1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 #ifdef _DEBUG
  76 #include <crtdbg.h>
  77 #endif
  78 
  79 
  80 #include <windows.h>
  81 #include <sys/types.h>
  82 #include <sys/stat.h>
  83 #include <sys/timeb.h>
  84 #include <objidl.h>
  85 #include <shlobj.h>
  86 
  87 #include <malloc.h>
  88 #include <signal.h>
  89 #include <direct.h>
  90 #include <errno.h>
  91 #include <fcntl.h>
  92 #include <io.h>
  93 #include <process.h>              // For _beginthreadex(), _endthreadex()
  94 #include <imagehlp.h>             // For os::dll_address_to_function_name
  95 // for enumerating dll libraries
  96 #include <vdmdbg.h>
  97 
  98 // for timer info max values which include all bits
  99 #define ALL_64_BITS CONST64(-1)
 100 
 101 // For DLL loading/load error detection
 102 // Values of PE COFF
 103 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 104 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 105 
 106 static HANDLE main_process;
 107 static HANDLE main_thread;
 108 static int    main_thread_id;
 109 
 110 static FILETIME process_creation_time;
 111 static FILETIME process_exit_time;
 112 static FILETIME process_user_time;
 113 static FILETIME process_kernel_time;
 114 
 115 #ifdef _M_IA64
 116   #define __CPU__ ia64
 117 #elif _M_AMD64
 118   #define __CPU__ amd64
 119 #else
 120   #define __CPU__ i486
 121 #endif
 122 
 123 // save DLL module handle, used by GetModuleFileName
 124 
 125 HINSTANCE vm_lib_handle;
 126 
 127 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 128   switch (reason) {
 129   case DLL_PROCESS_ATTACH:
 130     vm_lib_handle = hinst;
 131     if (ForceTimeHighResolution) {
 132       timeBeginPeriod(1L);
 133     }
 134     break;
 135   case DLL_PROCESS_DETACH:
 136     if (ForceTimeHighResolution) {
 137       timeEndPeriod(1L);
 138     }
 139     break;
 140   default:
 141     break;
 142   }
 143   return true;
 144 }
 145 
 146 static inline double fileTimeAsDouble(FILETIME* time) {
 147   const double high  = (double) ((unsigned int) ~0);
 148   const double split = 10000000.0;
 149   double result = (time->dwLowDateTime / split) +
 150                    time->dwHighDateTime * (high/split);
 151   return result;
 152 }
 153 
 154 // Implementation of os
 155 
 156 bool os::unsetenv(const char* name) {
 157   assert(name != NULL, "Null pointer");
 158   return (SetEnvironmentVariable(name, NULL) == TRUE);
 159 }
 160 
 161 // No setuid programs under Windows.
 162 bool os::have_special_privileges() {
 163   return false;
 164 }
 165 
 166 
 167 // This method is  a periodic task to check for misbehaving JNI applications
 168 // under CheckJNI, we can add any periodic checks here.
 169 // For Windows at the moment does nothing
 170 void os::run_periodic_checks() {
 171   return;
 172 }
 173 
 174 // previous UnhandledExceptionFilter, if there is one
 175 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 176 
 177 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 178 
 179 void os::init_system_properties_values() {
 180   // sysclasspath, java_home, dll_dir
 181   {
 182     char *home_path;
 183     char *dll_path;
 184     char *pslash;
 185     char *bin = "\\bin";
 186     char home_dir[MAX_PATH];
 187 
 188     if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 189       os::jvm_path(home_dir, sizeof(home_dir));
 190       // Found the full path to jvm.dll.
 191       // Now cut the path to <java_home>/jre if we can.
 192       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 193       pslash = strrchr(home_dir, '\\');
 194       if (pslash != NULL) {
 195         *pslash = '\0';                   // get rid of \{client|server}
 196         pslash = strrchr(home_dir, '\\');
 197         if (pslash != NULL) {
 198           *pslash = '\0';                 // get rid of \bin
 199         }
 200       }
 201     }
 202 
 203     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 204     if (home_path == NULL) {
 205       return;
 206     }
 207     strcpy(home_path, home_dir);
 208     Arguments::set_java_home(home_path);
 209     FREE_C_HEAP_ARRAY(char, home_path);
 210 
 211     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 212                                 mtInternal);
 213     if (dll_path == NULL) {
 214       return;
 215     }
 216     strcpy(dll_path, home_dir);
 217     strcat(dll_path, bin);
 218     Arguments::set_dll_dir(dll_path);
 219     FREE_C_HEAP_ARRAY(char, dll_path);
 220 
 221     if (!set_boot_path('\\', ';')) {
 222       return;
 223     }
 224   }
 225 
 226 // library_path
 227 #define EXT_DIR "\\lib\\ext"
 228 #define BIN_DIR "\\bin"
 229 #define PACKAGE_DIR "\\Sun\\Java"
 230   {
 231     // Win32 library search order (See the documentation for LoadLibrary):
 232     //
 233     // 1. The directory from which application is loaded.
 234     // 2. The system wide Java Extensions directory (Java only)
 235     // 3. System directory (GetSystemDirectory)
 236     // 4. Windows directory (GetWindowsDirectory)
 237     // 5. The PATH environment variable
 238     // 6. The current directory
 239 
 240     char *library_path;
 241     char tmp[MAX_PATH];
 242     char *path_str = ::getenv("PATH");
 243 
 244     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 245                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 246 
 247     library_path[0] = '\0';
 248 
 249     GetModuleFileName(NULL, tmp, sizeof(tmp));
 250     *(strrchr(tmp, '\\')) = '\0';
 251     strcat(library_path, tmp);
 252 
 253     GetWindowsDirectory(tmp, sizeof(tmp));
 254     strcat(library_path, ";");
 255     strcat(library_path, tmp);
 256     strcat(library_path, PACKAGE_DIR BIN_DIR);
 257 
 258     GetSystemDirectory(tmp, sizeof(tmp));
 259     strcat(library_path, ";");
 260     strcat(library_path, tmp);
 261 
 262     GetWindowsDirectory(tmp, sizeof(tmp));
 263     strcat(library_path, ";");
 264     strcat(library_path, tmp);
 265 
 266     if (path_str) {
 267       strcat(library_path, ";");
 268       strcat(library_path, path_str);
 269     }
 270 
 271     strcat(library_path, ";.");
 272 
 273     Arguments::set_library_path(library_path);
 274     FREE_C_HEAP_ARRAY(char, library_path);
 275   }
 276 
 277   // Default extensions directory
 278   {
 279     char path[MAX_PATH];
 280     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 281     GetWindowsDirectory(path, MAX_PATH);
 282     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 283             path, PACKAGE_DIR, EXT_DIR);
 284     Arguments::set_ext_dirs(buf);
 285   }
 286   #undef EXT_DIR
 287   #undef BIN_DIR
 288   #undef PACKAGE_DIR
 289 
 290 #ifndef _WIN64
 291   // set our UnhandledExceptionFilter and save any previous one
 292   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 293 #endif
 294 
 295   // Done
 296   return;
 297 }
 298 
 299 void os::breakpoint() {
 300   DebugBreak();
 301 }
 302 
 303 // Invoked from the BREAKPOINT Macro
 304 extern "C" void breakpoint() {
 305   os::breakpoint();
 306 }
 307 
 308 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 309 // So far, this method is only used by Native Memory Tracking, which is
 310 // only supported on Windows XP or later.
 311 //
 312 int os::get_native_stack(address* stack, int frames, int toSkip) {
 313 #ifdef _NMT_NOINLINE_
 314   toSkip++;
 315 #endif
 316   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 317                                                        (PVOID*)stack, NULL);
 318   for (int index = captured; index < frames; index ++) {
 319     stack[index] = NULL;
 320   }
 321   return captured;
 322 }
 323 
 324 
 325 // os::current_stack_base()
 326 //
 327 //   Returns the base of the stack, which is the stack's
 328 //   starting address.  This function must be called
 329 //   while running on the stack of the thread being queried.
 330 
 331 address os::current_stack_base() {
 332   MEMORY_BASIC_INFORMATION minfo;
 333   address stack_bottom;
 334   size_t stack_size;
 335 
 336   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 337   stack_bottom =  (address)minfo.AllocationBase;
 338   stack_size = minfo.RegionSize;
 339 
 340   // Add up the sizes of all the regions with the same
 341   // AllocationBase.
 342   while (1) {
 343     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 344     if (stack_bottom == (address)minfo.AllocationBase) {
 345       stack_size += minfo.RegionSize;
 346     } else {
 347       break;
 348     }
 349   }
 350 
 351 #ifdef _M_IA64
 352   // IA64 has memory and register stacks
 353   //
 354   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 355   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 356   // growing downwards, 2MB summed up)
 357   //
 358   // ...
 359   // ------- top of stack (high address) -----
 360   // |
 361   // |      1MB
 362   // |      Backing Store (Register Stack)
 363   // |
 364   // |         / \
 365   // |          |
 366   // |          |
 367   // |          |
 368   // ------------------------ stack base -----
 369   // |      1MB
 370   // |      Memory Stack
 371   // |
 372   // |          |
 373   // |          |
 374   // |          |
 375   // |         \ /
 376   // |
 377   // ----- bottom of stack (low address) -----
 378   // ...
 379 
 380   stack_size = stack_size / 2;
 381 #endif
 382   return stack_bottom + stack_size;
 383 }
 384 
 385 size_t os::current_stack_size() {
 386   size_t sz;
 387   MEMORY_BASIC_INFORMATION minfo;
 388   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 389   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 390   return sz;
 391 }
 392 
 393 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 394   const struct tm* time_struct_ptr = localtime(clock);
 395   if (time_struct_ptr != NULL) {
 396     *res = *time_struct_ptr;
 397     return res;
 398   }
 399   return NULL;
 400 }
 401 
 402 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 403 
 404 // Thread start routine for all new Java threads
 405 static unsigned __stdcall java_start(Thread* thread) {
 406   // Try to randomize the cache line index of hot stack frames.
 407   // This helps when threads of the same stack traces evict each other's
 408   // cache lines. The threads can be either from the same JVM instance, or
 409   // from different JVM instances. The benefit is especially true for
 410   // processors with hyperthreading technology.
 411   static int counter = 0;
 412   int pid = os::current_process_id();
 413   _alloca(((pid ^ counter++) & 7) * 128);
 414 
 415   OSThread* osthr = thread->osthread();
 416   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 417 
 418   if (UseNUMA) {
 419     int lgrp_id = os::numa_get_group_id();
 420     if (lgrp_id != -1) {
 421       thread->set_lgrp_id(lgrp_id);
 422     }
 423   }
 424 
 425   // Diagnostic code to investigate JDK-6573254
 426   int res = 30115;  // non-java thread
 427   if (thread->is_Java_thread()) {
 428     res = 20115;    // java thread
 429   }
 430 
 431   // Install a win32 structured exception handler around every thread created
 432   // by VM, so VM can generate error dump when an exception occurred in non-
 433   // Java thread (e.g. VM thread).
 434   __try {
 435     thread->run();
 436   } __except(topLevelExceptionFilter(
 437                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 438     // Nothing to do.
 439   }
 440 
 441   // One less thread is executing
 442   // When the VMThread gets here, the main thread may have already exited
 443   // which frees the CodeHeap containing the Atomic::add code
 444   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 445     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 446   }
 447 
 448   // Thread must not return from exit_process_or_thread(), but if it does,
 449   // let it proceed to exit normally
 450   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 451 }
 452 
 453 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 454                                   int thread_id) {
 455   // Allocate the OSThread object
 456   OSThread* osthread = new OSThread(NULL, NULL);
 457   if (osthread == NULL) return NULL;
 458 
 459   // Initialize support for Java interrupts
 460   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 461   if (interrupt_event == NULL) {
 462     delete osthread;
 463     return NULL;
 464   }
 465   osthread->set_interrupt_event(interrupt_event);
 466 
 467   // Store info on the Win32 thread into the OSThread
 468   osthread->set_thread_handle(thread_handle);
 469   osthread->set_thread_id(thread_id);
 470 
 471   if (UseNUMA) {
 472     int lgrp_id = os::numa_get_group_id();
 473     if (lgrp_id != -1) {
 474       thread->set_lgrp_id(lgrp_id);
 475     }
 476   }
 477 
 478   // Initial thread state is INITIALIZED, not SUSPENDED
 479   osthread->set_state(INITIALIZED);
 480 
 481   return osthread;
 482 }
 483 
 484 
 485 bool os::create_attached_thread(JavaThread* thread) {
 486 #ifdef ASSERT
 487   thread->verify_not_published();
 488 #endif
 489   HANDLE thread_h;
 490   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 491                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 492     fatal("DuplicateHandle failed\n");
 493   }
 494   OSThread* osthread = create_os_thread(thread, thread_h,
 495                                         (int)current_thread_id());
 496   if (osthread == NULL) {
 497     return false;
 498   }
 499 
 500   // Initial thread state is RUNNABLE
 501   osthread->set_state(RUNNABLE);
 502 
 503   thread->set_osthread(osthread);
 504   return true;
 505 }
 506 
 507 bool os::create_main_thread(JavaThread* thread) {
 508 #ifdef ASSERT
 509   thread->verify_not_published();
 510 #endif
 511   if (_starting_thread == NULL) {
 512     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 513     if (_starting_thread == NULL) {
 514       return false;
 515     }
 516   }
 517 
 518   // The primordial thread is runnable from the start)
 519   _starting_thread->set_state(RUNNABLE);
 520 
 521   thread->set_osthread(_starting_thread);
 522   return true;
 523 }
 524 
 525 // Allocate and initialize a new OSThread
 526 bool os::create_thread(Thread* thread, ThreadType thr_type,
 527                        size_t stack_size) {
 528   unsigned thread_id;
 529 
 530   // Allocate the OSThread object
 531   OSThread* osthread = new OSThread(NULL, NULL);
 532   if (osthread == NULL) {
 533     return false;
 534   }
 535 
 536   // Initialize support for Java interrupts
 537   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 538   if (interrupt_event == NULL) {
 539     delete osthread;
 540     return NULL;
 541   }
 542   osthread->set_interrupt_event(interrupt_event);
 543   osthread->set_interrupted(false);
 544 
 545   thread->set_osthread(osthread);
 546 
 547   if (stack_size == 0) {
 548     switch (thr_type) {
 549     case os::java_thread:
 550       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 551       if (JavaThread::stack_size_at_create() > 0) {
 552         stack_size = JavaThread::stack_size_at_create();
 553       }
 554       break;
 555     case os::compiler_thread:
 556       if (CompilerThreadStackSize > 0) {
 557         stack_size = (size_t)(CompilerThreadStackSize * K);
 558         break;
 559       } // else fall through:
 560         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 561     case os::vm_thread:
 562     case os::pgc_thread:
 563     case os::cgc_thread:
 564     case os::watcher_thread:
 565       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 566       break;
 567     }
 568   }
 569 
 570   // Create the Win32 thread
 571   //
 572   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 573   // does not specify stack size. Instead, it specifies the size of
 574   // initially committed space. The stack size is determined by
 575   // PE header in the executable. If the committed "stack_size" is larger
 576   // than default value in the PE header, the stack is rounded up to the
 577   // nearest multiple of 1MB. For example if the launcher has default
 578   // stack size of 320k, specifying any size less than 320k does not
 579   // affect the actual stack size at all, it only affects the initial
 580   // commitment. On the other hand, specifying 'stack_size' larger than
 581   // default value may cause significant increase in memory usage, because
 582   // not only the stack space will be rounded up to MB, but also the
 583   // entire space is committed upfront.
 584   //
 585   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 586   // for CreateThread() that can treat 'stack_size' as stack size. However we
 587   // are not supposed to call CreateThread() directly according to MSDN
 588   // document because JVM uses C runtime library. The good news is that the
 589   // flag appears to work with _beginthredex() as well.
 590 
 591 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 592   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 593 #endif
 594 
 595   HANDLE thread_handle =
 596     (HANDLE)_beginthreadex(NULL,
 597                            (unsigned)stack_size,
 598                            (unsigned (__stdcall *)(void*)) java_start,
 599                            thread,
 600                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 601                            &thread_id);
 602   if (thread_handle == NULL) {
 603     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 604     // without the flag.
 605     thread_handle =
 606       (HANDLE)_beginthreadex(NULL,
 607                              (unsigned)stack_size,
 608                              (unsigned (__stdcall *)(void*)) java_start,
 609                              thread,
 610                              CREATE_SUSPENDED,
 611                              &thread_id);
 612   }
 613   if (thread_handle == NULL) {
 614     // Need to clean up stuff we've allocated so far
 615     CloseHandle(osthread->interrupt_event());
 616     thread->set_osthread(NULL);
 617     delete osthread;
 618     return NULL;
 619   }
 620 
 621   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 622 
 623   // Store info on the Win32 thread into the OSThread
 624   osthread->set_thread_handle(thread_handle);
 625   osthread->set_thread_id(thread_id);
 626 
 627   // Initial thread state is INITIALIZED, not SUSPENDED
 628   osthread->set_state(INITIALIZED);
 629 
 630   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 631   return true;
 632 }
 633 
 634 
 635 // Free Win32 resources related to the OSThread
 636 void os::free_thread(OSThread* osthread) {
 637   assert(osthread != NULL, "osthread not set");
 638   CloseHandle(osthread->thread_handle());
 639   CloseHandle(osthread->interrupt_event());
 640   delete osthread;
 641 }
 642 
 643 static jlong first_filetime;
 644 static jlong initial_performance_count;
 645 static jlong performance_frequency;
 646 
 647 
 648 jlong as_long(LARGE_INTEGER x) {
 649   jlong result = 0; // initialization to avoid warning
 650   set_high(&result, x.HighPart);
 651   set_low(&result, x.LowPart);
 652   return result;
 653 }
 654 
 655 
 656 jlong os::elapsed_counter() {
 657   LARGE_INTEGER count;
 658   if (win32::_has_performance_count) {
 659     QueryPerformanceCounter(&count);
 660     return as_long(count) - initial_performance_count;
 661   } else {
 662     FILETIME wt;
 663     GetSystemTimeAsFileTime(&wt);
 664     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 665   }
 666 }
 667 
 668 
 669 jlong os::elapsed_frequency() {
 670   if (win32::_has_performance_count) {
 671     return performance_frequency;
 672   } else {
 673     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 674     return 10000000;
 675   }
 676 }
 677 
 678 
 679 julong os::available_memory() {
 680   return win32::available_memory();
 681 }
 682 
 683 julong os::win32::available_memory() {
 684   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 685   // value if total memory is larger than 4GB
 686   MEMORYSTATUSEX ms;
 687   ms.dwLength = sizeof(ms);
 688   GlobalMemoryStatusEx(&ms);
 689 
 690   return (julong)ms.ullAvailPhys;
 691 }
 692 
 693 julong os::physical_memory() {
 694   return win32::physical_memory();
 695 }
 696 
 697 bool os::has_allocatable_memory_limit(julong* limit) {
 698   MEMORYSTATUSEX ms;
 699   ms.dwLength = sizeof(ms);
 700   GlobalMemoryStatusEx(&ms);
 701 #ifdef _LP64
 702   *limit = (julong)ms.ullAvailVirtual;
 703   return true;
 704 #else
 705   // Limit to 1400m because of the 2gb address space wall
 706   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 707   return true;
 708 #endif
 709 }
 710 
 711 // VC6 lacks DWORD_PTR
 712 #if _MSC_VER < 1300
 713 typedef UINT_PTR DWORD_PTR;
 714 #endif
 715 
 716 int os::active_processor_count() {
 717   DWORD_PTR lpProcessAffinityMask = 0;
 718   DWORD_PTR lpSystemAffinityMask = 0;
 719   int proc_count = processor_count();
 720   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 721       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 722     // Nof active processors is number of bits in process affinity mask
 723     int bitcount = 0;
 724     while (lpProcessAffinityMask != 0) {
 725       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 726       bitcount++;
 727     }
 728     return bitcount;
 729   } else {
 730     return proc_count;
 731   }
 732 }
 733 
 734 void os::set_native_thread_name(const char *name) {
 735 
 736   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 737   //
 738   // Note that unfortunately this only works if the process
 739   // is already attached to a debugger; debugger must observe
 740   // the exception below to show the correct name.
 741 
 742   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 743   struct {
 744     DWORD dwType;     // must be 0x1000
 745     LPCSTR szName;    // pointer to name (in user addr space)
 746     DWORD dwThreadID; // thread ID (-1=caller thread)
 747     DWORD dwFlags;    // reserved for future use, must be zero
 748   } info;
 749 
 750   info.dwType = 0x1000;
 751   info.szName = name;
 752   info.dwThreadID = -1;
 753   info.dwFlags = 0;
 754 
 755   __try {
 756     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 757   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 758 }
 759 
 760 bool os::distribute_processes(uint length, uint* distribution) {
 761   // Not yet implemented.
 762   return false;
 763 }
 764 
 765 bool os::bind_to_processor(uint processor_id) {
 766   // Not yet implemented.
 767   return false;
 768 }
 769 
 770 void os::win32::initialize_performance_counter() {
 771   LARGE_INTEGER count;
 772   if (QueryPerformanceFrequency(&count)) {
 773     win32::_has_performance_count = 1;
 774     performance_frequency = as_long(count);
 775     QueryPerformanceCounter(&count);
 776     initial_performance_count = as_long(count);
 777   } else {
 778     win32::_has_performance_count = 0;
 779     FILETIME wt;
 780     GetSystemTimeAsFileTime(&wt);
 781     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 782   }
 783 }
 784 
 785 
 786 double os::elapsedTime() {
 787   return (double) elapsed_counter() / (double) elapsed_frequency();
 788 }
 789 
 790 
 791 // Windows format:
 792 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 793 // Java format:
 794 //   Java standards require the number of milliseconds since 1/1/1970
 795 
 796 // Constant offset - calculated using offset()
 797 static jlong  _offset   = 116444736000000000;
 798 // Fake time counter for reproducible results when debugging
 799 static jlong  fake_time = 0;
 800 
 801 #ifdef ASSERT
 802 // Just to be safe, recalculate the offset in debug mode
 803 static jlong _calculated_offset = 0;
 804 static int   _has_calculated_offset = 0;
 805 
 806 jlong offset() {
 807   if (_has_calculated_offset) return _calculated_offset;
 808   SYSTEMTIME java_origin;
 809   java_origin.wYear          = 1970;
 810   java_origin.wMonth         = 1;
 811   java_origin.wDayOfWeek     = 0; // ignored
 812   java_origin.wDay           = 1;
 813   java_origin.wHour          = 0;
 814   java_origin.wMinute        = 0;
 815   java_origin.wSecond        = 0;
 816   java_origin.wMilliseconds  = 0;
 817   FILETIME jot;
 818   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 819     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 820   }
 821   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 822   _has_calculated_offset = 1;
 823   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 824   return _calculated_offset;
 825 }
 826 #else
 827 jlong offset() {
 828   return _offset;
 829 }
 830 #endif
 831 
 832 jlong windows_to_java_time(FILETIME wt) {
 833   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 834   return (a - offset()) / 10000;
 835 }
 836 
 837 // Returns time ticks in (10th of micro seconds)
 838 jlong windows_to_time_ticks(FILETIME wt) {
 839   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 840   return (a - offset());
 841 }
 842 
 843 FILETIME java_to_windows_time(jlong l) {
 844   jlong a = (l * 10000) + offset();
 845   FILETIME result;
 846   result.dwHighDateTime = high(a);
 847   result.dwLowDateTime  = low(a);
 848   return result;
 849 }
 850 
 851 bool os::supports_vtime() { return true; }
 852 bool os::enable_vtime() { return false; }
 853 bool os::vtime_enabled() { return false; }
 854 
 855 double os::elapsedVTime() {
 856   FILETIME created;
 857   FILETIME exited;
 858   FILETIME kernel;
 859   FILETIME user;
 860   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 861     // the resolution of windows_to_java_time() should be sufficient (ms)
 862     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 863   } else {
 864     return elapsedTime();
 865   }
 866 }
 867 
 868 jlong os::javaTimeMillis() {
 869   if (UseFakeTimers) {
 870     return fake_time++;
 871   } else {
 872     FILETIME wt;
 873     GetSystemTimeAsFileTime(&wt);
 874     return windows_to_java_time(wt);
 875   }
 876 }
 877 
 878 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 879   FILETIME wt;
 880   GetSystemTimeAsFileTime(&wt);
 881   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 882   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 883   seconds = secs;
 884   nanos = jlong(ticks - (secs*10000000)) * 100;
 885 }
 886 
 887 jlong os::javaTimeNanos() {
 888   if (!win32::_has_performance_count) {
 889     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 890   } else {
 891     LARGE_INTEGER current_count;
 892     QueryPerformanceCounter(&current_count);
 893     double current = as_long(current_count);
 894     double freq = performance_frequency;
 895     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 896     return time;
 897   }
 898 }
 899 
 900 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 901   if (!win32::_has_performance_count) {
 902     // javaTimeMillis() doesn't have much percision,
 903     // but it is not going to wrap -- so all 64 bits
 904     info_ptr->max_value = ALL_64_BITS;
 905 
 906     // this is a wall clock timer, so may skip
 907     info_ptr->may_skip_backward = true;
 908     info_ptr->may_skip_forward = true;
 909   } else {
 910     jlong freq = performance_frequency;
 911     if (freq < NANOSECS_PER_SEC) {
 912       // the performance counter is 64 bits and we will
 913       // be multiplying it -- so no wrap in 64 bits
 914       info_ptr->max_value = ALL_64_BITS;
 915     } else if (freq > NANOSECS_PER_SEC) {
 916       // use the max value the counter can reach to
 917       // determine the max value which could be returned
 918       julong max_counter = (julong)ALL_64_BITS;
 919       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 920     } else {
 921       // the performance counter is 64 bits and we will
 922       // be using it directly -- so no wrap in 64 bits
 923       info_ptr->max_value = ALL_64_BITS;
 924     }
 925 
 926     // using a counter, so no skipping
 927     info_ptr->may_skip_backward = false;
 928     info_ptr->may_skip_forward = false;
 929   }
 930   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 931 }
 932 
 933 char* os::local_time_string(char *buf, size_t buflen) {
 934   SYSTEMTIME st;
 935   GetLocalTime(&st);
 936   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 937                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 938   return buf;
 939 }
 940 
 941 bool os::getTimesSecs(double* process_real_time,
 942                       double* process_user_time,
 943                       double* process_system_time) {
 944   HANDLE h_process = GetCurrentProcess();
 945   FILETIME create_time, exit_time, kernel_time, user_time;
 946   BOOL result = GetProcessTimes(h_process,
 947                                 &create_time,
 948                                 &exit_time,
 949                                 &kernel_time,
 950                                 &user_time);
 951   if (result != 0) {
 952     FILETIME wt;
 953     GetSystemTimeAsFileTime(&wt);
 954     jlong rtc_millis = windows_to_java_time(wt);
 955     jlong user_millis = windows_to_java_time(user_time);
 956     jlong system_millis = windows_to_java_time(kernel_time);
 957     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 958     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 959     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 960     return true;
 961   } else {
 962     return false;
 963   }
 964 }
 965 
 966 void os::shutdown() {
 967   // allow PerfMemory to attempt cleanup of any persistent resources
 968   perfMemory_exit();
 969 
 970   // flush buffered output, finish log files
 971   ostream_abort();
 972 
 973   // Check for abort hook
 974   abort_hook_t abort_hook = Arguments::abort_hook();
 975   if (abort_hook != NULL) {
 976     abort_hook();
 977   }
 978 }
 979 
 980 
 981 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 982                                          PMINIDUMP_EXCEPTION_INFORMATION,
 983                                          PMINIDUMP_USER_STREAM_INFORMATION,
 984                                          PMINIDUMP_CALLBACK_INFORMATION);
 985 
 986 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 987   HINSTANCE dbghelp;
 988   EXCEPTION_POINTERS ep;
 989   MINIDUMP_EXCEPTION_INFORMATION mei;
 990   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 991 
 992   HANDLE hProcess = GetCurrentProcess();
 993   DWORD processId = GetCurrentProcessId();
 994   HANDLE dumpFile;
 995   MINIDUMP_TYPE dumpType;
 996   static const char* cwd;
 997 
 998 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
 999 #ifndef ASSERT
1000   // If running on a client version of Windows and user has not explicitly enabled dumping
1001   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
1002     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
1003     return;
1004     // If running on a server version of Windows and user has explictly disabled dumping
1005   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
1006     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1007     return;
1008   }
1009 #else
1010   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
1011     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1012     return;
1013   }
1014 #endif
1015 
1016   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1017 
1018   if (dbghelp == NULL) {
1019     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
1020     return;
1021   }
1022 
1023   _MiniDumpWriteDump =
1024       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1025                                     PMINIDUMP_EXCEPTION_INFORMATION,
1026                                     PMINIDUMP_USER_STREAM_INFORMATION,
1027                                     PMINIDUMP_CALLBACK_INFORMATION),
1028                                     GetProcAddress(dbghelp,
1029                                     "MiniDumpWriteDump"));
1030 
1031   if (_MiniDumpWriteDump == NULL) {
1032     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
1033     return;
1034   }
1035 
1036   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1037 
1038 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
1039 // API_VERSION_NUMBER 11 or higher contains the ones we want though
1040 #if API_VERSION_NUMBER >= 11
1041   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1042                              MiniDumpWithUnloadedModules);
1043 #endif
1044 
1045   cwd = get_current_directory(NULL, 0);
1046   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp", cwd, current_process_id());
1047   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1048 
1049   if (dumpFile == INVALID_HANDLE_VALUE) {
1050     VMError::report_coredump_status("Failed to create file for dumping", false);
1051     return;
1052   }
1053   if (exceptionRecord != NULL && contextRecord != NULL) {
1054     ep.ContextRecord = (PCONTEXT) contextRecord;
1055     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1056 
1057     mei.ThreadId = GetCurrentThreadId();
1058     mei.ExceptionPointers = &ep;
1059     pmei = &mei;
1060   } else {
1061     pmei = NULL;
1062   }
1063 
1064 
1065   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1066   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1067   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1068       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1069     DWORD error = GetLastError();
1070     LPTSTR msgbuf = NULL;
1071 
1072     if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1073                       FORMAT_MESSAGE_FROM_SYSTEM |
1074                       FORMAT_MESSAGE_IGNORE_INSERTS,
1075                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1076 
1077       jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1078       LocalFree(msgbuf);
1079     } else {
1080       // Call to FormatMessage failed, just include the result from GetLastError
1081       jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1082     }
1083     VMError::report_coredump_status(buffer, false);
1084   } else {
1085     VMError::report_coredump_status(buffer, true);
1086   }
1087 
1088   CloseHandle(dumpFile);
1089 }
1090 
1091 
1092 void os::abort(bool dump_core) {
1093   os::shutdown();
1094   // no core dump on Windows
1095   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1096 }
1097 
1098 // Die immediately, no exit hook, no abort hook, no cleanup.
1099 void os::die() {
1100   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1101 }
1102 
1103 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1104 //  * dirent_md.c       1.15 00/02/02
1105 //
1106 // The declarations for DIR and struct dirent are in jvm_win32.h.
1107 
1108 // Caller must have already run dirname through JVM_NativePath, which removes
1109 // duplicate slashes and converts all instances of '/' into '\\'.
1110 
1111 DIR * os::opendir(const char *dirname) {
1112   assert(dirname != NULL, "just checking");   // hotspot change
1113   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1114   DWORD fattr;                                // hotspot change
1115   char alt_dirname[4] = { 0, 0, 0, 0 };
1116 
1117   if (dirp == 0) {
1118     errno = ENOMEM;
1119     return 0;
1120   }
1121 
1122   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1123   // as a directory in FindFirstFile().  We detect this case here and
1124   // prepend the current drive name.
1125   //
1126   if (dirname[1] == '\0' && dirname[0] == '\\') {
1127     alt_dirname[0] = _getdrive() + 'A' - 1;
1128     alt_dirname[1] = ':';
1129     alt_dirname[2] = '\\';
1130     alt_dirname[3] = '\0';
1131     dirname = alt_dirname;
1132   }
1133 
1134   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1135   if (dirp->path == 0) {
1136     free(dirp);
1137     errno = ENOMEM;
1138     return 0;
1139   }
1140   strcpy(dirp->path, dirname);
1141 
1142   fattr = GetFileAttributes(dirp->path);
1143   if (fattr == 0xffffffff) {
1144     free(dirp->path);
1145     free(dirp);
1146     errno = ENOENT;
1147     return 0;
1148   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1149     free(dirp->path);
1150     free(dirp);
1151     errno = ENOTDIR;
1152     return 0;
1153   }
1154 
1155   // Append "*.*", or possibly "\\*.*", to path
1156   if (dirp->path[1] == ':' &&
1157       (dirp->path[2] == '\0' ||
1158       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1159     // No '\\' needed for cases like "Z:" or "Z:\"
1160     strcat(dirp->path, "*.*");
1161   } else {
1162     strcat(dirp->path, "\\*.*");
1163   }
1164 
1165   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1166   if (dirp->handle == INVALID_HANDLE_VALUE) {
1167     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1168       free(dirp->path);
1169       free(dirp);
1170       errno = EACCES;
1171       return 0;
1172     }
1173   }
1174   return dirp;
1175 }
1176 
1177 // parameter dbuf unused on Windows
1178 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1179   assert(dirp != NULL, "just checking");      // hotspot change
1180   if (dirp->handle == INVALID_HANDLE_VALUE) {
1181     return 0;
1182   }
1183 
1184   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1185 
1186   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1187     if (GetLastError() == ERROR_INVALID_HANDLE) {
1188       errno = EBADF;
1189       return 0;
1190     }
1191     FindClose(dirp->handle);
1192     dirp->handle = INVALID_HANDLE_VALUE;
1193   }
1194 
1195   return &dirp->dirent;
1196 }
1197 
1198 int os::closedir(DIR *dirp) {
1199   assert(dirp != NULL, "just checking");      // hotspot change
1200   if (dirp->handle != INVALID_HANDLE_VALUE) {
1201     if (!FindClose(dirp->handle)) {
1202       errno = EBADF;
1203       return -1;
1204     }
1205     dirp->handle = INVALID_HANDLE_VALUE;
1206   }
1207   free(dirp->path);
1208   free(dirp);
1209   return 0;
1210 }
1211 
1212 // This must be hard coded because it's the system's temporary
1213 // directory not the java application's temp directory, ala java.io.tmpdir.
1214 const char* os::get_temp_directory() {
1215   static char path_buf[MAX_PATH];
1216   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1217     return path_buf;
1218   } else {
1219     path_buf[0] = '\0';
1220     return path_buf;
1221   }
1222 }
1223 
1224 static bool file_exists(const char* filename) {
1225   if (filename == NULL || strlen(filename) == 0) {
1226     return false;
1227   }
1228   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1229 }
1230 
1231 bool os::dll_build_name(char *buffer, size_t buflen,
1232                         const char* pname, const char* fname) {
1233   bool retval = false;
1234   const size_t pnamelen = pname ? strlen(pname) : 0;
1235   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1236 
1237   // Return error on buffer overflow.
1238   if (pnamelen + strlen(fname) + 10 > buflen) {
1239     return retval;
1240   }
1241 
1242   if (pnamelen == 0) {
1243     jio_snprintf(buffer, buflen, "%s.dll", fname);
1244     retval = true;
1245   } else if (c == ':' || c == '\\') {
1246     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1247     retval = true;
1248   } else if (strchr(pname, *os::path_separator()) != NULL) {
1249     int n;
1250     char** pelements = split_path(pname, &n);
1251     if (pelements == NULL) {
1252       return false;
1253     }
1254     for (int i = 0; i < n; i++) {
1255       char* path = pelements[i];
1256       // Really shouldn't be NULL, but check can't hurt
1257       size_t plen = (path == NULL) ? 0 : strlen(path);
1258       if (plen == 0) {
1259         continue; // skip the empty path values
1260       }
1261       const char lastchar = path[plen - 1];
1262       if (lastchar == ':' || lastchar == '\\') {
1263         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1264       } else {
1265         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1266       }
1267       if (file_exists(buffer)) {
1268         retval = true;
1269         break;
1270       }
1271     }
1272     // release the storage
1273     for (int i = 0; i < n; i++) {
1274       if (pelements[i] != NULL) {
1275         FREE_C_HEAP_ARRAY(char, pelements[i]);
1276       }
1277     }
1278     if (pelements != NULL) {
1279       FREE_C_HEAP_ARRAY(char*, pelements);
1280     }
1281   } else {
1282     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1283     retval = true;
1284   }
1285   return retval;
1286 }
1287 
1288 // Needs to be in os specific directory because windows requires another
1289 // header file <direct.h>
1290 const char* os::get_current_directory(char *buf, size_t buflen) {
1291   int n = static_cast<int>(buflen);
1292   if (buflen > INT_MAX)  n = INT_MAX;
1293   return _getcwd(buf, n);
1294 }
1295 
1296 //-----------------------------------------------------------
1297 // Helper functions for fatal error handler
1298 #ifdef _WIN64
1299 // Helper routine which returns true if address in
1300 // within the NTDLL address space.
1301 //
1302 static bool _addr_in_ntdll(address addr) {
1303   HMODULE hmod;
1304   MODULEINFO minfo;
1305 
1306   hmod = GetModuleHandle("NTDLL.DLL");
1307   if (hmod == NULL) return false;
1308   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1309                                           &minfo, sizeof(MODULEINFO))) {
1310     return false;
1311   }
1312 
1313   if ((addr >= minfo.lpBaseOfDll) &&
1314       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1315     return true;
1316   } else {
1317     return false;
1318   }
1319 }
1320 #endif
1321 
1322 struct _modinfo {
1323   address addr;
1324   char*   full_path;   // point to a char buffer
1325   int     buflen;      // size of the buffer
1326   address base_addr;
1327 };
1328 
1329 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1330                                   address top_address, void * param) {
1331   struct _modinfo *pmod = (struct _modinfo *)param;
1332   if (!pmod) return -1;
1333 
1334   if (base_addr   <= pmod->addr &&
1335       top_address > pmod->addr) {
1336     // if a buffer is provided, copy path name to the buffer
1337     if (pmod->full_path) {
1338       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1339     }
1340     pmod->base_addr = base_addr;
1341     return 1;
1342   }
1343   return 0;
1344 }
1345 
1346 bool os::dll_address_to_library_name(address addr, char* buf,
1347                                      int buflen, int* offset) {
1348   // buf is not optional, but offset is optional
1349   assert(buf != NULL, "sanity check");
1350 
1351 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1352 //       return the full path to the DLL file, sometimes it returns path
1353 //       to the corresponding PDB file (debug info); sometimes it only
1354 //       returns partial path, which makes life painful.
1355 
1356   struct _modinfo mi;
1357   mi.addr      = addr;
1358   mi.full_path = buf;
1359   mi.buflen    = buflen;
1360   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1361     // buf already contains path name
1362     if (offset) *offset = addr - mi.base_addr;
1363     return true;
1364   }
1365 
1366   buf[0] = '\0';
1367   if (offset) *offset = -1;
1368   return false;
1369 }
1370 
1371 bool os::dll_address_to_function_name(address addr, char *buf,
1372                                       int buflen, int *offset) {
1373   // buf is not optional, but offset is optional
1374   assert(buf != NULL, "sanity check");
1375 
1376   if (Decoder::decode(addr, buf, buflen, offset)) {
1377     return true;
1378   }
1379   if (offset != NULL)  *offset  = -1;
1380   buf[0] = '\0';
1381   return false;
1382 }
1383 
1384 // save the start and end address of jvm.dll into param[0] and param[1]
1385 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1386                            address top_address, void * param) {
1387   if (!param) return -1;
1388 
1389   if (base_addr   <= (address)_locate_jvm_dll &&
1390       top_address > (address)_locate_jvm_dll) {
1391     ((address*)param)[0] = base_addr;
1392     ((address*)param)[1] = top_address;
1393     return 1;
1394   }
1395   return 0;
1396 }
1397 
1398 address vm_lib_location[2];    // start and end address of jvm.dll
1399 
1400 // check if addr is inside jvm.dll
1401 bool os::address_is_in_vm(address addr) {
1402   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1403     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1404       assert(false, "Can't find jvm module.");
1405       return false;
1406     }
1407   }
1408 
1409   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1410 }
1411 
1412 // print module info; param is outputStream*
1413 static int _print_module(const char* fname, address base_address,
1414                          address top_address, void* param) {
1415   if (!param) return -1;
1416 
1417   outputStream* st = (outputStream*)param;
1418 
1419   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1420   return 0;
1421 }
1422 
1423 // Loads .dll/.so and
1424 // in case of error it checks if .dll/.so was built for the
1425 // same architecture as Hotspot is running on
1426 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1427   void * result = LoadLibrary(name);
1428   if (result != NULL) {
1429     return result;
1430   }
1431 
1432   DWORD errcode = GetLastError();
1433   if (errcode == ERROR_MOD_NOT_FOUND) {
1434     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1435     ebuf[ebuflen - 1] = '\0';
1436     return NULL;
1437   }
1438 
1439   // Parsing dll below
1440   // If we can read dll-info and find that dll was built
1441   // for an architecture other than Hotspot is running in
1442   // - then print to buffer "DLL was built for a different architecture"
1443   // else call os::lasterror to obtain system error message
1444 
1445   // Read system error message into ebuf
1446   // It may or may not be overwritten below (in the for loop and just above)
1447   lasterror(ebuf, (size_t) ebuflen);
1448   ebuf[ebuflen - 1] = '\0';
1449   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1450   if (fd < 0) {
1451     return NULL;
1452   }
1453 
1454   uint32_t signature_offset;
1455   uint16_t lib_arch = 0;
1456   bool failed_to_get_lib_arch =
1457     ( // Go to position 3c in the dll
1458      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1459      ||
1460      // Read location of signature
1461      (sizeof(signature_offset) !=
1462      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1463      ||
1464      // Go to COFF File Header in dll
1465      // that is located after "signature" (4 bytes long)
1466      (os::seek_to_file_offset(fd,
1467      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1468      ||
1469      // Read field that contains code of architecture
1470      // that dll was built for
1471      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1472     );
1473 
1474   ::close(fd);
1475   if (failed_to_get_lib_arch) {
1476     // file i/o error - report os::lasterror(...) msg
1477     return NULL;
1478   }
1479 
1480   typedef struct {
1481     uint16_t arch_code;
1482     char* arch_name;
1483   } arch_t;
1484 
1485   static const arch_t arch_array[] = {
1486     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1487     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1488     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1489   };
1490 #if   (defined _M_IA64)
1491   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1492 #elif (defined _M_AMD64)
1493   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1494 #elif (defined _M_IX86)
1495   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1496 #else
1497   #error Method os::dll_load requires that one of following \
1498          is defined :_M_IA64,_M_AMD64 or _M_IX86
1499 #endif
1500 
1501 
1502   // Obtain a string for printf operation
1503   // lib_arch_str shall contain string what platform this .dll was built for
1504   // running_arch_str shall string contain what platform Hotspot was built for
1505   char *running_arch_str = NULL, *lib_arch_str = NULL;
1506   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1507     if (lib_arch == arch_array[i].arch_code) {
1508       lib_arch_str = arch_array[i].arch_name;
1509     }
1510     if (running_arch == arch_array[i].arch_code) {
1511       running_arch_str = arch_array[i].arch_name;
1512     }
1513   }
1514 
1515   assert(running_arch_str,
1516          "Didn't find running architecture code in arch_array");
1517 
1518   // If the architecture is right
1519   // but some other error took place - report os::lasterror(...) msg
1520   if (lib_arch == running_arch) {
1521     return NULL;
1522   }
1523 
1524   if (lib_arch_str != NULL) {
1525     ::_snprintf(ebuf, ebuflen - 1,
1526                 "Can't load %s-bit .dll on a %s-bit platform",
1527                 lib_arch_str, running_arch_str);
1528   } else {
1529     // don't know what architecture this dll was build for
1530     ::_snprintf(ebuf, ebuflen - 1,
1531                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1532                 lib_arch, running_arch_str);
1533   }
1534 
1535   return NULL;
1536 }
1537 
1538 void os::print_dll_info(outputStream *st) {
1539   st->print_cr("Dynamic libraries:");
1540   get_loaded_modules_info(_print_module, (void *)st);
1541 }
1542 
1543 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1544   HANDLE   hProcess;
1545 
1546 # define MAX_NUM_MODULES 128
1547   HMODULE     modules[MAX_NUM_MODULES];
1548   static char filename[MAX_PATH];
1549   int         result = 0;
1550 
1551   if (!os::PSApiDll::PSApiAvailable()) {
1552     return 0;
1553   }
1554 
1555   int pid = os::current_process_id();
1556   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1557                          FALSE, pid);
1558   if (hProcess == NULL) return 0;
1559 
1560   DWORD size_needed;
1561   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1562                                         sizeof(modules), &size_needed)) {
1563     CloseHandle(hProcess);
1564     return 0;
1565   }
1566 
1567   // number of modules that are currently loaded
1568   int num_modules = size_needed / sizeof(HMODULE);
1569 
1570   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1571     // Get Full pathname:
1572     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1573                                            filename, sizeof(filename))) {
1574       filename[0] = '\0';
1575     }
1576 
1577     MODULEINFO modinfo;
1578     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1579                                             &modinfo, sizeof(modinfo))) {
1580       modinfo.lpBaseOfDll = NULL;
1581       modinfo.SizeOfImage = 0;
1582     }
1583 
1584     // Invoke callback function
1585     result = callback(filename, (address)modinfo.lpBaseOfDll,
1586                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1587     if (result) break;
1588   }
1589 
1590   CloseHandle(hProcess);
1591   return result;
1592 }
1593 
1594 void os::print_os_info_brief(outputStream* st) {
1595   os::print_os_info(st);
1596 }
1597 
1598 void os::print_os_info(outputStream* st) {
1599 #ifdef ASSERT
1600   char buffer[1024];
1601   DWORD size = sizeof(buffer);
1602   st->print(" HostName: ");
1603   if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1604     st->print("%s", buffer);
1605   } else {
1606     st->print("N/A");
1607   }
1608 #endif
1609   st->print(" OS:");
1610   os::win32::print_windows_version(st);
1611 }
1612 
1613 void os::win32::print_windows_version(outputStream* st) {
1614   OSVERSIONINFOEX osvi;
1615   VS_FIXEDFILEINFO *file_info;
1616   TCHAR kernel32_path[MAX_PATH];
1617   UINT len, ret;
1618 
1619   // Use the GetVersionEx information to see if we're on a server or
1620   // workstation edition of Windows. Starting with Windows 8.1 we can't
1621   // trust the OS version information returned by this API.
1622   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1623   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1624   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1625     st->print_cr("Call to GetVersionEx failed");
1626     return;
1627   }
1628   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1629 
1630   // Get the full path to \Windows\System32\kernel32.dll and use that for
1631   // determining what version of Windows we're running on.
1632   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1633   ret = GetSystemDirectory(kernel32_path, len);
1634   if (ret == 0 || ret > len) {
1635     st->print_cr("Call to GetSystemDirectory failed");
1636     return;
1637   }
1638   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1639 
1640   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1641   if (version_size == 0) {
1642     st->print_cr("Call to GetFileVersionInfoSize failed");
1643     return;
1644   }
1645 
1646   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1647   if (version_info == NULL) {
1648     st->print_cr("Failed to allocate version_info");
1649     return;
1650   }
1651 
1652   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1653     os::free(version_info);
1654     st->print_cr("Call to GetFileVersionInfo failed");
1655     return;
1656   }
1657 
1658   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1659     os::free(version_info);
1660     st->print_cr("Call to VerQueryValue failed");
1661     return;
1662   }
1663 
1664   int major_version = HIWORD(file_info->dwProductVersionMS);
1665   int minor_version = LOWORD(file_info->dwProductVersionMS);
1666   int build_number = HIWORD(file_info->dwProductVersionLS);
1667   int build_minor = LOWORD(file_info->dwProductVersionLS);
1668   int os_vers = major_version * 1000 + minor_version;
1669   os::free(version_info);
1670 
1671   st->print(" Windows ");
1672   switch (os_vers) {
1673 
1674   case 6000:
1675     if (is_workstation) {
1676       st->print("Vista");
1677     } else {
1678       st->print("Server 2008");
1679     }
1680     break;
1681 
1682   case 6001:
1683     if (is_workstation) {
1684       st->print("7");
1685     } else {
1686       st->print("Server 2008 R2");
1687     }
1688     break;
1689 
1690   case 6002:
1691     if (is_workstation) {
1692       st->print("8");
1693     } else {
1694       st->print("Server 2012");
1695     }
1696     break;
1697 
1698   case 6003:
1699     if (is_workstation) {
1700       st->print("8.1");
1701     } else {
1702       st->print("Server 2012 R2");
1703     }
1704     break;
1705 
1706   case 10000:
1707     if (is_workstation) {
1708       st->print("10");
1709     } else {
1710       // The server version name of Windows 10 is not known at this time
1711       st->print("%d.%d", major_version, minor_version);
1712     }
1713     break;
1714 
1715   default:
1716     // Unrecognized windows, print out its major and minor versions
1717     st->print("%d.%d", major_version, minor_version);
1718     break;
1719   }
1720 
1721   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1722   // find out whether we are running on 64 bit processor or not
1723   SYSTEM_INFO si;
1724   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1725   os::Kernel32Dll::GetNativeSystemInfo(&si);
1726   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1727     st->print(" , 64 bit");
1728   }
1729 
1730   st->print(" Build %d", build_number);
1731   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1732   st->cr();
1733 }
1734 
1735 void os::pd_print_cpu_info(outputStream* st) {
1736   // Nothing to do for now.
1737 }
1738 
1739 void os::print_memory_info(outputStream* st) {
1740   st->print("Memory:");
1741   st->print(" %dk page", os::vm_page_size()>>10);
1742 
1743   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1744   // value if total memory is larger than 4GB
1745   MEMORYSTATUSEX ms;
1746   ms.dwLength = sizeof(ms);
1747   GlobalMemoryStatusEx(&ms);
1748 
1749   st->print(", physical %uk", os::physical_memory() >> 10);
1750   st->print("(%uk free)", os::available_memory() >> 10);
1751 
1752   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1753   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1754   st->cr();
1755 }
1756 
1757 void os::print_siginfo(outputStream *st, void *siginfo) {
1758   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1759   st->print("siginfo:");
1760   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1761 
1762   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1763       er->NumberParameters >= 2) {
1764     switch (er->ExceptionInformation[0]) {
1765     case 0: st->print(", reading address"); break;
1766     case 1: st->print(", writing address"); break;
1767     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1768                        er->ExceptionInformation[0]);
1769     }
1770     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1771   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1772              er->NumberParameters >= 2 && UseSharedSpaces) {
1773     FileMapInfo* mapinfo = FileMapInfo::current_info();
1774     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1775       st->print("\n\nError accessing class data sharing archive."       \
1776                 " Mapped file inaccessible during execution, "          \
1777                 " possible disk/network problem.");
1778     }
1779   } else {
1780     int num = er->NumberParameters;
1781     if (num > 0) {
1782       st->print(", ExceptionInformation=");
1783       for (int i = 0; i < num; i++) {
1784         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1785       }
1786     }
1787   }
1788   st->cr();
1789 }
1790 
1791 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1792   // do nothing
1793 }
1794 
1795 static char saved_jvm_path[MAX_PATH] = {0};
1796 
1797 // Find the full path to the current module, jvm.dll
1798 void os::jvm_path(char *buf, jint buflen) {
1799   // Error checking.
1800   if (buflen < MAX_PATH) {
1801     assert(false, "must use a large-enough buffer");
1802     buf[0] = '\0';
1803     return;
1804   }
1805   // Lazy resolve the path to current module.
1806   if (saved_jvm_path[0] != 0) {
1807     strcpy(buf, saved_jvm_path);
1808     return;
1809   }
1810 
1811   buf[0] = '\0';
1812   if (Arguments::sun_java_launcher_is_altjvm()) {
1813     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1814     // for a JAVA_HOME environment variable and fix up the path so it
1815     // looks like jvm.dll is installed there (append a fake suffix
1816     // hotspot/jvm.dll).
1817     char* java_home_var = ::getenv("JAVA_HOME");
1818     if (java_home_var != NULL && java_home_var[0] != 0 &&
1819         strlen(java_home_var) < (size_t)buflen) {
1820       strncpy(buf, java_home_var, buflen);
1821 
1822       // determine if this is a legacy image or modules image
1823       // modules image doesn't have "jre" subdirectory
1824       size_t len = strlen(buf);
1825       char* jrebin_p = buf + len;
1826       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1827       if (0 != _access(buf, 0)) {
1828         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1829       }
1830       len = strlen(buf);
1831       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1832     }
1833   }
1834 
1835   if (buf[0] == '\0') {
1836     GetModuleFileName(vm_lib_handle, buf, buflen);
1837   }
1838   strncpy(saved_jvm_path, buf, MAX_PATH);
1839   saved_jvm_path[MAX_PATH - 1] = '\0';
1840 }
1841 
1842 
1843 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1844 #ifndef _WIN64
1845   st->print("_");
1846 #endif
1847 }
1848 
1849 
1850 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1851 #ifndef _WIN64
1852   st->print("@%d", args_size  * sizeof(int));
1853 #endif
1854 }
1855 
1856 // This method is a copy of JDK's sysGetLastErrorString
1857 // from src/windows/hpi/src/system_md.c
1858 
1859 size_t os::lasterror(char* buf, size_t len) {
1860   DWORD errval;
1861 
1862   if ((errval = GetLastError()) != 0) {
1863     // DOS error
1864     size_t n = (size_t)FormatMessage(
1865                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1866                                      NULL,
1867                                      errval,
1868                                      0,
1869                                      buf,
1870                                      (DWORD)len,
1871                                      NULL);
1872     if (n > 3) {
1873       // Drop final '.', CR, LF
1874       if (buf[n - 1] == '\n') n--;
1875       if (buf[n - 1] == '\r') n--;
1876       if (buf[n - 1] == '.') n--;
1877       buf[n] = '\0';
1878     }
1879     return n;
1880   }
1881 
1882   if (errno != 0) {
1883     // C runtime error that has no corresponding DOS error code
1884     const char* s = strerror(errno);
1885     size_t n = strlen(s);
1886     if (n >= len) n = len - 1;
1887     strncpy(buf, s, n);
1888     buf[n] = '\0';
1889     return n;
1890   }
1891 
1892   return 0;
1893 }
1894 
1895 int os::get_last_error() {
1896   DWORD error = GetLastError();
1897   if (error == 0) {
1898     error = errno;
1899   }
1900   return (int)error;
1901 }
1902 
1903 // sun.misc.Signal
1904 // NOTE that this is a workaround for an apparent kernel bug where if
1905 // a signal handler for SIGBREAK is installed then that signal handler
1906 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1907 // See bug 4416763.
1908 static void (*sigbreakHandler)(int) = NULL;
1909 
1910 static void UserHandler(int sig, void *siginfo, void *context) {
1911   os::signal_notify(sig);
1912   // We need to reinstate the signal handler each time...
1913   os::signal(sig, (void*)UserHandler);
1914 }
1915 
1916 void* os::user_handler() {
1917   return (void*) UserHandler;
1918 }
1919 
1920 void* os::signal(int signal_number, void* handler) {
1921   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1922     void (*oldHandler)(int) = sigbreakHandler;
1923     sigbreakHandler = (void (*)(int)) handler;
1924     return (void*) oldHandler;
1925   } else {
1926     return (void*)::signal(signal_number, (void (*)(int))handler);
1927   }
1928 }
1929 
1930 void os::signal_raise(int signal_number) {
1931   raise(signal_number);
1932 }
1933 
1934 // The Win32 C runtime library maps all console control events other than ^C
1935 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1936 // logoff, and shutdown events.  We therefore install our own console handler
1937 // that raises SIGTERM for the latter cases.
1938 //
1939 static BOOL WINAPI consoleHandler(DWORD event) {
1940   switch (event) {
1941   case CTRL_C_EVENT:
1942     if (is_error_reported()) {
1943       // Ctrl-C is pressed during error reporting, likely because the error
1944       // handler fails to abort. Let VM die immediately.
1945       os::die();
1946     }
1947 
1948     os::signal_raise(SIGINT);
1949     return TRUE;
1950     break;
1951   case CTRL_BREAK_EVENT:
1952     if (sigbreakHandler != NULL) {
1953       (*sigbreakHandler)(SIGBREAK);
1954     }
1955     return TRUE;
1956     break;
1957   case CTRL_LOGOFF_EVENT: {
1958     // Don't terminate JVM if it is running in a non-interactive session,
1959     // such as a service process.
1960     USEROBJECTFLAGS flags;
1961     HANDLE handle = GetProcessWindowStation();
1962     if (handle != NULL &&
1963         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1964         sizeof(USEROBJECTFLAGS), NULL)) {
1965       // If it is a non-interactive session, let next handler to deal
1966       // with it.
1967       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1968         return FALSE;
1969       }
1970     }
1971   }
1972   case CTRL_CLOSE_EVENT:
1973   case CTRL_SHUTDOWN_EVENT:
1974     os::signal_raise(SIGTERM);
1975     return TRUE;
1976     break;
1977   default:
1978     break;
1979   }
1980   return FALSE;
1981 }
1982 
1983 // The following code is moved from os.cpp for making this
1984 // code platform specific, which it is by its very nature.
1985 
1986 // Return maximum OS signal used + 1 for internal use only
1987 // Used as exit signal for signal_thread
1988 int os::sigexitnum_pd() {
1989   return NSIG;
1990 }
1991 
1992 // a counter for each possible signal value, including signal_thread exit signal
1993 static volatile jint pending_signals[NSIG+1] = { 0 };
1994 static HANDLE sig_sem = NULL;
1995 
1996 void os::signal_init_pd() {
1997   // Initialize signal structures
1998   memset((void*)pending_signals, 0, sizeof(pending_signals));
1999 
2000   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2001 
2002   // Programs embedding the VM do not want it to attempt to receive
2003   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2004   // shutdown hooks mechanism introduced in 1.3.  For example, when
2005   // the VM is run as part of a Windows NT service (i.e., a servlet
2006   // engine in a web server), the correct behavior is for any console
2007   // control handler to return FALSE, not TRUE, because the OS's
2008   // "final" handler for such events allows the process to continue if
2009   // it is a service (while terminating it if it is not a service).
2010   // To make this behavior uniform and the mechanism simpler, we
2011   // completely disable the VM's usage of these console events if -Xrs
2012   // (=ReduceSignalUsage) is specified.  This means, for example, that
2013   // the CTRL-BREAK thread dump mechanism is also disabled in this
2014   // case.  See bugs 4323062, 4345157, and related bugs.
2015 
2016   if (!ReduceSignalUsage) {
2017     // Add a CTRL-C handler
2018     SetConsoleCtrlHandler(consoleHandler, TRUE);
2019   }
2020 }
2021 
2022 void os::signal_notify(int signal_number) {
2023   BOOL ret;
2024   if (sig_sem != NULL) {
2025     Atomic::inc(&pending_signals[signal_number]);
2026     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2027     assert(ret != 0, "ReleaseSemaphore() failed");
2028   }
2029 }
2030 
2031 static int check_pending_signals(bool wait_for_signal) {
2032   DWORD ret;
2033   while (true) {
2034     for (int i = 0; i < NSIG + 1; i++) {
2035       jint n = pending_signals[i];
2036       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2037         return i;
2038       }
2039     }
2040     if (!wait_for_signal) {
2041       return -1;
2042     }
2043 
2044     JavaThread *thread = JavaThread::current();
2045 
2046     ThreadBlockInVM tbivm(thread);
2047 
2048     bool threadIsSuspended;
2049     do {
2050       thread->set_suspend_equivalent();
2051       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2052       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2053       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2054 
2055       // were we externally suspended while we were waiting?
2056       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2057       if (threadIsSuspended) {
2058         // The semaphore has been incremented, but while we were waiting
2059         // another thread suspended us. We don't want to continue running
2060         // while suspended because that would surprise the thread that
2061         // suspended us.
2062         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2063         assert(ret != 0, "ReleaseSemaphore() failed");
2064 
2065         thread->java_suspend_self();
2066       }
2067     } while (threadIsSuspended);
2068   }
2069 }
2070 
2071 int os::signal_lookup() {
2072   return check_pending_signals(false);
2073 }
2074 
2075 int os::signal_wait() {
2076   return check_pending_signals(true);
2077 }
2078 
2079 // Implicit OS exception handling
2080 
2081 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2082                       address handler) {
2083   JavaThread* thread = JavaThread::current();
2084   // Save pc in thread
2085 #ifdef _M_IA64
2086   // Do not blow up if no thread info available.
2087   if (thread) {
2088     // Saving PRECISE pc (with slot information) in thread.
2089     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2090     // Convert precise PC into "Unix" format
2091     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2092     thread->set_saved_exception_pc((address)precise_pc);
2093   }
2094   // Set pc to handler
2095   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2096   // Clear out psr.ri (= Restart Instruction) in order to continue
2097   // at the beginning of the target bundle.
2098   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2099   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2100 #elif _M_AMD64
2101   // Do not blow up if no thread info available.
2102   if (thread) {
2103     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2104   }
2105   // Set pc to handler
2106   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2107 #else
2108   // Do not blow up if no thread info available.
2109   if (thread) {
2110     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2111   }
2112   // Set pc to handler
2113   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2114 #endif
2115 
2116   // Continue the execution
2117   return EXCEPTION_CONTINUE_EXECUTION;
2118 }
2119 
2120 
2121 // Used for PostMortemDump
2122 extern "C" void safepoints();
2123 extern "C" void find(int x);
2124 extern "C" void events();
2125 
2126 // According to Windows API documentation, an illegal instruction sequence should generate
2127 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2128 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2129 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2130 
2131 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2132 
2133 // From "Execution Protection in the Windows Operating System" draft 0.35
2134 // Once a system header becomes available, the "real" define should be
2135 // included or copied here.
2136 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2137 
2138 // Handle NAT Bit consumption on IA64.
2139 #ifdef _M_IA64
2140   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2141 #endif
2142 
2143 // Windows Vista/2008 heap corruption check
2144 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2145 
2146 #define def_excpt(val) #val, val
2147 
2148 struct siglabel {
2149   char *name;
2150   int   number;
2151 };
2152 
2153 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2154 // C++ compiler contain this error code. Because this is a compiler-generated
2155 // error, the code is not listed in the Win32 API header files.
2156 // The code is actually a cryptic mnemonic device, with the initial "E"
2157 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2158 // ASCII values of "msc".
2159 
2160 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2161 
2162 
2163 struct siglabel exceptlabels[] = {
2164     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2165     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2166     def_excpt(EXCEPTION_BREAKPOINT),
2167     def_excpt(EXCEPTION_SINGLE_STEP),
2168     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2169     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2170     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2171     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2172     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2173     def_excpt(EXCEPTION_FLT_OVERFLOW),
2174     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2175     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2176     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2177     def_excpt(EXCEPTION_INT_OVERFLOW),
2178     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2179     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2180     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2181     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2182     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2183     def_excpt(EXCEPTION_STACK_OVERFLOW),
2184     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2185     def_excpt(EXCEPTION_GUARD_PAGE),
2186     def_excpt(EXCEPTION_INVALID_HANDLE),
2187     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2188     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2189 #ifdef _M_IA64
2190     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2191 #endif
2192     NULL, 0
2193 };
2194 
2195 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2196   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2197     if (exceptlabels[i].number == exception_code) {
2198       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2199       return buf;
2200     }
2201   }
2202 
2203   return NULL;
2204 }
2205 
2206 //-----------------------------------------------------------------------------
2207 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2208   // handle exception caused by idiv; should only happen for -MinInt/-1
2209   // (division by zero is handled explicitly)
2210 #ifdef _M_IA64
2211   assert(0, "Fix Handle_IDiv_Exception");
2212 #elif _M_AMD64
2213   PCONTEXT ctx = exceptionInfo->ContextRecord;
2214   address pc = (address)ctx->Rip;
2215   assert(pc[0] == 0xF7, "not an idiv opcode");
2216   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2217   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2218   // set correct result values and continue after idiv instruction
2219   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2220   ctx->Rax = (DWORD)min_jint;      // result
2221   ctx->Rdx = (DWORD)0;             // remainder
2222   // Continue the execution
2223 #else
2224   PCONTEXT ctx = exceptionInfo->ContextRecord;
2225   address pc = (address)ctx->Eip;
2226   assert(pc[0] == 0xF7, "not an idiv opcode");
2227   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2228   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2229   // set correct result values and continue after idiv instruction
2230   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2231   ctx->Eax = (DWORD)min_jint;      // result
2232   ctx->Edx = (DWORD)0;             // remainder
2233   // Continue the execution
2234 #endif
2235   return EXCEPTION_CONTINUE_EXECUTION;
2236 }
2237 
2238 //-----------------------------------------------------------------------------
2239 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2240   PCONTEXT ctx = exceptionInfo->ContextRecord;
2241 #ifndef  _WIN64
2242   // handle exception caused by native method modifying control word
2243   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2244 
2245   switch (exception_code) {
2246   case EXCEPTION_FLT_DENORMAL_OPERAND:
2247   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2248   case EXCEPTION_FLT_INEXACT_RESULT:
2249   case EXCEPTION_FLT_INVALID_OPERATION:
2250   case EXCEPTION_FLT_OVERFLOW:
2251   case EXCEPTION_FLT_STACK_CHECK:
2252   case EXCEPTION_FLT_UNDERFLOW:
2253     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2254     if (fp_control_word != ctx->FloatSave.ControlWord) {
2255       // Restore FPCW and mask out FLT exceptions
2256       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2257       // Mask out pending FLT exceptions
2258       ctx->FloatSave.StatusWord &=  0xffffff00;
2259       return EXCEPTION_CONTINUE_EXECUTION;
2260     }
2261   }
2262 
2263   if (prev_uef_handler != NULL) {
2264     // We didn't handle this exception so pass it to the previous
2265     // UnhandledExceptionFilter.
2266     return (prev_uef_handler)(exceptionInfo);
2267   }
2268 #else // !_WIN64
2269   // On Windows, the mxcsr control bits are non-volatile across calls
2270   // See also CR 6192333
2271   //
2272   jint MxCsr = INITIAL_MXCSR;
2273   // we can't use StubRoutines::addr_mxcsr_std()
2274   // because in Win64 mxcsr is not saved there
2275   if (MxCsr != ctx->MxCsr) {
2276     ctx->MxCsr = MxCsr;
2277     return EXCEPTION_CONTINUE_EXECUTION;
2278   }
2279 #endif // !_WIN64
2280 
2281   return EXCEPTION_CONTINUE_SEARCH;
2282 }
2283 
2284 static inline void report_error(Thread* t, DWORD exception_code,
2285                                 address addr, void* siginfo, void* context) {
2286   VMError err(t, exception_code, addr, siginfo, context);
2287   err.report_and_die();
2288 
2289   // If UseOsErrorReporting, this will return here and save the error file
2290   // somewhere where we can find it in the minidump.
2291 }
2292 
2293 //-----------------------------------------------------------------------------
2294 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2295   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2296   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2297 #ifdef _M_IA64
2298   // On Itanium, we need the "precise pc", which has the slot number coded
2299   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2300   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2301   // Convert the pc to "Unix format", which has the slot number coded
2302   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2303   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2304   // information is saved in the Unix format.
2305   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2306 #elif _M_AMD64
2307   address pc = (address) exceptionInfo->ContextRecord->Rip;
2308 #else
2309   address pc = (address) exceptionInfo->ContextRecord->Eip;
2310 #endif
2311   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2312 
2313   // Handle SafeFetch32 and SafeFetchN exceptions.
2314   if (StubRoutines::is_safefetch_fault(pc)) {
2315     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2316   }
2317 
2318 #ifndef _WIN64
2319   // Execution protection violation - win32 running on AMD64 only
2320   // Handled first to avoid misdiagnosis as a "normal" access violation;
2321   // This is safe to do because we have a new/unique ExceptionInformation
2322   // code for this condition.
2323   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2324     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2325     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2326     address addr = (address) exceptionRecord->ExceptionInformation[1];
2327 
2328     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2329       int page_size = os::vm_page_size();
2330 
2331       // Make sure the pc and the faulting address are sane.
2332       //
2333       // If an instruction spans a page boundary, and the page containing
2334       // the beginning of the instruction is executable but the following
2335       // page is not, the pc and the faulting address might be slightly
2336       // different - we still want to unguard the 2nd page in this case.
2337       //
2338       // 15 bytes seems to be a (very) safe value for max instruction size.
2339       bool pc_is_near_addr =
2340         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2341       bool instr_spans_page_boundary =
2342         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2343                          (intptr_t) page_size) > 0);
2344 
2345       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2346         static volatile address last_addr =
2347           (address) os::non_memory_address_word();
2348 
2349         // In conservative mode, don't unguard unless the address is in the VM
2350         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2351             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2352 
2353           // Set memory to RWX and retry
2354           address page_start =
2355             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2356           bool res = os::protect_memory((char*) page_start, page_size,
2357                                         os::MEM_PROT_RWX);
2358 
2359           if (PrintMiscellaneous && Verbose) {
2360             char buf[256];
2361             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2362                          "at " INTPTR_FORMAT
2363                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2364                          page_start, (res ? "success" : strerror(errno)));
2365             tty->print_raw_cr(buf);
2366           }
2367 
2368           // Set last_addr so if we fault again at the same address, we don't
2369           // end up in an endless loop.
2370           //
2371           // There are two potential complications here.  Two threads trapping
2372           // at the same address at the same time could cause one of the
2373           // threads to think it already unguarded, and abort the VM.  Likely
2374           // very rare.
2375           //
2376           // The other race involves two threads alternately trapping at
2377           // different addresses and failing to unguard the page, resulting in
2378           // an endless loop.  This condition is probably even more unlikely
2379           // than the first.
2380           //
2381           // Although both cases could be avoided by using locks or thread
2382           // local last_addr, these solutions are unnecessary complication:
2383           // this handler is a best-effort safety net, not a complete solution.
2384           // It is disabled by default and should only be used as a workaround
2385           // in case we missed any no-execute-unsafe VM code.
2386 
2387           last_addr = addr;
2388 
2389           return EXCEPTION_CONTINUE_EXECUTION;
2390         }
2391       }
2392 
2393       // Last unguard failed or not unguarding
2394       tty->print_raw_cr("Execution protection violation");
2395       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2396                    exceptionInfo->ContextRecord);
2397       return EXCEPTION_CONTINUE_SEARCH;
2398     }
2399   }
2400 #endif // _WIN64
2401 
2402   // Check to see if we caught the safepoint code in the
2403   // process of write protecting the memory serialization page.
2404   // It write enables the page immediately after protecting it
2405   // so just return.
2406   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2407     JavaThread* thread = (JavaThread*) t;
2408     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2409     address addr = (address) exceptionRecord->ExceptionInformation[1];
2410     if (os::is_memory_serialize_page(thread, addr)) {
2411       // Block current thread until the memory serialize page permission restored.
2412       os::block_on_serialize_page_trap();
2413       return EXCEPTION_CONTINUE_EXECUTION;
2414     }
2415   }
2416 
2417   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2418       VM_Version::is_cpuinfo_segv_addr(pc)) {
2419     // Verify that OS save/restore AVX registers.
2420     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2421   }
2422 
2423   if (t != NULL && t->is_Java_thread()) {
2424     JavaThread* thread = (JavaThread*) t;
2425     bool in_java = thread->thread_state() == _thread_in_Java;
2426 
2427     // Handle potential stack overflows up front.
2428     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2429       if (os::uses_stack_guard_pages()) {
2430 #ifdef _M_IA64
2431         // Use guard page for register stack.
2432         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2433         address addr = (address) exceptionRecord->ExceptionInformation[1];
2434         // Check for a register stack overflow on Itanium
2435         if (thread->addr_inside_register_stack_red_zone(addr)) {
2436           // Fatal red zone violation happens if the Java program
2437           // catches a StackOverflow error and does so much processing
2438           // that it runs beyond the unprotected yellow guard zone. As
2439           // a result, we are out of here.
2440           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2441         } else if(thread->addr_inside_register_stack(addr)) {
2442           // Disable the yellow zone which sets the state that
2443           // we've got a stack overflow problem.
2444           if (thread->stack_yellow_zone_enabled()) {
2445             thread->disable_stack_yellow_zone();
2446           }
2447           // Give us some room to process the exception.
2448           thread->disable_register_stack_guard();
2449           // Tracing with +Verbose.
2450           if (Verbose) {
2451             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2452             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2453             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2454             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2455                           thread->register_stack_base(),
2456                           thread->register_stack_base() + thread->stack_size());
2457           }
2458 
2459           // Reguard the permanent register stack red zone just to be sure.
2460           // We saw Windows silently disabling this without telling us.
2461           thread->enable_register_stack_red_zone();
2462 
2463           return Handle_Exception(exceptionInfo,
2464                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2465         }
2466 #endif
2467         if (thread->stack_yellow_zone_enabled()) {
2468           // Yellow zone violation.  The o/s has unprotected the first yellow
2469           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2470           // update the enabled status, even if the zone contains only one page.
2471           thread->disable_stack_yellow_zone();
2472           // If not in java code, return and hope for the best.
2473           return in_java
2474               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2475               :  EXCEPTION_CONTINUE_EXECUTION;
2476         } else {
2477           // Fatal red zone violation.
2478           thread->disable_stack_red_zone();
2479           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2480           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2481                        exceptionInfo->ContextRecord);
2482           return EXCEPTION_CONTINUE_SEARCH;
2483         }
2484       } else if (in_java) {
2485         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2486         // a one-time-only guard page, which it has released to us.  The next
2487         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2488         return Handle_Exception(exceptionInfo,
2489                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2490       } else {
2491         // Can only return and hope for the best.  Further stack growth will
2492         // result in an ACCESS_VIOLATION.
2493         return EXCEPTION_CONTINUE_EXECUTION;
2494       }
2495     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2496       // Either stack overflow or null pointer exception.
2497       if (in_java) {
2498         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2499         address addr = (address) exceptionRecord->ExceptionInformation[1];
2500         address stack_end = thread->stack_base() - thread->stack_size();
2501         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2502           // Stack overflow.
2503           assert(!os::uses_stack_guard_pages(),
2504                  "should be caught by red zone code above.");
2505           return Handle_Exception(exceptionInfo,
2506                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2507         }
2508         // Check for safepoint polling and implicit null
2509         // We only expect null pointers in the stubs (vtable)
2510         // the rest are checked explicitly now.
2511         CodeBlob* cb = CodeCache::find_blob(pc);
2512         if (cb != NULL) {
2513           if (os::is_poll_address(addr)) {
2514             address stub = SharedRuntime::get_poll_stub(pc);
2515             return Handle_Exception(exceptionInfo, stub);
2516           }
2517         }
2518         {
2519 #ifdef _WIN64
2520           // If it's a legal stack address map the entire region in
2521           //
2522           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2523           address addr = (address) exceptionRecord->ExceptionInformation[1];
2524           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2525             addr = (address)((uintptr_t)addr &
2526                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2527             os::commit_memory((char *)addr, thread->stack_base() - addr,
2528                               !ExecMem);
2529             return EXCEPTION_CONTINUE_EXECUTION;
2530           } else
2531 #endif
2532           {
2533             // Null pointer exception.
2534 #ifdef _M_IA64
2535             // Process implicit null checks in compiled code. Note: Implicit null checks
2536             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2537             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2538               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2539               // Handle implicit null check in UEP method entry
2540               if (cb && (cb->is_frame_complete_at(pc) ||
2541                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2542                 if (Verbose) {
2543                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2544                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2545                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2546                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2547                                 *(bundle_start + 1), *bundle_start);
2548                 }
2549                 return Handle_Exception(exceptionInfo,
2550                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2551               }
2552             }
2553 
2554             // Implicit null checks were processed above.  Hence, we should not reach
2555             // here in the usual case => die!
2556             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2557             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2558                          exceptionInfo->ContextRecord);
2559             return EXCEPTION_CONTINUE_SEARCH;
2560 
2561 #else // !IA64
2562 
2563             // Windows 98 reports faulting addresses incorrectly
2564             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2565                 !os::win32::is_nt()) {
2566               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2567               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2568             }
2569             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2570                          exceptionInfo->ContextRecord);
2571             return EXCEPTION_CONTINUE_SEARCH;
2572 #endif
2573           }
2574         }
2575       }
2576 
2577 #ifdef _WIN64
2578       // Special care for fast JNI field accessors.
2579       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2580       // in and the heap gets shrunk before the field access.
2581       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2582         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2583         if (addr != (address)-1) {
2584           return Handle_Exception(exceptionInfo, addr);
2585         }
2586       }
2587 #endif
2588 
2589       // Stack overflow or null pointer exception in native code.
2590       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2591                    exceptionInfo->ContextRecord);
2592       return EXCEPTION_CONTINUE_SEARCH;
2593     } // /EXCEPTION_ACCESS_VIOLATION
2594     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2595 #if defined _M_IA64
2596     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2597               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2598       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2599 
2600       // Compiled method patched to be non entrant? Following conditions must apply:
2601       // 1. must be first instruction in bundle
2602       // 2. must be a break instruction with appropriate code
2603       if ((((uint64_t) pc & 0x0F) == 0) &&
2604           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2605         return Handle_Exception(exceptionInfo,
2606                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2607       }
2608     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2609 #endif
2610 
2611 
2612     if (in_java) {
2613       switch (exception_code) {
2614       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2615         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2616 
2617       case EXCEPTION_INT_OVERFLOW:
2618         return Handle_IDiv_Exception(exceptionInfo);
2619 
2620       } // switch
2621     }
2622     if (((thread->thread_state() == _thread_in_Java) ||
2623          (thread->thread_state() == _thread_in_native)) &&
2624          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2625       LONG result=Handle_FLT_Exception(exceptionInfo);
2626       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2627     }
2628   }
2629 
2630   if (exception_code != EXCEPTION_BREAKPOINT) {
2631     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2632                  exceptionInfo->ContextRecord);
2633   }
2634   return EXCEPTION_CONTINUE_SEARCH;
2635 }
2636 
2637 #ifndef _WIN64
2638 // Special care for fast JNI accessors.
2639 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2640 // the heap gets shrunk before the field access.
2641 // Need to install our own structured exception handler since native code may
2642 // install its own.
2643 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2644   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2645   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2646     address pc = (address) exceptionInfo->ContextRecord->Eip;
2647     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2648     if (addr != (address)-1) {
2649       return Handle_Exception(exceptionInfo, addr);
2650     }
2651   }
2652   return EXCEPTION_CONTINUE_SEARCH;
2653 }
2654 
2655 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2656   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2657                                                      jobject obj,           \
2658                                                      jfieldID fieldID) {    \
2659     __try {                                                                 \
2660       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2661                                                                  obj,       \
2662                                                                  fieldID);  \
2663     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2664                                               _exception_info())) {         \
2665     }                                                                       \
2666     return 0;                                                               \
2667   }
2668 
2669 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2670 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2671 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2672 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2673 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2674 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2675 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2676 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2677 
2678 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2679   switch (type) {
2680   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2681   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2682   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2683   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2684   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2685   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2686   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2687   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2688   default:        ShouldNotReachHere();
2689   }
2690   return (address)-1;
2691 }
2692 #endif
2693 
2694 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2695   // Install a win32 structured exception handler around the test
2696   // function call so the VM can generate an error dump if needed.
2697   __try {
2698     (*funcPtr)();
2699   } __except(topLevelExceptionFilter(
2700                                      (_EXCEPTION_POINTERS*)_exception_info())) {
2701     // Nothing to do.
2702   }
2703 }
2704 
2705 // Virtual Memory
2706 
2707 int os::vm_page_size() { return os::win32::vm_page_size(); }
2708 int os::vm_allocation_granularity() {
2709   return os::win32::vm_allocation_granularity();
2710 }
2711 
2712 // Windows large page support is available on Windows 2003. In order to use
2713 // large page memory, the administrator must first assign additional privilege
2714 // to the user:
2715 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2716 //   + select Local Policies -> User Rights Assignment
2717 //   + double click "Lock pages in memory", add users and/or groups
2718 //   + reboot
2719 // Note the above steps are needed for administrator as well, as administrators
2720 // by default do not have the privilege to lock pages in memory.
2721 //
2722 // Note about Windows 2003: although the API supports committing large page
2723 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2724 // scenario, I found through experiment it only uses large page if the entire
2725 // memory region is reserved and committed in a single VirtualAlloc() call.
2726 // This makes Windows large page support more or less like Solaris ISM, in
2727 // that the entire heap must be committed upfront. This probably will change
2728 // in the future, if so the code below needs to be revisited.
2729 
2730 #ifndef MEM_LARGE_PAGES
2731   #define MEM_LARGE_PAGES 0x20000000
2732 #endif
2733 
2734 static HANDLE    _hProcess;
2735 static HANDLE    _hToken;
2736 
2737 // Container for NUMA node list info
2738 class NUMANodeListHolder {
2739  private:
2740   int *_numa_used_node_list;  // allocated below
2741   int _numa_used_node_count;
2742 
2743   void free_node_list() {
2744     if (_numa_used_node_list != NULL) {
2745       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2746     }
2747   }
2748 
2749  public:
2750   NUMANodeListHolder() {
2751     _numa_used_node_count = 0;
2752     _numa_used_node_list = NULL;
2753     // do rest of initialization in build routine (after function pointers are set up)
2754   }
2755 
2756   ~NUMANodeListHolder() {
2757     free_node_list();
2758   }
2759 
2760   bool build() {
2761     DWORD_PTR proc_aff_mask;
2762     DWORD_PTR sys_aff_mask;
2763     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2764     ULONG highest_node_number;
2765     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2766     free_node_list();
2767     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2768     for (unsigned int i = 0; i <= highest_node_number; i++) {
2769       ULONGLONG proc_mask_numa_node;
2770       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2771       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2772         _numa_used_node_list[_numa_used_node_count++] = i;
2773       }
2774     }
2775     return (_numa_used_node_count > 1);
2776   }
2777 
2778   int get_count() { return _numa_used_node_count; }
2779   int get_node_list_entry(int n) {
2780     // for indexes out of range, returns -1
2781     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2782   }
2783 
2784 } numa_node_list_holder;
2785 
2786 
2787 
2788 static size_t _large_page_size = 0;
2789 
2790 static bool resolve_functions_for_large_page_init() {
2791   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2792     os::Advapi32Dll::AdvapiAvailable();
2793 }
2794 
2795 static bool request_lock_memory_privilege() {
2796   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2797                           os::current_process_id());
2798 
2799   LUID luid;
2800   if (_hProcess != NULL &&
2801       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2802       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2803 
2804     TOKEN_PRIVILEGES tp;
2805     tp.PrivilegeCount = 1;
2806     tp.Privileges[0].Luid = luid;
2807     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2808 
2809     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2810     // privilege. Check GetLastError() too. See MSDN document.
2811     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2812         (GetLastError() == ERROR_SUCCESS)) {
2813       return true;
2814     }
2815   }
2816 
2817   return false;
2818 }
2819 
2820 static void cleanup_after_large_page_init() {
2821   if (_hProcess) CloseHandle(_hProcess);
2822   _hProcess = NULL;
2823   if (_hToken) CloseHandle(_hToken);
2824   _hToken = NULL;
2825 }
2826 
2827 static bool numa_interleaving_init() {
2828   bool success = false;
2829   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2830 
2831   // print a warning if UseNUMAInterleaving flag is specified on command line
2832   bool warn_on_failure = use_numa_interleaving_specified;
2833 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2834 
2835   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2836   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2837   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2838 
2839   if (os::Kernel32Dll::NumaCallsAvailable()) {
2840     if (numa_node_list_holder.build()) {
2841       if (PrintMiscellaneous && Verbose) {
2842         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2843         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2844           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2845         }
2846         tty->print("\n");
2847       }
2848       success = true;
2849     } else {
2850       WARN("Process does not cover multiple NUMA nodes.");
2851     }
2852   } else {
2853     WARN("NUMA Interleaving is not supported by the operating system.");
2854   }
2855   if (!success) {
2856     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2857   }
2858   return success;
2859 #undef WARN
2860 }
2861 
2862 // this routine is used whenever we need to reserve a contiguous VA range
2863 // but we need to make separate VirtualAlloc calls for each piece of the range
2864 // Reasons for doing this:
2865 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2866 //  * UseNUMAInterleaving requires a separate node for each piece
2867 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2868                                          DWORD prot,
2869                                          bool should_inject_error = false) {
2870   char * p_buf;
2871   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2872   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2873   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2874 
2875   // first reserve enough address space in advance since we want to be
2876   // able to break a single contiguous virtual address range into multiple
2877   // large page commits but WS2003 does not allow reserving large page space
2878   // so we just use 4K pages for reserve, this gives us a legal contiguous
2879   // address space. then we will deallocate that reservation, and re alloc
2880   // using large pages
2881   const size_t size_of_reserve = bytes + chunk_size;
2882   if (bytes > size_of_reserve) {
2883     // Overflowed.
2884     return NULL;
2885   }
2886   p_buf = (char *) VirtualAlloc(addr,
2887                                 size_of_reserve,  // size of Reserve
2888                                 MEM_RESERVE,
2889                                 PAGE_READWRITE);
2890   // If reservation failed, return NULL
2891   if (p_buf == NULL) return NULL;
2892   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2893   os::release_memory(p_buf, bytes + chunk_size);
2894 
2895   // we still need to round up to a page boundary (in case we are using large pages)
2896   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2897   // instead we handle this in the bytes_to_rq computation below
2898   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2899 
2900   // now go through and allocate one chunk at a time until all bytes are
2901   // allocated
2902   size_t  bytes_remaining = bytes;
2903   // An overflow of align_size_up() would have been caught above
2904   // in the calculation of size_of_reserve.
2905   char * next_alloc_addr = p_buf;
2906   HANDLE hProc = GetCurrentProcess();
2907 
2908 #ifdef ASSERT
2909   // Variable for the failure injection
2910   long ran_num = os::random();
2911   size_t fail_after = ran_num % bytes;
2912 #endif
2913 
2914   int count=0;
2915   while (bytes_remaining) {
2916     // select bytes_to_rq to get to the next chunk_size boundary
2917 
2918     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2919     // Note allocate and commit
2920     char * p_new;
2921 
2922 #ifdef ASSERT
2923     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2924 #else
2925     const bool inject_error_now = false;
2926 #endif
2927 
2928     if (inject_error_now) {
2929       p_new = NULL;
2930     } else {
2931       if (!UseNUMAInterleaving) {
2932         p_new = (char *) VirtualAlloc(next_alloc_addr,
2933                                       bytes_to_rq,
2934                                       flags,
2935                                       prot);
2936       } else {
2937         // get the next node to use from the used_node_list
2938         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2939         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2940         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2941                                                             next_alloc_addr,
2942                                                             bytes_to_rq,
2943                                                             flags,
2944                                                             prot,
2945                                                             node);
2946       }
2947     }
2948 
2949     if (p_new == NULL) {
2950       // Free any allocated pages
2951       if (next_alloc_addr > p_buf) {
2952         // Some memory was committed so release it.
2953         size_t bytes_to_release = bytes - bytes_remaining;
2954         // NMT has yet to record any individual blocks, so it
2955         // need to create a dummy 'reserve' record to match
2956         // the release.
2957         MemTracker::record_virtual_memory_reserve((address)p_buf,
2958                                                   bytes_to_release, CALLER_PC);
2959         os::release_memory(p_buf, bytes_to_release);
2960       }
2961 #ifdef ASSERT
2962       if (should_inject_error) {
2963         if (TracePageSizes && Verbose) {
2964           tty->print_cr("Reserving pages individually failed.");
2965         }
2966       }
2967 #endif
2968       return NULL;
2969     }
2970 
2971     bytes_remaining -= bytes_to_rq;
2972     next_alloc_addr += bytes_to_rq;
2973     count++;
2974   }
2975   // Although the memory is allocated individually, it is returned as one.
2976   // NMT records it as one block.
2977   if ((flags & MEM_COMMIT) != 0) {
2978     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2979   } else {
2980     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2981   }
2982 
2983   // made it this far, success
2984   return p_buf;
2985 }
2986 
2987 
2988 
2989 void os::large_page_init() {
2990   if (!UseLargePages) return;
2991 
2992   // print a warning if any large page related flag is specified on command line
2993   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2994                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2995   bool success = false;
2996 
2997 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2998   if (resolve_functions_for_large_page_init()) {
2999     if (request_lock_memory_privilege()) {
3000       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3001       if (s) {
3002 #if defined(IA32) || defined(AMD64)
3003         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3004           WARN("JVM cannot use large pages bigger than 4mb.");
3005         } else {
3006 #endif
3007           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3008             _large_page_size = LargePageSizeInBytes;
3009           } else {
3010             _large_page_size = s;
3011           }
3012           success = true;
3013 #if defined(IA32) || defined(AMD64)
3014         }
3015 #endif
3016       } else {
3017         WARN("Large page is not supported by the processor.");
3018       }
3019     } else {
3020       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3021     }
3022   } else {
3023     WARN("Large page is not supported by the operating system.");
3024   }
3025 #undef WARN
3026 
3027   const size_t default_page_size = (size_t) vm_page_size();
3028   if (success && _large_page_size > default_page_size) {
3029     _page_sizes[0] = _large_page_size;
3030     _page_sizes[1] = default_page_size;
3031     _page_sizes[2] = 0;
3032   }
3033 
3034   cleanup_after_large_page_init();
3035   UseLargePages = success;
3036 }
3037 
3038 // On win32, one cannot release just a part of reserved memory, it's an
3039 // all or nothing deal.  When we split a reservation, we must break the
3040 // reservation into two reservations.
3041 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3042                                   bool realloc) {
3043   if (size > 0) {
3044     release_memory(base, size);
3045     if (realloc) {
3046       reserve_memory(split, base);
3047     }
3048     if (size != split) {
3049       reserve_memory(size - split, base + split);
3050     }
3051   }
3052 }
3053 
3054 // Multiple threads can race in this code but it's not possible to unmap small sections of
3055 // virtual space to get requested alignment, like posix-like os's.
3056 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3057 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3058   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3059          "Alignment must be a multiple of allocation granularity (page size)");
3060   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3061 
3062   size_t extra_size = size + alignment;
3063   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3064 
3065   char* aligned_base = NULL;
3066 
3067   do {
3068     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3069     if (extra_base == NULL) {
3070       return NULL;
3071     }
3072     // Do manual alignment
3073     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3074 
3075     os::release_memory(extra_base, extra_size);
3076 
3077     aligned_base = os::reserve_memory(size, aligned_base);
3078 
3079   } while (aligned_base == NULL);
3080 
3081   return aligned_base;
3082 }
3083 
3084 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3085   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3086          "reserve alignment");
3087   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3088   char* res;
3089   // note that if UseLargePages is on, all the areas that require interleaving
3090   // will go thru reserve_memory_special rather than thru here.
3091   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3092   if (!use_individual) {
3093     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3094   } else {
3095     elapsedTimer reserveTimer;
3096     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3097     // in numa interleaving, we have to allocate pages individually
3098     // (well really chunks of NUMAInterleaveGranularity size)
3099     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3100     if (res == NULL) {
3101       warning("NUMA page allocation failed");
3102     }
3103     if (Verbose && PrintMiscellaneous) {
3104       reserveTimer.stop();
3105       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3106                     reserveTimer.milliseconds(), reserveTimer.ticks());
3107     }
3108   }
3109   assert(res == NULL || addr == NULL || addr == res,
3110          "Unexpected address from reserve.");
3111 
3112   return res;
3113 }
3114 
3115 // Reserve memory at an arbitrary address, only if that area is
3116 // available (and not reserved for something else).
3117 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3118   // Windows os::reserve_memory() fails of the requested address range is
3119   // not avilable.
3120   return reserve_memory(bytes, requested_addr);
3121 }
3122 
3123 size_t os::large_page_size() {
3124   return _large_page_size;
3125 }
3126 
3127 bool os::can_commit_large_page_memory() {
3128   // Windows only uses large page memory when the entire region is reserved
3129   // and committed in a single VirtualAlloc() call. This may change in the
3130   // future, but with Windows 2003 it's not possible to commit on demand.
3131   return false;
3132 }
3133 
3134 bool os::can_execute_large_page_memory() {
3135   return true;
3136 }
3137 
3138 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3139                                  bool exec) {
3140   assert(UseLargePages, "only for large pages");
3141 
3142   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3143     return NULL; // Fallback to small pages.
3144   }
3145 
3146   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3147   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3148 
3149   // with large pages, there are two cases where we need to use Individual Allocation
3150   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3151   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3152   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3153     if (TracePageSizes && Verbose) {
3154       tty->print_cr("Reserving large pages individually.");
3155     }
3156     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3157     if (p_buf == NULL) {
3158       // give an appropriate warning message
3159       if (UseNUMAInterleaving) {
3160         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3161       }
3162       if (UseLargePagesIndividualAllocation) {
3163         warning("Individually allocated large pages failed, "
3164                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3165       }
3166       return NULL;
3167     }
3168 
3169     return p_buf;
3170 
3171   } else {
3172     if (TracePageSizes && Verbose) {
3173       tty->print_cr("Reserving large pages in a single large chunk.");
3174     }
3175     // normal policy just allocate it all at once
3176     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3177     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3178     if (res != NULL) {
3179       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3180     }
3181 
3182     return res;
3183   }
3184 }
3185 
3186 bool os::release_memory_special(char* base, size_t bytes) {
3187   assert(base != NULL, "Sanity check");
3188   return release_memory(base, bytes);
3189 }
3190 
3191 void os::print_statistics() {
3192 }
3193 
3194 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3195   int err = os::get_last_error();
3196   char buf[256];
3197   size_t buf_len = os::lasterror(buf, sizeof(buf));
3198   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3199           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3200           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3201 }
3202 
3203 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3204   if (bytes == 0) {
3205     // Don't bother the OS with noops.
3206     return true;
3207   }
3208   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3209   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3210   // Don't attempt to print anything if the OS call fails. We're
3211   // probably low on resources, so the print itself may cause crashes.
3212 
3213   // unless we have NUMAInterleaving enabled, the range of a commit
3214   // is always within a reserve covered by a single VirtualAlloc
3215   // in that case we can just do a single commit for the requested size
3216   if (!UseNUMAInterleaving) {
3217     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3218       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3219       return false;
3220     }
3221     if (exec) {
3222       DWORD oldprot;
3223       // Windows doc says to use VirtualProtect to get execute permissions
3224       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3225         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3226         return false;
3227       }
3228     }
3229     return true;
3230   } else {
3231 
3232     // when NUMAInterleaving is enabled, the commit might cover a range that
3233     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3234     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3235     // returns represents the number of bytes that can be committed in one step.
3236     size_t bytes_remaining = bytes;
3237     char * next_alloc_addr = addr;
3238     while (bytes_remaining > 0) {
3239       MEMORY_BASIC_INFORMATION alloc_info;
3240       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3241       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3242       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3243                        PAGE_READWRITE) == NULL) {
3244         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3245                                             exec);)
3246         return false;
3247       }
3248       if (exec) {
3249         DWORD oldprot;
3250         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3251                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3252           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3253                                               exec);)
3254           return false;
3255         }
3256       }
3257       bytes_remaining -= bytes_to_rq;
3258       next_alloc_addr += bytes_to_rq;
3259     }
3260   }
3261   // if we made it this far, return true
3262   return true;
3263 }
3264 
3265 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3266                           bool exec) {
3267   // alignment_hint is ignored on this OS
3268   return pd_commit_memory(addr, size, exec);
3269 }
3270 
3271 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3272                                   const char* mesg) {
3273   assert(mesg != NULL, "mesg must be specified");
3274   if (!pd_commit_memory(addr, size, exec)) {
3275     warn_fail_commit_memory(addr, size, exec);
3276     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3277   }
3278 }
3279 
3280 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3281                                   size_t alignment_hint, bool exec,
3282                                   const char* mesg) {
3283   // alignment_hint is ignored on this OS
3284   pd_commit_memory_or_exit(addr, size, exec, mesg);
3285 }
3286 
3287 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3288   if (bytes == 0) {
3289     // Don't bother the OS with noops.
3290     return true;
3291   }
3292   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3293   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3294   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3295 }
3296 
3297 bool os::pd_release_memory(char* addr, size_t bytes) {
3298   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3299 }
3300 
3301 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3302   return os::commit_memory(addr, size, !ExecMem);
3303 }
3304 
3305 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3306   return os::uncommit_memory(addr, size);
3307 }
3308 
3309 // Set protections specified
3310 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3311                         bool is_committed) {
3312   unsigned int p = 0;
3313   switch (prot) {
3314   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3315   case MEM_PROT_READ: p = PAGE_READONLY; break;
3316   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3317   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3318   default:
3319     ShouldNotReachHere();
3320   }
3321 
3322   DWORD old_status;
3323 
3324   // Strange enough, but on Win32 one can change protection only for committed
3325   // memory, not a big deal anyway, as bytes less or equal than 64K
3326   if (!is_committed) {
3327     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3328                           "cannot commit protection page");
3329   }
3330   // One cannot use os::guard_memory() here, as on Win32 guard page
3331   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3332   //
3333   // Pages in the region become guard pages. Any attempt to access a guard page
3334   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3335   // the guard page status. Guard pages thus act as a one-time access alarm.
3336   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3337 }
3338 
3339 bool os::guard_memory(char* addr, size_t bytes) {
3340   DWORD old_status;
3341   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3342 }
3343 
3344 bool os::unguard_memory(char* addr, size_t bytes) {
3345   DWORD old_status;
3346   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3347 }
3348 
3349 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3350 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3351 void os::numa_make_global(char *addr, size_t bytes)    { }
3352 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3353 bool os::numa_topology_changed()                       { return false; }
3354 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3355 int os::numa_get_group_id()                            { return 0; }
3356 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3357   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3358     // Provide an answer for UMA systems
3359     ids[0] = 0;
3360     return 1;
3361   } else {
3362     // check for size bigger than actual groups_num
3363     size = MIN2(size, numa_get_groups_num());
3364     for (int i = 0; i < (int)size; i++) {
3365       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3366     }
3367     return size;
3368   }
3369 }
3370 
3371 bool os::get_page_info(char *start, page_info* info) {
3372   return false;
3373 }
3374 
3375 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3376                      page_info* page_found) {
3377   return end;
3378 }
3379 
3380 char* os::non_memory_address_word() {
3381   // Must never look like an address returned by reserve_memory,
3382   // even in its subfields (as defined by the CPU immediate fields,
3383   // if the CPU splits constants across multiple instructions).
3384   return (char*)-1;
3385 }
3386 
3387 #define MAX_ERROR_COUNT 100
3388 #define SYS_THREAD_ERROR 0xffffffffUL
3389 
3390 void os::pd_start_thread(Thread* thread) {
3391   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3392   // Returns previous suspend state:
3393   // 0:  Thread was not suspended
3394   // 1:  Thread is running now
3395   // >1: Thread is still suspended.
3396   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3397 }
3398 
3399 class HighResolutionInterval : public CHeapObj<mtThread> {
3400   // The default timer resolution seems to be 10 milliseconds.
3401   // (Where is this written down?)
3402   // If someone wants to sleep for only a fraction of the default,
3403   // then we set the timer resolution down to 1 millisecond for
3404   // the duration of their interval.
3405   // We carefully set the resolution back, since otherwise we
3406   // seem to incur an overhead (3%?) that we don't need.
3407   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3408   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3409   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3410   // timeBeginPeriod() if the relative error exceeded some threshold.
3411   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3412   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3413   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3414   // resolution timers running.
3415  private:
3416   jlong resolution;
3417  public:
3418   HighResolutionInterval(jlong ms) {
3419     resolution = ms % 10L;
3420     if (resolution != 0) {
3421       MMRESULT result = timeBeginPeriod(1L);
3422     }
3423   }
3424   ~HighResolutionInterval() {
3425     if (resolution != 0) {
3426       MMRESULT result = timeEndPeriod(1L);
3427     }
3428     resolution = 0L;
3429   }
3430 };
3431 
3432 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3433   jlong limit = (jlong) MAXDWORD;
3434 
3435   while (ms > limit) {
3436     int res;
3437     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3438       return res;
3439     }
3440     ms -= limit;
3441   }
3442 
3443   assert(thread == Thread::current(), "thread consistency check");
3444   OSThread* osthread = thread->osthread();
3445   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3446   int result;
3447   if (interruptable) {
3448     assert(thread->is_Java_thread(), "must be java thread");
3449     JavaThread *jt = (JavaThread *) thread;
3450     ThreadBlockInVM tbivm(jt);
3451 
3452     jt->set_suspend_equivalent();
3453     // cleared by handle_special_suspend_equivalent_condition() or
3454     // java_suspend_self() via check_and_wait_while_suspended()
3455 
3456     HANDLE events[1];
3457     events[0] = osthread->interrupt_event();
3458     HighResolutionInterval *phri=NULL;
3459     if (!ForceTimeHighResolution) {
3460       phri = new HighResolutionInterval(ms);
3461     }
3462     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3463       result = OS_TIMEOUT;
3464     } else {
3465       ResetEvent(osthread->interrupt_event());
3466       osthread->set_interrupted(false);
3467       result = OS_INTRPT;
3468     }
3469     delete phri; //if it is NULL, harmless
3470 
3471     // were we externally suspended while we were waiting?
3472     jt->check_and_wait_while_suspended();
3473   } else {
3474     assert(!thread->is_Java_thread(), "must not be java thread");
3475     Sleep((long) ms);
3476     result = OS_TIMEOUT;
3477   }
3478   return result;
3479 }
3480 
3481 // Short sleep, direct OS call.
3482 //
3483 // ms = 0, means allow others (if any) to run.
3484 //
3485 void os::naked_short_sleep(jlong ms) {
3486   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3487   Sleep(ms);
3488 }
3489 
3490 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3491 void os::infinite_sleep() {
3492   while (true) {    // sleep forever ...
3493     Sleep(100000);  // ... 100 seconds at a time
3494   }
3495 }
3496 
3497 typedef BOOL (WINAPI * STTSignature)(void);
3498 
3499 void os::naked_yield() {
3500   // Use either SwitchToThread() or Sleep(0)
3501   // Consider passing back the return value from SwitchToThread().
3502   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3503     SwitchToThread();
3504   } else {
3505     Sleep(0);
3506   }
3507 }
3508 
3509 // Win32 only gives you access to seven real priorities at a time,
3510 // so we compress Java's ten down to seven.  It would be better
3511 // if we dynamically adjusted relative priorities.
3512 
3513 int os::java_to_os_priority[CriticalPriority + 1] = {
3514   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3515   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3516   THREAD_PRIORITY_LOWEST,                       // 2
3517   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3518   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3519   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3520   THREAD_PRIORITY_NORMAL,                       // 6
3521   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3522   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3523   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3524   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3525   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3526 };
3527 
3528 int prio_policy1[CriticalPriority + 1] = {
3529   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3530   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3531   THREAD_PRIORITY_LOWEST,                       // 2
3532   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3533   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3534   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3535   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3536   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3537   THREAD_PRIORITY_HIGHEST,                      // 8
3538   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3539   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3540   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3541 };
3542 
3543 static int prio_init() {
3544   // If ThreadPriorityPolicy is 1, switch tables
3545   if (ThreadPriorityPolicy == 1) {
3546     int i;
3547     for (i = 0; i < CriticalPriority + 1; i++) {
3548       os::java_to_os_priority[i] = prio_policy1[i];
3549     }
3550   }
3551   if (UseCriticalJavaThreadPriority) {
3552     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3553   }
3554   return 0;
3555 }
3556 
3557 OSReturn os::set_native_priority(Thread* thread, int priority) {
3558   if (!UseThreadPriorities) return OS_OK;
3559   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3560   return ret ? OS_OK : OS_ERR;
3561 }
3562 
3563 OSReturn os::get_native_priority(const Thread* const thread,
3564                                  int* priority_ptr) {
3565   if (!UseThreadPriorities) {
3566     *priority_ptr = java_to_os_priority[NormPriority];
3567     return OS_OK;
3568   }
3569   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3570   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3571     assert(false, "GetThreadPriority failed");
3572     return OS_ERR;
3573   }
3574   *priority_ptr = os_prio;
3575   return OS_OK;
3576 }
3577 
3578 
3579 // Hint to the underlying OS that a task switch would not be good.
3580 // Void return because it's a hint and can fail.
3581 void os::hint_no_preempt() {}
3582 
3583 void os::interrupt(Thread* thread) {
3584   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3585          Threads_lock->owned_by_self(),
3586          "possibility of dangling Thread pointer");
3587 
3588   OSThread* osthread = thread->osthread();
3589   osthread->set_interrupted(true);
3590   // More than one thread can get here with the same value of osthread,
3591   // resulting in multiple notifications.  We do, however, want the store
3592   // to interrupted() to be visible to other threads before we post
3593   // the interrupt event.
3594   OrderAccess::release();
3595   SetEvent(osthread->interrupt_event());
3596   // For JSR166:  unpark after setting status
3597   if (thread->is_Java_thread()) {
3598     ((JavaThread*)thread)->parker()->unpark();
3599   }
3600 
3601   ParkEvent * ev = thread->_ParkEvent;
3602   if (ev != NULL) ev->unpark();
3603 }
3604 
3605 
3606 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3607   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3608          "possibility of dangling Thread pointer");
3609 
3610   OSThread* osthread = thread->osthread();
3611   // There is no synchronization between the setting of the interrupt
3612   // and it being cleared here. It is critical - see 6535709 - that
3613   // we only clear the interrupt state, and reset the interrupt event,
3614   // if we are going to report that we were indeed interrupted - else
3615   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3616   // depending on the timing. By checking thread interrupt event to see
3617   // if the thread gets real interrupt thus prevent spurious wakeup.
3618   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3619   if (interrupted && clear_interrupted) {
3620     osthread->set_interrupted(false);
3621     ResetEvent(osthread->interrupt_event());
3622   } // Otherwise leave the interrupted state alone
3623 
3624   return interrupted;
3625 }
3626 
3627 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3628 ExtendedPC os::get_thread_pc(Thread* thread) {
3629   CONTEXT context;
3630   context.ContextFlags = CONTEXT_CONTROL;
3631   HANDLE handle = thread->osthread()->thread_handle();
3632 #ifdef _M_IA64
3633   assert(0, "Fix get_thread_pc");
3634   return ExtendedPC(NULL);
3635 #else
3636   if (GetThreadContext(handle, &context)) {
3637 #ifdef _M_AMD64
3638     return ExtendedPC((address) context.Rip);
3639 #else
3640     return ExtendedPC((address) context.Eip);
3641 #endif
3642   } else {
3643     return ExtendedPC(NULL);
3644   }
3645 #endif
3646 }
3647 
3648 // GetCurrentThreadId() returns DWORD
3649 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3650 
3651 static int _initial_pid = 0;
3652 
3653 int os::current_process_id() {
3654   return (_initial_pid ? _initial_pid : _getpid());
3655 }
3656 
3657 int    os::win32::_vm_page_size              = 0;
3658 int    os::win32::_vm_allocation_granularity = 0;
3659 int    os::win32::_processor_type            = 0;
3660 // Processor level is not available on non-NT systems, use vm_version instead
3661 int    os::win32::_processor_level           = 0;
3662 julong os::win32::_physical_memory           = 0;
3663 size_t os::win32::_default_stack_size        = 0;
3664 
3665 intx          os::win32::_os_thread_limit    = 0;
3666 volatile intx os::win32::_os_thread_count    = 0;
3667 
3668 bool   os::win32::_is_nt                     = false;
3669 bool   os::win32::_is_windows_2003           = false;
3670 bool   os::win32::_is_windows_server         = false;
3671 
3672 // 6573254
3673 // Currently, the bug is observed across all the supported Windows releases,
3674 // including the latest one (as of this writing - Windows Server 2012 R2)
3675 bool   os::win32::_has_exit_bug              = true;
3676 bool   os::win32::_has_performance_count     = 0;
3677 
3678 void os::win32::initialize_system_info() {
3679   SYSTEM_INFO si;
3680   GetSystemInfo(&si);
3681   _vm_page_size    = si.dwPageSize;
3682   _vm_allocation_granularity = si.dwAllocationGranularity;
3683   _processor_type  = si.dwProcessorType;
3684   _processor_level = si.wProcessorLevel;
3685   set_processor_count(si.dwNumberOfProcessors);
3686 
3687   MEMORYSTATUSEX ms;
3688   ms.dwLength = sizeof(ms);
3689 
3690   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3691   // dwMemoryLoad (% of memory in use)
3692   GlobalMemoryStatusEx(&ms);
3693   _physical_memory = ms.ullTotalPhys;
3694 
3695   OSVERSIONINFOEX oi;
3696   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3697   GetVersionEx((OSVERSIONINFO*)&oi);
3698   switch (oi.dwPlatformId) {
3699   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3700   case VER_PLATFORM_WIN32_NT:
3701     _is_nt = true;
3702     {
3703       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3704       if (os_vers == 5002) {
3705         _is_windows_2003 = true;
3706       }
3707       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3708           oi.wProductType == VER_NT_SERVER) {
3709         _is_windows_server = true;
3710       }
3711     }
3712     break;
3713   default: fatal("Unknown platform");
3714   }
3715 
3716   _default_stack_size = os::current_stack_size();
3717   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3718   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3719          "stack size not a multiple of page size");
3720 
3721   initialize_performance_counter();
3722 
3723   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3724   // known to deadlock the system, if the VM issues to thread operations with
3725   // a too high frequency, e.g., such as changing the priorities.
3726   // The 6000 seems to work well - no deadlocks has been notices on the test
3727   // programs that we have seen experience this problem.
3728   if (!os::win32::is_nt()) {
3729     StarvationMonitorInterval = 6000;
3730   }
3731 }
3732 
3733 
3734 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3735                                       int ebuflen) {
3736   char path[MAX_PATH];
3737   DWORD size;
3738   DWORD pathLen = (DWORD)sizeof(path);
3739   HINSTANCE result = NULL;
3740 
3741   // only allow library name without path component
3742   assert(strchr(name, '\\') == NULL, "path not allowed");
3743   assert(strchr(name, ':') == NULL, "path not allowed");
3744   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3745     jio_snprintf(ebuf, ebuflen,
3746                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3747     return NULL;
3748   }
3749 
3750   // search system directory
3751   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3752     if (size >= pathLen) {
3753       return NULL; // truncated
3754     }
3755     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3756       return NULL; // truncated
3757     }
3758     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3759       return result;
3760     }
3761   }
3762 
3763   // try Windows directory
3764   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3765     if (size >= pathLen) {
3766       return NULL; // truncated
3767     }
3768     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3769       return NULL; // truncated
3770     }
3771     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3772       return result;
3773     }
3774   }
3775 
3776   jio_snprintf(ebuf, ebuflen,
3777                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3778   return NULL;
3779 }
3780 
3781 #define EXIT_TIMEOUT     PRODUCT_ONLY(1000) NOT_PRODUCT(4000) /* 1 sec in product, 4 sec in debug */
3782 
3783 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3784   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3785   return TRUE;
3786 }
3787 
3788 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3789   // Basic approach:
3790   //  - Each exiting thread registers its intent to exit and then does so.
3791   //  - A thread trying to terminate the process must wait for all
3792   //    threads currently exiting to complete their exit.
3793 
3794   if (os::win32::has_exit_bug()) {
3795     // The array holds handles of the threads that have started exiting by calling
3796     // _endthreadex().
3797     // Should be large enough to avoid blocking the exiting thread due to lack of
3798     // a free slot.
3799     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3800     static int handle_count = 0;
3801 
3802     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3803     static CRITICAL_SECTION crit_sect;
3804     static volatile jint process_exiting = 0;
3805     int i, j;
3806     DWORD res;
3807     HANDLE hproc, hthr;
3808 
3809     // The first thread that reached this point, initializes the critical section.
3810     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3811       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3812     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3813       EnterCriticalSection(&crit_sect);
3814 
3815       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3816         // Remove from the array those handles of the threads that have completed exiting.
3817         for (i = 0, j = 0; i < handle_count; ++i) {
3818           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3819           if (res == WAIT_TIMEOUT) {
3820             handles[j++] = handles[i];
3821           } else {
3822             if (res == WAIT_FAILED) {
3823               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3824                       GetLastError(), __FILE__, __LINE__);
3825             }
3826             // Don't keep the handle, if we failed waiting for it.
3827             CloseHandle(handles[i]);
3828           }
3829         }
3830 
3831         // If there's no free slot in the array of the kept handles, we'll have to
3832         // wait until at least one thread completes exiting.
3833         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3834           // Raise the priority of the oldest exiting thread to increase its chances
3835           // to complete sooner.
3836           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3837           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3838           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3839             i = (res - WAIT_OBJECT_0);
3840             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3841             for (; i < handle_count; ++i) {
3842               handles[i] = handles[i + 1];
3843             }
3844           } else {
3845             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3846                     (res == WAIT_FAILED ? "failed" : "timed out"),
3847                     GetLastError(), __FILE__, __LINE__);
3848             // Don't keep handles, if we failed waiting for them.
3849             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3850               CloseHandle(handles[i]);
3851             }
3852             handle_count = 0;
3853           }
3854         }
3855 
3856         // Store a duplicate of the current thread handle in the array of handles.
3857         hproc = GetCurrentProcess();
3858         hthr = GetCurrentThread();
3859         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3860                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3861           warning("DuplicateHandle failed (%u) in %s: %d\n",
3862                   GetLastError(), __FILE__, __LINE__);
3863         } else {
3864           ++handle_count;
3865         }
3866 
3867         // The current exiting thread has stored its handle in the array, and now
3868         // should leave the critical section before calling _endthreadex().
3869 
3870       } else if (what != EPT_THREAD) {
3871         if (handle_count > 0) {
3872           // Before ending the process, make sure all the threads that had called
3873           // _endthreadex() completed.
3874 
3875           // Set the priority level of the current thread to the same value as
3876           // the priority level of exiting threads.
3877           // This is to ensure it will be given a fair chance to execute if
3878           // the timeout expires.
3879           hthr = GetCurrentThread();
3880           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3881           for (i = 0; i < handle_count; ++i) {
3882             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3883           }
3884           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3885           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3886             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3887                     (res == WAIT_FAILED ? "failed" : "timed out"),
3888                     GetLastError(), __FILE__, __LINE__);
3889           }
3890           for (i = 0; i < handle_count; ++i) {
3891             CloseHandle(handles[i]);
3892           }
3893           handle_count = 0;
3894         }
3895 
3896         OrderAccess::release_store(&process_exiting, 1);
3897       }
3898 
3899       LeaveCriticalSection(&crit_sect);
3900     }
3901 
3902     if (what == EPT_THREAD) {
3903       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3904         // Some other thread is about to call exit(), so we
3905         // don't let the current thread proceed to _endthreadex()
3906         SuspendThread(GetCurrentThread());
3907         // Avoid busy-wait loop, if SuspendThread() failed.
3908         Sleep(EXIT_TIMEOUT);
3909       }
3910     }
3911   }
3912 
3913   // We are here if either
3914   // - there's no 'race at exit' bug on this OS release;
3915   // - initialization of the critical section failed (unlikely);
3916   // - the current thread has stored its handle and left the critical section;
3917   // - the process-exiting thread has raised the flag and left the critical section.
3918   if (what == EPT_THREAD) {
3919     _endthreadex((unsigned)exit_code);
3920   } else if (what == EPT_PROCESS) {
3921     ::exit(exit_code);
3922   } else {
3923     _exit(exit_code);
3924   }
3925 
3926   // Should not reach here
3927   return exit_code;
3928 }
3929 
3930 #undef EXIT_TIMEOUT
3931 
3932 void os::win32::setmode_streams() {
3933   _setmode(_fileno(stdin), _O_BINARY);
3934   _setmode(_fileno(stdout), _O_BINARY);
3935   _setmode(_fileno(stderr), _O_BINARY);
3936 }
3937 
3938 
3939 bool os::is_debugger_attached() {
3940   return IsDebuggerPresent() ? true : false;
3941 }
3942 
3943 
3944 void os::wait_for_keypress_at_exit(void) {
3945   if (PauseAtExit) {
3946     fprintf(stderr, "Press any key to continue...\n");
3947     fgetc(stdin);
3948   }
3949 }
3950 
3951 
3952 int os::message_box(const char* title, const char* message) {
3953   int result = MessageBox(NULL, message, title,
3954                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3955   return result == IDYES;
3956 }
3957 
3958 int os::allocate_thread_local_storage() {
3959   return TlsAlloc();
3960 }
3961 
3962 
3963 void os::free_thread_local_storage(int index) {
3964   TlsFree(index);
3965 }
3966 
3967 
3968 void os::thread_local_storage_at_put(int index, void* value) {
3969   TlsSetValue(index, value);
3970   assert(thread_local_storage_at(index) == value, "Just checking");
3971 }
3972 
3973 
3974 void* os::thread_local_storage_at(int index) {
3975   return TlsGetValue(index);
3976 }
3977 
3978 
3979 #ifndef PRODUCT
3980 #ifndef _WIN64
3981 // Helpers to check whether NX protection is enabled
3982 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3983   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3984       pex->ExceptionRecord->NumberParameters > 0 &&
3985       pex->ExceptionRecord->ExceptionInformation[0] ==
3986       EXCEPTION_INFO_EXEC_VIOLATION) {
3987     return EXCEPTION_EXECUTE_HANDLER;
3988   }
3989   return EXCEPTION_CONTINUE_SEARCH;
3990 }
3991 
3992 void nx_check_protection() {
3993   // If NX is enabled we'll get an exception calling into code on the stack
3994   char code[] = { (char)0xC3 }; // ret
3995   void *code_ptr = (void *)code;
3996   __try {
3997     __asm call code_ptr
3998   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3999     tty->print_raw_cr("NX protection detected.");
4000   }
4001 }
4002 #endif // _WIN64
4003 #endif // PRODUCT
4004 
4005 // this is called _before_ the global arguments have been parsed
4006 void os::init(void) {
4007   _initial_pid = _getpid();
4008 
4009   init_random(1234567);
4010 
4011   win32::initialize_system_info();
4012   win32::setmode_streams();
4013   init_page_sizes((size_t) win32::vm_page_size());
4014 
4015   // This may be overridden later when argument processing is done.
4016   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4017                 os::win32::is_windows_2003());
4018 
4019   // Initialize main_process and main_thread
4020   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4021   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4022                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4023     fatal("DuplicateHandle failed\n");
4024   }
4025   main_thread_id = (int) GetCurrentThreadId();
4026 }
4027 
4028 // To install functions for atexit processing
4029 extern "C" {
4030   static void perfMemory_exit_helper() {
4031     perfMemory_exit();
4032   }
4033 }
4034 
4035 static jint initSock();
4036 
4037 // this is called _after_ the global arguments have been parsed
4038 jint os::init_2(void) {
4039   // Allocate a single page and mark it as readable for safepoint polling
4040   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4041   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4042 
4043   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4044   guarantee(return_page != NULL, "Commit Failed for polling page");
4045 
4046   os::set_polling_page(polling_page);
4047 
4048 #ifndef PRODUCT
4049   if (Verbose && PrintMiscellaneous) {
4050     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4051                (intptr_t)polling_page);
4052   }
4053 #endif
4054 
4055   if (!UseMembar) {
4056     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4057     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4058 
4059     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4060     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4061 
4062     os::set_memory_serialize_page(mem_serialize_page);
4063 
4064 #ifndef PRODUCT
4065     if (Verbose && PrintMiscellaneous) {
4066       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4067                  (intptr_t)mem_serialize_page);
4068     }
4069 #endif
4070   }
4071 
4072   // Setup Windows Exceptions
4073 
4074   // for debugging float code generation bugs
4075   if (ForceFloatExceptions) {
4076 #ifndef  _WIN64
4077     static long fp_control_word = 0;
4078     __asm { fstcw fp_control_word }
4079     // see Intel PPro Manual, Vol. 2, p 7-16
4080     const long precision = 0x20;
4081     const long underflow = 0x10;
4082     const long overflow  = 0x08;
4083     const long zero_div  = 0x04;
4084     const long denorm    = 0x02;
4085     const long invalid   = 0x01;
4086     fp_control_word |= invalid;
4087     __asm { fldcw fp_control_word }
4088 #endif
4089   }
4090 
4091   // If stack_commit_size is 0, windows will reserve the default size,
4092   // but only commit a small portion of it.
4093   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4094   size_t default_reserve_size = os::win32::default_stack_size();
4095   size_t actual_reserve_size = stack_commit_size;
4096   if (stack_commit_size < default_reserve_size) {
4097     // If stack_commit_size == 0, we want this too
4098     actual_reserve_size = default_reserve_size;
4099   }
4100 
4101   // Check minimum allowable stack size for thread creation and to initialize
4102   // the java system classes, including StackOverflowError - depends on page
4103   // size.  Add a page for compiler2 recursion in main thread.
4104   // Add in 2*BytesPerWord times page size to account for VM stack during
4105   // class initialization depending on 32 or 64 bit VM.
4106   size_t min_stack_allowed =
4107             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4108                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4109   if (actual_reserve_size < min_stack_allowed) {
4110     tty->print_cr("\nThe stack size specified is too small, "
4111                   "Specify at least %dk",
4112                   min_stack_allowed / K);
4113     return JNI_ERR;
4114   }
4115 
4116   JavaThread::set_stack_size_at_create(stack_commit_size);
4117 
4118   // Calculate theoretical max. size of Threads to guard gainst artifical
4119   // out-of-memory situations, where all available address-space has been
4120   // reserved by thread stacks.
4121   assert(actual_reserve_size != 0, "Must have a stack");
4122 
4123   // Calculate the thread limit when we should start doing Virtual Memory
4124   // banging. Currently when the threads will have used all but 200Mb of space.
4125   //
4126   // TODO: consider performing a similar calculation for commit size instead
4127   // as reserve size, since on a 64-bit platform we'll run into that more
4128   // often than running out of virtual memory space.  We can use the
4129   // lower value of the two calculations as the os_thread_limit.
4130   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4131   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4132 
4133   // at exit methods are called in the reverse order of their registration.
4134   // there is no limit to the number of functions registered. atexit does
4135   // not set errno.
4136 
4137   if (PerfAllowAtExitRegistration) {
4138     // only register atexit functions if PerfAllowAtExitRegistration is set.
4139     // atexit functions can be delayed until process exit time, which
4140     // can be problematic for embedded VM situations. Embedded VMs should
4141     // call DestroyJavaVM() to assure that VM resources are released.
4142 
4143     // note: perfMemory_exit_helper atexit function may be removed in
4144     // the future if the appropriate cleanup code can be added to the
4145     // VM_Exit VMOperation's doit method.
4146     if (atexit(perfMemory_exit_helper) != 0) {
4147       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4148     }
4149   }
4150 
4151 #ifndef _WIN64
4152   // Print something if NX is enabled (win32 on AMD64)
4153   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4154 #endif
4155 
4156   // initialize thread priority policy
4157   prio_init();
4158 
4159   if (UseNUMA && !ForceNUMA) {
4160     UseNUMA = false; // We don't fully support this yet
4161   }
4162 
4163   if (UseNUMAInterleaving) {
4164     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4165     bool success = numa_interleaving_init();
4166     if (!success) UseNUMAInterleaving = false;
4167   }
4168 
4169   if (initSock() != JNI_OK) {
4170     return JNI_ERR;
4171   }
4172 
4173   return JNI_OK;
4174 }
4175 
4176 // Mark the polling page as unreadable
4177 void os::make_polling_page_unreadable(void) {
4178   DWORD old_status;
4179   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4180                       PAGE_NOACCESS, &old_status)) {
4181     fatal("Could not disable polling page");
4182   }
4183 }
4184 
4185 // Mark the polling page as readable
4186 void os::make_polling_page_readable(void) {
4187   DWORD old_status;
4188   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4189                       PAGE_READONLY, &old_status)) {
4190     fatal("Could not enable polling page");
4191   }
4192 }
4193 
4194 
4195 int os::stat(const char *path, struct stat *sbuf) {
4196   char pathbuf[MAX_PATH];
4197   if (strlen(path) > MAX_PATH - 1) {
4198     errno = ENAMETOOLONG;
4199     return -1;
4200   }
4201   os::native_path(strcpy(pathbuf, path));
4202   int ret = ::stat(pathbuf, sbuf);
4203   if (sbuf != NULL && UseUTCFileTimestamp) {
4204     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4205     // the system timezone and so can return different values for the
4206     // same file if/when daylight savings time changes.  This adjustment
4207     // makes sure the same timestamp is returned regardless of the TZ.
4208     //
4209     // See:
4210     // http://msdn.microsoft.com/library/
4211     //   default.asp?url=/library/en-us/sysinfo/base/
4212     //   time_zone_information_str.asp
4213     // and
4214     // http://msdn.microsoft.com/library/default.asp?url=
4215     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4216     //
4217     // NOTE: there is a insidious bug here:  If the timezone is changed
4218     // after the call to stat() but before 'GetTimeZoneInformation()', then
4219     // the adjustment we do here will be wrong and we'll return the wrong
4220     // value (which will likely end up creating an invalid class data
4221     // archive).  Absent a better API for this, or some time zone locking
4222     // mechanism, we'll have to live with this risk.
4223     TIME_ZONE_INFORMATION tz;
4224     DWORD tzid = GetTimeZoneInformation(&tz);
4225     int daylightBias =
4226       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4227     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4228   }
4229   return ret;
4230 }
4231 
4232 
4233 #define FT2INT64(ft) \
4234   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4235 
4236 
4237 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4238 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4239 // of a thread.
4240 //
4241 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4242 // the fast estimate available on the platform.
4243 
4244 // current_thread_cpu_time() is not optimized for Windows yet
4245 jlong os::current_thread_cpu_time() {
4246   // return user + sys since the cost is the same
4247   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4248 }
4249 
4250 jlong os::thread_cpu_time(Thread* thread) {
4251   // consistent with what current_thread_cpu_time() returns.
4252   return os::thread_cpu_time(thread, true /* user+sys */);
4253 }
4254 
4255 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4256   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4257 }
4258 
4259 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4260   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4261   // If this function changes, os::is_thread_cpu_time_supported() should too
4262   if (os::win32::is_nt()) {
4263     FILETIME CreationTime;
4264     FILETIME ExitTime;
4265     FILETIME KernelTime;
4266     FILETIME UserTime;
4267 
4268     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4269                        &ExitTime, &KernelTime, &UserTime) == 0) {
4270       return -1;
4271     } else if (user_sys_cpu_time) {
4272       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4273     } else {
4274       return FT2INT64(UserTime) * 100;
4275     }
4276   } else {
4277     return (jlong) timeGetTime() * 1000000;
4278   }
4279 }
4280 
4281 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4282   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4283   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4284   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4285   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4286 }
4287 
4288 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4289   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4290   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4291   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4292   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4293 }
4294 
4295 bool os::is_thread_cpu_time_supported() {
4296   // see os::thread_cpu_time
4297   if (os::win32::is_nt()) {
4298     FILETIME CreationTime;
4299     FILETIME ExitTime;
4300     FILETIME KernelTime;
4301     FILETIME UserTime;
4302 
4303     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4304                        &KernelTime, &UserTime) == 0) {
4305       return false;
4306     } else {
4307       return true;
4308     }
4309   } else {
4310     return false;
4311   }
4312 }
4313 
4314 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4315 // It does have primitives (PDH API) to get CPU usage and run queue length.
4316 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4317 // If we wanted to implement loadavg on Windows, we have a few options:
4318 //
4319 // a) Query CPU usage and run queue length and "fake" an answer by
4320 //    returning the CPU usage if it's under 100%, and the run queue
4321 //    length otherwise.  It turns out that querying is pretty slow
4322 //    on Windows, on the order of 200 microseconds on a fast machine.
4323 //    Note that on the Windows the CPU usage value is the % usage
4324 //    since the last time the API was called (and the first call
4325 //    returns 100%), so we'd have to deal with that as well.
4326 //
4327 // b) Sample the "fake" answer using a sampling thread and store
4328 //    the answer in a global variable.  The call to loadavg would
4329 //    just return the value of the global, avoiding the slow query.
4330 //
4331 // c) Sample a better answer using exponential decay to smooth the
4332 //    value.  This is basically the algorithm used by UNIX kernels.
4333 //
4334 // Note that sampling thread starvation could affect both (b) and (c).
4335 int os::loadavg(double loadavg[], int nelem) {
4336   return -1;
4337 }
4338 
4339 
4340 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4341 bool os::dont_yield() {
4342   return DontYieldALot;
4343 }
4344 
4345 // This method is a slightly reworked copy of JDK's sysOpen
4346 // from src/windows/hpi/src/sys_api_md.c
4347 
4348 int os::open(const char *path, int oflag, int mode) {
4349   char pathbuf[MAX_PATH];
4350 
4351   if (strlen(path) > MAX_PATH - 1) {
4352     errno = ENAMETOOLONG;
4353     return -1;
4354   }
4355   os::native_path(strcpy(pathbuf, path));
4356   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4357 }
4358 
4359 FILE* os::open(int fd, const char* mode) {
4360   return ::_fdopen(fd, mode);
4361 }
4362 
4363 // Is a (classpath) directory empty?
4364 bool os::dir_is_empty(const char* path) {
4365   WIN32_FIND_DATA fd;
4366   HANDLE f = FindFirstFile(path, &fd);
4367   if (f == INVALID_HANDLE_VALUE) {
4368     return true;
4369   }
4370   FindClose(f);
4371   return false;
4372 }
4373 
4374 // create binary file, rewriting existing file if required
4375 int os::create_binary_file(const char* path, bool rewrite_existing) {
4376   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4377   if (!rewrite_existing) {
4378     oflags |= _O_EXCL;
4379   }
4380   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4381 }
4382 
4383 // return current position of file pointer
4384 jlong os::current_file_offset(int fd) {
4385   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4386 }
4387 
4388 // move file pointer to the specified offset
4389 jlong os::seek_to_file_offset(int fd, jlong offset) {
4390   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4391 }
4392 
4393 
4394 jlong os::lseek(int fd, jlong offset, int whence) {
4395   return (jlong) ::_lseeki64(fd, offset, whence);
4396 }
4397 
4398 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4399   OVERLAPPED ov;
4400   DWORD nread;
4401   BOOL result;
4402 
4403   ZeroMemory(&ov, sizeof(ov));
4404   ov.Offset = (DWORD)offset;
4405   ov.OffsetHigh = (DWORD)(offset >> 32);
4406 
4407   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4408 
4409   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4410 
4411   return result ? nread : 0;
4412 }
4413 
4414 
4415 // This method is a slightly reworked copy of JDK's sysNativePath
4416 // from src/windows/hpi/src/path_md.c
4417 
4418 // Convert a pathname to native format.  On win32, this involves forcing all
4419 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4420 // sometimes rejects '/') and removing redundant separators.  The input path is
4421 // assumed to have been converted into the character encoding used by the local
4422 // system.  Because this might be a double-byte encoding, care is taken to
4423 // treat double-byte lead characters correctly.
4424 //
4425 // This procedure modifies the given path in place, as the result is never
4426 // longer than the original.  There is no error return; this operation always
4427 // succeeds.
4428 char * os::native_path(char *path) {
4429   char *src = path, *dst = path, *end = path;
4430   char *colon = NULL;  // If a drive specifier is found, this will
4431                        // point to the colon following the drive letter
4432 
4433   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4434   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4435           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4436 
4437   // Check for leading separators
4438 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4439   while (isfilesep(*src)) {
4440     src++;
4441   }
4442 
4443   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4444     // Remove leading separators if followed by drive specifier.  This
4445     // hack is necessary to support file URLs containing drive
4446     // specifiers (e.g., "file://c:/path").  As a side effect,
4447     // "/c:/path" can be used as an alternative to "c:/path".
4448     *dst++ = *src++;
4449     colon = dst;
4450     *dst++ = ':';
4451     src++;
4452   } else {
4453     src = path;
4454     if (isfilesep(src[0]) && isfilesep(src[1])) {
4455       // UNC pathname: Retain first separator; leave src pointed at
4456       // second separator so that further separators will be collapsed
4457       // into the second separator.  The result will be a pathname
4458       // beginning with "\\\\" followed (most likely) by a host name.
4459       src = dst = path + 1;
4460       path[0] = '\\';     // Force first separator to '\\'
4461     }
4462   }
4463 
4464   end = dst;
4465 
4466   // Remove redundant separators from remainder of path, forcing all
4467   // separators to be '\\' rather than '/'. Also, single byte space
4468   // characters are removed from the end of the path because those
4469   // are not legal ending characters on this operating system.
4470   //
4471   while (*src != '\0') {
4472     if (isfilesep(*src)) {
4473       *dst++ = '\\'; src++;
4474       while (isfilesep(*src)) src++;
4475       if (*src == '\0') {
4476         // Check for trailing separator
4477         end = dst;
4478         if (colon == dst - 2) break;  // "z:\\"
4479         if (dst == path + 1) break;   // "\\"
4480         if (dst == path + 2 && isfilesep(path[0])) {
4481           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4482           // beginning of a UNC pathname.  Even though it is not, by
4483           // itself, a valid UNC pathname, we leave it as is in order
4484           // to be consistent with the path canonicalizer as well
4485           // as the win32 APIs, which treat this case as an invalid
4486           // UNC pathname rather than as an alias for the root
4487           // directory of the current drive.
4488           break;
4489         }
4490         end = --dst;  // Path does not denote a root directory, so
4491                       // remove trailing separator
4492         break;
4493       }
4494       end = dst;
4495     } else {
4496       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4497         *dst++ = *src++;
4498         if (*src) *dst++ = *src++;
4499         end = dst;
4500       } else {  // Copy a single-byte character
4501         char c = *src++;
4502         *dst++ = c;
4503         // Space is not a legal ending character
4504         if (c != ' ') end = dst;
4505       }
4506     }
4507   }
4508 
4509   *end = '\0';
4510 
4511   // For "z:", add "." to work around a bug in the C runtime library
4512   if (colon == dst - 1) {
4513     path[2] = '.';
4514     path[3] = '\0';
4515   }
4516 
4517   return path;
4518 }
4519 
4520 // This code is a copy of JDK's sysSetLength
4521 // from src/windows/hpi/src/sys_api_md.c
4522 
4523 int os::ftruncate(int fd, jlong length) {
4524   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4525   long high = (long)(length >> 32);
4526   DWORD ret;
4527 
4528   if (h == (HANDLE)(-1)) {
4529     return -1;
4530   }
4531 
4532   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4533   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4534     return -1;
4535   }
4536 
4537   if (::SetEndOfFile(h) == FALSE) {
4538     return -1;
4539   }
4540 
4541   return 0;
4542 }
4543 
4544 
4545 // This code is a copy of JDK's sysSync
4546 // from src/windows/hpi/src/sys_api_md.c
4547 // except for the legacy workaround for a bug in Win 98
4548 
4549 int os::fsync(int fd) {
4550   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4551 
4552   if ((!::FlushFileBuffers(handle)) &&
4553       (GetLastError() != ERROR_ACCESS_DENIED)) {
4554     // from winerror.h
4555     return -1;
4556   }
4557   return 0;
4558 }
4559 
4560 static int nonSeekAvailable(int, long *);
4561 static int stdinAvailable(int, long *);
4562 
4563 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4564 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4565 
4566 // This code is a copy of JDK's sysAvailable
4567 // from src/windows/hpi/src/sys_api_md.c
4568 
4569 int os::available(int fd, jlong *bytes) {
4570   jlong cur, end;
4571   struct _stati64 stbuf64;
4572 
4573   if (::_fstati64(fd, &stbuf64) >= 0) {
4574     int mode = stbuf64.st_mode;
4575     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4576       int ret;
4577       long lpbytes;
4578       if (fd == 0) {
4579         ret = stdinAvailable(fd, &lpbytes);
4580       } else {
4581         ret = nonSeekAvailable(fd, &lpbytes);
4582       }
4583       (*bytes) = (jlong)(lpbytes);
4584       return ret;
4585     }
4586     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4587       return FALSE;
4588     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4589       return FALSE;
4590     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4591       return FALSE;
4592     }
4593     *bytes = end - cur;
4594     return TRUE;
4595   } else {
4596     return FALSE;
4597   }
4598 }
4599 
4600 // This code is a copy of JDK's nonSeekAvailable
4601 // from src/windows/hpi/src/sys_api_md.c
4602 
4603 static int nonSeekAvailable(int fd, long *pbytes) {
4604   // This is used for available on non-seekable devices
4605   // (like both named and anonymous pipes, such as pipes
4606   //  connected to an exec'd process).
4607   // Standard Input is a special case.
4608   HANDLE han;
4609 
4610   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4611     return FALSE;
4612   }
4613 
4614   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4615     // PeekNamedPipe fails when at EOF.  In that case we
4616     // simply make *pbytes = 0 which is consistent with the
4617     // behavior we get on Solaris when an fd is at EOF.
4618     // The only alternative is to raise an Exception,
4619     // which isn't really warranted.
4620     //
4621     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4622       return FALSE;
4623     }
4624     *pbytes = 0;
4625   }
4626   return TRUE;
4627 }
4628 
4629 #define MAX_INPUT_EVENTS 2000
4630 
4631 // This code is a copy of JDK's stdinAvailable
4632 // from src/windows/hpi/src/sys_api_md.c
4633 
4634 static int stdinAvailable(int fd, long *pbytes) {
4635   HANDLE han;
4636   DWORD numEventsRead = 0;  // Number of events read from buffer
4637   DWORD numEvents = 0;      // Number of events in buffer
4638   DWORD i = 0;              // Loop index
4639   DWORD curLength = 0;      // Position marker
4640   DWORD actualLength = 0;   // Number of bytes readable
4641   BOOL error = FALSE;       // Error holder
4642   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4643 
4644   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4645     return FALSE;
4646   }
4647 
4648   // Construct an array of input records in the console buffer
4649   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4650   if (error == 0) {
4651     return nonSeekAvailable(fd, pbytes);
4652   }
4653 
4654   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4655   if (numEvents > MAX_INPUT_EVENTS) {
4656     numEvents = MAX_INPUT_EVENTS;
4657   }
4658 
4659   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4660   if (lpBuffer == NULL) {
4661     return FALSE;
4662   }
4663 
4664   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4665   if (error == 0) {
4666     os::free(lpBuffer);
4667     return FALSE;
4668   }
4669 
4670   // Examine input records for the number of bytes available
4671   for (i=0; i<numEvents; i++) {
4672     if (lpBuffer[i].EventType == KEY_EVENT) {
4673 
4674       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4675                                       &(lpBuffer[i].Event);
4676       if (keyRecord->bKeyDown == TRUE) {
4677         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4678         curLength++;
4679         if (*keyPressed == '\r') {
4680           actualLength = curLength;
4681         }
4682       }
4683     }
4684   }
4685 
4686   if (lpBuffer != NULL) {
4687     os::free(lpBuffer);
4688   }
4689 
4690   *pbytes = (long) actualLength;
4691   return TRUE;
4692 }
4693 
4694 // Map a block of memory.
4695 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4696                         char *addr, size_t bytes, bool read_only,
4697                         bool allow_exec) {
4698   HANDLE hFile;
4699   char* base;
4700 
4701   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4702                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4703   if (hFile == NULL) {
4704     if (PrintMiscellaneous && Verbose) {
4705       DWORD err = GetLastError();
4706       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4707     }
4708     return NULL;
4709   }
4710 
4711   if (allow_exec) {
4712     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4713     // unless it comes from a PE image (which the shared archive is not.)
4714     // Even VirtualProtect refuses to give execute access to mapped memory
4715     // that was not previously executable.
4716     //
4717     // Instead, stick the executable region in anonymous memory.  Yuck.
4718     // Penalty is that ~4 pages will not be shareable - in the future
4719     // we might consider DLLizing the shared archive with a proper PE
4720     // header so that mapping executable + sharing is possible.
4721 
4722     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4723                                 PAGE_READWRITE);
4724     if (base == NULL) {
4725       if (PrintMiscellaneous && Verbose) {
4726         DWORD err = GetLastError();
4727         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4728       }
4729       CloseHandle(hFile);
4730       return NULL;
4731     }
4732 
4733     DWORD bytes_read;
4734     OVERLAPPED overlapped;
4735     overlapped.Offset = (DWORD)file_offset;
4736     overlapped.OffsetHigh = 0;
4737     overlapped.hEvent = NULL;
4738     // ReadFile guarantees that if the return value is true, the requested
4739     // number of bytes were read before returning.
4740     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4741     if (!res) {
4742       if (PrintMiscellaneous && Verbose) {
4743         DWORD err = GetLastError();
4744         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4745       }
4746       release_memory(base, bytes);
4747       CloseHandle(hFile);
4748       return NULL;
4749     }
4750   } else {
4751     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4752                                     NULL /* file_name */);
4753     if (hMap == NULL) {
4754       if (PrintMiscellaneous && Verbose) {
4755         DWORD err = GetLastError();
4756         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4757       }
4758       CloseHandle(hFile);
4759       return NULL;
4760     }
4761 
4762     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4763     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4764                                   (DWORD)bytes, addr);
4765     if (base == NULL) {
4766       if (PrintMiscellaneous && Verbose) {
4767         DWORD err = GetLastError();
4768         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4769       }
4770       CloseHandle(hMap);
4771       CloseHandle(hFile);
4772       return NULL;
4773     }
4774 
4775     if (CloseHandle(hMap) == 0) {
4776       if (PrintMiscellaneous && Verbose) {
4777         DWORD err = GetLastError();
4778         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4779       }
4780       CloseHandle(hFile);
4781       return base;
4782     }
4783   }
4784 
4785   if (allow_exec) {
4786     DWORD old_protect;
4787     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4788     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4789 
4790     if (!res) {
4791       if (PrintMiscellaneous && Verbose) {
4792         DWORD err = GetLastError();
4793         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4794       }
4795       // Don't consider this a hard error, on IA32 even if the
4796       // VirtualProtect fails, we should still be able to execute
4797       CloseHandle(hFile);
4798       return base;
4799     }
4800   }
4801 
4802   if (CloseHandle(hFile) == 0) {
4803     if (PrintMiscellaneous && Verbose) {
4804       DWORD err = GetLastError();
4805       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4806     }
4807     return base;
4808   }
4809 
4810   return base;
4811 }
4812 
4813 
4814 // Remap a block of memory.
4815 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4816                           char *addr, size_t bytes, bool read_only,
4817                           bool allow_exec) {
4818   // This OS does not allow existing memory maps to be remapped so we
4819   // have to unmap the memory before we remap it.
4820   if (!os::unmap_memory(addr, bytes)) {
4821     return NULL;
4822   }
4823 
4824   // There is a very small theoretical window between the unmap_memory()
4825   // call above and the map_memory() call below where a thread in native
4826   // code may be able to access an address that is no longer mapped.
4827 
4828   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4829                         read_only, allow_exec);
4830 }
4831 
4832 
4833 // Unmap a block of memory.
4834 // Returns true=success, otherwise false.
4835 
4836 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4837   BOOL result = UnmapViewOfFile(addr);
4838   if (result == 0) {
4839     if (PrintMiscellaneous && Verbose) {
4840       DWORD err = GetLastError();
4841       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4842     }
4843     return false;
4844   }
4845   return true;
4846 }
4847 
4848 void os::pause() {
4849   char filename[MAX_PATH];
4850   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4851     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4852   } else {
4853     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4854   }
4855 
4856   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4857   if (fd != -1) {
4858     struct stat buf;
4859     ::close(fd);
4860     while (::stat(filename, &buf) == 0) {
4861       Sleep(100);
4862     }
4863   } else {
4864     jio_fprintf(stderr,
4865                 "Could not open pause file '%s', continuing immediately.\n", filename);
4866   }
4867 }
4868 
4869 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4870   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4871 }
4872 
4873 // See the caveats for this class in os_windows.hpp
4874 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4875 // into this method and returns false. If no OS EXCEPTION was raised, returns
4876 // true.
4877 // The callback is supposed to provide the method that should be protected.
4878 //
4879 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4880   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4881   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4882          "crash_protection already set?");
4883 
4884   bool success = true;
4885   __try {
4886     WatcherThread::watcher_thread()->set_crash_protection(this);
4887     cb.call();
4888   } __except(EXCEPTION_EXECUTE_HANDLER) {
4889     // only for protection, nothing to do
4890     success = false;
4891   }
4892   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4893   return success;
4894 }
4895 
4896 // An Event wraps a win32 "CreateEvent" kernel handle.
4897 //
4898 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4899 //
4900 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4901 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4902 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4903 //     In addition, an unpark() operation might fetch the handle field, but the
4904 //     event could recycle between the fetch and the SetEvent() operation.
4905 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4906 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4907 //     on an stale but recycled handle would be harmless, but in practice this might
4908 //     confuse other non-Sun code, so it's not a viable approach.
4909 //
4910 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4911 //     with the Event.  The event handle is never closed.  This could be construed
4912 //     as handle leakage, but only up to the maximum # of threads that have been extant
4913 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4914 //     permit a process to have hundreds of thousands of open handles.
4915 //
4916 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4917 //     and release unused handles.
4918 //
4919 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4920 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4921 //
4922 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4923 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4924 //
4925 // We use (2).
4926 //
4927 // TODO-FIXME:
4928 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4929 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4930 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4931 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4932 //     into a single win32 CreateEvent() handle.
4933 //
4934 // Assumption:
4935 //    Only one parker can exist on an event, which is why we allocate
4936 //    them per-thread. Multiple unparkers can coexist.
4937 //
4938 // _Event transitions in park()
4939 //   -1 => -1 : illegal
4940 //    1 =>  0 : pass - return immediately
4941 //    0 => -1 : block; then set _Event to 0 before returning
4942 //
4943 // _Event transitions in unpark()
4944 //    0 => 1 : just return
4945 //    1 => 1 : just return
4946 //   -1 => either 0 or 1; must signal target thread
4947 //         That is, we can safely transition _Event from -1 to either
4948 //         0 or 1.
4949 //
4950 // _Event serves as a restricted-range semaphore.
4951 //   -1 : thread is blocked, i.e. there is a waiter
4952 //    0 : neutral: thread is running or ready,
4953 //        could have been signaled after a wait started
4954 //    1 : signaled - thread is running or ready
4955 //
4956 // Another possible encoding of _Event would be with
4957 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4958 //
4959 
4960 int os::PlatformEvent::park(jlong Millis) {
4961   // Transitions for _Event:
4962   //   -1 => -1 : illegal
4963   //    1 =>  0 : pass - return immediately
4964   //    0 => -1 : block; then set _Event to 0 before returning
4965 
4966   guarantee(_ParkHandle != NULL , "Invariant");
4967   guarantee(Millis > 0          , "Invariant");
4968 
4969   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4970   // the initial park() operation.
4971   // Consider: use atomic decrement instead of CAS-loop
4972 
4973   int v;
4974   for (;;) {
4975     v = _Event;
4976     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4977   }
4978   guarantee((v == 0) || (v == 1), "invariant");
4979   if (v != 0) return OS_OK;
4980 
4981   // Do this the hard way by blocking ...
4982   // TODO: consider a brief spin here, gated on the success of recent
4983   // spin attempts by this thread.
4984   //
4985   // We decompose long timeouts into series of shorter timed waits.
4986   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4987   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4988   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4989   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4990   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4991   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4992   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4993   // for the already waited time.  This policy does not admit any new outcomes.
4994   // In the future, however, we might want to track the accumulated wait time and
4995   // adjust Millis accordingly if we encounter a spurious wakeup.
4996 
4997   const int MAXTIMEOUT = 0x10000000;
4998   DWORD rv = WAIT_TIMEOUT;
4999   while (_Event < 0 && Millis > 0) {
5000     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5001     if (Millis > MAXTIMEOUT) {
5002       prd = MAXTIMEOUT;
5003     }
5004     rv = ::WaitForSingleObject(_ParkHandle, prd);
5005     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5006     if (rv == WAIT_TIMEOUT) {
5007       Millis -= prd;
5008     }
5009   }
5010   v = _Event;
5011   _Event = 0;
5012   // see comment at end of os::PlatformEvent::park() below:
5013   OrderAccess::fence();
5014   // If we encounter a nearly simultanous timeout expiry and unpark()
5015   // we return OS_OK indicating we awoke via unpark().
5016   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5017   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5018 }
5019 
5020 void os::PlatformEvent::park() {
5021   // Transitions for _Event:
5022   //   -1 => -1 : illegal
5023   //    1 =>  0 : pass - return immediately
5024   //    0 => -1 : block; then set _Event to 0 before returning
5025 
5026   guarantee(_ParkHandle != NULL, "Invariant");
5027   // Invariant: Only the thread associated with the Event/PlatformEvent
5028   // may call park().
5029   // Consider: use atomic decrement instead of CAS-loop
5030   int v;
5031   for (;;) {
5032     v = _Event;
5033     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5034   }
5035   guarantee((v == 0) || (v == 1), "invariant");
5036   if (v != 0) return;
5037 
5038   // Do this the hard way by blocking ...
5039   // TODO: consider a brief spin here, gated on the success of recent
5040   // spin attempts by this thread.
5041   while (_Event < 0) {
5042     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5043     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5044   }
5045 
5046   // Usually we'll find _Event == 0 at this point, but as
5047   // an optional optimization we clear it, just in case can
5048   // multiple unpark() operations drove _Event up to 1.
5049   _Event = 0;
5050   OrderAccess::fence();
5051   guarantee(_Event >= 0, "invariant");
5052 }
5053 
5054 void os::PlatformEvent::unpark() {
5055   guarantee(_ParkHandle != NULL, "Invariant");
5056 
5057   // Transitions for _Event:
5058   //    0 => 1 : just return
5059   //    1 => 1 : just return
5060   //   -1 => either 0 or 1; must signal target thread
5061   //         That is, we can safely transition _Event from -1 to either
5062   //         0 or 1.
5063   // See also: "Semaphores in Plan 9" by Mullender & Cox
5064   //
5065   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5066   // that it will take two back-to-back park() calls for the owning
5067   // thread to block. This has the benefit of forcing a spurious return
5068   // from the first park() call after an unpark() call which will help
5069   // shake out uses of park() and unpark() without condition variables.
5070 
5071   if (Atomic::xchg(1, &_Event) >= 0) return;
5072 
5073   ::SetEvent(_ParkHandle);
5074 }
5075 
5076 
5077 // JSR166
5078 // -------------------------------------------------------
5079 
5080 // The Windows implementation of Park is very straightforward: Basic
5081 // operations on Win32 Events turn out to have the right semantics to
5082 // use them directly. We opportunistically resuse the event inherited
5083 // from Monitor.
5084 
5085 void Parker::park(bool isAbsolute, jlong time) {
5086   guarantee(_ParkEvent != NULL, "invariant");
5087   // First, demultiplex/decode time arguments
5088   if (time < 0) { // don't wait
5089     return;
5090   } else if (time == 0 && !isAbsolute) {
5091     time = INFINITE;
5092   } else if (isAbsolute) {
5093     time -= os::javaTimeMillis(); // convert to relative time
5094     if (time <= 0) {  // already elapsed
5095       return;
5096     }
5097   } else { // relative
5098     time /= 1000000;  // Must coarsen from nanos to millis
5099     if (time == 0) {  // Wait for the minimal time unit if zero
5100       time = 1;
5101     }
5102   }
5103 
5104   JavaThread* thread = (JavaThread*)(Thread::current());
5105   assert(thread->is_Java_thread(), "Must be JavaThread");
5106   JavaThread *jt = (JavaThread *)thread;
5107 
5108   // Don't wait if interrupted or already triggered
5109   if (Thread::is_interrupted(thread, false) ||
5110       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5111     ResetEvent(_ParkEvent);
5112     return;
5113   } else {
5114     ThreadBlockInVM tbivm(jt);
5115     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5116     jt->set_suspend_equivalent();
5117 
5118     WaitForSingleObject(_ParkEvent, time);
5119     ResetEvent(_ParkEvent);
5120 
5121     // If externally suspended while waiting, re-suspend
5122     if (jt->handle_special_suspend_equivalent_condition()) {
5123       jt->java_suspend_self();
5124     }
5125   }
5126 }
5127 
5128 void Parker::unpark() {
5129   guarantee(_ParkEvent != NULL, "invariant");
5130   SetEvent(_ParkEvent);
5131 }
5132 
5133 // Run the specified command in a separate process. Return its exit value,
5134 // or -1 on failure (e.g. can't create a new process).
5135 int os::fork_and_exec(char* cmd) {
5136   STARTUPINFO si;
5137   PROCESS_INFORMATION pi;
5138 
5139   memset(&si, 0, sizeof(si));
5140   si.cb = sizeof(si);
5141   memset(&pi, 0, sizeof(pi));
5142   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5143                             cmd,    // command line
5144                             NULL,   // process security attribute
5145                             NULL,   // thread security attribute
5146                             TRUE,   // inherits system handles
5147                             0,      // no creation flags
5148                             NULL,   // use parent's environment block
5149                             NULL,   // use parent's starting directory
5150                             &si,    // (in) startup information
5151                             &pi);   // (out) process information
5152 
5153   if (rslt) {
5154     // Wait until child process exits.
5155     WaitForSingleObject(pi.hProcess, INFINITE);
5156 
5157     DWORD exit_code;
5158     GetExitCodeProcess(pi.hProcess, &exit_code);
5159 
5160     // Close process and thread handles.
5161     CloseHandle(pi.hProcess);
5162     CloseHandle(pi.hThread);
5163 
5164     return (int)exit_code;
5165   } else {
5166     return -1;
5167   }
5168 }
5169 
5170 //--------------------------------------------------------------------------------------------------
5171 // Non-product code
5172 
5173 static int mallocDebugIntervalCounter = 0;
5174 static int mallocDebugCounter = 0;
5175 bool os::check_heap(bool force) {
5176   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5177   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5178     // Note: HeapValidate executes two hardware breakpoints when it finds something
5179     // wrong; at these points, eax contains the address of the offending block (I think).
5180     // To get to the exlicit error message(s) below, just continue twice.
5181     HANDLE heap = GetProcessHeap();
5182 
5183     // If we fail to lock the heap, then gflags.exe has been used
5184     // or some other special heap flag has been set that prevents
5185     // locking. We don't try to walk a heap we can't lock.
5186     if (HeapLock(heap) != 0) {
5187       PROCESS_HEAP_ENTRY phe;
5188       phe.lpData = NULL;
5189       while (HeapWalk(heap, &phe) != 0) {
5190         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5191             !HeapValidate(heap, 0, phe.lpData)) {
5192           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5193           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5194           fatal("corrupted C heap");
5195         }
5196       }
5197       DWORD err = GetLastError();
5198       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5199         fatal(err_msg("heap walk aborted with error %d", err));
5200       }
5201       HeapUnlock(heap);
5202     }
5203     mallocDebugIntervalCounter = 0;
5204   }
5205   return true;
5206 }
5207 
5208 
5209 bool os::find(address addr, outputStream* st) {
5210   // Nothing yet
5211   return false;
5212 }
5213 
5214 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5215   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5216 
5217   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5218     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5219     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5220     address addr = (address) exceptionRecord->ExceptionInformation[1];
5221 
5222     if (os::is_memory_serialize_page(thread, addr)) {
5223       return EXCEPTION_CONTINUE_EXECUTION;
5224     }
5225   }
5226 
5227   return EXCEPTION_CONTINUE_SEARCH;
5228 }
5229 
5230 // We don't build a headless jre for Windows
5231 bool os::is_headless_jre() { return false; }
5232 
5233 static jint initSock() {
5234   WSADATA wsadata;
5235 
5236   if (!os::WinSock2Dll::WinSock2Available()) {
5237     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5238                 ::GetLastError());
5239     return JNI_ERR;
5240   }
5241 
5242   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5243     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5244                 ::GetLastError());
5245     return JNI_ERR;
5246   }
5247   return JNI_OK;
5248 }
5249 
5250 struct hostent* os::get_host_by_name(char* name) {
5251   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5252 }
5253 
5254 int os::socket_close(int fd) {
5255   return ::closesocket(fd);
5256 }
5257 
5258 int os::socket(int domain, int type, int protocol) {
5259   return ::socket(domain, type, protocol);
5260 }
5261 
5262 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5263   return ::connect(fd, him, len);
5264 }
5265 
5266 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5267   return ::recv(fd, buf, (int)nBytes, flags);
5268 }
5269 
5270 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5271   return ::send(fd, buf, (int)nBytes, flags);
5272 }
5273 
5274 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5275   return ::send(fd, buf, (int)nBytes, flags);
5276 }
5277 
5278 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5279 #if defined(IA32)
5280   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5281 #elif defined (AMD64)
5282   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5283 #endif
5284 
5285 // returns true if thread could be suspended,
5286 // false otherwise
5287 static bool do_suspend(HANDLE* h) {
5288   if (h != NULL) {
5289     if (SuspendThread(*h) != ~0) {
5290       return true;
5291     }
5292   }
5293   return false;
5294 }
5295 
5296 // resume the thread
5297 // calling resume on an active thread is a no-op
5298 static void do_resume(HANDLE* h) {
5299   if (h != NULL) {
5300     ResumeThread(*h);
5301   }
5302 }
5303 
5304 // retrieve a suspend/resume context capable handle
5305 // from the tid. Caller validates handle return value.
5306 void get_thread_handle_for_extended_context(HANDLE* h,
5307                                             OSThread::thread_id_t tid) {
5308   if (h != NULL) {
5309     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5310   }
5311 }
5312 
5313 // Thread sampling implementation
5314 //
5315 void os::SuspendedThreadTask::internal_do_task() {
5316   CONTEXT    ctxt;
5317   HANDLE     h = NULL;
5318 
5319   // get context capable handle for thread
5320   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5321 
5322   // sanity
5323   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5324     return;
5325   }
5326 
5327   // suspend the thread
5328   if (do_suspend(&h)) {
5329     ctxt.ContextFlags = sampling_context_flags;
5330     // get thread context
5331     GetThreadContext(h, &ctxt);
5332     SuspendedThreadTaskContext context(_thread, &ctxt);
5333     // pass context to Thread Sampling impl
5334     do_task(context);
5335     // resume thread
5336     do_resume(&h);
5337   }
5338 
5339   // close handle
5340   CloseHandle(h);
5341 }
5342 
5343 
5344 // Kernel32 API
5345 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5346 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5347 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5348 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5349 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5350 
5351 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5352 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5353 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5354 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5355 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5356 
5357 
5358 BOOL                        os::Kernel32Dll::initialized = FALSE;
5359 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5360   assert(initialized && _GetLargePageMinimum != NULL,
5361          "GetLargePageMinimumAvailable() not yet called");
5362   return _GetLargePageMinimum();
5363 }
5364 
5365 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5366   if (!initialized) {
5367     initialize();
5368   }
5369   return _GetLargePageMinimum != NULL;
5370 }
5371 
5372 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5373   if (!initialized) {
5374     initialize();
5375   }
5376   return _VirtualAllocExNuma != NULL;
5377 }
5378 
5379 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5380                                            SIZE_T bytes, DWORD flags,
5381                                            DWORD prot, DWORD node) {
5382   assert(initialized && _VirtualAllocExNuma != NULL,
5383          "NUMACallsAvailable() not yet called");
5384 
5385   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5386 }
5387 
5388 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5389   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5390          "NUMACallsAvailable() not yet called");
5391 
5392   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5393 }
5394 
5395 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5396                                                PULONGLONG proc_mask) {
5397   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5398          "NUMACallsAvailable() not yet called");
5399 
5400   return _GetNumaNodeProcessorMask(node, proc_mask);
5401 }
5402 
5403 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5404                                                  ULONG FrameToCapture,
5405                                                  PVOID* BackTrace,
5406                                                  PULONG BackTraceHash) {
5407   if (!initialized) {
5408     initialize();
5409   }
5410 
5411   if (_RtlCaptureStackBackTrace != NULL) {
5412     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5413                                      BackTrace, BackTraceHash);
5414   } else {
5415     return 0;
5416   }
5417 }
5418 
5419 void os::Kernel32Dll::initializeCommon() {
5420   if (!initialized) {
5421     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5422     assert(handle != NULL, "Just check");
5423     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5424     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5425     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5426     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5427     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5428     initialized = TRUE;
5429   }
5430 }
5431 
5432 
5433 
5434 #ifndef JDK6_OR_EARLIER
5435 
5436 void os::Kernel32Dll::initialize() {
5437   initializeCommon();
5438 }
5439 
5440 
5441 // Kernel32 API
5442 inline BOOL os::Kernel32Dll::SwitchToThread() {
5443   return ::SwitchToThread();
5444 }
5445 
5446 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5447   return true;
5448 }
5449 
5450 // Help tools
5451 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5452   return true;
5453 }
5454 
5455 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5456                                                         DWORD th32ProcessId) {
5457   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5458 }
5459 
5460 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5461                                            LPMODULEENTRY32 lpme) {
5462   return ::Module32First(hSnapshot, lpme);
5463 }
5464 
5465 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5466                                           LPMODULEENTRY32 lpme) {
5467   return ::Module32Next(hSnapshot, lpme);
5468 }
5469 
5470 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5471   ::GetNativeSystemInfo(lpSystemInfo);
5472 }
5473 
5474 // PSAPI API
5475 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5476                                              HMODULE *lpModule, DWORD cb,
5477                                              LPDWORD lpcbNeeded) {
5478   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5479 }
5480 
5481 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5482                                                HMODULE hModule,
5483                                                LPTSTR lpFilename,
5484                                                DWORD nSize) {
5485   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5486 }
5487 
5488 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5489                                                HMODULE hModule,
5490                                                LPMODULEINFO lpmodinfo,
5491                                                DWORD cb) {
5492   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5493 }
5494 
5495 inline BOOL os::PSApiDll::PSApiAvailable() {
5496   return true;
5497 }
5498 
5499 
5500 // WinSock2 API
5501 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5502                                         LPWSADATA lpWSAData) {
5503   return ::WSAStartup(wVersionRequested, lpWSAData);
5504 }
5505 
5506 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5507   return ::gethostbyname(name);
5508 }
5509 
5510 inline BOOL os::WinSock2Dll::WinSock2Available() {
5511   return true;
5512 }
5513 
5514 // Advapi API
5515 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5516                                                    BOOL DisableAllPrivileges,
5517                                                    PTOKEN_PRIVILEGES NewState,
5518                                                    DWORD BufferLength,
5519                                                    PTOKEN_PRIVILEGES PreviousState,
5520                                                    PDWORD ReturnLength) {
5521   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5522                                  BufferLength, PreviousState, ReturnLength);
5523 }
5524 
5525 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5526                                               DWORD DesiredAccess,
5527                                               PHANDLE TokenHandle) {
5528   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5529 }
5530 
5531 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5532                                                   LPCTSTR lpName,
5533                                                   PLUID lpLuid) {
5534   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5535 }
5536 
5537 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5538   return true;
5539 }
5540 
5541 void* os::get_default_process_handle() {
5542   return (void*)GetModuleHandle(NULL);
5543 }
5544 
5545 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5546 // which is used to find statically linked in agents.
5547 // Additionally for windows, takes into account __stdcall names.
5548 // Parameters:
5549 //            sym_name: Symbol in library we are looking for
5550 //            lib_name: Name of library to look in, NULL for shared libs.
5551 //            is_absolute_path == true if lib_name is absolute path to agent
5552 //                                     such as "C:/a/b/L.dll"
5553 //            == false if only the base name of the library is passed in
5554 //               such as "L"
5555 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5556                                     bool is_absolute_path) {
5557   char *agent_entry_name;
5558   size_t len;
5559   size_t name_len;
5560   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5561   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5562   const char *start;
5563 
5564   if (lib_name != NULL) {
5565     len = name_len = strlen(lib_name);
5566     if (is_absolute_path) {
5567       // Need to strip path, prefix and suffix
5568       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5569         lib_name = ++start;
5570       } else {
5571         // Need to check for drive prefix
5572         if ((start = strchr(lib_name, ':')) != NULL) {
5573           lib_name = ++start;
5574         }
5575       }
5576       if (len <= (prefix_len + suffix_len)) {
5577         return NULL;
5578       }
5579       lib_name += prefix_len;
5580       name_len = strlen(lib_name) - suffix_len;
5581     }
5582   }
5583   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5584   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5585   if (agent_entry_name == NULL) {
5586     return NULL;
5587   }
5588   if (lib_name != NULL) {
5589     const char *p = strrchr(sym_name, '@');
5590     if (p != NULL && p != sym_name) {
5591       // sym_name == _Agent_OnLoad@XX
5592       strncpy(agent_entry_name, sym_name, (p - sym_name));
5593       agent_entry_name[(p-sym_name)] = '\0';
5594       // agent_entry_name == _Agent_OnLoad
5595       strcat(agent_entry_name, "_");
5596       strncat(agent_entry_name, lib_name, name_len);
5597       strcat(agent_entry_name, p);
5598       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5599     } else {
5600       strcpy(agent_entry_name, sym_name);
5601       strcat(agent_entry_name, "_");
5602       strncat(agent_entry_name, lib_name, name_len);
5603     }
5604   } else {
5605     strcpy(agent_entry_name, sym_name);
5606   }
5607   return agent_entry_name;
5608 }
5609 
5610 #else
5611 // Kernel32 API
5612 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5613 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5614 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5615 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5616 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5617 
5618 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5619 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5620 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5621 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5622 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5623 
5624 void os::Kernel32Dll::initialize() {
5625   if (!initialized) {
5626     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5627     assert(handle != NULL, "Just check");
5628 
5629     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5630     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5631       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5632     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5633     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5634     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5635     initializeCommon();  // resolve the functions that always need resolving
5636 
5637     initialized = TRUE;
5638   }
5639 }
5640 
5641 BOOL os::Kernel32Dll::SwitchToThread() {
5642   assert(initialized && _SwitchToThread != NULL,
5643          "SwitchToThreadAvailable() not yet called");
5644   return _SwitchToThread();
5645 }
5646 
5647 
5648 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5649   if (!initialized) {
5650     initialize();
5651   }
5652   return _SwitchToThread != NULL;
5653 }
5654 
5655 // Help tools
5656 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5657   if (!initialized) {
5658     initialize();
5659   }
5660   return _CreateToolhelp32Snapshot != NULL &&
5661          _Module32First != NULL &&
5662          _Module32Next != NULL;
5663 }
5664 
5665 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5666                                                  DWORD th32ProcessId) {
5667   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5668          "HelpToolsAvailable() not yet called");
5669 
5670   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5671 }
5672 
5673 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5674   assert(initialized && _Module32First != NULL,
5675          "HelpToolsAvailable() not yet called");
5676 
5677   return _Module32First(hSnapshot, lpme);
5678 }
5679 
5680 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5681                                           LPMODULEENTRY32 lpme) {
5682   assert(initialized && _Module32Next != NULL,
5683          "HelpToolsAvailable() not yet called");
5684 
5685   return _Module32Next(hSnapshot, lpme);
5686 }
5687 
5688 
5689 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5690   if (!initialized) {
5691     initialize();
5692   }
5693   return _GetNativeSystemInfo != NULL;
5694 }
5695 
5696 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5697   assert(initialized && _GetNativeSystemInfo != NULL,
5698          "GetNativeSystemInfoAvailable() not yet called");
5699 
5700   _GetNativeSystemInfo(lpSystemInfo);
5701 }
5702 
5703 // PSAPI API
5704 
5705 
5706 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5707 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5708 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5709 
5710 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5711 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5712 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5713 BOOL                    os::PSApiDll::initialized = FALSE;
5714 
5715 void os::PSApiDll::initialize() {
5716   if (!initialized) {
5717     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5718     if (handle != NULL) {
5719       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5720                                                                     "EnumProcessModules");
5721       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5722                                                                       "GetModuleFileNameExA");
5723       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5724                                                                         "GetModuleInformation");
5725     }
5726     initialized = TRUE;
5727   }
5728 }
5729 
5730 
5731 
5732 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5733                                       DWORD cb, LPDWORD lpcbNeeded) {
5734   assert(initialized && _EnumProcessModules != NULL,
5735          "PSApiAvailable() not yet called");
5736   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5737 }
5738 
5739 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5740                                         LPTSTR lpFilename, DWORD nSize) {
5741   assert(initialized && _GetModuleFileNameEx != NULL,
5742          "PSApiAvailable() not yet called");
5743   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5744 }
5745 
5746 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5747                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5748   assert(initialized && _GetModuleInformation != NULL,
5749          "PSApiAvailable() not yet called");
5750   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5751 }
5752 
5753 BOOL os::PSApiDll::PSApiAvailable() {
5754   if (!initialized) {
5755     initialize();
5756   }
5757   return _EnumProcessModules != NULL &&
5758     _GetModuleFileNameEx != NULL &&
5759     _GetModuleInformation != NULL;
5760 }
5761 
5762 
5763 // WinSock2 API
5764 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5765 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5766 
5767 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5768 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5769 BOOL             os::WinSock2Dll::initialized = FALSE;
5770 
5771 void os::WinSock2Dll::initialize() {
5772   if (!initialized) {
5773     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5774     if (handle != NULL) {
5775       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5776       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5777     }
5778     initialized = TRUE;
5779   }
5780 }
5781 
5782 
5783 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5784   assert(initialized && _WSAStartup != NULL,
5785          "WinSock2Available() not yet called");
5786   return _WSAStartup(wVersionRequested, lpWSAData);
5787 }
5788 
5789 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5790   assert(initialized && _gethostbyname != NULL,
5791          "WinSock2Available() not yet called");
5792   return _gethostbyname(name);
5793 }
5794 
5795 BOOL os::WinSock2Dll::WinSock2Available() {
5796   if (!initialized) {
5797     initialize();
5798   }
5799   return _WSAStartup != NULL &&
5800     _gethostbyname != NULL;
5801 }
5802 
5803 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5804 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5805 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5806 
5807 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5808 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5809 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5810 BOOL                     os::Advapi32Dll::initialized = FALSE;
5811 
5812 void os::Advapi32Dll::initialize() {
5813   if (!initialized) {
5814     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5815     if (handle != NULL) {
5816       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5817                                                                           "AdjustTokenPrivileges");
5818       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5819                                                                 "OpenProcessToken");
5820       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5821                                                                         "LookupPrivilegeValueA");
5822     }
5823     initialized = TRUE;
5824   }
5825 }
5826 
5827 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5828                                             BOOL DisableAllPrivileges,
5829                                             PTOKEN_PRIVILEGES NewState,
5830                                             DWORD BufferLength,
5831                                             PTOKEN_PRIVILEGES PreviousState,
5832                                             PDWORD ReturnLength) {
5833   assert(initialized && _AdjustTokenPrivileges != NULL,
5834          "AdvapiAvailable() not yet called");
5835   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5836                                 BufferLength, PreviousState, ReturnLength);
5837 }
5838 
5839 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5840                                        DWORD DesiredAccess,
5841                                        PHANDLE TokenHandle) {
5842   assert(initialized && _OpenProcessToken != NULL,
5843          "AdvapiAvailable() not yet called");
5844   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5845 }
5846 
5847 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5848                                            LPCTSTR lpName, PLUID lpLuid) {
5849   assert(initialized && _LookupPrivilegeValue != NULL,
5850          "AdvapiAvailable() not yet called");
5851   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5852 }
5853 
5854 BOOL os::Advapi32Dll::AdvapiAvailable() {
5855   if (!initialized) {
5856     initialize();
5857   }
5858   return _AdjustTokenPrivileges != NULL &&
5859     _OpenProcessToken != NULL &&
5860     _LookupPrivilegeValue != NULL;
5861 }
5862 
5863 #endif
5864 
5865 #ifndef PRODUCT
5866 
5867 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5868 // contiguous memory block at a particular address.
5869 // The test first tries to find a good approximate address to allocate at by using the same
5870 // method to allocate some memory at any address. The test then tries to allocate memory in
5871 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5872 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5873 // the previously allocated memory is available for allocation. The only actual failure
5874 // that is reported is when the test tries to allocate at a particular location but gets a
5875 // different valid one. A NULL return value at this point is not considered an error but may
5876 // be legitimate.
5877 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5878 void TestReserveMemorySpecial_test() {
5879   if (!UseLargePages) {
5880     if (VerboseInternalVMTests) {
5881       gclog_or_tty->print("Skipping test because large pages are disabled");
5882     }
5883     return;
5884   }
5885   // save current value of globals
5886   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5887   bool old_use_numa_interleaving = UseNUMAInterleaving;
5888 
5889   // set globals to make sure we hit the correct code path
5890   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5891 
5892   // do an allocation at an address selected by the OS to get a good one.
5893   const size_t large_allocation_size = os::large_page_size() * 4;
5894   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5895   if (result == NULL) {
5896     if (VerboseInternalVMTests) {
5897       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5898                           large_allocation_size);
5899     }
5900   } else {
5901     os::release_memory_special(result, large_allocation_size);
5902 
5903     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5904     // we managed to get it once.
5905     const size_t expected_allocation_size = os::large_page_size();
5906     char* expected_location = result + os::large_page_size();
5907     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5908     if (actual_location == NULL) {
5909       if (VerboseInternalVMTests) {
5910         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5911                             expected_location, large_allocation_size);
5912       }
5913     } else {
5914       // release memory
5915       os::release_memory_special(actual_location, expected_allocation_size);
5916       // only now check, after releasing any memory to avoid any leaks.
5917       assert(actual_location == expected_location,
5918              err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5919              expected_location, expected_allocation_size, actual_location));
5920     }
5921   }
5922 
5923   // restore globals
5924   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5925   UseNUMAInterleaving = old_use_numa_interleaving;
5926 }
5927 #endif // PRODUCT