949             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3950         }
3951 
3952         /** Check that variable is initialized and evaluate the variable's
3953          *  initializer, if not yet done. Also check that variable is not
3954          *  referenced before it is defined.
3955          *  @param tree    The tree making up the variable reference.
3956          *  @param env     The current environment.
3957          *  @param v       The variable's symbol.
3958          */
3959         private void checkInit(JCTree tree,
3960                                Env<AttrContext> env,
3961                                VarSymbol v,
3962                                boolean onlyWarning) {
3963             // A forward reference is diagnosed if the declaration position
3964             // of the variable is greater than the current tree position
3965             // and the tree and variable definition occur in the same class
3966             // definition.  Note that writes don't count as references.
3967             // This check applies only to class and instance
3968             // variables.  Local variables follow different scope rules,
3969             // and are subject to definite assignment checking.
3970             Env<AttrContext> initEnv = enclosingInitEnv(env);
3971             if (initEnv != null &&
3972                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
3973                 v.owner.kind == TYP &&
3974                 v.owner == env.info.scope.owner.enclClass() &&
3975                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3976                 (!env.tree.hasTag(ASSIGN) ||
3977                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3978                 if (!onlyWarning || isStaticEnumField(v)) {
3979                     Error errkey = (initEnv.info.enclVar == v) ?
3980                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
3981                     log.error(tree.pos(), errkey);
3982                 } else if (useBeforeDeclarationWarning) {
3983                     Warning warnkey = (initEnv.info.enclVar == v) ?
3984                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
3985                     log.warning(tree.pos(), warnkey);
3986                 }
3987             }
3988 
3989             v.getConstValue(); // ensure initializer is evaluated
3990 
3991             checkEnumInitializer(tree, env, v);
3992         }
3993 
3994         /**
3995          * Returns the enclosing init environment associated with this env (if any). An init env
3996          * can be either a field declaration env or a static/instance initializer env.
3997          */
3998         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3999             while (true) {
4000                 switch (env.tree.getTag()) {
4001                     case VARDEF:
4002                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4003                         if (vdecl.sym.owner.kind == TYP) {
4004                             //field
4005                             return env;
4006                         }
4007                         break;
4008                     case BLOCK:
4009                         if (env.next.tree.hasTag(CLASSDEF)) {
4010                             //instance/static initializer
4011                             return env;
4012                         }
4013                         break;
4014                     case METHODDEF:
4015                     case CLASSDEF:
4016                     case TOPLEVEL:
4017                         return null;
4018                 }
4019                 Assert.checkNonNull(env.next);
4020                 env = env.next;
4021             }
4022         }
4023 
4024         /**
4025          * Check for illegal references to static members of enum.  In
4026          * an enum type, constructors and initializers may not
4027          * reference its static members unless they are constant.
4028          *
4029          * @param tree    The tree making up the variable reference.
4030          * @param env     The current environment.
4031          * @param v       The variable's symbol.
4032          * @jls  section 8.9 Enums
4033          */
4034         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4035             // JLS:
4036             //
4037             // "It is a compile-time error to reference a static field
4038             // of an enum type that is not a compile-time constant
4039             // (15.28) from constructors, instance initializer blocks,
4040             // or instance variable initializer expressions of that
4041             // type. It is a compile-time error for the constructors,
4042             // instance initializer blocks, or instance variable
4043             // initializer expressions of an enum constant e to refer
4044             // to itself or to an enum constant of the same type that
4045             // is declared to the right of e."
4046             if (isStaticEnumField(v)) {
4047                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4048 
4049                 if (enclClass == null || enclClass.owner == null)
4050                     return;
4051 
4052                 // See if the enclosing class is the enum (or a
4053                 // subclass thereof) declaring v.  If not, this
4054                 // reference is OK.
4055                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4056                     return;
4057 
4058                 // If the reference isn't from an initializer, then
4059                 // the reference is OK.
4060                 if (!Resolve.isInitializer(env))
4061                     return;
4062 
4063                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4064             }
4065         }
4066 
4067         /** Is the given symbol a static, non-constant field of an Enum?
4068          *  Note: enum literals should not be regarded as such
4069          */
4070         private boolean isStaticEnumField(VarSymbol v) {
4071             return Flags.isEnum(v.owner) &&
4072                    Flags.isStatic(v) &&
4073                    !Flags.isConstant(v) &&
4074                    v.name != names._class;
4075         }
4076 
4077     /**
4078      * Check that method arguments conform to its instantiation.
4079      **/
4080     public Type checkMethod(Type site,
4081                             final Symbol sym,
4082                             ResultInfo resultInfo,
4083                             Env<AttrContext> env,
4084                             final List<JCExpression> argtrees,
4085                             List<Type> argtypes,
4086                             List<Type> typeargtypes) {
4087         // Test (5): if symbol is an instance method of a raw type, issue
4088         // an unchecked warning if its argument types change under erasure.
4089         if ((sym.flags() & STATIC) == 0 &&
4090             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4091             Type s = types.asOuterSuper(site, sym.owner);
4092             if (s != null && s.isRaw() &&
4093                 !types.isSameTypes(sym.type.getParameterTypes(),
4094                                    sym.erasure(types).getParameterTypes())) {
4095                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s));
4096             }
4097         }
4098 
4099         if (env.info.defaultSuperCallSite != null) {
4100             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
4101                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
4102                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
4103                 List<MethodSymbol> icand_sup =
4104                         types.interfaceCandidates(sup, (MethodSymbol)sym);
4105                 if (icand_sup.nonEmpty() &&
4106                         icand_sup.head != sym &&
4107                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
4108                     log.error(env.tree.pos(),
4109                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
4110                     break;
4111                 }
4112             }
4113             env.info.defaultSuperCallSite = null;
4114         }
4115 
4116         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
4117             JCMethodInvocation app = (JCMethodInvocation)env.tree;
4118             if (app.meth.hasTag(SELECT) &&
4119                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
4120                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
4121             }
4122         }
4123 
4124         // Compute the identifier's instantiated type.
4125         // For methods, we need to compute the instance type by
4126         // Resolve.instantiate from the symbol's type as well as
4127         // any type arguments and value arguments.
4128         Warner noteWarner = new Warner();
4129         try {
4130             Type owntype = rs.checkMethod(
4131                     env,
4132                     site,
4133                     sym,
4134                     resultInfo,
4135                     argtypes,
4136                     typeargtypes,
4137                     noteWarner);
4138 
4139             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
4140                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4141 
4142             argtypes = argtypes.map(checkDeferredMap);
4143 
4144             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4145                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym),
4146                         sym.name,
4147                         rs.methodArguments(sym.type.getParameterTypes()),
4148                         rs.methodArguments(argtypes.map(checkDeferredMap)),
4149                         kindName(sym.location()),
4150                         sym.location()));
4151                 if (resultInfo.pt != Infer.anyPoly ||
4152                         !owntype.hasTag(METHOD) ||
4153                         !owntype.isPartial()) {
4154                     //if this is not a partially inferred method type, erase return type. Otherwise,
4155                     //erasure is carried out in PartiallyInferredMethodType.check().
4156                     owntype = new MethodType(owntype.getParameterTypes(),
4157                             types.erasure(owntype.getReturnType()),
4158                             types.erasure(owntype.getThrownTypes()),
4159                             syms.methodClass);
4160                 }
4161             }
4162 
4163             PolyKind pkind = (sym.type.hasTag(FORALL) &&
4164                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4165                  PolyKind.POLY : PolyKind.STANDALONE;
4166             TreeInfo.setPolyKind(env.tree, pkind);
4167 
4168             return (resultInfo.pt == Infer.anyPoly) ?
4169                     owntype :
4170                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4171                             resultInfo.checkContext.inferenceContext());
4172         } catch (Infer.InferenceException ex) {
4173             //invalid target type - propagate exception outwards or report error
4174             //depending on the current check context
4175             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4176             return types.createErrorType(site);
4177         } catch (Resolve.InapplicableMethodException ex) {
4178             final JCDiagnostic diag = ex.getDiagnostic();
4179             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4180                 @Override
4181                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4182                     return new Pair<>(sym, diag);
4183                 }
4184             };
4185             List<Type> argtypes2 = argtypes.map(
4186                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4187             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4188                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4189             log.report(errDiag);
4190             return types.createErrorType(site);
4191         }
4192     }
4193 
4194     public void visitLiteral(JCLiteral tree) {
4195         result = check(tree, litType(tree.typetag).constType(tree.value),
4196                 KindSelector.VAL, resultInfo);
4197     }
4198     //where
4199     /** Return the type of a literal with given type tag.
4200      */
4201     Type litType(TypeTag tag) {
4202         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4203     }
4204 
4205     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4206         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4207     }
4208 
4209     public void visitTypeArray(JCArrayTypeTree tree) {
4210         Type etype = attribType(tree.elemtype, env);
4211         Type type = new ArrayType(etype, syms.arrayClass);
4212         result = check(tree, type, KindSelector.TYP, resultInfo);
4213     }
4214 
4215     /** Visitor method for parameterized types.
4216      *  Bound checking is left until later, since types are attributed
4217      *  before supertype structure is completely known
4218      */
4219     public void visitTypeApply(JCTypeApply tree) {
4220         Type owntype = types.createErrorType(tree.type);
4221 
4222         // Attribute functor part of application and make sure it's a class.
4223         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4224 
4225         // Attribute type parameters
4226         List<Type> actuals = attribTypes(tree.arguments, env);
4227 
4228         if (clazztype.hasTag(CLASS)) {
4229             List<Type> formals = clazztype.tsym.type.getTypeArguments();
4230             if (actuals.isEmpty()) //diamond
4231                 actuals = formals;
4232 
4233             if (actuals.length() == formals.length()) {
4234                 List<Type> a = actuals;
4235                 List<Type> f = formals;
4236                 while (a.nonEmpty()) {
4237                     a.head = a.head.withTypeVar(f.head);
4238                     a = a.tail;
4239                     f = f.tail;
4240                 }
4241                 // Compute the proper generic outer
4242                 Type clazzOuter = clazztype.getEnclosingType();
4243                 if (clazzOuter.hasTag(CLASS)) {
4244                     Type site;
4245                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4246                     if (clazz.hasTag(IDENT)) {
4247                         site = env.enclClass.sym.type;
4248                     } else if (clazz.hasTag(SELECT)) {
4249                         site = ((JCFieldAccess) clazz).selected.type;
4250                     } else throw new AssertionError(""+tree);
4251                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4252                         if (site.hasTag(CLASS))
4253                             site = types.asOuterSuper(site, clazzOuter.tsym);
4254                         if (site == null)
4255                             site = types.erasure(clazzOuter);
4256                         clazzOuter = site;
4257                     }
4258                 }
4259                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4260                                         clazztype.getMetadata());
4261             } else {
4262                 if (formals.length() != 0) {
4263                     log.error(tree.pos(),
4264                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
4265                 } else {
4266                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
4267                 }
4268                 owntype = types.createErrorType(tree.type);
4269             }
4270         }
4271         result = check(tree, owntype, KindSelector.TYP, resultInfo);
4272     }
4273 
4274     public void visitTypeUnion(JCTypeUnion tree) {
4275         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4276         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4277         for (JCExpression typeTree : tree.alternatives) {
4278             Type ctype = attribType(typeTree, env);
4279             ctype = chk.checkType(typeTree.pos(),
4280                           chk.checkClassType(typeTree.pos(), ctype),
4281                           syms.throwableType);
4282             if (!ctype.isErroneous()) {
4283                 //check that alternatives of a union type are pairwise
4284                 //unrelated w.r.t. subtyping
4285                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
4286                     for (Type t : multicatchTypes) {
4287                         boolean sub = types.isSubtype(ctype, t);
4288                         boolean sup = types.isSubtype(t, ctype);
4289                         if (sub || sup) {
4290                             //assume 'a' <: 'b'
4291                             Type a = sub ? ctype : t;
4292                             Type b = sub ? t : ctype;
4293                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
4294                         }
4295                     }
4296                 }
4297                 multicatchTypes.append(ctype);
4298                 if (all_multicatchTypes != null)
4299                     all_multicatchTypes.append(ctype);
4300             } else {
4301                 if (all_multicatchTypes == null) {
4302                     all_multicatchTypes = new ListBuffer<>();
4303                     all_multicatchTypes.appendList(multicatchTypes);
4304                 }
4305                 all_multicatchTypes.append(ctype);
4306             }
4307         }
4308         Type t = check(tree, types.lub(multicatchTypes.toList()),
4309                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4310         if (t.hasTag(CLASS)) {
4311             List<Type> alternatives =
4312                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4313             t = new UnionClassType((ClassType) t, alternatives);
4314         }
4315         tree.type = result = t;
4316     }
4317 
4318     public void visitTypeIntersection(JCTypeIntersection tree) {
4319         attribTypes(tree.bounds, env);
4320         tree.type = result = checkIntersection(tree, tree.bounds);
4321     }
4322 
4323     public void visitTypeParameter(JCTypeParameter tree) {
4324         TypeVar typeVar = (TypeVar) tree.type;
4325 
4326         if (tree.annotations != null && tree.annotations.nonEmpty()) {
4327             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4328         }
4329 
4330         if (!typeVar.bound.isErroneous()) {
4331             //fixup type-parameter bound computed in 'attribTypeVariables'
4332             typeVar.bound = checkIntersection(tree, tree.bounds);
4333         }
4334     }
4335 
4336     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4337         Set<Type> boundSet = new HashSet<>();
4338         if (bounds.nonEmpty()) {
4339             // accept class or interface or typevar as first bound.
4340             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4341             boundSet.add(types.erasure(bounds.head.type));
4342             if (bounds.head.type.isErroneous()) {
4343                 return bounds.head.type;
4344             }
4345             else if (bounds.head.type.hasTag(TYPEVAR)) {
4346                 // if first bound was a typevar, do not accept further bounds.
4347                 if (bounds.tail.nonEmpty()) {
4348                     log.error(bounds.tail.head.pos(),
4349                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
4350                     return bounds.head.type;
4351                 }
4352             } else {
4353                 // if first bound was a class or interface, accept only interfaces
4354                 // as further bounds.
4355                 for (JCExpression bound : bounds.tail) {
4356                     bound.type = checkBase(bound.type, bound, env, false, true, false);
4357                     if (bound.type.isErroneous()) {
4358                         bounds = List.of(bound);
4359                     }
4360                     else if (bound.type.hasTag(CLASS)) {
4361                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4362                     }
4363                 }
4364             }
4365         }
4366 
4367         if (bounds.length() == 0) {
4368             return syms.objectType;
4369         } else if (bounds.length() == 1) {
4370             return bounds.head.type;
4371         } else {
4372             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4373             // ... the variable's bound is a class type flagged COMPOUND
4374             // (see comment for TypeVar.bound).
4375             // In this case, generate a class tree that represents the
4376             // bound class, ...
4377             JCExpression extending;
4378             List<JCExpression> implementing;
4379             if (!bounds.head.type.isInterface()) {
4380                 extending = bounds.head;
4381                 implementing = bounds.tail;
4382             } else {
4383                 extending = null;
4384                 implementing = bounds;
4385             }
4386             JCClassDecl cd = make.at(tree).ClassDef(
4387                 make.Modifiers(PUBLIC | ABSTRACT),
4388                 names.empty, List.nil(),
4389                 extending, implementing, List.nil());
4390 
4391             ClassSymbol c = (ClassSymbol)owntype.tsym;
4392             Assert.check((c.flags() & COMPOUND) != 0);
4393             cd.sym = c;
4394             c.sourcefile = env.toplevel.sourcefile;
4395 
4396             // ... and attribute the bound class
4397             c.flags_field |= UNATTRIBUTED;
4398             Env<AttrContext> cenv = enter.classEnv(cd, env);
4399             typeEnvs.put(c, cenv);
4400             attribClass(c);
4401             return owntype;
4402         }
4403     }
4404 
4405     public void visitWildcard(JCWildcard tree) {
4406         //- System.err.println("visitWildcard("+tree+");");//DEBUG
4407         Type type = (tree.kind.kind == BoundKind.UNBOUND)
4408             ? syms.objectType
4409             : attribType(tree.inner, env);
4410         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4411                                               tree.kind.kind,
4412                                               syms.boundClass),
4413                 KindSelector.TYP, resultInfo);
4414     }
4415 
4416     public void visitAnnotation(JCAnnotation tree) {
4417         Assert.error("should be handled in annotate");
4418     }
4419 
4420     public void visitAnnotatedType(JCAnnotatedType tree) {
4421         attribAnnotationTypes(tree.annotations, env);
4422         Type underlyingType = attribType(tree.underlyingType, env);
4423         Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4424 
4425         if (!env.info.isNewClass)
4426             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4427         result = tree.type = annotatedType;
4428     }
4429 
4430     public void visitErroneous(JCErroneous tree) {
4431         if (tree.errs != null)
4432             for (JCTree err : tree.errs)
4433                 attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4434         result = tree.type = syms.errType;
4435     }
4436 
4437     /** Default visitor method for all other trees.
4438      */
4439     public void visitTree(JCTree tree) {
4440         throw new AssertionError();
4441     }
4442 
4443     /**
4444      * Attribute an env for either a top level tree or class or module declaration.
4445      */
4446     public void attrib(Env<AttrContext> env) {
4447         switch (env.tree.getTag()) {
4448             case MODULEDEF:
4449                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
4450                 break;
4451             case TOPLEVEL:
4452                 attribTopLevel(env);
4453                 break;
4454             case PACKAGEDEF:
4455                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
4456                 break;
4457             default:
4458                 attribClass(env.tree.pos(), env.enclClass.sym);
4459         }
4460     }
4461 
4462     /**
4463      * Attribute a top level tree. These trees are encountered when the
4464      * package declaration has annotations.
4465      */
4466     public void attribTopLevel(Env<AttrContext> env) {
4467         JCCompilationUnit toplevel = env.toplevel;
4468         try {
4469             annotate.flush();
4470         } catch (CompletionFailure ex) {
4471             chk.completionError(toplevel.pos(), ex);
4472         }
4473     }
4474 
4475     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
4476         try {
4477             annotate.flush();
4478             attribPackage(p);
4479         } catch (CompletionFailure ex) {
4480             chk.completionError(pos, ex);
4481         }
4482     }
4483 
4484     void attribPackage(PackageSymbol p) {
4485         Env<AttrContext> env = typeEnvs.get(p);
4486         chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p);
4487     }
4488 
4489     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
4490         try {
4491             annotate.flush();
4492             attribModule(m);
4493         } catch (CompletionFailure ex) {
4494             chk.completionError(pos, ex);
4495         }
4496     }
4497 
4498     void attribModule(ModuleSymbol m) {
4499         // Get environment current at the point of module definition.
4500         Env<AttrContext> env = enter.typeEnvs.get(m);
4501         attribStat(env.tree, env);
4502     }
4503 
4504     /** Main method: attribute class definition associated with given class symbol.
4505      *  reporting completion failures at the given position.
4506      *  @param pos The source position at which completion errors are to be
4507      *             reported.
4508      *  @param c   The class symbol whose definition will be attributed.
4509      */
4510     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4511         try {
4512             annotate.flush();
4513             attribClass(c);
4514         } catch (CompletionFailure ex) {
4515             chk.completionError(pos, ex);
4516         }
4517     }
4518 
4519     /** Attribute class definition associated with given class symbol.
4520      *  @param c   The class symbol whose definition will be attributed.
4521      */
4522     void attribClass(ClassSymbol c) throws CompletionFailure {
4523         if (c.type.hasTag(ERROR)) return;
4524 
4525         // Check for cycles in the inheritance graph, which can arise from
4526         // ill-formed class files.
4527         chk.checkNonCyclic(null, c.type);
4528 
4529         Type st = types.supertype(c.type);
4530         if ((c.flags_field & Flags.COMPOUND) == 0) {
4531             // First, attribute superclass.
4532             if (st.hasTag(CLASS))
4533                 attribClass((ClassSymbol)st.tsym);
4534 
4535             // Next attribute owner, if it is a class.
4536             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4537                 attribClass((ClassSymbol)c.owner);
4538         }
4539 
4540         // The previous operations might have attributed the current class
4541         // if there was a cycle. So we test first whether the class is still
4542         // UNATTRIBUTED.
4543         if ((c.flags_field & UNATTRIBUTED) != 0) {
4544             c.flags_field &= ~UNATTRIBUTED;
4545 
4546             // Get environment current at the point of class definition.
4547             Env<AttrContext> env = typeEnvs.get(c);
4548 
4549             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4550             // because the annotations were not available at the time the env was created. Therefore,
4551             // we look up the environment chain for the first enclosing environment for which the
4552             // lint value is set. Typically, this is the parent env, but might be further if there
4553             // are any envs created as a result of TypeParameter nodes.
4554             Env<AttrContext> lintEnv = env;
4555             while (lintEnv.info.lint == null)
4556                 lintEnv = lintEnv.next;
4557 
4558             // Having found the enclosing lint value, we can initialize the lint value for this class
4559             env.info.lint = lintEnv.info.lint.augment(c);
4560 
4561             Lint prevLint = chk.setLint(env.info.lint);
4562             JavaFileObject prev = log.useSource(c.sourcefile);
4563             ResultInfo prevReturnRes = env.info.returnResult;
4564 
4565             try {
4566                 deferredLintHandler.flush(env.tree);
4567                 env.info.returnResult = null;
4568                 // java.lang.Enum may not be subclassed by a non-enum
4569                 if (st.tsym == syms.enumSym &&
4570                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4571                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
4572 
4573                 // Enums may not be extended by source-level classes
4574                 if (st.tsym != null &&
4575                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4576                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4577                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
4578                 }
4579 
4580                 if (isSerializable(c.type)) {
4581                     env.info.isSerializable = true;
4582                 }
4583 
4584                 attribClassBody(env, c);
4585 
4586                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4587                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4588                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4589                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
4590             } finally {
4591                 env.info.returnResult = prevReturnRes;
4592                 log.useSource(prev);
4593                 chk.setLint(prevLint);
4594             }
4595 
4596         }
4597     }
4598 
4599     public void visitImport(JCImport tree) {
4600         // nothing to do
4601     }
4602 
4603     public void visitModuleDef(JCModuleDecl tree) {
4604         tree.sym.completeUsesProvides();
4605         ModuleSymbol msym = tree.sym;
4606         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
4607         Lint prevLint = chk.setLint(lint);
4608         chk.checkModuleName(tree);
4609         chk.checkDeprecatedAnnotation(tree, msym);
4610 
4611         try {
4612             deferredLintHandler.flush(tree.pos());
4613         } finally {
4614             chk.setLint(prevLint);
4615         }
4616     }
4617 
4618     /** Finish the attribution of a class. */
4619     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4620         JCClassDecl tree = (JCClassDecl)env.tree;
4621         Assert.check(c == tree.sym);
4622 
4623         // Validate type parameters, supertype and interfaces.
4624         attribStats(tree.typarams, env);
4625         if (!c.isAnonymous()) {
4626             //already checked if anonymous
4627             chk.validate(tree.typarams, env);
4628             chk.validate(tree.extending, env);
4629             chk.validate(tree.implementing, env);
4630         }
4631 
4632         c.markAbstractIfNeeded(types);
4633 
4634         // If this is a non-abstract class, check that it has no abstract
4635         // methods or unimplemented methods of an implemented interface.
4636         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4637             chk.checkAllDefined(tree.pos(), c);
4638         }
4639 
4640         if ((c.flags() & ANNOTATION) != 0) {
4641             if (tree.implementing.nonEmpty())
4642                 log.error(tree.implementing.head.pos(),
4643                           Errors.CantExtendIntfAnnotation);
4644             if (tree.typarams.nonEmpty()) {
4645                 log.error(tree.typarams.head.pos(),
4646                           Errors.IntfAnnotationCantHaveTypeParams(c));
4647             }
4648 
4649             // If this annotation type has a @Repeatable, validate
4650             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4651             // If this annotation type has a @Repeatable, validate
4652             if (repeatable != null) {
4653                 // get diagnostic position for error reporting
4654                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4655                 Assert.checkNonNull(cbPos);
4656 
4657                 chk.validateRepeatable(c, repeatable, cbPos);
4658             }
4659         } else {
4660             // Check that all extended classes and interfaces
4661             // are compatible (i.e. no two define methods with same arguments
4662             // yet different return types).  (JLS 8.4.6.3)
4663             chk.checkCompatibleSupertypes(tree.pos(), c.type);
4664             if (allowDefaultMethods) {
4665                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
4666             }
4667         }
4668 
4669         // Check that class does not import the same parameterized interface
4670         // with two different argument lists.
4671         chk.checkClassBounds(tree.pos(), c.type);
4672 
4673         tree.type = c.type;
4674 
4675         for (List<JCTypeParameter> l = tree.typarams;
4676              l.nonEmpty(); l = l.tail) {
4677              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4678         }
4679 
4680         // Check that a generic class doesn't extend Throwable
4681         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4682             log.error(tree.extending.pos(), Errors.GenericThrowable);
4683 
4684         // Check that all methods which implement some
4685         // method conform to the method they implement.
4686         chk.checkImplementations(tree);
4687 
4688         //check that a resource implementing AutoCloseable cannot throw InterruptedException
4689         checkAutoCloseable(tree.pos(), env, c.type);
4690 
4691         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4692             // Attribute declaration
4693             attribStat(l.head, env);
4694             // Check that declarations in inner classes are not static (JLS 8.1.2)
4695             // Make an exception for static constants.
4696             if (c.owner.kind != PCK &&
4697                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4698                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4699                 Symbol sym = null;
4700                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4701                 if (sym == null ||
4702                     sym.kind != VAR ||
4703                     ((VarSymbol) sym).getConstValue() == null)
4704                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
4705             }
4706         }
4707 
4708         // Check for cycles among non-initial constructors.
4709         chk.checkCyclicConstructors(tree);
4710 
4711         // Check for cycles among annotation elements.
4712         chk.checkNonCyclicElements(tree);
4713 
4714         // Check for proper use of serialVersionUID
4715         if (env.info.lint.isEnabled(LintCategory.SERIAL)
4716                 && isSerializable(c.type)
4717                 && (c.flags() & (Flags.ENUM | Flags.INTERFACE)) == 0
4718                 && !c.isAnonymous()) {
4719             checkSerialVersionUID(tree, c);
4720         }
4721         if (allowTypeAnnos) {
4722             // Correctly organize the postions of the type annotations
4723             typeAnnotations.organizeTypeAnnotationsBodies(tree);
4724 
4725             // Check type annotations applicability rules
4726             validateTypeAnnotations(tree, false);
4727         }
4728     }
4729         // where
4730         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4731         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4732             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4733                 if (types.isSameType(al.head.annotationType.type, t))
4734                     return al.head.pos();
4735             }
4736 
4737             return null;
4738         }
4739 
4740         /** check if a type is a subtype of Serializable, if that is available. */
4741         boolean isSerializable(Type t) {
4742             try {
4743                 syms.serializableType.complete();
4744             }
4745             catch (CompletionFailure e) {
4746                 return false;
4747             }
4748             return types.isSubtype(t, syms.serializableType);
4749         }
4750 
4751         /** Check that an appropriate serialVersionUID member is defined. */
4752         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4753 
4754             // check for presence of serialVersionUID
4755             VarSymbol svuid = null;
4756             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4757                 if (sym.kind == VAR) {
4758                     svuid = (VarSymbol)sym;
4759                     break;
4760                 }
4761             }
4762 
4763             if (svuid == null) {
4764                 log.warning(LintCategory.SERIAL,
4765                         tree.pos(), Warnings.MissingSVUID(c));
4766                 return;
4767             }
4768 
4769             // check that it is static final
4770             if ((svuid.flags() & (STATIC | FINAL)) !=
4771                 (STATIC | FINAL))
4772                 log.warning(LintCategory.SERIAL,
4773                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ImproperSVUID(c));
4774 
4775             // check that it is long
4776             else if (!svuid.type.hasTag(LONG))
4777                 log.warning(LintCategory.SERIAL,
4778                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.LongSVUID(c));
4779 
4780             // check constant
4781             else if (svuid.getConstValue() == null)
4782                 log.warning(LintCategory.SERIAL,
4783                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ConstantSVUID(c));
4784         }
4785 
4786     private Type capture(Type type) {
4787         return types.capture(type);
4788     }
4789 
4790     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
4791         if (type.isErroneous()) {
4792             tree.vartype = make.at(Position.NOPOS).Erroneous();
4793         } else {
4794             tree.vartype = make.at(Position.NOPOS).Type(type);
4795         }
4796     }
4797 
4798     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4799         tree.accept(new TypeAnnotationsValidator(sigOnly));
4800     }
4801     //where
4802     private final class TypeAnnotationsValidator extends TreeScanner {
4803 
4804         private final boolean sigOnly;
4805         public TypeAnnotationsValidator(boolean sigOnly) {
4806             this.sigOnly = sigOnly;
4807         }
4808 
4809         public void visitAnnotation(JCAnnotation tree) {
4810             chk.validateTypeAnnotation(tree, false);
4811             super.visitAnnotation(tree);
4812         }
4813         public void visitAnnotatedType(JCAnnotatedType tree) {
4814             if (!tree.underlyingType.type.isErroneous()) {
4815                 super.visitAnnotatedType(tree);
4816             }
4817         }
4818         public void visitTypeParameter(JCTypeParameter tree) {
4819             chk.validateTypeAnnotations(tree.annotations, true);
4820             scan(tree.bounds);
4821             // Don't call super.
4822             // This is needed because above we call validateTypeAnnotation with
4823             // false, which would forbid annotations on type parameters.
4824             // super.visitTypeParameter(tree);
4825         }
4826         public void visitMethodDef(JCMethodDecl tree) {
4827             if (tree.recvparam != null &&
4828                     !tree.recvparam.vartype.type.isErroneous()) {
4829                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4830                         tree.recvparam.vartype.type.tsym);
4831             }
4832             if (tree.restype != null && tree.restype.type != null) {
4833                 validateAnnotatedType(tree.restype, tree.restype.type);
4834             }
4835             if (sigOnly) {
4836                 scan(tree.mods);
4837                 scan(tree.restype);
4838                 scan(tree.typarams);
4839                 scan(tree.recvparam);
4840                 scan(tree.params);
4841                 scan(tree.thrown);
4842             } else {
4843                 scan(tree.defaultValue);
4844                 scan(tree.body);
4845             }
4846         }
4847         public void visitVarDef(final JCVariableDecl tree) {
4848             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4849             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
4850                 validateAnnotatedType(tree.vartype, tree.sym.type);
4851             scan(tree.mods);
4852             scan(tree.vartype);
4853             if (!sigOnly) {
4854                 scan(tree.init);
4855             }
4856         }
4857         public void visitTypeCast(JCTypeCast tree) {
4858             if (tree.clazz != null && tree.clazz.type != null)
4859                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4860             super.visitTypeCast(tree);
4861         }
4862         public void visitTypeTest(JCInstanceOf tree) {
4863             if (tree.clazz != null && tree.clazz.type != null)
4864                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4865             super.visitTypeTest(tree);
4866         }
4867         public void visitNewClass(JCNewClass tree) {
4868             if (tree.clazz != null && tree.clazz.type != null) {
4869                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4870                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4871                             tree.clazz.type.tsym);
4872                 }
4873                 if (tree.def != null) {
4874                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4875                 }
4876 
4877                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4878             }
4879             super.visitNewClass(tree);
4880         }
4881         public void visitNewArray(JCNewArray tree) {
4882             if (tree.elemtype != null && tree.elemtype.type != null) {
4883                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4884                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4885                             tree.elemtype.type.tsym);
4886                 }
4887                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4888             }
4889             super.visitNewArray(tree);
4890         }
4891         public void visitClassDef(JCClassDecl tree) {
4892             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4893             if (sigOnly) {
4894                 scan(tree.mods);
4895                 scan(tree.typarams);
4896                 scan(tree.extending);
4897                 scan(tree.implementing);
4898             }
4899             for (JCTree member : tree.defs) {
4900                 if (member.hasTag(Tag.CLASSDEF)) {
4901                     continue;
4902                 }
4903                 scan(member);
4904             }
4905         }
4906         public void visitBlock(JCBlock tree) {
4907             if (!sigOnly) {
4908                 scan(tree.stats);
4909             }
4910         }
4911 
4912         /* I would want to model this after
4913          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4914          * and override visitSelect and visitTypeApply.
4915          * However, we only set the annotated type in the top-level type
4916          * of the symbol.
4917          * Therefore, we need to override each individual location where a type
4918          * can occur.
4919          */
4920         private void validateAnnotatedType(final JCTree errtree, final Type type) {
4921             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4922 
4923             if (type.isPrimitiveOrVoid()) {
4924                 return;
4925             }
4926 
4927             JCTree enclTr = errtree;
4928             Type enclTy = type;
4929 
4930             boolean repeat = true;
4931             while (repeat) {
4932                 if (enclTr.hasTag(TYPEAPPLY)) {
4933                     List<Type> tyargs = enclTy.getTypeArguments();
4934                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4935                     if (trargs.length() > 0) {
4936                         // Nothing to do for diamonds
4937                         if (tyargs.length() == trargs.length()) {
4938                             for (int i = 0; i < tyargs.length(); ++i) {
4939                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
4940                             }
4941                         }
4942                         // If the lengths don't match, it's either a diamond
4943                         // or some nested type that redundantly provides
4944                         // type arguments in the tree.
4945                     }
4946 
4947                     // Look at the clazz part of a generic type
4948                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4949                 }
4950 
4951                 if (enclTr.hasTag(SELECT)) {
4952                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4953                     if (enclTy != null &&
4954                             !enclTy.hasTag(NONE)) {
4955                         enclTy = enclTy.getEnclosingType();
4956                     }
4957                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4958                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4959                     if (enclTy == null || enclTy.hasTag(NONE)) {
4960                         if (at.getAnnotations().size() == 1) {
4961                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute));
4962                         } else {
4963                             ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4964                             for (JCAnnotation an : at.getAnnotations()) {
4965                                 comps.add(an.attribute);
4966                             }
4967                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList()));
4968                         }
4969                         repeat = false;
4970                     }
4971                     enclTr = at.underlyingType;
4972                     // enclTy doesn't need to be changed
4973                 } else if (enclTr.hasTag(IDENT)) {
4974                     repeat = false;
4975                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4976                     JCWildcard wc = (JCWildcard) enclTr;
4977                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
4978                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4979                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
4980                     } else {
4981                         // Nothing to do for UNBOUND
4982                     }
4983                     repeat = false;
4984                 } else if (enclTr.hasTag(TYPEARRAY)) {
4985                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4986                     validateAnnotatedType(art.getType(), art.elemtype.type);
4987                     repeat = false;
4988                 } else if (enclTr.hasTag(TYPEUNION)) {
4989                     JCTypeUnion ut = (JCTypeUnion) enclTr;
4990                     for (JCTree t : ut.getTypeAlternatives()) {
4991                         validateAnnotatedType(t, t.type);
4992                     }
4993                     repeat = false;
4994                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4995                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
4996                     for (JCTree t : it.getBounds()) {
4997                         validateAnnotatedType(t, t.type);
4998                     }
4999                     repeat = false;
5000                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
5001                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
5002                     repeat = false;
5003                 } else {
5004                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
5005                             " within: "+ errtree + " with kind: " + errtree.getKind());
5006                 }
5007             }
5008         }
5009 
5010         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
5011                 Symbol sym) {
5012             // Ensure that no declaration annotations are present.
5013             // Note that a tree type might be an AnnotatedType with
5014             // empty annotations, if only declaration annotations were given.
5015             // This method will raise an error for such a type.
5016             for (JCAnnotation ai : annotations) {
5017                 if (!ai.type.isErroneous() &&
5018                         typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
5019                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
5020                 }
5021             }
5022         }
5023     }
5024 
5025     // <editor-fold desc="post-attribution visitor">
5026 
5027     /**
5028      * Handle missing types/symbols in an AST. This routine is useful when
5029      * the compiler has encountered some errors (which might have ended up
5030      * terminating attribution abruptly); if the compiler is used in fail-over
5031      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
5032      * prevents NPE to be progagated during subsequent compilation steps.
5033      */
5034     public void postAttr(JCTree tree) {
5035         new PostAttrAnalyzer().scan(tree);
5036     }
5037 
5038     class PostAttrAnalyzer extends TreeScanner {
5039 
5040         private void initTypeIfNeeded(JCTree that) {
5041             if (that.type == null) {
5042                 if (that.hasTag(METHODDEF)) {
5043                     that.type = dummyMethodType((JCMethodDecl)that);
5044                 } else {
5045                     that.type = syms.unknownType;
5046                 }
5047             }
5048         }
5049 
5050         /* Construct a dummy method type. If we have a method declaration,
5051          * and the declared return type is void, then use that return type
5052          * instead of UNKNOWN to avoid spurious error messages in lambda
5053          * bodies (see:JDK-8041704).
5054          */
5055         private Type dummyMethodType(JCMethodDecl md) {
5056             Type restype = syms.unknownType;
5057             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
5058                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
5059                 if (prim.typetag == VOID)
5060                     restype = syms.voidType;
5061             }
5062             return new MethodType(List.nil(), restype,
5063                                   List.nil(), syms.methodClass);
5064         }
5065         private Type dummyMethodType() {
5066             return dummyMethodType(null);
5067         }
5068 
5069         @Override
5070         public void scan(JCTree tree) {
5071             if (tree == null) return;
5072             if (tree instanceof JCExpression) {
5073                 initTypeIfNeeded(tree);
5074             }
5075             super.scan(tree);
5076         }
5077 
5078         @Override
5079         public void visitIdent(JCIdent that) {
5080             if (that.sym == null) {
5081                 that.sym = syms.unknownSymbol;
5082             }
5083         }
5084 
5085         @Override
5086         public void visitSelect(JCFieldAccess that) {
5087             if (that.sym == null) {
5088                 that.sym = syms.unknownSymbol;
5089             }
5090             super.visitSelect(that);
5091         }
5092 
5093         @Override
5094         public void visitClassDef(JCClassDecl that) {
5095             initTypeIfNeeded(that);
5096             if (that.sym == null) {
5097                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
5098             }
5099             super.visitClassDef(that);
5100         }
5101 
5102         @Override
5103         public void visitMethodDef(JCMethodDecl that) {
5104             initTypeIfNeeded(that);
5105             if (that.sym == null) {
5106                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
5107             }
5108             super.visitMethodDef(that);
5109         }
5110 
5111         @Override
5112         public void visitVarDef(JCVariableDecl that) {
5113             initTypeIfNeeded(that);
5114             if (that.sym == null) {
5115                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
5116                 that.sym.adr = 0;
5117             }
5118             if (that.vartype == null) {
5119                 that.vartype = make.at(Position.NOPOS).Erroneous();
5120             }
5121             super.visitVarDef(that);
5122         }
5123 
5124         @Override
5125         public void visitNewClass(JCNewClass that) {
5126             if (that.constructor == null) {
5127                 that.constructor = new MethodSymbol(0, names.init,
5128                         dummyMethodType(), syms.noSymbol);
5129             }
5130             if (that.constructorType == null) {
5131                 that.constructorType = syms.unknownType;
5132             }
5133             super.visitNewClass(that);
5134         }
5135 
5136         @Override
5137         public void visitAssignop(JCAssignOp that) {
5138             if (that.operator == null) {
5139                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5140                         -1, syms.noSymbol);
5141             }
5142             super.visitAssignop(that);
5143         }
5144 
5145         @Override
5146         public void visitBinary(JCBinary that) {
5147             if (that.operator == null) {
5148                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5149                         -1, syms.noSymbol);
5150             }
5151             super.visitBinary(that);
5152         }
5153 
5154         @Override
5155         public void visitUnary(JCUnary that) {
5156             if (that.operator == null) {
5157                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5158                         -1, syms.noSymbol);
5159             }
5160             super.visitUnary(that);
5161         }
5162 
5163         @Override
5164         public void visitLambda(JCLambda that) {
5165             super.visitLambda(that);
5166             if (that.target == null) {
5167                 that.target = syms.unknownType;
5168             }
5169         }
5170 
5171         @Override
5172         public void visitReference(JCMemberReference that) {
5173             super.visitReference(that);
5174             if (that.sym == null) {
5175                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
5176                         syms.noSymbol);
5177             }
5178             if (that.target == null) {
5179                 that.target = syms.unknownType;
5180             }
5181         }
5182     }
5183     // </editor-fold>
5184 
5185     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
5186         new TreeScanner() {
5187             Symbol packge = pkg;
5188             @Override
5189             public void visitIdent(JCIdent that) {
5190                 that.sym = packge;
5191             }
5192 
5193             @Override
5194             public void visitSelect(JCFieldAccess that) {
5195                 that.sym = packge;
5196                 packge = packge.owner;
5197                 super.visitSelect(that);
5198             }
5199         }.scan(pid);
5200     }
5201 
5202 }