1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <sys/types.h>
  76 # include <sys/mman.h>
  77 # include <sys/stat.h>
  78 # include <sys/select.h>
  79 # include <pthread.h>
  80 # include <signal.h>
  81 # include <errno.h>
  82 # include <dlfcn.h>
  83 # include <stdio.h>
  84 # include <unistd.h>
  85 # include <sys/resource.h>
  86 # include <pthread.h>
  87 # include <sys/stat.h>
  88 # include <sys/time.h>
  89 # include <sys/times.h>
  90 # include <sys/utsname.h>
  91 # include <sys/socket.h>
  92 # include <sys/wait.h>
  93 # include <pwd.h>
  94 # include <poll.h>
  95 # include <semaphore.h>
  96 # include <fcntl.h>
  97 # include <string.h>
  98 # include <syscall.h>
  99 # include <sys/sysinfo.h>
 100 # include <gnu/libc-version.h>
 101 # include <sys/ipc.h>
 102 # include <sys/shm.h>
 103 # include <link.h>
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 
 108 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 109 
 110 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 #define MAX_PATH    (2 * K)
 117 
 118 #define MAX_SECS 100000000
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 #define LARGEPAGES_BIT (1 << 6)
 124 ////////////////////////////////////////////////////////////////////////////////
 125 // global variables
 126 julong os::Linux::_physical_memory = 0;
 127 
 128 address   os::Linux::_initial_thread_stack_bottom = NULL;
 129 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 130 
 131 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 132 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 133 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 134 Mutex* os::Linux::_createThread_lock = NULL;
 135 pthread_t os::Linux::_main_thread;
 136 int os::Linux::_page_size = -1;
 137 const int os::Linux::_vm_default_page_size = (8 * K);
 138 bool os::Linux::_is_floating_stack = false;
 139 bool os::Linux::_is_NPTL = false;
 140 bool os::Linux::_supports_fast_thread_cpu_time = false;
 141 const char * os::Linux::_glibc_version = NULL;
 142 const char * os::Linux::_libpthread_version = NULL;
 143 pthread_condattr_t os::Linux::_condattr[1];
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 // Used to protect dlsym() calls
 162 static pthread_mutex_t dl_mutex;
 163 
 164 // Declarations
 165 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 166 
 167 // utility functions
 168 
 169 static int SR_initialize();
 170 
 171 julong os::available_memory() {
 172   return Linux::available_memory();
 173 }
 174 
 175 julong os::Linux::available_memory() {
 176   // values in struct sysinfo are "unsigned long"
 177   struct sysinfo si;
 178   sysinfo(&si);
 179 
 180   return (julong)si.freeram * si.mem_unit;
 181 }
 182 
 183 julong os::physical_memory() {
 184   return Linux::physical_memory();
 185 }
 186 
 187 // Return true if user is running as root.
 188 
 189 bool os::have_special_privileges() {
 190   static bool init = false;
 191   static bool privileges = false;
 192   if (!init) {
 193     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 194     init = true;
 195   }
 196   return privileges;
 197 }
 198 
 199 
 200 #ifndef SYS_gettid
 201 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 202   #ifdef __ia64__
 203     #define SYS_gettid 1105
 204   #elif __i386__
 205     #define SYS_gettid 224
 206   #elif __amd64__
 207     #define SYS_gettid 186
 208   #elif __sparc__
 209     #define SYS_gettid 143
 210   #else
 211     #error define gettid for the arch
 212   #endif
 213 #endif
 214 
 215 // Cpu architecture string
 216 #if   defined(ZERO)
 217 static char cpu_arch[] = ZERO_LIBARCH;
 218 #elif defined(IA64)
 219 static char cpu_arch[] = "ia64";
 220 #elif defined(IA32)
 221 static char cpu_arch[] = "i386";
 222 #elif defined(AMD64)
 223 static char cpu_arch[] = "amd64";
 224 #elif defined(ARM)
 225 static char cpu_arch[] = "arm";
 226 #elif defined(PPC32)
 227 static char cpu_arch[] = "ppc";
 228 #elif defined(PPC64)
 229 static char cpu_arch[] = "ppc64";
 230 #elif defined(SPARC)
 231   #ifdef _LP64
 232 static char cpu_arch[] = "sparcv9";
 233   #else
 234 static char cpu_arch[] = "sparc";
 235   #endif
 236 #else
 237   #error Add appropriate cpu_arch setting
 238 #endif
 239 
 240 
 241 // pid_t gettid()
 242 //
 243 // Returns the kernel thread id of the currently running thread. Kernel
 244 // thread id is used to access /proc.
 245 //
 246 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 247 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 248 //
 249 pid_t os::Linux::gettid() {
 250   int rslt = syscall(SYS_gettid);
 251   if (rslt == -1) {
 252     // old kernel, no NPTL support
 253     return getpid();
 254   } else {
 255     return (pid_t)rslt;
 256   }
 257 }
 258 
 259 // Most versions of linux have a bug where the number of processors are
 260 // determined by looking at the /proc file system.  In a chroot environment,
 261 // the system call returns 1.  This causes the VM to act as if it is
 262 // a single processor and elide locking (see is_MP() call).
 263 static bool unsafe_chroot_detected = false;
 264 static const char *unstable_chroot_error = "/proc file system not found.\n"
 265                      "Java may be unstable running multithreaded in a chroot "
 266                      "environment on Linux when /proc filesystem is not mounted.";
 267 
 268 void os::Linux::initialize_system_info() {
 269   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 270   if (processor_count() == 1) {
 271     pid_t pid = os::Linux::gettid();
 272     char fname[32];
 273     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 274     FILE *fp = fopen(fname, "r");
 275     if (fp == NULL) {
 276       unsafe_chroot_detected = true;
 277     } else {
 278       fclose(fp);
 279     }
 280   }
 281   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 282   assert(processor_count() > 0, "linux error");
 283 }
 284 
 285 void os::init_system_properties_values() {
 286   // The next steps are taken in the product version:
 287   //
 288   // Obtain the JAVA_HOME value from the location of libjvm.so.
 289   // This library should be located at:
 290   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 291   //
 292   // If "/jre/lib/" appears at the right place in the path, then we
 293   // assume libjvm.so is installed in a JDK and we use this path.
 294   //
 295   // Otherwise exit with message: "Could not create the Java virtual machine."
 296   //
 297   // The following extra steps are taken in the debugging version:
 298   //
 299   // If "/jre/lib/" does NOT appear at the right place in the path
 300   // instead of exit check for $JAVA_HOME environment variable.
 301   //
 302   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 303   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 304   // it looks like libjvm.so is installed there
 305   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 306   //
 307   // Otherwise exit.
 308   //
 309   // Important note: if the location of libjvm.so changes this
 310   // code needs to be changed accordingly.
 311 
 312   // See ld(1):
 313   //      The linker uses the following search paths to locate required
 314   //      shared libraries:
 315   //        1: ...
 316   //        ...
 317   //        7: The default directories, normally /lib and /usr/lib.
 318 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 319   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 320 #else
 321   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 322 #endif
 323 
 324 // Base path of extensions installed on the system.
 325 #define SYS_EXT_DIR     "/usr/java/packages"
 326 #define EXTENSIONS_DIR  "/lib/ext"
 327 
 328   // Buffer that fits several sprintfs.
 329   // Note that the space for the colon and the trailing null are provided
 330   // by the nulls included by the sizeof operator.
 331   const size_t bufsize =
 332     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 333          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 334   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 335 
 336   // sysclasspath, java_home, dll_dir
 337   {
 338     char *pslash;
 339     os::jvm_path(buf, bufsize);
 340 
 341     // Found the full path to libjvm.so.
 342     // Now cut the path to <java_home>/jre if we can.
 343     pslash = strrchr(buf, '/');
 344     if (pslash != NULL) {
 345       *pslash = '\0';            // Get rid of /libjvm.so.
 346     }
 347     pslash = strrchr(buf, '/');
 348     if (pslash != NULL) {
 349       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 350     }
 351     Arguments::set_dll_dir(buf);
 352 
 353     if (pslash != NULL) {
 354       pslash = strrchr(buf, '/');
 355       if (pslash != NULL) {
 356         *pslash = '\0';          // Get rid of /<arch>.
 357         pslash = strrchr(buf, '/');
 358         if (pslash != NULL) {
 359           *pslash = '\0';        // Get rid of /lib.
 360         }
 361       }
 362     }
 363     Arguments::set_java_home(buf);
 364     set_boot_path('/', ':');
 365   }
 366 
 367   // Where to look for native libraries.
 368   //
 369   // Note: Due to a legacy implementation, most of the library path
 370   // is set in the launcher. This was to accomodate linking restrictions
 371   // on legacy Linux implementations (which are no longer supported).
 372   // Eventually, all the library path setting will be done here.
 373   //
 374   // However, to prevent the proliferation of improperly built native
 375   // libraries, the new path component /usr/java/packages is added here.
 376   // Eventually, all the library path setting will be done here.
 377   {
 378     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 379     // should always exist (until the legacy problem cited above is
 380     // addressed).
 381     const char *v = ::getenv("LD_LIBRARY_PATH");
 382     const char *v_colon = ":";
 383     if (v == NULL) { v = ""; v_colon = ""; }
 384     // That's +1 for the colon and +1 for the trailing '\0'.
 385     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 386                                                      strlen(v) + 1 +
 387                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 388                                                      mtInternal);
 389     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 390     Arguments::set_library_path(ld_library_path);
 391     FREE_C_HEAP_ARRAY(char, ld_library_path);
 392   }
 393 
 394   // Extensions directories.
 395   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 396   Arguments::set_ext_dirs(buf);
 397 
 398   FREE_C_HEAP_ARRAY(char, buf);
 399 
 400 #undef DEFAULT_LIBPATH
 401 #undef SYS_EXT_DIR
 402 #undef EXTENSIONS_DIR
 403 }
 404 
 405 ////////////////////////////////////////////////////////////////////////////////
 406 // breakpoint support
 407 
 408 void os::breakpoint() {
 409   BREAKPOINT;
 410 }
 411 
 412 extern "C" void breakpoint() {
 413   // use debugger to set breakpoint here
 414 }
 415 
 416 ////////////////////////////////////////////////////////////////////////////////
 417 // signal support
 418 
 419 debug_only(static bool signal_sets_initialized = false);
 420 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 421 
 422 bool os::Linux::is_sig_ignored(int sig) {
 423   struct sigaction oact;
 424   sigaction(sig, (struct sigaction*)NULL, &oact);
 425   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 426                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 427   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 428     return true;
 429   } else {
 430     return false;
 431   }
 432 }
 433 
 434 void os::Linux::signal_sets_init() {
 435   // Should also have an assertion stating we are still single-threaded.
 436   assert(!signal_sets_initialized, "Already initialized");
 437   // Fill in signals that are necessarily unblocked for all threads in
 438   // the VM. Currently, we unblock the following signals:
 439   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 440   //                         by -Xrs (=ReduceSignalUsage));
 441   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 442   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 443   // the dispositions or masks wrt these signals.
 444   // Programs embedding the VM that want to use the above signals for their
 445   // own purposes must, at this time, use the "-Xrs" option to prevent
 446   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 447   // (See bug 4345157, and other related bugs).
 448   // In reality, though, unblocking these signals is really a nop, since
 449   // these signals are not blocked by default.
 450   sigemptyset(&unblocked_sigs);
 451   sigemptyset(&allowdebug_blocked_sigs);
 452   sigaddset(&unblocked_sigs, SIGILL);
 453   sigaddset(&unblocked_sigs, SIGSEGV);
 454   sigaddset(&unblocked_sigs, SIGBUS);
 455   sigaddset(&unblocked_sigs, SIGFPE);
 456 #if defined(PPC64)
 457   sigaddset(&unblocked_sigs, SIGTRAP);
 458 #endif
 459   sigaddset(&unblocked_sigs, SR_signum);
 460 
 461   if (!ReduceSignalUsage) {
 462     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 463       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 464       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 465     }
 466     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 468       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 469     }
 470     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 471       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 472       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 473     }
 474   }
 475   // Fill in signals that are blocked by all but the VM thread.
 476   sigemptyset(&vm_sigs);
 477   if (!ReduceSignalUsage) {
 478     sigaddset(&vm_sigs, BREAK_SIGNAL);
 479   }
 480   debug_only(signal_sets_initialized = true);
 481 
 482 }
 483 
 484 // These are signals that are unblocked while a thread is running Java.
 485 // (For some reason, they get blocked by default.)
 486 sigset_t* os::Linux::unblocked_signals() {
 487   assert(signal_sets_initialized, "Not initialized");
 488   return &unblocked_sigs;
 489 }
 490 
 491 // These are the signals that are blocked while a (non-VM) thread is
 492 // running Java. Only the VM thread handles these signals.
 493 sigset_t* os::Linux::vm_signals() {
 494   assert(signal_sets_initialized, "Not initialized");
 495   return &vm_sigs;
 496 }
 497 
 498 // These are signals that are blocked during cond_wait to allow debugger in
 499 sigset_t* os::Linux::allowdebug_blocked_signals() {
 500   assert(signal_sets_initialized, "Not initialized");
 501   return &allowdebug_blocked_sigs;
 502 }
 503 
 504 void os::Linux::hotspot_sigmask(Thread* thread) {
 505 
 506   //Save caller's signal mask before setting VM signal mask
 507   sigset_t caller_sigmask;
 508   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 509 
 510   OSThread* osthread = thread->osthread();
 511   osthread->set_caller_sigmask(caller_sigmask);
 512 
 513   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 514 
 515   if (!ReduceSignalUsage) {
 516     if (thread->is_VM_thread()) {
 517       // Only the VM thread handles BREAK_SIGNAL ...
 518       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 519     } else {
 520       // ... all other threads block BREAK_SIGNAL
 521       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 522     }
 523   }
 524 }
 525 
 526 //////////////////////////////////////////////////////////////////////////////
 527 // detecting pthread library
 528 
 529 void os::Linux::libpthread_init() {
 530   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 531   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 532   // generic name for earlier versions.
 533   // Define macros here so we can build HotSpot on old systems.
 534 #ifndef _CS_GNU_LIBC_VERSION
 535   #define _CS_GNU_LIBC_VERSION 2
 536 #endif
 537 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 538   #define _CS_GNU_LIBPTHREAD_VERSION 3
 539 #endif
 540 
 541   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 542   if (n > 0) {
 543     char *str = (char *)malloc(n, mtInternal);
 544     confstr(_CS_GNU_LIBC_VERSION, str, n);
 545     os::Linux::set_glibc_version(str);
 546   } else {
 547     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 548     static char _gnu_libc_version[32];
 549     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 550                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 551     os::Linux::set_glibc_version(_gnu_libc_version);
 552   }
 553 
 554   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 555   if (n > 0) {
 556     char *str = (char *)malloc(n, mtInternal);
 557     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 558     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 559     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 560     // is the case. LinuxThreads has a hard limit on max number of threads.
 561     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 562     // On the other hand, NPTL does not have such a limit, sysconf()
 563     // will return -1 and errno is not changed. Check if it is really NPTL.
 564     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 565         strstr(str, "NPTL") &&
 566         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 567       free(str);
 568       os::Linux::set_libpthread_version("linuxthreads");
 569     } else {
 570       os::Linux::set_libpthread_version(str);
 571     }
 572   } else {
 573     // glibc before 2.3.2 only has LinuxThreads.
 574     os::Linux::set_libpthread_version("linuxthreads");
 575   }
 576 
 577   if (strstr(libpthread_version(), "NPTL")) {
 578     os::Linux::set_is_NPTL();
 579   } else {
 580     os::Linux::set_is_LinuxThreads();
 581   }
 582 
 583   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 584   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 585   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 586     os::Linux::set_is_floating_stack();
 587   }
 588 }
 589 
 590 /////////////////////////////////////////////////////////////////////////////
 591 // thread stack
 592 
 593 // Force Linux kernel to expand current thread stack. If "bottom" is close
 594 // to the stack guard, caller should block all signals.
 595 //
 596 // MAP_GROWSDOWN:
 597 //   A special mmap() flag that is used to implement thread stacks. It tells
 598 //   kernel that the memory region should extend downwards when needed. This
 599 //   allows early versions of LinuxThreads to only mmap the first few pages
 600 //   when creating a new thread. Linux kernel will automatically expand thread
 601 //   stack as needed (on page faults).
 602 //
 603 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 604 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 605 //   region, it's hard to tell if the fault is due to a legitimate stack
 606 //   access or because of reading/writing non-exist memory (e.g. buffer
 607 //   overrun). As a rule, if the fault happens below current stack pointer,
 608 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 609 //   application (see Linux kernel fault.c).
 610 //
 611 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 612 //   stack overflow detection.
 613 //
 614 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 615 //   not use this flag. However, the stack of initial thread is not created
 616 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 617 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 618 //   and then attach the thread to JVM.
 619 //
 620 // To get around the problem and allow stack banging on Linux, we need to
 621 // manually expand thread stack after receiving the SIGSEGV.
 622 //
 623 // There are two ways to expand thread stack to address "bottom", we used
 624 // both of them in JVM before 1.5:
 625 //   1. adjust stack pointer first so that it is below "bottom", and then
 626 //      touch "bottom"
 627 //   2. mmap() the page in question
 628 //
 629 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 630 // if current sp is already near the lower end of page 101, and we need to
 631 // call mmap() to map page 100, it is possible that part of the mmap() frame
 632 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 633 // That will destroy the mmap() frame and cause VM to crash.
 634 //
 635 // The following code works by adjusting sp first, then accessing the "bottom"
 636 // page to force a page fault. Linux kernel will then automatically expand the
 637 // stack mapping.
 638 //
 639 // _expand_stack_to() assumes its frame size is less than page size, which
 640 // should always be true if the function is not inlined.
 641 
 642 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 643   #define NOINLINE
 644 #else
 645   #define NOINLINE __attribute__ ((noinline))
 646 #endif
 647 
 648 static void _expand_stack_to(address bottom) NOINLINE;
 649 
 650 static void _expand_stack_to(address bottom) {
 651   address sp;
 652   size_t size;
 653   volatile char *p;
 654 
 655   // Adjust bottom to point to the largest address within the same page, it
 656   // gives us a one-page buffer if alloca() allocates slightly more memory.
 657   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 658   bottom += os::Linux::page_size() - 1;
 659 
 660   // sp might be slightly above current stack pointer; if that's the case, we
 661   // will alloca() a little more space than necessary, which is OK. Don't use
 662   // os::current_stack_pointer(), as its result can be slightly below current
 663   // stack pointer, causing us to not alloca enough to reach "bottom".
 664   sp = (address)&sp;
 665 
 666   if (sp > bottom) {
 667     size = sp - bottom;
 668     p = (volatile char *)alloca(size);
 669     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 670     p[0] = '\0';
 671   }
 672 }
 673 
 674 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 675   assert(t!=NULL, "just checking");
 676   assert(t->osthread()->expanding_stack(), "expand should be set");
 677   assert(t->stack_base() != NULL, "stack_base was not initialized");
 678 
 679   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 680     sigset_t mask_all, old_sigset;
 681     sigfillset(&mask_all);
 682     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 683     _expand_stack_to(addr);
 684     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 685     return true;
 686   }
 687   return false;
 688 }
 689 
 690 //////////////////////////////////////////////////////////////////////////////
 691 // create new thread
 692 
 693 static address highest_vm_reserved_address();
 694 
 695 // check if it's safe to start a new thread
 696 static bool _thread_safety_check(Thread* thread) {
 697   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 698     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 699     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 700     //   allocated (MAP_FIXED) from high address space. Every thread stack
 701     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 702     //   it to other values if they rebuild LinuxThreads).
 703     //
 704     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 705     // the memory region has already been mmap'ed. That means if we have too
 706     // many threads and/or very large heap, eventually thread stack will
 707     // collide with heap.
 708     //
 709     // Here we try to prevent heap/stack collision by comparing current
 710     // stack bottom with the highest address that has been mmap'ed by JVM
 711     // plus a safety margin for memory maps created by native code.
 712     //
 713     // This feature can be disabled by setting ThreadSafetyMargin to 0
 714     //
 715     if (ThreadSafetyMargin > 0) {
 716       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 717 
 718       // not safe if our stack extends below the safety margin
 719       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 720     } else {
 721       return true;
 722     }
 723   } else {
 724     // Floating stack LinuxThreads or NPTL:
 725     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 726     //   there's not enough space left, pthread_create() will fail. If we come
 727     //   here, that means enough space has been reserved for stack.
 728     return true;
 729   }
 730 }
 731 
 732 // Thread start routine for all newly created threads
 733 static void *java_start(Thread *thread) {
 734   // Try to randomize the cache line index of hot stack frames.
 735   // This helps when threads of the same stack traces evict each other's
 736   // cache lines. The threads can be either from the same JVM instance, or
 737   // from different JVM instances. The benefit is especially true for
 738   // processors with hyperthreading technology.
 739   static int counter = 0;
 740   int pid = os::current_process_id();
 741   alloca(((pid ^ counter++) & 7) * 128);
 742 
 743   ThreadLocalStorage::set_thread(thread);
 744 
 745   OSThread* osthread = thread->osthread();
 746   Monitor* sync = osthread->startThread_lock();
 747 
 748   // non floating stack LinuxThreads needs extra check, see above
 749   if (!_thread_safety_check(thread)) {
 750     // notify parent thread
 751     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 752     osthread->set_state(ZOMBIE);
 753     sync->notify_all();
 754     return NULL;
 755   }
 756 
 757   // thread_id is kernel thread id (similar to Solaris LWP id)
 758   osthread->set_thread_id(os::Linux::gettid());
 759 
 760   if (UseNUMA) {
 761     int lgrp_id = os::numa_get_group_id();
 762     if (lgrp_id != -1) {
 763       thread->set_lgrp_id(lgrp_id);
 764     }
 765   }
 766   // initialize signal mask for this thread
 767   os::Linux::hotspot_sigmask(thread);
 768 
 769   // initialize floating point control register
 770   os::Linux::init_thread_fpu_state();
 771 
 772   // handshaking with parent thread
 773   {
 774     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 775 
 776     // notify parent thread
 777     osthread->set_state(INITIALIZED);
 778     sync->notify_all();
 779 
 780     // wait until os::start_thread()
 781     while (osthread->get_state() == INITIALIZED) {
 782       sync->wait(Mutex::_no_safepoint_check_flag);
 783     }
 784   }
 785 
 786   // call one more level start routine
 787   thread->run();
 788 
 789   return 0;
 790 }
 791 
 792 bool os::create_thread(Thread* thread, ThreadType thr_type,
 793                        size_t stack_size) {
 794   assert(thread->osthread() == NULL, "caller responsible");
 795 
 796   // Allocate the OSThread object
 797   OSThread* osthread = new OSThread(NULL, NULL);
 798   if (osthread == NULL) {
 799     return false;
 800   }
 801 
 802   // set the correct thread state
 803   osthread->set_thread_type(thr_type);
 804 
 805   // Initial state is ALLOCATED but not INITIALIZED
 806   osthread->set_state(ALLOCATED);
 807 
 808   thread->set_osthread(osthread);
 809 
 810   // init thread attributes
 811   pthread_attr_t attr;
 812   pthread_attr_init(&attr);
 813   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 814 
 815   // stack size
 816   if (os::Linux::supports_variable_stack_size()) {
 817     // calculate stack size if it's not specified by caller
 818     if (stack_size == 0) {
 819       stack_size = os::Linux::default_stack_size(thr_type);
 820 
 821       switch (thr_type) {
 822       case os::java_thread:
 823         // Java threads use ThreadStackSize which default value can be
 824         // changed with the flag -Xss
 825         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 826         stack_size = JavaThread::stack_size_at_create();
 827         break;
 828       case os::compiler_thread:
 829         if (CompilerThreadStackSize > 0) {
 830           stack_size = (size_t)(CompilerThreadStackSize * K);
 831           break;
 832         } // else fall through:
 833           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 834       case os::vm_thread:
 835       case os::pgc_thread:
 836       case os::cgc_thread:
 837       case os::watcher_thread:
 838         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 839         break;
 840       }
 841     }
 842 
 843     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 844     pthread_attr_setstacksize(&attr, stack_size);
 845   } else {
 846     // let pthread_create() pick the default value.
 847   }
 848 
 849   // glibc guard page
 850   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 851 
 852   ThreadState state;
 853 
 854   {
 855     // Serialize thread creation if we are running with fixed stack LinuxThreads
 856     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 857     if (lock) {
 858       os::Linux::createThread_lock()->lock_without_safepoint_check();
 859     }
 860 
 861     pthread_t tid;
 862     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 863 
 864     pthread_attr_destroy(&attr);
 865 
 866     if (ret != 0) {
 867       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 868         perror("pthread_create()");
 869       }
 870       // Need to clean up stuff we've allocated so far
 871       thread->set_osthread(NULL);
 872       delete osthread;
 873       if (lock) os::Linux::createThread_lock()->unlock();
 874       return false;
 875     }
 876 
 877     // Store pthread info into the OSThread
 878     osthread->set_pthread_id(tid);
 879 
 880     // Wait until child thread is either initialized or aborted
 881     {
 882       Monitor* sync_with_child = osthread->startThread_lock();
 883       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 884       while ((state = osthread->get_state()) == ALLOCATED) {
 885         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 886       }
 887     }
 888 
 889     if (lock) {
 890       os::Linux::createThread_lock()->unlock();
 891     }
 892   }
 893 
 894   // Aborted due to thread limit being reached
 895   if (state == ZOMBIE) {
 896     thread->set_osthread(NULL);
 897     delete osthread;
 898     return false;
 899   }
 900 
 901   // The thread is returned suspended (in state INITIALIZED),
 902   // and is started higher up in the call chain
 903   assert(state == INITIALIZED, "race condition");
 904   return true;
 905 }
 906 
 907 /////////////////////////////////////////////////////////////////////////////
 908 // attach existing thread
 909 
 910 // bootstrap the main thread
 911 bool os::create_main_thread(JavaThread* thread) {
 912   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 913   return create_attached_thread(thread);
 914 }
 915 
 916 bool os::create_attached_thread(JavaThread* thread) {
 917 #ifdef ASSERT
 918   thread->verify_not_published();
 919 #endif
 920 
 921   // Allocate the OSThread object
 922   OSThread* osthread = new OSThread(NULL, NULL);
 923 
 924   if (osthread == NULL) {
 925     return false;
 926   }
 927 
 928   // Store pthread info into the OSThread
 929   osthread->set_thread_id(os::Linux::gettid());
 930   osthread->set_pthread_id(::pthread_self());
 931 
 932   // initialize floating point control register
 933   os::Linux::init_thread_fpu_state();
 934 
 935   // Initial thread state is RUNNABLE
 936   osthread->set_state(RUNNABLE);
 937 
 938   thread->set_osthread(osthread);
 939 
 940   if (UseNUMA) {
 941     int lgrp_id = os::numa_get_group_id();
 942     if (lgrp_id != -1) {
 943       thread->set_lgrp_id(lgrp_id);
 944     }
 945   }
 946 
 947   if (os::Linux::is_initial_thread()) {
 948     // If current thread is initial thread, its stack is mapped on demand,
 949     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 950     // the entire stack region to avoid SEGV in stack banging.
 951     // It is also useful to get around the heap-stack-gap problem on SuSE
 952     // kernel (see 4821821 for details). We first expand stack to the top
 953     // of yellow zone, then enable stack yellow zone (order is significant,
 954     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 955     // is no gap between the last two virtual memory regions.
 956 
 957     JavaThread *jt = (JavaThread *)thread;
 958     address addr = jt->stack_yellow_zone_base();
 959     assert(addr != NULL, "initialization problem?");
 960     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 961 
 962     osthread->set_expanding_stack();
 963     os::Linux::manually_expand_stack(jt, addr);
 964     osthread->clear_expanding_stack();
 965   }
 966 
 967   // initialize signal mask for this thread
 968   // and save the caller's signal mask
 969   os::Linux::hotspot_sigmask(thread);
 970 
 971   return true;
 972 }
 973 
 974 void os::pd_start_thread(Thread* thread) {
 975   OSThread * osthread = thread->osthread();
 976   assert(osthread->get_state() != INITIALIZED, "just checking");
 977   Monitor* sync_with_child = osthread->startThread_lock();
 978   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 979   sync_with_child->notify();
 980 }
 981 
 982 // Free Linux resources related to the OSThread
 983 void os::free_thread(OSThread* osthread) {
 984   assert(osthread != NULL, "osthread not set");
 985 
 986   if (Thread::current()->osthread() == osthread) {
 987     // Restore caller's signal mask
 988     sigset_t sigmask = osthread->caller_sigmask();
 989     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 990   }
 991 
 992   delete osthread;
 993 }
 994 
 995 //////////////////////////////////////////////////////////////////////////////
 996 // thread local storage
 997 
 998 // Restore the thread pointer if the destructor is called. This is in case
 999 // someone from JNI code sets up a destructor with pthread_key_create to run
1000 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1001 // will hang or crash. When detachCurrentThread is called the key will be set
1002 // to null and we will not be called again. If detachCurrentThread is never
1003 // called we could loop forever depending on the pthread implementation.
1004 static void restore_thread_pointer(void* p) {
1005   Thread* thread = (Thread*) p;
1006   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1007 }
1008 
1009 int os::allocate_thread_local_storage() {
1010   pthread_key_t key;
1011   int rslt = pthread_key_create(&key, restore_thread_pointer);
1012   assert(rslt == 0, "cannot allocate thread local storage");
1013   return (int)key;
1014 }
1015 
1016 // Note: This is currently not used by VM, as we don't destroy TLS key
1017 // on VM exit.
1018 void os::free_thread_local_storage(int index) {
1019   int rslt = pthread_key_delete((pthread_key_t)index);
1020   assert(rslt == 0, "invalid index");
1021 }
1022 
1023 void os::thread_local_storage_at_put(int index, void* value) {
1024   int rslt = pthread_setspecific((pthread_key_t)index, value);
1025   assert(rslt == 0, "pthread_setspecific failed");
1026 }
1027 
1028 extern "C" Thread* get_thread() {
1029   return ThreadLocalStorage::thread();
1030 }
1031 
1032 //////////////////////////////////////////////////////////////////////////////
1033 // initial thread
1034 
1035 // Check if current thread is the initial thread, similar to Solaris thr_main.
1036 bool os::Linux::is_initial_thread(void) {
1037   char dummy;
1038   // If called before init complete, thread stack bottom will be null.
1039   // Can be called if fatal error occurs before initialization.
1040   if (initial_thread_stack_bottom() == NULL) return false;
1041   assert(initial_thread_stack_bottom() != NULL &&
1042          initial_thread_stack_size()   != 0,
1043          "os::init did not locate initial thread's stack region");
1044   if ((address)&dummy >= initial_thread_stack_bottom() &&
1045       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1046     return true;
1047   } else {
1048     return false;
1049   }
1050 }
1051 
1052 // Find the virtual memory area that contains addr
1053 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1054   FILE *fp = fopen("/proc/self/maps", "r");
1055   if (fp) {
1056     address low, high;
1057     while (!feof(fp)) {
1058       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1059         if (low <= addr && addr < high) {
1060           if (vma_low)  *vma_low  = low;
1061           if (vma_high) *vma_high = high;
1062           fclose(fp);
1063           return true;
1064         }
1065       }
1066       for (;;) {
1067         int ch = fgetc(fp);
1068         if (ch == EOF || ch == (int)'\n') break;
1069       }
1070     }
1071     fclose(fp);
1072   }
1073   return false;
1074 }
1075 
1076 // Locate initial thread stack. This special handling of initial thread stack
1077 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1078 // bogus value for initial thread.
1079 void os::Linux::capture_initial_stack(size_t max_size) {
1080   // stack size is the easy part, get it from RLIMIT_STACK
1081   size_t stack_size;
1082   struct rlimit rlim;
1083   getrlimit(RLIMIT_STACK, &rlim);
1084   stack_size = rlim.rlim_cur;
1085 
1086   // 6308388: a bug in ld.so will relocate its own .data section to the
1087   //   lower end of primordial stack; reduce ulimit -s value a little bit
1088   //   so we won't install guard page on ld.so's data section.
1089   stack_size -= 2 * page_size();
1090 
1091   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1092   //   7.1, in both cases we will get 2G in return value.
1093   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1094   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1095   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1096   //   in case other parts in glibc still assumes 2M max stack size.
1097   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1098   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1099   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1100     stack_size = 2 * K * K IA64_ONLY(*2);
1101   }
1102   // Try to figure out where the stack base (top) is. This is harder.
1103   //
1104   // When an application is started, glibc saves the initial stack pointer in
1105   // a global variable "__libc_stack_end", which is then used by system
1106   // libraries. __libc_stack_end should be pretty close to stack top. The
1107   // variable is available since the very early days. However, because it is
1108   // a private interface, it could disappear in the future.
1109   //
1110   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1111   // to __libc_stack_end, it is very close to stack top, but isn't the real
1112   // stack top. Note that /proc may not exist if VM is running as a chroot
1113   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1114   // /proc/<pid>/stat could change in the future (though unlikely).
1115   //
1116   // We try __libc_stack_end first. If that doesn't work, look for
1117   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1118   // as a hint, which should work well in most cases.
1119 
1120   uintptr_t stack_start;
1121 
1122   // try __libc_stack_end first
1123   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1124   if (p && *p) {
1125     stack_start = *p;
1126   } else {
1127     // see if we can get the start_stack field from /proc/self/stat
1128     FILE *fp;
1129     int pid;
1130     char state;
1131     int ppid;
1132     int pgrp;
1133     int session;
1134     int nr;
1135     int tpgrp;
1136     unsigned long flags;
1137     unsigned long minflt;
1138     unsigned long cminflt;
1139     unsigned long majflt;
1140     unsigned long cmajflt;
1141     unsigned long utime;
1142     unsigned long stime;
1143     long cutime;
1144     long cstime;
1145     long prio;
1146     long nice;
1147     long junk;
1148     long it_real;
1149     uintptr_t start;
1150     uintptr_t vsize;
1151     intptr_t rss;
1152     uintptr_t rsslim;
1153     uintptr_t scodes;
1154     uintptr_t ecode;
1155     int i;
1156 
1157     // Figure what the primordial thread stack base is. Code is inspired
1158     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1159     // followed by command name surrounded by parentheses, state, etc.
1160     char stat[2048];
1161     int statlen;
1162 
1163     fp = fopen("/proc/self/stat", "r");
1164     if (fp) {
1165       statlen = fread(stat, 1, 2047, fp);
1166       stat[statlen] = '\0';
1167       fclose(fp);
1168 
1169       // Skip pid and the command string. Note that we could be dealing with
1170       // weird command names, e.g. user could decide to rename java launcher
1171       // to "java 1.4.2 :)", then the stat file would look like
1172       //                1234 (java 1.4.2 :)) R ... ...
1173       // We don't really need to know the command string, just find the last
1174       // occurrence of ")" and then start parsing from there. See bug 4726580.
1175       char * s = strrchr(stat, ')');
1176 
1177       i = 0;
1178       if (s) {
1179         // Skip blank chars
1180         do { s++; } while (s && isspace(*s));
1181 
1182 #define _UFM UINTX_FORMAT
1183 #define _DFM INTX_FORMAT
1184 
1185         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1186         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1187         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1188                    &state,          // 3  %c
1189                    &ppid,           // 4  %d
1190                    &pgrp,           // 5  %d
1191                    &session,        // 6  %d
1192                    &nr,             // 7  %d
1193                    &tpgrp,          // 8  %d
1194                    &flags,          // 9  %lu
1195                    &minflt,         // 10 %lu
1196                    &cminflt,        // 11 %lu
1197                    &majflt,         // 12 %lu
1198                    &cmajflt,        // 13 %lu
1199                    &utime,          // 14 %lu
1200                    &stime,          // 15 %lu
1201                    &cutime,         // 16 %ld
1202                    &cstime,         // 17 %ld
1203                    &prio,           // 18 %ld
1204                    &nice,           // 19 %ld
1205                    &junk,           // 20 %ld
1206                    &it_real,        // 21 %ld
1207                    &start,          // 22 UINTX_FORMAT
1208                    &vsize,          // 23 UINTX_FORMAT
1209                    &rss,            // 24 INTX_FORMAT
1210                    &rsslim,         // 25 UINTX_FORMAT
1211                    &scodes,         // 26 UINTX_FORMAT
1212                    &ecode,          // 27 UINTX_FORMAT
1213                    &stack_start);   // 28 UINTX_FORMAT
1214       }
1215 
1216 #undef _UFM
1217 #undef _DFM
1218 
1219       if (i != 28 - 2) {
1220         assert(false, "Bad conversion from /proc/self/stat");
1221         // product mode - assume we are the initial thread, good luck in the
1222         // embedded case.
1223         warning("Can't detect initial thread stack location - bad conversion");
1224         stack_start = (uintptr_t) &rlim;
1225       }
1226     } else {
1227       // For some reason we can't open /proc/self/stat (for example, running on
1228       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1229       // most cases, so don't abort:
1230       warning("Can't detect initial thread stack location - no /proc/self/stat");
1231       stack_start = (uintptr_t) &rlim;
1232     }
1233   }
1234 
1235   // Now we have a pointer (stack_start) very close to the stack top, the
1236   // next thing to do is to figure out the exact location of stack top. We
1237   // can find out the virtual memory area that contains stack_start by
1238   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1239   // and its upper limit is the real stack top. (again, this would fail if
1240   // running inside chroot, because /proc may not exist.)
1241 
1242   uintptr_t stack_top;
1243   address low, high;
1244   if (find_vma((address)stack_start, &low, &high)) {
1245     // success, "high" is the true stack top. (ignore "low", because initial
1246     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1247     stack_top = (uintptr_t)high;
1248   } else {
1249     // failed, likely because /proc/self/maps does not exist
1250     warning("Can't detect initial thread stack location - find_vma failed");
1251     // best effort: stack_start is normally within a few pages below the real
1252     // stack top, use it as stack top, and reduce stack size so we won't put
1253     // guard page outside stack.
1254     stack_top = stack_start;
1255     stack_size -= 16 * page_size();
1256   }
1257 
1258   // stack_top could be partially down the page so align it
1259   stack_top = align_size_up(stack_top, page_size());
1260 
1261   if (max_size && stack_size > max_size) {
1262     _initial_thread_stack_size = max_size;
1263   } else {
1264     _initial_thread_stack_size = stack_size;
1265   }
1266 
1267   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1268   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1269 }
1270 
1271 ////////////////////////////////////////////////////////////////////////////////
1272 // time support
1273 
1274 // Time since start-up in seconds to a fine granularity.
1275 // Used by VMSelfDestructTimer and the MemProfiler.
1276 double os::elapsedTime() {
1277 
1278   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1279 }
1280 
1281 jlong os::elapsed_counter() {
1282   return javaTimeNanos() - initial_time_count;
1283 }
1284 
1285 jlong os::elapsed_frequency() {
1286   return NANOSECS_PER_SEC; // nanosecond resolution
1287 }
1288 
1289 bool os::supports_vtime() { return true; }
1290 bool os::enable_vtime()   { return false; }
1291 bool os::vtime_enabled()  { return false; }
1292 
1293 double os::elapsedVTime() {
1294   struct rusage usage;
1295   int retval = getrusage(RUSAGE_THREAD, &usage);
1296   if (retval == 0) {
1297     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1298   } else {
1299     // better than nothing, but not much
1300     return elapsedTime();
1301   }
1302 }
1303 
1304 jlong os::javaTimeMillis() {
1305   timeval time;
1306   int status = gettimeofday(&time, NULL);
1307   assert(status != -1, "linux error");
1308   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1309 }
1310 
1311 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1312   timeval time;
1313   int status = gettimeofday(&time, NULL);
1314   assert(status != -1, "linux error");
1315   seconds = jlong(time.tv_sec);
1316   nanos = jlong(time.tv_usec) * 1000;
1317 }
1318 
1319 
1320 #ifndef CLOCK_MONOTONIC
1321   #define CLOCK_MONOTONIC (1)
1322 #endif
1323 
1324 void os::Linux::clock_init() {
1325   // we do dlopen's in this particular order due to bug in linux
1326   // dynamical loader (see 6348968) leading to crash on exit
1327   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1328   if (handle == NULL) {
1329     handle = dlopen("librt.so", RTLD_LAZY);
1330   }
1331 
1332   if (handle) {
1333     int (*clock_getres_func)(clockid_t, struct timespec*) =
1334            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1335     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1336            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1337     if (clock_getres_func && clock_gettime_func) {
1338       // See if monotonic clock is supported by the kernel. Note that some
1339       // early implementations simply return kernel jiffies (updated every
1340       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1341       // for nano time (though the monotonic property is still nice to have).
1342       // It's fixed in newer kernels, however clock_getres() still returns
1343       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1344       // resolution for now. Hopefully as people move to new kernels, this
1345       // won't be a problem.
1346       struct timespec res;
1347       struct timespec tp;
1348       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1349           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1350         // yes, monotonic clock is supported
1351         _clock_gettime = clock_gettime_func;
1352         return;
1353       } else {
1354         // close librt if there is no monotonic clock
1355         dlclose(handle);
1356       }
1357     }
1358   }
1359   warning("No monotonic clock was available - timed services may " \
1360           "be adversely affected if the time-of-day clock changes");
1361 }
1362 
1363 #ifndef SYS_clock_getres
1364   #if defined(IA32) || defined(AMD64)
1365     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1366     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1367   #else
1368     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1369     #define sys_clock_getres(x,y)  -1
1370   #endif
1371 #else
1372   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1373 #endif
1374 
1375 void os::Linux::fast_thread_clock_init() {
1376   if (!UseLinuxPosixThreadCPUClocks) {
1377     return;
1378   }
1379   clockid_t clockid;
1380   struct timespec tp;
1381   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1382       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1383 
1384   // Switch to using fast clocks for thread cpu time if
1385   // the sys_clock_getres() returns 0 error code.
1386   // Note, that some kernels may support the current thread
1387   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1388   // returned by the pthread_getcpuclockid().
1389   // If the fast Posix clocks are supported then the sys_clock_getres()
1390   // must return at least tp.tv_sec == 0 which means a resolution
1391   // better than 1 sec. This is extra check for reliability.
1392 
1393   if (pthread_getcpuclockid_func &&
1394       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1395       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1396     _supports_fast_thread_cpu_time = true;
1397     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1398   }
1399 }
1400 
1401 jlong os::javaTimeNanos() {
1402   if (os::supports_monotonic_clock()) {
1403     struct timespec tp;
1404     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1405     assert(status == 0, "gettime error");
1406     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1407     return result;
1408   } else {
1409     timeval time;
1410     int status = gettimeofday(&time, NULL);
1411     assert(status != -1, "linux error");
1412     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1413     return 1000 * usecs;
1414   }
1415 }
1416 
1417 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1418   if (os::supports_monotonic_clock()) {
1419     info_ptr->max_value = ALL_64_BITS;
1420 
1421     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1422     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1423     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1424   } else {
1425     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1426     info_ptr->max_value = ALL_64_BITS;
1427 
1428     // gettimeofday is a real time clock so it skips
1429     info_ptr->may_skip_backward = true;
1430     info_ptr->may_skip_forward = true;
1431   }
1432 
1433   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1434 }
1435 
1436 // Return the real, user, and system times in seconds from an
1437 // arbitrary fixed point in the past.
1438 bool os::getTimesSecs(double* process_real_time,
1439                       double* process_user_time,
1440                       double* process_system_time) {
1441   struct tms ticks;
1442   clock_t real_ticks = times(&ticks);
1443 
1444   if (real_ticks == (clock_t) (-1)) {
1445     return false;
1446   } else {
1447     double ticks_per_second = (double) clock_tics_per_sec;
1448     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1449     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1450     *process_real_time = ((double) real_ticks) / ticks_per_second;
1451 
1452     return true;
1453   }
1454 }
1455 
1456 
1457 char * os::local_time_string(char *buf, size_t buflen) {
1458   struct tm t;
1459   time_t long_time;
1460   time(&long_time);
1461   localtime_r(&long_time, &t);
1462   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1463                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1464                t.tm_hour, t.tm_min, t.tm_sec);
1465   return buf;
1466 }
1467 
1468 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1469   return localtime_r(clock, res);
1470 }
1471 
1472 ////////////////////////////////////////////////////////////////////////////////
1473 // runtime exit support
1474 
1475 // Note: os::shutdown() might be called very early during initialization, or
1476 // called from signal handler. Before adding something to os::shutdown(), make
1477 // sure it is async-safe and can handle partially initialized VM.
1478 void os::shutdown() {
1479 
1480   // allow PerfMemory to attempt cleanup of any persistent resources
1481   perfMemory_exit();
1482 
1483   // needs to remove object in file system
1484   AttachListener::abort();
1485 
1486   // flush buffered output, finish log files
1487   ostream_abort();
1488 
1489   // Check for abort hook
1490   abort_hook_t abort_hook = Arguments::abort_hook();
1491   if (abort_hook != NULL) {
1492     abort_hook();
1493   }
1494 
1495 }
1496 
1497 // Note: os::abort() might be called very early during initialization, or
1498 // called from signal handler. Before adding something to os::abort(), make
1499 // sure it is async-safe and can handle partially initialized VM.
1500 void os::abort(bool dump_core) {
1501   os::shutdown();
1502   if (dump_core) {
1503 #ifndef PRODUCT
1504     fdStream out(defaultStream::output_fd());
1505     out.print_raw("Current thread is ");
1506     char buf[16];
1507     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1508     out.print_raw_cr(buf);
1509     out.print_raw_cr("Dumping core ...");
1510 #endif
1511     ::abort(); // dump core
1512   }
1513 
1514   ::exit(1);
1515 }
1516 
1517 // Die immediately, no exit hook, no abort hook, no cleanup.
1518 void os::die() {
1519   // _exit() on LinuxThreads only kills current thread
1520   ::abort();
1521 }
1522 
1523 
1524 // This method is a copy of JDK's sysGetLastErrorString
1525 // from src/solaris/hpi/src/system_md.c
1526 
1527 size_t os::lasterror(char *buf, size_t len) {
1528   if (errno == 0)  return 0;
1529 
1530   const char *s = ::strerror(errno);
1531   size_t n = ::strlen(s);
1532   if (n >= len) {
1533     n = len - 1;
1534   }
1535   ::strncpy(buf, s, n);
1536   buf[n] = '\0';
1537   return n;
1538 }
1539 
1540 intx os::current_thread_id() { return (intx)pthread_self(); }
1541 int os::current_process_id() {
1542 
1543   // Under the old linux thread library, linux gives each thread
1544   // its own process id. Because of this each thread will return
1545   // a different pid if this method were to return the result
1546   // of getpid(2). Linux provides no api that returns the pid
1547   // of the launcher thread for the vm. This implementation
1548   // returns a unique pid, the pid of the launcher thread
1549   // that starts the vm 'process'.
1550 
1551   // Under the NPTL, getpid() returns the same pid as the
1552   // launcher thread rather than a unique pid per thread.
1553   // Use gettid() if you want the old pre NPTL behaviour.
1554 
1555   // if you are looking for the result of a call to getpid() that
1556   // returns a unique pid for the calling thread, then look at the
1557   // OSThread::thread_id() method in osThread_linux.hpp file
1558 
1559   return (int)(_initial_pid ? _initial_pid : getpid());
1560 }
1561 
1562 // DLL functions
1563 
1564 const char* os::dll_file_extension() { return ".so"; }
1565 
1566 // This must be hard coded because it's the system's temporary
1567 // directory not the java application's temp directory, ala java.io.tmpdir.
1568 const char* os::get_temp_directory() { return "/tmp"; }
1569 
1570 static bool file_exists(const char* filename) {
1571   struct stat statbuf;
1572   if (filename == NULL || strlen(filename) == 0) {
1573     return false;
1574   }
1575   return os::stat(filename, &statbuf) == 0;
1576 }
1577 
1578 bool os::dll_build_name(char* buffer, size_t buflen,
1579                         const char* pname, const char* fname) {
1580   bool retval = false;
1581   // Copied from libhpi
1582   const size_t pnamelen = pname ? strlen(pname) : 0;
1583 
1584   // Return error on buffer overflow.
1585   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1586     return retval;
1587   }
1588 
1589   if (pnamelen == 0) {
1590     snprintf(buffer, buflen, "lib%s.so", fname);
1591     retval = true;
1592   } else if (strchr(pname, *os::path_separator()) != NULL) {
1593     int n;
1594     char** pelements = split_path(pname, &n);
1595     if (pelements == NULL) {
1596       return false;
1597     }
1598     for (int i = 0; i < n; i++) {
1599       // Really shouldn't be NULL, but check can't hurt
1600       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1601         continue; // skip the empty path values
1602       }
1603       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1604       if (file_exists(buffer)) {
1605         retval = true;
1606         break;
1607       }
1608     }
1609     // release the storage
1610     for (int i = 0; i < n; i++) {
1611       if (pelements[i] != NULL) {
1612         FREE_C_HEAP_ARRAY(char, pelements[i]);
1613       }
1614     }
1615     if (pelements != NULL) {
1616       FREE_C_HEAP_ARRAY(char*, pelements);
1617     }
1618   } else {
1619     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1620     retval = true;
1621   }
1622   return retval;
1623 }
1624 
1625 // check if addr is inside libjvm.so
1626 bool os::address_is_in_vm(address addr) {
1627   static address libjvm_base_addr;
1628   Dl_info dlinfo;
1629 
1630   if (libjvm_base_addr == NULL) {
1631     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1632       libjvm_base_addr = (address)dlinfo.dli_fbase;
1633     }
1634     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1635   }
1636 
1637   if (dladdr((void *)addr, &dlinfo) != 0) {
1638     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1639   }
1640 
1641   return false;
1642 }
1643 
1644 bool os::dll_address_to_function_name(address addr, char *buf,
1645                                       int buflen, int *offset) {
1646   // buf is not optional, but offset is optional
1647   assert(buf != NULL, "sanity check");
1648 
1649   Dl_info dlinfo;
1650 
1651   if (dladdr((void*)addr, &dlinfo) != 0) {
1652     // see if we have a matching symbol
1653     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1654       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1655         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1656       }
1657       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1658       return true;
1659     }
1660     // no matching symbol so try for just file info
1661     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1662       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1663                           buf, buflen, offset, dlinfo.dli_fname)) {
1664         return true;
1665       }
1666     }
1667   }
1668 
1669   buf[0] = '\0';
1670   if (offset != NULL) *offset = -1;
1671   return false;
1672 }
1673 
1674 struct _address_to_library_name {
1675   address addr;          // input : memory address
1676   size_t  buflen;        //         size of fname
1677   char*   fname;         // output: library name
1678   address base;          //         library base addr
1679 };
1680 
1681 static int address_to_library_name_callback(struct dl_phdr_info *info,
1682                                             size_t size, void *data) {
1683   int i;
1684   bool found = false;
1685   address libbase = NULL;
1686   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1687 
1688   // iterate through all loadable segments
1689   for (i = 0; i < info->dlpi_phnum; i++) {
1690     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1691     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1692       // base address of a library is the lowest address of its loaded
1693       // segments.
1694       if (libbase == NULL || libbase > segbase) {
1695         libbase = segbase;
1696       }
1697       // see if 'addr' is within current segment
1698       if (segbase <= d->addr &&
1699           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1700         found = true;
1701       }
1702     }
1703   }
1704 
1705   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1706   // so dll_address_to_library_name() can fall through to use dladdr() which
1707   // can figure out executable name from argv[0].
1708   if (found && info->dlpi_name && info->dlpi_name[0]) {
1709     d->base = libbase;
1710     if (d->fname) {
1711       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1712     }
1713     return 1;
1714   }
1715   return 0;
1716 }
1717 
1718 bool os::dll_address_to_library_name(address addr, char* buf,
1719                                      int buflen, int* offset) {
1720   // buf is not optional, but offset is optional
1721   assert(buf != NULL, "sanity check");
1722 
1723   Dl_info dlinfo;
1724   struct _address_to_library_name data;
1725 
1726   // There is a bug in old glibc dladdr() implementation that it could resolve
1727   // to wrong library name if the .so file has a base address != NULL. Here
1728   // we iterate through the program headers of all loaded libraries to find
1729   // out which library 'addr' really belongs to. This workaround can be
1730   // removed once the minimum requirement for glibc is moved to 2.3.x.
1731   data.addr = addr;
1732   data.fname = buf;
1733   data.buflen = buflen;
1734   data.base = NULL;
1735   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1736 
1737   if (rslt) {
1738     // buf already contains library name
1739     if (offset) *offset = addr - data.base;
1740     return true;
1741   }
1742   if (dladdr((void*)addr, &dlinfo) != 0) {
1743     if (dlinfo.dli_fname != NULL) {
1744       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1745     }
1746     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1747       *offset = addr - (address)dlinfo.dli_fbase;
1748     }
1749     return true;
1750   }
1751 
1752   buf[0] = '\0';
1753   if (offset) *offset = -1;
1754   return false;
1755 }
1756 
1757 // Loads .dll/.so and
1758 // in case of error it checks if .dll/.so was built for the
1759 // same architecture as Hotspot is running on
1760 
1761 
1762 // Remember the stack's state. The Linux dynamic linker will change
1763 // the stack to 'executable' at most once, so we must safepoint only once.
1764 bool os::Linux::_stack_is_executable = false;
1765 
1766 // VM operation that loads a library.  This is necessary if stack protection
1767 // of the Java stacks can be lost during loading the library.  If we
1768 // do not stop the Java threads, they can stack overflow before the stacks
1769 // are protected again.
1770 class VM_LinuxDllLoad: public VM_Operation {
1771  private:
1772   const char *_filename;
1773   char *_ebuf;
1774   int _ebuflen;
1775   void *_lib;
1776  public:
1777   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1778     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1779   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1780   void doit() {
1781     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1782     os::Linux::_stack_is_executable = true;
1783   }
1784   void* loaded_library() { return _lib; }
1785 };
1786 
1787 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1788   void * result = NULL;
1789   bool load_attempted = false;
1790 
1791   // Check whether the library to load might change execution rights
1792   // of the stack. If they are changed, the protection of the stack
1793   // guard pages will be lost. We need a safepoint to fix this.
1794   //
1795   // See Linux man page execstack(8) for more info.
1796   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1797     ElfFile ef(filename);
1798     if (!ef.specifies_noexecstack()) {
1799       if (!is_init_completed()) {
1800         os::Linux::_stack_is_executable = true;
1801         // This is OK - No Java threads have been created yet, and hence no
1802         // stack guard pages to fix.
1803         //
1804         // This should happen only when you are building JDK7 using a very
1805         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1806         //
1807         // Dynamic loader will make all stacks executable after
1808         // this function returns, and will not do that again.
1809         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1810       } else {
1811         warning("You have loaded library %s which might have disabled stack guard. "
1812                 "The VM will try to fix the stack guard now.\n"
1813                 "It's highly recommended that you fix the library with "
1814                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1815                 filename);
1816 
1817         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1818         JavaThread *jt = JavaThread::current();
1819         if (jt->thread_state() != _thread_in_native) {
1820           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1821           // that requires ExecStack. Cannot enter safe point. Let's give up.
1822           warning("Unable to fix stack guard. Giving up.");
1823         } else {
1824           if (!LoadExecStackDllInVMThread) {
1825             // This is for the case where the DLL has an static
1826             // constructor function that executes JNI code. We cannot
1827             // load such DLLs in the VMThread.
1828             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1829           }
1830 
1831           ThreadInVMfromNative tiv(jt);
1832           debug_only(VMNativeEntryWrapper vew;)
1833 
1834           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1835           VMThread::execute(&op);
1836           if (LoadExecStackDllInVMThread) {
1837             result = op.loaded_library();
1838           }
1839           load_attempted = true;
1840         }
1841       }
1842     }
1843   }
1844 
1845   if (!load_attempted) {
1846     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1847   }
1848 
1849   if (result != NULL) {
1850     // Successful loading
1851     return result;
1852   }
1853 
1854   Elf32_Ehdr elf_head;
1855   int diag_msg_max_length=ebuflen-strlen(ebuf);
1856   char* diag_msg_buf=ebuf+strlen(ebuf);
1857 
1858   if (diag_msg_max_length==0) {
1859     // No more space in ebuf for additional diagnostics message
1860     return NULL;
1861   }
1862 
1863 
1864   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1865 
1866   if (file_descriptor < 0) {
1867     // Can't open library, report dlerror() message
1868     return NULL;
1869   }
1870 
1871   bool failed_to_read_elf_head=
1872     (sizeof(elf_head)!=
1873      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1874 
1875   ::close(file_descriptor);
1876   if (failed_to_read_elf_head) {
1877     // file i/o error - report dlerror() msg
1878     return NULL;
1879   }
1880 
1881   typedef struct {
1882     Elf32_Half  code;         // Actual value as defined in elf.h
1883     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1884     char        elf_class;    // 32 or 64 bit
1885     char        endianess;    // MSB or LSB
1886     char*       name;         // String representation
1887   } arch_t;
1888 
1889 #ifndef EM_486
1890   #define EM_486          6               /* Intel 80486 */
1891 #endif
1892 
1893   static const arch_t arch_array[]={
1894     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1895     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1896     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1897     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1898     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1899     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1900     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1901     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1902 #if defined(VM_LITTLE_ENDIAN)
1903     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1904 #else
1905     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1906 #endif
1907     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1908     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1909     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1910     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1911     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1912     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1913     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1914   };
1915 
1916 #if  (defined IA32)
1917   static  Elf32_Half running_arch_code=EM_386;
1918 #elif   (defined AMD64)
1919   static  Elf32_Half running_arch_code=EM_X86_64;
1920 #elif  (defined IA64)
1921   static  Elf32_Half running_arch_code=EM_IA_64;
1922 #elif  (defined __sparc) && (defined _LP64)
1923   static  Elf32_Half running_arch_code=EM_SPARCV9;
1924 #elif  (defined __sparc) && (!defined _LP64)
1925   static  Elf32_Half running_arch_code=EM_SPARC;
1926 #elif  (defined __powerpc64__)
1927   static  Elf32_Half running_arch_code=EM_PPC64;
1928 #elif  (defined __powerpc__)
1929   static  Elf32_Half running_arch_code=EM_PPC;
1930 #elif  (defined ARM)
1931   static  Elf32_Half running_arch_code=EM_ARM;
1932 #elif  (defined S390)
1933   static  Elf32_Half running_arch_code=EM_S390;
1934 #elif  (defined ALPHA)
1935   static  Elf32_Half running_arch_code=EM_ALPHA;
1936 #elif  (defined MIPSEL)
1937   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1938 #elif  (defined PARISC)
1939   static  Elf32_Half running_arch_code=EM_PARISC;
1940 #elif  (defined MIPS)
1941   static  Elf32_Half running_arch_code=EM_MIPS;
1942 #elif  (defined M68K)
1943   static  Elf32_Half running_arch_code=EM_68K;
1944 #else
1945     #error Method os::dll_load requires that one of following is defined:\
1946          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1947 #endif
1948 
1949   // Identify compatability class for VM's architecture and library's architecture
1950   // Obtain string descriptions for architectures
1951 
1952   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1953   int running_arch_index=-1;
1954 
1955   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1956     if (running_arch_code == arch_array[i].code) {
1957       running_arch_index    = i;
1958     }
1959     if (lib_arch.code == arch_array[i].code) {
1960       lib_arch.compat_class = arch_array[i].compat_class;
1961       lib_arch.name         = arch_array[i].name;
1962     }
1963   }
1964 
1965   assert(running_arch_index != -1,
1966          "Didn't find running architecture code (running_arch_code) in arch_array");
1967   if (running_arch_index == -1) {
1968     // Even though running architecture detection failed
1969     // we may still continue with reporting dlerror() message
1970     return NULL;
1971   }
1972 
1973   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1974     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1975     return NULL;
1976   }
1977 
1978 #ifndef S390
1979   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1980     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1981     return NULL;
1982   }
1983 #endif // !S390
1984 
1985   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1986     if (lib_arch.name!=NULL) {
1987       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1988                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1989                  lib_arch.name, arch_array[running_arch_index].name);
1990     } else {
1991       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1992                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1993                  lib_arch.code,
1994                  arch_array[running_arch_index].name);
1995     }
1996   }
1997 
1998   return NULL;
1999 }
2000 
2001 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2002                                 int ebuflen) {
2003   void * result = ::dlopen(filename, RTLD_LAZY);
2004   if (result == NULL) {
2005     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2006     ebuf[ebuflen-1] = '\0';
2007   }
2008   return result;
2009 }
2010 
2011 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2012                                        int ebuflen) {
2013   void * result = NULL;
2014   if (LoadExecStackDllInVMThread) {
2015     result = dlopen_helper(filename, ebuf, ebuflen);
2016   }
2017 
2018   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2019   // library that requires an executable stack, or which does not have this
2020   // stack attribute set, dlopen changes the stack attribute to executable. The
2021   // read protection of the guard pages gets lost.
2022   //
2023   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2024   // may have been queued at the same time.
2025 
2026   if (!_stack_is_executable) {
2027     JavaThread *jt = Threads::first();
2028 
2029     while (jt) {
2030       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2031           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2032         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2033                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2034           warning("Attempt to reguard stack yellow zone failed.");
2035         }
2036       }
2037       jt = jt->next();
2038     }
2039   }
2040 
2041   return result;
2042 }
2043 
2044 // glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2045 // chances are you might want to run the generated bits against glibc-2.0
2046 // libdl.so, so always use locking for any version of glibc.
2047 //
2048 void* os::dll_lookup(void* handle, const char* name) {
2049   pthread_mutex_lock(&dl_mutex);
2050   void* res = dlsym(handle, name);
2051   pthread_mutex_unlock(&dl_mutex);
2052   return res;
2053 }
2054 
2055 void* os::get_default_process_handle() {
2056   return (void*)::dlopen(NULL, RTLD_LAZY);
2057 }
2058 
2059 static bool _print_ascii_file(const char* filename, outputStream* st) {
2060   int fd = ::open(filename, O_RDONLY);
2061   if (fd == -1) {
2062     return false;
2063   }
2064 
2065   char buf[32];
2066   int bytes;
2067   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2068     st->print_raw(buf, bytes);
2069   }
2070 
2071   ::close(fd);
2072 
2073   return true;
2074 }
2075 
2076 void os::print_dll_info(outputStream *st) {
2077   st->print_cr("Dynamic libraries:");
2078 
2079   char fname[32];
2080   pid_t pid = os::Linux::gettid();
2081 
2082   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2083 
2084   if (!_print_ascii_file(fname, st)) {
2085     st->print("Can not get library information for pid = %d\n", pid);
2086   }
2087 }
2088 
2089 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2090   FILE *procmapsFile = NULL;
2091 
2092   // Open the procfs maps file for the current process
2093   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2094     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2095     char line[PATH_MAX + 100];
2096 
2097     // Read line by line from 'file'
2098     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2099       u8 base, top, offset, inode;
2100       char permissions[5];
2101       char device[6];
2102       char name[PATH_MAX + 1];
2103 
2104       // Parse fields from line
2105       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2106 
2107       // Filter by device id '00:00' so that we only get file system mapped files.
2108       if (strcmp(device, "00:00") != 0) {
2109 
2110         // Call callback with the fields of interest
2111         if(callback(name, (address)base, (address)top, param)) {
2112           // Oops abort, callback aborted
2113           fclose(procmapsFile);
2114           return 1;
2115         }
2116       }
2117     }
2118     fclose(procmapsFile);
2119   }
2120   return 0;
2121 }
2122 
2123 void os::print_os_info_brief(outputStream* st) {
2124   os::Linux::print_distro_info(st);
2125 
2126   os::Posix::print_uname_info(st);
2127 
2128   os::Linux::print_libversion_info(st);
2129 
2130 }
2131 
2132 void os::print_os_info(outputStream* st) {
2133   st->print("OS:");
2134 
2135   os::Linux::print_distro_info(st);
2136 
2137   os::Posix::print_uname_info(st);
2138 
2139   // Print warning if unsafe chroot environment detected
2140   if (unsafe_chroot_detected) {
2141     st->print("WARNING!! ");
2142     st->print_cr("%s", unstable_chroot_error);
2143   }
2144 
2145   os::Linux::print_libversion_info(st);
2146 
2147   os::Posix::print_rlimit_info(st);
2148 
2149   os::Posix::print_load_average(st);
2150 
2151   os::Linux::print_full_memory_info(st);
2152 }
2153 
2154 // Try to identify popular distros.
2155 // Most Linux distributions have a /etc/XXX-release file, which contains
2156 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2157 // file that also contains the OS version string. Some have more than one
2158 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2159 // /etc/redhat-release.), so the order is important.
2160 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2161 // their own specific XXX-release file as well as a redhat-release file.
2162 // Because of this the XXX-release file needs to be searched for before the
2163 // redhat-release file.
2164 // Since Red Hat has a lsb-release file that is not very descriptive the
2165 // search for redhat-release needs to be before lsb-release.
2166 // Since the lsb-release file is the new standard it needs to be searched
2167 // before the older style release files.
2168 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2169 // next to last resort.  The os-release file is a new standard that contains
2170 // distribution information and the system-release file seems to be an old
2171 // standard that has been replaced by the lsb-release and os-release files.
2172 // Searching for the debian_version file is the last resort.  It contains
2173 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2174 // "Debian " is printed before the contents of the debian_version file.
2175 void os::Linux::print_distro_info(outputStream* st) {
2176   if (!_print_ascii_file("/etc/oracle-release", st) &&
2177       !_print_ascii_file("/etc/mandriva-release", st) &&
2178       !_print_ascii_file("/etc/mandrake-release", st) &&
2179       !_print_ascii_file("/etc/sun-release", st) &&
2180       !_print_ascii_file("/etc/redhat-release", st) &&
2181       !_print_ascii_file("/etc/lsb-release", st) &&
2182       !_print_ascii_file("/etc/SuSE-release", st) &&
2183       !_print_ascii_file("/etc/turbolinux-release", st) &&
2184       !_print_ascii_file("/etc/gentoo-release", st) &&
2185       !_print_ascii_file("/etc/ltib-release", st) &&
2186       !_print_ascii_file("/etc/angstrom-version", st) &&
2187       !_print_ascii_file("/etc/system-release", st) &&
2188       !_print_ascii_file("/etc/os-release", st)) {
2189 
2190     if (file_exists("/etc/debian_version")) {
2191       st->print("Debian ");
2192       _print_ascii_file("/etc/debian_version", st);
2193     } else {
2194       st->print("Linux");
2195     }
2196   }
2197   st->cr();
2198 }
2199 
2200 void os::Linux::print_libversion_info(outputStream* st) {
2201   // libc, pthread
2202   st->print("libc:");
2203   st->print("%s ", os::Linux::glibc_version());
2204   st->print("%s ", os::Linux::libpthread_version());
2205   if (os::Linux::is_LinuxThreads()) {
2206     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2207   }
2208   st->cr();
2209 }
2210 
2211 void os::Linux::print_full_memory_info(outputStream* st) {
2212   st->print("\n/proc/meminfo:\n");
2213   _print_ascii_file("/proc/meminfo", st);
2214   st->cr();
2215 }
2216 
2217 void os::print_memory_info(outputStream* st) {
2218 
2219   st->print("Memory:");
2220   st->print(" %dk page", os::vm_page_size()>>10);
2221 
2222   // values in struct sysinfo are "unsigned long"
2223   struct sysinfo si;
2224   sysinfo(&si);
2225 
2226   st->print(", physical " UINT64_FORMAT "k",
2227             os::physical_memory() >> 10);
2228   st->print("(" UINT64_FORMAT "k free)",
2229             os::available_memory() >> 10);
2230   st->print(", swap " UINT64_FORMAT "k",
2231             ((jlong)si.totalswap * si.mem_unit) >> 10);
2232   st->print("(" UINT64_FORMAT "k free)",
2233             ((jlong)si.freeswap * si.mem_unit) >> 10);
2234   st->cr();
2235 }
2236 
2237 void os::pd_print_cpu_info(outputStream* st) {
2238   st->print("\n/proc/cpuinfo:\n");
2239   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2240     st->print("  <Not Available>");
2241   }
2242   st->cr();
2243 }
2244 
2245 void os::print_siginfo(outputStream* st, void* siginfo) {
2246   const siginfo_t* si = (const siginfo_t*)siginfo;
2247 
2248   os::Posix::print_siginfo_brief(st, si);
2249 #if INCLUDE_CDS
2250   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2251       UseSharedSpaces) {
2252     FileMapInfo* mapinfo = FileMapInfo::current_info();
2253     if (mapinfo->is_in_shared_space(si->si_addr)) {
2254       st->print("\n\nError accessing class data sharing archive."   \
2255                 " Mapped file inaccessible during execution, "      \
2256                 " possible disk/network problem.");
2257     }
2258   }
2259 #endif
2260   st->cr();
2261 }
2262 
2263 
2264 static void print_signal_handler(outputStream* st, int sig,
2265                                  char* buf, size_t buflen);
2266 
2267 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2268   st->print_cr("Signal Handlers:");
2269   print_signal_handler(st, SIGSEGV, buf, buflen);
2270   print_signal_handler(st, SIGBUS , buf, buflen);
2271   print_signal_handler(st, SIGFPE , buf, buflen);
2272   print_signal_handler(st, SIGPIPE, buf, buflen);
2273   print_signal_handler(st, SIGXFSZ, buf, buflen);
2274   print_signal_handler(st, SIGILL , buf, buflen);
2275   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2276   print_signal_handler(st, SR_signum, buf, buflen);
2277   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2278   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2279   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2280   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2281 #if defined(PPC64)
2282   print_signal_handler(st, SIGTRAP, buf, buflen);
2283 #endif
2284 }
2285 
2286 static char saved_jvm_path[MAXPATHLEN] = {0};
2287 
2288 // Find the full path to the current module, libjvm.so
2289 void os::jvm_path(char *buf, jint buflen) {
2290   // Error checking.
2291   if (buflen < MAXPATHLEN) {
2292     assert(false, "must use a large-enough buffer");
2293     buf[0] = '\0';
2294     return;
2295   }
2296   // Lazy resolve the path to current module.
2297   if (saved_jvm_path[0] != 0) {
2298     strcpy(buf, saved_jvm_path);
2299     return;
2300   }
2301 
2302   char dli_fname[MAXPATHLEN];
2303   bool ret = dll_address_to_library_name(
2304                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2305                                          dli_fname, sizeof(dli_fname), NULL);
2306   assert(ret, "cannot locate libjvm");
2307   char *rp = NULL;
2308   if (ret && dli_fname[0] != '\0') {
2309     rp = realpath(dli_fname, buf);
2310   }
2311   if (rp == NULL) {
2312     return;
2313   }
2314 
2315   if (Arguments::sun_java_launcher_is_altjvm()) {
2316     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2317     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2318     // If "/jre/lib/" appears at the right place in the string, then
2319     // assume we are installed in a JDK and we're done. Otherwise, check
2320     // for a JAVA_HOME environment variable and fix up the path so it
2321     // looks like libjvm.so is installed there (append a fake suffix
2322     // hotspot/libjvm.so).
2323     const char *p = buf + strlen(buf) - 1;
2324     for (int count = 0; p > buf && count < 5; ++count) {
2325       for (--p; p > buf && *p != '/'; --p)
2326         /* empty */ ;
2327     }
2328 
2329     if (strncmp(p, "/jre/lib/", 9) != 0) {
2330       // Look for JAVA_HOME in the environment.
2331       char* java_home_var = ::getenv("JAVA_HOME");
2332       if (java_home_var != NULL && java_home_var[0] != 0) {
2333         char* jrelib_p;
2334         int len;
2335 
2336         // Check the current module name "libjvm.so".
2337         p = strrchr(buf, '/');
2338         if (p == NULL) {
2339           return;
2340         }
2341         assert(strstr(p, "/libjvm") == p, "invalid library name");
2342 
2343         rp = realpath(java_home_var, buf);
2344         if (rp == NULL) {
2345           return;
2346         }
2347 
2348         // determine if this is a legacy image or modules image
2349         // modules image doesn't have "jre" subdirectory
2350         len = strlen(buf);
2351         assert(len < buflen, "Ran out of buffer room");
2352         jrelib_p = buf + len;
2353         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2354         if (0 != access(buf, F_OK)) {
2355           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2356         }
2357 
2358         if (0 == access(buf, F_OK)) {
2359           // Use current module name "libjvm.so"
2360           len = strlen(buf);
2361           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2362         } else {
2363           // Go back to path of .so
2364           rp = realpath(dli_fname, buf);
2365           if (rp == NULL) {
2366             return;
2367           }
2368         }
2369       }
2370     }
2371   }
2372 
2373   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2374   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2375 }
2376 
2377 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2378   // no prefix required, not even "_"
2379 }
2380 
2381 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2382   // no suffix required
2383 }
2384 
2385 ////////////////////////////////////////////////////////////////////////////////
2386 // sun.misc.Signal support
2387 
2388 static volatile jint sigint_count = 0;
2389 
2390 static void UserHandler(int sig, void *siginfo, void *context) {
2391   // 4511530 - sem_post is serialized and handled by the manager thread. When
2392   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2393   // don't want to flood the manager thread with sem_post requests.
2394   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2395     return;
2396   }
2397 
2398   // Ctrl-C is pressed during error reporting, likely because the error
2399   // handler fails to abort. Let VM die immediately.
2400   if (sig == SIGINT && is_error_reported()) {
2401     os::die();
2402   }
2403 
2404   os::signal_notify(sig);
2405 }
2406 
2407 void* os::user_handler() {
2408   return CAST_FROM_FN_PTR(void*, UserHandler);
2409 }
2410 
2411 class Semaphore : public StackObj {
2412  public:
2413   Semaphore();
2414   ~Semaphore();
2415   void signal();
2416   void wait();
2417   bool trywait();
2418   bool timedwait(unsigned int sec, int nsec);
2419  private:
2420   sem_t _semaphore;
2421 };
2422 
2423 Semaphore::Semaphore() {
2424   sem_init(&_semaphore, 0, 0);
2425 }
2426 
2427 Semaphore::~Semaphore() {
2428   sem_destroy(&_semaphore);
2429 }
2430 
2431 void Semaphore::signal() {
2432   sem_post(&_semaphore);
2433 }
2434 
2435 void Semaphore::wait() {
2436   sem_wait(&_semaphore);
2437 }
2438 
2439 bool Semaphore::trywait() {
2440   return sem_trywait(&_semaphore) == 0;
2441 }
2442 
2443 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2444 
2445   struct timespec ts;
2446   // Semaphore's are always associated with CLOCK_REALTIME
2447   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2448   // see unpackTime for discussion on overflow checking
2449   if (sec >= MAX_SECS) {
2450     ts.tv_sec += MAX_SECS;
2451     ts.tv_nsec = 0;
2452   } else {
2453     ts.tv_sec += sec;
2454     ts.tv_nsec += nsec;
2455     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2456       ts.tv_nsec -= NANOSECS_PER_SEC;
2457       ++ts.tv_sec; // note: this must be <= max_secs
2458     }
2459   }
2460 
2461   while (1) {
2462     int result = sem_timedwait(&_semaphore, &ts);
2463     if (result == 0) {
2464       return true;
2465     } else if (errno == EINTR) {
2466       continue;
2467     } else if (errno == ETIMEDOUT) {
2468       return false;
2469     } else {
2470       return false;
2471     }
2472   }
2473 }
2474 
2475 extern "C" {
2476   typedef void (*sa_handler_t)(int);
2477   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2478 }
2479 
2480 void* os::signal(int signal_number, void* handler) {
2481   struct sigaction sigAct, oldSigAct;
2482 
2483   sigfillset(&(sigAct.sa_mask));
2484   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2485   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2486 
2487   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2488     // -1 means registration failed
2489     return (void *)-1;
2490   }
2491 
2492   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2493 }
2494 
2495 void os::signal_raise(int signal_number) {
2496   ::raise(signal_number);
2497 }
2498 
2499 // The following code is moved from os.cpp for making this
2500 // code platform specific, which it is by its very nature.
2501 
2502 // Will be modified when max signal is changed to be dynamic
2503 int os::sigexitnum_pd() {
2504   return NSIG;
2505 }
2506 
2507 // a counter for each possible signal value
2508 static volatile jint pending_signals[NSIG+1] = { 0 };
2509 
2510 // Linux(POSIX) specific hand shaking semaphore.
2511 static sem_t sig_sem;
2512 static Semaphore sr_semaphore;
2513 
2514 void os::signal_init_pd() {
2515   // Initialize signal structures
2516   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2517 
2518   // Initialize signal semaphore
2519   ::sem_init(&sig_sem, 0, 0);
2520 }
2521 
2522 void os::signal_notify(int sig) {
2523   Atomic::inc(&pending_signals[sig]);
2524   ::sem_post(&sig_sem);
2525 }
2526 
2527 static int check_pending_signals(bool wait) {
2528   Atomic::store(0, &sigint_count);
2529   for (;;) {
2530     for (int i = 0; i < NSIG + 1; i++) {
2531       jint n = pending_signals[i];
2532       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2533         return i;
2534       }
2535     }
2536     if (!wait) {
2537       return -1;
2538     }
2539     JavaThread *thread = JavaThread::current();
2540     ThreadBlockInVM tbivm(thread);
2541 
2542     bool threadIsSuspended;
2543     do {
2544       thread->set_suspend_equivalent();
2545       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2546       ::sem_wait(&sig_sem);
2547 
2548       // were we externally suspended while we were waiting?
2549       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2550       if (threadIsSuspended) {
2551         // The semaphore has been incremented, but while we were waiting
2552         // another thread suspended us. We don't want to continue running
2553         // while suspended because that would surprise the thread that
2554         // suspended us.
2555         ::sem_post(&sig_sem);
2556 
2557         thread->java_suspend_self();
2558       }
2559     } while (threadIsSuspended);
2560   }
2561 }
2562 
2563 int os::signal_lookup() {
2564   return check_pending_signals(false);
2565 }
2566 
2567 int os::signal_wait() {
2568   return check_pending_signals(true);
2569 }
2570 
2571 ////////////////////////////////////////////////////////////////////////////////
2572 // Virtual Memory
2573 
2574 int os::vm_page_size() {
2575   // Seems redundant as all get out
2576   assert(os::Linux::page_size() != -1, "must call os::init");
2577   return os::Linux::page_size();
2578 }
2579 
2580 // Solaris allocates memory by pages.
2581 int os::vm_allocation_granularity() {
2582   assert(os::Linux::page_size() != -1, "must call os::init");
2583   return os::Linux::page_size();
2584 }
2585 
2586 // Rationale behind this function:
2587 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2588 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2589 //  samples for JITted code. Here we create private executable mapping over the code cache
2590 //  and then we can use standard (well, almost, as mapping can change) way to provide
2591 //  info for the reporting script by storing timestamp and location of symbol
2592 void linux_wrap_code(char* base, size_t size) {
2593   static volatile jint cnt = 0;
2594 
2595   if (!UseOprofile) {
2596     return;
2597   }
2598 
2599   char buf[PATH_MAX+1];
2600   int num = Atomic::add(1, &cnt);
2601 
2602   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2603            os::get_temp_directory(), os::current_process_id(), num);
2604   unlink(buf);
2605 
2606   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2607 
2608   if (fd != -1) {
2609     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2610     if (rv != (off_t)-1) {
2611       if (::write(fd, "", 1) == 1) {
2612         mmap(base, size,
2613              PROT_READ|PROT_WRITE|PROT_EXEC,
2614              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2615       }
2616     }
2617     ::close(fd);
2618     unlink(buf);
2619   }
2620 }
2621 
2622 static bool recoverable_mmap_error(int err) {
2623   // See if the error is one we can let the caller handle. This
2624   // list of errno values comes from JBS-6843484. I can't find a
2625   // Linux man page that documents this specific set of errno
2626   // values so while this list currently matches Solaris, it may
2627   // change as we gain experience with this failure mode.
2628   switch (err) {
2629   case EBADF:
2630   case EINVAL:
2631   case ENOTSUP:
2632     // let the caller deal with these errors
2633     return true;
2634 
2635   default:
2636     // Any remaining errors on this OS can cause our reserved mapping
2637     // to be lost. That can cause confusion where different data
2638     // structures think they have the same memory mapped. The worst
2639     // scenario is if both the VM and a library think they have the
2640     // same memory mapped.
2641     return false;
2642   }
2643 }
2644 
2645 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2646                                     int err) {
2647   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2648           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2649           strerror(err), err);
2650 }
2651 
2652 static void warn_fail_commit_memory(char* addr, size_t size,
2653                                     size_t alignment_hint, bool exec,
2654                                     int err) {
2655   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2656           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2657           alignment_hint, exec, strerror(err), err);
2658 }
2659 
2660 // NOTE: Linux kernel does not really reserve the pages for us.
2661 //       All it does is to check if there are enough free pages
2662 //       left at the time of mmap(). This could be a potential
2663 //       problem.
2664 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2665   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2666   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2667                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2668   if (res != (uintptr_t) MAP_FAILED) {
2669     if (UseNUMAInterleaving) {
2670       numa_make_global(addr, size);
2671     }
2672     return 0;
2673   }
2674 
2675   int err = errno;  // save errno from mmap() call above
2676 
2677   if (!recoverable_mmap_error(err)) {
2678     warn_fail_commit_memory(addr, size, exec, err);
2679     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2680   }
2681 
2682   return err;
2683 }
2684 
2685 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2686   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2687 }
2688 
2689 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2690                                   const char* mesg) {
2691   assert(mesg != NULL, "mesg must be specified");
2692   int err = os::Linux::commit_memory_impl(addr, size, exec);
2693   if (err != 0) {
2694     // the caller wants all commit errors to exit with the specified mesg:
2695     warn_fail_commit_memory(addr, size, exec, err);
2696     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2697   }
2698 }
2699 
2700 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2701 #ifndef MAP_HUGETLB
2702   #define MAP_HUGETLB 0x40000
2703 #endif
2704 
2705 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2706 #ifndef MADV_HUGEPAGE
2707   #define MADV_HUGEPAGE 14
2708 #endif
2709 
2710 int os::Linux::commit_memory_impl(char* addr, size_t size,
2711                                   size_t alignment_hint, bool exec) {
2712   int err = os::Linux::commit_memory_impl(addr, size, exec);
2713   if (err == 0) {
2714     realign_memory(addr, size, alignment_hint);
2715   }
2716   return err;
2717 }
2718 
2719 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2720                           bool exec) {
2721   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2722 }
2723 
2724 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2725                                   size_t alignment_hint, bool exec,
2726                                   const char* mesg) {
2727   assert(mesg != NULL, "mesg must be specified");
2728   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2729   if (err != 0) {
2730     // the caller wants all commit errors to exit with the specified mesg:
2731     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2732     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2733   }
2734 }
2735 
2736 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2737   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2738     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2739     // be supported or the memory may already be backed by huge pages.
2740     ::madvise(addr, bytes, MADV_HUGEPAGE);
2741   }
2742 }
2743 
2744 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2745   // This method works by doing an mmap over an existing mmaping and effectively discarding
2746   // the existing pages. However it won't work for SHM-based large pages that cannot be
2747   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2748   // small pages on top of the SHM segment. This method always works for small pages, so we
2749   // allow that in any case.
2750   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2751     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2752   }
2753 }
2754 
2755 void os::numa_make_global(char *addr, size_t bytes) {
2756   Linux::numa_interleave_memory(addr, bytes);
2757 }
2758 
2759 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2760 // bind policy to MPOL_PREFERRED for the current thread.
2761 #define USE_MPOL_PREFERRED 0
2762 
2763 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2764   // To make NUMA and large pages more robust when both enabled, we need to ease
2765   // the requirements on where the memory should be allocated. MPOL_BIND is the
2766   // default policy and it will force memory to be allocated on the specified
2767   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2768   // the specified node, but will not force it. Using this policy will prevent
2769   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2770   // free large pages.
2771   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2772   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2773 }
2774 
2775 bool os::numa_topology_changed() { return false; }
2776 
2777 size_t os::numa_get_groups_num() {
2778   int max_node = Linux::numa_max_node();
2779   return max_node > 0 ? max_node + 1 : 1;
2780 }
2781 
2782 int os::numa_get_group_id() {
2783   int cpu_id = Linux::sched_getcpu();
2784   if (cpu_id != -1) {
2785     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2786     if (lgrp_id != -1) {
2787       return lgrp_id;
2788     }
2789   }
2790   return 0;
2791 }
2792 
2793 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2794   for (size_t i = 0; i < size; i++) {
2795     ids[i] = i;
2796   }
2797   return size;
2798 }
2799 
2800 bool os::get_page_info(char *start, page_info* info) {
2801   return false;
2802 }
2803 
2804 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2805                      page_info* page_found) {
2806   return end;
2807 }
2808 
2809 
2810 int os::Linux::sched_getcpu_syscall(void) {
2811   unsigned int cpu;
2812   int retval = -1;
2813 
2814 #if defined(IA32)
2815   #ifndef SYS_getcpu
2816     #define SYS_getcpu 318
2817   #endif
2818   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2819 #elif defined(AMD64)
2820 // Unfortunately we have to bring all these macros here from vsyscall.h
2821 // to be able to compile on old linuxes.
2822   #define __NR_vgetcpu 2
2823   #define VSYSCALL_START (-10UL << 20)
2824   #define VSYSCALL_SIZE 1024
2825   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2826   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2827   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2828   retval = vgetcpu(&cpu, NULL, NULL);
2829 #endif
2830 
2831   return (retval == -1) ? retval : cpu;
2832 }
2833 
2834 // Something to do with the numa-aware allocator needs these symbols
2835 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2836 extern "C" JNIEXPORT void numa_error(char *where) { }
2837 extern "C" JNIEXPORT int fork1() { return fork(); }
2838 
2839 
2840 // If we are running with libnuma version > 2, then we should
2841 // be trying to use symbols with versions 1.1
2842 // If we are running with earlier version, which did not have symbol versions,
2843 // we should use the base version.
2844 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2845   void *f = dlvsym(handle, name, "libnuma_1.1");
2846   if (f == NULL) {
2847     f = dlsym(handle, name);
2848   }
2849   return f;
2850 }
2851 
2852 bool os::Linux::libnuma_init() {
2853   // sched_getcpu() should be in libc.
2854   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2855                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2856 
2857   // If it's not, try a direct syscall.
2858   if (sched_getcpu() == -1) {
2859     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2860                                     (void*)&sched_getcpu_syscall));
2861   }
2862 
2863   if (sched_getcpu() != -1) { // Does it work?
2864     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2865     if (handle != NULL) {
2866       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2867                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2868       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2869                                        libnuma_dlsym(handle, "numa_max_node")));
2870       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2871                                         libnuma_dlsym(handle, "numa_available")));
2872       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2873                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2874       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2875                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2876       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2877                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2878 
2879 
2880       if (numa_available() != -1) {
2881         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2882         // Create a cpu -> node mapping
2883         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2884         rebuild_cpu_to_node_map();
2885         return true;
2886       }
2887     }
2888   }
2889   return false;
2890 }
2891 
2892 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2893 // The table is later used in get_node_by_cpu().
2894 void os::Linux::rebuild_cpu_to_node_map() {
2895   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2896                               // in libnuma (possible values are starting from 16,
2897                               // and continuing up with every other power of 2, but less
2898                               // than the maximum number of CPUs supported by kernel), and
2899                               // is a subject to change (in libnuma version 2 the requirements
2900                               // are more reasonable) we'll just hardcode the number they use
2901                               // in the library.
2902   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2903 
2904   size_t cpu_num = os::active_processor_count();
2905   size_t cpu_map_size = NCPUS / BitsPerCLong;
2906   size_t cpu_map_valid_size =
2907     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2908 
2909   cpu_to_node()->clear();
2910   cpu_to_node()->at_grow(cpu_num - 1);
2911   size_t node_num = numa_get_groups_num();
2912 
2913   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2914   for (size_t i = 0; i < node_num; i++) {
2915     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2916       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2917         if (cpu_map[j] != 0) {
2918           for (size_t k = 0; k < BitsPerCLong; k++) {
2919             if (cpu_map[j] & (1UL << k)) {
2920               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2921             }
2922           }
2923         }
2924       }
2925     }
2926   }
2927   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2928 }
2929 
2930 int os::Linux::get_node_by_cpu(int cpu_id) {
2931   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2932     return cpu_to_node()->at(cpu_id);
2933   }
2934   return -1;
2935 }
2936 
2937 GrowableArray<int>* os::Linux::_cpu_to_node;
2938 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2939 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2940 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2941 os::Linux::numa_available_func_t os::Linux::_numa_available;
2942 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2943 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2944 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2945 unsigned long* os::Linux::_numa_all_nodes;
2946 
2947 bool os::pd_uncommit_memory(char* addr, size_t size) {
2948   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2949                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2950   return res  != (uintptr_t) MAP_FAILED;
2951 }
2952 
2953 static address get_stack_commited_bottom(address bottom, size_t size) {
2954   address nbot = bottom;
2955   address ntop = bottom + size;
2956 
2957   size_t page_sz = os::vm_page_size();
2958   unsigned pages = size / page_sz;
2959 
2960   unsigned char vec[1];
2961   unsigned imin = 1, imax = pages + 1, imid;
2962   int mincore_return_value = 0;
2963 
2964   assert(imin <= imax, "Unexpected page size");
2965 
2966   while (imin < imax) {
2967     imid = (imax + imin) / 2;
2968     nbot = ntop - (imid * page_sz);
2969 
2970     // Use a trick with mincore to check whether the page is mapped or not.
2971     // mincore sets vec to 1 if page resides in memory and to 0 if page
2972     // is swapped output but if page we are asking for is unmapped
2973     // it returns -1,ENOMEM
2974     mincore_return_value = mincore(nbot, page_sz, vec);
2975 
2976     if (mincore_return_value == -1) {
2977       // Page is not mapped go up
2978       // to find first mapped page
2979       if (errno != EAGAIN) {
2980         assert(errno == ENOMEM, "Unexpected mincore errno");
2981         imax = imid;
2982       }
2983     } else {
2984       // Page is mapped go down
2985       // to find first not mapped page
2986       imin = imid + 1;
2987     }
2988   }
2989 
2990   nbot = nbot + page_sz;
2991 
2992   // Adjust stack bottom one page up if last checked page is not mapped
2993   if (mincore_return_value == -1) {
2994     nbot = nbot + page_sz;
2995   }
2996 
2997   return nbot;
2998 }
2999 
3000 
3001 // Linux uses a growable mapping for the stack, and if the mapping for
3002 // the stack guard pages is not removed when we detach a thread the
3003 // stack cannot grow beyond the pages where the stack guard was
3004 // mapped.  If at some point later in the process the stack expands to
3005 // that point, the Linux kernel cannot expand the stack any further
3006 // because the guard pages are in the way, and a segfault occurs.
3007 //
3008 // However, it's essential not to split the stack region by unmapping
3009 // a region (leaving a hole) that's already part of the stack mapping,
3010 // so if the stack mapping has already grown beyond the guard pages at
3011 // the time we create them, we have to truncate the stack mapping.
3012 // So, we need to know the extent of the stack mapping when
3013 // create_stack_guard_pages() is called.
3014 
3015 // We only need this for stacks that are growable: at the time of
3016 // writing thread stacks don't use growable mappings (i.e. those
3017 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3018 // only applies to the main thread.
3019 
3020 // If the (growable) stack mapping already extends beyond the point
3021 // where we're going to put our guard pages, truncate the mapping at
3022 // that point by munmap()ping it.  This ensures that when we later
3023 // munmap() the guard pages we don't leave a hole in the stack
3024 // mapping. This only affects the main/initial thread
3025 
3026 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3027   if (os::Linux::is_initial_thread()) {
3028     // As we manually grow stack up to bottom inside create_attached_thread(),
3029     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3030     // we don't need to do anything special.
3031     // Check it first, before calling heavy function.
3032     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3033     unsigned char vec[1];
3034 
3035     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3036       // Fallback to slow path on all errors, including EAGAIN
3037       stack_extent = (uintptr_t) get_stack_commited_bottom(
3038                                                            os::Linux::initial_thread_stack_bottom(),
3039                                                            (size_t)addr - stack_extent);
3040     }
3041 
3042     if (stack_extent < (uintptr_t)addr) {
3043       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3044     }
3045   }
3046 
3047   return os::commit_memory(addr, size, !ExecMem);
3048 }
3049 
3050 // If this is a growable mapping, remove the guard pages entirely by
3051 // munmap()ping them.  If not, just call uncommit_memory(). This only
3052 // affects the main/initial thread, but guard against future OS changes
3053 // It's safe to always unmap guard pages for initial thread because we
3054 // always place it right after end of the mapped region
3055 
3056 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3057   uintptr_t stack_extent, stack_base;
3058 
3059   if (os::Linux::is_initial_thread()) {
3060     return ::munmap(addr, size) == 0;
3061   }
3062 
3063   return os::uncommit_memory(addr, size);
3064 }
3065 
3066 static address _highest_vm_reserved_address = NULL;
3067 
3068 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3069 // at 'requested_addr'. If there are existing memory mappings at the same
3070 // location, however, they will be overwritten. If 'fixed' is false,
3071 // 'requested_addr' is only treated as a hint, the return value may or
3072 // may not start from the requested address. Unlike Linux mmap(), this
3073 // function returns NULL to indicate failure.
3074 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3075   char * addr;
3076   int flags;
3077 
3078   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3079   if (fixed) {
3080     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3081     flags |= MAP_FIXED;
3082   }
3083 
3084   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3085   // touch an uncommitted page. Otherwise, the read/write might
3086   // succeed if we have enough swap space to back the physical page.
3087   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3088                        flags, -1, 0);
3089 
3090   if (addr != MAP_FAILED) {
3091     // anon_mmap() should only get called during VM initialization,
3092     // don't need lock (actually we can skip locking even it can be called
3093     // from multiple threads, because _highest_vm_reserved_address is just a
3094     // hint about the upper limit of non-stack memory regions.)
3095     if ((address)addr + bytes > _highest_vm_reserved_address) {
3096       _highest_vm_reserved_address = (address)addr + bytes;
3097     }
3098   }
3099 
3100   return addr == MAP_FAILED ? NULL : addr;
3101 }
3102 
3103 // Don't update _highest_vm_reserved_address, because there might be memory
3104 // regions above addr + size. If so, releasing a memory region only creates
3105 // a hole in the address space, it doesn't help prevent heap-stack collision.
3106 //
3107 static int anon_munmap(char * addr, size_t size) {
3108   return ::munmap(addr, size) == 0;
3109 }
3110 
3111 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3112                             size_t alignment_hint) {
3113   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3114 }
3115 
3116 bool os::pd_release_memory(char* addr, size_t size) {
3117   return anon_munmap(addr, size);
3118 }
3119 
3120 static address highest_vm_reserved_address() {
3121   return _highest_vm_reserved_address;
3122 }
3123 
3124 static bool linux_mprotect(char* addr, size_t size, int prot) {
3125   // Linux wants the mprotect address argument to be page aligned.
3126   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3127 
3128   // According to SUSv3, mprotect() should only be used with mappings
3129   // established by mmap(), and mmap() always maps whole pages. Unaligned
3130   // 'addr' likely indicates problem in the VM (e.g. trying to change
3131   // protection of malloc'ed or statically allocated memory). Check the
3132   // caller if you hit this assert.
3133   assert(addr == bottom, "sanity check");
3134 
3135   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3136   return ::mprotect(bottom, size, prot) == 0;
3137 }
3138 
3139 // Set protections specified
3140 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3141                         bool is_committed) {
3142   unsigned int p = 0;
3143   switch (prot) {
3144   case MEM_PROT_NONE: p = PROT_NONE; break;
3145   case MEM_PROT_READ: p = PROT_READ; break;
3146   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3147   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3148   default:
3149     ShouldNotReachHere();
3150   }
3151   // is_committed is unused.
3152   return linux_mprotect(addr, bytes, p);
3153 }
3154 
3155 bool os::guard_memory(char* addr, size_t size) {
3156   return linux_mprotect(addr, size, PROT_NONE);
3157 }
3158 
3159 bool os::unguard_memory(char* addr, size_t size) {
3160   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3161 }
3162 
3163 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3164                                                     size_t page_size) {
3165   bool result = false;
3166   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3167                  MAP_ANONYMOUS|MAP_PRIVATE,
3168                  -1, 0);
3169   if (p != MAP_FAILED) {
3170     void *aligned_p = align_ptr_up(p, page_size);
3171 
3172     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3173 
3174     munmap(p, page_size * 2);
3175   }
3176 
3177   if (warn && !result) {
3178     warning("TransparentHugePages is not supported by the operating system.");
3179   }
3180 
3181   return result;
3182 }
3183 
3184 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3185   bool result = false;
3186   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3187                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3188                  -1, 0);
3189 
3190   if (p != MAP_FAILED) {
3191     // We don't know if this really is a huge page or not.
3192     FILE *fp = fopen("/proc/self/maps", "r");
3193     if (fp) {
3194       while (!feof(fp)) {
3195         char chars[257];
3196         long x = 0;
3197         if (fgets(chars, sizeof(chars), fp)) {
3198           if (sscanf(chars, "%lx-%*x", &x) == 1
3199               && x == (long)p) {
3200             if (strstr (chars, "hugepage")) {
3201               result = true;
3202               break;
3203             }
3204           }
3205         }
3206       }
3207       fclose(fp);
3208     }
3209     munmap(p, page_size);
3210   }
3211 
3212   if (warn && !result) {
3213     warning("HugeTLBFS is not supported by the operating system.");
3214   }
3215 
3216   return result;
3217 }
3218 
3219 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3220 //
3221 // From the coredump_filter documentation:
3222 //
3223 // - (bit 0) anonymous private memory
3224 // - (bit 1) anonymous shared memory
3225 // - (bit 2) file-backed private memory
3226 // - (bit 3) file-backed shared memory
3227 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3228 //           effective only if the bit 2 is cleared)
3229 // - (bit 5) hugetlb private memory
3230 // - (bit 6) hugetlb shared memory
3231 //
3232 static void set_coredump_filter(void) {
3233   FILE *f;
3234   long cdm;
3235 
3236   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3237     return;
3238   }
3239 
3240   if (fscanf(f, "%lx", &cdm) != 1) {
3241     fclose(f);
3242     return;
3243   }
3244 
3245   rewind(f);
3246 
3247   if ((cdm & LARGEPAGES_BIT) == 0) {
3248     cdm |= LARGEPAGES_BIT;
3249     fprintf(f, "%#lx", cdm);
3250   }
3251 
3252   fclose(f);
3253 }
3254 
3255 // Large page support
3256 
3257 static size_t _large_page_size = 0;
3258 
3259 size_t os::Linux::find_large_page_size() {
3260   size_t large_page_size = 0;
3261 
3262   // large_page_size on Linux is used to round up heap size. x86 uses either
3263   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3264   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3265   // page as large as 256M.
3266   //
3267   // Here we try to figure out page size by parsing /proc/meminfo and looking
3268   // for a line with the following format:
3269   //    Hugepagesize:     2048 kB
3270   //
3271   // If we can't determine the value (e.g. /proc is not mounted, or the text
3272   // format has been changed), we'll use the largest page size supported by
3273   // the processor.
3274 
3275 #ifndef ZERO
3276   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3277                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3278 #endif // ZERO
3279 
3280   FILE *fp = fopen("/proc/meminfo", "r");
3281   if (fp) {
3282     while (!feof(fp)) {
3283       int x = 0;
3284       char buf[16];
3285       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3286         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3287           large_page_size = x * K;
3288           break;
3289         }
3290       } else {
3291         // skip to next line
3292         for (;;) {
3293           int ch = fgetc(fp);
3294           if (ch == EOF || ch == (int)'\n') break;
3295         }
3296       }
3297     }
3298     fclose(fp);
3299   }
3300 
3301   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3302     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3303             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3304             proper_unit_for_byte_size(large_page_size));
3305   }
3306 
3307   return large_page_size;
3308 }
3309 
3310 size_t os::Linux::setup_large_page_size() {
3311   _large_page_size = Linux::find_large_page_size();
3312   const size_t default_page_size = (size_t)Linux::page_size();
3313   if (_large_page_size > default_page_size) {
3314     _page_sizes[0] = _large_page_size;
3315     _page_sizes[1] = default_page_size;
3316     _page_sizes[2] = 0;
3317   }
3318 
3319   return _large_page_size;
3320 }
3321 
3322 bool os::Linux::setup_large_page_type(size_t page_size) {
3323   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3324       FLAG_IS_DEFAULT(UseSHM) &&
3325       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3326 
3327     // The type of large pages has not been specified by the user.
3328 
3329     // Try UseHugeTLBFS and then UseSHM.
3330     UseHugeTLBFS = UseSHM = true;
3331 
3332     // Don't try UseTransparentHugePages since there are known
3333     // performance issues with it turned on. This might change in the future.
3334     UseTransparentHugePages = false;
3335   }
3336 
3337   if (UseTransparentHugePages) {
3338     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3339     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3340       UseHugeTLBFS = false;
3341       UseSHM = false;
3342       return true;
3343     }
3344     UseTransparentHugePages = false;
3345   }
3346 
3347   if (UseHugeTLBFS) {
3348     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3349     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3350       UseSHM = false;
3351       return true;
3352     }
3353     UseHugeTLBFS = false;
3354   }
3355 
3356   return UseSHM;
3357 }
3358 
3359 void os::large_page_init() {
3360   if (!UseLargePages &&
3361       !UseTransparentHugePages &&
3362       !UseHugeTLBFS &&
3363       !UseSHM) {
3364     // Not using large pages.
3365     return;
3366   }
3367 
3368   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3369     // The user explicitly turned off large pages.
3370     // Ignore the rest of the large pages flags.
3371     UseTransparentHugePages = false;
3372     UseHugeTLBFS = false;
3373     UseSHM = false;
3374     return;
3375   }
3376 
3377   size_t large_page_size = Linux::setup_large_page_size();
3378   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3379 
3380   set_coredump_filter();
3381 }
3382 
3383 #ifndef SHM_HUGETLB
3384   #define SHM_HUGETLB 04000
3385 #endif
3386 
3387 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3388                                             char* req_addr, bool exec) {
3389   // "exec" is passed in but not used.  Creating the shared image for
3390   // the code cache doesn't have an SHM_X executable permission to check.
3391   assert(UseLargePages && UseSHM, "only for SHM large pages");
3392   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3393 
3394   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3395     return NULL; // Fallback to small pages.
3396   }
3397 
3398   key_t key = IPC_PRIVATE;
3399   char *addr;
3400 
3401   bool warn_on_failure = UseLargePages &&
3402                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3403                          !FLAG_IS_DEFAULT(UseSHM) ||
3404                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3405   char msg[128];
3406 
3407   // Create a large shared memory region to attach to based on size.
3408   // Currently, size is the total size of the heap
3409   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3410   if (shmid == -1) {
3411     // Possible reasons for shmget failure:
3412     // 1. shmmax is too small for Java heap.
3413     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3414     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3415     // 2. not enough large page memory.
3416     //    > check available large pages: cat /proc/meminfo
3417     //    > increase amount of large pages:
3418     //          echo new_value > /proc/sys/vm/nr_hugepages
3419     //      Note 1: different Linux may use different name for this property,
3420     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3421     //      Note 2: it's possible there's enough physical memory available but
3422     //            they are so fragmented after a long run that they can't
3423     //            coalesce into large pages. Try to reserve large pages when
3424     //            the system is still "fresh".
3425     if (warn_on_failure) {
3426       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3427       warning("%s", msg);
3428     }
3429     return NULL;
3430   }
3431 
3432   // attach to the region
3433   addr = (char*)shmat(shmid, req_addr, 0);
3434   int err = errno;
3435 
3436   // Remove shmid. If shmat() is successful, the actual shared memory segment
3437   // will be deleted when it's detached by shmdt() or when the process
3438   // terminates. If shmat() is not successful this will remove the shared
3439   // segment immediately.
3440   shmctl(shmid, IPC_RMID, NULL);
3441 
3442   if ((intptr_t)addr == -1) {
3443     if (warn_on_failure) {
3444       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3445       warning("%s", msg);
3446     }
3447     return NULL;
3448   }
3449 
3450   return addr;
3451 }
3452 
3453 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3454                                         int error) {
3455   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3456 
3457   bool warn_on_failure = UseLargePages &&
3458       (!FLAG_IS_DEFAULT(UseLargePages) ||
3459        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3460        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3461 
3462   if (warn_on_failure) {
3463     char msg[128];
3464     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3465                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3466     warning("%s", msg);
3467   }
3468 }
3469 
3470 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3471                                                         char* req_addr,
3472                                                         bool exec) {
3473   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3474   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3475   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3476 
3477   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3478   char* addr = (char*)::mmap(req_addr, bytes, prot,
3479                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3480                              -1, 0);
3481 
3482   if (addr == MAP_FAILED) {
3483     warn_on_large_pages_failure(req_addr, bytes, errno);
3484     return NULL;
3485   }
3486 
3487   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3488 
3489   return addr;
3490 }
3491 
3492 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3493                                                          size_t alignment,
3494                                                          char* req_addr,
3495                                                          bool exec) {
3496   size_t large_page_size = os::large_page_size();
3497 
3498   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3499 
3500   // Allocate small pages.
3501 
3502   char* start;
3503   if (req_addr != NULL) {
3504     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3505     assert(is_size_aligned(bytes, alignment), "Must be");
3506     start = os::reserve_memory(bytes, req_addr);
3507     assert(start == NULL || start == req_addr, "Must be");
3508   } else {
3509     start = os::reserve_memory_aligned(bytes, alignment);
3510   }
3511 
3512   if (start == NULL) {
3513     return NULL;
3514   }
3515 
3516   assert(is_ptr_aligned(start, alignment), "Must be");
3517 
3518   if (MemTracker::tracking_level() > NMT_minimal) {
3519     // os::reserve_memory_special will record this memory area.
3520     // Need to release it here to prevent overlapping reservations.
3521     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3522     tkr.record((address)start, bytes);
3523   }
3524 
3525   char* end = start + bytes;
3526 
3527   // Find the regions of the allocated chunk that can be promoted to large pages.
3528   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3529   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3530 
3531   size_t lp_bytes = lp_end - lp_start;
3532 
3533   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3534 
3535   if (lp_bytes == 0) {
3536     // The mapped region doesn't even span the start and the end of a large page.
3537     // Fall back to allocate a non-special area.
3538     ::munmap(start, end - start);
3539     return NULL;
3540   }
3541 
3542   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3543 
3544 
3545   void* result;
3546 
3547   if (start != lp_start) {
3548     result = ::mmap(start, lp_start - start, prot,
3549                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3550                     -1, 0);
3551     if (result == MAP_FAILED) {
3552       ::munmap(lp_start, end - lp_start);
3553       return NULL;
3554     }
3555   }
3556 
3557   result = ::mmap(lp_start, lp_bytes, prot,
3558                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3559                   -1, 0);
3560   if (result == MAP_FAILED) {
3561     warn_on_large_pages_failure(req_addr, bytes, errno);
3562     // If the mmap above fails, the large pages region will be unmapped and we
3563     // have regions before and after with small pages. Release these regions.
3564     //
3565     // |  mapped  |  unmapped  |  mapped  |
3566     // ^          ^            ^          ^
3567     // start      lp_start     lp_end     end
3568     //
3569     ::munmap(start, lp_start - start);
3570     ::munmap(lp_end, end - lp_end);
3571     return NULL;
3572   }
3573 
3574   if (lp_end != end) {
3575     result = ::mmap(lp_end, end - lp_end, prot,
3576                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3577                     -1, 0);
3578     if (result == MAP_FAILED) {
3579       ::munmap(start, lp_end - start);
3580       return NULL;
3581     }
3582   }
3583 
3584   return start;
3585 }
3586 
3587 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3588                                                    size_t alignment,
3589                                                    char* req_addr,
3590                                                    bool exec) {
3591   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3592   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3593   assert(is_power_of_2(alignment), "Must be");
3594   assert(is_power_of_2(os::large_page_size()), "Must be");
3595   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3596 
3597   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3598     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3599   } else {
3600     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3601   }
3602 }
3603 
3604 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3605                                  char* req_addr, bool exec) {
3606   assert(UseLargePages, "only for large pages");
3607 
3608   char* addr;
3609   if (UseSHM) {
3610     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3611   } else {
3612     assert(UseHugeTLBFS, "must be");
3613     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3614   }
3615 
3616   if (addr != NULL) {
3617     if (UseNUMAInterleaving) {
3618       numa_make_global(addr, bytes);
3619     }
3620 
3621     // The memory is committed
3622     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3623   }
3624 
3625   return addr;
3626 }
3627 
3628 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3629   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3630   return shmdt(base) == 0;
3631 }
3632 
3633 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3634   return pd_release_memory(base, bytes);
3635 }
3636 
3637 bool os::release_memory_special(char* base, size_t bytes) {
3638   bool res;
3639   if (MemTracker::tracking_level() > NMT_minimal) {
3640     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3641     res = os::Linux::release_memory_special_impl(base, bytes);
3642     if (res) {
3643       tkr.record((address)base, bytes);
3644     }
3645 
3646   } else {
3647     res = os::Linux::release_memory_special_impl(base, bytes);
3648   }
3649   return res;
3650 }
3651 
3652 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3653   assert(UseLargePages, "only for large pages");
3654   bool res;
3655 
3656   if (UseSHM) {
3657     res = os::Linux::release_memory_special_shm(base, bytes);
3658   } else {
3659     assert(UseHugeTLBFS, "must be");
3660     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3661   }
3662   return res;
3663 }
3664 
3665 size_t os::large_page_size() {
3666   return _large_page_size;
3667 }
3668 
3669 // With SysV SHM the entire memory region must be allocated as shared
3670 // memory.
3671 // HugeTLBFS allows application to commit large page memory on demand.
3672 // However, when committing memory with HugeTLBFS fails, the region
3673 // that was supposed to be committed will lose the old reservation
3674 // and allow other threads to steal that memory region. Because of this
3675 // behavior we can't commit HugeTLBFS memory.
3676 bool os::can_commit_large_page_memory() {
3677   return UseTransparentHugePages;
3678 }
3679 
3680 bool os::can_execute_large_page_memory() {
3681   return UseTransparentHugePages || UseHugeTLBFS;
3682 }
3683 
3684 // Reserve memory at an arbitrary address, only if that area is
3685 // available (and not reserved for something else).
3686 
3687 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3688   const int max_tries = 10;
3689   char* base[max_tries];
3690   size_t size[max_tries];
3691   const size_t gap = 0x000000;
3692 
3693   // Assert only that the size is a multiple of the page size, since
3694   // that's all that mmap requires, and since that's all we really know
3695   // about at this low abstraction level.  If we need higher alignment,
3696   // we can either pass an alignment to this method or verify alignment
3697   // in one of the methods further up the call chain.  See bug 5044738.
3698   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3699 
3700   // Repeatedly allocate blocks until the block is allocated at the
3701   // right spot. Give up after max_tries. Note that reserve_memory() will
3702   // automatically update _highest_vm_reserved_address if the call is
3703   // successful. The variable tracks the highest memory address every reserved
3704   // by JVM. It is used to detect heap-stack collision if running with
3705   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3706   // space than needed, it could confuse the collision detecting code. To
3707   // solve the problem, save current _highest_vm_reserved_address and
3708   // calculate the correct value before return.
3709   address old_highest = _highest_vm_reserved_address;
3710 
3711   // Linux mmap allows caller to pass an address as hint; give it a try first,
3712   // if kernel honors the hint then we can return immediately.
3713   char * addr = anon_mmap(requested_addr, bytes, false);
3714   if (addr == requested_addr) {
3715     return requested_addr;
3716   }
3717 
3718   if (addr != NULL) {
3719     // mmap() is successful but it fails to reserve at the requested address
3720     anon_munmap(addr, bytes);
3721   }
3722 
3723   int i;
3724   for (i = 0; i < max_tries; ++i) {
3725     base[i] = reserve_memory(bytes);
3726 
3727     if (base[i] != NULL) {
3728       // Is this the block we wanted?
3729       if (base[i] == requested_addr) {
3730         size[i] = bytes;
3731         break;
3732       }
3733 
3734       // Does this overlap the block we wanted? Give back the overlapped
3735       // parts and try again.
3736 
3737       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3738       if (top_overlap >= 0 && top_overlap < bytes) {
3739         unmap_memory(base[i], top_overlap);
3740         base[i] += top_overlap;
3741         size[i] = bytes - top_overlap;
3742       } else {
3743         size_t bottom_overlap = base[i] + bytes - requested_addr;
3744         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3745           unmap_memory(requested_addr, bottom_overlap);
3746           size[i] = bytes - bottom_overlap;
3747         } else {
3748           size[i] = bytes;
3749         }
3750       }
3751     }
3752   }
3753 
3754   // Give back the unused reserved pieces.
3755 
3756   for (int j = 0; j < i; ++j) {
3757     if (base[j] != NULL) {
3758       unmap_memory(base[j], size[j]);
3759     }
3760   }
3761 
3762   if (i < max_tries) {
3763     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3764     return requested_addr;
3765   } else {
3766     _highest_vm_reserved_address = old_highest;
3767     return NULL;
3768   }
3769 }
3770 
3771 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3772   return ::read(fd, buf, nBytes);
3773 }
3774 
3775 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3776   return ::pread(fd, buf, nBytes, offset);
3777 }
3778 
3779 // Short sleep, direct OS call.
3780 //
3781 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3782 // sched_yield(2) will actually give up the CPU:
3783 //
3784 //   * Alone on this pariticular CPU, keeps running.
3785 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3786 //     (pre 2.6.39).
3787 //
3788 // So calling this with 0 is an alternative.
3789 //
3790 void os::naked_short_sleep(jlong ms) {
3791   struct timespec req;
3792 
3793   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3794   req.tv_sec = 0;
3795   if (ms > 0) {
3796     req.tv_nsec = (ms % 1000) * 1000000;
3797   } else {
3798     req.tv_nsec = 1;
3799   }
3800 
3801   nanosleep(&req, NULL);
3802 
3803   return;
3804 }
3805 
3806 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3807 void os::infinite_sleep() {
3808   while (true) {    // sleep forever ...
3809     ::sleep(100);   // ... 100 seconds at a time
3810   }
3811 }
3812 
3813 // Used to convert frequent JVM_Yield() to nops
3814 bool os::dont_yield() {
3815   return DontYieldALot;
3816 }
3817 
3818 void os::naked_yield() {
3819   sched_yield();
3820 }
3821 
3822 ////////////////////////////////////////////////////////////////////////////////
3823 // thread priority support
3824 
3825 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3826 // only supports dynamic priority, static priority must be zero. For real-time
3827 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3828 // However, for large multi-threaded applications, SCHED_RR is not only slower
3829 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3830 // of 5 runs - Sep 2005).
3831 //
3832 // The following code actually changes the niceness of kernel-thread/LWP. It
3833 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3834 // not the entire user process, and user level threads are 1:1 mapped to kernel
3835 // threads. It has always been the case, but could change in the future. For
3836 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3837 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3838 
3839 int os::java_to_os_priority[CriticalPriority + 1] = {
3840   19,              // 0 Entry should never be used
3841 
3842    4,              // 1 MinPriority
3843    3,              // 2
3844    2,              // 3
3845 
3846    1,              // 4
3847    0,              // 5 NormPriority
3848   -1,              // 6
3849 
3850   -2,              // 7
3851   -3,              // 8
3852   -4,              // 9 NearMaxPriority
3853 
3854   -5,              // 10 MaxPriority
3855 
3856   -5               // 11 CriticalPriority
3857 };
3858 
3859 static int prio_init() {
3860   if (ThreadPriorityPolicy == 1) {
3861     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3862     // if effective uid is not root. Perhaps, a more elegant way of doing
3863     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3864     if (geteuid() != 0) {
3865       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3866         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3867       }
3868       ThreadPriorityPolicy = 0;
3869     }
3870   }
3871   if (UseCriticalJavaThreadPriority) {
3872     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3873   }
3874   return 0;
3875 }
3876 
3877 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3878   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3879 
3880   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3881   return (ret == 0) ? OS_OK : OS_ERR;
3882 }
3883 
3884 OSReturn os::get_native_priority(const Thread* const thread,
3885                                  int *priority_ptr) {
3886   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3887     *priority_ptr = java_to_os_priority[NormPriority];
3888     return OS_OK;
3889   }
3890 
3891   errno = 0;
3892   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3893   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3894 }
3895 
3896 // Hint to the underlying OS that a task switch would not be good.
3897 // Void return because it's a hint and can fail.
3898 void os::hint_no_preempt() {}
3899 
3900 ////////////////////////////////////////////////////////////////////////////////
3901 // suspend/resume support
3902 
3903 //  the low-level signal-based suspend/resume support is a remnant from the
3904 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3905 //  within hotspot. Now there is a single use-case for this:
3906 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3907 //      that runs in the watcher thread.
3908 //  The remaining code is greatly simplified from the more general suspension
3909 //  code that used to be used.
3910 //
3911 //  The protocol is quite simple:
3912 //  - suspend:
3913 //      - sends a signal to the target thread
3914 //      - polls the suspend state of the osthread using a yield loop
3915 //      - target thread signal handler (SR_handler) sets suspend state
3916 //        and blocks in sigsuspend until continued
3917 //  - resume:
3918 //      - sets target osthread state to continue
3919 //      - sends signal to end the sigsuspend loop in the SR_handler
3920 //
3921 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3922 
3923 static void resume_clear_context(OSThread *osthread) {
3924   osthread->set_ucontext(NULL);
3925   osthread->set_siginfo(NULL);
3926 }
3927 
3928 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3929                                  ucontext_t* context) {
3930   osthread->set_ucontext(context);
3931   osthread->set_siginfo(siginfo);
3932 }
3933 
3934 // Handler function invoked when a thread's execution is suspended or
3935 // resumed. We have to be careful that only async-safe functions are
3936 // called here (Note: most pthread functions are not async safe and
3937 // should be avoided.)
3938 //
3939 // Note: sigwait() is a more natural fit than sigsuspend() from an
3940 // interface point of view, but sigwait() prevents the signal hander
3941 // from being run. libpthread would get very confused by not having
3942 // its signal handlers run and prevents sigwait()'s use with the
3943 // mutex granting granting signal.
3944 //
3945 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3946 //
3947 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3948   // Save and restore errno to avoid confusing native code with EINTR
3949   // after sigsuspend.
3950   int old_errno = errno;
3951 
3952   Thread* thread = Thread::current();
3953   OSThread* osthread = thread->osthread();
3954   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3955 
3956   os::SuspendResume::State current = osthread->sr.state();
3957   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3958     suspend_save_context(osthread, siginfo, context);
3959 
3960     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3961     os::SuspendResume::State state = osthread->sr.suspended();
3962     if (state == os::SuspendResume::SR_SUSPENDED) {
3963       sigset_t suspend_set;  // signals for sigsuspend()
3964 
3965       // get current set of blocked signals and unblock resume signal
3966       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3967       sigdelset(&suspend_set, SR_signum);
3968 
3969       sr_semaphore.signal();
3970       // wait here until we are resumed
3971       while (1) {
3972         sigsuspend(&suspend_set);
3973 
3974         os::SuspendResume::State result = osthread->sr.running();
3975         if (result == os::SuspendResume::SR_RUNNING) {
3976           sr_semaphore.signal();
3977           break;
3978         }
3979       }
3980 
3981     } else if (state == os::SuspendResume::SR_RUNNING) {
3982       // request was cancelled, continue
3983     } else {
3984       ShouldNotReachHere();
3985     }
3986 
3987     resume_clear_context(osthread);
3988   } else if (current == os::SuspendResume::SR_RUNNING) {
3989     // request was cancelled, continue
3990   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3991     // ignore
3992   } else {
3993     // ignore
3994   }
3995 
3996   errno = old_errno;
3997 }
3998 
3999 
4000 static int SR_initialize() {
4001   struct sigaction act;
4002   char *s;
4003   // Get signal number to use for suspend/resume
4004   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4005     int sig = ::strtol(s, 0, 10);
4006     if (sig > 0 || sig < _NSIG) {
4007       SR_signum = sig;
4008     }
4009   }
4010 
4011   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4012          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4013 
4014   sigemptyset(&SR_sigset);
4015   sigaddset(&SR_sigset, SR_signum);
4016 
4017   // Set up signal handler for suspend/resume
4018   act.sa_flags = SA_RESTART|SA_SIGINFO;
4019   act.sa_handler = (void (*)(int)) SR_handler;
4020 
4021   // SR_signum is blocked by default.
4022   // 4528190 - We also need to block pthread restart signal (32 on all
4023   // supported Linux platforms). Note that LinuxThreads need to block
4024   // this signal for all threads to work properly. So we don't have
4025   // to use hard-coded signal number when setting up the mask.
4026   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4027 
4028   if (sigaction(SR_signum, &act, 0) == -1) {
4029     return -1;
4030   }
4031 
4032   // Save signal flag
4033   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4034   return 0;
4035 }
4036 
4037 static int sr_notify(OSThread* osthread) {
4038   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4039   assert_status(status == 0, status, "pthread_kill");
4040   return status;
4041 }
4042 
4043 // "Randomly" selected value for how long we want to spin
4044 // before bailing out on suspending a thread, also how often
4045 // we send a signal to a thread we want to resume
4046 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4047 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4048 
4049 // returns true on success and false on error - really an error is fatal
4050 // but this seems the normal response to library errors
4051 static bool do_suspend(OSThread* osthread) {
4052   assert(osthread->sr.is_running(), "thread should be running");
4053   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4054 
4055   // mark as suspended and send signal
4056   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4057     // failed to switch, state wasn't running?
4058     ShouldNotReachHere();
4059     return false;
4060   }
4061 
4062   if (sr_notify(osthread) != 0) {
4063     ShouldNotReachHere();
4064   }
4065 
4066   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4067   while (true) {
4068     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4069       break;
4070     } else {
4071       // timeout
4072       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4073       if (cancelled == os::SuspendResume::SR_RUNNING) {
4074         return false;
4075       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4076         // make sure that we consume the signal on the semaphore as well
4077         sr_semaphore.wait();
4078         break;
4079       } else {
4080         ShouldNotReachHere();
4081         return false;
4082       }
4083     }
4084   }
4085 
4086   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4087   return true;
4088 }
4089 
4090 static void do_resume(OSThread* osthread) {
4091   assert(osthread->sr.is_suspended(), "thread should be suspended");
4092   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4093 
4094   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4095     // failed to switch to WAKEUP_REQUEST
4096     ShouldNotReachHere();
4097     return;
4098   }
4099 
4100   while (true) {
4101     if (sr_notify(osthread) == 0) {
4102       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4103         if (osthread->sr.is_running()) {
4104           return;
4105         }
4106       }
4107     } else {
4108       ShouldNotReachHere();
4109     }
4110   }
4111 
4112   guarantee(osthread->sr.is_running(), "Must be running!");
4113 }
4114 
4115 ///////////////////////////////////////////////////////////////////////////////////
4116 // signal handling (except suspend/resume)
4117 
4118 // This routine may be used by user applications as a "hook" to catch signals.
4119 // The user-defined signal handler must pass unrecognized signals to this
4120 // routine, and if it returns true (non-zero), then the signal handler must
4121 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4122 // routine will never retun false (zero), but instead will execute a VM panic
4123 // routine kill the process.
4124 //
4125 // If this routine returns false, it is OK to call it again.  This allows
4126 // the user-defined signal handler to perform checks either before or after
4127 // the VM performs its own checks.  Naturally, the user code would be making
4128 // a serious error if it tried to handle an exception (such as a null check
4129 // or breakpoint) that the VM was generating for its own correct operation.
4130 //
4131 // This routine may recognize any of the following kinds of signals:
4132 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4133 // It should be consulted by handlers for any of those signals.
4134 //
4135 // The caller of this routine must pass in the three arguments supplied
4136 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4137 // field of the structure passed to sigaction().  This routine assumes that
4138 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4139 //
4140 // Note that the VM will print warnings if it detects conflicting signal
4141 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4142 //
4143 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4144                                                  siginfo_t* siginfo,
4145                                                  void* ucontext,
4146                                                  int abort_if_unrecognized);
4147 
4148 void signalHandler(int sig, siginfo_t* info, void* uc) {
4149   assert(info != NULL && uc != NULL, "it must be old kernel");
4150   int orig_errno = errno;  // Preserve errno value over signal handler.
4151   JVM_handle_linux_signal(sig, info, uc, true);
4152   errno = orig_errno;
4153 }
4154 
4155 
4156 // This boolean allows users to forward their own non-matching signals
4157 // to JVM_handle_linux_signal, harmlessly.
4158 bool os::Linux::signal_handlers_are_installed = false;
4159 
4160 // For signal-chaining
4161 struct sigaction os::Linux::sigact[MAXSIGNUM];
4162 unsigned int os::Linux::sigs = 0;
4163 bool os::Linux::libjsig_is_loaded = false;
4164 typedef struct sigaction *(*get_signal_t)(int);
4165 get_signal_t os::Linux::get_signal_action = NULL;
4166 
4167 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4168   struct sigaction *actp = NULL;
4169 
4170   if (libjsig_is_loaded) {
4171     // Retrieve the old signal handler from libjsig
4172     actp = (*get_signal_action)(sig);
4173   }
4174   if (actp == NULL) {
4175     // Retrieve the preinstalled signal handler from jvm
4176     actp = get_preinstalled_handler(sig);
4177   }
4178 
4179   return actp;
4180 }
4181 
4182 static bool call_chained_handler(struct sigaction *actp, int sig,
4183                                  siginfo_t *siginfo, void *context) {
4184   // Call the old signal handler
4185   if (actp->sa_handler == SIG_DFL) {
4186     // It's more reasonable to let jvm treat it as an unexpected exception
4187     // instead of taking the default action.
4188     return false;
4189   } else if (actp->sa_handler != SIG_IGN) {
4190     if ((actp->sa_flags & SA_NODEFER) == 0) {
4191       // automaticlly block the signal
4192       sigaddset(&(actp->sa_mask), sig);
4193     }
4194 
4195     sa_handler_t hand;
4196     sa_sigaction_t sa;
4197     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4198     // retrieve the chained handler
4199     if (siginfo_flag_set) {
4200       sa = actp->sa_sigaction;
4201     } else {
4202       hand = actp->sa_handler;
4203     }
4204 
4205     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4206       actp->sa_handler = SIG_DFL;
4207     }
4208 
4209     // try to honor the signal mask
4210     sigset_t oset;
4211     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4212 
4213     // call into the chained handler
4214     if (siginfo_flag_set) {
4215       (*sa)(sig, siginfo, context);
4216     } else {
4217       (*hand)(sig);
4218     }
4219 
4220     // restore the signal mask
4221     pthread_sigmask(SIG_SETMASK, &oset, 0);
4222   }
4223   // Tell jvm's signal handler the signal is taken care of.
4224   return true;
4225 }
4226 
4227 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4228   bool chained = false;
4229   // signal-chaining
4230   if (UseSignalChaining) {
4231     struct sigaction *actp = get_chained_signal_action(sig);
4232     if (actp != NULL) {
4233       chained = call_chained_handler(actp, sig, siginfo, context);
4234     }
4235   }
4236   return chained;
4237 }
4238 
4239 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4240   if ((((unsigned int)1 << sig) & sigs) != 0) {
4241     return &sigact[sig];
4242   }
4243   return NULL;
4244 }
4245 
4246 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4247   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4248   sigact[sig] = oldAct;
4249   sigs |= (unsigned int)1 << sig;
4250 }
4251 
4252 // for diagnostic
4253 int os::Linux::sigflags[MAXSIGNUM];
4254 
4255 int os::Linux::get_our_sigflags(int sig) {
4256   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4257   return sigflags[sig];
4258 }
4259 
4260 void os::Linux::set_our_sigflags(int sig, int flags) {
4261   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4262   sigflags[sig] = flags;
4263 }
4264 
4265 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4266   // Check for overwrite.
4267   struct sigaction oldAct;
4268   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4269 
4270   void* oldhand = oldAct.sa_sigaction
4271                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4272                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4273   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4274       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4275       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4276     if (AllowUserSignalHandlers || !set_installed) {
4277       // Do not overwrite; user takes responsibility to forward to us.
4278       return;
4279     } else if (UseSignalChaining) {
4280       // save the old handler in jvm
4281       save_preinstalled_handler(sig, oldAct);
4282       // libjsig also interposes the sigaction() call below and saves the
4283       // old sigaction on it own.
4284     } else {
4285       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4286                     "%#lx for signal %d.", (long)oldhand, sig));
4287     }
4288   }
4289 
4290   struct sigaction sigAct;
4291   sigfillset(&(sigAct.sa_mask));
4292   sigAct.sa_handler = SIG_DFL;
4293   if (!set_installed) {
4294     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4295   } else {
4296     sigAct.sa_sigaction = signalHandler;
4297     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4298   }
4299   // Save flags, which are set by ours
4300   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4301   sigflags[sig] = sigAct.sa_flags;
4302 
4303   int ret = sigaction(sig, &sigAct, &oldAct);
4304   assert(ret == 0, "check");
4305 
4306   void* oldhand2  = oldAct.sa_sigaction
4307                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4308                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4309   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4310 }
4311 
4312 // install signal handlers for signals that HotSpot needs to
4313 // handle in order to support Java-level exception handling.
4314 
4315 void os::Linux::install_signal_handlers() {
4316   if (!signal_handlers_are_installed) {
4317     signal_handlers_are_installed = true;
4318 
4319     // signal-chaining
4320     typedef void (*signal_setting_t)();
4321     signal_setting_t begin_signal_setting = NULL;
4322     signal_setting_t end_signal_setting = NULL;
4323     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4324                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4325     if (begin_signal_setting != NULL) {
4326       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4327                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4328       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4329                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4330       libjsig_is_loaded = true;
4331       assert(UseSignalChaining, "should enable signal-chaining");
4332     }
4333     if (libjsig_is_loaded) {
4334       // Tell libjsig jvm is setting signal handlers
4335       (*begin_signal_setting)();
4336     }
4337 
4338     set_signal_handler(SIGSEGV, true);
4339     set_signal_handler(SIGPIPE, true);
4340     set_signal_handler(SIGBUS, true);
4341     set_signal_handler(SIGILL, true);
4342     set_signal_handler(SIGFPE, true);
4343 #if defined(PPC64)
4344     set_signal_handler(SIGTRAP, true);
4345 #endif
4346     set_signal_handler(SIGXFSZ, true);
4347 
4348     if (libjsig_is_loaded) {
4349       // Tell libjsig jvm finishes setting signal handlers
4350       (*end_signal_setting)();
4351     }
4352 
4353     // We don't activate signal checker if libjsig is in place, we trust ourselves
4354     // and if UserSignalHandler is installed all bets are off.
4355     // Log that signal checking is off only if -verbose:jni is specified.
4356     if (CheckJNICalls) {
4357       if (libjsig_is_loaded) {
4358         if (PrintJNIResolving) {
4359           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4360         }
4361         check_signals = false;
4362       }
4363       if (AllowUserSignalHandlers) {
4364         if (PrintJNIResolving) {
4365           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4366         }
4367         check_signals = false;
4368       }
4369     }
4370   }
4371 }
4372 
4373 // This is the fastest way to get thread cpu time on Linux.
4374 // Returns cpu time (user+sys) for any thread, not only for current.
4375 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4376 // It might work on 2.6.10+ with a special kernel/glibc patch.
4377 // For reference, please, see IEEE Std 1003.1-2004:
4378 //   http://www.unix.org/single_unix_specification
4379 
4380 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4381   struct timespec tp;
4382   int rc = os::Linux::clock_gettime(clockid, &tp);
4383   assert(rc == 0, "clock_gettime is expected to return 0 code");
4384 
4385   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4386 }
4387 
4388 /////
4389 // glibc on Linux platform uses non-documented flag
4390 // to indicate, that some special sort of signal
4391 // trampoline is used.
4392 // We will never set this flag, and we should
4393 // ignore this flag in our diagnostic
4394 #ifdef SIGNIFICANT_SIGNAL_MASK
4395   #undef SIGNIFICANT_SIGNAL_MASK
4396 #endif
4397 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4398 
4399 static const char* get_signal_handler_name(address handler,
4400                                            char* buf, int buflen) {
4401   int offset;
4402   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4403   if (found) {
4404     // skip directory names
4405     const char *p1, *p2;
4406     p1 = buf;
4407     size_t len = strlen(os::file_separator());
4408     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4409     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4410   } else {
4411     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4412   }
4413   return buf;
4414 }
4415 
4416 static void print_signal_handler(outputStream* st, int sig,
4417                                  char* buf, size_t buflen) {
4418   struct sigaction sa;
4419 
4420   sigaction(sig, NULL, &sa);
4421 
4422   // See comment for SIGNIFICANT_SIGNAL_MASK define
4423   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4424 
4425   st->print("%s: ", os::exception_name(sig, buf, buflen));
4426 
4427   address handler = (sa.sa_flags & SA_SIGINFO)
4428     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4429     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4430 
4431   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4432     st->print("SIG_DFL");
4433   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4434     st->print("SIG_IGN");
4435   } else {
4436     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4437   }
4438 
4439   st->print(", sa_mask[0]=");
4440   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4441 
4442   address rh = VMError::get_resetted_sighandler(sig);
4443   // May be, handler was resetted by VMError?
4444   if (rh != NULL) {
4445     handler = rh;
4446     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4447   }
4448 
4449   st->print(", sa_flags=");
4450   os::Posix::print_sa_flags(st, sa.sa_flags);
4451 
4452   // Check: is it our handler?
4453   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4454       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4455     // It is our signal handler
4456     // check for flags, reset system-used one!
4457     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4458       st->print(
4459                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4460                 os::Linux::get_our_sigflags(sig));
4461     }
4462   }
4463   st->cr();
4464 }
4465 
4466 
4467 #define DO_SIGNAL_CHECK(sig)                      \
4468   do {                                            \
4469     if (!sigismember(&check_signal_done, sig)) {  \
4470       os::Linux::check_signal_handler(sig);       \
4471     }                                             \
4472   } while (0)
4473 
4474 // This method is a periodic task to check for misbehaving JNI applications
4475 // under CheckJNI, we can add any periodic checks here
4476 
4477 void os::run_periodic_checks() {
4478   if (check_signals == false) return;
4479 
4480   // SEGV and BUS if overridden could potentially prevent
4481   // generation of hs*.log in the event of a crash, debugging
4482   // such a case can be very challenging, so we absolutely
4483   // check the following for a good measure:
4484   DO_SIGNAL_CHECK(SIGSEGV);
4485   DO_SIGNAL_CHECK(SIGILL);
4486   DO_SIGNAL_CHECK(SIGFPE);
4487   DO_SIGNAL_CHECK(SIGBUS);
4488   DO_SIGNAL_CHECK(SIGPIPE);
4489   DO_SIGNAL_CHECK(SIGXFSZ);
4490 #if defined(PPC64)
4491   DO_SIGNAL_CHECK(SIGTRAP);
4492 #endif
4493 
4494   // ReduceSignalUsage allows the user to override these handlers
4495   // see comments at the very top and jvm_solaris.h
4496   if (!ReduceSignalUsage) {
4497     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4498     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4499     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4500     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4501   }
4502 
4503   DO_SIGNAL_CHECK(SR_signum);
4504   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4505 }
4506 
4507 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4508 
4509 static os_sigaction_t os_sigaction = NULL;
4510 
4511 void os::Linux::check_signal_handler(int sig) {
4512   char buf[O_BUFLEN];
4513   address jvmHandler = NULL;
4514 
4515 
4516   struct sigaction act;
4517   if (os_sigaction == NULL) {
4518     // only trust the default sigaction, in case it has been interposed
4519     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4520     if (os_sigaction == NULL) return;
4521   }
4522 
4523   os_sigaction(sig, (struct sigaction*)NULL, &act);
4524 
4525 
4526   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4527 
4528   address thisHandler = (act.sa_flags & SA_SIGINFO)
4529     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4530     : CAST_FROM_FN_PTR(address, act.sa_handler);
4531 
4532 
4533   switch (sig) {
4534   case SIGSEGV:
4535   case SIGBUS:
4536   case SIGFPE:
4537   case SIGPIPE:
4538   case SIGILL:
4539   case SIGXFSZ:
4540     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4541     break;
4542 
4543   case SHUTDOWN1_SIGNAL:
4544   case SHUTDOWN2_SIGNAL:
4545   case SHUTDOWN3_SIGNAL:
4546   case BREAK_SIGNAL:
4547     jvmHandler = (address)user_handler();
4548     break;
4549 
4550   case INTERRUPT_SIGNAL:
4551     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4552     break;
4553 
4554   default:
4555     if (sig == SR_signum) {
4556       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4557     } else {
4558       return;
4559     }
4560     break;
4561   }
4562 
4563   if (thisHandler != jvmHandler) {
4564     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4565     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4566     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4567     // No need to check this sig any longer
4568     sigaddset(&check_signal_done, sig);
4569     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4570     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4571       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4572                     exception_name(sig, buf, O_BUFLEN));
4573     }
4574   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4575     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4576     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4577     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4578     // No need to check this sig any longer
4579     sigaddset(&check_signal_done, sig);
4580   }
4581 
4582   // Dump all the signal
4583   if (sigismember(&check_signal_done, sig)) {
4584     print_signal_handlers(tty, buf, O_BUFLEN);
4585   }
4586 }
4587 
4588 extern void report_error(char* file_name, int line_no, char* title,
4589                          char* format, ...);
4590 
4591 extern bool signal_name(int signo, char* buf, size_t len);
4592 
4593 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4594   if (0 < exception_code && exception_code <= SIGRTMAX) {
4595     // signal
4596     if (!signal_name(exception_code, buf, size)) {
4597       jio_snprintf(buf, size, "SIG%d", exception_code);
4598     }
4599     return buf;
4600   } else {
4601     return NULL;
4602   }
4603 }
4604 
4605 // this is called _before_ the most of global arguments have been parsed
4606 void os::init(void) {
4607   char dummy;   // used to get a guess on initial stack address
4608 //  first_hrtime = gethrtime();
4609 
4610   // With LinuxThreads the JavaMain thread pid (primordial thread)
4611   // is different than the pid of the java launcher thread.
4612   // So, on Linux, the launcher thread pid is passed to the VM
4613   // via the sun.java.launcher.pid property.
4614   // Use this property instead of getpid() if it was correctly passed.
4615   // See bug 6351349.
4616   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4617 
4618   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4619 
4620   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4621 
4622   init_random(1234567);
4623 
4624   ThreadCritical::initialize();
4625 
4626   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4627   if (Linux::page_size() == -1) {
4628     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4629                   strerror(errno)));
4630   }
4631   init_page_sizes((size_t) Linux::page_size());
4632 
4633   Linux::initialize_system_info();
4634 
4635   // main_thread points to the aboriginal thread
4636   Linux::_main_thread = pthread_self();
4637 
4638   Linux::clock_init();
4639   initial_time_count = javaTimeNanos();
4640 
4641   // pthread_condattr initialization for monotonic clock
4642   int status;
4643   pthread_condattr_t* _condattr = os::Linux::condAttr();
4644   if ((status = pthread_condattr_init(_condattr)) != 0) {
4645     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4646   }
4647   // Only set the clock if CLOCK_MONOTONIC is available
4648   if (os::supports_monotonic_clock()) {
4649     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4650       if (status == EINVAL) {
4651         warning("Unable to use monotonic clock with relative timed-waits" \
4652                 " - changes to the time-of-day clock may have adverse affects");
4653       } else {
4654         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4655       }
4656     }
4657   }
4658   // else it defaults to CLOCK_REALTIME
4659 
4660   pthread_mutex_init(&dl_mutex, NULL);
4661 
4662   // If the pagesize of the VM is greater than 8K determine the appropriate
4663   // number of initial guard pages.  The user can change this with the
4664   // command line arguments, if needed.
4665   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4666     StackYellowPages = 1;
4667     StackRedPages = 1;
4668     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4669   }
4670 
4671   // retrieve entry point for pthread_setname_np
4672   Linux::_pthread_setname_np =
4673     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4674 
4675 }
4676 
4677 // To install functions for atexit system call
4678 extern "C" {
4679   static void perfMemory_exit_helper() {
4680     perfMemory_exit();
4681   }
4682 }
4683 
4684 // this is called _after_ the global arguments have been parsed
4685 jint os::init_2(void) {
4686   Linux::fast_thread_clock_init();
4687 
4688   // Allocate a single page and mark it as readable for safepoint polling
4689   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4690   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4691 
4692   os::set_polling_page(polling_page);
4693 
4694 #ifndef PRODUCT
4695   if (Verbose && PrintMiscellaneous) {
4696     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4697                (intptr_t)polling_page);
4698   }
4699 #endif
4700 
4701   if (!UseMembar) {
4702     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4703     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4704     os::set_memory_serialize_page(mem_serialize_page);
4705 
4706 #ifndef PRODUCT
4707     if (Verbose && PrintMiscellaneous) {
4708       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4709                  (intptr_t)mem_serialize_page);
4710     }
4711 #endif
4712   }
4713 
4714   // initialize suspend/resume support - must do this before signal_sets_init()
4715   if (SR_initialize() != 0) {
4716     perror("SR_initialize failed");
4717     return JNI_ERR;
4718   }
4719 
4720   Linux::signal_sets_init();
4721   Linux::install_signal_handlers();
4722 
4723   // Check minimum allowable stack size for thread creation and to initialize
4724   // the java system classes, including StackOverflowError - depends on page
4725   // size.  Add a page for compiler2 recursion in main thread.
4726   // Add in 2*BytesPerWord times page size to account for VM stack during
4727   // class initialization depending on 32 or 64 bit VM.
4728   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4729                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4730                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4731 
4732   size_t threadStackSizeInBytes = ThreadStackSize * K;
4733   if (threadStackSizeInBytes != 0 &&
4734       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4735     tty->print_cr("\nThe stack size specified is too small, "
4736                   "Specify at least %dk",
4737                   os::Linux::min_stack_allowed/ K);
4738     return JNI_ERR;
4739   }
4740 
4741   // Make the stack size a multiple of the page size so that
4742   // the yellow/red zones can be guarded.
4743   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4744                                                 vm_page_size()));
4745 
4746   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4747 
4748 #if defined(IA32)
4749   workaround_expand_exec_shield_cs_limit();
4750 #endif
4751 
4752   Linux::libpthread_init();
4753   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4754     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4755                   Linux::glibc_version(), Linux::libpthread_version(),
4756                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4757   }
4758 
4759   if (UseNUMA) {
4760     if (!Linux::libnuma_init()) {
4761       UseNUMA = false;
4762     } else {
4763       if ((Linux::numa_max_node() < 1)) {
4764         // There's only one node(they start from 0), disable NUMA.
4765         UseNUMA = false;
4766       }
4767     }
4768     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4769     // we can make the adaptive lgrp chunk resizing work. If the user specified
4770     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4771     // disable adaptive resizing.
4772     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4773       if (FLAG_IS_DEFAULT(UseNUMA)) {
4774         UseNUMA = false;
4775       } else {
4776         if (FLAG_IS_DEFAULT(UseLargePages) &&
4777             FLAG_IS_DEFAULT(UseSHM) &&
4778             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4779           UseLargePages = false;
4780         } else {
4781           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4782           UseAdaptiveSizePolicy = false;
4783           UseAdaptiveNUMAChunkSizing = false;
4784         }
4785       }
4786     }
4787     if (!UseNUMA && ForceNUMA) {
4788       UseNUMA = true;
4789     }
4790   }
4791 
4792   if (MaxFDLimit) {
4793     // set the number of file descriptors to max. print out error
4794     // if getrlimit/setrlimit fails but continue regardless.
4795     struct rlimit nbr_files;
4796     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4797     if (status != 0) {
4798       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4799         perror("os::init_2 getrlimit failed");
4800       }
4801     } else {
4802       nbr_files.rlim_cur = nbr_files.rlim_max;
4803       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4804       if (status != 0) {
4805         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4806           perror("os::init_2 setrlimit failed");
4807         }
4808       }
4809     }
4810   }
4811 
4812   // Initialize lock used to serialize thread creation (see os::create_thread)
4813   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4814 
4815   // at-exit methods are called in the reverse order of their registration.
4816   // atexit functions are called on return from main or as a result of a
4817   // call to exit(3C). There can be only 32 of these functions registered
4818   // and atexit() does not set errno.
4819 
4820   if (PerfAllowAtExitRegistration) {
4821     // only register atexit functions if PerfAllowAtExitRegistration is set.
4822     // atexit functions can be delayed until process exit time, which
4823     // can be problematic for embedded VM situations. Embedded VMs should
4824     // call DestroyJavaVM() to assure that VM resources are released.
4825 
4826     // note: perfMemory_exit_helper atexit function may be removed in
4827     // the future if the appropriate cleanup code can be added to the
4828     // VM_Exit VMOperation's doit method.
4829     if (atexit(perfMemory_exit_helper) != 0) {
4830       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4831     }
4832   }
4833 
4834   // initialize thread priority policy
4835   prio_init();
4836 
4837   return JNI_OK;
4838 }
4839 
4840 // Mark the polling page as unreadable
4841 void os::make_polling_page_unreadable(void) {
4842   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4843     fatal("Could not disable polling page");
4844   }
4845 }
4846 
4847 // Mark the polling page as readable
4848 void os::make_polling_page_readable(void) {
4849   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4850     fatal("Could not enable polling page");
4851   }
4852 }
4853 
4854 int os::active_processor_count() {
4855   // Linux doesn't yet have a (official) notion of processor sets,
4856   // so just return the number of online processors.
4857   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4858   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4859   return online_cpus;
4860 }
4861 
4862 void os::set_native_thread_name(const char *name) {
4863   if (Linux::_pthread_setname_np) {
4864     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4865     snprintf(buf, sizeof(buf), "%s", name);
4866     buf[sizeof(buf) - 1] = '\0';
4867     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4868     // ERANGE should not happen; all other errors should just be ignored.
4869     assert(rc != ERANGE, "pthread_setname_np failed");
4870   }
4871 }
4872 
4873 bool os::distribute_processes(uint length, uint* distribution) {
4874   // Not yet implemented.
4875   return false;
4876 }
4877 
4878 bool os::bind_to_processor(uint processor_id) {
4879   // Not yet implemented.
4880   return false;
4881 }
4882 
4883 ///
4884 
4885 void os::SuspendedThreadTask::internal_do_task() {
4886   if (do_suspend(_thread->osthread())) {
4887     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4888     do_task(context);
4889     do_resume(_thread->osthread());
4890   }
4891 }
4892 
4893 class PcFetcher : public os::SuspendedThreadTask {
4894  public:
4895   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4896   ExtendedPC result();
4897  protected:
4898   void do_task(const os::SuspendedThreadTaskContext& context);
4899  private:
4900   ExtendedPC _epc;
4901 };
4902 
4903 ExtendedPC PcFetcher::result() {
4904   guarantee(is_done(), "task is not done yet.");
4905   return _epc;
4906 }
4907 
4908 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4909   Thread* thread = context.thread();
4910   OSThread* osthread = thread->osthread();
4911   if (osthread->ucontext() != NULL) {
4912     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4913   } else {
4914     // NULL context is unexpected, double-check this is the VMThread
4915     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4916   }
4917 }
4918 
4919 // Suspends the target using the signal mechanism and then grabs the PC before
4920 // resuming the target. Used by the flat-profiler only
4921 ExtendedPC os::get_thread_pc(Thread* thread) {
4922   // Make sure that it is called by the watcher for the VMThread
4923   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4924   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4925 
4926   PcFetcher fetcher(thread);
4927   fetcher.run();
4928   return fetcher.result();
4929 }
4930 
4931 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4932                                    pthread_mutex_t *_mutex,
4933                                    const struct timespec *_abstime) {
4934   if (is_NPTL()) {
4935     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4936   } else {
4937     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4938     // word back to default 64bit precision if condvar is signaled. Java
4939     // wants 53bit precision.  Save and restore current value.
4940     int fpu = get_fpu_control_word();
4941     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4942     set_fpu_control_word(fpu);
4943     return status;
4944   }
4945 }
4946 
4947 ////////////////////////////////////////////////////////////////////////////////
4948 // debug support
4949 
4950 bool os::find(address addr, outputStream* st) {
4951   Dl_info dlinfo;
4952   memset(&dlinfo, 0, sizeof(dlinfo));
4953   if (dladdr(addr, &dlinfo) != 0) {
4954     st->print(PTR_FORMAT ": ", addr);
4955     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4956       st->print("%s+%#x", dlinfo.dli_sname,
4957                 addr - (intptr_t)dlinfo.dli_saddr);
4958     } else if (dlinfo.dli_fbase != NULL) {
4959       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4960     } else {
4961       st->print("<absolute address>");
4962     }
4963     if (dlinfo.dli_fname != NULL) {
4964       st->print(" in %s", dlinfo.dli_fname);
4965     }
4966     if (dlinfo.dli_fbase != NULL) {
4967       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4968     }
4969     st->cr();
4970 
4971     if (Verbose) {
4972       // decode some bytes around the PC
4973       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4974       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4975       address       lowest = (address) dlinfo.dli_sname;
4976       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4977       if (begin < lowest)  begin = lowest;
4978       Dl_info dlinfo2;
4979       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4980           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4981         end = (address) dlinfo2.dli_saddr;
4982       }
4983       Disassembler::decode(begin, end, st);
4984     }
4985     return true;
4986   }
4987   return false;
4988 }
4989 
4990 ////////////////////////////////////////////////////////////////////////////////
4991 // misc
4992 
4993 // This does not do anything on Linux. This is basically a hook for being
4994 // able to use structured exception handling (thread-local exception filters)
4995 // on, e.g., Win32.
4996 void
4997 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4998                          JavaCallArguments* args, Thread* thread) {
4999   f(value, method, args, thread);
5000 }
5001 
5002 void os::print_statistics() {
5003 }
5004 
5005 int os::message_box(const char* title, const char* message) {
5006   int i;
5007   fdStream err(defaultStream::error_fd());
5008   for (i = 0; i < 78; i++) err.print_raw("=");
5009   err.cr();
5010   err.print_raw_cr(title);
5011   for (i = 0; i < 78; i++) err.print_raw("-");
5012   err.cr();
5013   err.print_raw_cr(message);
5014   for (i = 0; i < 78; i++) err.print_raw("=");
5015   err.cr();
5016 
5017   char buf[16];
5018   // Prevent process from exiting upon "read error" without consuming all CPU
5019   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5020 
5021   return buf[0] == 'y' || buf[0] == 'Y';
5022 }
5023 
5024 int os::stat(const char *path, struct stat *sbuf) {
5025   char pathbuf[MAX_PATH];
5026   if (strlen(path) > MAX_PATH - 1) {
5027     errno = ENAMETOOLONG;
5028     return -1;
5029   }
5030   os::native_path(strcpy(pathbuf, path));
5031   return ::stat(pathbuf, sbuf);
5032 }
5033 
5034 bool os::check_heap(bool force) {
5035   return true;
5036 }
5037 
5038 // Is a (classpath) directory empty?
5039 bool os::dir_is_empty(const char* path) {
5040   DIR *dir = NULL;
5041   struct dirent *ptr;
5042 
5043   dir = opendir(path);
5044   if (dir == NULL) return true;
5045 
5046   // Scan the directory
5047   bool result = true;
5048   char buf[sizeof(struct dirent) + MAX_PATH];
5049   while (result && (ptr = ::readdir(dir)) != NULL) {
5050     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5051       result = false;
5052     }
5053   }
5054   closedir(dir);
5055   return result;
5056 }
5057 
5058 // This code originates from JDK's sysOpen and open64_w
5059 // from src/solaris/hpi/src/system_md.c
5060 
5061 int os::open(const char *path, int oflag, int mode) {
5062   if (strlen(path) > MAX_PATH - 1) {
5063     errno = ENAMETOOLONG;
5064     return -1;
5065   }
5066 
5067   // All file descriptors that are opened in the Java process and not
5068   // specifically destined for a subprocess should have the close-on-exec
5069   // flag set.  If we don't set it, then careless 3rd party native code
5070   // might fork and exec without closing all appropriate file descriptors
5071   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5072   // turn might:
5073   //
5074   // - cause end-of-file to fail to be detected on some file
5075   //   descriptors, resulting in mysterious hangs, or
5076   //
5077   // - might cause an fopen in the subprocess to fail on a system
5078   //   suffering from bug 1085341.
5079   //
5080   // (Yes, the default setting of the close-on-exec flag is a Unix
5081   // design flaw)
5082   //
5083   // See:
5084   // 1085341: 32-bit stdio routines should support file descriptors >255
5085   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5086   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5087   //
5088   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5089   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5090   // because it saves a system call and removes a small window where the flag
5091   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5092   // and we fall back to using FD_CLOEXEC (see below).
5093 #ifdef O_CLOEXEC
5094   oflag |= O_CLOEXEC;
5095 #endif
5096 
5097   int fd = ::open64(path, oflag, mode);
5098   if (fd == -1) return -1;
5099 
5100   //If the open succeeded, the file might still be a directory
5101   {
5102     struct stat64 buf64;
5103     int ret = ::fstat64(fd, &buf64);
5104     int st_mode = buf64.st_mode;
5105 
5106     if (ret != -1) {
5107       if ((st_mode & S_IFMT) == S_IFDIR) {
5108         errno = EISDIR;
5109         ::close(fd);
5110         return -1;
5111       }
5112     } else {
5113       ::close(fd);
5114       return -1;
5115     }
5116   }
5117 
5118 #ifdef FD_CLOEXEC
5119   // Validate that the use of the O_CLOEXEC flag on open above worked.
5120   // With recent kernels, we will perform this check exactly once.
5121   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5122   if (!O_CLOEXEC_is_known_to_work) {
5123     int flags = ::fcntl(fd, F_GETFD);
5124     if (flags != -1) {
5125       if ((flags & FD_CLOEXEC) != 0)
5126         O_CLOEXEC_is_known_to_work = 1;
5127       else
5128         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5129     }
5130   }
5131 #endif
5132 
5133   return fd;
5134 }
5135 
5136 
5137 // create binary file, rewriting existing file if required
5138 int os::create_binary_file(const char* path, bool rewrite_existing) {
5139   int oflags = O_WRONLY | O_CREAT;
5140   if (!rewrite_existing) {
5141     oflags |= O_EXCL;
5142   }
5143   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5144 }
5145 
5146 // return current position of file pointer
5147 jlong os::current_file_offset(int fd) {
5148   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5149 }
5150 
5151 // move file pointer to the specified offset
5152 jlong os::seek_to_file_offset(int fd, jlong offset) {
5153   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5154 }
5155 
5156 // This code originates from JDK's sysAvailable
5157 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5158 
5159 int os::available(int fd, jlong *bytes) {
5160   jlong cur, end;
5161   int mode;
5162   struct stat64 buf64;
5163 
5164   if (::fstat64(fd, &buf64) >= 0) {
5165     mode = buf64.st_mode;
5166     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5167       // XXX: is the following call interruptible? If so, this might
5168       // need to go through the INTERRUPT_IO() wrapper as for other
5169       // blocking, interruptible calls in this file.
5170       int n;
5171       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5172         *bytes = n;
5173         return 1;
5174       }
5175     }
5176   }
5177   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5178     return 0;
5179   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5180     return 0;
5181   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5182     return 0;
5183   }
5184   *bytes = end - cur;
5185   return 1;
5186 }
5187 
5188 // Map a block of memory.
5189 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5190                         char *addr, size_t bytes, bool read_only,
5191                         bool allow_exec) {
5192   int prot;
5193   int flags = MAP_PRIVATE;
5194 
5195   if (read_only) {
5196     prot = PROT_READ;
5197   } else {
5198     prot = PROT_READ | PROT_WRITE;
5199   }
5200 
5201   if (allow_exec) {
5202     prot |= PROT_EXEC;
5203   }
5204 
5205   if (addr != NULL) {
5206     flags |= MAP_FIXED;
5207   }
5208 
5209   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5210                                      fd, file_offset);
5211   if (mapped_address == MAP_FAILED) {
5212     return NULL;
5213   }
5214   return mapped_address;
5215 }
5216 
5217 
5218 // Remap a block of memory.
5219 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5220                           char *addr, size_t bytes, bool read_only,
5221                           bool allow_exec) {
5222   // same as map_memory() on this OS
5223   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5224                         allow_exec);
5225 }
5226 
5227 
5228 // Unmap a block of memory.
5229 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5230   return munmap(addr, bytes) == 0;
5231 }
5232 
5233 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5234 
5235 static clockid_t thread_cpu_clockid(Thread* thread) {
5236   pthread_t tid = thread->osthread()->pthread_id();
5237   clockid_t clockid;
5238 
5239   // Get thread clockid
5240   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5241   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5242   return clockid;
5243 }
5244 
5245 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5246 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5247 // of a thread.
5248 //
5249 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5250 // the fast estimate available on the platform.
5251 
5252 jlong os::current_thread_cpu_time() {
5253   if (os::Linux::supports_fast_thread_cpu_time()) {
5254     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5255   } else {
5256     // return user + sys since the cost is the same
5257     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5258   }
5259 }
5260 
5261 jlong os::thread_cpu_time(Thread* thread) {
5262   // consistent with what current_thread_cpu_time() returns
5263   if (os::Linux::supports_fast_thread_cpu_time()) {
5264     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5265   } else {
5266     return slow_thread_cpu_time(thread, true /* user + sys */);
5267   }
5268 }
5269 
5270 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5271   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5272     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5273   } else {
5274     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5275   }
5276 }
5277 
5278 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5279   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5280     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5281   } else {
5282     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5283   }
5284 }
5285 
5286 //  -1 on error.
5287 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5288   pid_t  tid = thread->osthread()->thread_id();
5289   char *s;
5290   char stat[2048];
5291   int statlen;
5292   char proc_name[64];
5293   int count;
5294   long sys_time, user_time;
5295   char cdummy;
5296   int idummy;
5297   long ldummy;
5298   FILE *fp;
5299 
5300   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5301   fp = fopen(proc_name, "r");
5302   if (fp == NULL) return -1;
5303   statlen = fread(stat, 1, 2047, fp);
5304   stat[statlen] = '\0';
5305   fclose(fp);
5306 
5307   // Skip pid and the command string. Note that we could be dealing with
5308   // weird command names, e.g. user could decide to rename java launcher
5309   // to "java 1.4.2 :)", then the stat file would look like
5310   //                1234 (java 1.4.2 :)) R ... ...
5311   // We don't really need to know the command string, just find the last
5312   // occurrence of ")" and then start parsing from there. See bug 4726580.
5313   s = strrchr(stat, ')');
5314   if (s == NULL) return -1;
5315 
5316   // Skip blank chars
5317   do { s++; } while (s && isspace(*s));
5318 
5319   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5320                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5321                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5322                  &user_time, &sys_time);
5323   if (count != 13) return -1;
5324   if (user_sys_cpu_time) {
5325     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5326   } else {
5327     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5328   }
5329 }
5330 
5331 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5332   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5333   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5334   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5335   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5336 }
5337 
5338 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5339   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5340   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5341   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5342   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5343 }
5344 
5345 bool os::is_thread_cpu_time_supported() {
5346   return true;
5347 }
5348 
5349 // System loadavg support.  Returns -1 if load average cannot be obtained.
5350 // Linux doesn't yet have a (official) notion of processor sets,
5351 // so just return the system wide load average.
5352 int os::loadavg(double loadavg[], int nelem) {
5353   return ::getloadavg(loadavg, nelem);
5354 }
5355 
5356 void os::pause() {
5357   char filename[MAX_PATH];
5358   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5359     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5360   } else {
5361     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5362   }
5363 
5364   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5365   if (fd != -1) {
5366     struct stat buf;
5367     ::close(fd);
5368     while (::stat(filename, &buf) == 0) {
5369       (void)::poll(NULL, 0, 100);
5370     }
5371   } else {
5372     jio_fprintf(stderr,
5373                 "Could not open pause file '%s', continuing immediately.\n", filename);
5374   }
5375 }
5376 
5377 
5378 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5379 // comment paragraphs are worth repeating here:
5380 //
5381 // Assumption:
5382 //    Only one parker can exist on an event, which is why we allocate
5383 //    them per-thread. Multiple unparkers can coexist.
5384 //
5385 // _Event serves as a restricted-range semaphore.
5386 //   -1 : thread is blocked, i.e. there is a waiter
5387 //    0 : neutral: thread is running or ready,
5388 //        could have been signaled after a wait started
5389 //    1 : signaled - thread is running or ready
5390 //
5391 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5392 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5393 // For specifics regarding the bug see GLIBC BUGID 261237 :
5394 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5395 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5396 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5397 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5398 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5399 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5400 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5401 // of libpthread avoids the problem, but isn't practical.
5402 //
5403 // Possible remedies:
5404 //
5405 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5406 //      This is palliative and probabilistic, however.  If the thread is preempted
5407 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5408 //      than the minimum period may have passed, and the abstime may be stale (in the
5409 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5410 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5411 //
5412 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5413 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5414 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5415 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5416 //      thread.
5417 //
5418 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5419 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5420 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5421 //      This also works well.  In fact it avoids kernel-level scalability impediments
5422 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5423 //      timers in a graceful fashion.
5424 //
5425 // 4.   When the abstime value is in the past it appears that control returns
5426 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5427 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5428 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5429 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5430 //      It may be possible to avoid reinitialization by checking the return
5431 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5432 //      condvar we must establish the invariant that cond_signal() is only called
5433 //      within critical sections protected by the adjunct mutex.  This prevents
5434 //      cond_signal() from "seeing" a condvar that's in the midst of being
5435 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5436 //      desirable signal-after-unlock optimization that avoids futile context switching.
5437 //
5438 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5439 //      structure when a condvar is used or initialized.  cond_destroy()  would
5440 //      release the helper structure.  Our reinitialize-after-timedwait fix
5441 //      put excessive stress on malloc/free and locks protecting the c-heap.
5442 //
5443 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5444 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5445 // and only enabling the work-around for vulnerable environments.
5446 
5447 // utility to compute the abstime argument to timedwait:
5448 // millis is the relative timeout time
5449 // abstime will be the absolute timeout time
5450 // TODO: replace compute_abstime() with unpackTime()
5451 
5452 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5453   if (millis < 0)  millis = 0;
5454 
5455   jlong seconds = millis / 1000;
5456   millis %= 1000;
5457   if (seconds > 50000000) { // see man cond_timedwait(3T)
5458     seconds = 50000000;
5459   }
5460 
5461   if (os::supports_monotonic_clock()) {
5462     struct timespec now;
5463     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5464     assert_status(status == 0, status, "clock_gettime");
5465     abstime->tv_sec = now.tv_sec  + seconds;
5466     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5467     if (nanos >= NANOSECS_PER_SEC) {
5468       abstime->tv_sec += 1;
5469       nanos -= NANOSECS_PER_SEC;
5470     }
5471     abstime->tv_nsec = nanos;
5472   } else {
5473     struct timeval now;
5474     int status = gettimeofday(&now, NULL);
5475     assert(status == 0, "gettimeofday");
5476     abstime->tv_sec = now.tv_sec  + seconds;
5477     long usec = now.tv_usec + millis * 1000;
5478     if (usec >= 1000000) {
5479       abstime->tv_sec += 1;
5480       usec -= 1000000;
5481     }
5482     abstime->tv_nsec = usec * 1000;
5483   }
5484   return abstime;
5485 }
5486 
5487 void os::PlatformEvent::park() {       // AKA "down()"
5488   // Transitions for _Event:
5489   //   -1 => -1 : illegal
5490   //    1 =>  0 : pass - return immediately
5491   //    0 => -1 : block; then set _Event to 0 before returning
5492 
5493   // Invariant: Only the thread associated with the Event/PlatformEvent
5494   // may call park().
5495   // TODO: assert that _Assoc != NULL or _Assoc == Self
5496   assert(_nParked == 0, "invariant");
5497 
5498   int v;
5499   for (;;) {
5500     v = _Event;
5501     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5502   }
5503   guarantee(v >= 0, "invariant");
5504   if (v == 0) {
5505     // Do this the hard way by blocking ...
5506     int status = pthread_mutex_lock(_mutex);
5507     assert_status(status == 0, status, "mutex_lock");
5508     guarantee(_nParked == 0, "invariant");
5509     ++_nParked;
5510     while (_Event < 0) {
5511       status = pthread_cond_wait(_cond, _mutex);
5512       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5513       // Treat this the same as if the wait was interrupted
5514       if (status == ETIME) { status = EINTR; }
5515       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5516     }
5517     --_nParked;
5518 
5519     _Event = 0;
5520     status = pthread_mutex_unlock(_mutex);
5521     assert_status(status == 0, status, "mutex_unlock");
5522     // Paranoia to ensure our locked and lock-free paths interact
5523     // correctly with each other.
5524     OrderAccess::fence();
5525   }
5526   guarantee(_Event >= 0, "invariant");
5527 }
5528 
5529 int os::PlatformEvent::park(jlong millis) {
5530   // Transitions for _Event:
5531   //   -1 => -1 : illegal
5532   //    1 =>  0 : pass - return immediately
5533   //    0 => -1 : block; then set _Event to 0 before returning
5534 
5535   guarantee(_nParked == 0, "invariant");
5536 
5537   int v;
5538   for (;;) {
5539     v = _Event;
5540     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5541   }
5542   guarantee(v >= 0, "invariant");
5543   if (v != 0) return OS_OK;
5544 
5545   // We do this the hard way, by blocking the thread.
5546   // Consider enforcing a minimum timeout value.
5547   struct timespec abst;
5548   compute_abstime(&abst, millis);
5549 
5550   int ret = OS_TIMEOUT;
5551   int status = pthread_mutex_lock(_mutex);
5552   assert_status(status == 0, status, "mutex_lock");
5553   guarantee(_nParked == 0, "invariant");
5554   ++_nParked;
5555 
5556   // Object.wait(timo) will return because of
5557   // (a) notification
5558   // (b) timeout
5559   // (c) thread.interrupt
5560   //
5561   // Thread.interrupt and object.notify{All} both call Event::set.
5562   // That is, we treat thread.interrupt as a special case of notification.
5563   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5564   // We assume all ETIME returns are valid.
5565   //
5566   // TODO: properly differentiate simultaneous notify+interrupt.
5567   // In that case, we should propagate the notify to another waiter.
5568 
5569   while (_Event < 0) {
5570     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5571     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5572       pthread_cond_destroy(_cond);
5573       pthread_cond_init(_cond, os::Linux::condAttr());
5574     }
5575     assert_status(status == 0 || status == EINTR ||
5576                   status == ETIME || status == ETIMEDOUT,
5577                   status, "cond_timedwait");
5578     if (!FilterSpuriousWakeups) break;                 // previous semantics
5579     if (status == ETIME || status == ETIMEDOUT) break;
5580     // We consume and ignore EINTR and spurious wakeups.
5581   }
5582   --_nParked;
5583   if (_Event >= 0) {
5584     ret = OS_OK;
5585   }
5586   _Event = 0;
5587   status = pthread_mutex_unlock(_mutex);
5588   assert_status(status == 0, status, "mutex_unlock");
5589   assert(_nParked == 0, "invariant");
5590   // Paranoia to ensure our locked and lock-free paths interact
5591   // correctly with each other.
5592   OrderAccess::fence();
5593   return ret;
5594 }
5595 
5596 void os::PlatformEvent::unpark() {
5597   // Transitions for _Event:
5598   //    0 => 1 : just return
5599   //    1 => 1 : just return
5600   //   -1 => either 0 or 1; must signal target thread
5601   //         That is, we can safely transition _Event from -1 to either
5602   //         0 or 1.
5603   // See also: "Semaphores in Plan 9" by Mullender & Cox
5604   //
5605   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5606   // that it will take two back-to-back park() calls for the owning
5607   // thread to block. This has the benefit of forcing a spurious return
5608   // from the first park() call after an unpark() call which will help
5609   // shake out uses of park() and unpark() without condition variables.
5610 
5611   if (Atomic::xchg(1, &_Event) >= 0) return;
5612 
5613   // Wait for the thread associated with the event to vacate
5614   int status = pthread_mutex_lock(_mutex);
5615   assert_status(status == 0, status, "mutex_lock");
5616   int AnyWaiters = _nParked;
5617   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5618   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5619     AnyWaiters = 0;
5620     pthread_cond_signal(_cond);
5621   }
5622   status = pthread_mutex_unlock(_mutex);
5623   assert_status(status == 0, status, "mutex_unlock");
5624   if (AnyWaiters != 0) {
5625     // Note that we signal() *after* dropping the lock for "immortal" Events.
5626     // This is safe and avoids a common class of  futile wakeups.  In rare
5627     // circumstances this can cause a thread to return prematurely from
5628     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5629     // will simply re-test the condition and re-park itself.
5630     // This provides particular benefit if the underlying platform does not
5631     // provide wait morphing.
5632     status = pthread_cond_signal(_cond);
5633     assert_status(status == 0, status, "cond_signal");
5634   }
5635 }
5636 
5637 
5638 // JSR166
5639 // -------------------------------------------------------
5640 
5641 // The solaris and linux implementations of park/unpark are fairly
5642 // conservative for now, but can be improved. They currently use a
5643 // mutex/condvar pair, plus a a count.
5644 // Park decrements count if > 0, else does a condvar wait.  Unpark
5645 // sets count to 1 and signals condvar.  Only one thread ever waits
5646 // on the condvar. Contention seen when trying to park implies that someone
5647 // is unparking you, so don't wait. And spurious returns are fine, so there
5648 // is no need to track notifications.
5649 
5650 // This code is common to linux and solaris and will be moved to a
5651 // common place in dolphin.
5652 //
5653 // The passed in time value is either a relative time in nanoseconds
5654 // or an absolute time in milliseconds. Either way it has to be unpacked
5655 // into suitable seconds and nanoseconds components and stored in the
5656 // given timespec structure.
5657 // Given time is a 64-bit value and the time_t used in the timespec is only
5658 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5659 // overflow if times way in the future are given. Further on Solaris versions
5660 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5661 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5662 // As it will be 28 years before "now + 100000000" will overflow we can
5663 // ignore overflow and just impose a hard-limit on seconds using the value
5664 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5665 // years from "now".
5666 
5667 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5668   assert(time > 0, "convertTime");
5669   time_t max_secs = 0;
5670 
5671   if (!os::supports_monotonic_clock() || isAbsolute) {
5672     struct timeval now;
5673     int status = gettimeofday(&now, NULL);
5674     assert(status == 0, "gettimeofday");
5675 
5676     max_secs = now.tv_sec + MAX_SECS;
5677 
5678     if (isAbsolute) {
5679       jlong secs = time / 1000;
5680       if (secs > max_secs) {
5681         absTime->tv_sec = max_secs;
5682       } else {
5683         absTime->tv_sec = secs;
5684       }
5685       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5686     } else {
5687       jlong secs = time / NANOSECS_PER_SEC;
5688       if (secs >= MAX_SECS) {
5689         absTime->tv_sec = max_secs;
5690         absTime->tv_nsec = 0;
5691       } else {
5692         absTime->tv_sec = now.tv_sec + secs;
5693         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5694         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5695           absTime->tv_nsec -= NANOSECS_PER_SEC;
5696           ++absTime->tv_sec; // note: this must be <= max_secs
5697         }
5698       }
5699     }
5700   } else {
5701     // must be relative using monotonic clock
5702     struct timespec now;
5703     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5704     assert_status(status == 0, status, "clock_gettime");
5705     max_secs = now.tv_sec + MAX_SECS;
5706     jlong secs = time / NANOSECS_PER_SEC;
5707     if (secs >= MAX_SECS) {
5708       absTime->tv_sec = max_secs;
5709       absTime->tv_nsec = 0;
5710     } else {
5711       absTime->tv_sec = now.tv_sec + secs;
5712       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5713       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5714         absTime->tv_nsec -= NANOSECS_PER_SEC;
5715         ++absTime->tv_sec; // note: this must be <= max_secs
5716       }
5717     }
5718   }
5719   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5720   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5721   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5722   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5723 }
5724 
5725 void Parker::park(bool isAbsolute, jlong time) {
5726   // Ideally we'd do something useful while spinning, such
5727   // as calling unpackTime().
5728 
5729   // Optional fast-path check:
5730   // Return immediately if a permit is available.
5731   // We depend on Atomic::xchg() having full barrier semantics
5732   // since we are doing a lock-free update to _counter.
5733   if (Atomic::xchg(0, &_counter) > 0) return;
5734 
5735   Thread* thread = Thread::current();
5736   assert(thread->is_Java_thread(), "Must be JavaThread");
5737   JavaThread *jt = (JavaThread *)thread;
5738 
5739   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5740   // Check interrupt before trying to wait
5741   if (Thread::is_interrupted(thread, false)) {
5742     return;
5743   }
5744 
5745   // Next, demultiplex/decode time arguments
5746   timespec absTime;
5747   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5748     return;
5749   }
5750   if (time > 0) {
5751     unpackTime(&absTime, isAbsolute, time);
5752   }
5753 
5754 
5755   // Enter safepoint region
5756   // Beware of deadlocks such as 6317397.
5757   // The per-thread Parker:: mutex is a classic leaf-lock.
5758   // In particular a thread must never block on the Threads_lock while
5759   // holding the Parker:: mutex.  If safepoints are pending both the
5760   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5761   ThreadBlockInVM tbivm(jt);
5762 
5763   // Don't wait if cannot get lock since interference arises from
5764   // unblocking.  Also. check interrupt before trying wait
5765   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5766     return;
5767   }
5768 
5769   int status;
5770   if (_counter > 0)  { // no wait needed
5771     _counter = 0;
5772     status = pthread_mutex_unlock(_mutex);
5773     assert(status == 0, "invariant");
5774     // Paranoia to ensure our locked and lock-free paths interact
5775     // correctly with each other and Java-level accesses.
5776     OrderAccess::fence();
5777     return;
5778   }
5779 
5780 #ifdef ASSERT
5781   // Don't catch signals while blocked; let the running threads have the signals.
5782   // (This allows a debugger to break into the running thread.)
5783   sigset_t oldsigs;
5784   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5785   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5786 #endif
5787 
5788   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5789   jt->set_suspend_equivalent();
5790   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5791 
5792   assert(_cur_index == -1, "invariant");
5793   if (time == 0) {
5794     _cur_index = REL_INDEX; // arbitrary choice when not timed
5795     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5796   } else {
5797     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5798     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5799     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5800       pthread_cond_destroy(&_cond[_cur_index]);
5801       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5802     }
5803   }
5804   _cur_index = -1;
5805   assert_status(status == 0 || status == EINTR ||
5806                 status == ETIME || status == ETIMEDOUT,
5807                 status, "cond_timedwait");
5808 
5809 #ifdef ASSERT
5810   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5811 #endif
5812 
5813   _counter = 0;
5814   status = pthread_mutex_unlock(_mutex);
5815   assert_status(status == 0, status, "invariant");
5816   // Paranoia to ensure our locked and lock-free paths interact
5817   // correctly with each other and Java-level accesses.
5818   OrderAccess::fence();
5819 
5820   // If externally suspended while waiting, re-suspend
5821   if (jt->handle_special_suspend_equivalent_condition()) {
5822     jt->java_suspend_self();
5823   }
5824 }
5825 
5826 void Parker::unpark() {
5827   int status = pthread_mutex_lock(_mutex);
5828   assert(status == 0, "invariant");
5829   const int s = _counter;
5830   _counter = 1;
5831   if (s < 1) {
5832     // thread might be parked
5833     if (_cur_index != -1) {
5834       // thread is definitely parked
5835       if (WorkAroundNPTLTimedWaitHang) {
5836         status = pthread_cond_signal(&_cond[_cur_index]);
5837         assert(status == 0, "invariant");
5838         status = pthread_mutex_unlock(_mutex);
5839         assert(status == 0, "invariant");
5840       } else {
5841         status = pthread_mutex_unlock(_mutex);
5842         assert(status == 0, "invariant");
5843         status = pthread_cond_signal(&_cond[_cur_index]);
5844         assert(status == 0, "invariant");
5845       }
5846     } else {
5847       pthread_mutex_unlock(_mutex);
5848       assert(status == 0, "invariant");
5849     }
5850   } else {
5851     pthread_mutex_unlock(_mutex);
5852     assert(status == 0, "invariant");
5853   }
5854 }
5855 
5856 
5857 extern char** environ;
5858 
5859 #ifndef __NR_fork
5860   #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5861 #endif
5862 
5863 #ifndef __NR_execve
5864   #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5865 #endif
5866 
5867 // Run the specified command in a separate process. Return its exit value,
5868 // or -1 on failure (e.g. can't fork a new process).
5869 // Unlike system(), this function can be called from signal handler. It
5870 // doesn't block SIGINT et al.
5871 int os::fork_and_exec(char* cmd) {
5872   const char * argv[4] = {"sh", "-c", cmd, NULL};
5873 
5874   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5875   // pthread_atfork handlers and reset pthread library. All we need is a
5876   // separate process to execve. Make a direct syscall to fork process.
5877   // On IA64 there's no fork syscall, we have to use fork() and hope for
5878   // the best...
5879   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5880   IA64_ONLY(fork();)
5881 
5882   if (pid < 0) {
5883     // fork failed
5884     return -1;
5885 
5886   } else if (pid == 0) {
5887     // child process
5888 
5889     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5890     // first to kill every thread on the thread list. Because this list is
5891     // not reset by fork() (see notes above), execve() will instead kill
5892     // every thread in the parent process. We know this is the only thread
5893     // in the new process, so make a system call directly.
5894     // IA64 should use normal execve() from glibc to match the glibc fork()
5895     // above.
5896     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5897     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5898 
5899     // execve failed
5900     _exit(-1);
5901 
5902   } else  {
5903     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5904     // care about the actual exit code, for now.
5905 
5906     int status;
5907 
5908     // Wait for the child process to exit.  This returns immediately if
5909     // the child has already exited. */
5910     while (waitpid(pid, &status, 0) < 0) {
5911       switch (errno) {
5912       case ECHILD: return 0;
5913       case EINTR: break;
5914       default: return -1;
5915       }
5916     }
5917 
5918     if (WIFEXITED(status)) {
5919       // The child exited normally; get its exit code.
5920       return WEXITSTATUS(status);
5921     } else if (WIFSIGNALED(status)) {
5922       // The child exited because of a signal
5923       // The best value to return is 0x80 + signal number,
5924       // because that is what all Unix shells do, and because
5925       // it allows callers to distinguish between process exit and
5926       // process death by signal.
5927       return 0x80 + WTERMSIG(status);
5928     } else {
5929       // Unknown exit code; pass it through
5930       return status;
5931     }
5932   }
5933 }
5934 
5935 // is_headless_jre()
5936 //
5937 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5938 // in order to report if we are running in a headless jre
5939 //
5940 // Since JDK8 xawt/libmawt.so was moved into the same directory
5941 // as libawt.so, and renamed libawt_xawt.so
5942 //
5943 bool os::is_headless_jre() {
5944   struct stat statbuf;
5945   char buf[MAXPATHLEN];
5946   char libmawtpath[MAXPATHLEN];
5947   const char *xawtstr  = "/xawt/libmawt.so";
5948   const char *new_xawtstr = "/libawt_xawt.so";
5949   char *p;
5950 
5951   // Get path to libjvm.so
5952   os::jvm_path(buf, sizeof(buf));
5953 
5954   // Get rid of libjvm.so
5955   p = strrchr(buf, '/');
5956   if (p == NULL) {
5957     return false;
5958   } else {
5959     *p = '\0';
5960   }
5961 
5962   // Get rid of client or server
5963   p = strrchr(buf, '/');
5964   if (p == NULL) {
5965     return false;
5966   } else {
5967     *p = '\0';
5968   }
5969 
5970   // check xawt/libmawt.so
5971   strcpy(libmawtpath, buf);
5972   strcat(libmawtpath, xawtstr);
5973   if (::stat(libmawtpath, &statbuf) == 0) return false;
5974 
5975   // check libawt_xawt.so
5976   strcpy(libmawtpath, buf);
5977   strcat(libmawtpath, new_xawtstr);
5978   if (::stat(libmawtpath, &statbuf) == 0) return false;
5979 
5980   return true;
5981 }
5982 
5983 // Get the default path to the core file
5984 // Returns the length of the string
5985 int os::get_core_path(char* buffer, size_t bufferSize) {
5986   /*
5987    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5988    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5989    */
5990   const int core_pattern_len = 129;
5991   char core_pattern[core_pattern_len] = {0};
5992 
5993   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5994   if (core_pattern_file != -1) {
5995     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5996     ::close(core_pattern_file);
5997 
5998     if (ret > 0) {
5999       char *last_char = core_pattern + strlen(core_pattern) - 1;
6000 
6001       if (*last_char == '\n') {
6002         *last_char = '\0';
6003       }
6004     }
6005   }
6006 
6007   if (strlen(core_pattern) == 0) {
6008     return 0;
6009   }
6010 
6011   char *pid_pos = strstr(core_pattern, "%p");
6012   size_t written;
6013 
6014   if (core_pattern[0] == '/') {
6015     written = jio_snprintf(buffer, bufferSize, core_pattern);
6016   } else {
6017     char cwd[PATH_MAX];
6018 
6019     const char* p = get_current_directory(cwd, PATH_MAX);
6020     if (p == NULL) {
6021       assert(p != NULL, "failed to get current directory");
6022       return 0;
6023     }
6024 
6025     if (core_pattern[0] == '|') {
6026       written = jio_snprintf(buffer, bufferSize,
6027                         "\"%s\" (or dumping to %s/core.%d)",
6028                                      &core_pattern[1], p, current_process_id());
6029     } else {
6030       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6031     }
6032   }
6033 
6034   if ((written >= 0) && (written < bufferSize)
6035             && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6036     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6037 
6038     if (core_uses_pid_file != -1) {
6039       char core_uses_pid = 0;
6040       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6041       ::close(core_uses_pid_file);
6042 
6043       if (core_uses_pid == '1'){
6044         jio_snprintf(buffer + written, bufferSize - written,
6045                                           ".%d", current_process_id());
6046       }
6047     }
6048   }
6049 
6050   return strlen(buffer);
6051 }
6052 
6053 /////////////// Unit tests ///////////////
6054 
6055 #ifndef PRODUCT
6056 
6057 #define test_log(...)              \
6058   do {                             \
6059     if (VerboseInternalVMTests) {  \
6060       tty->print_cr(__VA_ARGS__);  \
6061       tty->flush();                \
6062     }                              \
6063   } while (false)
6064 
6065 class TestReserveMemorySpecial : AllStatic {
6066  public:
6067   static void small_page_write(void* addr, size_t size) {
6068     size_t page_size = os::vm_page_size();
6069 
6070     char* end = (char*)addr + size;
6071     for (char* p = (char*)addr; p < end; p += page_size) {
6072       *p = 1;
6073     }
6074   }
6075 
6076   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6077     if (!UseHugeTLBFS) {
6078       return;
6079     }
6080 
6081     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6082 
6083     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6084 
6085     if (addr != NULL) {
6086       small_page_write(addr, size);
6087 
6088       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6089     }
6090   }
6091 
6092   static void test_reserve_memory_special_huge_tlbfs_only() {
6093     if (!UseHugeTLBFS) {
6094       return;
6095     }
6096 
6097     size_t lp = os::large_page_size();
6098 
6099     for (size_t size = lp; size <= lp * 10; size += lp) {
6100       test_reserve_memory_special_huge_tlbfs_only(size);
6101     }
6102   }
6103 
6104   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6105     if (!UseHugeTLBFS) {
6106       return;
6107     }
6108 
6109     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6110              size, alignment);
6111 
6112     assert(size >= os::large_page_size(), "Incorrect input to test");
6113 
6114     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6115 
6116     if (addr != NULL) {
6117       small_page_write(addr, size);
6118 
6119       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6120     }
6121   }
6122 
6123   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6124     size_t lp = os::large_page_size();
6125     size_t ag = os::vm_allocation_granularity();
6126 
6127     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6128       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6129     }
6130   }
6131 
6132   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6133     size_t lp = os::large_page_size();
6134     size_t ag = os::vm_allocation_granularity();
6135 
6136     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6137     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6138     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6139     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6140     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6141     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6142     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6143     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6144     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6145   }
6146 
6147   static void test_reserve_memory_special_huge_tlbfs() {
6148     if (!UseHugeTLBFS) {
6149       return;
6150     }
6151 
6152     test_reserve_memory_special_huge_tlbfs_only();
6153     test_reserve_memory_special_huge_tlbfs_mixed();
6154   }
6155 
6156   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6157     if (!UseSHM) {
6158       return;
6159     }
6160 
6161     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6162 
6163     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6164 
6165     if (addr != NULL) {
6166       assert(is_ptr_aligned(addr, alignment), "Check");
6167       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6168 
6169       small_page_write(addr, size);
6170 
6171       os::Linux::release_memory_special_shm(addr, size);
6172     }
6173   }
6174 
6175   static void test_reserve_memory_special_shm() {
6176     size_t lp = os::large_page_size();
6177     size_t ag = os::vm_allocation_granularity();
6178 
6179     for (size_t size = ag; size < lp * 3; size += ag) {
6180       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6181         test_reserve_memory_special_shm(size, alignment);
6182       }
6183     }
6184   }
6185 
6186   static void test() {
6187     test_reserve_memory_special_huge_tlbfs();
6188     test_reserve_memory_special_shm();
6189   }
6190 };
6191 
6192 void TestReserveMemorySpecial_test() {
6193   TestReserveMemorySpecial::test();
6194 }
6195 
6196 #endif