1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.Map.Entry;
  30 import java.util.function.Function;
  31 import java.util.stream.Stream;
  32 
  33 import com.sun.source.tree.CaseTree.CaseKind;
  34 import com.sun.tools.javac.code.*;
  35 import com.sun.tools.javac.code.Kinds.KindSelector;
  36 import com.sun.tools.javac.code.Scope.WriteableScope;
  37 import com.sun.tools.javac.jvm.*;
  38 import com.sun.tools.javac.main.Option.PkgInfo;
  39 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  40 import com.sun.tools.javac.tree.*;
  41 import com.sun.tools.javac.util.*;
  42 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  43 import com.sun.tools.javac.util.List;
  44 
  45 import com.sun.tools.javac.code.Symbol.*;
  46 import com.sun.tools.javac.code.Symbol.OperatorSymbol.AccessCode;
  47 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  48 import com.sun.tools.javac.tree.JCTree.*;
  49 import com.sun.tools.javac.code.Type.*;
  50 
  51 import com.sun.tools.javac.jvm.Target;
  52 import com.sun.tools.javac.tree.EndPosTable;
  53 
  54 import static com.sun.tools.javac.code.Flags.*;
  55 import static com.sun.tools.javac.code.Flags.BLOCK;
  56 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  57 import static com.sun.tools.javac.code.TypeTag.*;
  58 import static com.sun.tools.javac.code.Kinds.Kind.*;
  59 import static com.sun.tools.javac.code.Symbol.OperatorSymbol.AccessCode.DEREF;
  60 import static com.sun.tools.javac.jvm.ByteCodes.*;
  61 import com.sun.tools.javac.tree.JCTree.JCBreak;
  62 import com.sun.tools.javac.tree.JCTree.JCCase;
  63 import com.sun.tools.javac.tree.JCTree.JCExpression;
  64 import com.sun.tools.javac.tree.JCTree.JCExpressionStatement;
  65 import static com.sun.tools.javac.tree.JCTree.JCOperatorExpression.OperandPos.LEFT;
  66 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  67 
  68 /** This pass translates away some syntactic sugar: inner classes,
  69  *  class literals, assertions, foreach loops, etc.
  70  *
  71  *  <p><b>This is NOT part of any supported API.
  72  *  If you write code that depends on this, you do so at your own risk.
  73  *  This code and its internal interfaces are subject to change or
  74  *  deletion without notice.</b>
  75  */
  76 public class Lower extends TreeTranslator {
  77     protected static final Context.Key<Lower> lowerKey = new Context.Key<>();
  78 
  79     public static Lower instance(Context context) {
  80         Lower instance = context.get(lowerKey);
  81         if (instance == null)
  82             instance = new Lower(context);
  83         return instance;
  84     }
  85 
  86     private final Names names;
  87     private final Log log;
  88     private final Symtab syms;
  89     private final Resolve rs;
  90     private final Operators operators;
  91     private final Check chk;
  92     private final Attr attr;
  93     private TreeMaker make;
  94     private DiagnosticPosition make_pos;
  95     private final ClassWriter writer;
  96     private final ConstFold cfolder;
  97     private final Target target;
  98     private final Source source;
  99     private final TypeEnvs typeEnvs;
 100     private final Name dollarAssertionsDisabled;
 101     private final Name classDollar;
 102     private final Name dollarCloseResource;
 103     private final Types types;
 104     private final boolean debugLower;
 105     private final boolean disableProtectedAccessors; // experimental
 106     private final PkgInfo pkginfoOpt;
 107 
 108     protected Lower(Context context) {
 109         context.put(lowerKey, this);
 110         names = Names.instance(context);
 111         log = Log.instance(context);
 112         syms = Symtab.instance(context);
 113         rs = Resolve.instance(context);
 114         operators = Operators.instance(context);
 115         chk = Check.instance(context);
 116         attr = Attr.instance(context);
 117         make = TreeMaker.instance(context);
 118         writer = ClassWriter.instance(context);
 119         cfolder = ConstFold.instance(context);
 120         target = Target.instance(context);
 121         source = Source.instance(context);
 122         typeEnvs = TypeEnvs.instance(context);
 123         dollarAssertionsDisabled = names.
 124             fromString(target.syntheticNameChar() + "assertionsDisabled");
 125         classDollar = names.
 126             fromString("class" + target.syntheticNameChar());
 127         dollarCloseResource = names.
 128             fromString(target.syntheticNameChar() + "closeResource");
 129 
 130         types = Types.instance(context);
 131         Options options = Options.instance(context);
 132         debugLower = options.isSet("debuglower");
 133         pkginfoOpt = PkgInfo.get(options);
 134         disableProtectedAccessors = options.isSet("disableProtectedAccessors");
 135     }
 136 
 137     /** The currently enclosing class.
 138      */
 139     ClassSymbol currentClass;
 140 
 141     /** A queue of all translated classes.
 142      */
 143     ListBuffer<JCTree> translated;
 144 
 145     /** Environment for symbol lookup, set by translateTopLevelClass.
 146      */
 147     Env<AttrContext> attrEnv;
 148 
 149     /** A hash table mapping syntax trees to their ending source positions.
 150      */
 151     EndPosTable endPosTable;
 152 
 153 /**************************************************************************
 154  * Global mappings
 155  *************************************************************************/
 156 
 157     /** A hash table mapping local classes to their definitions.
 158      */
 159     Map<ClassSymbol, JCClassDecl> classdefs;
 160 
 161     /** A hash table mapping local classes to a list of pruned trees.
 162      */
 163     public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<>();
 164 
 165     /** A hash table mapping virtual accessed symbols in outer subclasses
 166      *  to the actually referred symbol in superclasses.
 167      */
 168     Map<Symbol,Symbol> actualSymbols;
 169 
 170     /** The current method definition.
 171      */
 172     JCMethodDecl currentMethodDef;
 173 
 174     /** The current method symbol.
 175      */
 176     MethodSymbol currentMethodSym;
 177 
 178     /** The currently enclosing outermost class definition.
 179      */
 180     JCClassDecl outermostClassDef;
 181 
 182     /** The currently enclosing outermost member definition.
 183      */
 184     JCTree outermostMemberDef;
 185 
 186     /** A map from local variable symbols to their translation (as per LambdaToMethod).
 187      * This is required when a capturing local class is created from a lambda (in which
 188      * case the captured symbols should be replaced with the translated lambda symbols).
 189      */
 190     Map<Symbol, Symbol> lambdaTranslationMap = null;
 191 
 192     /** A navigator class for assembling a mapping from local class symbols
 193      *  to class definition trees.
 194      *  There is only one case; all other cases simply traverse down the tree.
 195      */
 196     class ClassMap extends TreeScanner {
 197 
 198         /** All encountered class defs are entered into classdefs table.
 199          */
 200         public void visitClassDef(JCClassDecl tree) {
 201             classdefs.put(tree.sym, tree);
 202             super.visitClassDef(tree);
 203         }
 204     }
 205     ClassMap classMap = new ClassMap();
 206 
 207     /** Map a class symbol to its definition.
 208      *  @param c    The class symbol of which we want to determine the definition.
 209      */
 210     JCClassDecl classDef(ClassSymbol c) {
 211         // First lookup the class in the classdefs table.
 212         JCClassDecl def = classdefs.get(c);
 213         if (def == null && outermostMemberDef != null) {
 214             // If this fails, traverse outermost member definition, entering all
 215             // local classes into classdefs, and try again.
 216             classMap.scan(outermostMemberDef);
 217             def = classdefs.get(c);
 218         }
 219         if (def == null) {
 220             // If this fails, traverse outermost class definition, entering all
 221             // local classes into classdefs, and try again.
 222             classMap.scan(outermostClassDef);
 223             def = classdefs.get(c);
 224         }
 225         return def;
 226     }
 227 
 228     /** A hash table mapping class symbols to lists of free variables.
 229      *  accessed by them. Only free variables of the method immediately containing
 230      *  a class are associated with that class.
 231      */
 232     Map<ClassSymbol,List<VarSymbol>> freevarCache;
 233 
 234     /** A navigator class for collecting the free variables accessed
 235      *  from a local class. There is only one case; all other cases simply
 236      *  traverse down the tree. This class doesn't deal with the specific
 237      *  of Lower - it's an abstract visitor that is meant to be reused in
 238      *  order to share the local variable capture logic.
 239      */
 240     abstract class BasicFreeVarCollector extends TreeScanner {
 241 
 242         /** Add all free variables of class c to fvs list
 243          *  unless they are already there.
 244          */
 245         abstract void addFreeVars(ClassSymbol c);
 246 
 247         /** If tree refers to a variable in owner of local class, add it to
 248          *  free variables list.
 249          */
 250         public void visitIdent(JCIdent tree) {
 251             visitSymbol(tree.sym);
 252         }
 253         // where
 254         abstract void visitSymbol(Symbol _sym);
 255 
 256         /** If tree refers to a class instance creation expression
 257          *  add all free variables of the freshly created class.
 258          */
 259         public void visitNewClass(JCNewClass tree) {
 260             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 261             addFreeVars(c);
 262             super.visitNewClass(tree);
 263         }
 264 
 265         /** If tree refers to a superclass constructor call,
 266          *  add all free variables of the superclass.
 267          */
 268         public void visitApply(JCMethodInvocation tree) {
 269             if (TreeInfo.name(tree.meth) == names._super) {
 270                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
 271             }
 272             super.visitApply(tree);
 273         }
 274 
 275         @Override
 276         public void visitBreak(JCBreak tree) {
 277             if (tree.isValueBreak())
 278                 scan(tree.value);
 279         }
 280 
 281     }
 282 
 283     /**
 284      * Lower-specific subclass of {@code BasicFreeVarCollector}.
 285      */
 286     class FreeVarCollector extends BasicFreeVarCollector {
 287 
 288         /** The owner of the local class.
 289          */
 290         Symbol owner;
 291 
 292         /** The local class.
 293          */
 294         ClassSymbol clazz;
 295 
 296         /** The list of owner's variables accessed from within the local class,
 297          *  without any duplicates.
 298          */
 299         List<VarSymbol> fvs;
 300 
 301         FreeVarCollector(ClassSymbol clazz) {
 302             this.clazz = clazz;
 303             this.owner = clazz.owner;
 304             this.fvs = List.nil();
 305         }
 306 
 307         /** Add free variable to fvs list unless it is already there.
 308          */
 309         private void addFreeVar(VarSymbol v) {
 310             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
 311                 if (l.head == v) return;
 312             fvs = fvs.prepend(v);
 313         }
 314 
 315         @Override
 316         void addFreeVars(ClassSymbol c) {
 317             List<VarSymbol> fvs = freevarCache.get(c);
 318             if (fvs != null) {
 319                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
 320                     addFreeVar(l.head);
 321                 }
 322             }
 323         }
 324 
 325         @Override
 326         void visitSymbol(Symbol _sym) {
 327             Symbol sym = _sym;
 328             if (sym.kind == VAR || sym.kind == MTH) {
 329                 if (sym != null && sym.owner != owner)
 330                     sym = proxies.get(sym);
 331                 if (sym != null && sym.owner == owner) {
 332                     VarSymbol v = (VarSymbol)sym;
 333                     if (v.getConstValue() == null) {
 334                         addFreeVar(v);
 335                     }
 336                 } else {
 337                     if (outerThisStack.head != null &&
 338                         outerThisStack.head != _sym)
 339                         visitSymbol(outerThisStack.head);
 340                 }
 341             }
 342         }
 343 
 344         /** If tree refers to a class instance creation expression
 345          *  add all free variables of the freshly created class.
 346          */
 347         public void visitNewClass(JCNewClass tree) {
 348             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 349             if (tree.encl == null &&
 350                 c.hasOuterInstance() &&
 351                 outerThisStack.head != null)
 352                 visitSymbol(outerThisStack.head);
 353             super.visitNewClass(tree);
 354         }
 355 
 356         /** If tree refers to a qualified this or super expression
 357          *  for anything but the current class, add the outer this
 358          *  stack as a free variable.
 359          */
 360         public void visitSelect(JCFieldAccess tree) {
 361             if ((tree.name == names._this || tree.name == names._super) &&
 362                 tree.selected.type.tsym != clazz &&
 363                 outerThisStack.head != null)
 364                 visitSymbol(outerThisStack.head);
 365             super.visitSelect(tree);
 366         }
 367 
 368         /** If tree refers to a superclass constructor call,
 369          *  add all free variables of the superclass.
 370          */
 371         public void visitApply(JCMethodInvocation tree) {
 372             if (TreeInfo.name(tree.meth) == names._super) {
 373                 Symbol constructor = TreeInfo.symbol(tree.meth);
 374                 ClassSymbol c = (ClassSymbol)constructor.owner;
 375                 if (c.hasOuterInstance() &&
 376                     !tree.meth.hasTag(SELECT) &&
 377                     outerThisStack.head != null)
 378                     visitSymbol(outerThisStack.head);
 379             }
 380             super.visitApply(tree);
 381         }
 382 
 383     }
 384 
 385     ClassSymbol ownerToCopyFreeVarsFrom(ClassSymbol c) {
 386         if (!c.isLocal()) {
 387             return null;
 388         }
 389         Symbol currentOwner = c.owner;
 390         while (currentOwner.owner.kind.matches(KindSelector.TYP) && currentOwner.isLocal()) {
 391             currentOwner = currentOwner.owner;
 392         }
 393         if (currentOwner.owner.kind.matches(KindSelector.VAL_MTH) && c.isSubClass(currentOwner, types)) {
 394             return (ClassSymbol)currentOwner;
 395         }
 396         return null;
 397     }
 398 
 399     /** Return the variables accessed from within a local class, which
 400      *  are declared in the local class' owner.
 401      *  (in reverse order of first access).
 402      */
 403     List<VarSymbol> freevars(ClassSymbol c)  {
 404         List<VarSymbol> fvs = freevarCache.get(c);
 405         if (fvs != null) {
 406             return fvs;
 407         }
 408         if (c.owner.kind.matches(KindSelector.VAL_MTH)) {
 409             FreeVarCollector collector = new FreeVarCollector(c);
 410             collector.scan(classDef(c));
 411             fvs = collector.fvs;
 412             freevarCache.put(c, fvs);
 413             return fvs;
 414         } else {
 415             ClassSymbol owner = ownerToCopyFreeVarsFrom(c);
 416             if (owner != null) {
 417                 fvs = freevarCache.get(owner);
 418                 freevarCache.put(c, fvs);
 419                 return fvs;
 420             } else {
 421                 return List.nil();
 422             }
 423         }
 424     }
 425 
 426     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<>();
 427 
 428     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
 429         EnumMapping map = enumSwitchMap.get(enumClass);
 430         if (map == null)
 431             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
 432         return map;
 433     }
 434 
 435     /** This map gives a translation table to be used for enum
 436      *  switches.
 437      *
 438      *  <p>For each enum that appears as the type of a switch
 439      *  expression, we maintain an EnumMapping to assist in the
 440      *  translation, as exemplified by the following example:
 441      *
 442      *  <p>we translate
 443      *  <pre>
 444      *          switch(colorExpression) {
 445      *          case red: stmt1;
 446      *          case green: stmt2;
 447      *          }
 448      *  </pre>
 449      *  into
 450      *  <pre>
 451      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
 452      *          case 1: stmt1;
 453      *          case 2: stmt2
 454      *          }
 455      *  </pre>
 456      *  with the auxiliary table initialized as follows:
 457      *  <pre>
 458      *          class Outer$0 {
 459      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
 460      *              static {
 461      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
 462      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
 463      *              }
 464      *          }
 465      *  </pre>
 466      *  class EnumMapping provides mapping data and support methods for this translation.
 467      */
 468     class EnumMapping {
 469         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
 470             this.forEnum = forEnum;
 471             this.values = new LinkedHashMap<>();
 472             this.pos = pos;
 473             Name varName = names
 474                 .fromString(target.syntheticNameChar() +
 475                             "SwitchMap" +
 476                             target.syntheticNameChar() +
 477                             writer.xClassName(forEnum.type).toString()
 478                             .replace('/', '.')
 479                             .replace('.', target.syntheticNameChar()));
 480             ClassSymbol outerCacheClass = outerCacheClass();
 481             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
 482                                         varName,
 483                                         new ArrayType(syms.intType, syms.arrayClass),
 484                                         outerCacheClass);
 485             enterSynthetic(pos, mapVar, outerCacheClass.members());
 486         }
 487 
 488         DiagnosticPosition pos = null;
 489 
 490         // the next value to use
 491         int next = 1; // 0 (unused map elements) go to the default label
 492 
 493         // the enum for which this is a map
 494         final TypeSymbol forEnum;
 495 
 496         // the field containing the map
 497         final VarSymbol mapVar;
 498 
 499         // the mapped values
 500         final Map<VarSymbol,Integer> values;
 501 
 502         JCLiteral forConstant(VarSymbol v) {
 503             Integer result = values.get(v);
 504             if (result == null)
 505                 values.put(v, result = next++);
 506             return make.Literal(result);
 507         }
 508 
 509         // generate the field initializer for the map
 510         void translate() {
 511             make.at(pos.getStartPosition());
 512             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
 513 
 514             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
 515             MethodSymbol valuesMethod = lookupMethod(pos,
 516                                                      names.values,
 517                                                      forEnum.type,
 518                                                      List.nil());
 519             JCExpression size = make // Color.values().length
 520                 .Select(make.App(make.QualIdent(valuesMethod)),
 521                         syms.lengthVar);
 522             JCExpression mapVarInit = make
 523                 .NewArray(make.Type(syms.intType), List.of(size), null)
 524                 .setType(new ArrayType(syms.intType, syms.arrayClass));
 525 
 526             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
 527             ListBuffer<JCStatement> stmts = new ListBuffer<>();
 528             Symbol ordinalMethod = lookupMethod(pos,
 529                                                 names.ordinal,
 530                                                 forEnum.type,
 531                                                 List.nil());
 532             List<JCCatch> catcher = List.<JCCatch>nil()
 533                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
 534                                                               syms.noSuchFieldErrorType,
 535                                                               syms.noSymbol),
 536                                                 null),
 537                                     make.Block(0, List.nil())));
 538             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
 539                 VarSymbol enumerator = e.getKey();
 540                 Integer mappedValue = e.getValue();
 541                 JCExpression assign = make
 542                     .Assign(make.Indexed(mapVar,
 543                                          make.App(make.Select(make.QualIdent(enumerator),
 544                                                               ordinalMethod))),
 545                             make.Literal(mappedValue))
 546                     .setType(syms.intType);
 547                 JCStatement exec = make.Exec(assign);
 548                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
 549                 stmts.append(_try);
 550             }
 551 
 552             owner.defs = owner.defs
 553                 .prepend(make.Block(STATIC, stmts.toList()))
 554                 .prepend(make.VarDef(mapVar, mapVarInit));
 555         }
 556     }
 557 
 558 
 559 /**************************************************************************
 560  * Tree building blocks
 561  *************************************************************************/
 562 
 563     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
 564      *  pos as make_pos, for use in diagnostics.
 565      **/
 566     TreeMaker make_at(DiagnosticPosition pos) {
 567         make_pos = pos;
 568         return make.at(pos);
 569     }
 570 
 571     /** Make an attributed tree representing a literal. This will be an
 572      *  Ident node in the case of boolean literals, a Literal node in all
 573      *  other cases.
 574      *  @param type       The literal's type.
 575      *  @param value      The literal's value.
 576      */
 577     JCExpression makeLit(Type type, Object value) {
 578         return make.Literal(type.getTag(), value).setType(type.constType(value));
 579     }
 580 
 581     /** Make an attributed tree representing null.
 582      */
 583     JCExpression makeNull() {
 584         return makeLit(syms.botType, null);
 585     }
 586 
 587     /** Make an attributed class instance creation expression.
 588      *  @param ctype    The class type.
 589      *  @param args     The constructor arguments.
 590      */
 591     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
 592         JCNewClass tree = make.NewClass(null,
 593             null, make.QualIdent(ctype.tsym), args, null);
 594         tree.constructor = rs.resolveConstructor(
 595             make_pos, attrEnv, ctype, TreeInfo.types(args), List.nil());
 596         tree.type = ctype;
 597         return tree;
 598     }
 599 
 600     /** Make an attributed unary expression.
 601      *  @param optag    The operators tree tag.
 602      *  @param arg      The operator's argument.
 603      */
 604     JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
 605         JCUnary tree = make.Unary(optag, arg);
 606         tree.operator = operators.resolveUnary(tree, optag, arg.type);
 607         tree.type = tree.operator.type.getReturnType();
 608         return tree;
 609     }
 610 
 611     /** Make an attributed binary expression.
 612      *  @param optag    The operators tree tag.
 613      *  @param lhs      The operator's left argument.
 614      *  @param rhs      The operator's right argument.
 615      */
 616     JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
 617         JCBinary tree = make.Binary(optag, lhs, rhs);
 618         tree.operator = operators.resolveBinary(tree, optag, lhs.type, rhs.type);
 619         tree.type = tree.operator.type.getReturnType();
 620         return tree;
 621     }
 622 
 623     /** Make an attributed assignop expression.
 624      *  @param optag    The operators tree tag.
 625      *  @param lhs      The operator's left argument.
 626      *  @param rhs      The operator's right argument.
 627      */
 628     JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
 629         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
 630         tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), lhs.type, rhs.type);
 631         tree.type = lhs.type;
 632         return tree;
 633     }
 634 
 635     /** Convert tree into string object, unless it has already a
 636      *  reference type..
 637      */
 638     JCExpression makeString(JCExpression tree) {
 639         if (!tree.type.isPrimitiveOrVoid()) {
 640             return tree;
 641         } else {
 642             Symbol valueOfSym = lookupMethod(tree.pos(),
 643                                              names.valueOf,
 644                                              syms.stringType,
 645                                              List.of(tree.type));
 646             return make.App(make.QualIdent(valueOfSym), List.of(tree));
 647         }
 648     }
 649 
 650     /** Create an empty anonymous class definition and enter and complete
 651      *  its symbol. Return the class definition's symbol.
 652      *  and create
 653      *  @param flags    The class symbol's flags
 654      *  @param owner    The class symbol's owner
 655      */
 656     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
 657         return makeEmptyClass(flags, owner, null, true);
 658     }
 659 
 660     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
 661             boolean addToDefs) {
 662         // Create class symbol.
 663         ClassSymbol c = syms.defineClass(names.empty, owner);
 664         if (flatname != null) {
 665             c.flatname = flatname;
 666         } else {
 667             c.flatname = chk.localClassName(c);
 668         }
 669         c.sourcefile = owner.sourcefile;
 670         c.completer = Completer.NULL_COMPLETER;
 671         c.members_field = WriteableScope.create(c);
 672         c.flags_field = flags;
 673         ClassType ctype = (ClassType) c.type;
 674         ctype.supertype_field = syms.objectType;
 675         ctype.interfaces_field = List.nil();
 676 
 677         JCClassDecl odef = classDef(owner);
 678 
 679         // Enter class symbol in owner scope and compiled table.
 680         enterSynthetic(odef.pos(), c, owner.members());
 681         chk.putCompiled(c);
 682 
 683         // Create class definition tree.
 684         JCClassDecl cdef = make.ClassDef(
 685             make.Modifiers(flags), names.empty,
 686             List.nil(),
 687             null, List.nil(), List.nil());
 688         cdef.sym = c;
 689         cdef.type = c.type;
 690 
 691         // Append class definition tree to owner's definitions.
 692         if (addToDefs) odef.defs = odef.defs.prepend(cdef);
 693         return cdef;
 694     }
 695 
 696 /**************************************************************************
 697  * Symbol manipulation utilities
 698  *************************************************************************/
 699 
 700     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
 701      *  @param pos           Position for error reporting.
 702      *  @param sym           The symbol.
 703      *  @param s             The scope.
 704      */
 705     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, WriteableScope s) {
 706         s.enter(sym);
 707     }
 708 
 709     /** Create a fresh synthetic name within a given scope - the unique name is
 710      *  obtained by appending '$' chars at the end of the name until no match
 711      *  is found.
 712      *
 713      * @param name base name
 714      * @param s scope in which the name has to be unique
 715      * @return fresh synthetic name
 716      */
 717     private Name makeSyntheticName(Name name, Scope s) {
 718         do {
 719             name = name.append(
 720                     target.syntheticNameChar(),
 721                     names.empty);
 722         } while (lookupSynthetic(name, s) != null);
 723         return name;
 724     }
 725 
 726     /** Check whether synthetic symbols generated during lowering conflict
 727      *  with user-defined symbols.
 728      *
 729      *  @param translatedTrees lowered class trees
 730      */
 731     void checkConflicts(List<JCTree> translatedTrees) {
 732         for (JCTree t : translatedTrees) {
 733             t.accept(conflictsChecker);
 734         }
 735     }
 736 
 737     JCTree.Visitor conflictsChecker = new TreeScanner() {
 738 
 739         TypeSymbol currentClass;
 740 
 741         @Override
 742         public void visitMethodDef(JCMethodDecl that) {
 743             checkConflicts(that.pos(), that.sym, currentClass);
 744             super.visitMethodDef(that);
 745         }
 746 
 747         @Override
 748         public void visitVarDef(JCVariableDecl that) {
 749             if (that.sym.owner.kind == TYP) {
 750                 checkConflicts(that.pos(), that.sym, currentClass);
 751             }
 752             super.visitVarDef(that);
 753         }
 754 
 755         @Override
 756         public void visitClassDef(JCClassDecl that) {
 757             TypeSymbol prevCurrentClass = currentClass;
 758             currentClass = that.sym;
 759             try {
 760                 super.visitClassDef(that);
 761             }
 762             finally {
 763                 currentClass = prevCurrentClass;
 764             }
 765         }
 766 
 767         void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
 768             for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
 769                 for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
 770                     // VM allows methods and variables with differing types
 771                     if (sym.kind == sym2.kind &&
 772                         types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
 773                         sym != sym2 &&
 774                         (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
 775                         (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
 776                         syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
 777                         return;
 778                     }
 779                 }
 780             }
 781         }
 782 
 783         /** Report a conflict between a user symbol and a synthetic symbol.
 784          */
 785         private void syntheticError(DiagnosticPosition pos, Symbol sym) {
 786             if (!sym.type.isErroneous()) {
 787                 log.error(pos, Errors.CannotGenerateClass(sym.location(), Fragments.SyntheticNameConflict(sym, sym.location())));
 788             }
 789         }
 790     };
 791 
 792     /** Look up a synthetic name in a given scope.
 793      *  @param s            The scope.
 794      *  @param name         The name.
 795      */
 796     private Symbol lookupSynthetic(Name name, Scope s) {
 797         Symbol sym = s.findFirst(name);
 798         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
 799     }
 800 
 801     /** Look up a method in a given scope.
 802      */
 803     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
 804         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.nil());
 805     }
 806 
 807     /** Anon inner classes are used as access constructor tags.
 808      * accessConstructorTag will use an existing anon class if one is available,
 809      * and synthethise a class (with makeEmptyClass) if one is not available.
 810      * However, there is a small possibility that an existing class will not
 811      * be generated as expected if it is inside a conditional with a constant
 812      * expression. If that is found to be the case, create an empty class tree here.
 813      */
 814     private void checkAccessConstructorTags() {
 815         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
 816             ClassSymbol c = l.head;
 817             if (isTranslatedClassAvailable(c))
 818                 continue;
 819             // Create class definition tree.
 820             JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC,
 821                     c.outermostClass(), c.flatname, false);
 822             swapAccessConstructorTag(c, cdec.sym);
 823             translated.append(cdec);
 824         }
 825     }
 826     // where
 827     private boolean isTranslatedClassAvailable(ClassSymbol c) {
 828         for (JCTree tree: translated) {
 829             if (tree.hasTag(CLASSDEF)
 830                     && ((JCClassDecl) tree).sym == c) {
 831                 return true;
 832             }
 833         }
 834         return false;
 835     }
 836 
 837     void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
 838         for (MethodSymbol methodSymbol : accessConstrs.values()) {
 839             Assert.check(methodSymbol.type.hasTag(METHOD));
 840             MethodType oldMethodType =
 841                     (MethodType)methodSymbol.type;
 842             if (oldMethodType.argtypes.head.tsym == oldCTag)
 843                 methodSymbol.type =
 844                     types.createMethodTypeWithParameters(oldMethodType,
 845                         oldMethodType.getParameterTypes().tail
 846                             .prepend(newCTag.erasure(types)));
 847         }
 848     }
 849 
 850 /**************************************************************************
 851  * Access methods
 852  *************************************************************************/
 853 
 854     /** A mapping from symbols to their access numbers.
 855      */
 856     private Map<Symbol,Integer> accessNums;
 857 
 858     /** A mapping from symbols to an array of access symbols, indexed by
 859      *  access code.
 860      */
 861     private Map<Symbol,MethodSymbol[]> accessSyms;
 862 
 863     /** A mapping from (constructor) symbols to access constructor symbols.
 864      */
 865     private Map<Symbol,MethodSymbol> accessConstrs;
 866 
 867     /** A list of all class symbols used for access constructor tags.
 868      */
 869     private List<ClassSymbol> accessConstrTags;
 870 
 871     /** A queue for all accessed symbols.
 872      */
 873     private ListBuffer<Symbol> accessed;
 874 
 875     /** return access code for identifier,
 876      *  @param tree     The tree representing the identifier use.
 877      *  @param enclOp   The closest enclosing operation node of tree,
 878      *                  null if tree is not a subtree of an operation.
 879      */
 880     private static int accessCode(JCTree tree, JCTree enclOp) {
 881         if (enclOp == null)
 882             return AccessCode.DEREF.code;
 883         else if (enclOp.hasTag(ASSIGN) &&
 884                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
 885             return AccessCode.ASSIGN.code;
 886         else if ((enclOp.getTag().isIncOrDecUnaryOp() || enclOp.getTag().isAssignop()) &&
 887                 tree == TreeInfo.skipParens(((JCOperatorExpression) enclOp).getOperand(LEFT)))
 888             return (((JCOperatorExpression) enclOp).operator).getAccessCode(enclOp.getTag());
 889         else
 890             return AccessCode.DEREF.code;
 891     }
 892 
 893     /** Return binary operator that corresponds to given access code.
 894      */
 895     private OperatorSymbol binaryAccessOperator(int acode, Tag tag) {
 896         return operators.lookupBinaryOp(op -> op.getAccessCode(tag) == acode);
 897     }
 898 
 899     /** Return tree tag for assignment operation corresponding
 900      *  to given binary operator.
 901      */
 902     private static JCTree.Tag treeTag(OperatorSymbol operator) {
 903         switch (operator.opcode) {
 904         case ByteCodes.ior: case ByteCodes.lor:
 905             return BITOR_ASG;
 906         case ByteCodes.ixor: case ByteCodes.lxor:
 907             return BITXOR_ASG;
 908         case ByteCodes.iand: case ByteCodes.land:
 909             return BITAND_ASG;
 910         case ByteCodes.ishl: case ByteCodes.lshl:
 911         case ByteCodes.ishll: case ByteCodes.lshll:
 912             return SL_ASG;
 913         case ByteCodes.ishr: case ByteCodes.lshr:
 914         case ByteCodes.ishrl: case ByteCodes.lshrl:
 915             return SR_ASG;
 916         case ByteCodes.iushr: case ByteCodes.lushr:
 917         case ByteCodes.iushrl: case ByteCodes.lushrl:
 918             return USR_ASG;
 919         case ByteCodes.iadd: case ByteCodes.ladd:
 920         case ByteCodes.fadd: case ByteCodes.dadd:
 921         case ByteCodes.string_add:
 922             return PLUS_ASG;
 923         case ByteCodes.isub: case ByteCodes.lsub:
 924         case ByteCodes.fsub: case ByteCodes.dsub:
 925             return MINUS_ASG;
 926         case ByteCodes.imul: case ByteCodes.lmul:
 927         case ByteCodes.fmul: case ByteCodes.dmul:
 928             return MUL_ASG;
 929         case ByteCodes.idiv: case ByteCodes.ldiv:
 930         case ByteCodes.fdiv: case ByteCodes.ddiv:
 931             return DIV_ASG;
 932         case ByteCodes.imod: case ByteCodes.lmod:
 933         case ByteCodes.fmod: case ByteCodes.dmod:
 934             return MOD_ASG;
 935         default:
 936             throw new AssertionError();
 937         }
 938     }
 939 
 940     /** The name of the access method with number `anum' and access code `acode'.
 941      */
 942     Name accessName(int anum, int acode) {
 943         return names.fromString(
 944             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
 945     }
 946 
 947     /** Return access symbol for a private or protected symbol from an inner class.
 948      *  @param sym        The accessed private symbol.
 949      *  @param tree       The accessing tree.
 950      *  @param enclOp     The closest enclosing operation node of tree,
 951      *                    null if tree is not a subtree of an operation.
 952      *  @param protAccess Is access to a protected symbol in another
 953      *                    package?
 954      *  @param refSuper   Is access via a (qualified) C.super?
 955      */
 956     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
 957                               boolean protAccess, boolean refSuper) {
 958         ClassSymbol accOwner = refSuper && protAccess
 959             // For access via qualified super (T.super.x), place the
 960             // access symbol on T.
 961             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
 962             // Otherwise pretend that the owner of an accessed
 963             // protected symbol is the enclosing class of the current
 964             // class which is a subclass of the symbol's owner.
 965             : accessClass(sym, protAccess, tree);
 966 
 967         Symbol vsym = sym;
 968         if (sym.owner != accOwner) {
 969             vsym = sym.clone(accOwner);
 970             actualSymbols.put(vsym, sym);
 971         }
 972 
 973         Integer anum              // The access number of the access method.
 974             = accessNums.get(vsym);
 975         if (anum == null) {
 976             anum = accessed.length();
 977             accessNums.put(vsym, anum);
 978             accessSyms.put(vsym, new MethodSymbol[AccessCode.numberOfAccessCodes]);
 979             accessed.append(vsym);
 980             // System.out.println("accessing " + vsym + " in " + vsym.location());
 981         }
 982 
 983         int acode;                // The access code of the access method.
 984         List<Type> argtypes;      // The argument types of the access method.
 985         Type restype;             // The result type of the access method.
 986         List<Type> thrown;        // The thrown exceptions of the access method.
 987         switch (vsym.kind) {
 988         case VAR:
 989             acode = accessCode(tree, enclOp);
 990             if (acode >= AccessCode.FIRSTASGOP.code) {
 991                 OperatorSymbol operator = binaryAccessOperator(acode, enclOp.getTag());
 992                 if (operator.opcode == string_add)
 993                     argtypes = List.of(syms.objectType);
 994                 else
 995                     argtypes = operator.type.getParameterTypes().tail;
 996             } else if (acode == AccessCode.ASSIGN.code)
 997                 argtypes = List.of(vsym.erasure(types));
 998             else
 999                 argtypes = List.nil();
1000             restype = vsym.erasure(types);
1001             thrown = List.nil();
1002             break;
1003         case MTH:
1004             acode = AccessCode.DEREF.code;
1005             argtypes = vsym.erasure(types).getParameterTypes();
1006             restype = vsym.erasure(types).getReturnType();
1007             thrown = vsym.type.getThrownTypes();
1008             break;
1009         default:
1010             throw new AssertionError();
1011         }
1012 
1013         // For references via qualified super, increment acode by one,
1014         // making it odd.
1015         if (protAccess && refSuper) acode++;
1016 
1017         // Instance access methods get instance as first parameter.
1018         // For protected symbols this needs to be the instance as a member
1019         // of the type containing the accessed symbol, not the class
1020         // containing the access method.
1021         if ((vsym.flags() & STATIC) == 0) {
1022             argtypes = argtypes.prepend(vsym.owner.erasure(types));
1023         }
1024         MethodSymbol[] accessors = accessSyms.get(vsym);
1025         MethodSymbol accessor = accessors[acode];
1026         if (accessor == null) {
1027             accessor = new MethodSymbol(
1028                 STATIC | SYNTHETIC | (accOwner.isInterface() ? PUBLIC : 0),
1029                 accessName(anum.intValue(), acode),
1030                 new MethodType(argtypes, restype, thrown, syms.methodClass),
1031                 accOwner);
1032             enterSynthetic(tree.pos(), accessor, accOwner.members());
1033             accessors[acode] = accessor;
1034         }
1035         return accessor;
1036     }
1037 
1038     /** The qualifier to be used for accessing a symbol in an outer class.
1039      *  This is either C.sym or C.this.sym, depending on whether or not
1040      *  sym is static.
1041      *  @param sym   The accessed symbol.
1042      */
1043     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
1044         return (sym.flags() & STATIC) != 0
1045             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
1046             : makeOwnerThis(pos, sym, true);
1047     }
1048 
1049     /** Do we need an access method to reference private symbol?
1050      */
1051     boolean needsPrivateAccess(Symbol sym) {
1052         if (target.hasNestmateAccess()) {
1053             return false;
1054         }
1055         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
1056             return false;
1057         } else if (sym.name == names.init && sym.owner.isLocal()) {
1058             // private constructor in local class: relax protection
1059             sym.flags_field &= ~PRIVATE;
1060             return false;
1061         } else {
1062             return true;
1063         }
1064     }
1065 
1066     /** Do we need an access method to reference symbol in other package?
1067      */
1068     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
1069         if (disableProtectedAccessors) return false;
1070         if ((sym.flags() & PROTECTED) == 0 ||
1071             sym.owner.owner == currentClass.owner || // fast special case
1072             sym.packge() == currentClass.packge())
1073             return false;
1074         if (!currentClass.isSubClass(sym.owner, types))
1075             return true;
1076         if ((sym.flags() & STATIC) != 0 ||
1077             !tree.hasTag(SELECT) ||
1078             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
1079             return false;
1080         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
1081     }
1082 
1083     /** The class in which an access method for given symbol goes.
1084      *  @param sym        The access symbol
1085      *  @param protAccess Is access to a protected symbol in another
1086      *                    package?
1087      */
1088     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
1089         if (protAccess) {
1090             Symbol qualifier = null;
1091             ClassSymbol c = currentClass;
1092             if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
1093                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
1094                 while (!qualifier.isSubClass(c, types)) {
1095                     c = c.owner.enclClass();
1096                 }
1097                 return c;
1098             } else {
1099                 while (!c.isSubClass(sym.owner, types)) {
1100                     c = c.owner.enclClass();
1101                 }
1102             }
1103             return c;
1104         } else {
1105             // the symbol is private
1106             return sym.owner.enclClass();
1107         }
1108     }
1109 
1110     private void addPrunedInfo(JCTree tree) {
1111         List<JCTree> infoList = prunedTree.get(currentClass);
1112         infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
1113         prunedTree.put(currentClass, infoList);
1114     }
1115 
1116     /** Ensure that identifier is accessible, return tree accessing the identifier.
1117      *  @param sym      The accessed symbol.
1118      *  @param tree     The tree referring to the symbol.
1119      *  @param enclOp   The closest enclosing operation node of tree,
1120      *                  null if tree is not a subtree of an operation.
1121      *  @param refSuper Is access via a (qualified) C.super?
1122      */
1123     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
1124         // Access a free variable via its proxy, or its proxy's proxy
1125         while (sym.kind == VAR && sym.owner.kind == MTH &&
1126             sym.owner.enclClass() != currentClass) {
1127             // A constant is replaced by its constant value.
1128             Object cv = ((VarSymbol)sym).getConstValue();
1129             if (cv != null) {
1130                 make.at(tree.pos);
1131                 return makeLit(sym.type, cv);
1132             }
1133             // Otherwise replace the variable by its proxy.
1134             sym = proxies.get(sym);
1135             Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
1136             tree = make.at(tree.pos).Ident(sym);
1137         }
1138         JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
1139         switch (sym.kind) {
1140         case TYP:
1141             if (sym.owner.kind != PCK) {
1142                 // Convert type idents to
1143                 // <flat name> or <package name> . <flat name>
1144                 Name flatname = Convert.shortName(sym.flatName());
1145                 while (base != null &&
1146                        TreeInfo.symbol(base) != null &&
1147                        TreeInfo.symbol(base).kind != PCK) {
1148                     base = (base.hasTag(SELECT))
1149                         ? ((JCFieldAccess) base).selected
1150                         : null;
1151                 }
1152                 if (tree.hasTag(IDENT)) {
1153                     ((JCIdent) tree).name = flatname;
1154                 } else if (base == null) {
1155                     tree = make.at(tree.pos).Ident(sym);
1156                     ((JCIdent) tree).name = flatname;
1157                 } else {
1158                     ((JCFieldAccess) tree).selected = base;
1159                     ((JCFieldAccess) tree).name = flatname;
1160                 }
1161             }
1162             break;
1163         case MTH: case VAR:
1164             if (sym.owner.kind == TYP) {
1165 
1166                 // Access methods are required for
1167                 //  - private members,
1168                 //  - protected members in a superclass of an
1169                 //    enclosing class contained in another package.
1170                 //  - all non-private members accessed via a qualified super.
1171                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
1172                     || needsProtectedAccess(sym, tree);
1173                 boolean accReq = protAccess || needsPrivateAccess(sym);
1174 
1175                 // A base has to be supplied for
1176                 //  - simple identifiers accessing variables in outer classes.
1177                 boolean baseReq =
1178                     base == null &&
1179                     sym.owner != syms.predefClass &&
1180                     !sym.isMemberOf(currentClass, types);
1181 
1182                 if (accReq || baseReq) {
1183                     make.at(tree.pos);
1184 
1185                     // Constants are replaced by their constant value.
1186                     if (sym.kind == VAR) {
1187                         Object cv = ((VarSymbol)sym).getConstValue();
1188                         if (cv != null) {
1189                             addPrunedInfo(tree);
1190                             return makeLit(sym.type, cv);
1191                         }
1192                     }
1193 
1194                     // Private variables and methods are replaced by calls
1195                     // to their access methods.
1196                     if (accReq) {
1197                         List<JCExpression> args = List.nil();
1198                         if ((sym.flags() & STATIC) == 0) {
1199                             // Instance access methods get instance
1200                             // as first parameter.
1201                             if (base == null)
1202                                 base = makeOwnerThis(tree.pos(), sym, true);
1203                             args = args.prepend(base);
1204                             base = null;   // so we don't duplicate code
1205                         }
1206                         Symbol access = accessSymbol(sym, tree,
1207                                                      enclOp, protAccess,
1208                                                      refSuper);
1209                         JCExpression receiver = make.Select(
1210                             base != null ? base : make.QualIdent(access.owner),
1211                             access);
1212                         return make.App(receiver, args);
1213 
1214                     // Other accesses to members of outer classes get a
1215                     // qualifier.
1216                     } else if (baseReq) {
1217                         return make.at(tree.pos).Select(
1218                             accessBase(tree.pos(), sym), sym).setType(tree.type);
1219                     }
1220                 }
1221             } else if (sym.owner.kind == MTH && lambdaTranslationMap != null) {
1222                 //sym is a local variable - check the lambda translation map to
1223                 //see if sym has been translated to something else in the current
1224                 //scope (by LambdaToMethod)
1225                 Symbol translatedSym = lambdaTranslationMap.get(sym);
1226                 if (translatedSym != null) {
1227                     tree = make.at(tree.pos).Ident(translatedSym);
1228                 }
1229             }
1230         }
1231         return tree;
1232     }
1233 
1234     /** Ensure that identifier is accessible, return tree accessing the identifier.
1235      *  @param tree     The identifier tree.
1236      */
1237     JCExpression access(JCExpression tree) {
1238         Symbol sym = TreeInfo.symbol(tree);
1239         return sym == null ? tree : access(sym, tree, null, false);
1240     }
1241 
1242     /** Return access constructor for a private constructor,
1243      *  or the constructor itself, if no access constructor is needed.
1244      *  @param pos       The position to report diagnostics, if any.
1245      *  @param constr    The private constructor.
1246      */
1247     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
1248         if (needsPrivateAccess(constr)) {
1249             ClassSymbol accOwner = constr.owner.enclClass();
1250             MethodSymbol aconstr = accessConstrs.get(constr);
1251             if (aconstr == null) {
1252                 List<Type> argtypes = constr.type.getParameterTypes();
1253                 if ((accOwner.flags_field & ENUM) != 0)
1254                     argtypes = argtypes
1255                         .prepend(syms.intType)
1256                         .prepend(syms.stringType);
1257                 aconstr = new MethodSymbol(
1258                     SYNTHETIC,
1259                     names.init,
1260                     new MethodType(
1261                         argtypes.append(
1262                             accessConstructorTag().erasure(types)),
1263                         constr.type.getReturnType(),
1264                         constr.type.getThrownTypes(),
1265                         syms.methodClass),
1266                     accOwner);
1267                 enterSynthetic(pos, aconstr, accOwner.members());
1268                 accessConstrs.put(constr, aconstr);
1269                 accessed.append(constr);
1270             }
1271             return aconstr;
1272         } else {
1273             return constr;
1274         }
1275     }
1276 
1277     /** Return an anonymous class nested in this toplevel class.
1278      */
1279     ClassSymbol accessConstructorTag() {
1280         ClassSymbol topClass = currentClass.outermostClass();
1281         ModuleSymbol topModle = topClass.packge().modle;
1282         for (int i = 1; ; i++) {
1283             Name flatname = names.fromString("" + topClass.getQualifiedName() +
1284                                             target.syntheticNameChar() +
1285                                             i);
1286             ClassSymbol ctag = chk.getCompiled(topModle, flatname);
1287             if (ctag == null)
1288                 ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass).sym;
1289             else if (!ctag.isAnonymous())
1290                 continue;
1291             // keep a record of all tags, to verify that all are generated as required
1292             accessConstrTags = accessConstrTags.prepend(ctag);
1293             return ctag;
1294         }
1295     }
1296 
1297     /** Add all required access methods for a private symbol to enclosing class.
1298      *  @param sym       The symbol.
1299      */
1300     void makeAccessible(Symbol sym) {
1301         JCClassDecl cdef = classDef(sym.owner.enclClass());
1302         if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
1303         if (sym.name == names.init) {
1304             cdef.defs = cdef.defs.prepend(
1305                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
1306         } else {
1307             MethodSymbol[] accessors = accessSyms.get(sym);
1308             for (int i = 0; i < AccessCode.numberOfAccessCodes; i++) {
1309                 if (accessors[i] != null)
1310                     cdef.defs = cdef.defs.prepend(
1311                         accessDef(cdef.pos, sym, accessors[i], i));
1312             }
1313         }
1314     }
1315 
1316     /** Construct definition of an access method.
1317      *  @param pos        The source code position of the definition.
1318      *  @param vsym       The private or protected symbol.
1319      *  @param accessor   The access method for the symbol.
1320      *  @param acode      The access code.
1321      */
1322     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
1323 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
1324         currentClass = vsym.owner.enclClass();
1325         make.at(pos);
1326         JCMethodDecl md = make.MethodDef(accessor, null);
1327 
1328         // Find actual symbol
1329         Symbol sym = actualSymbols.get(vsym);
1330         if (sym == null) sym = vsym;
1331 
1332         JCExpression ref;           // The tree referencing the private symbol.
1333         List<JCExpression> args;    // Any additional arguments to be passed along.
1334         if ((sym.flags() & STATIC) != 0) {
1335             ref = make.Ident(sym);
1336             args = make.Idents(md.params);
1337         } else {
1338             JCExpression site = make.Ident(md.params.head);
1339             if (acode % 2 != 0) {
1340                 //odd access codes represent qualified super accesses - need to
1341                 //emit reference to the direct superclass, even if the refered
1342                 //member is from an indirect superclass (JLS 13.1)
1343                 site.setType(types.erasure(types.supertype(vsym.owner.enclClass().type)));
1344             }
1345             ref = make.Select(site, sym);
1346             args = make.Idents(md.params.tail);
1347         }
1348         JCStatement stat;          // The statement accessing the private symbol.
1349         if (sym.kind == VAR) {
1350             // Normalize out all odd access codes by taking floor modulo 2:
1351             int acode1 = acode - (acode & 1);
1352 
1353             JCExpression expr;      // The access method's return value.
1354             AccessCode aCode = AccessCode.getFromCode(acode1);
1355             switch (aCode) {
1356             case DEREF:
1357                 expr = ref;
1358                 break;
1359             case ASSIGN:
1360                 expr = make.Assign(ref, args.head);
1361                 break;
1362             case PREINC: case POSTINC: case PREDEC: case POSTDEC:
1363                 expr = makeUnary(aCode.tag, ref);
1364                 break;
1365             default:
1366                 expr = make.Assignop(
1367                     treeTag(binaryAccessOperator(acode1, JCTree.Tag.NO_TAG)), ref, args.head);
1368                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1, JCTree.Tag.NO_TAG);
1369             }
1370             stat = make.Return(expr.setType(sym.type));
1371         } else {
1372             stat = make.Call(make.App(ref, args));
1373         }
1374         md.body = make.Block(0, List.of(stat));
1375 
1376         // Make sure all parameters, result types and thrown exceptions
1377         // are accessible.
1378         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
1379             l.head.vartype = access(l.head.vartype);
1380         md.restype = access(md.restype);
1381         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
1382             l.head = access(l.head);
1383 
1384         return md;
1385     }
1386 
1387     /** Construct definition of an access constructor.
1388      *  @param pos        The source code position of the definition.
1389      *  @param constr     The private constructor.
1390      *  @param accessor   The access method for the constructor.
1391      */
1392     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
1393         make.at(pos);
1394         JCMethodDecl md = make.MethodDef(accessor,
1395                                       accessor.externalType(types),
1396                                       null);
1397         JCIdent callee = make.Ident(names._this);
1398         callee.sym = constr;
1399         callee.type = constr.type;
1400         md.body =
1401             make.Block(0, List.of(
1402                 make.Call(
1403                     make.App(
1404                         callee,
1405                         make.Idents(md.params.reverse().tail.reverse())))));
1406         return md;
1407     }
1408 
1409 /**************************************************************************
1410  * Free variables proxies and this$n
1411  *************************************************************************/
1412 
1413     /** A map which allows to retrieve the translated proxy variable for any given symbol of an
1414      *  enclosing scope that is accessed (the accessed symbol could be the synthetic 'this$n' symbol).
1415      *  Inside a constructor, the map temporarily overrides entries corresponding to proxies and any
1416      *  'this$n' symbols, where they represent the constructor parameters.
1417      */
1418     Map<Symbol, Symbol> proxies;
1419 
1420     /** A scope containing all unnamed resource variables/saved
1421      *  exception variables for translated TWR blocks
1422      */
1423     WriteableScope twrVars;
1424 
1425     /** A stack containing the this$n field of the currently translated
1426      *  classes (if needed) in innermost first order.
1427      *  Inside a constructor, proxies and any this$n symbol are duplicated
1428      *  in an additional innermost scope, where they represent the constructor
1429      *  parameters.
1430      */
1431     List<VarSymbol> outerThisStack;
1432 
1433     /** The name of a free variable proxy.
1434      */
1435     Name proxyName(Name name, int index) {
1436         Name proxyName = names.fromString("val" + target.syntheticNameChar() + name);
1437         if (index > 0) {
1438             proxyName = proxyName.append(names.fromString("" + target.syntheticNameChar() + index));
1439         }
1440         return proxyName;
1441     }
1442 
1443     /** Proxy definitions for all free variables in given list, in reverse order.
1444      *  @param pos        The source code position of the definition.
1445      *  @param freevars   The free variables.
1446      *  @param owner      The class in which the definitions go.
1447      */
1448     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
1449         return freevarDefs(pos, freevars, owner, 0);
1450     }
1451 
1452     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner,
1453             long additionalFlags) {
1454         long flags = FINAL | SYNTHETIC | additionalFlags;
1455         List<JCVariableDecl> defs = List.nil();
1456         Set<Name> proxyNames = new HashSet<>();
1457         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
1458             VarSymbol v = l.head;
1459             int index = 0;
1460             Name proxyName;
1461             do {
1462                 proxyName = proxyName(v.name, index++);
1463             } while (!proxyNames.add(proxyName));
1464             VarSymbol proxy = new VarSymbol(
1465                 flags, proxyName, v.erasure(types), owner);
1466             proxies.put(v, proxy);
1467             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
1468             vd.vartype = access(vd.vartype);
1469             defs = defs.prepend(vd);
1470         }
1471         return defs;
1472     }
1473 
1474     /** The name of a this$n field
1475      *  @param type   The class referenced by the this$n field
1476      */
1477     Name outerThisName(Type type, Symbol owner) {
1478         Type t = type.getEnclosingType();
1479         int nestingLevel = 0;
1480         while (t.hasTag(CLASS)) {
1481             t = t.getEnclosingType();
1482             nestingLevel++;
1483         }
1484         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
1485         while (owner.kind == TYP && ((ClassSymbol)owner).members().findFirst(result) != null)
1486             result = names.fromString(result.toString() + target.syntheticNameChar());
1487         return result;
1488     }
1489 
1490     private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
1491         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
1492         VarSymbol outerThis =
1493             new VarSymbol(flags, outerThisName(target, owner), target, owner);
1494         outerThisStack = outerThisStack.prepend(outerThis);
1495         return outerThis;
1496     }
1497 
1498     private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
1499         JCVariableDecl vd = make.at(pos).VarDef(sym, null);
1500         vd.vartype = access(vd.vartype);
1501         return vd;
1502     }
1503 
1504     /** Definition for this$n field.
1505      *  @param pos        The source code position of the definition.
1506      *  @param owner      The method in which the definition goes.
1507      */
1508     JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
1509         ClassSymbol c = owner.enclClass();
1510         boolean isMandated =
1511             // Anonymous constructors
1512             (owner.isConstructor() && owner.isAnonymous()) ||
1513             // Constructors of non-private inner member classes
1514             (owner.isConstructor() && c.isInner() &&
1515              !c.isPrivate() && !c.isStatic());
1516         long flags =
1517             FINAL | (isMandated ? MANDATED : SYNTHETIC) | PARAMETER;
1518         VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
1519         owner.extraParams = owner.extraParams.prepend(outerThis);
1520         return makeOuterThisVarDecl(pos, outerThis);
1521     }
1522 
1523     /** Definition for this$n field.
1524      *  @param pos        The source code position of the definition.
1525      *  @param owner      The class in which the definition goes.
1526      */
1527     JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
1528         VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC);
1529         return makeOuterThisVarDecl(pos, outerThis);
1530     }
1531 
1532     /** Return a list of trees that load the free variables in given list,
1533      *  in reverse order.
1534      *  @param pos          The source code position to be used for the trees.
1535      *  @param freevars     The list of free variables.
1536      */
1537     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
1538         List<JCExpression> args = List.nil();
1539         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
1540             args = args.prepend(loadFreevar(pos, l.head));
1541         return args;
1542     }
1543 //where
1544         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
1545             return access(v, make.at(pos).Ident(v), null, false);
1546         }
1547 
1548     /** Construct a tree simulating the expression {@code C.this}.
1549      *  @param pos           The source code position to be used for the tree.
1550      *  @param c             The qualifier class.
1551      */
1552     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
1553         if (currentClass == c) {
1554             // in this case, `this' works fine
1555             return make.at(pos).This(c.erasure(types));
1556         } else {
1557             // need to go via this$n
1558             return makeOuterThis(pos, c);
1559         }
1560     }
1561 
1562     /**
1563      * Optionally replace a try statement with the desugaring of a
1564      * try-with-resources statement.  The canonical desugaring of
1565      *
1566      * try ResourceSpecification
1567      *   Block
1568      *
1569      * is
1570      *
1571      * {
1572      *   final VariableModifiers_minus_final R #resource = Expression;
1573      *
1574      *   try ResourceSpecificationtail
1575      *     Block
1576      *   } body-only-finally {
1577      *     if (#resource != null) //nullcheck skipped if Expression is provably non-null
1578      *         #resource.close();
1579      *   } catch (Throwable #primaryException) {
1580      *       if (#resource != null) //nullcheck skipped if Expression is provably non-null
1581      *           try {
1582      *               #resource.close();
1583      *           } catch (Throwable #suppressedException) {
1584      *              #primaryException.addSuppressed(#suppressedException);
1585      *           }
1586      *       throw #primaryException;
1587      *   }
1588      * }
1589      *
1590      * @param tree  The try statement to inspect.
1591      * @return A a desugared try-with-resources tree, or the original
1592      * try block if there are no resources to manage.
1593      */
1594     JCTree makeTwrTry(JCTry tree) {
1595         make_at(tree.pos());
1596         twrVars = twrVars.dup();
1597         JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
1598         if (tree.catchers.isEmpty() && tree.finalizer == null)
1599             result = translate(twrBlock);
1600         else
1601             result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
1602         twrVars = twrVars.leave();
1603         return result;
1604     }
1605 
1606     private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
1607         if (resources.isEmpty())
1608             return block;
1609 
1610         // Add resource declaration or expression to block statements
1611         ListBuffer<JCStatement> stats = new ListBuffer<>();
1612         JCTree resource = resources.head;
1613         JCExpression resourceUse;
1614         boolean resourceNonNull;
1615         if (resource instanceof JCVariableDecl) {
1616             JCVariableDecl var = (JCVariableDecl) resource;
1617             resourceUse = make.Ident(var.sym).setType(resource.type);
1618             resourceNonNull = var.init != null && TreeInfo.skipParens(var.init).hasTag(NEWCLASS);
1619             stats.add(var);
1620         } else {
1621             Assert.check(resource instanceof JCExpression);
1622             VarSymbol syntheticTwrVar =
1623             new VarSymbol(SYNTHETIC | FINAL,
1624                           makeSyntheticName(names.fromString("twrVar" +
1625                                            depth), twrVars),
1626                           (resource.type.hasTag(BOT)) ?
1627                           syms.autoCloseableType : resource.type,
1628                           currentMethodSym);
1629             twrVars.enter(syntheticTwrVar);
1630             JCVariableDecl syntheticTwrVarDecl =
1631                 make.VarDef(syntheticTwrVar, (JCExpression)resource);
1632             resourceUse = (JCExpression)make.Ident(syntheticTwrVar);
1633             resourceNonNull = false;
1634             stats.add(syntheticTwrVarDecl);
1635         }
1636 
1637         //create (semi-) finally block that will be copied into the main try body:
1638         int oldPos = make.pos;
1639         make.at(TreeInfo.endPos(block));
1640 
1641         // if (#resource != null) { #resource.close(); }
1642         JCStatement bodyCloseStatement = makeResourceCloseInvocation(resourceUse);
1643 
1644         if (!resourceNonNull) {
1645             bodyCloseStatement = make.If(makeNonNullCheck(resourceUse),
1646                                          bodyCloseStatement,
1647                                          null);
1648         }
1649 
1650         JCBlock finallyClause = make.Block(BODY_ONLY_FINALIZE, List.of(bodyCloseStatement));
1651         make.at(oldPos);
1652 
1653         // Create catch clause that saves exception, closes the resource and then rethrows the exception:
1654         VarSymbol primaryException =
1655             new VarSymbol(FINAL|SYNTHETIC,
1656                           names.fromString("t" +
1657                                            target.syntheticNameChar()),
1658                           syms.throwableType,
1659                           currentMethodSym);
1660         JCVariableDecl primaryExceptionDecl = make.VarDef(primaryException, null);
1661 
1662         // close resource:
1663         // try {
1664         //     #resource.close();
1665         // } catch (Throwable #suppressedException) {
1666         //     #primaryException.addSuppressed(#suppressedException);
1667         // }
1668         VarSymbol suppressedException =
1669             new VarSymbol(SYNTHETIC, make.paramName(2),
1670                           syms.throwableType,
1671                           currentMethodSym);
1672         JCStatement addSuppressedStatement =
1673             make.Exec(makeCall(make.Ident(primaryException),
1674                                names.addSuppressed,
1675                                List.of(make.Ident(suppressedException))));
1676         JCBlock closeResourceTryBlock =
1677             make.Block(0L, List.of(makeResourceCloseInvocation(resourceUse)));
1678         JCVariableDecl catchSuppressedDecl = make.VarDef(suppressedException, null);
1679         JCBlock catchSuppressedBlock = make.Block(0L, List.of(addSuppressedStatement));
1680         List<JCCatch> catchSuppressedClauses =
1681                 List.of(make.Catch(catchSuppressedDecl, catchSuppressedBlock));
1682         JCTry closeResourceTry = make.Try(closeResourceTryBlock, catchSuppressedClauses, null);
1683         closeResourceTry.finallyCanCompleteNormally = true;
1684 
1685         JCStatement exceptionalCloseStatement = closeResourceTry;
1686 
1687         if (!resourceNonNull) {
1688             // if (#resource != null) {  }
1689             exceptionalCloseStatement = make.If(makeNonNullCheck(resourceUse),
1690                                                 exceptionalCloseStatement,
1691                                                 null);
1692         }
1693 
1694         JCStatement exceptionalRethrow = make.Throw(make.Ident(primaryException));
1695         JCBlock exceptionalCloseBlock = make.Block(0L, List.of(exceptionalCloseStatement, exceptionalRethrow));
1696         JCCatch exceptionalCatchClause = make.Catch(primaryExceptionDecl, exceptionalCloseBlock);
1697 
1698         //create the main try statement with the close:
1699         JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
1700                                   List.of(exceptionalCatchClause),
1701                                   finallyClause);
1702 
1703         outerTry.finallyCanCompleteNormally = true;
1704         stats.add(outerTry);
1705 
1706         JCBlock newBlock = make.Block(0L, stats.toList());
1707         return newBlock;
1708     }
1709 
1710     private JCStatement makeResourceCloseInvocation(JCExpression resource) {
1711         // convert to AutoCloseable if needed
1712         if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
1713             resource = convert(resource, syms.autoCloseableType);
1714         }
1715 
1716         // create resource.close() method invocation
1717         JCExpression resourceClose = makeCall(resource,
1718                                               names.close,
1719                                               List.nil());
1720         return make.Exec(resourceClose);
1721     }
1722 
1723     private JCExpression makeNonNullCheck(JCExpression expression) {
1724         return makeBinary(NE, expression, makeNull());
1725     }
1726 
1727     /** Construct a tree that represents the outer instance
1728      *  {@code C.this}. Never pick the current `this'.
1729      *  @param pos           The source code position to be used for the tree.
1730      *  @param c             The qualifier class.
1731      */
1732     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
1733         List<VarSymbol> ots = outerThisStack;
1734         if (ots.isEmpty()) {
1735             log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1736             Assert.error();
1737             return makeNull();
1738         }
1739         VarSymbol ot = ots.head;
1740         JCExpression tree = access(make.at(pos).Ident(ot));
1741         TypeSymbol otc = ot.type.tsym;
1742         while (otc != c) {
1743             do {
1744                 ots = ots.tail;
1745                 if (ots.isEmpty()) {
1746                     log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1747                     Assert.error(); // should have been caught in Attr
1748                     return tree;
1749                 }
1750                 ot = ots.head;
1751             } while (ot.owner != otc);
1752             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
1753                 chk.earlyRefError(pos, c);
1754                 Assert.error(); // should have been caught in Attr
1755                 return makeNull();
1756             }
1757             tree = access(make.at(pos).Select(tree, ot));
1758             otc = ot.type.tsym;
1759         }
1760         return tree;
1761     }
1762 
1763     /** Construct a tree that represents the closest outer instance
1764      *  {@code C.this} such that the given symbol is a member of C.
1765      *  @param pos           The source code position to be used for the tree.
1766      *  @param sym           The accessed symbol.
1767      *  @param preciseMatch  should we accept a type that is a subtype of
1768      *                       sym's owner, even if it doesn't contain sym
1769      *                       due to hiding, overriding, or non-inheritance
1770      *                       due to protection?
1771      */
1772     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1773         Symbol c = sym.owner;
1774         if (preciseMatch ? sym.isMemberOf(currentClass, types)
1775                          : currentClass.isSubClass(sym.owner, types)) {
1776             // in this case, `this' works fine
1777             return make.at(pos).This(c.erasure(types));
1778         } else {
1779             // need to go via this$n
1780             return makeOwnerThisN(pos, sym, preciseMatch);
1781         }
1782     }
1783 
1784     /**
1785      * Similar to makeOwnerThis but will never pick "this".
1786      */
1787     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1788         Symbol c = sym.owner;
1789         List<VarSymbol> ots = outerThisStack;
1790         if (ots.isEmpty()) {
1791             log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1792             Assert.error();
1793             return makeNull();
1794         }
1795         VarSymbol ot = ots.head;
1796         JCExpression tree = access(make.at(pos).Ident(ot));
1797         TypeSymbol otc = ot.type.tsym;
1798         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
1799             do {
1800                 ots = ots.tail;
1801                 if (ots.isEmpty()) {
1802                     log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1803                     Assert.error();
1804                     return tree;
1805                 }
1806                 ot = ots.head;
1807             } while (ot.owner != otc);
1808             tree = access(make.at(pos).Select(tree, ot));
1809             otc = ot.type.tsym;
1810         }
1811         return tree;
1812     }
1813 
1814     /** Return tree simulating the assignment {@code this.name = name}, where
1815      *  name is the name of a free variable.
1816      */
1817     JCStatement initField(int pos, Symbol rhs, Symbol lhs) {
1818         Assert.check(rhs.owner.kind == MTH);
1819         Assert.check(rhs.owner.owner == lhs.owner);
1820         make.at(pos);
1821         return
1822             make.Exec(
1823                 make.Assign(
1824                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1825                     make.Ident(rhs)).setType(lhs.erasure(types)));
1826     }
1827 
1828     /** Return tree simulating the assignment {@code this.this$n = this$n}.
1829      */
1830     JCStatement initOuterThis(int pos) {
1831         VarSymbol rhs = outerThisStack.head;
1832         Assert.check(rhs.owner.kind == MTH);
1833         VarSymbol lhs = outerThisStack.tail.head;
1834         Assert.check(rhs.owner.owner == lhs.owner);
1835         make.at(pos);
1836         return
1837             make.Exec(
1838                 make.Assign(
1839                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1840                     make.Ident(rhs)).setType(lhs.erasure(types)));
1841     }
1842 
1843 /**************************************************************************
1844  * Code for .class
1845  *************************************************************************/
1846 
1847     /** Return the symbol of a class to contain a cache of
1848      *  compiler-generated statics such as class$ and the
1849      *  $assertionsDisabled flag.  We create an anonymous nested class
1850      *  (unless one already exists) and return its symbol.  However,
1851      *  for backward compatibility in 1.4 and earlier we use the
1852      *  top-level class itself.
1853      */
1854     private ClassSymbol outerCacheClass() {
1855         ClassSymbol clazz = outermostClassDef.sym;
1856         Scope s = clazz.members();
1857         for (Symbol sym : s.getSymbols(NON_RECURSIVE))
1858             if (sym.kind == TYP &&
1859                 sym.name == names.empty &&
1860                 (sym.flags() & INTERFACE) == 0) return (ClassSymbol) sym;
1861         return makeEmptyClass(STATIC | SYNTHETIC, clazz).sym;
1862     }
1863 
1864     /** Create an attributed tree of the form left.name(). */
1865     private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
1866         Assert.checkNonNull(left.type);
1867         Symbol funcsym = lookupMethod(make_pos, name, left.type,
1868                                       TreeInfo.types(args));
1869         return make.App(make.Select(left, funcsym), args);
1870     }
1871 
1872     /** The tree simulating a T.class expression.
1873      *  @param clazz      The tree identifying type T.
1874      */
1875     private JCExpression classOf(JCTree clazz) {
1876         return classOfType(clazz.type, clazz.pos());
1877     }
1878 
1879     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
1880         switch (type.getTag()) {
1881         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
1882         case DOUBLE: case BOOLEAN: case VOID:
1883             // replace with <BoxedClass>.TYPE
1884             ClassSymbol c = types.boxedClass(type);
1885             Symbol typeSym =
1886                 rs.accessBase(
1887                     rs.findIdentInType(attrEnv, c.type, names.TYPE, KindSelector.VAR),
1888                     pos, c.type, names.TYPE, true);
1889             if (typeSym.kind == VAR)
1890                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
1891             return make.QualIdent(typeSym);
1892         case CLASS: case ARRAY:
1893                 VarSymbol sym = new VarSymbol(
1894                         STATIC | PUBLIC | FINAL, names._class,
1895                         syms.classType, type.tsym);
1896                 return make_at(pos).Select(make.Type(type), sym);
1897         default:
1898             throw new AssertionError();
1899         }
1900     }
1901 
1902 /**************************************************************************
1903  * Code for enabling/disabling assertions.
1904  *************************************************************************/
1905 
1906     private ClassSymbol assertionsDisabledClassCache;
1907 
1908     /**Used to create an auxiliary class to hold $assertionsDisabled for interfaces.
1909      */
1910     private ClassSymbol assertionsDisabledClass() {
1911         if (assertionsDisabledClassCache != null) return assertionsDisabledClassCache;
1912 
1913         assertionsDisabledClassCache = makeEmptyClass(STATIC | SYNTHETIC, outermostClassDef.sym).sym;
1914 
1915         return assertionsDisabledClassCache;
1916     }
1917 
1918     // This code is not particularly robust if the user has
1919     // previously declared a member named '$assertionsDisabled'.
1920     // The same faulty idiom also appears in the translation of
1921     // class literals above.  We should report an error if a
1922     // previous declaration is not synthetic.
1923 
1924     private JCExpression assertFlagTest(DiagnosticPosition pos) {
1925         // Outermost class may be either true class or an interface.
1926         ClassSymbol outermostClass = outermostClassDef.sym;
1927 
1928         //only classes can hold a non-public field, look for a usable one:
1929         ClassSymbol container = !currentClass.isInterface() ? currentClass :
1930                 assertionsDisabledClass();
1931 
1932         VarSymbol assertDisabledSym =
1933             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
1934                                        container.members());
1935         if (assertDisabledSym == null) {
1936             assertDisabledSym =
1937                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
1938                               dollarAssertionsDisabled,
1939                               syms.booleanType,
1940                               container);
1941             enterSynthetic(pos, assertDisabledSym, container.members());
1942             Symbol desiredAssertionStatusSym = lookupMethod(pos,
1943                                                             names.desiredAssertionStatus,
1944                                                             types.erasure(syms.classType),
1945                                                             List.nil());
1946             JCClassDecl containerDef = classDef(container);
1947             make_at(containerDef.pos());
1948             JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
1949                     classOfType(types.erasure(outermostClass.type),
1950                                 containerDef.pos()),
1951                     desiredAssertionStatusSym)));
1952             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
1953                                                    notStatus);
1954             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
1955 
1956             if (currentClass.isInterface()) {
1957                 //need to load the assertions enabled/disabled state while
1958                 //initializing the interface:
1959                 JCClassDecl currentClassDef = classDef(currentClass);
1960                 make_at(currentClassDef.pos());
1961                 JCStatement dummy = make.If(make.QualIdent(assertDisabledSym), make.Skip(), null);
1962                 JCBlock clinit = make.Block(STATIC, List.of(dummy));
1963                 currentClassDef.defs = currentClassDef.defs.prepend(clinit);
1964             }
1965         }
1966         make_at(pos);
1967         return makeUnary(NOT, make.Ident(assertDisabledSym));
1968     }
1969 
1970 
1971 /**************************************************************************
1972  * Building blocks for let expressions
1973  *************************************************************************/
1974 
1975     interface TreeBuilder {
1976         JCExpression build(JCExpression arg);
1977     }
1978 
1979     /** Construct an expression using the builder, with the given rval
1980      *  expression as an argument to the builder.  However, the rval
1981      *  expression must be computed only once, even if used multiple
1982      *  times in the result of the builder.  We do that by
1983      *  constructing a "let" expression that saves the rvalue into a
1984      *  temporary variable and then uses the temporary variable in
1985      *  place of the expression built by the builder.  The complete
1986      *  resulting expression is of the form
1987      *  <pre>
1988      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
1989      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
1990      *  </pre>
1991      *  where <code><b>TEMP</b></code> is a newly declared variable
1992      *  in the let expression.
1993      */
1994     JCExpression abstractRval(JCExpression rval, Type type, TreeBuilder builder) {
1995         rval = TreeInfo.skipParens(rval);
1996         switch (rval.getTag()) {
1997         case LITERAL:
1998             return builder.build(rval);
1999         case IDENT:
2000             JCIdent id = (JCIdent) rval;
2001             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
2002                 return builder.build(rval);
2003         }
2004         Name name = TreeInfo.name(rval);
2005         if (name == names._super || name == names._this)
2006             return builder.build(rval);
2007         VarSymbol var =
2008             new VarSymbol(FINAL|SYNTHETIC,
2009                           names.fromString(
2010                                           target.syntheticNameChar()
2011                                           + "" + rval.hashCode()),
2012                                       type,
2013                                       currentMethodSym);
2014         rval = convert(rval,type);
2015         JCVariableDecl def = make.VarDef(var, rval); // XXX cast
2016         JCExpression built = builder.build(make.Ident(var));
2017         JCExpression res = make.LetExpr(def, built);
2018         res.type = built.type;
2019         return res;
2020     }
2021 
2022     // same as above, with the type of the temporary variable computed
2023     JCExpression abstractRval(JCExpression rval, TreeBuilder builder) {
2024         return abstractRval(rval, rval.type, builder);
2025     }
2026 
2027     // same as above, but for an expression that may be used as either
2028     // an rvalue or an lvalue.  This requires special handling for
2029     // Select expressions, where we place the left-hand-side of the
2030     // select in a temporary, and for Indexed expressions, where we
2031     // place both the indexed expression and the index value in temps.
2032     JCExpression abstractLval(JCExpression lval, final TreeBuilder builder) {
2033         lval = TreeInfo.skipParens(lval);
2034         switch (lval.getTag()) {
2035         case IDENT:
2036             return builder.build(lval);
2037         case SELECT: {
2038             final JCFieldAccess s = (JCFieldAccess)lval;
2039             Symbol lid = TreeInfo.symbol(s.selected);
2040             if (lid != null && lid.kind == TYP) return builder.build(lval);
2041             return abstractRval(s.selected, selected -> builder.build(make.Select(selected, s.sym)));
2042         }
2043         case INDEXED: {
2044             final JCArrayAccess i = (JCArrayAccess)lval;
2045             return abstractRval(i.indexed, indexed -> abstractRval(i.index, syms.intType, index -> {
2046                 JCExpression newLval = make.Indexed(indexed, index);
2047                 newLval.setType(i.type);
2048                 return builder.build(newLval);
2049             }));
2050         }
2051         case TYPECAST: {
2052             return abstractLval(((JCTypeCast)lval).expr, builder);
2053         }
2054         }
2055         throw new AssertionError(lval);
2056     }
2057 
2058     // evaluate and discard the first expression, then evaluate the second.
2059     JCExpression makeComma(final JCExpression expr1, final JCExpression expr2) {
2060         return abstractRval(expr1, discarded -> expr2);
2061     }
2062 
2063 /**************************************************************************
2064  * Translation methods
2065  *************************************************************************/
2066 
2067     /** Visitor argument: enclosing operator node.
2068      */
2069     private JCExpression enclOp;
2070 
2071     /** Visitor method: Translate a single node.
2072      *  Attach the source position from the old tree to its replacement tree.
2073      */
2074     @Override
2075     public <T extends JCTree> T translate(T tree) {
2076         if (tree == null) {
2077             return null;
2078         } else {
2079             make_at(tree.pos());
2080             T result = super.translate(tree);
2081             if (endPosTable != null && result != tree) {
2082                 endPosTable.replaceTree(tree, result);
2083             }
2084             return result;
2085         }
2086     }
2087 
2088     /** Visitor method: Translate a single node, boxing or unboxing if needed.
2089      */
2090     public <T extends JCExpression> T translate(T tree, Type type) {
2091         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
2092     }
2093 
2094     /** Visitor method: Translate tree.
2095      */
2096     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
2097         JCExpression prevEnclOp = this.enclOp;
2098         this.enclOp = enclOp;
2099         T res = translate(tree);
2100         this.enclOp = prevEnclOp;
2101         return res;
2102     }
2103 
2104     /** Visitor method: Translate list of trees.
2105      */
2106     public <T extends JCExpression> List<T> translate(List<T> trees, Type type) {
2107         if (trees == null) return null;
2108         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
2109             l.head = translate(l.head, type);
2110         return trees;
2111     }
2112 
2113     public void visitPackageDef(JCPackageDecl tree) {
2114         if (!needPackageInfoClass(tree))
2115                         return;
2116 
2117         long flags = Flags.ABSTRACT | Flags.INTERFACE;
2118         // package-info is marked SYNTHETIC in JDK 1.6 and later releases
2119         flags = flags | Flags.SYNTHETIC;
2120         ClassSymbol c = tree.packge.package_info;
2121         c.setAttributes(tree.packge);
2122         c.flags_field |= flags;
2123         ClassType ctype = (ClassType) c.type;
2124         ctype.supertype_field = syms.objectType;
2125         ctype.interfaces_field = List.nil();
2126         createInfoClass(tree.annotations, c);
2127     }
2128     // where
2129     private boolean needPackageInfoClass(JCPackageDecl pd) {
2130         switch (pkginfoOpt) {
2131             case ALWAYS:
2132                 return true;
2133             case LEGACY:
2134                 return pd.getAnnotations().nonEmpty();
2135             case NONEMPTY:
2136                 for (Attribute.Compound a :
2137                          pd.packge.getDeclarationAttributes()) {
2138                     Attribute.RetentionPolicy p = types.getRetention(a);
2139                     if (p != Attribute.RetentionPolicy.SOURCE)
2140                         return true;
2141                 }
2142                 return false;
2143         }
2144         throw new AssertionError();
2145     }
2146 
2147     public void visitModuleDef(JCModuleDecl tree) {
2148         ModuleSymbol msym = tree.sym;
2149         ClassSymbol c = msym.module_info;
2150         c.setAttributes(msym);
2151         c.flags_field |= Flags.MODULE;
2152         createInfoClass(List.nil(), tree.sym.module_info);
2153     }
2154 
2155     private void createInfoClass(List<JCAnnotation> annots, ClassSymbol c) {
2156         long flags = Flags.ABSTRACT | Flags.INTERFACE;
2157         JCClassDecl infoClass =
2158                 make.ClassDef(make.Modifiers(flags, annots),
2159                     c.name, List.nil(),
2160                     null, List.nil(), List.nil());
2161         infoClass.sym = c;
2162         translated.append(infoClass);
2163     }
2164 
2165     public void visitClassDef(JCClassDecl tree) {
2166         Env<AttrContext> prevEnv = attrEnv;
2167         ClassSymbol currentClassPrev = currentClass;
2168         MethodSymbol currentMethodSymPrev = currentMethodSym;
2169 
2170         currentClass = tree.sym;
2171         currentMethodSym = null;
2172         attrEnv = typeEnvs.remove(currentClass);
2173         if (attrEnv == null)
2174             attrEnv = prevEnv;
2175 
2176         classdefs.put(currentClass, tree);
2177 
2178         Map<Symbol, Symbol> prevProxies = proxies;
2179         proxies = new HashMap<>(proxies);
2180         List<VarSymbol> prevOuterThisStack = outerThisStack;
2181 
2182         // If this is an enum definition
2183         if ((tree.mods.flags & ENUM) != 0 &&
2184             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
2185             visitEnumDef(tree);
2186 
2187         // If this is a nested class, define a this$n field for
2188         // it and add to proxies.
2189         JCVariableDecl otdef = null;
2190         if (currentClass.hasOuterInstance())
2191             otdef = outerThisDef(tree.pos, currentClass);
2192 
2193         // If this is a local class, define proxies for all its free variables.
2194         List<JCVariableDecl> fvdefs = freevarDefs(
2195             tree.pos, freevars(currentClass), currentClass);
2196 
2197         // Recursively translate superclass, interfaces.
2198         tree.extending = translate(tree.extending);
2199         tree.implementing = translate(tree.implementing);
2200 
2201         if (currentClass.isLocal()) {
2202             ClassSymbol encl = currentClass.owner.enclClass();
2203             if (encl.trans_local == null) {
2204                 encl.trans_local = List.nil();
2205             }
2206             encl.trans_local = encl.trans_local.prepend(currentClass);
2207         }
2208 
2209         // Recursively translate members, taking into account that new members
2210         // might be created during the translation and prepended to the member
2211         // list `tree.defs'.
2212         List<JCTree> seen = List.nil();
2213         while (tree.defs != seen) {
2214             List<JCTree> unseen = tree.defs;
2215             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
2216                 JCTree outermostMemberDefPrev = outermostMemberDef;
2217                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
2218                 l.head = translate(l.head);
2219                 outermostMemberDef = outermostMemberDefPrev;
2220             }
2221             seen = unseen;
2222         }
2223 
2224         // Convert a protected modifier to public, mask static modifier.
2225         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
2226         tree.mods.flags &= ClassFlags;
2227 
2228         // Convert name to flat representation, replacing '.' by '$'.
2229         tree.name = Convert.shortName(currentClass.flatName());
2230 
2231         // Add this$n and free variables proxy definitions to class.
2232 
2233         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
2234             tree.defs = tree.defs.prepend(l.head);
2235             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
2236         }
2237         if (currentClass.hasOuterInstance()) {
2238             tree.defs = tree.defs.prepend(otdef);
2239             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
2240         }
2241 
2242         proxies = prevProxies;
2243         outerThisStack = prevOuterThisStack;
2244 
2245         // Append translated tree to `translated' queue.
2246         translated.append(tree);
2247 
2248         attrEnv = prevEnv;
2249         currentClass = currentClassPrev;
2250         currentMethodSym = currentMethodSymPrev;
2251 
2252         // Return empty block {} as a placeholder for an inner class.
2253         result = make_at(tree.pos()).Block(SYNTHETIC, List.nil());
2254     }
2255 
2256     /** Translate an enum class. */
2257     private void visitEnumDef(JCClassDecl tree) {
2258         make_at(tree.pos());
2259 
2260         // add the supertype, if needed
2261         if (tree.extending == null)
2262             tree.extending = make.Type(types.supertype(tree.type));
2263 
2264         // classOfType adds a cache field to tree.defs
2265         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
2266             setType(types.erasure(syms.classType));
2267 
2268         // process each enumeration constant, adding implicit constructor parameters
2269         int nextOrdinal = 0;
2270         ListBuffer<JCExpression> values = new ListBuffer<>();
2271         ListBuffer<JCTree> enumDefs = new ListBuffer<>();
2272         ListBuffer<JCTree> otherDefs = new ListBuffer<>();
2273         for (List<JCTree> defs = tree.defs;
2274              defs.nonEmpty();
2275              defs=defs.tail) {
2276             if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
2277                 JCVariableDecl var = (JCVariableDecl)defs.head;
2278                 visitEnumConstantDef(var, nextOrdinal++);
2279                 values.append(make.QualIdent(var.sym));
2280                 enumDefs.append(var);
2281             } else {
2282                 otherDefs.append(defs.head);
2283             }
2284         }
2285 
2286         // private static final T[] #VALUES = { a, b, c };
2287         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
2288         while (tree.sym.members().findFirst(valuesName) != null) // avoid name clash
2289             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
2290         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
2291         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
2292                                             valuesName,
2293                                             arrayType,
2294                                             tree.type.tsym);
2295         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
2296                                           List.nil(),
2297                                           values.toList());
2298         newArray.type = arrayType;
2299         enumDefs.append(make.VarDef(valuesVar, newArray));
2300         tree.sym.members().enter(valuesVar);
2301 
2302         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
2303                                         tree.type, List.nil());
2304         List<JCStatement> valuesBody;
2305         if (useClone()) {
2306             // return (T[]) $VALUES.clone();
2307             JCTypeCast valuesResult =
2308                 make.TypeCast(valuesSym.type.getReturnType(),
2309                               make.App(make.Select(make.Ident(valuesVar),
2310                                                    syms.arrayCloneMethod)));
2311             valuesBody = List.of(make.Return(valuesResult));
2312         } else {
2313             // template: T[] $result = new T[$values.length];
2314             Name resultName = names.fromString(target.syntheticNameChar() + "result");
2315             while (tree.sym.members().findFirst(resultName) != null) // avoid name clash
2316                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
2317             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
2318                                                 resultName,
2319                                                 arrayType,
2320                                                 valuesSym);
2321             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
2322                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
2323                                   null);
2324             resultArray.type = arrayType;
2325             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
2326 
2327             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
2328             if (systemArraycopyMethod == null) {
2329                 systemArraycopyMethod =
2330                     new MethodSymbol(PUBLIC | STATIC,
2331                                      names.fromString("arraycopy"),
2332                                      new MethodType(List.of(syms.objectType,
2333                                                             syms.intType,
2334                                                             syms.objectType,
2335                                                             syms.intType,
2336                                                             syms.intType),
2337                                                     syms.voidType,
2338                                                     List.nil(),
2339                                                     syms.methodClass),
2340                                      syms.systemType.tsym);
2341             }
2342             JCStatement copy =
2343                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
2344                                                systemArraycopyMethod),
2345                           List.of(make.Ident(valuesVar), make.Literal(0),
2346                                   make.Ident(resultVar), make.Literal(0),
2347                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
2348 
2349             // template: return $result;
2350             JCStatement ret = make.Return(make.Ident(resultVar));
2351             valuesBody = List.of(decl, copy, ret);
2352         }
2353 
2354         JCMethodDecl valuesDef =
2355              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
2356 
2357         enumDefs.append(valuesDef);
2358 
2359         if (debugLower)
2360             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
2361 
2362         /** The template for the following code is:
2363          *
2364          *     public static E valueOf(String name) {
2365          *         return (E)Enum.valueOf(E.class, name);
2366          *     }
2367          *
2368          *  where E is tree.sym
2369          */
2370         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
2371                          names.valueOf,
2372                          tree.sym.type,
2373                          List.of(syms.stringType));
2374         Assert.check((valueOfSym.flags() & STATIC) != 0);
2375         VarSymbol nameArgSym = valueOfSym.params.head;
2376         JCIdent nameVal = make.Ident(nameArgSym);
2377         JCStatement enum_ValueOf =
2378             make.Return(make.TypeCast(tree.sym.type,
2379                                       makeCall(make.Ident(syms.enumSym),
2380                                                names.valueOf,
2381                                                List.of(e_class, nameVal))));
2382         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
2383                                            make.Block(0, List.of(enum_ValueOf)));
2384         nameVal.sym = valueOf.params.head.sym;
2385         if (debugLower)
2386             System.err.println(tree.sym + ".valueOf = " + valueOf);
2387         enumDefs.append(valueOf);
2388 
2389         enumDefs.appendList(otherDefs.toList());
2390         tree.defs = enumDefs.toList();
2391     }
2392         // where
2393         private MethodSymbol systemArraycopyMethod;
2394         private boolean useClone() {
2395             try {
2396                 return syms.objectType.tsym.members().findFirst(names.clone) != null;
2397             }
2398             catch (CompletionFailure e) {
2399                 return false;
2400             }
2401         }
2402 
2403     /** Translate an enumeration constant and its initializer. */
2404     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
2405         JCNewClass varDef = (JCNewClass)var.init;
2406         varDef.args = varDef.args.
2407             prepend(makeLit(syms.intType, ordinal)).
2408             prepend(makeLit(syms.stringType, var.name.toString()));
2409     }
2410 
2411     public void visitMethodDef(JCMethodDecl tree) {
2412         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
2413             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
2414             // argument list for each constructor of an enum.
2415             JCVariableDecl nameParam = make_at(tree.pos()).
2416                 Param(names.fromString(target.syntheticNameChar() +
2417                                        "enum" + target.syntheticNameChar() + "name"),
2418                       syms.stringType, tree.sym);
2419             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
2420             JCVariableDecl ordParam = make.
2421                 Param(names.fromString(target.syntheticNameChar() +
2422                                        "enum" + target.syntheticNameChar() +
2423                                        "ordinal"),
2424                       syms.intType, tree.sym);
2425             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
2426 
2427             MethodSymbol m = tree.sym;
2428             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
2429 
2430             m.extraParams = m.extraParams.prepend(ordParam.sym);
2431             m.extraParams = m.extraParams.prepend(nameParam.sym);
2432             Type olderasure = m.erasure(types);
2433             m.erasure_field = new MethodType(
2434                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
2435                 olderasure.getReturnType(),
2436                 olderasure.getThrownTypes(),
2437                 syms.methodClass);
2438         }
2439 
2440         JCMethodDecl prevMethodDef = currentMethodDef;
2441         MethodSymbol prevMethodSym = currentMethodSym;
2442         try {
2443             currentMethodDef = tree;
2444             currentMethodSym = tree.sym;
2445             visitMethodDefInternal(tree);
2446         } finally {
2447             currentMethodDef = prevMethodDef;
2448             currentMethodSym = prevMethodSym;
2449         }
2450     }
2451 
2452     private void visitMethodDefInternal(JCMethodDecl tree) {
2453         if (tree.name == names.init &&
2454             (currentClass.isInner() || currentClass.isLocal())) {
2455             // We are seeing a constructor of an inner class.
2456             MethodSymbol m = tree.sym;
2457 
2458             // Push a new proxy scope for constructor parameters.
2459             // and create definitions for any this$n and proxy parameters.
2460             Map<Symbol, Symbol> prevProxies = proxies;
2461             proxies = new HashMap<>(proxies);
2462             List<VarSymbol> prevOuterThisStack = outerThisStack;
2463             List<VarSymbol> fvs = freevars(currentClass);
2464             JCVariableDecl otdef = null;
2465             if (currentClass.hasOuterInstance())
2466                 otdef = outerThisDef(tree.pos, m);
2467             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m, PARAMETER);
2468 
2469             // Recursively translate result type, parameters and thrown list.
2470             tree.restype = translate(tree.restype);
2471             tree.params = translateVarDefs(tree.params);
2472             tree.thrown = translate(tree.thrown);
2473 
2474             // when compiling stubs, don't process body
2475             if (tree.body == null) {
2476                 result = tree;
2477                 return;
2478             }
2479 
2480             // Add this$n (if needed) in front of and free variables behind
2481             // constructor parameter list.
2482             tree.params = tree.params.appendList(fvdefs);
2483             if (currentClass.hasOuterInstance()) {
2484                 tree.params = tree.params.prepend(otdef);
2485             }
2486 
2487             // If this is an initial constructor, i.e., it does not start with
2488             // this(...), insert initializers for this$n and proxies
2489             // before (pre-1.4, after) the call to superclass constructor.
2490             JCStatement selfCall = translate(tree.body.stats.head);
2491 
2492             List<JCStatement> added = List.nil();
2493             if (fvs.nonEmpty()) {
2494                 List<Type> addedargtypes = List.nil();
2495                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
2496                     m.capturedLocals =
2497                         m.capturedLocals.prepend((VarSymbol)
2498                                                 (proxies.get(l.head)));
2499                     if (TreeInfo.isInitialConstructor(tree)) {
2500                         added = added.prepend(
2501                           initField(tree.body.pos, proxies.get(l.head), prevProxies.get(l.head)));
2502                     }
2503                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
2504                 }
2505                 Type olderasure = m.erasure(types);
2506                 m.erasure_field = new MethodType(
2507                     olderasure.getParameterTypes().appendList(addedargtypes),
2508                     olderasure.getReturnType(),
2509                     olderasure.getThrownTypes(),
2510                     syms.methodClass);
2511             }
2512             if (currentClass.hasOuterInstance() &&
2513                 TreeInfo.isInitialConstructor(tree))
2514             {
2515                 added = added.prepend(initOuterThis(tree.body.pos));
2516             }
2517 
2518             // pop local variables from proxy stack
2519             proxies = prevProxies;
2520 
2521             // recursively translate following local statements and
2522             // combine with this- or super-call
2523             List<JCStatement> stats = translate(tree.body.stats.tail);
2524             tree.body.stats = stats.prepend(selfCall).prependList(added);
2525             outerThisStack = prevOuterThisStack;
2526         } else {
2527             Map<Symbol, Symbol> prevLambdaTranslationMap =
2528                     lambdaTranslationMap;
2529             try {
2530                 lambdaTranslationMap = (tree.sym.flags() & SYNTHETIC) != 0 &&
2531                         tree.sym.name.startsWith(names.lambda) ?
2532                         makeTranslationMap(tree) : null;
2533                 super.visitMethodDef(tree);
2534             } finally {
2535                 lambdaTranslationMap = prevLambdaTranslationMap;
2536             }
2537         }
2538         result = tree;
2539     }
2540     //where
2541         private Map<Symbol, Symbol> makeTranslationMap(JCMethodDecl tree) {
2542             Map<Symbol, Symbol> translationMap = new HashMap<>();
2543             for (JCVariableDecl vd : tree.params) {
2544                 Symbol p = vd.sym;
2545                 if (p != p.baseSymbol()) {
2546                     translationMap.put(p.baseSymbol(), p);
2547                 }
2548             }
2549             return translationMap;
2550         }
2551 
2552     public void visitTypeCast(JCTypeCast tree) {
2553         tree.clazz = translate(tree.clazz);
2554         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
2555             tree.expr = translate(tree.expr, tree.type);
2556         else
2557             tree.expr = translate(tree.expr);
2558         result = tree;
2559     }
2560 
2561     public void visitNewClass(JCNewClass tree) {
2562         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
2563 
2564         // Box arguments, if necessary
2565         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
2566         List<Type> argTypes = tree.constructor.type.getParameterTypes();
2567         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
2568         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
2569         tree.varargsElement = null;
2570 
2571         // If created class is local, add free variables after
2572         // explicit constructor arguments.
2573         if (c.isLocal()) {
2574             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2575         }
2576 
2577         // If an access constructor is used, append null as a last argument.
2578         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
2579         if (constructor != tree.constructor) {
2580             tree.args = tree.args.append(makeNull());
2581             tree.constructor = constructor;
2582         }
2583 
2584         // If created class has an outer instance, and new is qualified, pass
2585         // qualifier as first argument. If new is not qualified, pass the
2586         // correct outer instance as first argument.
2587         if (c.hasOuterInstance()) {
2588             JCExpression thisArg;
2589             if (tree.encl != null) {
2590                 thisArg = attr.makeNullCheck(translate(tree.encl));
2591                 thisArg.type = tree.encl.type;
2592             } else if (c.isLocal()) {
2593                 // local class
2594                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
2595             } else {
2596                 // nested class
2597                 thisArg = makeOwnerThis(tree.pos(), c, false);
2598             }
2599             tree.args = tree.args.prepend(thisArg);
2600         }
2601         tree.encl = null;
2602 
2603         // If we have an anonymous class, create its flat version, rather
2604         // than the class or interface following new.
2605         if (tree.def != null) {
2606             translate(tree.def);
2607             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
2608             tree.def = null;
2609         } else {
2610             tree.clazz = access(c, tree.clazz, enclOp, false);
2611         }
2612         result = tree;
2613     }
2614 
2615     // Simplify conditionals with known constant controlling expressions.
2616     // This allows us to avoid generating supporting declarations for
2617     // the dead code, which will not be eliminated during code generation.
2618     // Note that Flow.isFalse and Flow.isTrue only return true
2619     // for constant expressions in the sense of JLS 15.27, which
2620     // are guaranteed to have no side-effects.  More aggressive
2621     // constant propagation would require that we take care to
2622     // preserve possible side-effects in the condition expression.
2623 
2624     // One common case is equality expressions involving a constant and null.
2625     // Since null is not a constant expression (because null cannot be
2626     // represented in the constant pool), equality checks involving null are
2627     // not captured by Flow.isTrue/isFalse.
2628     // Equality checks involving a constant and null, e.g.
2629     //     "" == null
2630     // are safe to simplify as no side-effects can occur.
2631 
2632     private boolean isTrue(JCTree exp) {
2633         if (exp.type.isTrue())
2634             return true;
2635         Boolean b = expValue(exp);
2636         return b == null ? false : b;
2637     }
2638     private boolean isFalse(JCTree exp) {
2639         if (exp.type.isFalse())
2640             return true;
2641         Boolean b = expValue(exp);
2642         return b == null ? false : !b;
2643     }
2644     /* look for (in)equality relations involving null.
2645      * return true - if expression is always true
2646      *       false - if expression is always false
2647      *        null - if expression cannot be eliminated
2648      */
2649     private Boolean expValue(JCTree exp) {
2650         while (exp.hasTag(PARENS))
2651             exp = ((JCParens)exp).expr;
2652 
2653         boolean eq;
2654         switch (exp.getTag()) {
2655         case EQ: eq = true;  break;
2656         case NE: eq = false; break;
2657         default:
2658             return null;
2659         }
2660 
2661         // we have a JCBinary(EQ|NE)
2662         // check if we have two literals (constants or null)
2663         JCBinary b = (JCBinary)exp;
2664         if (b.lhs.type.hasTag(BOT)) return expValueIsNull(eq, b.rhs);
2665         if (b.rhs.type.hasTag(BOT)) return expValueIsNull(eq, b.lhs);
2666         return null;
2667     }
2668     private Boolean expValueIsNull(boolean eq, JCTree t) {
2669         if (t.type.hasTag(BOT)) return Boolean.valueOf(eq);
2670         if (t.hasTag(LITERAL))  return Boolean.valueOf(!eq);
2671         return null;
2672     }
2673 
2674     /** Visitor method for conditional expressions.
2675      */
2676     @Override
2677     public void visitConditional(JCConditional tree) {
2678         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2679         if (isTrue(cond)) {
2680             result = convert(translate(tree.truepart, tree.type), tree.type);
2681             addPrunedInfo(cond);
2682         } else if (isFalse(cond)) {
2683             result = convert(translate(tree.falsepart, tree.type), tree.type);
2684             addPrunedInfo(cond);
2685         } else {
2686             // Condition is not a compile-time constant.
2687             tree.truepart = translate(tree.truepart, tree.type);
2688             tree.falsepart = translate(tree.falsepart, tree.type);
2689             result = tree;
2690         }
2691     }
2692 //where
2693     private JCExpression convert(JCExpression tree, Type pt) {
2694         if (tree.type == pt || tree.type.hasTag(BOT))
2695             return tree;
2696         JCExpression result = make_at(tree.pos()).TypeCast(make.Type(pt), tree);
2697         result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
2698                                                        : pt;
2699         return result;
2700     }
2701 
2702     /** Visitor method for if statements.
2703      */
2704     public void visitIf(JCIf tree) {
2705         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2706         if (isTrue(cond)) {
2707             result = translate(tree.thenpart);
2708             addPrunedInfo(cond);
2709         } else if (isFalse(cond)) {
2710             if (tree.elsepart != null) {
2711                 result = translate(tree.elsepart);
2712             } else {
2713                 result = make.Skip();
2714             }
2715             addPrunedInfo(cond);
2716         } else {
2717             // Condition is not a compile-time constant.
2718             tree.thenpart = translate(tree.thenpart);
2719             tree.elsepart = translate(tree.elsepart);
2720             result = tree;
2721         }
2722     }
2723 
2724     /** Visitor method for assert statements. Translate them away.
2725      */
2726     public void visitAssert(JCAssert tree) {
2727         tree.cond = translate(tree.cond, syms.booleanType);
2728         if (!tree.cond.type.isTrue()) {
2729             JCExpression cond = assertFlagTest(tree.pos());
2730             List<JCExpression> exnArgs = (tree.detail == null) ?
2731                 List.nil() : List.of(translate(tree.detail));
2732             if (!tree.cond.type.isFalse()) {
2733                 cond = makeBinary
2734                     (AND,
2735                      cond,
2736                      makeUnary(NOT, tree.cond));
2737             }
2738             result =
2739                 make.If(cond,
2740                         make_at(tree).
2741                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
2742                         null);
2743         } else {
2744             result = make.Skip();
2745         }
2746     }
2747 
2748     public void visitApply(JCMethodInvocation tree) {
2749         Symbol meth = TreeInfo.symbol(tree.meth);
2750         List<Type> argtypes = meth.type.getParameterTypes();
2751         if (meth.name == names.init && meth.owner == syms.enumSym)
2752             argtypes = argtypes.tail.tail;
2753         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
2754         tree.varargsElement = null;
2755         Name methName = TreeInfo.name(tree.meth);
2756         if (meth.name==names.init) {
2757             // We are seeing a this(...) or super(...) constructor call.
2758             // If an access constructor is used, append null as a last argument.
2759             Symbol constructor = accessConstructor(tree.pos(), meth);
2760             if (constructor != meth) {
2761                 tree.args = tree.args.append(makeNull());
2762                 TreeInfo.setSymbol(tree.meth, constructor);
2763             }
2764 
2765             // If we are calling a constructor of a local class, add
2766             // free variables after explicit constructor arguments.
2767             ClassSymbol c = (ClassSymbol)constructor.owner;
2768             if (c.isLocal()) {
2769                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2770             }
2771 
2772             // If we are calling a constructor of an enum class, pass
2773             // along the name and ordinal arguments
2774             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
2775                 List<JCVariableDecl> params = currentMethodDef.params;
2776                 if (currentMethodSym.owner.hasOuterInstance())
2777                     params = params.tail; // drop this$n
2778                 tree.args = tree.args
2779                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
2780                     .prepend(make.Ident(params.head.sym)); // name
2781             }
2782 
2783             // If we are calling a constructor of a class with an outer
2784             // instance, and the call
2785             // is qualified, pass qualifier as first argument in front of
2786             // the explicit constructor arguments. If the call
2787             // is not qualified, pass the correct outer instance as
2788             // first argument.
2789             if (c.hasOuterInstance()) {
2790                 JCExpression thisArg;
2791                 if (tree.meth.hasTag(SELECT)) {
2792                     thisArg = attr.
2793                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
2794                     tree.meth = make.Ident(constructor);
2795                     ((JCIdent) tree.meth).name = methName;
2796                 } else if (c.isLocal() || methName == names._this){
2797                     // local class or this() call
2798                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
2799                 } else {
2800                     // super() call of nested class - never pick 'this'
2801                     thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
2802                 }
2803                 tree.args = tree.args.prepend(thisArg);
2804             }
2805         } else {
2806             // We are seeing a normal method invocation; translate this as usual.
2807             tree.meth = translate(tree.meth);
2808 
2809             // If the translated method itself is an Apply tree, we are
2810             // seeing an access method invocation. In this case, append
2811             // the method arguments to the arguments of the access method.
2812             if (tree.meth.hasTag(APPLY)) {
2813                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
2814                 app.args = tree.args.prependList(app.args);
2815                 result = app;
2816                 return;
2817             }
2818         }
2819         result = tree;
2820     }
2821 
2822     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
2823         List<JCExpression> args = _args;
2824         if (parameters.isEmpty()) return args;
2825         boolean anyChanges = false;
2826         ListBuffer<JCExpression> result = new ListBuffer<>();
2827         while (parameters.tail.nonEmpty()) {
2828             JCExpression arg = translate(args.head, parameters.head);
2829             anyChanges |= (arg != args.head);
2830             result.append(arg);
2831             args = args.tail;
2832             parameters = parameters.tail;
2833         }
2834         Type parameter = parameters.head;
2835         if (varargsElement != null) {
2836             anyChanges = true;
2837             ListBuffer<JCExpression> elems = new ListBuffer<>();
2838             while (args.nonEmpty()) {
2839                 JCExpression arg = translate(args.head, varargsElement);
2840                 elems.append(arg);
2841                 args = args.tail;
2842             }
2843             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
2844                                                List.nil(),
2845                                                elems.toList());
2846             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
2847             result.append(boxedArgs);
2848         } else {
2849             if (args.length() != 1) throw new AssertionError(args);
2850             JCExpression arg = translate(args.head, parameter);
2851             anyChanges |= (arg != args.head);
2852             result.append(arg);
2853             if (!anyChanges) return _args;
2854         }
2855         return result.toList();
2856     }
2857 
2858     /** Expand a boxing or unboxing conversion if needed. */
2859     @SuppressWarnings("unchecked") // XXX unchecked
2860     <T extends JCExpression> T boxIfNeeded(T tree, Type type) {
2861         boolean havePrimitive = tree.type.isPrimitive();
2862         if (havePrimitive == type.isPrimitive())
2863             return tree;
2864         if (havePrimitive) {
2865             Type unboxedTarget = types.unboxedType(type);
2866             if (!unboxedTarget.hasTag(NONE)) {
2867                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
2868                     tree.type = unboxedTarget.constType(tree.type.constValue());
2869                 return (T)boxPrimitive(tree, types.erasure(type));
2870             } else {
2871                 tree = (T)boxPrimitive(tree);
2872             }
2873         } else {
2874             tree = (T)unbox(tree, type);
2875         }
2876         return tree;
2877     }
2878 
2879     /** Box up a single primitive expression. */
2880     JCExpression boxPrimitive(JCExpression tree) {
2881         return boxPrimitive(tree, types.boxedClass(tree.type).type);
2882     }
2883 
2884     /** Box up a single primitive expression. */
2885     JCExpression boxPrimitive(JCExpression tree, Type box) {
2886         make_at(tree.pos());
2887         Symbol valueOfSym = lookupMethod(tree.pos(),
2888                                          names.valueOf,
2889                                          box,
2890                                          List.<Type>nil()
2891                                          .prepend(tree.type));
2892         return make.App(make.QualIdent(valueOfSym), List.of(tree));
2893     }
2894 
2895     /** Unbox an object to a primitive value. */
2896     JCExpression unbox(JCExpression tree, Type primitive) {
2897         Type unboxedType = types.unboxedType(tree.type);
2898         if (unboxedType.hasTag(NONE)) {
2899             unboxedType = primitive;
2900             if (!unboxedType.isPrimitive())
2901                 throw new AssertionError(unboxedType);
2902             make_at(tree.pos());
2903             tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
2904         } else {
2905             // There must be a conversion from unboxedType to primitive.
2906             if (!types.isSubtype(unboxedType, primitive))
2907                 throw new AssertionError(tree);
2908         }
2909         make_at(tree.pos());
2910         Symbol valueSym = lookupMethod(tree.pos(),
2911                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
2912                                        tree.type,
2913                                        List.nil());
2914         return make.App(make.Select(tree, valueSym));
2915     }
2916 
2917     /** Visitor method for parenthesized expressions.
2918      *  If the subexpression has changed, omit the parens.
2919      */
2920     public void visitParens(JCParens tree) {
2921         JCTree expr = translate(tree.expr);
2922         result = ((expr == tree.expr) ? tree : expr);
2923     }
2924 
2925     public void visitIndexed(JCArrayAccess tree) {
2926         tree.indexed = translate(tree.indexed);
2927         tree.index = translate(tree.index, syms.intType);
2928         result = tree;
2929     }
2930 
2931     public void visitAssign(JCAssign tree) {
2932         tree.lhs = translate(tree.lhs, tree);
2933         tree.rhs = translate(tree.rhs, tree.lhs.type);
2934 
2935         // If translated left hand side is an Apply, we are
2936         // seeing an access method invocation. In this case, append
2937         // right hand side as last argument of the access method.
2938         if (tree.lhs.hasTag(APPLY)) {
2939             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2940             app.args = List.of(tree.rhs).prependList(app.args);
2941             result = app;
2942         } else {
2943             result = tree;
2944         }
2945     }
2946 
2947     public void visitAssignop(final JCAssignOp tree) {
2948         final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
2949             tree.operator.type.getReturnType().isPrimitive();
2950 
2951         AssignopDependencyScanner depScanner = new AssignopDependencyScanner(tree);
2952         depScanner.scan(tree.rhs);
2953 
2954         if (boxingReq || depScanner.dependencyFound) {
2955             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
2956             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
2957             // (but without recomputing x)
2958             JCTree newTree = abstractLval(tree.lhs, lhs -> {
2959                 Tag newTag = tree.getTag().noAssignOp();
2960                 // Erasure (TransTypes) can change the type of
2961                 // tree.lhs.  However, we can still get the
2962                 // unerased type of tree.lhs as it is stored
2963                 // in tree.type in Attr.
2964                 OperatorSymbol newOperator = operators.resolveBinary(tree,
2965                                                               newTag,
2966                                                               tree.type,
2967                                                               tree.rhs.type);
2968                 //Need to use the "lhs" at two places, once on the future left hand side
2969                 //and once in the future binary operator. But further processing may change
2970                 //the components of the tree in place (see visitSelect for e.g. <Class>.super.<ident>),
2971                 //so cloning the tree to avoid interference between the uses:
2972                 JCExpression expr = (JCExpression) lhs.clone();
2973                 if (expr.type != tree.type)
2974                     expr = make.TypeCast(tree.type, expr);
2975                 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
2976                 opResult.operator = newOperator;
2977                 opResult.type = newOperator.type.getReturnType();
2978                 JCExpression newRhs = boxingReq ?
2979                     make.TypeCast(types.unboxedType(tree.type), opResult) :
2980                     opResult;
2981                 return make.Assign(lhs, newRhs).setType(tree.type);
2982             });
2983             result = translate(newTree);
2984             return;
2985         }
2986         tree.lhs = translate(tree.lhs, tree);
2987         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
2988 
2989         // If translated left hand side is an Apply, we are
2990         // seeing an access method invocation. In this case, append
2991         // right hand side as last argument of the access method.
2992         if (tree.lhs.hasTag(APPLY)) {
2993             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2994             // if operation is a += on strings,
2995             // make sure to convert argument to string
2996             JCExpression rhs = tree.operator.opcode == string_add
2997               ? makeString(tree.rhs)
2998               : tree.rhs;
2999             app.args = List.of(rhs).prependList(app.args);
3000             result = app;
3001         } else {
3002             result = tree;
3003         }
3004     }
3005 
3006     class AssignopDependencyScanner extends TreeScanner {
3007 
3008         Symbol sym;
3009         boolean dependencyFound = false;
3010 
3011         AssignopDependencyScanner(JCAssignOp tree) {
3012             this.sym = TreeInfo.symbol(tree.lhs);
3013         }
3014 
3015         @Override
3016         public void scan(JCTree tree) {
3017             if (tree != null && sym != null) {
3018                 tree.accept(this);
3019             }
3020         }
3021 
3022         @Override
3023         public void visitAssignop(JCAssignOp tree) {
3024             if (TreeInfo.symbol(tree.lhs) == sym) {
3025                 dependencyFound = true;
3026                 return;
3027             }
3028             super.visitAssignop(tree);
3029         }
3030 
3031         @Override
3032         public void visitUnary(JCUnary tree) {
3033             if (TreeInfo.symbol(tree.arg) == sym) {
3034                 dependencyFound = true;
3035                 return;
3036             }
3037             super.visitUnary(tree);
3038         }
3039     }
3040 
3041     /** Lower a tree of the form e++ or e-- where e is an object type */
3042     JCExpression lowerBoxedPostop(final JCUnary tree) {
3043         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
3044         // or
3045         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
3046         // where OP is += or -=
3047         final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
3048         return abstractLval(tree.arg, tmp1 -> abstractRval(tmp1, tree.arg.type, tmp2 -> {
3049             Tag opcode = (tree.hasTag(POSTINC))
3050                 ? PLUS_ASG : MINUS_ASG;
3051             //"tmp1" and "tmp2" may refer to the same instance
3052             //(for e.g. <Class>.super.<ident>). But further processing may
3053             //change the components of the tree in place (see visitSelect),
3054             //so cloning the tree to avoid interference between the two uses:
3055             JCExpression lhs = (JCExpression)tmp1.clone();
3056             lhs = cast
3057                 ? make.TypeCast(tree.arg.type, lhs)
3058                 : lhs;
3059             JCExpression update = makeAssignop(opcode,
3060                                          lhs,
3061                                          make.Literal(1));
3062             return makeComma(update, tmp2);
3063         }));
3064     }
3065 
3066     public void visitUnary(JCUnary tree) {
3067         boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
3068         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
3069             switch(tree.getTag()) {
3070             case PREINC:            // ++ e
3071                     // translate to e += 1
3072             case PREDEC:            // -- e
3073                     // translate to e -= 1
3074                 {
3075                     JCTree.Tag opcode = (tree.hasTag(PREINC))
3076                         ? PLUS_ASG : MINUS_ASG;
3077                     JCAssignOp newTree = makeAssignop(opcode,
3078                                                     tree.arg,
3079                                                     make.Literal(1));
3080                     result = translate(newTree, tree.type);
3081                     return;
3082                 }
3083             case POSTINC:           // e ++
3084             case POSTDEC:           // e --
3085                 {
3086                     result = translate(lowerBoxedPostop(tree), tree.type);
3087                     return;
3088                 }
3089             }
3090             throw new AssertionError(tree);
3091         }
3092 
3093         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
3094 
3095         if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
3096             tree.type = cfolder.fold1(bool_not, tree.arg.type);
3097         }
3098 
3099         // If translated left hand side is an Apply, we are
3100         // seeing an access method invocation. In this case, return
3101         // that access method invocation as result.
3102         if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
3103             result = tree.arg;
3104         } else {
3105             result = tree;
3106         }
3107     }
3108 
3109     public void visitBinary(JCBinary tree) {
3110         List<Type> formals = tree.operator.type.getParameterTypes();
3111         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
3112         switch (tree.getTag()) {
3113         case OR:
3114             if (isTrue(lhs)) {
3115                 result = lhs;
3116                 return;
3117             }
3118             if (isFalse(lhs)) {
3119                 result = translate(tree.rhs, formals.tail.head);
3120                 return;
3121             }
3122             break;
3123         case AND:
3124             if (isFalse(lhs)) {
3125                 result = lhs;
3126                 return;
3127             }
3128             if (isTrue(lhs)) {
3129                 result = translate(tree.rhs, formals.tail.head);
3130                 return;
3131             }
3132             break;
3133         }
3134         tree.rhs = translate(tree.rhs, formals.tail.head);
3135         result = tree;
3136     }
3137 
3138     public void visitIdent(JCIdent tree) {
3139         result = access(tree.sym, tree, enclOp, false);
3140     }
3141 
3142     /** Translate away the foreach loop.  */
3143     public void visitForeachLoop(JCEnhancedForLoop tree) {
3144         if (types.elemtype(tree.expr.type) == null)
3145             visitIterableForeachLoop(tree);
3146         else
3147             visitArrayForeachLoop(tree);
3148     }
3149         // where
3150         /**
3151          * A statement of the form
3152          *
3153          * <pre>
3154          *     for ( T v : arrayexpr ) stmt;
3155          * </pre>
3156          *
3157          * (where arrayexpr is of an array type) gets translated to
3158          *
3159          * <pre>{@code
3160          *     for ( { arraytype #arr = arrayexpr;
3161          *             int #len = array.length;
3162          *             int #i = 0; };
3163          *           #i < #len; i$++ ) {
3164          *         T v = arr$[#i];
3165          *         stmt;
3166          *     }
3167          * }</pre>
3168          *
3169          * where #arr, #len, and #i are freshly named synthetic local variables.
3170          */
3171         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
3172             make_at(tree.expr.pos());
3173             VarSymbol arraycache = new VarSymbol(SYNTHETIC,
3174                                                  names.fromString("arr" + target.syntheticNameChar()),
3175                                                  tree.expr.type,
3176                                                  currentMethodSym);
3177             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
3178             VarSymbol lencache = new VarSymbol(SYNTHETIC,
3179                                                names.fromString("len" + target.syntheticNameChar()),
3180                                                syms.intType,
3181                                                currentMethodSym);
3182             JCStatement lencachedef = make.
3183                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
3184             VarSymbol index = new VarSymbol(SYNTHETIC,
3185                                             names.fromString("i" + target.syntheticNameChar()),
3186                                             syms.intType,
3187                                             currentMethodSym);
3188 
3189             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
3190             indexdef.init.type = indexdef.type = syms.intType.constType(0);
3191 
3192             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
3193             JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
3194 
3195             JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
3196 
3197             Type elemtype = types.elemtype(tree.expr.type);
3198             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
3199                                                     make.Ident(index)).setType(elemtype);
3200             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
3201                                                   tree.var.name,
3202                                                   tree.var.vartype,
3203                                                   loopvarinit).setType(tree.var.type);
3204             loopvardef.sym = tree.var.sym;
3205             JCBlock body = make.
3206                 Block(0, List.of(loopvardef, tree.body));
3207 
3208             result = translate(make.
3209                                ForLoop(loopinit,
3210                                        cond,
3211                                        List.of(step),
3212                                        body));
3213             patchTargets(body, tree, result);
3214         }
3215         /** Patch up break and continue targets. */
3216         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
3217             class Patcher extends TreeScanner {
3218                 public void visitBreak(JCBreak tree) {
3219                     if (tree.target == src)
3220                         tree.target = dest;
3221                 }
3222                 public void visitContinue(JCContinue tree) {
3223                     if (tree.target == src)
3224                         tree.target = dest;
3225                 }
3226                 public void visitClassDef(JCClassDecl tree) {}
3227             }
3228             new Patcher().scan(body);
3229         }
3230         /**
3231          * A statement of the form
3232          *
3233          * <pre>
3234          *     for ( T v : coll ) stmt ;
3235          * </pre>
3236          *
3237          * (where coll implements {@code Iterable<? extends T>}) gets translated to
3238          *
3239          * <pre>{@code
3240          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
3241          *         T v = (T) #i.next();
3242          *         stmt;
3243          *     }
3244          * }</pre>
3245          *
3246          * where #i is a freshly named synthetic local variable.
3247          */
3248         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
3249             make_at(tree.expr.pos());
3250             Type iteratorTarget = syms.objectType;
3251             Type iterableType = types.asSuper(types.cvarUpperBound(tree.expr.type),
3252                                               syms.iterableType.tsym);
3253             if (iterableType.getTypeArguments().nonEmpty())
3254                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
3255             Type eType = types.skipTypeVars(tree.expr.type, false);
3256             tree.expr.type = types.erasure(eType);
3257             if (eType.isCompound())
3258                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
3259             Symbol iterator = lookupMethod(tree.expr.pos(),
3260                                            names.iterator,
3261                                            eType,
3262                                            List.nil());
3263             VarSymbol itvar = new VarSymbol(SYNTHETIC, names.fromString("i" + target.syntheticNameChar()),
3264                                             types.erasure(types.asSuper(iterator.type.getReturnType(), syms.iteratorType.tsym)),
3265                                             currentMethodSym);
3266 
3267              JCStatement init = make.
3268                 VarDef(itvar, make.App(make.Select(tree.expr, iterator)
3269                      .setType(types.erasure(iterator.type))));
3270 
3271             Symbol hasNext = lookupMethod(tree.expr.pos(),
3272                                           names.hasNext,
3273                                           itvar.type,
3274                                           List.nil());
3275             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
3276             Symbol next = lookupMethod(tree.expr.pos(),
3277                                        names.next,
3278                                        itvar.type,
3279                                        List.nil());
3280             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
3281             if (tree.var.type.isPrimitive())
3282                 vardefinit = make.TypeCast(types.cvarUpperBound(iteratorTarget), vardefinit);
3283             else
3284                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
3285             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
3286                                                   tree.var.name,
3287                                                   tree.var.vartype,
3288                                                   vardefinit).setType(tree.var.type);
3289             indexDef.sym = tree.var.sym;
3290             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
3291             body.endpos = TreeInfo.endPos(tree.body);
3292             result = translate(make.
3293                 ForLoop(List.of(init),
3294                         cond,
3295                         List.nil(),
3296                         body));
3297             patchTargets(body, tree, result);
3298         }
3299 
3300     public void visitVarDef(JCVariableDecl tree) {
3301         MethodSymbol oldMethodSym = currentMethodSym;
3302         tree.mods = translate(tree.mods);
3303         tree.vartype = translate(tree.vartype);
3304         if (currentMethodSym == null) {
3305             // A class or instance field initializer.
3306             currentMethodSym =
3307                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
3308                                  names.empty, null,
3309                                  currentClass);
3310         }
3311         if (tree.init != null) tree.init = translate(tree.init, tree.type);
3312         result = tree;
3313         currentMethodSym = oldMethodSym;
3314     }
3315 
3316     public void visitBlock(JCBlock tree) {
3317         MethodSymbol oldMethodSym = currentMethodSym;
3318         if (currentMethodSym == null) {
3319             // Block is a static or instance initializer.
3320             currentMethodSym =
3321                 new MethodSymbol(tree.flags | BLOCK,
3322                                  names.empty, null,
3323                                  currentClass);
3324         }
3325         super.visitBlock(tree);
3326         currentMethodSym = oldMethodSym;
3327     }
3328 
3329     public void visitDoLoop(JCDoWhileLoop tree) {
3330         tree.body = translate(tree.body);
3331         tree.cond = translate(tree.cond, syms.booleanType);
3332         result = tree;
3333     }
3334 
3335     public void visitWhileLoop(JCWhileLoop tree) {
3336         tree.cond = translate(tree.cond, syms.booleanType);
3337         tree.body = translate(tree.body);
3338         result = tree;
3339     }
3340 
3341     public void visitForLoop(JCForLoop tree) {
3342         tree.init = translate(tree.init);
3343         if (tree.cond != null)
3344             tree.cond = translate(tree.cond, syms.booleanType);
3345         tree.step = translate(tree.step);
3346         tree.body = translate(tree.body);
3347         result = tree;
3348     }
3349 
3350     public void visitReturn(JCReturn tree) {
3351         if (tree.expr != null)
3352             tree.expr = translate(tree.expr,
3353                                   types.erasure(currentMethodDef
3354                                                 .restype.type));
3355         result = tree;
3356     }
3357 
3358     public void visitSwitch(JCSwitch tree) {
3359         //expand multiple label cases:
3360         ListBuffer<JCCase> cases = new ListBuffer<>();
3361 
3362         for (JCCase c : tree.cases) {
3363             switch (c.pats.size()) {
3364                 case 0: //default
3365                 case 1: //single label
3366                     cases.append(c);
3367                     break;
3368                 default: //multiple labels, expand:
3369                     List<JCExpression> patterns = c.pats;
3370                     while (patterns.tail.nonEmpty()) {
3371                         cases.append(make_at(c.pos()).Case(JCCase.STATEMENT,
3372                                                            List.of(patterns.head),
3373                                                            List.nil(),
3374                                                            null));
3375                         patterns = patterns.tail;
3376                     }
3377                     c.pats = patterns;
3378                     cases.append(c);
3379                     break;
3380             }
3381         }
3382 
3383         for (JCCase c : cases) {
3384             if (c.caseKind == JCCase.RULE && c.completesNormally) {
3385                 JCBreak b = make_at(c.pos()).Break(null);
3386                 b.target = tree;
3387                 c.stats = c.stats.append(b);
3388             }
3389         }
3390 
3391         tree.cases = cases.toList();
3392 
3393         Type selsuper = types.supertype(tree.selector.type);
3394         boolean enumSwitch = selsuper != null &&
3395             (tree.selector.type.tsym.flags() & ENUM) != 0;
3396         boolean stringSwitch = selsuper != null &&
3397             types.isSameType(tree.selector.type, syms.stringType);
3398         Type target = enumSwitch ? tree.selector.type :
3399             (stringSwitch? syms.stringType : syms.intType);
3400         tree.selector = translate(tree.selector, target);
3401         tree.cases = translateCases(tree.cases);
3402         if (enumSwitch) {
3403             result = visitEnumSwitch(tree);
3404         } else if (stringSwitch) {
3405             result = visitStringSwitch(tree);
3406         } else {
3407             result = tree;
3408         }
3409     }
3410 
3411     public JCTree visitEnumSwitch(JCSwitch tree) {
3412         TypeSymbol enumSym = tree.selector.type.tsym;
3413         EnumMapping map = mapForEnum(tree.pos(), enumSym);
3414         make_at(tree.pos());
3415         Symbol ordinalMethod = lookupMethod(tree.pos(),
3416                                             names.ordinal,
3417                                             tree.selector.type,
3418                                             List.nil());
3419         JCArrayAccess selector = make.Indexed(map.mapVar,
3420                                         make.App(make.Select(tree.selector,
3421                                                              ordinalMethod)));
3422         ListBuffer<JCCase> cases = new ListBuffer<>();
3423         for (JCCase c : tree.cases) {
3424             if (c.pats.nonEmpty()) {
3425                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pats.head);
3426                 JCLiteral pat = map.forConstant(label);
3427                 cases.append(make.Case(JCCase.STATEMENT, List.of(pat), c.stats, null));
3428             } else {
3429                 cases.append(c);
3430             }
3431         }
3432         JCSwitch enumSwitch = make.Switch(selector, cases.toList());
3433         patchTargets(enumSwitch, tree, enumSwitch);
3434         return enumSwitch;
3435     }
3436 
3437     public JCTree visitStringSwitch(JCSwitch tree) {
3438         List<JCCase> caseList = tree.getCases();
3439         int alternatives = caseList.size();
3440 
3441         if (alternatives == 0) { // Strange but legal possibility
3442             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
3443         } else {
3444             /*
3445              * The general approach used is to translate a single
3446              * string switch statement into a series of two chained
3447              * switch statements: the first a synthesized statement
3448              * switching on the argument string's hash value and
3449              * computing a string's position in the list of original
3450              * case labels, if any, followed by a second switch on the
3451              * computed integer value.  The second switch has the same
3452              * code structure as the original string switch statement
3453              * except that the string case labels are replaced with
3454              * positional integer constants starting at 0.
3455              *
3456              * The first switch statement can be thought of as an
3457              * inlined map from strings to their position in the case
3458              * label list.  An alternate implementation would use an
3459              * actual Map for this purpose, as done for enum switches.
3460              *
3461              * With some additional effort, it would be possible to
3462              * use a single switch statement on the hash code of the
3463              * argument, but care would need to be taken to preserve
3464              * the proper control flow in the presence of hash
3465              * collisions and other complications, such as
3466              * fallthroughs.  Switch statements with one or two
3467              * alternatives could also be specially translated into
3468              * if-then statements to omit the computation of the hash
3469              * code.
3470              *
3471              * The generated code assumes that the hashing algorithm
3472              * of String is the same in the compilation environment as
3473              * in the environment the code will run in.  The string
3474              * hashing algorithm in the SE JDK has been unchanged
3475              * since at least JDK 1.2.  Since the algorithm has been
3476              * specified since that release as well, it is very
3477              * unlikely to be changed in the future.
3478              *
3479              * Different hashing algorithms, such as the length of the
3480              * strings or a perfect hashing algorithm over the
3481              * particular set of case labels, could potentially be
3482              * used instead of String.hashCode.
3483              */
3484 
3485             ListBuffer<JCStatement> stmtList = new ListBuffer<>();
3486 
3487             // Map from String case labels to their original position in
3488             // the list of case labels.
3489             Map<String, Integer> caseLabelToPosition = new LinkedHashMap<>(alternatives + 1, 1.0f);
3490 
3491             // Map of hash codes to the string case labels having that hashCode.
3492             Map<Integer, Set<String>> hashToString = new LinkedHashMap<>(alternatives + 1, 1.0f);
3493 
3494             int casePosition = 0;
3495 
3496             for(JCCase oneCase : caseList) {
3497                 if (oneCase.pats.nonEmpty()) { // pats is empty for a "default" case
3498                     JCExpression expression = oneCase.pats.head;
3499                     String labelExpr = (String) expression.type.constValue();
3500                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
3501                     Assert.checkNull(mapping);
3502                     int hashCode = labelExpr.hashCode();
3503 
3504                     Set<String> stringSet = hashToString.get(hashCode);
3505                     if (stringSet == null) {
3506                         stringSet = new LinkedHashSet<>(1, 1.0f);
3507                         stringSet.add(labelExpr);
3508                         hashToString.put(hashCode, stringSet);
3509                     } else {
3510                         boolean added = stringSet.add(labelExpr);
3511                         Assert.check(added);
3512                     }
3513                 }
3514                 casePosition++;
3515             }
3516 
3517             // Synthesize a switch statement that has the effect of
3518             // mapping from a string to the integer position of that
3519             // string in the list of case labels.  This is done by
3520             // switching on the hashCode of the string followed by an
3521             // if-then-else chain comparing the input for equality
3522             // with all the case labels having that hash value.
3523 
3524             /*
3525              * s$ = top of stack;
3526              * tmp$ = -1;
3527              * switch($s.hashCode()) {
3528              *     case caseLabel.hashCode:
3529              *         if (s$.equals("caseLabel_1")
3530              *           tmp$ = caseLabelToPosition("caseLabel_1");
3531              *         else if (s$.equals("caseLabel_2"))
3532              *           tmp$ = caseLabelToPosition("caseLabel_2");
3533              *         ...
3534              *         break;
3535              * ...
3536              * }
3537              */
3538 
3539             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
3540                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
3541                                                syms.stringType,
3542                                                currentMethodSym);
3543             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
3544 
3545             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
3546                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
3547                                                  syms.intType,
3548                                                  currentMethodSym);
3549             JCVariableDecl dollar_tmp_def =
3550                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
3551             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
3552             stmtList.append(dollar_tmp_def);
3553             ListBuffer<JCCase> caseBuffer = new ListBuffer<>();
3554             // hashCode will trigger nullcheck on original switch expression
3555             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
3556                                                        names.hashCode,
3557                                                        List.nil()).setType(syms.intType);
3558             JCSwitch switch1 = make.Switch(hashCodeCall,
3559                                         caseBuffer.toList());
3560             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
3561                 int hashCode = entry.getKey();
3562                 Set<String> stringsWithHashCode = entry.getValue();
3563                 Assert.check(stringsWithHashCode.size() >= 1);
3564 
3565                 JCStatement elsepart = null;
3566                 for(String caseLabel : stringsWithHashCode ) {
3567                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
3568                                                                    names.equals,
3569                                                                    List.of(make.Literal(caseLabel)));
3570                     elsepart = make.If(stringEqualsCall,
3571                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
3572                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
3573                                                  setType(dollar_tmp.type)),
3574                                        elsepart);
3575                 }
3576 
3577                 ListBuffer<JCStatement> lb = new ListBuffer<>();
3578                 JCBreak breakStmt = make.Break(null);
3579                 breakStmt.target = switch1;
3580                 lb.append(elsepart).append(breakStmt);
3581 
3582                 caseBuffer.append(make.Case(JCCase.STATEMENT, List.of(make.Literal(hashCode)), lb.toList(), null));
3583             }
3584 
3585             switch1.cases = caseBuffer.toList();
3586             stmtList.append(switch1);
3587 
3588             // Make isomorphic switch tree replacing string labels
3589             // with corresponding integer ones from the label to
3590             // position map.
3591 
3592             ListBuffer<JCCase> lb = new ListBuffer<>();
3593             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
3594             for(JCCase oneCase : caseList ) {
3595                 // Rewire up old unlabeled break statements to the
3596                 // replacement switch being created.
3597                 patchTargets(oneCase, tree, switch2);
3598 
3599                 boolean isDefault = (oneCase.pats.isEmpty());
3600                 JCExpression caseExpr;
3601                 if (isDefault)
3602                     caseExpr = null;
3603                 else {
3604                     caseExpr = make.Literal(caseLabelToPosition.get((String)TreeInfo.skipParens(oneCase.pats.head).
3605                                                                     type.constValue()));
3606                 }
3607 
3608                 lb.append(make.Case(JCCase.STATEMENT, caseExpr == null ? List.nil() : List.of(caseExpr),
3609                                     oneCase.getStatements(), null));
3610             }
3611 
3612             switch2.cases = lb.toList();
3613             stmtList.append(switch2);
3614 
3615             return make.Block(0L, stmtList.toList());
3616         }
3617     }
3618 
3619     @Override
3620     public void visitSwitchExpression(JCSwitchExpression tree) {
3621         VarSymbol dollar_switchexpr = new VarSymbol(Flags.FINAL|Flags.SYNTHETIC,
3622                            names.fromString("exprswitch" + tree.pos + target.syntheticNameChar()),
3623                            tree.type,
3624                            currentMethodSym);
3625 
3626         ListBuffer<JCStatement> stmtList = new ListBuffer<>();
3627 
3628         stmtList.append(make.at(tree.pos()).VarDef(dollar_switchexpr, null).setType(dollar_switchexpr.type));
3629         JCSwitch switchStatement = make.Switch(tree.selector, null);
3630         switchStatement.cases =
3631                 tree.cases.stream()
3632                           .map(c -> convertCase(dollar_switchexpr, switchStatement, tree, c))
3633                           .collect(List.collector());
3634         if (tree.cases.stream().noneMatch(c -> c.pats.isEmpty())) {
3635             JCThrow thr = make.Throw(makeNewClass(syms.incompatibleClassChangeErrorType,
3636                                                   List.nil()));
3637             JCCase c = make.Case(JCCase.STATEMENT, List.nil(), List.of(thr), null);
3638             switchStatement.cases = switchStatement.cases.append(c);
3639         }
3640 
3641         stmtList.append(translate(switchStatement));
3642 
3643         result = make.LetExpr(stmtList.toList(), make.Ident(dollar_switchexpr))
3644                      .setType(dollar_switchexpr.type);
3645     }
3646         //where:
3647         private JCCase convertCase(VarSymbol dollar_switchexpr, JCSwitch switchStatement,
3648                                    JCSwitchExpression switchExpr, JCCase c) {
3649             make.at(c.pos());
3650             ListBuffer<JCStatement> statements = new ListBuffer<>();
3651             statements.addAll(new TreeTranslator() {
3652                 @Override
3653                 public void visitLambda(JCLambda tree) {}
3654                 @Override
3655                 public void visitClassDef(JCClassDecl tree) {}
3656                 @Override
3657                 public void visitMethodDef(JCMethodDecl tree) {}
3658                 @Override
3659                 public void visitBreak(JCBreak tree) {
3660                     if (tree.target == switchExpr) {
3661                         tree.target = switchStatement;
3662                         JCExpressionStatement assignment =
3663                                 make.Exec(make.Assign(make.Ident(dollar_switchexpr),
3664                                                       translate(tree.value))
3665                                               .setType(dollar_switchexpr.type));
3666                         result = make.Block(0, List.of(assignment,
3667                                                        tree));
3668                         tree.value = null;
3669                     } else {
3670                         result = tree;
3671                     }
3672                 }
3673             }.translate(c.stats));
3674             return make.Case(JCCase.STATEMENT, c.pats, statements.toList(), null);
3675         }
3676 
3677     public void visitNewArray(JCNewArray tree) {
3678         tree.elemtype = translate(tree.elemtype);
3679         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
3680             if (t.head != null) t.head = translate(t.head, syms.intType);
3681         tree.elems = translate(tree.elems, types.elemtype(tree.type));
3682         result = tree;
3683     }
3684 
3685     public void visitSelect(JCFieldAccess tree) {
3686         // need to special case-access of the form C.super.x
3687         // these will always need an access method, unless C
3688         // is a default interface subclassed by the current class.
3689         boolean qualifiedSuperAccess =
3690             tree.selected.hasTag(SELECT) &&
3691             TreeInfo.name(tree.selected) == names._super &&
3692             !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
3693         tree.selected = translate(tree.selected);
3694         if (tree.name == names._class) {
3695             result = classOf(tree.selected);
3696         }
3697         else if (tree.name == names._super &&
3698                 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
3699             //default super call!! Not a classic qualified super call
3700             TypeSymbol supSym = tree.selected.type.tsym;
3701             Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
3702             result = tree;
3703         }
3704         else if (tree.name == names._this || tree.name == names._super) {
3705             result = makeThis(tree.pos(), tree.selected.type.tsym);
3706         }
3707         else
3708             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
3709     }
3710 
3711     public void visitLetExpr(LetExpr tree) {
3712         tree.defs = translate(tree.defs);
3713         tree.expr = translate(tree.expr, tree.type);
3714         result = tree;
3715     }
3716 
3717     // There ought to be nothing to rewrite here;
3718     // we don't generate code.
3719     public void visitAnnotation(JCAnnotation tree) {
3720         result = tree;
3721     }
3722 
3723     @Override
3724     public void visitTry(JCTry tree) {
3725         if (tree.resources.nonEmpty()) {
3726             result = makeTwrTry(tree);
3727             return;
3728         }
3729 
3730         boolean hasBody = tree.body.getStatements().nonEmpty();
3731         boolean hasCatchers = tree.catchers.nonEmpty();
3732         boolean hasFinally = tree.finalizer != null &&
3733                 tree.finalizer.getStatements().nonEmpty();
3734 
3735         if (!hasCatchers && !hasFinally) {
3736             result = translate(tree.body);
3737             return;
3738         }
3739 
3740         if (!hasBody) {
3741             if (hasFinally) {
3742                 result = translate(tree.finalizer);
3743             } else {
3744                 result = translate(tree.body);
3745             }
3746             return;
3747         }
3748 
3749         // no optimizations possible
3750         super.visitTry(tree);
3751     }
3752 
3753 /**************************************************************************
3754  * main method
3755  *************************************************************************/
3756 
3757     /** Translate a toplevel class and return a list consisting of
3758      *  the translated class and translated versions of all inner classes.
3759      *  @param env   The attribution environment current at the class definition.
3760      *               We need this for resolving some additional symbols.
3761      *  @param cdef  The tree representing the class definition.
3762      */
3763     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
3764         ListBuffer<JCTree> translated = null;
3765         try {
3766             attrEnv = env;
3767             this.make = make;
3768             endPosTable = env.toplevel.endPositions;
3769             currentClass = null;
3770             currentMethodDef = null;
3771             outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
3772             outermostMemberDef = null;
3773             this.translated = new ListBuffer<>();
3774             classdefs = new HashMap<>();
3775             actualSymbols = new HashMap<>();
3776             freevarCache = new HashMap<>();
3777             proxies = new HashMap<>();
3778             twrVars = WriteableScope.create(syms.noSymbol);
3779             outerThisStack = List.nil();
3780             accessNums = new HashMap<>();
3781             accessSyms = new HashMap<>();
3782             accessConstrs = new HashMap<>();
3783             accessConstrTags = List.nil();
3784             accessed = new ListBuffer<>();
3785             translate(cdef, (JCExpression)null);
3786             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
3787                 makeAccessible(l.head);
3788             for (EnumMapping map : enumSwitchMap.values())
3789                 map.translate();
3790             checkConflicts(this.translated.toList());
3791             checkAccessConstructorTags();
3792             translated = this.translated;
3793         } finally {
3794             // note that recursive invocations of this method fail hard
3795             attrEnv = null;
3796             this.make = null;
3797             endPosTable = null;
3798             currentClass = null;
3799             currentMethodDef = null;
3800             outermostClassDef = null;
3801             outermostMemberDef = null;
3802             this.translated = null;
3803             classdefs = null;
3804             actualSymbols = null;
3805             freevarCache = null;
3806             proxies = null;
3807             outerThisStack = null;
3808             accessNums = null;
3809             accessSyms = null;
3810             accessConstrs = null;
3811             accessConstrTags = null;
3812             accessed = null;
3813             enumSwitchMap.clear();
3814             assertionsDisabledClassCache = null;
3815         }
3816         return translated.toList();
3817     }
3818 }