1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.jvm;
  27 
  28 import com.sun.tools.javac.tree.TreeInfo.PosKind;
  29 import com.sun.tools.javac.util.*;
  30 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  31 import com.sun.tools.javac.util.List;
  32 import com.sun.tools.javac.code.*;
  33 import com.sun.tools.javac.code.Attribute.TypeCompound;
  34 import com.sun.tools.javac.code.Symbol.VarSymbol;
  35 import com.sun.tools.javac.comp.*;
  36 import com.sun.tools.javac.tree.*;
  37 
  38 import com.sun.tools.javac.code.Symbol.*;
  39 import com.sun.tools.javac.code.Type.*;
  40 import com.sun.tools.javac.jvm.Code.*;
  41 import com.sun.tools.javac.jvm.Items.*;
  42 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  43 import com.sun.tools.javac.tree.EndPosTable;
  44 import com.sun.tools.javac.tree.JCTree.*;
  45 
  46 import static com.sun.tools.javac.code.Flags.*;
  47 import static com.sun.tools.javac.code.Kinds.Kind.*;
  48 import static com.sun.tools.javac.code.TypeTag.*;
  49 import static com.sun.tools.javac.jvm.ByteCodes.*;
  50 import static com.sun.tools.javac.jvm.CRTFlags.*;
  51 import static com.sun.tools.javac.main.Option.*;
  52 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  53 
  54 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
  55  *
  56  *  <p><b>This is NOT part of any supported API.
  57  *  If you write code that depends on this, you do so at your own risk.
  58  *  This code and its internal interfaces are subject to change or
  59  *  deletion without notice.</b>
  60  */
  61 public class Gen extends JCTree.Visitor {
  62     protected static final Context.Key<Gen> genKey = new Context.Key<>();
  63 
  64     private final Log log;
  65     private final Symtab syms;
  66     private final Check chk;
  67     private final Resolve rs;
  68     private final TreeMaker make;
  69     private final Names names;
  70     private final Target target;
  71     private final Name accessDollar;
  72     private final Types types;
  73     private final Lower lower;
  74     private final Annotate annotate;
  75     private final StringConcat concat;
  76 
  77     /** Format of stackmap tables to be generated. */
  78     private final Code.StackMapFormat stackMap;
  79 
  80     /** A type that serves as the expected type for all method expressions.
  81      */
  82     private final Type methodType;
  83 
  84     public static Gen instance(Context context) {
  85         Gen instance = context.get(genKey);
  86         if (instance == null)
  87             instance = new Gen(context);
  88         return instance;
  89     }
  90 
  91     /** Constant pool, reset by genClass.
  92      */
  93     private final Pool pool;
  94 
  95     protected Gen(Context context) {
  96         context.put(genKey, this);
  97 
  98         names = Names.instance(context);
  99         log = Log.instance(context);
 100         syms = Symtab.instance(context);
 101         chk = Check.instance(context);
 102         rs = Resolve.instance(context);
 103         make = TreeMaker.instance(context);
 104         target = Target.instance(context);
 105         types = Types.instance(context);
 106         concat = StringConcat.instance(context);
 107 
 108         methodType = new MethodType(null, null, null, syms.methodClass);
 109         accessDollar = names.
 110             fromString("access" + target.syntheticNameChar());
 111         lower = Lower.instance(context);
 112 
 113         Options options = Options.instance(context);
 114         lineDebugInfo =
 115             options.isUnset(G_CUSTOM) ||
 116             options.isSet(G_CUSTOM, "lines");
 117         varDebugInfo =
 118             options.isUnset(G_CUSTOM)
 119             ? options.isSet(G)
 120             : options.isSet(G_CUSTOM, "vars");
 121         genCrt = options.isSet(XJCOV);
 122         debugCode = options.isSet("debug.code");
 123         disableVirtualizedPrivateInvoke = options.isSet("disableVirtualizedPrivateInvoke");
 124         pool = new Pool(types);
 125 
 126         // ignore cldc because we cannot have both stackmap formats
 127         this.stackMap = StackMapFormat.JSR202;
 128         annotate = Annotate.instance(context);
 129     }
 130 
 131     /** Switches
 132      */
 133     private final boolean lineDebugInfo;
 134     private final boolean varDebugInfo;
 135     private final boolean genCrt;
 136     private final boolean debugCode;
 137     private boolean disableVirtualizedPrivateInvoke;
 138 
 139     /** Code buffer, set by genMethod.
 140      */
 141     private Code code;
 142 
 143     /** Items structure, set by genMethod.
 144      */
 145     private Items items;
 146 
 147     /** Environment for symbol lookup, set by genClass
 148      */
 149     private Env<AttrContext> attrEnv;
 150 
 151     /** The top level tree.
 152      */
 153     private JCCompilationUnit toplevel;
 154 
 155     /** The number of code-gen errors in this class.
 156      */
 157     private int nerrs = 0;
 158 
 159     /** An object containing mappings of syntax trees to their
 160      *  ending source positions.
 161      */
 162     EndPosTable endPosTable;
 163 
 164     /** Generate code to load an integer constant.
 165      *  @param n     The integer to be loaded.
 166      */
 167     void loadIntConst(int n) {
 168         items.makeImmediateItem(syms.intType, n).load();
 169     }
 170 
 171     /** The opcode that loads a zero constant of a given type code.
 172      *  @param tc   The given type code (@see ByteCode).
 173      */
 174     public static int zero(int tc) {
 175         switch(tc) {
 176         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
 177             return iconst_0;
 178         case LONGcode:
 179             return lconst_0;
 180         case FLOATcode:
 181             return fconst_0;
 182         case DOUBLEcode:
 183             return dconst_0;
 184         default:
 185             throw new AssertionError("zero");
 186         }
 187     }
 188 
 189     /** The opcode that loads a one constant of a given type code.
 190      *  @param tc   The given type code (@see ByteCode).
 191      */
 192     public static int one(int tc) {
 193         return zero(tc) + 1;
 194     }
 195 
 196     /** Generate code to load -1 of the given type code (either int or long).
 197      *  @param tc   The given type code (@see ByteCode).
 198      */
 199     void emitMinusOne(int tc) {
 200         if (tc == LONGcode) {
 201             items.makeImmediateItem(syms.longType, Long.valueOf(-1)).load();
 202         } else {
 203             code.emitop0(iconst_m1);
 204         }
 205     }
 206 
 207     /** Construct a symbol to reflect the qualifying type that should
 208      *  appear in the byte code as per JLS 13.1.
 209      *
 210      *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
 211      *  for those cases where we need to work around VM bugs).
 212      *
 213      *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
 214      *  non-accessible class, clone it with the qualifier class as owner.
 215      *
 216      *  @param sym    The accessed symbol
 217      *  @param site   The qualifier's type.
 218      */
 219     Symbol binaryQualifier(Symbol sym, Type site) {
 220 
 221         if (site.hasTag(ARRAY)) {
 222             if (sym == syms.lengthVar ||
 223                 sym.owner != syms.arrayClass)
 224                 return sym;
 225             // array clone can be qualified by the array type in later targets
 226             Symbol qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name,
 227                                                site, syms.noSymbol);
 228             return sym.clone(qualifier);
 229         }
 230 
 231         if (sym.owner == site.tsym ||
 232             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
 233             return sym;
 234         }
 235 
 236         // leave alone methods inherited from Object
 237         // JLS 13.1.
 238         if (sym.owner == syms.objectType.tsym)
 239             return sym;
 240 
 241         return sym.clone(site.tsym);
 242     }
 243 
 244     /** Insert a reference to given type in the constant pool,
 245      *  checking for an array with too many dimensions;
 246      *  return the reference's index.
 247      *  @param type   The type for which a reference is inserted.
 248      */
 249     int makeRef(DiagnosticPosition pos, Type type) {
 250         checkDimension(pos, type);
 251         if (type.isAnnotated()) {
 252             return pool.put((Object)type);
 253         } else {
 254             return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type);
 255         }
 256     }
 257 
 258     /** Check if the given type is an array with too many dimensions.
 259      */
 260     private void checkDimension(DiagnosticPosition pos, Type t) {
 261         switch (t.getTag()) {
 262         case METHOD:
 263             checkDimension(pos, t.getReturnType());
 264             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
 265                 checkDimension(pos, args.head);
 266             break;
 267         case ARRAY:
 268             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
 269                 log.error(pos, Errors.LimitDimensions);
 270                 nerrs++;
 271             }
 272             break;
 273         default:
 274             break;
 275         }
 276     }
 277 
 278     /** Create a tempory variable.
 279      *  @param type   The variable's type.
 280      */
 281     LocalItem makeTemp(Type type) {
 282         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
 283                                     names.empty,
 284                                     type,
 285                                     env.enclMethod.sym);
 286         code.newLocal(v);
 287         return items.makeLocalItem(v);
 288     }
 289 
 290     /** Generate code to call a non-private method or constructor.
 291      *  @param pos         Position to be used for error reporting.
 292      *  @param site        The type of which the method is a member.
 293      *  @param name        The method's name.
 294      *  @param argtypes    The method's argument types.
 295      *  @param isStatic    A flag that indicates whether we call a
 296      *                     static or instance method.
 297      */
 298     void callMethod(DiagnosticPosition pos,
 299                     Type site, Name name, List<Type> argtypes,
 300                     boolean isStatic) {
 301         Symbol msym = rs.
 302             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
 303         if (isStatic) items.makeStaticItem(msym).invoke();
 304         else items.makeMemberItem(msym, name == names.init).invoke();
 305     }
 306 
 307     /** Is the given method definition an access method
 308      *  resulting from a qualified super? This is signified by an odd
 309      *  access code.
 310      */
 311     private boolean isAccessSuper(JCMethodDecl enclMethod) {
 312         return
 313             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
 314             isOddAccessName(enclMethod.name);
 315     }
 316 
 317     /** Does given name start with "access$" and end in an odd digit?
 318      */
 319     private boolean isOddAccessName(Name name) {
 320         return
 321             name.startsWith(accessDollar) &&
 322             (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
 323     }
 324 
 325 /* ************************************************************************
 326  * Non-local exits
 327  *************************************************************************/
 328 
 329     /** Generate code to invoke the finalizer associated with given
 330      *  environment.
 331      *  Any calls to finalizers are appended to the environments `cont' chain.
 332      *  Mark beginning of gap in catch all range for finalizer.
 333      */
 334     void genFinalizer(Env<GenContext> env) {
 335         if (code.isAlive() && env.info.finalize != null)
 336             env.info.finalize.gen();
 337     }
 338 
 339     /** Generate code to call all finalizers of structures aborted by
 340      *  a non-local
 341      *  exit.  Return target environment of the non-local exit.
 342      *  @param target      The tree representing the structure that's aborted
 343      *  @param env         The environment current at the non-local exit.
 344      */
 345     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
 346         Env<GenContext> env1 = env;
 347         while (true) {
 348             genFinalizer(env1);
 349             if (env1.tree == target) break;
 350             env1 = env1.next;
 351         }
 352         return env1;
 353     }
 354 
 355     /** Mark end of gap in catch-all range for finalizer.
 356      *  @param env   the environment which might contain the finalizer
 357      *               (if it does, env.info.gaps != null).
 358      */
 359     void endFinalizerGap(Env<GenContext> env) {
 360         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
 361             env.info.gaps.append(code.curCP());
 362     }
 363 
 364     /** Mark end of all gaps in catch-all ranges for finalizers of environments
 365      *  lying between, and including to two environments.
 366      *  @param from    the most deeply nested environment to mark
 367      *  @param to      the least deeply nested environment to mark
 368      */
 369     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
 370         Env<GenContext> last = null;
 371         while (last != to) {
 372             endFinalizerGap(from);
 373             last = from;
 374             from = from.next;
 375         }
 376     }
 377 
 378     /** Do any of the structures aborted by a non-local exit have
 379      *  finalizers that require an empty stack?
 380      *  @param target      The tree representing the structure that's aborted
 381      *  @param env         The environment current at the non-local exit.
 382      */
 383     boolean hasFinally(JCTree target, Env<GenContext> env) {
 384         while (env.tree != target) {
 385             if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
 386                 return true;
 387             env = env.next;
 388         }
 389         return false;
 390     }
 391 
 392 /* ************************************************************************
 393  * Normalizing class-members.
 394  *************************************************************************/
 395 
 396     /** Distribute member initializer code into constructors and {@code <clinit>}
 397      *  method.
 398      *  @param defs         The list of class member declarations.
 399      *  @param c            The enclosing class.
 400      */
 401     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
 402         ListBuffer<JCStatement> initCode = new ListBuffer<>();
 403         ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>();
 404         ListBuffer<JCStatement> clinitCode = new ListBuffer<>();
 405         ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>();
 406         ListBuffer<JCTree> methodDefs = new ListBuffer<>();
 407         // Sort definitions into three listbuffers:
 408         //  - initCode for instance initializers
 409         //  - clinitCode for class initializers
 410         //  - methodDefs for method definitions
 411         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
 412             JCTree def = l.head;
 413             switch (def.getTag()) {
 414             case BLOCK:
 415                 JCBlock block = (JCBlock)def;
 416                 if ((block.flags & STATIC) != 0)
 417                     clinitCode.append(block);
 418                 else if ((block.flags & SYNTHETIC) == 0)
 419                     initCode.append(block);
 420                 break;
 421             case METHODDEF:
 422                 methodDefs.append(def);
 423                 break;
 424             case VARDEF:
 425                 JCVariableDecl vdef = (JCVariableDecl) def;
 426                 VarSymbol sym = vdef.sym;
 427                 checkDimension(vdef.pos(), sym.type);
 428                 if (vdef.init != null) {
 429                     if ((sym.flags() & STATIC) == 0) {
 430                         // Always initialize instance variables.
 431                         JCStatement init = make.at(vdef.pos()).
 432                             Assignment(sym, vdef.init);
 433                         initCode.append(init);
 434                         endPosTable.replaceTree(vdef, init);
 435                         initTAs.addAll(getAndRemoveNonFieldTAs(sym));
 436                     } else if (sym.getConstValue() == null) {
 437                         // Initialize class (static) variables only if
 438                         // they are not compile-time constants.
 439                         JCStatement init = make.at(vdef.pos).
 440                             Assignment(sym, vdef.init);
 441                         clinitCode.append(init);
 442                         endPosTable.replaceTree(vdef, init);
 443                         clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
 444                     } else {
 445                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
 446                         /* if the init contains a reference to an external class, add it to the
 447                          * constant's pool
 448                          */
 449                         vdef.init.accept(classReferenceVisitor);
 450                     }
 451                 }
 452                 break;
 453             default:
 454                 Assert.error();
 455             }
 456         }
 457         // Insert any instance initializers into all constructors.
 458         if (initCode.length() != 0) {
 459             List<JCStatement> inits = initCode.toList();
 460             initTAs.addAll(c.getInitTypeAttributes());
 461             List<Attribute.TypeCompound> initTAlist = initTAs.toList();
 462             for (JCTree t : methodDefs) {
 463                 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
 464             }
 465         }
 466         // If there are class initializers, create a <clinit> method
 467         // that contains them as its body.
 468         if (clinitCode.length() != 0) {
 469             MethodSymbol clinit = new MethodSymbol(
 470                 STATIC | (c.flags() & STRICTFP),
 471                 names.clinit,
 472                 new MethodType(
 473                     List.nil(), syms.voidType,
 474                     List.nil(), syms.methodClass),
 475                 c);
 476             c.members().enter(clinit);
 477             List<JCStatement> clinitStats = clinitCode.toList();
 478             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
 479             block.endpos = TreeInfo.endPos(clinitStats.last());
 480             methodDefs.append(make.MethodDef(clinit, block));
 481 
 482             if (!clinitTAs.isEmpty())
 483                 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
 484             if (!c.getClassInitTypeAttributes().isEmpty())
 485                 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
 486         }
 487         // Return all method definitions.
 488         return methodDefs.toList();
 489     }
 490 
 491     private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
 492         List<TypeCompound> tas = sym.getRawTypeAttributes();
 493         ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>();
 494         ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>();
 495         for (TypeCompound ta : tas) {
 496             Assert.check(ta.getPosition().type != TargetType.UNKNOWN);
 497             if (ta.getPosition().type == TargetType.FIELD) {
 498                 fieldTAs.add(ta);
 499             } else {
 500                 nonfieldTAs.add(ta);
 501             }
 502         }
 503         sym.setTypeAttributes(fieldTAs.toList());
 504         return nonfieldTAs.toList();
 505     }
 506 
 507     /** Check a constant value and report if it is a string that is
 508      *  too large.
 509      */
 510     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
 511         if (nerrs != 0 || // only complain about a long string once
 512             constValue == null ||
 513             !(constValue instanceof String) ||
 514             ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
 515             return;
 516         log.error(pos, Errors.LimitString);
 517         nerrs++;
 518     }
 519 
 520     /** Insert instance initializer code into initial constructor.
 521      *  @param md        The tree potentially representing a
 522      *                   constructor's definition.
 523      *  @param initCode  The list of instance initializer statements.
 524      *  @param initTAs  Type annotations from the initializer expression.
 525      */
 526     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
 527         if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
 528             // We are seeing a constructor that does not call another
 529             // constructor of the same class.
 530             List<JCStatement> stats = md.body.stats;
 531             ListBuffer<JCStatement> newstats = new ListBuffer<>();
 532 
 533             if (stats.nonEmpty()) {
 534                 // Copy initializers of synthetic variables generated in
 535                 // the translation of inner classes.
 536                 while (TreeInfo.isSyntheticInit(stats.head)) {
 537                     newstats.append(stats.head);
 538                     stats = stats.tail;
 539                 }
 540                 // Copy superclass constructor call
 541                 newstats.append(stats.head);
 542                 stats = stats.tail;
 543                 // Copy remaining synthetic initializers.
 544                 while (stats.nonEmpty() &&
 545                        TreeInfo.isSyntheticInit(stats.head)) {
 546                     newstats.append(stats.head);
 547                     stats = stats.tail;
 548                 }
 549                 // Now insert the initializer code.
 550                 newstats.appendList(initCode);
 551                 // And copy all remaining statements.
 552                 while (stats.nonEmpty()) {
 553                     newstats.append(stats.head);
 554                     stats = stats.tail;
 555                 }
 556             }
 557             md.body.stats = newstats.toList();
 558             if (md.body.endpos == Position.NOPOS)
 559                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
 560 
 561             md.sym.appendUniqueTypeAttributes(initTAs);
 562         }
 563     }
 564 
 565 /* ************************************************************************
 566  * Traversal methods
 567  *************************************************************************/
 568 
 569     /** Visitor argument: The current environment.
 570      */
 571     Env<GenContext> env;
 572 
 573     /** Visitor argument: The expected type (prototype).
 574      */
 575     Type pt;
 576 
 577     /** Visitor result: The item representing the computed value.
 578      */
 579     Item result;
 580 
 581     /** Visitor method: generate code for a definition, catching and reporting
 582      *  any completion failures.
 583      *  @param tree    The definition to be visited.
 584      *  @param env     The environment current at the definition.
 585      */
 586     public void genDef(JCTree tree, Env<GenContext> env) {
 587         Env<GenContext> prevEnv = this.env;
 588         try {
 589             this.env = env;
 590             tree.accept(this);
 591         } catch (CompletionFailure ex) {
 592             chk.completionError(tree.pos(), ex);
 593         } finally {
 594             this.env = prevEnv;
 595         }
 596     }
 597 
 598     /** Derived visitor method: check whether CharacterRangeTable
 599      *  should be emitted, if so, put a new entry into CRTable
 600      *  and call method to generate bytecode.
 601      *  If not, just call method to generate bytecode.
 602      *  @see    #genStat(JCTree, Env)
 603      *
 604      *  @param  tree     The tree to be visited.
 605      *  @param  env      The environment to use.
 606      *  @param  crtFlags The CharacterRangeTable flags
 607      *                   indicating type of the entry.
 608      */
 609     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
 610         if (!genCrt) {
 611             genStat(tree, env);
 612             return;
 613         }
 614         int startpc = code.curCP();
 615         genStat(tree, env);
 616         if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
 617         code.crt.put(tree, crtFlags, startpc, code.curCP());
 618     }
 619 
 620     /** Derived visitor method: generate code for a statement.
 621      */
 622     public void genStat(JCTree tree, Env<GenContext> env) {
 623         if (code.isAlive()) {
 624             code.statBegin(tree.pos);
 625             genDef(tree, env);
 626         } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
 627             // variables whose declarations are in a switch
 628             // can be used even if the decl is unreachable.
 629             code.newLocal(((JCVariableDecl) tree).sym);
 630         }
 631     }
 632 
 633     /** Derived visitor method: check whether CharacterRangeTable
 634      *  should be emitted, if so, put a new entry into CRTable
 635      *  and call method to generate bytecode.
 636      *  If not, just call method to generate bytecode.
 637      *  @see    #genStats(List, Env)
 638      *
 639      *  @param  trees    The list of trees to be visited.
 640      *  @param  env      The environment to use.
 641      *  @param  crtFlags The CharacterRangeTable flags
 642      *                   indicating type of the entry.
 643      */
 644     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
 645         if (!genCrt) {
 646             genStats(trees, env);
 647             return;
 648         }
 649         if (trees.length() == 1) {        // mark one statement with the flags
 650             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
 651         } else {
 652             int startpc = code.curCP();
 653             genStats(trees, env);
 654             code.crt.put(trees, crtFlags, startpc, code.curCP());
 655         }
 656     }
 657 
 658     /** Derived visitor method: generate code for a list of statements.
 659      */
 660     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
 661         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 662             genStat(l.head, env, CRT_STATEMENT);
 663     }
 664 
 665     /** Derived visitor method: check whether CharacterRangeTable
 666      *  should be emitted, if so, put a new entry into CRTable
 667      *  and call method to generate bytecode.
 668      *  If not, just call method to generate bytecode.
 669      *  @see    #genCond(JCTree,boolean)
 670      *
 671      *  @param  tree     The tree to be visited.
 672      *  @param  crtFlags The CharacterRangeTable flags
 673      *                   indicating type of the entry.
 674      */
 675     public CondItem genCond(JCTree tree, int crtFlags) {
 676         if (!genCrt) return genCond(tree, false);
 677         int startpc = code.curCP();
 678         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
 679         code.crt.put(tree, crtFlags, startpc, code.curCP());
 680         return item;
 681     }
 682 
 683     /** Derived visitor method: generate code for a boolean
 684      *  expression in a control-flow context.
 685      *  @param _tree         The expression to be visited.
 686      *  @param markBranches The flag to indicate that the condition is
 687      *                      a flow controller so produced conditions
 688      *                      should contain a proper tree to generate
 689      *                      CharacterRangeTable branches for them.
 690      */
 691     public CondItem genCond(JCTree _tree, boolean markBranches) {
 692         JCTree inner_tree = TreeInfo.skipParens(_tree);
 693         if (inner_tree.hasTag(CONDEXPR)) {
 694             JCConditional tree = (JCConditional)inner_tree;
 695             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
 696             if (cond.isTrue()) {
 697                 code.resolve(cond.trueJumps);
 698                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
 699                 if (markBranches) result.tree = tree.truepart;
 700                 return result;
 701             }
 702             if (cond.isFalse()) {
 703                 code.resolve(cond.falseJumps);
 704                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
 705                 if (markBranches) result.tree = tree.falsepart;
 706                 return result;
 707             }
 708             Chain secondJumps = cond.jumpFalse();
 709             code.resolve(cond.trueJumps);
 710             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
 711             if (markBranches) first.tree = tree.truepart;
 712             Chain falseJumps = first.jumpFalse();
 713             code.resolve(first.trueJumps);
 714             Chain trueJumps = code.branch(goto_);
 715             code.resolve(secondJumps);
 716             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
 717             CondItem result = items.makeCondItem(second.opcode,
 718                                       Code.mergeChains(trueJumps, second.trueJumps),
 719                                       Code.mergeChains(falseJumps, second.falseJumps));
 720             if (markBranches) result.tree = tree.falsepart;
 721             return result;
 722         } else {
 723             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
 724             if (markBranches) result.tree = _tree;
 725             return result;
 726         }
 727     }
 728 
 729     public Code getCode() {
 730         return code;
 731     }
 732 
 733     public Items getItems() {
 734         return items;
 735     }
 736 
 737     public Env<AttrContext> getAttrEnv() {
 738         return attrEnv;
 739     }
 740 
 741     /** Visitor class for expressions which might be constant expressions.
 742      *  This class is a subset of TreeScanner. Intended to visit trees pruned by
 743      *  Lower as long as constant expressions looking for references to any
 744      *  ClassSymbol. Any such reference will be added to the constant pool so
 745      *  automated tools can detect class dependencies better.
 746      */
 747     class ClassReferenceVisitor extends JCTree.Visitor {
 748 
 749         @Override
 750         public void visitTree(JCTree tree) {}
 751 
 752         @Override
 753         public void visitBinary(JCBinary tree) {
 754             tree.lhs.accept(this);
 755             tree.rhs.accept(this);
 756         }
 757 
 758         @Override
 759         public void visitSelect(JCFieldAccess tree) {
 760             if (tree.selected.type.hasTag(CLASS)) {
 761                 makeRef(tree.selected.pos(), tree.selected.type);
 762             }
 763         }
 764 
 765         @Override
 766         public void visitIdent(JCIdent tree) {
 767             if (tree.sym.owner instanceof ClassSymbol) {
 768                 pool.put(tree.sym.owner);
 769             }
 770         }
 771 
 772         @Override
 773         public void visitConditional(JCConditional tree) {
 774             tree.cond.accept(this);
 775             tree.truepart.accept(this);
 776             tree.falsepart.accept(this);
 777         }
 778 
 779         @Override
 780         public void visitUnary(JCUnary tree) {
 781             tree.arg.accept(this);
 782         }
 783 
 784         @Override
 785         public void visitParens(JCParens tree) {
 786             tree.expr.accept(this);
 787         }
 788 
 789         @Override
 790         public void visitTypeCast(JCTypeCast tree) {
 791             tree.expr.accept(this);
 792         }
 793     }
 794 
 795     private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
 796 
 797     /** Visitor method: generate code for an expression, catching and reporting
 798      *  any completion failures.
 799      *  @param tree    The expression to be visited.
 800      *  @param pt      The expression's expected type (proto-type).
 801      */
 802     public Item genExpr(JCTree tree, Type pt) {
 803         Type prevPt = this.pt;
 804         try {
 805             if (tree.type.constValue() != null) {
 806                 // Short circuit any expressions which are constants
 807                 tree.accept(classReferenceVisitor);
 808                 checkStringConstant(tree.pos(), tree.type.constValue());
 809                 result = items.makeImmediateItem(tree.type, tree.type.constValue());
 810             } else {
 811                 this.pt = pt;
 812                 tree.accept(this);
 813             }
 814             return result.coerce(pt);
 815         } catch (CompletionFailure ex) {
 816             chk.completionError(tree.pos(), ex);
 817             code.state.stacksize = 1;
 818             return items.makeStackItem(pt);
 819         } finally {
 820             this.pt = prevPt;
 821         }
 822     }
 823 
 824     /** Derived visitor method: generate code for a list of method arguments.
 825      *  @param trees    The argument expressions to be visited.
 826      *  @param pts      The expression's expected types (i.e. the formal parameter
 827      *                  types of the invoked method).
 828      */
 829     public void genArgs(List<JCExpression> trees, List<Type> pts) {
 830         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
 831             genExpr(l.head, pts.head).load();
 832             pts = pts.tail;
 833         }
 834         // require lists be of same length
 835         Assert.check(pts.isEmpty());
 836     }
 837 
 838 /* ************************************************************************
 839  * Visitor methods for statements and definitions
 840  *************************************************************************/
 841 
 842     /** Thrown when the byte code size exceeds limit.
 843      */
 844     public static class CodeSizeOverflow extends RuntimeException {
 845         private static final long serialVersionUID = 0;
 846         public CodeSizeOverflow() {}
 847     }
 848 
 849     public void visitMethodDef(JCMethodDecl tree) {
 850         // Create a new local environment that points pack at method
 851         // definition.
 852         Env<GenContext> localEnv = env.dup(tree);
 853         localEnv.enclMethod = tree;
 854         // The expected type of every return statement in this method
 855         // is the method's return type.
 856         this.pt = tree.sym.erasure(types).getReturnType();
 857 
 858         checkDimension(tree.pos(), tree.sym.erasure(types));
 859         genMethod(tree, localEnv, false);
 860     }
 861 //where
 862         /** Generate code for a method.
 863          *  @param tree     The tree representing the method definition.
 864          *  @param env      The environment current for the method body.
 865          *  @param fatcode  A flag that indicates whether all jumps are
 866          *                  within 32K.  We first invoke this method under
 867          *                  the assumption that fatcode == false, i.e. all
 868          *                  jumps are within 32K.  If this fails, fatcode
 869          *                  is set to true and we try again.
 870          */
 871         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 872             MethodSymbol meth = tree.sym;
 873             int extras = 0;
 874             // Count up extra parameters
 875             if (meth.isConstructor()) {
 876                 extras++;
 877                 if (meth.enclClass().isInner() &&
 878                     !meth.enclClass().isStatic()) {
 879                     extras++;
 880                 }
 881             } else if ((tree.mods.flags & STATIC) == 0) {
 882                 extras++;
 883             }
 884             //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
 885             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
 886                 ClassFile.MAX_PARAMETERS) {
 887                 log.error(tree.pos(), Errors.LimitParameters);
 888                 nerrs++;
 889             }
 890 
 891             else if (tree.body != null) {
 892                 // Create a new code structure and initialize it.
 893                 int startpcCrt = initCode(tree, env, fatcode);
 894 
 895                 try {
 896                     genStat(tree.body, env);
 897                 } catch (CodeSizeOverflow e) {
 898                     // Failed due to code limit, try again with jsr/ret
 899                     startpcCrt = initCode(tree, env, fatcode);
 900                     genStat(tree.body, env);
 901                 }
 902 
 903                 if (code.state.stacksize != 0) {
 904                     log.error(tree.body.pos(), Errors.StackSimError(tree.sym));
 905                     throw new AssertionError();
 906                 }
 907 
 908                 // If last statement could complete normally, insert a
 909                 // return at the end.
 910                 if (code.isAlive()) {
 911                     code.statBegin(TreeInfo.endPos(tree.body));
 912                     if (env.enclMethod == null ||
 913                         env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
 914                         code.emitop0(return_);
 915                     } else {
 916                         // sometime dead code seems alive (4415991);
 917                         // generate a small loop instead
 918                         int startpc = code.entryPoint();
 919                         CondItem c = items.makeCondItem(goto_);
 920                         code.resolve(c.jumpTrue(), startpc);
 921                     }
 922                 }
 923                 if (genCrt)
 924                     code.crt.put(tree.body,
 925                                  CRT_BLOCK,
 926                                  startpcCrt,
 927                                  code.curCP());
 928 
 929                 code.endScopes(0);
 930 
 931                 // If we exceeded limits, panic
 932                 if (code.checkLimits(tree.pos(), log)) {
 933                     nerrs++;
 934                     return;
 935                 }
 936 
 937                 // If we generated short code but got a long jump, do it again
 938                 // with fatCode = true.
 939                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
 940 
 941                 // Clean up
 942                 if(stackMap == StackMapFormat.JSR202) {
 943                     code.lastFrame = null;
 944                     code.frameBeforeLast = null;
 945                 }
 946 
 947                 // Compress exception table
 948                 code.compressCatchTable();
 949 
 950                 // Fill in type annotation positions for exception parameters
 951                 code.fillExceptionParameterPositions();
 952             }
 953         }
 954 
 955         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 956             MethodSymbol meth = tree.sym;
 957 
 958             // Create a new code structure.
 959             meth.code = code = new Code(meth,
 960                                         fatcode,
 961                                         lineDebugInfo ? toplevel.lineMap : null,
 962                                         varDebugInfo,
 963                                         stackMap,
 964                                         debugCode,
 965                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
 966                                                : null,
 967                                         syms,
 968                                         types,
 969                                         pool);
 970             items = new Items(pool, code, syms, types);
 971             if (code.debugCode) {
 972                 System.err.println(meth + " for body " + tree);
 973             }
 974 
 975             // If method is not static, create a new local variable address
 976             // for `this'.
 977             if ((tree.mods.flags & STATIC) == 0) {
 978                 Type selfType = meth.owner.type;
 979                 if (meth.isConstructor() && selfType != syms.objectType)
 980                     selfType = UninitializedType.uninitializedThis(selfType);
 981                 code.setDefined(
 982                         code.newLocal(
 983                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
 984             }
 985 
 986             // Mark all parameters as defined from the beginning of
 987             // the method.
 988             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 989                 checkDimension(l.head.pos(), l.head.sym.type);
 990                 code.setDefined(code.newLocal(l.head.sym));
 991             }
 992 
 993             // Get ready to generate code for method body.
 994             int startpcCrt = genCrt ? code.curCP() : 0;
 995             code.entryPoint();
 996 
 997             // Suppress initial stackmap
 998             code.pendingStackMap = false;
 999 
1000             return startpcCrt;
1001         }
1002 
1003     public void visitVarDef(JCVariableDecl tree) {
1004         VarSymbol v = tree.sym;
1005         if (tree.init != null) {
1006             checkStringConstant(tree.init.pos(), v.getConstValue());
1007             if (v.getConstValue() == null || varDebugInfo) {
1008                 Assert.check(code.isStatementStart());
1009                 code.newLocal(v);
1010                 genExpr(tree.init, v.erasure(types)).load();
1011                 items.makeLocalItem(v).store();
1012                 Assert.check(code.isStatementStart());
1013             }
1014         } else {
1015             code.newLocal(v);
1016         }
1017         checkDimension(tree.pos(), v.type);
1018     }
1019 
1020     public void visitSkip(JCSkip tree) {
1021     }
1022 
1023     public void visitBlock(JCBlock tree) {
1024         int limit = code.nextreg;
1025         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1026         genStats(tree.stats, localEnv);
1027         // End the scope of all block-local variables in variable info.
1028         if (!env.tree.hasTag(METHODDEF)) {
1029             code.statBegin(tree.endpos);
1030             code.endScopes(limit);
1031             code.pendingStatPos = Position.NOPOS;
1032         }
1033     }
1034 
1035     public void visitDoLoop(JCDoWhileLoop tree) {
1036         genLoop(tree, tree.body, tree.cond, List.nil(), false);
1037     }
1038 
1039     public void visitWhileLoop(JCWhileLoop tree) {
1040         genLoop(tree, tree.body, tree.cond, List.nil(), true);
1041     }
1042 
1043     public void visitForLoop(JCForLoop tree) {
1044         int limit = code.nextreg;
1045         genStats(tree.init, env);
1046         genLoop(tree, tree.body, tree.cond, tree.step, true);
1047         code.endScopes(limit);
1048     }
1049     //where
1050         /** Generate code for a loop.
1051          *  @param loop       The tree representing the loop.
1052          *  @param body       The loop's body.
1053          *  @param cond       The loop's controling condition.
1054          *  @param step       "Step" statements to be inserted at end of
1055          *                    each iteration.
1056          *  @param testFirst  True if the loop test belongs before the body.
1057          */
1058         private void genLoop(JCStatement loop,
1059                              JCStatement body,
1060                              JCExpression cond,
1061                              List<JCExpressionStatement> step,
1062                              boolean testFirst) {
1063             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1064             int startpc = code.entryPoint();
1065             if (testFirst) { //while or for loop
1066                 CondItem c;
1067                 if (cond != null) {
1068                     code.statBegin(cond.pos);
1069                     Assert.check(code.isStatementStart());
1070                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1071                 } else {
1072                     c = items.makeCondItem(goto_);
1073                 }
1074                 Chain loopDone = c.jumpFalse();
1075                 code.resolve(c.trueJumps);
1076                 Assert.check(code.isStatementStart());
1077                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1078                 code.resolve(loopEnv.info.cont);
1079                 genStats(step, loopEnv);
1080                 code.resolve(code.branch(goto_), startpc);
1081                 code.resolve(loopDone);
1082             } else {
1083                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1084                 code.resolve(loopEnv.info.cont);
1085                 genStats(step, loopEnv);
1086                 if (code.isAlive()) {
1087                     CondItem c;
1088                     if (cond != null) {
1089                         code.statBegin(cond.pos);
1090                         Assert.check(code.isStatementStart());
1091                         c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1092                     } else {
1093                         c = items.makeCondItem(goto_);
1094                     }
1095                     code.resolve(c.jumpTrue(), startpc);
1096                     Assert.check(code.isStatementStart());
1097                     code.resolve(c.falseJumps);
1098                 }
1099             }
1100             Chain exit = loopEnv.info.exit;
1101             if (exit != null) {
1102                 code.resolve(exit);
1103                 exit.state.defined.excludeFrom(code.nextreg);
1104             }
1105         }
1106 
1107     public void visitForeachLoop(JCEnhancedForLoop tree) {
1108         throw new AssertionError(); // should have been removed by Lower.
1109     }
1110 
1111     public void visitLabelled(JCLabeledStatement tree) {
1112         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1113         genStat(tree.body, localEnv, CRT_STATEMENT);
1114         Chain exit = localEnv.info.exit;
1115         if (exit != null) {
1116             code.resolve(exit);
1117             exit.state.defined.excludeFrom(code.nextreg);
1118         }
1119     }
1120 
1121     public void visitSwitch(JCSwitch tree) {
1122         int limit = code.nextreg;
1123         Assert.check(!tree.selector.type.hasTag(CLASS));
1124         int startpcCrt = genCrt ? code.curCP() : 0;
1125         Assert.check(code.isStatementStart());
1126         Item sel = genExpr(tree.selector, syms.intType);
1127         List<JCCase> cases = tree.cases;
1128         if (cases.isEmpty()) {
1129             // We are seeing:  switch <sel> {}
1130             sel.load().drop();
1131             if (genCrt)
1132                 code.crt.put(TreeInfo.skipParens(tree.selector),
1133                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1134         } else {
1135             // We are seeing a nonempty switch.
1136             sel.load();
1137             if (genCrt)
1138                 code.crt.put(TreeInfo.skipParens(tree.selector),
1139                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1140             Env<GenContext> switchEnv = env.dup(tree, new GenContext());
1141             switchEnv.info.isSwitch = true;
1142 
1143             // Compute number of labels and minimum and maximum label values.
1144             // For each case, store its label in an array.
1145             int lo = Integer.MAX_VALUE;  // minimum label.
1146             int hi = Integer.MIN_VALUE;  // maximum label.
1147             int nlabels = 0;               // number of labels.
1148 
1149             int[] labels = new int[cases.length()];  // the label array.
1150             int defaultIndex = -1;     // the index of the default clause.
1151 
1152             List<JCCase> l = cases;
1153             for (int i = 0; i < labels.length; i++) {
1154                 if (l.head.pats.nonEmpty()) {
1155                     Assert.check(l.head.pats.size() == 1);
1156                     int val = ((Number)l.head.pats.head.type.constValue()).intValue();
1157                     labels[i] = val;
1158                     if (val < lo) lo = val;
1159                     if (hi < val) hi = val;
1160                     nlabels++;
1161                 } else {
1162                     Assert.check(defaultIndex == -1);
1163                     defaultIndex = i;
1164                 }
1165                 l = l.tail;
1166             }
1167 
1168             // Determine whether to issue a tableswitch or a lookupswitch
1169             // instruction.
1170             long table_space_cost = 4 + ((long) hi - lo + 1); // words
1171             long table_time_cost = 3; // comparisons
1172             long lookup_space_cost = 3 + 2 * (long) nlabels;
1173             long lookup_time_cost = nlabels;
1174             int opcode =
1175                 nlabels > 0 &&
1176                 table_space_cost + 3 * table_time_cost <=
1177                 lookup_space_cost + 3 * lookup_time_cost
1178                 ?
1179                 tableswitch : lookupswitch;
1180 
1181             int startpc = code.curCP();    // the position of the selector operation
1182             code.emitop0(opcode);
1183             code.align(4);
1184             int tableBase = code.curCP();  // the start of the jump table
1185             int[] offsets = null;          // a table of offsets for a lookupswitch
1186             code.emit4(-1);                // leave space for default offset
1187             if (opcode == tableswitch) {
1188                 code.emit4(lo);            // minimum label
1189                 code.emit4(hi);            // maximum label
1190                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
1191                     code.emit4(-1);
1192                 }
1193             } else {
1194                 code.emit4(nlabels);    // number of labels
1195                 for (int i = 0; i < nlabels; i++) {
1196                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
1197                 }
1198                 offsets = new int[labels.length];
1199             }
1200             Code.State stateSwitch = code.state.dup();
1201             code.markDead();
1202 
1203             // For each case do:
1204             l = cases;
1205             for (int i = 0; i < labels.length; i++) {
1206                 JCCase c = l.head;
1207                 l = l.tail;
1208 
1209                 int pc = code.entryPoint(stateSwitch);
1210                 // Insert offset directly into code or else into the
1211                 // offsets table.
1212                 if (i != defaultIndex) {
1213                     if (opcode == tableswitch) {
1214                         code.put4(
1215                             tableBase + 4 * (labels[i] - lo + 3),
1216                             pc - startpc);
1217                     } else {
1218                         offsets[i] = pc - startpc;
1219                     }
1220                 } else {
1221                     code.put4(tableBase, pc - startpc);
1222                 }
1223 
1224                 // Generate code for the statements in this case.
1225                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1226             }
1227 
1228             // Resolve all breaks.
1229             Chain exit = switchEnv.info.exit;
1230             if  (exit != null) {
1231                 code.resolve(exit);
1232                 exit.state.defined.excludeFrom(limit);
1233             }
1234 
1235             // If we have not set the default offset, we do so now.
1236             if (code.get4(tableBase) == -1) {
1237                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1238             }
1239 
1240             if (opcode == tableswitch) {
1241                 // Let any unfilled slots point to the default case.
1242                 int defaultOffset = code.get4(tableBase);
1243                 for (long i = lo; i <= hi; i++) {
1244                     int t = (int)(tableBase + 4 * (i - lo + 3));
1245                     if (code.get4(t) == -1)
1246                         code.put4(t, defaultOffset);
1247                 }
1248             } else {
1249                 // Sort non-default offsets and copy into lookup table.
1250                 if (defaultIndex >= 0)
1251                     for (int i = defaultIndex; i < labels.length - 1; i++) {
1252                         labels[i] = labels[i+1];
1253                         offsets[i] = offsets[i+1];
1254                     }
1255                 if (nlabels > 0)
1256                     qsort2(labels, offsets, 0, nlabels - 1);
1257                 for (int i = 0; i < nlabels; i++) {
1258                     int caseidx = tableBase + 8 * (i + 1);
1259                     code.put4(caseidx, labels[i]);
1260                     code.put4(caseidx + 4, offsets[i]);
1261                 }
1262             }
1263         }
1264         code.endScopes(limit);
1265     }
1266 //where
1267         /** Sort (int) arrays of keys and values
1268          */
1269        static void qsort2(int[] keys, int[] values, int lo, int hi) {
1270             int i = lo;
1271             int j = hi;
1272             int pivot = keys[(i+j)/2];
1273             do {
1274                 while (keys[i] < pivot) i++;
1275                 while (pivot < keys[j]) j--;
1276                 if (i <= j) {
1277                     int temp1 = keys[i];
1278                     keys[i] = keys[j];
1279                     keys[j] = temp1;
1280                     int temp2 = values[i];
1281                     values[i] = values[j];
1282                     values[j] = temp2;
1283                     i++;
1284                     j--;
1285                 }
1286             } while (i <= j);
1287             if (lo < j) qsort2(keys, values, lo, j);
1288             if (i < hi) qsort2(keys, values, i, hi);
1289         }
1290 
1291     public void visitSynchronized(JCSynchronized tree) {
1292         int limit = code.nextreg;
1293         // Generate code to evaluate lock and save in temporary variable.
1294         final LocalItem lockVar = makeTemp(syms.objectType);
1295         Assert.check(code.isStatementStart());
1296         genExpr(tree.lock, tree.lock.type).load().duplicate();
1297         lockVar.store();
1298 
1299         // Generate code to enter monitor.
1300         code.emitop0(monitorenter);
1301         code.state.lock(lockVar.reg);
1302 
1303         // Generate code for a try statement with given body, no catch clauses
1304         // in a new environment with the "exit-monitor" operation as finalizer.
1305         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1306         syncEnv.info.finalize = new GenFinalizer() {
1307             void gen() {
1308                 genLast();
1309                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1310                 syncEnv.info.gaps.append(code.curCP());
1311             }
1312             void genLast() {
1313                 if (code.isAlive()) {
1314                     lockVar.load();
1315                     code.emitop0(monitorexit);
1316                     code.state.unlock(lockVar.reg);
1317                 }
1318             }
1319         };
1320         syncEnv.info.gaps = new ListBuffer<>();
1321         genTry(tree.body, List.nil(), syncEnv);
1322         code.endScopes(limit);
1323     }
1324 
1325     public void visitTry(final JCTry tree) {
1326         // Generate code for a try statement with given body and catch clauses,
1327         // in a new environment which calls the finally block if there is one.
1328         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1329         final Env<GenContext> oldEnv = env;
1330         tryEnv.info.finalize = new GenFinalizer() {
1331             void gen() {
1332                 Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1333                 tryEnv.info.gaps.append(code.curCP());
1334                 genLast();
1335             }
1336             void genLast() {
1337                 if (tree.finalizer != null)
1338                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1339             }
1340             boolean hasFinalizer() {
1341                 return tree.finalizer != null;
1342             }
1343 
1344             @Override
1345             void afterBody() {
1346                 if (tree.finalizer != null && (tree.finalizer.flags & BODY_ONLY_FINALIZE) != 0) {
1347                     //for body-only finally, remove the GenFinalizer after try body
1348                     //so that the finally is not generated to catch bodies:
1349                     tryEnv.info.finalize = null;
1350                 }
1351             }
1352 
1353         };
1354         tryEnv.info.gaps = new ListBuffer<>();
1355         genTry(tree.body, tree.catchers, tryEnv);
1356     }
1357     //where
1358         /** Generate code for a try or synchronized statement
1359          *  @param body      The body of the try or synchronized statement.
1360          *  @param catchers  The lis of catch clauses.
1361          *  @param env       the environment current for the body.
1362          */
1363         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1364             int limit = code.nextreg;
1365             int startpc = code.curCP();
1366             Code.State stateTry = code.state.dup();
1367             genStat(body, env, CRT_BLOCK);
1368             int endpc = code.curCP();
1369             List<Integer> gaps = env.info.gaps.toList();
1370             code.statBegin(TreeInfo.endPos(body));
1371             genFinalizer(env);
1372             code.statBegin(TreeInfo.endPos(env.tree));
1373             Chain exitChain = code.branch(goto_);
1374             endFinalizerGap(env);
1375             env.info.finalize.afterBody();
1376             boolean hasFinalizer =
1377                 env.info.finalize != null &&
1378                 env.info.finalize.hasFinalizer();
1379             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1380                 // start off with exception on stack
1381                 code.entryPoint(stateTry, l.head.param.sym.type);
1382                 genCatch(l.head, env, startpc, endpc, gaps);
1383                 genFinalizer(env);
1384                 if (hasFinalizer || l.tail.nonEmpty()) {
1385                     code.statBegin(TreeInfo.endPos(env.tree));
1386                     exitChain = Code.mergeChains(exitChain,
1387                                                  code.branch(goto_));
1388                 }
1389                 endFinalizerGap(env);
1390             }
1391             if (hasFinalizer) {
1392                 // Create a new register segement to avoid allocating
1393                 // the same variables in finalizers and other statements.
1394                 code.newRegSegment();
1395 
1396                 // Add a catch-all clause.
1397 
1398                 // start off with exception on stack
1399                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1400 
1401                 // Register all exception ranges for catch all clause.
1402                 // The range of the catch all clause is from the beginning
1403                 // of the try or synchronized block until the present
1404                 // code pointer excluding all gaps in the current
1405                 // environment's GenContext.
1406                 int startseg = startpc;
1407                 while (env.info.gaps.nonEmpty()) {
1408                     int endseg = env.info.gaps.next().intValue();
1409                     registerCatch(body.pos(), startseg, endseg,
1410                                   catchallpc, 0);
1411                     startseg = env.info.gaps.next().intValue();
1412                 }
1413                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1414                 code.markStatBegin();
1415 
1416                 Item excVar = makeTemp(syms.throwableType);
1417                 excVar.store();
1418                 genFinalizer(env);
1419                 code.resolvePending();
1420                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.END_POS));
1421                 code.markStatBegin();
1422 
1423                 excVar.load();
1424                 registerCatch(body.pos(), startseg,
1425                               env.info.gaps.next().intValue(),
1426                               catchallpc, 0);
1427                 code.emitop0(athrow);
1428                 code.markDead();
1429 
1430                 // If there are jsr's to this finalizer, ...
1431                 if (env.info.cont != null) {
1432                     // Resolve all jsr's.
1433                     code.resolve(env.info.cont);
1434 
1435                     // Mark statement line number
1436                     code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1437                     code.markStatBegin();
1438 
1439                     // Save return address.
1440                     LocalItem retVar = makeTemp(syms.throwableType);
1441                     retVar.store();
1442 
1443                     // Generate finalizer code.
1444                     env.info.finalize.genLast();
1445 
1446                     // Return.
1447                     code.emitop1w(ret, retVar.reg);
1448                     code.markDead();
1449                 }
1450             }
1451             // Resolve all breaks.
1452             code.resolve(exitChain);
1453 
1454             code.endScopes(limit);
1455         }
1456 
1457         /** Generate code for a catch clause.
1458          *  @param tree     The catch clause.
1459          *  @param env      The environment current in the enclosing try.
1460          *  @param startpc  Start pc of try-block.
1461          *  @param endpc    End pc of try-block.
1462          */
1463         void genCatch(JCCatch tree,
1464                       Env<GenContext> env,
1465                       int startpc, int endpc,
1466                       List<Integer> gaps) {
1467             if (startpc != endpc) {
1468                 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypeExprs
1469                         = catchTypesWithAnnotations(tree);
1470                 while (gaps.nonEmpty()) {
1471                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1472                         JCExpression subCatch = subCatch1.snd;
1473                         int catchType = makeRef(tree.pos(), subCatch.type);
1474                         int end = gaps.head.intValue();
1475                         registerCatch(tree.pos(),
1476                                       startpc,  end, code.curCP(),
1477                                       catchType);
1478                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1479                                 tc.position.setCatchInfo(catchType, startpc);
1480                         }
1481                     }
1482                     gaps = gaps.tail;
1483                     startpc = gaps.head.intValue();
1484                     gaps = gaps.tail;
1485                 }
1486                 if (startpc < endpc) {
1487                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1488                         JCExpression subCatch = subCatch1.snd;
1489                         int catchType = makeRef(tree.pos(), subCatch.type);
1490                         registerCatch(tree.pos(),
1491                                       startpc, endpc, code.curCP(),
1492                                       catchType);
1493                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1494                             tc.position.setCatchInfo(catchType, startpc);
1495                         }
1496                     }
1497                 }
1498                 VarSymbol exparam = tree.param.sym;
1499                 code.statBegin(tree.pos);
1500                 code.markStatBegin();
1501                 int limit = code.nextreg;
1502                 code.newLocal(exparam);
1503                 items.makeLocalItem(exparam).store();
1504                 code.statBegin(TreeInfo.firstStatPos(tree.body));
1505                 genStat(tree.body, env, CRT_BLOCK);
1506                 code.endScopes(limit);
1507                 code.statBegin(TreeInfo.endPos(tree.body));
1508             }
1509         }
1510         // where
1511         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotations(JCCatch tree) {
1512             return TreeInfo.isMultiCatch(tree) ?
1513                     catchTypesWithAnnotationsFromMulticatch((JCTypeUnion)tree.param.vartype, tree.param.sym.getRawTypeAttributes()) :
1514                     List.of(new Pair<>(tree.param.sym.getRawTypeAttributes(), tree.param.vartype));
1515         }
1516         // where
1517         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotationsFromMulticatch(JCTypeUnion tree, List<TypeCompound> first) {
1518             List<JCExpression> alts = tree.alternatives;
1519             List<Pair<List<TypeCompound>, JCExpression>> res = List.of(new Pair<>(first, alts.head));
1520             alts = alts.tail;
1521 
1522             while(alts != null && alts.head != null) {
1523                 JCExpression alt = alts.head;
1524                 if (alt instanceof JCAnnotatedType) {
1525                     JCAnnotatedType a = (JCAnnotatedType)alt;
1526                     res = res.prepend(new Pair<>(annotate.fromAnnotations(a.annotations), alt));
1527                 } else {
1528                     res = res.prepend(new Pair<>(List.nil(), alt));
1529                 }
1530                 alts = alts.tail;
1531             }
1532             return res.reverse();
1533         }
1534 
1535         /** Register a catch clause in the "Exceptions" code-attribute.
1536          */
1537         void registerCatch(DiagnosticPosition pos,
1538                            int startpc, int endpc,
1539                            int handler_pc, int catch_type) {
1540             char startpc1 = (char)startpc;
1541             char endpc1 = (char)endpc;
1542             char handler_pc1 = (char)handler_pc;
1543             if (startpc1 == startpc &&
1544                 endpc1 == endpc &&
1545                 handler_pc1 == handler_pc) {
1546                 code.addCatch(startpc1, endpc1, handler_pc1,
1547                               (char)catch_type);
1548             } else {
1549                 log.error(pos, Errors.LimitCodeTooLargeForTryStmt);
1550                 nerrs++;
1551             }
1552         }
1553 
1554     public void visitIf(JCIf tree) {
1555         int limit = code.nextreg;
1556         Chain thenExit = null;
1557         Assert.check(code.isStatementStart());
1558         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1559                              CRT_FLOW_CONTROLLER);
1560         Chain elseChain = c.jumpFalse();
1561         Assert.check(code.isStatementStart());
1562         if (!c.isFalse()) {
1563             code.resolve(c.trueJumps);
1564             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1565             thenExit = code.branch(goto_);
1566         }
1567         if (elseChain != null) {
1568             code.resolve(elseChain);
1569             if (tree.elsepart != null) {
1570                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1571             }
1572         }
1573         code.resolve(thenExit);
1574         code.endScopes(limit);
1575         Assert.check(code.isStatementStart());
1576     }
1577 
1578     public void visitExec(JCExpressionStatement tree) {
1579         // Optimize x++ to ++x and x-- to --x.
1580         JCExpression e = tree.expr;
1581         switch (e.getTag()) {
1582             case POSTINC:
1583                 ((JCUnary) e).setTag(PREINC);
1584                 break;
1585             case POSTDEC:
1586                 ((JCUnary) e).setTag(PREDEC);
1587                 break;
1588         }
1589         Assert.check(code.isStatementStart());
1590         genExpr(tree.expr, tree.expr.type).drop();
1591         Assert.check(code.isStatementStart());
1592     }
1593 
1594     public void visitBreak(JCBreak tree) {
1595         int tmpPos = code.pendingStatPos;
1596         Env<GenContext> targetEnv = unwind(tree.target, env);
1597         code.pendingStatPos = tmpPos;
1598         Assert.check(code.isStatementStart());
1599         targetEnv.info.addExit(code.branch(goto_));
1600         endFinalizerGaps(env, targetEnv);
1601     }
1602 
1603     public void visitContinue(JCContinue tree) {
1604         int tmpPos = code.pendingStatPos;
1605         Env<GenContext> targetEnv = unwind(tree.target, env);
1606         code.pendingStatPos = tmpPos;
1607         Assert.check(code.isStatementStart());
1608         targetEnv.info.addCont(code.branch(goto_));
1609         endFinalizerGaps(env, targetEnv);
1610     }
1611 
1612     public void visitReturn(JCReturn tree) {
1613         int limit = code.nextreg;
1614         final Env<GenContext> targetEnv;
1615 
1616         /* Save and then restore the location of the return in case a finally
1617          * is expanded (with unwind()) in the middle of our bytecodes.
1618          */
1619         int tmpPos = code.pendingStatPos;
1620         if (tree.expr != null) {
1621             Assert.check(code.isStatementStart());
1622             Item r = genExpr(tree.expr, pt).load();
1623             if (hasFinally(env.enclMethod, env)) {
1624                 r = makeTemp(pt);
1625                 r.store();
1626             }
1627             targetEnv = unwind(env.enclMethod, env);
1628             code.pendingStatPos = tmpPos;
1629             r.load();
1630             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1631         } else {
1632             targetEnv = unwind(env.enclMethod, env);
1633             code.pendingStatPos = tmpPos;
1634             code.emitop0(return_);
1635         }
1636         endFinalizerGaps(env, targetEnv);
1637         code.endScopes(limit);
1638     }
1639 
1640     public void visitThrow(JCThrow tree) {
1641         Assert.check(code.isStatementStart());
1642         genExpr(tree.expr, tree.expr.type).load();
1643         code.emitop0(athrow);
1644         Assert.check(code.isStatementStart());
1645     }
1646 
1647 /* ************************************************************************
1648  * Visitor methods for expressions
1649  *************************************************************************/
1650 
1651     public void visitApply(JCMethodInvocation tree) {
1652         setTypeAnnotationPositions(tree.pos);
1653         // Generate code for method.
1654         Item m = genExpr(tree.meth, methodType);
1655         // Generate code for all arguments, where the expected types are
1656         // the parameters of the method's external type (that is, any implicit
1657         // outer instance of a super(...) call appears as first parameter).
1658         MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1659         genArgs(tree.args,
1660                 msym.externalType(types).getParameterTypes());
1661         if (!msym.isDynamic()) {
1662             code.statBegin(tree.pos);
1663         }
1664         result = m.invoke();
1665     }
1666 
1667     public void visitConditional(JCConditional tree) {
1668         Chain thenExit = null;
1669         code.statBegin(tree.cond.pos);
1670         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1671         Chain elseChain = c.jumpFalse();
1672         if (!c.isFalse()) {
1673             code.resolve(c.trueJumps);
1674             int startpc = genCrt ? code.curCP() : 0;
1675             code.statBegin(tree.truepart.pos);
1676             genExpr(tree.truepart, pt).load();
1677             code.state.forceStackTop(tree.type);
1678             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1679                                      startpc, code.curCP());
1680             thenExit = code.branch(goto_);
1681         }
1682         if (elseChain != null) {
1683             code.resolve(elseChain);
1684             int startpc = genCrt ? code.curCP() : 0;
1685             code.statBegin(tree.falsepart.pos);
1686             genExpr(tree.falsepart, pt).load();
1687             code.state.forceStackTop(tree.type);
1688             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1689                                      startpc, code.curCP());
1690         }
1691         code.resolve(thenExit);
1692         result = items.makeStackItem(pt);
1693     }
1694 
1695     private void setTypeAnnotationPositions(int treePos) {
1696         MethodSymbol meth = code.meth;
1697         boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
1698                 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
1699 
1700         for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
1701             if (ta.hasUnknownPosition())
1702                 ta.tryFixPosition();
1703 
1704             if (ta.position.matchesPos(treePos))
1705                 ta.position.updatePosOffset(code.cp);
1706         }
1707 
1708         if (!initOrClinit)
1709             return;
1710 
1711         for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
1712             if (ta.hasUnknownPosition())
1713                 ta.tryFixPosition();
1714 
1715             if (ta.position.matchesPos(treePos))
1716                 ta.position.updatePosOffset(code.cp);
1717         }
1718 
1719         ClassSymbol clazz = meth.enclClass();
1720         for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
1721             if (!s.getKind().isField())
1722                 continue;
1723 
1724             for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
1725                 if (ta.hasUnknownPosition())
1726                     ta.tryFixPosition();
1727 
1728                 if (ta.position.matchesPos(treePos))
1729                     ta.position.updatePosOffset(code.cp);
1730             }
1731         }
1732     }
1733 
1734     public void visitNewClass(JCNewClass tree) {
1735         // Enclosing instances or anonymous classes should have been eliminated
1736         // by now.
1737         Assert.check(tree.encl == null && tree.def == null);
1738         setTypeAnnotationPositions(tree.pos);
1739 
1740         code.emitop2(new_, makeRef(tree.pos(), tree.type));
1741         code.emitop0(dup);
1742 
1743         // Generate code for all arguments, where the expected types are
1744         // the parameters of the constructor's external type (that is,
1745         // any implicit outer instance appears as first parameter).
1746         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
1747 
1748         items.makeMemberItem(tree.constructor, true).invoke();
1749         result = items.makeStackItem(tree.type);
1750     }
1751 
1752     public void visitNewArray(JCNewArray tree) {
1753         setTypeAnnotationPositions(tree.pos);
1754 
1755         if (tree.elems != null) {
1756             Type elemtype = types.elemtype(tree.type);
1757             loadIntConst(tree.elems.length());
1758             Item arr = makeNewArray(tree.pos(), tree.type, 1);
1759             int i = 0;
1760             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
1761                 arr.duplicate();
1762                 loadIntConst(i);
1763                 i++;
1764                 genExpr(l.head, elemtype).load();
1765                 items.makeIndexedItem(elemtype).store();
1766             }
1767             result = arr;
1768         } else {
1769             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1770                 genExpr(l.head, syms.intType).load();
1771             }
1772             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
1773         }
1774     }
1775 //where
1776         /** Generate code to create an array with given element type and number
1777          *  of dimensions.
1778          */
1779         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
1780             Type elemtype = types.elemtype(type);
1781             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
1782                 log.error(pos, Errors.LimitDimensions);
1783                 nerrs++;
1784             }
1785             int elemcode = Code.arraycode(elemtype);
1786             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
1787                 code.emitAnewarray(makeRef(pos, elemtype), type);
1788             } else if (elemcode == 1) {
1789                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
1790             } else {
1791                 code.emitNewarray(elemcode, type);
1792             }
1793             return items.makeStackItem(type);
1794         }
1795 
1796     public void visitParens(JCParens tree) {
1797         result = genExpr(tree.expr, tree.expr.type);
1798     }
1799 
1800     public void visitAssign(JCAssign tree) {
1801         Item l = genExpr(tree.lhs, tree.lhs.type);
1802         genExpr(tree.rhs, tree.lhs.type).load();
1803         if (tree.rhs.type.hasTag(BOT)) {
1804             /* This is just a case of widening reference conversion that per 5.1.5 simply calls
1805                for "regarding a reference as having some other type in a manner that can be proved
1806                correct at compile time."
1807             */
1808             code.state.forceStackTop(tree.lhs.type);
1809         }
1810         result = items.makeAssignItem(l);
1811     }
1812 
1813     public void visitAssignop(JCAssignOp tree) {
1814         OperatorSymbol operator = tree.operator;
1815         Item l;
1816         if (operator.opcode == string_add) {
1817             l = concat.makeConcat(tree);
1818         } else {
1819             // Generate code for first expression
1820             l = genExpr(tree.lhs, tree.lhs.type);
1821 
1822             // If we have an increment of -32768 to +32767 of a local
1823             // int variable we can use an incr instruction instead of
1824             // proceeding further.
1825             if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
1826                 l instanceof LocalItem &&
1827                 tree.lhs.type.getTag().isSubRangeOf(INT) &&
1828                 tree.rhs.type.getTag().isSubRangeOf(INT) &&
1829                 tree.rhs.type.constValue() != null) {
1830                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
1831                 if (tree.hasTag(MINUS_ASG)) ival = -ival;
1832                 ((LocalItem)l).incr(ival);
1833                 result = l;
1834                 return;
1835             }
1836             // Otherwise, duplicate expression, load one copy
1837             // and complete binary operation.
1838             l.duplicate();
1839             l.coerce(operator.type.getParameterTypes().head).load();
1840             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
1841         }
1842         result = items.makeAssignItem(l);
1843     }
1844 
1845     public void visitUnary(JCUnary tree) {
1846         OperatorSymbol operator = tree.operator;
1847         if (tree.hasTag(NOT)) {
1848             CondItem od = genCond(tree.arg, false);
1849             result = od.negate();
1850         } else {
1851             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
1852             switch (tree.getTag()) {
1853             case POS:
1854                 result = od.load();
1855                 break;
1856             case NEG:
1857                 result = od.load();
1858                 code.emitop0(operator.opcode);
1859                 break;
1860             case COMPL:
1861                 result = od.load();
1862                 emitMinusOne(od.typecode);
1863                 code.emitop0(operator.opcode);
1864                 break;
1865             case PREINC: case PREDEC:
1866                 od.duplicate();
1867                 if (od instanceof LocalItem &&
1868                     (operator.opcode == iadd || operator.opcode == isub)) {
1869                     ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1);
1870                     result = od;
1871                 } else {
1872                     od.load();
1873                     code.emitop0(one(od.typecode));
1874                     code.emitop0(operator.opcode);
1875                     // Perform narrowing primitive conversion if byte,
1876                     // char, or short.  Fix for 4304655.
1877                     if (od.typecode != INTcode &&
1878                         Code.truncate(od.typecode) == INTcode)
1879                       code.emitop0(int2byte + od.typecode - BYTEcode);
1880                     result = items.makeAssignItem(od);
1881                 }
1882                 break;
1883             case POSTINC: case POSTDEC:
1884                 od.duplicate();
1885                 if (od instanceof LocalItem &&
1886                     (operator.opcode == iadd || operator.opcode == isub)) {
1887                     Item res = od.load();
1888                     ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1);
1889                     result = res;
1890                 } else {
1891                     Item res = od.load();
1892                     od.stash(od.typecode);
1893                     code.emitop0(one(od.typecode));
1894                     code.emitop0(operator.opcode);
1895                     // Perform narrowing primitive conversion if byte,
1896                     // char, or short.  Fix for 4304655.
1897                     if (od.typecode != INTcode &&
1898                         Code.truncate(od.typecode) == INTcode)
1899                       code.emitop0(int2byte + od.typecode - BYTEcode);
1900                     od.store();
1901                     result = res;
1902                 }
1903                 break;
1904             case NULLCHK:
1905                 result = od.load();
1906                 code.emitop0(dup);
1907                 genNullCheck(tree);
1908                 break;
1909             default:
1910                 Assert.error();
1911             }
1912         }
1913     }
1914 
1915     /** Generate a null check from the object value at stack top. */
1916     private void genNullCheck(JCTree tree) {
1917         code.statBegin(tree.pos);
1918         callMethod(tree.pos(), syms.objectsType, names.requireNonNull,
1919                    List.of(syms.objectType), true);
1920         code.emitop0(pop);
1921     }
1922 
1923     public void visitBinary(JCBinary tree) {
1924         OperatorSymbol operator = tree.operator;
1925         if (operator.opcode == string_add) {
1926             result = concat.makeConcat(tree);
1927         } else if (tree.hasTag(AND)) {
1928             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
1929             if (!lcond.isFalse()) {
1930                 Chain falseJumps = lcond.jumpFalse();
1931                 code.resolve(lcond.trueJumps);
1932                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
1933                 result = items.
1934                     makeCondItem(rcond.opcode,
1935                                  rcond.trueJumps,
1936                                  Code.mergeChains(falseJumps,
1937                                                   rcond.falseJumps));
1938             } else {
1939                 result = lcond;
1940             }
1941         } else if (tree.hasTag(OR)) {
1942             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
1943             if (!lcond.isTrue()) {
1944                 Chain trueJumps = lcond.jumpTrue();
1945                 code.resolve(lcond.falseJumps);
1946                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
1947                 result = items.
1948                     makeCondItem(rcond.opcode,
1949                                  Code.mergeChains(trueJumps, rcond.trueJumps),
1950                                  rcond.falseJumps);
1951             } else {
1952                 result = lcond;
1953             }
1954         } else {
1955             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
1956             od.load();
1957             result = completeBinop(tree.lhs, tree.rhs, operator);
1958         }
1959     }
1960 
1961 
1962         /** Complete generating code for operation, with left operand
1963          *  already on stack.
1964          *  @param lhs       The tree representing the left operand.
1965          *  @param rhs       The tree representing the right operand.
1966          *  @param operator  The operator symbol.
1967          */
1968         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
1969             MethodType optype = (MethodType)operator.type;
1970             int opcode = operator.opcode;
1971             if (opcode >= if_icmpeq && opcode <= if_icmple &&
1972                 rhs.type.constValue() instanceof Number &&
1973                 ((Number) rhs.type.constValue()).intValue() == 0) {
1974                 opcode = opcode + (ifeq - if_icmpeq);
1975             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
1976                        TreeInfo.isNull(rhs)) {
1977                 opcode = opcode + (if_acmp_null - if_acmpeq);
1978             } else {
1979                 // The expected type of the right operand is
1980                 // the second parameter type of the operator, except for
1981                 // shifts with long shiftcount, where we convert the opcode
1982                 // to a short shift and the expected type to int.
1983                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
1984                 if (opcode >= ishll && opcode <= lushrl) {
1985                     opcode = opcode + (ishl - ishll);
1986                     rtype = syms.intType;
1987                 }
1988                 // Generate code for right operand and load.
1989                 genExpr(rhs, rtype).load();
1990                 // If there are two consecutive opcode instructions,
1991                 // emit the first now.
1992                 if (opcode >= (1 << preShift)) {
1993                     code.emitop0(opcode >> preShift);
1994                     opcode = opcode & 0xFF;
1995                 }
1996             }
1997             if (opcode >= ifeq && opcode <= if_acmpne ||
1998                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
1999                 return items.makeCondItem(opcode);
2000             } else {
2001                 code.emitop0(opcode);
2002                 return items.makeStackItem(optype.restype);
2003             }
2004         }
2005 
2006     public void visitTypeCast(JCTypeCast tree) {
2007         result = genExpr(tree.expr, tree.clazz.type).load();
2008         setTypeAnnotationPositions(tree.pos);
2009         // Additional code is only needed if we cast to a reference type
2010         // which is not statically a supertype of the expression's type.
2011         // For basic types, the coerce(...) in genExpr(...) will do
2012         // the conversion.
2013         if (!tree.clazz.type.isPrimitive() &&
2014            !types.isSameType(tree.expr.type, tree.clazz.type) &&
2015            types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2016             code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
2017         }
2018     }
2019 
2020     public void visitWildcard(JCWildcard tree) {
2021         throw new AssertionError(this.getClass().getName());
2022     }
2023 
2024     public void visitTypeTest(JCInstanceOf tree) {
2025         genExpr(tree.expr, tree.expr.type).load();
2026         setTypeAnnotationPositions(tree.pos);
2027         code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
2028         result = items.makeStackItem(syms.booleanType);
2029     }
2030 
2031     public void visitIndexed(JCArrayAccess tree) {
2032         genExpr(tree.indexed, tree.indexed.type).load();
2033         genExpr(tree.index, syms.intType).load();
2034         result = items.makeIndexedItem(tree.type);
2035     }
2036 
2037     public void visitIdent(JCIdent tree) {
2038         Symbol sym = tree.sym;
2039         if (tree.name == names._this || tree.name == names._super) {
2040             Item res = tree.name == names._this
2041                 ? items.makeThisItem()
2042                 : items.makeSuperItem();
2043             if (sym.kind == MTH) {
2044                 // Generate code to address the constructor.
2045                 res.load();
2046                 res = items.makeMemberItem(sym, true);
2047             }
2048             result = res;
2049         } else if (sym.kind == VAR && sym.owner.kind == MTH) {
2050             result = items.makeLocalItem((VarSymbol)sym);
2051         } else if (isInvokeDynamic(sym)) {
2052             result = items.makeDynamicItem(sym);
2053         } else if ((sym.flags() & STATIC) != 0) {
2054             if (!isAccessSuper(env.enclMethod))
2055                 sym = binaryQualifier(sym, env.enclClass.type);
2056             result = items.makeStaticItem(sym);
2057         } else {
2058             items.makeThisItem().load();
2059             sym = binaryQualifier(sym, env.enclClass.type);
2060             result = items.makeMemberItem(sym, nonVirtualForPrivateAccess(sym));
2061         }
2062     }
2063 
2064     //where
2065     private boolean nonVirtualForPrivateAccess(Symbol sym) {
2066         boolean useVirtual = target.hasVirtualPrivateInvoke() &&
2067                              !disableVirtualizedPrivateInvoke;
2068         return !useVirtual && ((sym.flags() & PRIVATE) != 0);
2069     }
2070 
2071     public void visitSelect(JCFieldAccess tree) {
2072         Symbol sym = tree.sym;
2073 
2074         if (tree.name == names._class) {
2075             code.emitLdc(makeRef(tree.pos(), tree.selected.type));
2076             result = items.makeStackItem(pt);
2077             return;
2078        }
2079 
2080         Symbol ssym = TreeInfo.symbol(tree.selected);
2081 
2082         // Are we selecting via super?
2083         boolean selectSuper =
2084             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2085 
2086         // Are we accessing a member of the superclass in an access method
2087         // resulting from a qualified super?
2088         boolean accessSuper = isAccessSuper(env.enclMethod);
2089 
2090         Item base = (selectSuper)
2091             ? items.makeSuperItem()
2092             : genExpr(tree.selected, tree.selected.type);
2093 
2094         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2095             // We are seeing a variable that is constant but its selecting
2096             // expression is not.
2097             if ((sym.flags() & STATIC) != 0) {
2098                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2099                     base = base.load();
2100                 base.drop();
2101             } else {
2102                 base.load();
2103                 genNullCheck(tree.selected);
2104             }
2105             result = items.
2106                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2107         } else {
2108             if (isInvokeDynamic(sym)) {
2109                 result = items.makeDynamicItem(sym);
2110                 return;
2111             } else {
2112                 sym = binaryQualifier(sym, tree.selected.type);
2113             }
2114             if ((sym.flags() & STATIC) != 0) {
2115                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2116                     base = base.load();
2117                 base.drop();
2118                 result = items.makeStaticItem(sym);
2119             } else {
2120                 base.load();
2121                 if (sym == syms.lengthVar) {
2122                     code.emitop0(arraylength);
2123                     result = items.makeStackItem(syms.intType);
2124                 } else {
2125                     result = items.
2126                         makeMemberItem(sym,
2127                                        nonVirtualForPrivateAccess(sym) ||
2128                                        selectSuper || accessSuper);
2129                 }
2130             }
2131         }
2132     }
2133 
2134     public boolean isInvokeDynamic(Symbol sym) {
2135         return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2136     }
2137 
2138     public void visitLiteral(JCLiteral tree) {
2139         if (tree.type.hasTag(BOT)) {
2140             code.emitop0(aconst_null);
2141             result = items.makeStackItem(tree.type);
2142         }
2143         else
2144             result = items.makeImmediateItem(tree.type, tree.value);
2145     }
2146 
2147     public void visitLetExpr(LetExpr tree) {
2148         int limit = code.nextreg;
2149         int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
2150         try {
2151             genStats(tree.defs, env);
2152         } finally {
2153             code.setLetExprStackPos(prevLetExprStart);
2154         }
2155         result = genExpr(tree.expr, tree.expr.type).load();
2156         code.endScopes(limit);
2157     }
2158 
2159     private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) {
2160         List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2161         if (prunedInfo != null) {
2162             for (JCTree prunedTree: prunedInfo) {
2163                 prunedTree.accept(classReferenceVisitor);
2164             }
2165         }
2166     }
2167 
2168 /* ************************************************************************
2169  * main method
2170  *************************************************************************/
2171 
2172     /** Generate code for a class definition.
2173      *  @param env   The attribution environment that belongs to the
2174      *               outermost class containing this class definition.
2175      *               We need this for resolving some additional symbols.
2176      *  @param cdef  The tree representing the class definition.
2177      *  @return      True if code is generated with no errors.
2178      */
2179     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2180         try {
2181             attrEnv = env;
2182             ClassSymbol c = cdef.sym;
2183             this.toplevel = env.toplevel;
2184             this.endPosTable = toplevel.endPositions;
2185             c.pool = pool;
2186             pool.reset();
2187             /* method normalizeDefs() can add references to external classes into the constant pool
2188              */
2189             cdef.defs = normalizeDefs(cdef.defs, c);
2190             generateReferencesToPrunedTree(c, pool);
2191             Env<GenContext> localEnv = new Env<>(cdef, new GenContext());
2192             localEnv.toplevel = env.toplevel;
2193             localEnv.enclClass = cdef;
2194 
2195             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2196                 genDef(l.head, localEnv);
2197             }
2198             if (pool.numEntries() > Pool.MAX_ENTRIES) {
2199                 log.error(cdef.pos(), Errors.LimitPool);
2200                 nerrs++;
2201             }
2202             if (nerrs != 0) {
2203                 // if errors, discard code
2204                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2205                     if (l.head.hasTag(METHODDEF))
2206                         ((JCMethodDecl) l.head).sym.code = null;
2207                 }
2208             }
2209             cdef.defs = List.nil(); // discard trees
2210             return nerrs == 0;
2211         } finally {
2212             // note: this method does NOT support recursion.
2213             attrEnv = null;
2214             this.env = null;
2215             toplevel = null;
2216             endPosTable = null;
2217             nerrs = 0;
2218         }
2219     }
2220 
2221 /* ************************************************************************
2222  * Auxiliary classes
2223  *************************************************************************/
2224 
2225     /** An abstract class for finalizer generation.
2226      */
2227     abstract class GenFinalizer {
2228         /** Generate code to clean up when unwinding. */
2229         abstract void gen();
2230 
2231         /** Generate code to clean up at last. */
2232         abstract void genLast();
2233 
2234         /** Does this finalizer have some nontrivial cleanup to perform? */
2235         boolean hasFinalizer() { return true; }
2236 
2237         /** Should be invoked after the try's body has been visited. */
2238         void afterBody() {}
2239     }
2240 
2241     /** code generation contexts,
2242      *  to be used as type parameter for environments.
2243      */
2244     static class GenContext {
2245 
2246         /** A chain for all unresolved jumps that exit the current environment.
2247          */
2248         Chain exit = null;
2249 
2250         /** A chain for all unresolved jumps that continue in the
2251          *  current environment.
2252          */
2253         Chain cont = null;
2254 
2255         /** A closure that generates the finalizer of the current environment.
2256          *  Only set for Synchronized and Try contexts.
2257          */
2258         GenFinalizer finalize = null;
2259 
2260         /** Is this a switch statement?  If so, allocate registers
2261          * even when the variable declaration is unreachable.
2262          */
2263         boolean isSwitch = false;
2264 
2265         /** A list buffer containing all gaps in the finalizer range,
2266          *  where a catch all exception should not apply.
2267          */
2268         ListBuffer<Integer> gaps = null;
2269 
2270         /** Add given chain to exit chain.
2271          */
2272         void addExit(Chain c)  {
2273             exit = Code.mergeChains(c, exit);
2274         }
2275 
2276         /** Add given chain to cont chain.
2277          */
2278         void addCont(Chain c) {
2279             cont = Code.mergeChains(c, cont);
2280         }
2281     }
2282 
2283 }