1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsOopClosures.inline.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/vmCMSOperations.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/collectorPolicy.hpp"
  46 #include "gc/shared/gcLocker.inline.hpp"
  47 #include "gc/shared/gcPolicyCounters.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/genCollectedHeap.hpp"
  52 #include "gc/shared/genOopClosures.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/strongRootsScope.hpp"
  56 #include "gc/shared/taskqueue.inline.hpp"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.inline.hpp"
  60 #include "memory/padded.hpp"
  61 #include "memory/resourceArea.hpp"
  62 #include "oops/oop.inline.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomic.inline.hpp"
  65 #include "runtime/globals_extension.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "services/memoryService.hpp"
  72 #include "services/runtimeService.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 // statics
  76 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  77 bool CMSCollector::_full_gc_requested = false;
  78 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  79 
  80 //////////////////////////////////////////////////////////////////
  81 // In support of CMS/VM thread synchronization
  82 //////////////////////////////////////////////////////////////////
  83 // We split use of the CGC_lock into 2 "levels".
  84 // The low-level locking is of the usual CGC_lock monitor. We introduce
  85 // a higher level "token" (hereafter "CMS token") built on top of the
  86 // low level monitor (hereafter "CGC lock").
  87 // The token-passing protocol gives priority to the VM thread. The
  88 // CMS-lock doesn't provide any fairness guarantees, but clients
  89 // should ensure that it is only held for very short, bounded
  90 // durations.
  91 //
  92 // When either of the CMS thread or the VM thread is involved in
  93 // collection operations during which it does not want the other
  94 // thread to interfere, it obtains the CMS token.
  95 //
  96 // If either thread tries to get the token while the other has
  97 // it, that thread waits. However, if the VM thread and CMS thread
  98 // both want the token, then the VM thread gets priority while the
  99 // CMS thread waits. This ensures, for instance, that the "concurrent"
 100 // phases of the CMS thread's work do not block out the VM thread
 101 // for long periods of time as the CMS thread continues to hog
 102 // the token. (See bug 4616232).
 103 //
 104 // The baton-passing functions are, however, controlled by the
 105 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 106 // and here the low-level CMS lock, not the high level token,
 107 // ensures mutual exclusion.
 108 //
 109 // Two important conditions that we have to satisfy:
 110 // 1. if a thread does a low-level wait on the CMS lock, then it
 111 //    relinquishes the CMS token if it were holding that token
 112 //    when it acquired the low-level CMS lock.
 113 // 2. any low-level notifications on the low-level lock
 114 //    should only be sent when a thread has relinquished the token.
 115 //
 116 // In the absence of either property, we'd have potential deadlock.
 117 //
 118 // We protect each of the CMS (concurrent and sequential) phases
 119 // with the CMS _token_, not the CMS _lock_.
 120 //
 121 // The only code protected by CMS lock is the token acquisition code
 122 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 123 // baton-passing code.
 124 //
 125 // Unfortunately, i couldn't come up with a good abstraction to factor and
 126 // hide the naked CGC_lock manipulation in the baton-passing code
 127 // further below. That's something we should try to do. Also, the proof
 128 // of correctness of this 2-level locking scheme is far from obvious,
 129 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 130 // that there may be a theoretical possibility of delay/starvation in the
 131 // low-level lock/wait/notify scheme used for the baton-passing because of
 132 // potential interference with the priority scheme embodied in the
 133 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 134 // invocation further below and marked with "XXX 20011219YSR".
 135 // Indeed, as we note elsewhere, this may become yet more slippery
 136 // in the presence of multiple CMS and/or multiple VM threads. XXX
 137 
 138 class CMSTokenSync: public StackObj {
 139  private:
 140   bool _is_cms_thread;
 141  public:
 142   CMSTokenSync(bool is_cms_thread):
 143     _is_cms_thread(is_cms_thread) {
 144     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 145            "Incorrect argument to constructor");
 146     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 147   }
 148 
 149   ~CMSTokenSync() {
 150     assert(_is_cms_thread ?
 151              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 152              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 153           "Incorrect state");
 154     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 155   }
 156 };
 157 
 158 // Convenience class that does a CMSTokenSync, and then acquires
 159 // upto three locks.
 160 class CMSTokenSyncWithLocks: public CMSTokenSync {
 161  private:
 162   // Note: locks are acquired in textual declaration order
 163   // and released in the opposite order
 164   MutexLockerEx _locker1, _locker2, _locker3;
 165  public:
 166   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 167                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 168     CMSTokenSync(is_cms_thread),
 169     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 170     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 171     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 172   { }
 173 };
 174 
 175 
 176 //////////////////////////////////////////////////////////////////
 177 //  Concurrent Mark-Sweep Generation /////////////////////////////
 178 //////////////////////////////////////////////////////////////////
 179 
 180 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 181 
 182 // This struct contains per-thread things necessary to support parallel
 183 // young-gen collection.
 184 class CMSParGCThreadState: public CHeapObj<mtGC> {
 185  public:
 186   CompactibleFreeListSpaceLAB lab;
 187   PromotionInfo promo;
 188 
 189   // Constructor.
 190   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 191     promo.setSpace(cfls);
 192   }
 193 };
 194 
 195 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 196      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 197   CardGeneration(rs, initial_byte_size, ct),
 198   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 199   _did_compact(false)
 200 {
 201   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 202   HeapWord* end    = (HeapWord*) _virtual_space.high();
 203 
 204   _direct_allocated_words = 0;
 205   NOT_PRODUCT(
 206     _numObjectsPromoted = 0;
 207     _numWordsPromoted = 0;
 208     _numObjectsAllocated = 0;
 209     _numWordsAllocated = 0;
 210   )
 211 
 212   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 213   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 214   _cmsSpace->_old_gen = this;
 215 
 216   _gc_stats = new CMSGCStats();
 217 
 218   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 219   // offsets match. The ability to tell free chunks from objects
 220   // depends on this property.
 221   debug_only(
 222     FreeChunk* junk = NULL;
 223     assert(UseCompressedClassPointers ||
 224            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 225            "Offset of FreeChunk::_prev within FreeChunk must match"
 226            "  that of OopDesc::_klass within OopDesc");
 227   )
 228 
 229   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 230   for (uint i = 0; i < ParallelGCThreads; i++) {
 231     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 232   }
 233 
 234   _incremental_collection_failed = false;
 235   // The "dilatation_factor" is the expansion that can occur on
 236   // account of the fact that the minimum object size in the CMS
 237   // generation may be larger than that in, say, a contiguous young
 238   //  generation.
 239   // Ideally, in the calculation below, we'd compute the dilatation
 240   // factor as: MinChunkSize/(promoting_gen's min object size)
 241   // Since we do not have such a general query interface for the
 242   // promoting generation, we'll instead just use the minimum
 243   // object size (which today is a header's worth of space);
 244   // note that all arithmetic is in units of HeapWords.
 245   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 246   assert(_dilatation_factor >= 1.0, "from previous assert");
 247 }
 248 
 249 
 250 // The field "_initiating_occupancy" represents the occupancy percentage
 251 // at which we trigger a new collection cycle.  Unless explicitly specified
 252 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 253 // is calculated by:
 254 //
 255 //   Let "f" be MinHeapFreeRatio in
 256 //
 257 //    _initiating_occupancy = 100-f +
 258 //                           f * (CMSTriggerRatio/100)
 259 //   where CMSTriggerRatio is the argument "tr" below.
 260 //
 261 // That is, if we assume the heap is at its desired maximum occupancy at the
 262 // end of a collection, we let CMSTriggerRatio of the (purported) free
 263 // space be allocated before initiating a new collection cycle.
 264 //
 265 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 266   assert(io <= 100 && tr <= 100, "Check the arguments");
 267   if (io >= 0) {
 268     _initiating_occupancy = (double)io / 100.0;
 269   } else {
 270     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 271                              (double)(tr * MinHeapFreeRatio) / 100.0)
 272                             / 100.0;
 273   }
 274 }
 275 
 276 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 277   assert(collector() != NULL, "no collector");
 278   collector()->ref_processor_init();
 279 }
 280 
 281 void CMSCollector::ref_processor_init() {
 282   if (_ref_processor == NULL) {
 283     // Allocate and initialize a reference processor
 284     _ref_processor =
 285       new ReferenceProcessor(_span,                               // span
 286                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 287                              ParallelGCThreads,                   // mt processing degree
 288                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 289                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 290                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 291                              &_is_alive_closure);                 // closure for liveness info
 292     // Initialize the _ref_processor field of CMSGen
 293     _cmsGen->set_ref_processor(_ref_processor);
 294 
 295   }
 296 }
 297 
 298 AdaptiveSizePolicy* CMSCollector::size_policy() {
 299   GenCollectedHeap* gch = GenCollectedHeap::heap();
 300   return gch->gen_policy()->size_policy();
 301 }
 302 
 303 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 304 
 305   const char* gen_name = "old";
 306   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 307   // Generation Counters - generation 1, 1 subspace
 308   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 309       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 310 
 311   _space_counters = new GSpaceCounters(gen_name, 0,
 312                                        _virtual_space.reserved_size(),
 313                                        this, _gen_counters);
 314 }
 315 
 316 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 317   _cms_gen(cms_gen)
 318 {
 319   assert(alpha <= 100, "bad value");
 320   _saved_alpha = alpha;
 321 
 322   // Initialize the alphas to the bootstrap value of 100.
 323   _gc0_alpha = _cms_alpha = 100;
 324 
 325   _cms_begin_time.update();
 326   _cms_end_time.update();
 327 
 328   _gc0_duration = 0.0;
 329   _gc0_period = 0.0;
 330   _gc0_promoted = 0;
 331 
 332   _cms_duration = 0.0;
 333   _cms_period = 0.0;
 334   _cms_allocated = 0;
 335 
 336   _cms_used_at_gc0_begin = 0;
 337   _cms_used_at_gc0_end = 0;
 338   _allow_duty_cycle_reduction = false;
 339   _valid_bits = 0;
 340 }
 341 
 342 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 343   // TBD: CR 6909490
 344   return 1.0;
 345 }
 346 
 347 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 348 }
 349 
 350 // If promotion failure handling is on use
 351 // the padded average size of the promotion for each
 352 // young generation collection.
 353 double CMSStats::time_until_cms_gen_full() const {
 354   size_t cms_free = _cms_gen->cmsSpace()->free();
 355   GenCollectedHeap* gch = GenCollectedHeap::heap();
 356   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 357                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 358   if (cms_free > expected_promotion) {
 359     // Start a cms collection if there isn't enough space to promote
 360     // for the next young collection.  Use the padded average as
 361     // a safety factor.
 362     cms_free -= expected_promotion;
 363 
 364     // Adjust by the safety factor.
 365     double cms_free_dbl = (double)cms_free;
 366     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 367     // Apply a further correction factor which tries to adjust
 368     // for recent occurance of concurrent mode failures.
 369     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 370     cms_free_dbl = cms_free_dbl * cms_adjustment;
 371 
 372     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 373                   cms_free, expected_promotion);
 374     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 375     // Add 1 in case the consumption rate goes to zero.
 376     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 377   }
 378   return 0.0;
 379 }
 380 
 381 // Compare the duration of the cms collection to the
 382 // time remaining before the cms generation is empty.
 383 // Note that the time from the start of the cms collection
 384 // to the start of the cms sweep (less than the total
 385 // duration of the cms collection) can be used.  This
 386 // has been tried and some applications experienced
 387 // promotion failures early in execution.  This was
 388 // possibly because the averages were not accurate
 389 // enough at the beginning.
 390 double CMSStats::time_until_cms_start() const {
 391   // We add "gc0_period" to the "work" calculation
 392   // below because this query is done (mostly) at the
 393   // end of a scavenge, so we need to conservatively
 394   // account for that much possible delay
 395   // in the query so as to avoid concurrent mode failures
 396   // due to starting the collection just a wee bit too
 397   // late.
 398   double work = cms_duration() + gc0_period();
 399   double deadline = time_until_cms_gen_full();
 400   // If a concurrent mode failure occurred recently, we want to be
 401   // more conservative and halve our expected time_until_cms_gen_full()
 402   if (work > deadline) {
 403     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 404                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 405     return 0.0;
 406   }
 407   return work - deadline;
 408 }
 409 
 410 #ifndef PRODUCT
 411 void CMSStats::print_on(outputStream *st) const {
 412   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 413   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 414                gc0_duration(), gc0_period(), gc0_promoted());
 415   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 416             cms_duration(), cms_period(), cms_allocated());
 417   st->print(",cms_since_beg=%g,cms_since_end=%g",
 418             cms_time_since_begin(), cms_time_since_end());
 419   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 420             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 421 
 422   if (valid()) {
 423     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 424               promotion_rate(), cms_allocation_rate());
 425     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 426               cms_consumption_rate(), time_until_cms_gen_full());
 427   }
 428   st->cr();
 429 }
 430 #endif // #ifndef PRODUCT
 431 
 432 CMSCollector::CollectorState CMSCollector::_collectorState =
 433                              CMSCollector::Idling;
 434 bool CMSCollector::_foregroundGCIsActive = false;
 435 bool CMSCollector::_foregroundGCShouldWait = false;
 436 
 437 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 438                            CardTableRS*                   ct,
 439                            ConcurrentMarkSweepPolicy*     cp):
 440   _cmsGen(cmsGen),
 441   _ct(ct),
 442   _ref_processor(NULL),    // will be set later
 443   _conc_workers(NULL),     // may be set later
 444   _abort_preclean(false),
 445   _start_sampling(false),
 446   _between_prologue_and_epilogue(false),
 447   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 448   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 449                  -1 /* lock-free */, "No_lock" /* dummy */),
 450   _modUnionClosurePar(&_modUnionTable),
 451   // Adjust my span to cover old (cms) gen
 452   _span(cmsGen->reserved()),
 453   // Construct the is_alive_closure with _span & markBitMap
 454   _is_alive_closure(_span, &_markBitMap),
 455   _restart_addr(NULL),
 456   _overflow_list(NULL),
 457   _stats(cmsGen),
 458   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 459                              //verify that this lock should be acquired with safepoint check.
 460                              Monitor::_safepoint_check_sometimes)),
 461   _eden_chunk_array(NULL),     // may be set in ctor body
 462   _eden_chunk_capacity(0),     // -- ditto --
 463   _eden_chunk_index(0),        // -- ditto --
 464   _survivor_plab_array(NULL),  // -- ditto --
 465   _survivor_chunk_array(NULL), // -- ditto --
 466   _survivor_chunk_capacity(0), // -- ditto --
 467   _survivor_chunk_index(0),    // -- ditto --
 468   _ser_pmc_preclean_ovflw(0),
 469   _ser_kac_preclean_ovflw(0),
 470   _ser_pmc_remark_ovflw(0),
 471   _par_pmc_remark_ovflw(0),
 472   _ser_kac_ovflw(0),
 473   _par_kac_ovflw(0),
 474 #ifndef PRODUCT
 475   _num_par_pushes(0),
 476 #endif
 477   _collection_count_start(0),
 478   _verifying(false),
 479   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 480   _completed_initialization(false),
 481   _collector_policy(cp),
 482   _should_unload_classes(CMSClassUnloadingEnabled),
 483   _concurrent_cycles_since_last_unload(0),
 484   _roots_scanning_options(GenCollectedHeap::SO_None),
 485   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 486   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 487   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 488   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 489   _cms_start_registered(false)
 490 {
 491   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 492     ExplicitGCInvokesConcurrent = true;
 493   }
 494   // Now expand the span and allocate the collection support structures
 495   // (MUT, marking bit map etc.) to cover both generations subject to
 496   // collection.
 497 
 498   // For use by dirty card to oop closures.
 499   _cmsGen->cmsSpace()->set_collector(this);
 500 
 501   // Allocate MUT and marking bit map
 502   {
 503     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 504     if (!_markBitMap.allocate(_span)) {
 505       log_warning(gc)("Failed to allocate CMS Bit Map");
 506       return;
 507     }
 508     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 509   }
 510   {
 511     _modUnionTable.allocate(_span);
 512     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 513   }
 514 
 515   if (!_markStack.allocate(MarkStackSize)) {
 516     log_warning(gc)("Failed to allocate CMS Marking Stack");
 517     return;
 518   }
 519 
 520   // Support for multi-threaded concurrent phases
 521   if (CMSConcurrentMTEnabled) {
 522     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 523       // just for now
 524       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 525     }
 526     if (ConcGCThreads > 1) {
 527       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 528                                  ConcGCThreads, true);
 529       if (_conc_workers == NULL) {
 530         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 531         CMSConcurrentMTEnabled = false;
 532       } else {
 533         _conc_workers->initialize_workers();
 534       }
 535     } else {
 536       CMSConcurrentMTEnabled = false;
 537     }
 538   }
 539   if (!CMSConcurrentMTEnabled) {
 540     ConcGCThreads = 0;
 541   } else {
 542     // Turn off CMSCleanOnEnter optimization temporarily for
 543     // the MT case where it's not fixed yet; see 6178663.
 544     CMSCleanOnEnter = false;
 545   }
 546   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 547          "Inconsistency");
 548 
 549   // Parallel task queues; these are shared for the
 550   // concurrent and stop-world phases of CMS, but
 551   // are not shared with parallel scavenge (ParNew).
 552   {
 553     uint i;
 554     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 555 
 556     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 557          || ParallelRefProcEnabled)
 558         && num_queues > 0) {
 559       _task_queues = new OopTaskQueueSet(num_queues);
 560       if (_task_queues == NULL) {
 561         log_warning(gc)("task_queues allocation failure.");
 562         return;
 563       }
 564       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 565       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 566       for (i = 0; i < num_queues; i++) {
 567         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 568         if (q == NULL) {
 569           log_warning(gc)("work_queue allocation failure.");
 570           return;
 571         }
 572         _task_queues->register_queue(i, q);
 573       }
 574       for (i = 0; i < num_queues; i++) {
 575         _task_queues->queue(i)->initialize();
 576         _hash_seed[i] = 17;  // copied from ParNew
 577       }
 578     }
 579   }
 580 
 581   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 582 
 583   // Clip CMSBootstrapOccupancy between 0 and 100.
 584   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 585 
 586   // Now tell CMS generations the identity of their collector
 587   ConcurrentMarkSweepGeneration::set_collector(this);
 588 
 589   // Create & start a CMS thread for this CMS collector
 590   _cmsThread = ConcurrentMarkSweepThread::start(this);
 591   assert(cmsThread() != NULL, "CMS Thread should have been created");
 592   assert(cmsThread()->collector() == this,
 593          "CMS Thread should refer to this gen");
 594   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 595 
 596   // Support for parallelizing young gen rescan
 597   GenCollectedHeap* gch = GenCollectedHeap::heap();
 598   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 599   _young_gen = (ParNewGeneration*)gch->young_gen();
 600   if (gch->supports_inline_contig_alloc()) {
 601     _top_addr = gch->top_addr();
 602     _end_addr = gch->end_addr();
 603     assert(_young_gen != NULL, "no _young_gen");
 604     _eden_chunk_index = 0;
 605     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 606     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 607   }
 608 
 609   // Support for parallelizing survivor space rescan
 610   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 611     const size_t max_plab_samples =
 612       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 613 
 614     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 615     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 616     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 617     _survivor_chunk_capacity = max_plab_samples;
 618     for (uint i = 0; i < ParallelGCThreads; i++) {
 619       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 620       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 621       assert(cur->end() == 0, "Should be 0");
 622       assert(cur->array() == vec, "Should be vec");
 623       assert(cur->capacity() == max_plab_samples, "Error");
 624     }
 625   }
 626 
 627   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 628   _gc_counters = new CollectorCounters("CMS", 1);
 629   _completed_initialization = true;
 630   _inter_sweep_timer.start();  // start of time
 631 }
 632 
 633 const char* ConcurrentMarkSweepGeneration::name() const {
 634   return "concurrent mark-sweep generation";
 635 }
 636 void ConcurrentMarkSweepGeneration::update_counters() {
 637   if (UsePerfData) {
 638     _space_counters->update_all();
 639     _gen_counters->update_all();
 640   }
 641 }
 642 
 643 // this is an optimized version of update_counters(). it takes the
 644 // used value as a parameter rather than computing it.
 645 //
 646 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 647   if (UsePerfData) {
 648     _space_counters->update_used(used);
 649     _space_counters->update_capacity();
 650     _gen_counters->update_all();
 651   }
 652 }
 653 
 654 void ConcurrentMarkSweepGeneration::print() const {
 655   Generation::print();
 656   cmsSpace()->print();
 657 }
 658 
 659 #ifndef PRODUCT
 660 void ConcurrentMarkSweepGeneration::print_statistics() {
 661   cmsSpace()->printFLCensus(0);
 662 }
 663 #endif
 664 
 665 size_t
 666 ConcurrentMarkSweepGeneration::contiguous_available() const {
 667   // dld proposes an improvement in precision here. If the committed
 668   // part of the space ends in a free block we should add that to
 669   // uncommitted size in the calculation below. Will make this
 670   // change later, staying with the approximation below for the
 671   // time being. -- ysr.
 672   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 673 }
 674 
 675 size_t
 676 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 677   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 678 }
 679 
 680 size_t ConcurrentMarkSweepGeneration::max_available() const {
 681   return free() + _virtual_space.uncommitted_size();
 682 }
 683 
 684 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 685   size_t available = max_available();
 686   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 687   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 688   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 689                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 690   return res;
 691 }
 692 
 693 // At a promotion failure dump information on block layout in heap
 694 // (cms old generation).
 695 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 696   Log(gc, promotion) log;
 697   if (log.is_trace()) {
 698     ResourceMark rm;
 699     cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
 700   }
 701 }
 702 
 703 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 704   // Clear the promotion information.  These pointers can be adjusted
 705   // along with all the other pointers into the heap but
 706   // compaction is expected to be a rare event with
 707   // a heap using cms so don't do it without seeing the need.
 708   for (uint i = 0; i < ParallelGCThreads; i++) {
 709     _par_gc_thread_states[i]->promo.reset();
 710   }
 711 }
 712 
 713 void ConcurrentMarkSweepGeneration::compute_new_size() {
 714   assert_locked_or_safepoint(Heap_lock);
 715 
 716   // If incremental collection failed, we just want to expand
 717   // to the limit.
 718   if (incremental_collection_failed()) {
 719     clear_incremental_collection_failed();
 720     grow_to_reserved();
 721     return;
 722   }
 723 
 724   // The heap has been compacted but not reset yet.
 725   // Any metric such as free() or used() will be incorrect.
 726 
 727   CardGeneration::compute_new_size();
 728 
 729   // Reset again after a possible resizing
 730   if (did_compact()) {
 731     cmsSpace()->reset_after_compaction();
 732   }
 733 }
 734 
 735 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 736   assert_locked_or_safepoint(Heap_lock);
 737 
 738   // If incremental collection failed, we just want to expand
 739   // to the limit.
 740   if (incremental_collection_failed()) {
 741     clear_incremental_collection_failed();
 742     grow_to_reserved();
 743     return;
 744   }
 745 
 746   double free_percentage = ((double) free()) / capacity();
 747   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 748   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 749 
 750   // compute expansion delta needed for reaching desired free percentage
 751   if (free_percentage < desired_free_percentage) {
 752     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 753     assert(desired_capacity >= capacity(), "invalid expansion size");
 754     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 755     Log(gc) log;
 756     if (log.is_trace()) {
 757       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 758       log.trace("From compute_new_size: ");
 759       log.trace("  Free fraction %f", free_percentage);
 760       log.trace("  Desired free fraction %f", desired_free_percentage);
 761       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 762       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 763       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 764       GenCollectedHeap* gch = GenCollectedHeap::heap();
 765       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 766       size_t young_size = gch->young_gen()->capacity();
 767       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 768       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 769       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 770       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 771     }
 772     // safe if expansion fails
 773     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 774     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 775   } else {
 776     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 777     assert(desired_capacity <= capacity(), "invalid expansion size");
 778     size_t shrink_bytes = capacity() - desired_capacity;
 779     // Don't shrink unless the delta is greater than the minimum shrink we want
 780     if (shrink_bytes >= MinHeapDeltaBytes) {
 781       shrink_free_list_by(shrink_bytes);
 782     }
 783   }
 784 }
 785 
 786 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 787   return cmsSpace()->freelistLock();
 788 }
 789 
 790 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 791   CMSSynchronousYieldRequest yr;
 792   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 793   return have_lock_and_allocate(size, tlab);
 794 }
 795 
 796 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 797                                                                 bool   tlab /* ignored */) {
 798   assert_lock_strong(freelistLock());
 799   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 800   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 801   // Allocate the object live (grey) if the background collector has
 802   // started marking. This is necessary because the marker may
 803   // have passed this address and consequently this object will
 804   // not otherwise be greyed and would be incorrectly swept up.
 805   // Note that if this object contains references, the writing
 806   // of those references will dirty the card containing this object
 807   // allowing the object to be blackened (and its references scanned)
 808   // either during a preclean phase or at the final checkpoint.
 809   if (res != NULL) {
 810     // We may block here with an uninitialized object with
 811     // its mark-bit or P-bits not yet set. Such objects need
 812     // to be safely navigable by block_start().
 813     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 814     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 815     collector()->direct_allocated(res, adjustedSize);
 816     _direct_allocated_words += adjustedSize;
 817     // allocation counters
 818     NOT_PRODUCT(
 819       _numObjectsAllocated++;
 820       _numWordsAllocated += (int)adjustedSize;
 821     )
 822   }
 823   return res;
 824 }
 825 
 826 // In the case of direct allocation by mutators in a generation that
 827 // is being concurrently collected, the object must be allocated
 828 // live (grey) if the background collector has started marking.
 829 // This is necessary because the marker may
 830 // have passed this address and consequently this object will
 831 // not otherwise be greyed and would be incorrectly swept up.
 832 // Note that if this object contains references, the writing
 833 // of those references will dirty the card containing this object
 834 // allowing the object to be blackened (and its references scanned)
 835 // either during a preclean phase or at the final checkpoint.
 836 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 837   assert(_markBitMap.covers(start, size), "Out of bounds");
 838   if (_collectorState >= Marking) {
 839     MutexLockerEx y(_markBitMap.lock(),
 840                     Mutex::_no_safepoint_check_flag);
 841     // [see comments preceding SweepClosure::do_blk() below for details]
 842     //
 843     // Can the P-bits be deleted now?  JJJ
 844     //
 845     // 1. need to mark the object as live so it isn't collected
 846     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 847     // 3. need to mark the end of the object so marking, precleaning or sweeping
 848     //    can skip over uninitialized or unparsable objects. An allocated
 849     //    object is considered uninitialized for our purposes as long as
 850     //    its klass word is NULL.  All old gen objects are parsable
 851     //    as soon as they are initialized.)
 852     _markBitMap.mark(start);          // object is live
 853     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 854     _markBitMap.mark(start + size - 1);
 855                                       // mark end of object
 856   }
 857   // check that oop looks uninitialized
 858   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 859 }
 860 
 861 void CMSCollector::promoted(bool par, HeapWord* start,
 862                             bool is_obj_array, size_t obj_size) {
 863   assert(_markBitMap.covers(start), "Out of bounds");
 864   // See comment in direct_allocated() about when objects should
 865   // be allocated live.
 866   if (_collectorState >= Marking) {
 867     // we already hold the marking bit map lock, taken in
 868     // the prologue
 869     if (par) {
 870       _markBitMap.par_mark(start);
 871     } else {
 872       _markBitMap.mark(start);
 873     }
 874     // We don't need to mark the object as uninitialized (as
 875     // in direct_allocated above) because this is being done with the
 876     // world stopped and the object will be initialized by the
 877     // time the marking, precleaning or sweeping get to look at it.
 878     // But see the code for copying objects into the CMS generation,
 879     // where we need to ensure that concurrent readers of the
 880     // block offset table are able to safely navigate a block that
 881     // is in flux from being free to being allocated (and in
 882     // transition while being copied into) and subsequently
 883     // becoming a bona-fide object when the copy/promotion is complete.
 884     assert(SafepointSynchronize::is_at_safepoint(),
 885            "expect promotion only at safepoints");
 886 
 887     if (_collectorState < Sweeping) {
 888       // Mark the appropriate cards in the modUnionTable, so that
 889       // this object gets scanned before the sweep. If this is
 890       // not done, CMS generation references in the object might
 891       // not get marked.
 892       // For the case of arrays, which are otherwise precisely
 893       // marked, we need to dirty the entire array, not just its head.
 894       if (is_obj_array) {
 895         // The [par_]mark_range() method expects mr.end() below to
 896         // be aligned to the granularity of a bit's representation
 897         // in the heap. In the case of the MUT below, that's a
 898         // card size.
 899         MemRegion mr(start,
 900                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 901                         CardTableModRefBS::card_size /* bytes */));
 902         if (par) {
 903           _modUnionTable.par_mark_range(mr);
 904         } else {
 905           _modUnionTable.mark_range(mr);
 906         }
 907       } else {  // not an obj array; we can just mark the head
 908         if (par) {
 909           _modUnionTable.par_mark(start);
 910         } else {
 911           _modUnionTable.mark(start);
 912         }
 913       }
 914     }
 915   }
 916 }
 917 
 918 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 919   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 920   // allocate, copy and if necessary update promoinfo --
 921   // delegate to underlying space.
 922   assert_lock_strong(freelistLock());
 923 
 924 #ifndef PRODUCT
 925   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 926     return NULL;
 927   }
 928 #endif  // #ifndef PRODUCT
 929 
 930   oop res = _cmsSpace->promote(obj, obj_size);
 931   if (res == NULL) {
 932     // expand and retry
 933     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 934     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 935     // Since this is the old generation, we don't try to promote
 936     // into a more senior generation.
 937     res = _cmsSpace->promote(obj, obj_size);
 938   }
 939   if (res != NULL) {
 940     // See comment in allocate() about when objects should
 941     // be allocated live.
 942     assert(obj->is_oop(), "Will dereference klass pointer below");
 943     collector()->promoted(false,           // Not parallel
 944                           (HeapWord*)res, obj->is_objArray(), obj_size);
 945     // promotion counters
 946     NOT_PRODUCT(
 947       _numObjectsPromoted++;
 948       _numWordsPromoted +=
 949         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 950     )
 951   }
 952   return res;
 953 }
 954 
 955 
 956 // IMPORTANT: Notes on object size recognition in CMS.
 957 // ---------------------------------------------------
 958 // A block of storage in the CMS generation is always in
 959 // one of three states. A free block (FREE), an allocated
 960 // object (OBJECT) whose size() method reports the correct size,
 961 // and an intermediate state (TRANSIENT) in which its size cannot
 962 // be accurately determined.
 963 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 964 // -----------------------------------------------------
 965 // FREE:      klass_word & 1 == 1; mark_word holds block size
 966 //
 967 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 968 //            obj->size() computes correct size
 969 //
 970 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 971 //
 972 // STATE IDENTIFICATION: (64 bit+COOPS)
 973 // ------------------------------------
 974 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 975 //
 976 // OBJECT:    klass_word installed; klass_word != 0;
 977 //            obj->size() computes correct size
 978 //
 979 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 980 //
 981 //
 982 // STATE TRANSITION DIAGRAM
 983 //
 984 //        mut / parnew                     mut  /  parnew
 985 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 986 //  ^                                                                   |
 987 //  |------------------------ DEAD <------------------------------------|
 988 //         sweep                            mut
 989 //
 990 // While a block is in TRANSIENT state its size cannot be determined
 991 // so readers will either need to come back later or stall until
 992 // the size can be determined. Note that for the case of direct
 993 // allocation, P-bits, when available, may be used to determine the
 994 // size of an object that may not yet have been initialized.
 995 
 996 // Things to support parallel young-gen collection.
 997 oop
 998 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
 999                                            oop old, markOop m,
1000                                            size_t word_sz) {
1001 #ifndef PRODUCT
1002   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1003     return NULL;
1004   }
1005 #endif  // #ifndef PRODUCT
1006 
1007   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1008   PromotionInfo* promoInfo = &ps->promo;
1009   // if we are tracking promotions, then first ensure space for
1010   // promotion (including spooling space for saving header if necessary).
1011   // then allocate and copy, then track promoted info if needed.
1012   // When tracking (see PromotionInfo::track()), the mark word may
1013   // be displaced and in this case restoration of the mark word
1014   // occurs in the (oop_since_save_marks_)iterate phase.
1015   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1016     // Out of space for allocating spooling buffers;
1017     // try expanding and allocating spooling buffers.
1018     if (!expand_and_ensure_spooling_space(promoInfo)) {
1019       return NULL;
1020     }
1021   }
1022   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1023   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1024   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1025   if (obj_ptr == NULL) {
1026      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1027      if (obj_ptr == NULL) {
1028        return NULL;
1029      }
1030   }
1031   oop obj = oop(obj_ptr);
1032   OrderAccess::storestore();
1033   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1034   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1035   // IMPORTANT: See note on object initialization for CMS above.
1036   // Otherwise, copy the object.  Here we must be careful to insert the
1037   // klass pointer last, since this marks the block as an allocated object.
1038   // Except with compressed oops it's the mark word.
1039   HeapWord* old_ptr = (HeapWord*)old;
1040   // Restore the mark word copied above.
1041   obj->set_mark(m);
1042   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1043   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1044   OrderAccess::storestore();
1045 
1046   if (UseCompressedClassPointers) {
1047     // Copy gap missed by (aligned) header size calculation below
1048     obj->set_klass_gap(old->klass_gap());
1049   }
1050   if (word_sz > (size_t)oopDesc::header_size()) {
1051     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1052                                  obj_ptr + oopDesc::header_size(),
1053                                  word_sz - oopDesc::header_size());
1054   }
1055 
1056   // Now we can track the promoted object, if necessary.  We take care
1057   // to delay the transition from uninitialized to full object
1058   // (i.e., insertion of klass pointer) until after, so that it
1059   // atomically becomes a promoted object.
1060   if (promoInfo->tracking()) {
1061     promoInfo->track((PromotedObject*)obj, old->klass());
1062   }
1063   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1064   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1065   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1066 
1067   // Finally, install the klass pointer (this should be volatile).
1068   OrderAccess::storestore();
1069   obj->set_klass(old->klass());
1070   // We should now be able to calculate the right size for this object
1071   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1072 
1073   collector()->promoted(true,          // parallel
1074                         obj_ptr, old->is_objArray(), word_sz);
1075 
1076   NOT_PRODUCT(
1077     Atomic::inc_ptr(&_numObjectsPromoted);
1078     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1079   )
1080 
1081   return obj;
1082 }
1083 
1084 void
1085 ConcurrentMarkSweepGeneration::
1086 par_promote_alloc_done(int thread_num) {
1087   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1088   ps->lab.retire(thread_num);
1089 }
1090 
1091 void
1092 ConcurrentMarkSweepGeneration::
1093 par_oop_since_save_marks_iterate_done(int thread_num) {
1094   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1095   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1096   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1097 
1098   // Because card-scanning has been completed, subsequent phases
1099   // (e.g., reference processing) will not need to recognize which
1100   // objects have been promoted during this GC. So, we can now disable
1101   // promotion tracking.
1102   ps->promo.stopTrackingPromotions();
1103 }
1104 
1105 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1106                                                    size_t size,
1107                                                    bool   tlab)
1108 {
1109   // We allow a STW collection only if a full
1110   // collection was requested.
1111   return full || should_allocate(size, tlab); // FIX ME !!!
1112   // This and promotion failure handling are connected at the
1113   // hip and should be fixed by untying them.
1114 }
1115 
1116 bool CMSCollector::shouldConcurrentCollect() {
1117   LogTarget(Trace, gc) log;
1118 
1119   if (_full_gc_requested) {
1120     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1121     return true;
1122   }
1123 
1124   FreelistLocker x(this);
1125   // ------------------------------------------------------------------
1126   // Print out lots of information which affects the initiation of
1127   // a collection.
1128   if (log.is_enabled() && stats().valid()) {
1129     log.print("CMSCollector shouldConcurrentCollect: ");
1130 
1131     LogStream out(log);
1132     stats().print_on(&out);
1133 
1134     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1135     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1136     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1137     log.print("promotion_rate=%g", stats().promotion_rate());
1138     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1139     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1140     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1141     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1142     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1143     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1144   }
1145   // ------------------------------------------------------------------
1146 
1147   // If the estimated time to complete a cms collection (cms_duration())
1148   // is less than the estimated time remaining until the cms generation
1149   // is full, start a collection.
1150   if (!UseCMSInitiatingOccupancyOnly) {
1151     if (stats().valid()) {
1152       if (stats().time_until_cms_start() == 0.0) {
1153         return true;
1154       }
1155     } else {
1156       // We want to conservatively collect somewhat early in order
1157       // to try and "bootstrap" our CMS/promotion statistics;
1158       // this branch will not fire after the first successful CMS
1159       // collection because the stats should then be valid.
1160       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1161         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1162                   _cmsGen->occupancy(), _bootstrap_occupancy);
1163         return true;
1164       }
1165     }
1166   }
1167 
1168   // Otherwise, we start a collection cycle if
1169   // old gen want a collection cycle started. Each may use
1170   // an appropriate criterion for making this decision.
1171   // XXX We need to make sure that the gen expansion
1172   // criterion dovetails well with this. XXX NEED TO FIX THIS
1173   if (_cmsGen->should_concurrent_collect()) {
1174     log.print("CMS old gen initiated");
1175     return true;
1176   }
1177 
1178   // We start a collection if we believe an incremental collection may fail;
1179   // this is not likely to be productive in practice because it's probably too
1180   // late anyway.
1181   GenCollectedHeap* gch = GenCollectedHeap::heap();
1182   assert(gch->collector_policy()->is_generation_policy(),
1183          "You may want to check the correctness of the following");
1184   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1185     log.print("CMSCollector: collect because incremental collection will fail ");
1186     return true;
1187   }
1188 
1189   if (MetaspaceGC::should_concurrent_collect()) {
1190     log.print("CMSCollector: collect for metadata allocation ");
1191     return true;
1192   }
1193 
1194   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1195   if (CMSTriggerInterval >= 0) {
1196     if (CMSTriggerInterval == 0) {
1197       // Trigger always
1198       return true;
1199     }
1200 
1201     // Check the CMS time since begin (we do not check the stats validity
1202     // as we want to be able to trigger the first CMS cycle as well)
1203     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1204       if (stats().valid()) {
1205         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1206                   stats().cms_time_since_begin());
1207       } else {
1208         log.print("CMSCollector: collect because of trigger interval (first collection)");
1209       }
1210       return true;
1211     }
1212   }
1213 
1214   return false;
1215 }
1216 
1217 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1218 
1219 // Clear _expansion_cause fields of constituent generations
1220 void CMSCollector::clear_expansion_cause() {
1221   _cmsGen->clear_expansion_cause();
1222 }
1223 
1224 // We should be conservative in starting a collection cycle.  To
1225 // start too eagerly runs the risk of collecting too often in the
1226 // extreme.  To collect too rarely falls back on full collections,
1227 // which works, even if not optimum in terms of concurrent work.
1228 // As a work around for too eagerly collecting, use the flag
1229 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1230 // giving the user an easily understandable way of controlling the
1231 // collections.
1232 // We want to start a new collection cycle if any of the following
1233 // conditions hold:
1234 // . our current occupancy exceeds the configured initiating occupancy
1235 //   for this generation, or
1236 // . we recently needed to expand this space and have not, since that
1237 //   expansion, done a collection of this generation, or
1238 // . the underlying space believes that it may be a good idea to initiate
1239 //   a concurrent collection (this may be based on criteria such as the
1240 //   following: the space uses linear allocation and linear allocation is
1241 //   going to fail, or there is believed to be excessive fragmentation in
1242 //   the generation, etc... or ...
1243 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1244 //   the case of the old generation; see CR 6543076):
1245 //   we may be approaching a point at which allocation requests may fail because
1246 //   we will be out of sufficient free space given allocation rate estimates.]
1247 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1248 
1249   assert_lock_strong(freelistLock());
1250   if (occupancy() > initiating_occupancy()) {
1251     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1252                   short_name(), occupancy(), initiating_occupancy());
1253     return true;
1254   }
1255   if (UseCMSInitiatingOccupancyOnly) {
1256     return false;
1257   }
1258   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1259     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1260     return true;
1261   }
1262   return false;
1263 }
1264 
1265 void ConcurrentMarkSweepGeneration::collect(bool   full,
1266                                             bool   clear_all_soft_refs,
1267                                             size_t size,
1268                                             bool   tlab)
1269 {
1270   collector()->collect(full, clear_all_soft_refs, size, tlab);
1271 }
1272 
1273 void CMSCollector::collect(bool   full,
1274                            bool   clear_all_soft_refs,
1275                            size_t size,
1276                            bool   tlab)
1277 {
1278   // The following "if" branch is present for defensive reasons.
1279   // In the current uses of this interface, it can be replaced with:
1280   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1281   // But I am not placing that assert here to allow future
1282   // generality in invoking this interface.
1283   if (GCLocker::is_active()) {
1284     // A consistency test for GCLocker
1285     assert(GCLocker::needs_gc(), "Should have been set already");
1286     // Skip this foreground collection, instead
1287     // expanding the heap if necessary.
1288     // Need the free list locks for the call to free() in compute_new_size()
1289     compute_new_size();
1290     return;
1291   }
1292   acquire_control_and_collect(full, clear_all_soft_refs);
1293 }
1294 
1295 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1296   GenCollectedHeap* gch = GenCollectedHeap::heap();
1297   unsigned int gc_count = gch->total_full_collections();
1298   if (gc_count == full_gc_count) {
1299     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1300     _full_gc_requested = true;
1301     _full_gc_cause = cause;
1302     CGC_lock->notify();   // nudge CMS thread
1303   } else {
1304     assert(gc_count > full_gc_count, "Error: causal loop");
1305   }
1306 }
1307 
1308 bool CMSCollector::is_external_interruption() {
1309   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1310   return GCCause::is_user_requested_gc(cause) ||
1311          GCCause::is_serviceability_requested_gc(cause);
1312 }
1313 
1314 void CMSCollector::report_concurrent_mode_interruption() {
1315   if (is_external_interruption()) {
1316     log_debug(gc)("Concurrent mode interrupted");
1317   } else {
1318     log_debug(gc)("Concurrent mode failure");
1319     _gc_tracer_cm->report_concurrent_mode_failure();
1320   }
1321 }
1322 
1323 
1324 // The foreground and background collectors need to coordinate in order
1325 // to make sure that they do not mutually interfere with CMS collections.
1326 // When a background collection is active,
1327 // the foreground collector may need to take over (preempt) and
1328 // synchronously complete an ongoing collection. Depending on the
1329 // frequency of the background collections and the heap usage
1330 // of the application, this preemption can be seldom or frequent.
1331 // There are only certain
1332 // points in the background collection that the "collection-baton"
1333 // can be passed to the foreground collector.
1334 //
1335 // The foreground collector will wait for the baton before
1336 // starting any part of the collection.  The foreground collector
1337 // will only wait at one location.
1338 //
1339 // The background collector will yield the baton before starting a new
1340 // phase of the collection (e.g., before initial marking, marking from roots,
1341 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1342 // of the loop which switches the phases. The background collector does some
1343 // of the phases (initial mark, final re-mark) with the world stopped.
1344 // Because of locking involved in stopping the world,
1345 // the foreground collector should not block waiting for the background
1346 // collector when it is doing a stop-the-world phase.  The background
1347 // collector will yield the baton at an additional point just before
1348 // it enters a stop-the-world phase.  Once the world is stopped, the
1349 // background collector checks the phase of the collection.  If the
1350 // phase has not changed, it proceeds with the collection.  If the
1351 // phase has changed, it skips that phase of the collection.  See
1352 // the comments on the use of the Heap_lock in collect_in_background().
1353 //
1354 // Variable used in baton passing.
1355 //   _foregroundGCIsActive - Set to true by the foreground collector when
1356 //      it wants the baton.  The foreground clears it when it has finished
1357 //      the collection.
1358 //   _foregroundGCShouldWait - Set to true by the background collector
1359 //        when it is running.  The foreground collector waits while
1360 //      _foregroundGCShouldWait is true.
1361 //  CGC_lock - monitor used to protect access to the above variables
1362 //      and to notify the foreground and background collectors.
1363 //  _collectorState - current state of the CMS collection.
1364 //
1365 // The foreground collector
1366 //   acquires the CGC_lock
1367 //   sets _foregroundGCIsActive
1368 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1369 //     various locks acquired in preparation for the collection
1370 //     are released so as not to block the background collector
1371 //     that is in the midst of a collection
1372 //   proceeds with the collection
1373 //   clears _foregroundGCIsActive
1374 //   returns
1375 //
1376 // The background collector in a loop iterating on the phases of the
1377 //      collection
1378 //   acquires the CGC_lock
1379 //   sets _foregroundGCShouldWait
1380 //   if _foregroundGCIsActive is set
1381 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1382 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1383 //     and exits the loop.
1384 //   otherwise
1385 //     proceed with that phase of the collection
1386 //     if the phase is a stop-the-world phase,
1387 //       yield the baton once more just before enqueueing
1388 //       the stop-world CMS operation (executed by the VM thread).
1389 //   returns after all phases of the collection are done
1390 //
1391 
1392 void CMSCollector::acquire_control_and_collect(bool full,
1393         bool clear_all_soft_refs) {
1394   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1395   assert(!Thread::current()->is_ConcurrentGC_thread(),
1396          "shouldn't try to acquire control from self!");
1397 
1398   // Start the protocol for acquiring control of the
1399   // collection from the background collector (aka CMS thread).
1400   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1401          "VM thread should have CMS token");
1402   // Remember the possibly interrupted state of an ongoing
1403   // concurrent collection
1404   CollectorState first_state = _collectorState;
1405 
1406   // Signal to a possibly ongoing concurrent collection that
1407   // we want to do a foreground collection.
1408   _foregroundGCIsActive = true;
1409 
1410   // release locks and wait for a notify from the background collector
1411   // releasing the locks in only necessary for phases which
1412   // do yields to improve the granularity of the collection.
1413   assert_lock_strong(bitMapLock());
1414   // We need to lock the Free list lock for the space that we are
1415   // currently collecting.
1416   assert(haveFreelistLocks(), "Must be holding free list locks");
1417   bitMapLock()->unlock();
1418   releaseFreelistLocks();
1419   {
1420     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1421     if (_foregroundGCShouldWait) {
1422       // We are going to be waiting for action for the CMS thread;
1423       // it had better not be gone (for instance at shutdown)!
1424       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1425              "CMS thread must be running");
1426       // Wait here until the background collector gives us the go-ahead
1427       ConcurrentMarkSweepThread::clear_CMS_flag(
1428         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1429       // Get a possibly blocked CMS thread going:
1430       //   Note that we set _foregroundGCIsActive true above,
1431       //   without protection of the CGC_lock.
1432       CGC_lock->notify();
1433       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1434              "Possible deadlock");
1435       while (_foregroundGCShouldWait) {
1436         // wait for notification
1437         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1438         // Possibility of delay/starvation here, since CMS token does
1439         // not know to give priority to VM thread? Actually, i think
1440         // there wouldn't be any delay/starvation, but the proof of
1441         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1442       }
1443       ConcurrentMarkSweepThread::set_CMS_flag(
1444         ConcurrentMarkSweepThread::CMS_vm_has_token);
1445     }
1446   }
1447   // The CMS_token is already held.  Get back the other locks.
1448   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1449          "VM thread should have CMS token");
1450   getFreelistLocks();
1451   bitMapLock()->lock_without_safepoint_check();
1452   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1453                        p2i(Thread::current()), first_state);
1454   log_debug(gc, state)("    gets control with state %d", _collectorState);
1455 
1456   // Inform cms gen if this was due to partial collection failing.
1457   // The CMS gen may use this fact to determine its expansion policy.
1458   GenCollectedHeap* gch = GenCollectedHeap::heap();
1459   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1460     assert(!_cmsGen->incremental_collection_failed(),
1461            "Should have been noticed, reacted to and cleared");
1462     _cmsGen->set_incremental_collection_failed();
1463   }
1464 
1465   if (first_state > Idling) {
1466     report_concurrent_mode_interruption();
1467   }
1468 
1469   set_did_compact(true);
1470 
1471   // If the collection is being acquired from the background
1472   // collector, there may be references on the discovered
1473   // references lists.  Abandon those references, since some
1474   // of them may have become unreachable after concurrent
1475   // discovery; the STW compacting collector will redo discovery
1476   // more precisely, without being subject to floating garbage.
1477   // Leaving otherwise unreachable references in the discovered
1478   // lists would require special handling.
1479   ref_processor()->disable_discovery();
1480   ref_processor()->abandon_partial_discovery();
1481   ref_processor()->verify_no_references_recorded();
1482 
1483   if (first_state > Idling) {
1484     save_heap_summary();
1485   }
1486 
1487   do_compaction_work(clear_all_soft_refs);
1488 
1489   // Has the GC time limit been exceeded?
1490   size_t max_eden_size = _young_gen->max_eden_size();
1491   GCCause::Cause gc_cause = gch->gc_cause();
1492   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1493                                          _young_gen->eden()->used(),
1494                                          _cmsGen->max_capacity(),
1495                                          max_eden_size,
1496                                          full,
1497                                          gc_cause,
1498                                          gch->collector_policy());
1499 
1500   // Reset the expansion cause, now that we just completed
1501   // a collection cycle.
1502   clear_expansion_cause();
1503   _foregroundGCIsActive = false;
1504   return;
1505 }
1506 
1507 // Resize the tenured generation
1508 // after obtaining the free list locks for the
1509 // two generations.
1510 void CMSCollector::compute_new_size() {
1511   assert_locked_or_safepoint(Heap_lock);
1512   FreelistLocker z(this);
1513   MetaspaceGC::compute_new_size();
1514   _cmsGen->compute_new_size_free_list();
1515 }
1516 
1517 // A work method used by the foreground collector to do
1518 // a mark-sweep-compact.
1519 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1520   GenCollectedHeap* gch = GenCollectedHeap::heap();
1521 
1522   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1523   gc_timer->register_gc_start();
1524 
1525   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1526   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1527 
1528   gch->pre_full_gc_dump(gc_timer);
1529 
1530   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1531 
1532   // Temporarily widen the span of the weak reference processing to
1533   // the entire heap.
1534   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1535   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1536   // Temporarily, clear the "is_alive_non_header" field of the
1537   // reference processor.
1538   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1539   // Temporarily make reference _processing_ single threaded (non-MT).
1540   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1541   // Temporarily make refs discovery atomic
1542   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1543   // Temporarily make reference _discovery_ single threaded (non-MT)
1544   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1545 
1546   ref_processor()->set_enqueuing_is_done(false);
1547   ref_processor()->enable_discovery();
1548   ref_processor()->setup_policy(clear_all_soft_refs);
1549   // If an asynchronous collection finishes, the _modUnionTable is
1550   // all clear.  If we are assuming the collection from an asynchronous
1551   // collection, clear the _modUnionTable.
1552   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1553     "_modUnionTable should be clear if the baton was not passed");
1554   _modUnionTable.clear_all();
1555   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1556     "mod union for klasses should be clear if the baton was passed");
1557   _ct->klass_rem_set()->clear_mod_union();
1558 
1559   // We must adjust the allocation statistics being maintained
1560   // in the free list space. We do so by reading and clearing
1561   // the sweep timer and updating the block flux rate estimates below.
1562   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1563   if (_inter_sweep_timer.is_active()) {
1564     _inter_sweep_timer.stop();
1565     // Note that we do not use this sample to update the _inter_sweep_estimate.
1566     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1567                                             _inter_sweep_estimate.padded_average(),
1568                                             _intra_sweep_estimate.padded_average());
1569   }
1570 
1571   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1572   #ifdef ASSERT
1573     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1574     size_t free_size = cms_space->free();
1575     assert(free_size ==
1576            pointer_delta(cms_space->end(), cms_space->compaction_top())
1577            * HeapWordSize,
1578       "All the free space should be compacted into one chunk at top");
1579     assert(cms_space->dictionary()->total_chunk_size(
1580                                       debug_only(cms_space->freelistLock())) == 0 ||
1581            cms_space->totalSizeInIndexedFreeLists() == 0,
1582       "All the free space should be in a single chunk");
1583     size_t num = cms_space->totalCount();
1584     assert((free_size == 0 && num == 0) ||
1585            (free_size > 0  && (num == 1 || num == 2)),
1586          "There should be at most 2 free chunks after compaction");
1587   #endif // ASSERT
1588   _collectorState = Resetting;
1589   assert(_restart_addr == NULL,
1590          "Should have been NULL'd before baton was passed");
1591   reset_stw();
1592   _cmsGen->reset_after_compaction();
1593   _concurrent_cycles_since_last_unload = 0;
1594 
1595   // Clear any data recorded in the PLAB chunk arrays.
1596   if (_survivor_plab_array != NULL) {
1597     reset_survivor_plab_arrays();
1598   }
1599 
1600   // Adjust the per-size allocation stats for the next epoch.
1601   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1602   // Restart the "inter sweep timer" for the next epoch.
1603   _inter_sweep_timer.reset();
1604   _inter_sweep_timer.start();
1605 
1606   // No longer a need to do a concurrent collection for Metaspace.
1607   MetaspaceGC::set_should_concurrent_collect(false);
1608 
1609   gch->post_full_gc_dump(gc_timer);
1610 
1611   gc_timer->register_gc_end();
1612 
1613   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1614 
1615   // For a mark-sweep-compact, compute_new_size() will be called
1616   // in the heap's do_collection() method.
1617 }
1618 
1619 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1620   Log(gc, heap) log;
1621   if (!log.is_trace()) {
1622     return;
1623   }
1624 
1625   ContiguousSpace* eden_space = _young_gen->eden();
1626   ContiguousSpace* from_space = _young_gen->from();
1627   ContiguousSpace* to_space   = _young_gen->to();
1628   // Eden
1629   if (_eden_chunk_array != NULL) {
1630     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1631               p2i(eden_space->bottom()), p2i(eden_space->top()),
1632               p2i(eden_space->end()), eden_space->capacity());
1633     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1634               _eden_chunk_index, _eden_chunk_capacity);
1635     for (size_t i = 0; i < _eden_chunk_index; i++) {
1636       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1637     }
1638   }
1639   // Survivor
1640   if (_survivor_chunk_array != NULL) {
1641     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1642               p2i(from_space->bottom()), p2i(from_space->top()),
1643               p2i(from_space->end()), from_space->capacity());
1644     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1645               _survivor_chunk_index, _survivor_chunk_capacity);
1646     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1647       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1648     }
1649   }
1650 }
1651 
1652 void CMSCollector::getFreelistLocks() const {
1653   // Get locks for all free lists in all generations that this
1654   // collector is responsible for
1655   _cmsGen->freelistLock()->lock_without_safepoint_check();
1656 }
1657 
1658 void CMSCollector::releaseFreelistLocks() const {
1659   // Release locks for all free lists in all generations that this
1660   // collector is responsible for
1661   _cmsGen->freelistLock()->unlock();
1662 }
1663 
1664 bool CMSCollector::haveFreelistLocks() const {
1665   // Check locks for all free lists in all generations that this
1666   // collector is responsible for
1667   assert_lock_strong(_cmsGen->freelistLock());
1668   PRODUCT_ONLY(ShouldNotReachHere());
1669   return true;
1670 }
1671 
1672 // A utility class that is used by the CMS collector to
1673 // temporarily "release" the foreground collector from its
1674 // usual obligation to wait for the background collector to
1675 // complete an ongoing phase before proceeding.
1676 class ReleaseForegroundGC: public StackObj {
1677  private:
1678   CMSCollector* _c;
1679  public:
1680   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1681     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1682     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1683     // allow a potentially blocked foreground collector to proceed
1684     _c->_foregroundGCShouldWait = false;
1685     if (_c->_foregroundGCIsActive) {
1686       CGC_lock->notify();
1687     }
1688     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1689            "Possible deadlock");
1690   }
1691 
1692   ~ReleaseForegroundGC() {
1693     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1694     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1695     _c->_foregroundGCShouldWait = true;
1696   }
1697 };
1698 
1699 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1700   assert(Thread::current()->is_ConcurrentGC_thread(),
1701     "A CMS asynchronous collection is only allowed on a CMS thread.");
1702 
1703   GenCollectedHeap* gch = GenCollectedHeap::heap();
1704   {
1705     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1706     MutexLockerEx hl(Heap_lock, safepoint_check);
1707     FreelistLocker fll(this);
1708     MutexLockerEx x(CGC_lock, safepoint_check);
1709     if (_foregroundGCIsActive) {
1710       // The foreground collector is. Skip this
1711       // background collection.
1712       assert(!_foregroundGCShouldWait, "Should be clear");
1713       return;
1714     } else {
1715       assert(_collectorState == Idling, "Should be idling before start.");
1716       _collectorState = InitialMarking;
1717       register_gc_start(cause);
1718       // Reset the expansion cause, now that we are about to begin
1719       // a new cycle.
1720       clear_expansion_cause();
1721 
1722       // Clear the MetaspaceGC flag since a concurrent collection
1723       // is starting but also clear it after the collection.
1724       MetaspaceGC::set_should_concurrent_collect(false);
1725     }
1726     // Decide if we want to enable class unloading as part of the
1727     // ensuing concurrent GC cycle.
1728     update_should_unload_classes();
1729     _full_gc_requested = false;           // acks all outstanding full gc requests
1730     _full_gc_cause = GCCause::_no_gc;
1731     // Signal that we are about to start a collection
1732     gch->increment_total_full_collections();  // ... starting a collection cycle
1733     _collection_count_start = gch->total_full_collections();
1734   }
1735 
1736   size_t prev_used = _cmsGen->used();
1737 
1738   // The change of the collection state is normally done at this level;
1739   // the exceptions are phases that are executed while the world is
1740   // stopped.  For those phases the change of state is done while the
1741   // world is stopped.  For baton passing purposes this allows the
1742   // background collector to finish the phase and change state atomically.
1743   // The foreground collector cannot wait on a phase that is done
1744   // while the world is stopped because the foreground collector already
1745   // has the world stopped and would deadlock.
1746   while (_collectorState != Idling) {
1747     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1748                          p2i(Thread::current()), _collectorState);
1749     // The foreground collector
1750     //   holds the Heap_lock throughout its collection.
1751     //   holds the CMS token (but not the lock)
1752     //     except while it is waiting for the background collector to yield.
1753     //
1754     // The foreground collector should be blocked (not for long)
1755     //   if the background collector is about to start a phase
1756     //   executed with world stopped.  If the background
1757     //   collector has already started such a phase, the
1758     //   foreground collector is blocked waiting for the
1759     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1760     //   are executed in the VM thread.
1761     //
1762     // The locking order is
1763     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1764     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1765     //   CMS token  (claimed in
1766     //                stop_world_and_do() -->
1767     //                  safepoint_synchronize() -->
1768     //                    CMSThread::synchronize())
1769 
1770     {
1771       // Check if the FG collector wants us to yield.
1772       CMSTokenSync x(true); // is cms thread
1773       if (waitForForegroundGC()) {
1774         // We yielded to a foreground GC, nothing more to be
1775         // done this round.
1776         assert(_foregroundGCShouldWait == false, "We set it to false in "
1777                "waitForForegroundGC()");
1778         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1779                              p2i(Thread::current()), _collectorState);
1780         return;
1781       } else {
1782         // The background collector can run but check to see if the
1783         // foreground collector has done a collection while the
1784         // background collector was waiting to get the CGC_lock
1785         // above.  If yes, break so that _foregroundGCShouldWait
1786         // is cleared before returning.
1787         if (_collectorState == Idling) {
1788           break;
1789         }
1790       }
1791     }
1792 
1793     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1794       "should be waiting");
1795 
1796     switch (_collectorState) {
1797       case InitialMarking:
1798         {
1799           ReleaseForegroundGC x(this);
1800           stats().record_cms_begin();
1801           VM_CMS_Initial_Mark initial_mark_op(this);
1802           VMThread::execute(&initial_mark_op);
1803         }
1804         // The collector state may be any legal state at this point
1805         // since the background collector may have yielded to the
1806         // foreground collector.
1807         break;
1808       case Marking:
1809         // initial marking in checkpointRootsInitialWork has been completed
1810         if (markFromRoots()) { // we were successful
1811           assert(_collectorState == Precleaning, "Collector state should "
1812             "have changed");
1813         } else {
1814           assert(_foregroundGCIsActive, "Internal state inconsistency");
1815         }
1816         break;
1817       case Precleaning:
1818         // marking from roots in markFromRoots has been completed
1819         preclean();
1820         assert(_collectorState == AbortablePreclean ||
1821                _collectorState == FinalMarking,
1822                "Collector state should have changed");
1823         break;
1824       case AbortablePreclean:
1825         abortable_preclean();
1826         assert(_collectorState == FinalMarking, "Collector state should "
1827           "have changed");
1828         break;
1829       case FinalMarking:
1830         {
1831           ReleaseForegroundGC x(this);
1832 
1833           VM_CMS_Final_Remark final_remark_op(this);
1834           VMThread::execute(&final_remark_op);
1835         }
1836         assert(_foregroundGCShouldWait, "block post-condition");
1837         break;
1838       case Sweeping:
1839         // final marking in checkpointRootsFinal has been completed
1840         sweep();
1841         assert(_collectorState == Resizing, "Collector state change "
1842           "to Resizing must be done under the free_list_lock");
1843 
1844       case Resizing: {
1845         // Sweeping has been completed...
1846         // At this point the background collection has completed.
1847         // Don't move the call to compute_new_size() down
1848         // into code that might be executed if the background
1849         // collection was preempted.
1850         {
1851           ReleaseForegroundGC x(this);   // unblock FG collection
1852           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1853           CMSTokenSync        z(true);   // not strictly needed.
1854           if (_collectorState == Resizing) {
1855             compute_new_size();
1856             save_heap_summary();
1857             _collectorState = Resetting;
1858           } else {
1859             assert(_collectorState == Idling, "The state should only change"
1860                    " because the foreground collector has finished the collection");
1861           }
1862         }
1863         break;
1864       }
1865       case Resetting:
1866         // CMS heap resizing has been completed
1867         reset_concurrent();
1868         assert(_collectorState == Idling, "Collector state should "
1869           "have changed");
1870 
1871         MetaspaceGC::set_should_concurrent_collect(false);
1872 
1873         stats().record_cms_end();
1874         // Don't move the concurrent_phases_end() and compute_new_size()
1875         // calls to here because a preempted background collection
1876         // has it's state set to "Resetting".
1877         break;
1878       case Idling:
1879       default:
1880         ShouldNotReachHere();
1881         break;
1882     }
1883     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1884                          p2i(Thread::current()), _collectorState);
1885     assert(_foregroundGCShouldWait, "block post-condition");
1886   }
1887 
1888   // Should this be in gc_epilogue?
1889   collector_policy()->counters()->update_counters();
1890 
1891   {
1892     // Clear _foregroundGCShouldWait and, in the event that the
1893     // foreground collector is waiting, notify it, before
1894     // returning.
1895     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1896     _foregroundGCShouldWait = false;
1897     if (_foregroundGCIsActive) {
1898       CGC_lock->notify();
1899     }
1900     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1901            "Possible deadlock");
1902   }
1903   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1904                        p2i(Thread::current()), _collectorState);
1905   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1906                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1907 }
1908 
1909 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1910   _cms_start_registered = true;
1911   _gc_timer_cm->register_gc_start();
1912   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1913 }
1914 
1915 void CMSCollector::register_gc_end() {
1916   if (_cms_start_registered) {
1917     report_heap_summary(GCWhen::AfterGC);
1918 
1919     _gc_timer_cm->register_gc_end();
1920     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1921     _cms_start_registered = false;
1922   }
1923 }
1924 
1925 void CMSCollector::save_heap_summary() {
1926   GenCollectedHeap* gch = GenCollectedHeap::heap();
1927   _last_heap_summary = gch->create_heap_summary();
1928   _last_metaspace_summary = gch->create_metaspace_summary();
1929 }
1930 
1931 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1932   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1933   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1934 }
1935 
1936 bool CMSCollector::waitForForegroundGC() {
1937   bool res = false;
1938   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1939          "CMS thread should have CMS token");
1940   // Block the foreground collector until the
1941   // background collectors decides whether to
1942   // yield.
1943   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1944   _foregroundGCShouldWait = true;
1945   if (_foregroundGCIsActive) {
1946     // The background collector yields to the
1947     // foreground collector and returns a value
1948     // indicating that it has yielded.  The foreground
1949     // collector can proceed.
1950     res = true;
1951     _foregroundGCShouldWait = false;
1952     ConcurrentMarkSweepThread::clear_CMS_flag(
1953       ConcurrentMarkSweepThread::CMS_cms_has_token);
1954     ConcurrentMarkSweepThread::set_CMS_flag(
1955       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1956     // Get a possibly blocked foreground thread going
1957     CGC_lock->notify();
1958     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1959                          p2i(Thread::current()), _collectorState);
1960     while (_foregroundGCIsActive) {
1961       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1962     }
1963     ConcurrentMarkSweepThread::set_CMS_flag(
1964       ConcurrentMarkSweepThread::CMS_cms_has_token);
1965     ConcurrentMarkSweepThread::clear_CMS_flag(
1966       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1967   }
1968   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1969                        p2i(Thread::current()), _collectorState);
1970   return res;
1971 }
1972 
1973 // Because of the need to lock the free lists and other structures in
1974 // the collector, common to all the generations that the collector is
1975 // collecting, we need the gc_prologues of individual CMS generations
1976 // delegate to their collector. It may have been simpler had the
1977 // current infrastructure allowed one to call a prologue on a
1978 // collector. In the absence of that we have the generation's
1979 // prologue delegate to the collector, which delegates back
1980 // some "local" work to a worker method in the individual generations
1981 // that it's responsible for collecting, while itself doing any
1982 // work common to all generations it's responsible for. A similar
1983 // comment applies to the  gc_epilogue()'s.
1984 // The role of the variable _between_prologue_and_epilogue is to
1985 // enforce the invocation protocol.
1986 void CMSCollector::gc_prologue(bool full) {
1987   // Call gc_prologue_work() for the CMSGen
1988   // we are responsible for.
1989 
1990   // The following locking discipline assumes that we are only called
1991   // when the world is stopped.
1992   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1993 
1994   // The CMSCollector prologue must call the gc_prologues for the
1995   // "generations" that it's responsible
1996   // for.
1997 
1998   assert(   Thread::current()->is_VM_thread()
1999          || (   CMSScavengeBeforeRemark
2000              && Thread::current()->is_ConcurrentGC_thread()),
2001          "Incorrect thread type for prologue execution");
2002 
2003   if (_between_prologue_and_epilogue) {
2004     // We have already been invoked; this is a gc_prologue delegation
2005     // from yet another CMS generation that we are responsible for, just
2006     // ignore it since all relevant work has already been done.
2007     return;
2008   }
2009 
2010   // set a bit saying prologue has been called; cleared in epilogue
2011   _between_prologue_and_epilogue = true;
2012   // Claim locks for common data structures, then call gc_prologue_work()
2013   // for each CMSGen.
2014 
2015   getFreelistLocks();   // gets free list locks on constituent spaces
2016   bitMapLock()->lock_without_safepoint_check();
2017 
2018   // Should call gc_prologue_work() for all cms gens we are responsible for
2019   bool duringMarking =    _collectorState >= Marking
2020                          && _collectorState < Sweeping;
2021 
2022   // The young collections clear the modified oops state, which tells if
2023   // there are any modified oops in the class. The remark phase also needs
2024   // that information. Tell the young collection to save the union of all
2025   // modified klasses.
2026   if (duringMarking) {
2027     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2028   }
2029 
2030   bool registerClosure = duringMarking;
2031 
2032   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2033 
2034   if (!full) {
2035     stats().record_gc0_begin();
2036   }
2037 }
2038 
2039 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2040 
2041   _capacity_at_prologue = capacity();
2042   _used_at_prologue = used();
2043 
2044   // We enable promotion tracking so that card-scanning can recognize
2045   // which objects have been promoted during this GC and skip them.
2046   for (uint i = 0; i < ParallelGCThreads; i++) {
2047     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2048   }
2049 
2050   // Delegate to CMScollector which knows how to coordinate between
2051   // this and any other CMS generations that it is responsible for
2052   // collecting.
2053   collector()->gc_prologue(full);
2054 }
2055 
2056 // This is a "private" interface for use by this generation's CMSCollector.
2057 // Not to be called directly by any other entity (for instance,
2058 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2059 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2060   bool registerClosure, ModUnionClosure* modUnionClosure) {
2061   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2062   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2063     "Should be NULL");
2064   if (registerClosure) {
2065     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2066   }
2067   cmsSpace()->gc_prologue();
2068   // Clear stat counters
2069   NOT_PRODUCT(
2070     assert(_numObjectsPromoted == 0, "check");
2071     assert(_numWordsPromoted   == 0, "check");
2072     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2073                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2074     _numObjectsAllocated = 0;
2075     _numWordsAllocated   = 0;
2076   )
2077 }
2078 
2079 void CMSCollector::gc_epilogue(bool full) {
2080   // The following locking discipline assumes that we are only called
2081   // when the world is stopped.
2082   assert(SafepointSynchronize::is_at_safepoint(),
2083          "world is stopped assumption");
2084 
2085   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2086   // if linear allocation blocks need to be appropriately marked to allow the
2087   // the blocks to be parsable. We also check here whether we need to nudge the
2088   // CMS collector thread to start a new cycle (if it's not already active).
2089   assert(   Thread::current()->is_VM_thread()
2090          || (   CMSScavengeBeforeRemark
2091              && Thread::current()->is_ConcurrentGC_thread()),
2092          "Incorrect thread type for epilogue execution");
2093 
2094   if (!_between_prologue_and_epilogue) {
2095     // We have already been invoked; this is a gc_epilogue delegation
2096     // from yet another CMS generation that we are responsible for, just
2097     // ignore it since all relevant work has already been done.
2098     return;
2099   }
2100   assert(haveFreelistLocks(), "must have freelist locks");
2101   assert_lock_strong(bitMapLock());
2102 
2103   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2104 
2105   _cmsGen->gc_epilogue_work(full);
2106 
2107   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2108     // in case sampling was not already enabled, enable it
2109     _start_sampling = true;
2110   }
2111   // reset _eden_chunk_array so sampling starts afresh
2112   _eden_chunk_index = 0;
2113 
2114   size_t cms_used   = _cmsGen->cmsSpace()->used();
2115 
2116   // update performance counters - this uses a special version of
2117   // update_counters() that allows the utilization to be passed as a
2118   // parameter, avoiding multiple calls to used().
2119   //
2120   _cmsGen->update_counters(cms_used);
2121 
2122   bitMapLock()->unlock();
2123   releaseFreelistLocks();
2124 
2125   if (!CleanChunkPoolAsync) {
2126     Chunk::clean_chunk_pool();
2127   }
2128 
2129   set_did_compact(false);
2130   _between_prologue_and_epilogue = false;  // ready for next cycle
2131 }
2132 
2133 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2134   collector()->gc_epilogue(full);
2135 
2136   // When using ParNew, promotion tracking should have already been
2137   // disabled. However, the prologue (which enables promotion
2138   // tracking) and epilogue are called irrespective of the type of
2139   // GC. So they will also be called before and after Full GCs, during
2140   // which promotion tracking will not be explicitly disabled. So,
2141   // it's safer to also disable it here too (to be symmetric with
2142   // enabling it in the prologue).
2143   for (uint i = 0; i < ParallelGCThreads; i++) {
2144     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2145   }
2146 }
2147 
2148 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2149   assert(!incremental_collection_failed(), "Should have been cleared");
2150   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2151   cmsSpace()->gc_epilogue();
2152     // Print stat counters
2153   NOT_PRODUCT(
2154     assert(_numObjectsAllocated == 0, "check");
2155     assert(_numWordsAllocated == 0, "check");
2156     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2157                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2158     _numObjectsPromoted = 0;
2159     _numWordsPromoted   = 0;
2160   )
2161 
2162   // Call down the chain in contiguous_available needs the freelistLock
2163   // so print this out before releasing the freeListLock.
2164   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2165 }
2166 
2167 #ifndef PRODUCT
2168 bool CMSCollector::have_cms_token() {
2169   Thread* thr = Thread::current();
2170   if (thr->is_VM_thread()) {
2171     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2172   } else if (thr->is_ConcurrentGC_thread()) {
2173     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2174   } else if (thr->is_GC_task_thread()) {
2175     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2176            ParGCRareEvent_lock->owned_by_self();
2177   }
2178   return false;
2179 }
2180 
2181 // Check reachability of the given heap address in CMS generation,
2182 // treating all other generations as roots.
2183 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2184   // We could "guarantee" below, rather than assert, but I'll
2185   // leave these as "asserts" so that an adventurous debugger
2186   // could try this in the product build provided some subset of
2187   // the conditions were met, provided they were interested in the
2188   // results and knew that the computation below wouldn't interfere
2189   // with other concurrent computations mutating the structures
2190   // being read or written.
2191   assert(SafepointSynchronize::is_at_safepoint(),
2192          "Else mutations in object graph will make answer suspect");
2193   assert(have_cms_token(), "Should hold cms token");
2194   assert(haveFreelistLocks(), "must hold free list locks");
2195   assert_lock_strong(bitMapLock());
2196 
2197   // Clear the marking bit map array before starting, but, just
2198   // for kicks, first report if the given address is already marked
2199   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2200                 _markBitMap.isMarked(addr) ? "" : " not");
2201 
2202   if (verify_after_remark()) {
2203     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2204     bool result = verification_mark_bm()->isMarked(addr);
2205     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2206                   result ? "IS" : "is NOT");
2207     return result;
2208   } else {
2209     tty->print_cr("Could not compute result");
2210     return false;
2211   }
2212 }
2213 #endif
2214 
2215 void
2216 CMSCollector::print_on_error(outputStream* st) {
2217   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2218   if (collector != NULL) {
2219     CMSBitMap* bitmap = &collector->_markBitMap;
2220     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2221     bitmap->print_on_error(st, " Bits: ");
2222 
2223     st->cr();
2224 
2225     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2226     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2227     mut_bitmap->print_on_error(st, " Bits: ");
2228   }
2229 }
2230 
2231 ////////////////////////////////////////////////////////
2232 // CMS Verification Support
2233 ////////////////////////////////////////////////////////
2234 // Following the remark phase, the following invariant
2235 // should hold -- each object in the CMS heap which is
2236 // marked in markBitMap() should be marked in the verification_mark_bm().
2237 
2238 class VerifyMarkedClosure: public BitMapClosure {
2239   CMSBitMap* _marks;
2240   bool       _failed;
2241 
2242  public:
2243   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2244 
2245   bool do_bit(size_t offset) {
2246     HeapWord* addr = _marks->offsetToHeapWord(offset);
2247     if (!_marks->isMarked(addr)) {
2248       Log(gc, verify) log;
2249       ResourceMark rm;
2250       oop(addr)->print_on(log.error_stream());
2251       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2252       _failed = true;
2253     }
2254     return true;
2255   }
2256 
2257   bool failed() { return _failed; }
2258 };
2259 
2260 bool CMSCollector::verify_after_remark() {
2261   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2262   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2263   static bool init = false;
2264 
2265   assert(SafepointSynchronize::is_at_safepoint(),
2266          "Else mutations in object graph will make answer suspect");
2267   assert(have_cms_token(),
2268          "Else there may be mutual interference in use of "
2269          " verification data structures");
2270   assert(_collectorState > Marking && _collectorState <= Sweeping,
2271          "Else marking info checked here may be obsolete");
2272   assert(haveFreelistLocks(), "must hold free list locks");
2273   assert_lock_strong(bitMapLock());
2274 
2275 
2276   // Allocate marking bit map if not already allocated
2277   if (!init) { // first time
2278     if (!verification_mark_bm()->allocate(_span)) {
2279       return false;
2280     }
2281     init = true;
2282   }
2283 
2284   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2285 
2286   // Turn off refs discovery -- so we will be tracing through refs.
2287   // This is as intended, because by this time
2288   // GC must already have cleared any refs that need to be cleared,
2289   // and traced those that need to be marked; moreover,
2290   // the marking done here is not going to interfere in any
2291   // way with the marking information used by GC.
2292   NoRefDiscovery no_discovery(ref_processor());
2293 
2294 #if defined(COMPILER2) || INCLUDE_JVMCI
2295   DerivedPointerTableDeactivate dpt_deact;
2296 #endif
2297 
2298   // Clear any marks from a previous round
2299   verification_mark_bm()->clear_all();
2300   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2301   verify_work_stacks_empty();
2302 
2303   GenCollectedHeap* gch = GenCollectedHeap::heap();
2304   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2305   // Update the saved marks which may affect the root scans.
2306   gch->save_marks();
2307 
2308   if (CMSRemarkVerifyVariant == 1) {
2309     // In this first variant of verification, we complete
2310     // all marking, then check if the new marks-vector is
2311     // a subset of the CMS marks-vector.
2312     verify_after_remark_work_1();
2313   } else {
2314     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2315     // In this second variant of verification, we flag an error
2316     // (i.e. an object reachable in the new marks-vector not reachable
2317     // in the CMS marks-vector) immediately, also indicating the
2318     // identify of an object (A) that references the unmarked object (B) --
2319     // presumably, a mutation to A failed to be picked up by preclean/remark?
2320     verify_after_remark_work_2();
2321   }
2322 
2323   return true;
2324 }
2325 
2326 void CMSCollector::verify_after_remark_work_1() {
2327   ResourceMark rm;
2328   HandleMark  hm;
2329   GenCollectedHeap* gch = GenCollectedHeap::heap();
2330 
2331   // Get a clear set of claim bits for the roots processing to work with.
2332   ClassLoaderDataGraph::clear_claimed_marks();
2333 
2334   // Mark from roots one level into CMS
2335   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2336   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2337 
2338   {
2339     StrongRootsScope srs(1);
2340 
2341     gch->gen_process_roots(&srs,
2342                            GenCollectedHeap::OldGen,
2343                            true,   // young gen as roots
2344                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2345                            should_unload_classes(),
2346                            &notOlder,
2347                            NULL,
2348                            NULL);
2349   }
2350 
2351   // Now mark from the roots
2352   MarkFromRootsClosure markFromRootsClosure(this, _span,
2353     verification_mark_bm(), verification_mark_stack(),
2354     false /* don't yield */, true /* verifying */);
2355   assert(_restart_addr == NULL, "Expected pre-condition");
2356   verification_mark_bm()->iterate(&markFromRootsClosure);
2357   while (_restart_addr != NULL) {
2358     // Deal with stack overflow: by restarting at the indicated
2359     // address.
2360     HeapWord* ra = _restart_addr;
2361     markFromRootsClosure.reset(ra);
2362     _restart_addr = NULL;
2363     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2364   }
2365   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2366   verify_work_stacks_empty();
2367 
2368   // Marking completed -- now verify that each bit marked in
2369   // verification_mark_bm() is also marked in markBitMap(); flag all
2370   // errors by printing corresponding objects.
2371   VerifyMarkedClosure vcl(markBitMap());
2372   verification_mark_bm()->iterate(&vcl);
2373   if (vcl.failed()) {
2374     Log(gc, verify) log;
2375     log.error("Failed marking verification after remark");
2376     ResourceMark rm;
2377     gch->print_on(log.error_stream());
2378     fatal("CMS: failed marking verification after remark");
2379   }
2380 }
2381 
2382 class VerifyKlassOopsKlassClosure : public KlassClosure {
2383   class VerifyKlassOopsClosure : public OopClosure {
2384     CMSBitMap* _bitmap;
2385    public:
2386     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2387     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2388     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2389   } _oop_closure;
2390  public:
2391   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2392   void do_klass(Klass* k) {
2393     k->oops_do(&_oop_closure);
2394   }
2395 };
2396 
2397 void CMSCollector::verify_after_remark_work_2() {
2398   ResourceMark rm;
2399   HandleMark  hm;
2400   GenCollectedHeap* gch = GenCollectedHeap::heap();
2401 
2402   // Get a clear set of claim bits for the roots processing to work with.
2403   ClassLoaderDataGraph::clear_claimed_marks();
2404 
2405   // Mark from roots one level into CMS
2406   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2407                                      markBitMap());
2408   CLDToOopClosure cld_closure(&notOlder, true);
2409 
2410   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2411 
2412   {
2413     StrongRootsScope srs(1);
2414 
2415     gch->gen_process_roots(&srs,
2416                            GenCollectedHeap::OldGen,
2417                            true,   // young gen as roots
2418                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2419                            should_unload_classes(),
2420                            &notOlder,
2421                            NULL,
2422                            &cld_closure);
2423   }
2424 
2425   // Now mark from the roots
2426   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2427     verification_mark_bm(), markBitMap(), verification_mark_stack());
2428   assert(_restart_addr == NULL, "Expected pre-condition");
2429   verification_mark_bm()->iterate(&markFromRootsClosure);
2430   while (_restart_addr != NULL) {
2431     // Deal with stack overflow: by restarting at the indicated
2432     // address.
2433     HeapWord* ra = _restart_addr;
2434     markFromRootsClosure.reset(ra);
2435     _restart_addr = NULL;
2436     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2437   }
2438   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2439   verify_work_stacks_empty();
2440 
2441   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2442   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2443 
2444   // Marking completed -- now verify that each bit marked in
2445   // verification_mark_bm() is also marked in markBitMap(); flag all
2446   // errors by printing corresponding objects.
2447   VerifyMarkedClosure vcl(markBitMap());
2448   verification_mark_bm()->iterate(&vcl);
2449   assert(!vcl.failed(), "Else verification above should not have succeeded");
2450 }
2451 
2452 void ConcurrentMarkSweepGeneration::save_marks() {
2453   // delegate to CMS space
2454   cmsSpace()->save_marks();
2455 }
2456 
2457 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2458   return cmsSpace()->no_allocs_since_save_marks();
2459 }
2460 
2461 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2462                                                                 \
2463 void ConcurrentMarkSweepGeneration::                            \
2464 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2465   cl->set_generation(this);                                     \
2466   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2467   cl->reset_generation();                                       \
2468   save_marks();                                                 \
2469 }
2470 
2471 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2472 
2473 void
2474 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2475   if (freelistLock()->owned_by_self()) {
2476     Generation::oop_iterate(cl);
2477   } else {
2478     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2479     Generation::oop_iterate(cl);
2480   }
2481 }
2482 
2483 void
2484 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2485   if (freelistLock()->owned_by_self()) {
2486     Generation::object_iterate(cl);
2487   } else {
2488     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2489     Generation::object_iterate(cl);
2490   }
2491 }
2492 
2493 void
2494 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2495   if (freelistLock()->owned_by_self()) {
2496     Generation::safe_object_iterate(cl);
2497   } else {
2498     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2499     Generation::safe_object_iterate(cl);
2500   }
2501 }
2502 
2503 void
2504 ConcurrentMarkSweepGeneration::post_compact() {
2505 }
2506 
2507 void
2508 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2509   // Fix the linear allocation blocks to look like free blocks.
2510 
2511   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2512   // are not called when the heap is verified during universe initialization and
2513   // at vm shutdown.
2514   if (freelistLock()->owned_by_self()) {
2515     cmsSpace()->prepare_for_verify();
2516   } else {
2517     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2518     cmsSpace()->prepare_for_verify();
2519   }
2520 }
2521 
2522 void
2523 ConcurrentMarkSweepGeneration::verify() {
2524   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2525   // are not called when the heap is verified during universe initialization and
2526   // at vm shutdown.
2527   if (freelistLock()->owned_by_self()) {
2528     cmsSpace()->verify();
2529   } else {
2530     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2531     cmsSpace()->verify();
2532   }
2533 }
2534 
2535 void CMSCollector::verify() {
2536   _cmsGen->verify();
2537 }
2538 
2539 #ifndef PRODUCT
2540 bool CMSCollector::overflow_list_is_empty() const {
2541   assert(_num_par_pushes >= 0, "Inconsistency");
2542   if (_overflow_list == NULL) {
2543     assert(_num_par_pushes == 0, "Inconsistency");
2544   }
2545   return _overflow_list == NULL;
2546 }
2547 
2548 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2549 // merely consolidate assertion checks that appear to occur together frequently.
2550 void CMSCollector::verify_work_stacks_empty() const {
2551   assert(_markStack.isEmpty(), "Marking stack should be empty");
2552   assert(overflow_list_is_empty(), "Overflow list should be empty");
2553 }
2554 
2555 void CMSCollector::verify_overflow_empty() const {
2556   assert(overflow_list_is_empty(), "Overflow list should be empty");
2557   assert(no_preserved_marks(), "No preserved marks");
2558 }
2559 #endif // PRODUCT
2560 
2561 // Decide if we want to enable class unloading as part of the
2562 // ensuing concurrent GC cycle. We will collect and
2563 // unload classes if it's the case that:
2564 // (1) an explicit gc request has been made and the flag
2565 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2566 // (2) (a) class unloading is enabled at the command line, and
2567 //     (b) old gen is getting really full
2568 // NOTE: Provided there is no change in the state of the heap between
2569 // calls to this method, it should have idempotent results. Moreover,
2570 // its results should be monotonically increasing (i.e. going from 0 to 1,
2571 // but not 1 to 0) between successive calls between which the heap was
2572 // not collected. For the implementation below, it must thus rely on
2573 // the property that concurrent_cycles_since_last_unload()
2574 // will not decrease unless a collection cycle happened and that
2575 // _cmsGen->is_too_full() are
2576 // themselves also monotonic in that sense. See check_monotonicity()
2577 // below.
2578 void CMSCollector::update_should_unload_classes() {
2579   _should_unload_classes = false;
2580   // Condition 1 above
2581   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2582     _should_unload_classes = true;
2583   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2584     // Disjuncts 2.b.(i,ii,iii) above
2585     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2586                               CMSClassUnloadingMaxInterval)
2587                            || _cmsGen->is_too_full();
2588   }
2589 }
2590 
2591 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2592   bool res = should_concurrent_collect();
2593   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2594   return res;
2595 }
2596 
2597 void CMSCollector::setup_cms_unloading_and_verification_state() {
2598   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2599                              || VerifyBeforeExit;
2600   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2601 
2602   // We set the proper root for this CMS cycle here.
2603   if (should_unload_classes()) {   // Should unload classes this cycle
2604     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2605     set_verifying(should_verify);    // Set verification state for this cycle
2606     return;                            // Nothing else needs to be done at this time
2607   }
2608 
2609   // Not unloading classes this cycle
2610   assert(!should_unload_classes(), "Inconsistency!");
2611 
2612   // If we are not unloading classes then add SO_AllCodeCache to root
2613   // scanning options.
2614   add_root_scanning_option(rso);
2615 
2616   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2617     set_verifying(true);
2618   } else if (verifying() && !should_verify) {
2619     // We were verifying, but some verification flags got disabled.
2620     set_verifying(false);
2621     // Exclude symbols, strings and code cache elements from root scanning to
2622     // reduce IM and RM pauses.
2623     remove_root_scanning_option(rso);
2624   }
2625 }
2626 
2627 
2628 #ifndef PRODUCT
2629 HeapWord* CMSCollector::block_start(const void* p) const {
2630   const HeapWord* addr = (HeapWord*)p;
2631   if (_span.contains(p)) {
2632     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2633       return _cmsGen->cmsSpace()->block_start(p);
2634     }
2635   }
2636   return NULL;
2637 }
2638 #endif
2639 
2640 HeapWord*
2641 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2642                                                    bool   tlab,
2643                                                    bool   parallel) {
2644   CMSSynchronousYieldRequest yr;
2645   assert(!tlab, "Can't deal with TLAB allocation");
2646   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2647   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2648   if (GCExpandToAllocateDelayMillis > 0) {
2649     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2650   }
2651   return have_lock_and_allocate(word_size, tlab);
2652 }
2653 
2654 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2655     size_t bytes,
2656     size_t expand_bytes,
2657     CMSExpansionCause::Cause cause)
2658 {
2659 
2660   bool success = expand(bytes, expand_bytes);
2661 
2662   // remember why we expanded; this information is used
2663   // by shouldConcurrentCollect() when making decisions on whether to start
2664   // a new CMS cycle.
2665   if (success) {
2666     set_expansion_cause(cause);
2667     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2668   }
2669 }
2670 
2671 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2672   HeapWord* res = NULL;
2673   MutexLocker x(ParGCRareEvent_lock);
2674   while (true) {
2675     // Expansion by some other thread might make alloc OK now:
2676     res = ps->lab.alloc(word_sz);
2677     if (res != NULL) return res;
2678     // If there's not enough expansion space available, give up.
2679     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2680       return NULL;
2681     }
2682     // Otherwise, we try expansion.
2683     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2684     // Now go around the loop and try alloc again;
2685     // A competing par_promote might beat us to the expansion space,
2686     // so we may go around the loop again if promotion fails again.
2687     if (GCExpandToAllocateDelayMillis > 0) {
2688       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2689     }
2690   }
2691 }
2692 
2693 
2694 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2695   PromotionInfo* promo) {
2696   MutexLocker x(ParGCRareEvent_lock);
2697   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2698   while (true) {
2699     // Expansion by some other thread might make alloc OK now:
2700     if (promo->ensure_spooling_space()) {
2701       assert(promo->has_spooling_space(),
2702              "Post-condition of successful ensure_spooling_space()");
2703       return true;
2704     }
2705     // If there's not enough expansion space available, give up.
2706     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2707       return false;
2708     }
2709     // Otherwise, we try expansion.
2710     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2711     // Now go around the loop and try alloc again;
2712     // A competing allocation might beat us to the expansion space,
2713     // so we may go around the loop again if allocation fails again.
2714     if (GCExpandToAllocateDelayMillis > 0) {
2715       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2716     }
2717   }
2718 }
2719 
2720 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2721   // Only shrink if a compaction was done so that all the free space
2722   // in the generation is in a contiguous block at the end.
2723   if (did_compact()) {
2724     CardGeneration::shrink(bytes);
2725   }
2726 }
2727 
2728 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2729   assert_locked_or_safepoint(Heap_lock);
2730 }
2731 
2732 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2733   assert_locked_or_safepoint(Heap_lock);
2734   assert_lock_strong(freelistLock());
2735   log_trace(gc)("Shrinking of CMS not yet implemented");
2736   return;
2737 }
2738 
2739 
2740 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2741 // phases.
2742 class CMSPhaseAccounting: public StackObj {
2743  public:
2744   CMSPhaseAccounting(CMSCollector *collector,
2745                      const char *title);
2746   ~CMSPhaseAccounting();
2747 
2748  private:
2749   CMSCollector *_collector;
2750   const char *_title;
2751   GCTraceConcTime(Info, gc) _trace_time;
2752 
2753  public:
2754   // Not MT-safe; so do not pass around these StackObj's
2755   // where they may be accessed by other threads.
2756   double wallclock_millis() {
2757     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2758   }
2759 };
2760 
2761 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2762                                        const char *title) :
2763   _collector(collector), _title(title), _trace_time(title) {
2764 
2765   _collector->resetYields();
2766   _collector->resetTimer();
2767   _collector->startTimer();
2768   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2769 }
2770 
2771 CMSPhaseAccounting::~CMSPhaseAccounting() {
2772   _collector->gc_timer_cm()->register_gc_concurrent_end();
2773   _collector->stopTimer();
2774   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2775   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2776 }
2777 
2778 // CMS work
2779 
2780 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2781 class CMSParMarkTask : public AbstractGangTask {
2782  protected:
2783   CMSCollector*     _collector;
2784   uint              _n_workers;
2785   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2786       AbstractGangTask(name),
2787       _collector(collector),
2788       _n_workers(n_workers) {}
2789   // Work method in support of parallel rescan ... of young gen spaces
2790   void do_young_space_rescan(OopsInGenClosure* cl,
2791                              ContiguousSpace* space,
2792                              HeapWord** chunk_array, size_t chunk_top);
2793   void work_on_young_gen_roots(OopsInGenClosure* cl);
2794 };
2795 
2796 // Parallel initial mark task
2797 class CMSParInitialMarkTask: public CMSParMarkTask {
2798   StrongRootsScope* _strong_roots_scope;
2799  public:
2800   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2801       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2802       _strong_roots_scope(strong_roots_scope) {}
2803   void work(uint worker_id);
2804 };
2805 
2806 // Checkpoint the roots into this generation from outside
2807 // this generation. [Note this initial checkpoint need only
2808 // be approximate -- we'll do a catch up phase subsequently.]
2809 void CMSCollector::checkpointRootsInitial() {
2810   assert(_collectorState == InitialMarking, "Wrong collector state");
2811   check_correct_thread_executing();
2812   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2813 
2814   save_heap_summary();
2815   report_heap_summary(GCWhen::BeforeGC);
2816 
2817   ReferenceProcessor* rp = ref_processor();
2818   assert(_restart_addr == NULL, "Control point invariant");
2819   {
2820     // acquire locks for subsequent manipulations
2821     MutexLockerEx x(bitMapLock(),
2822                     Mutex::_no_safepoint_check_flag);
2823     checkpointRootsInitialWork();
2824     // enable ("weak") refs discovery
2825     rp->enable_discovery();
2826     _collectorState = Marking;
2827   }
2828 }
2829 
2830 void CMSCollector::checkpointRootsInitialWork() {
2831   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2832   assert(_collectorState == InitialMarking, "just checking");
2833 
2834   // Already have locks.
2835   assert_lock_strong(bitMapLock());
2836   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2837 
2838   // Setup the verification and class unloading state for this
2839   // CMS collection cycle.
2840   setup_cms_unloading_and_verification_state();
2841 
2842   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2843 
2844   // Reset all the PLAB chunk arrays if necessary.
2845   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2846     reset_survivor_plab_arrays();
2847   }
2848 
2849   ResourceMark rm;
2850   HandleMark  hm;
2851 
2852   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2853   GenCollectedHeap* gch = GenCollectedHeap::heap();
2854 
2855   verify_work_stacks_empty();
2856   verify_overflow_empty();
2857 
2858   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2859   // Update the saved marks which may affect the root scans.
2860   gch->save_marks();
2861 
2862   // weak reference processing has not started yet.
2863   ref_processor()->set_enqueuing_is_done(false);
2864 
2865   // Need to remember all newly created CLDs,
2866   // so that we can guarantee that the remark finds them.
2867   ClassLoaderDataGraph::remember_new_clds(true);
2868 
2869   // Whenever a CLD is found, it will be claimed before proceeding to mark
2870   // the klasses. The claimed marks need to be cleared before marking starts.
2871   ClassLoaderDataGraph::clear_claimed_marks();
2872 
2873   print_eden_and_survivor_chunk_arrays();
2874 
2875   {
2876 #if defined(COMPILER2) || INCLUDE_JVMCI
2877     DerivedPointerTableDeactivate dpt_deact;
2878 #endif
2879     if (CMSParallelInitialMarkEnabled) {
2880       // The parallel version.
2881       WorkGang* workers = gch->workers();
2882       assert(workers != NULL, "Need parallel worker threads.");
2883       uint n_workers = workers->active_workers();
2884 
2885       StrongRootsScope srs(n_workers);
2886 
2887       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2888       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2889       if (n_workers > 1) {
2890         workers->run_task(&tsk);
2891       } else {
2892         tsk.work(0);
2893       }
2894     } else {
2895       // The serial version.
2896       CLDToOopClosure cld_closure(&notOlder, true);
2897       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2898 
2899       StrongRootsScope srs(1);
2900 
2901       gch->gen_process_roots(&srs,
2902                              GenCollectedHeap::OldGen,
2903                              true,   // young gen as roots
2904                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2905                              should_unload_classes(),
2906                              &notOlder,
2907                              NULL,
2908                              &cld_closure);
2909     }
2910   }
2911 
2912   // Clear mod-union table; it will be dirtied in the prologue of
2913   // CMS generation per each young generation collection.
2914 
2915   assert(_modUnionTable.isAllClear(),
2916        "Was cleared in most recent final checkpoint phase"
2917        " or no bits are set in the gc_prologue before the start of the next "
2918        "subsequent marking phase.");
2919 
2920   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2921 
2922   // Save the end of the used_region of the constituent generations
2923   // to be used to limit the extent of sweep in each generation.
2924   save_sweep_limits();
2925   verify_overflow_empty();
2926 }
2927 
2928 bool CMSCollector::markFromRoots() {
2929   // we might be tempted to assert that:
2930   // assert(!SafepointSynchronize::is_at_safepoint(),
2931   //        "inconsistent argument?");
2932   // However that wouldn't be right, because it's possible that
2933   // a safepoint is indeed in progress as a young generation
2934   // stop-the-world GC happens even as we mark in this generation.
2935   assert(_collectorState == Marking, "inconsistent state?");
2936   check_correct_thread_executing();
2937   verify_overflow_empty();
2938 
2939   // Weak ref discovery note: We may be discovering weak
2940   // refs in this generation concurrent (but interleaved) with
2941   // weak ref discovery by the young generation collector.
2942 
2943   CMSTokenSyncWithLocks ts(true, bitMapLock());
2944   GCTraceCPUTime tcpu;
2945   CMSPhaseAccounting pa(this, "Concurrent Mark");
2946   bool res = markFromRootsWork();
2947   if (res) {
2948     _collectorState = Precleaning;
2949   } else { // We failed and a foreground collection wants to take over
2950     assert(_foregroundGCIsActive, "internal state inconsistency");
2951     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2952     log_debug(gc)("bailing out to foreground collection");
2953   }
2954   verify_overflow_empty();
2955   return res;
2956 }
2957 
2958 bool CMSCollector::markFromRootsWork() {
2959   // iterate over marked bits in bit map, doing a full scan and mark
2960   // from these roots using the following algorithm:
2961   // . if oop is to the right of the current scan pointer,
2962   //   mark corresponding bit (we'll process it later)
2963   // . else (oop is to left of current scan pointer)
2964   //   push oop on marking stack
2965   // . drain the marking stack
2966 
2967   // Note that when we do a marking step we need to hold the
2968   // bit map lock -- recall that direct allocation (by mutators)
2969   // and promotion (by the young generation collector) is also
2970   // marking the bit map. [the so-called allocate live policy.]
2971   // Because the implementation of bit map marking is not
2972   // robust wrt simultaneous marking of bits in the same word,
2973   // we need to make sure that there is no such interference
2974   // between concurrent such updates.
2975 
2976   // already have locks
2977   assert_lock_strong(bitMapLock());
2978 
2979   verify_work_stacks_empty();
2980   verify_overflow_empty();
2981   bool result = false;
2982   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2983     result = do_marking_mt();
2984   } else {
2985     result = do_marking_st();
2986   }
2987   return result;
2988 }
2989 
2990 // Forward decl
2991 class CMSConcMarkingTask;
2992 
2993 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2994   CMSCollector*       _collector;
2995   CMSConcMarkingTask* _task;
2996  public:
2997   virtual void yield();
2998 
2999   // "n_threads" is the number of threads to be terminated.
3000   // "queue_set" is a set of work queues of other threads.
3001   // "collector" is the CMS collector associated with this task terminator.
3002   // "yield" indicates whether we need the gang as a whole to yield.
3003   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3004     ParallelTaskTerminator(n_threads, queue_set),
3005     _collector(collector) { }
3006 
3007   void set_task(CMSConcMarkingTask* task) {
3008     _task = task;
3009   }
3010 };
3011 
3012 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3013   CMSConcMarkingTask* _task;
3014  public:
3015   bool should_exit_termination();
3016   void set_task(CMSConcMarkingTask* task) {
3017     _task = task;
3018   }
3019 };
3020 
3021 // MT Concurrent Marking Task
3022 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3023   CMSCollector* _collector;
3024   uint          _n_workers;       // requested/desired # workers
3025   bool          _result;
3026   CompactibleFreeListSpace*  _cms_space;
3027   char          _pad_front[64];   // padding to ...
3028   HeapWord*     _global_finger;   // ... avoid sharing cache line
3029   char          _pad_back[64];
3030   HeapWord*     _restart_addr;
3031 
3032   //  Exposed here for yielding support
3033   Mutex* const _bit_map_lock;
3034 
3035   // The per thread work queues, available here for stealing
3036   OopTaskQueueSet*  _task_queues;
3037 
3038   // Termination (and yielding) support
3039   CMSConcMarkingTerminator _term;
3040   CMSConcMarkingTerminatorTerminator _term_term;
3041 
3042  public:
3043   CMSConcMarkingTask(CMSCollector* collector,
3044                  CompactibleFreeListSpace* cms_space,
3045                  YieldingFlexibleWorkGang* workers,
3046                  OopTaskQueueSet* task_queues):
3047     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3048     _collector(collector),
3049     _cms_space(cms_space),
3050     _n_workers(0), _result(true),
3051     _task_queues(task_queues),
3052     _term(_n_workers, task_queues, _collector),
3053     _bit_map_lock(collector->bitMapLock())
3054   {
3055     _requested_size = _n_workers;
3056     _term.set_task(this);
3057     _term_term.set_task(this);
3058     _restart_addr = _global_finger = _cms_space->bottom();
3059   }
3060 
3061 
3062   OopTaskQueueSet* task_queues()  { return _task_queues; }
3063 
3064   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3065 
3066   HeapWord** global_finger_addr() { return &_global_finger; }
3067 
3068   CMSConcMarkingTerminator* terminator() { return &_term; }
3069 
3070   virtual void set_for_termination(uint active_workers) {
3071     terminator()->reset_for_reuse(active_workers);
3072   }
3073 
3074   void work(uint worker_id);
3075   bool should_yield() {
3076     return    ConcurrentMarkSweepThread::should_yield()
3077            && !_collector->foregroundGCIsActive();
3078   }
3079 
3080   virtual void coordinator_yield();  // stuff done by coordinator
3081   bool result() { return _result; }
3082 
3083   void reset(HeapWord* ra) {
3084     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3085     _restart_addr = _global_finger = ra;
3086     _term.reset_for_reuse();
3087   }
3088 
3089   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3090                                            OopTaskQueue* work_q);
3091 
3092  private:
3093   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3094   void do_work_steal(int i);
3095   void bump_global_finger(HeapWord* f);
3096 };
3097 
3098 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3099   assert(_task != NULL, "Error");
3100   return _task->yielding();
3101   // Note that we do not need the disjunct || _task->should_yield() above
3102   // because we want terminating threads to yield only if the task
3103   // is already in the midst of yielding, which happens only after at least one
3104   // thread has yielded.
3105 }
3106 
3107 void CMSConcMarkingTerminator::yield() {
3108   if (_task->should_yield()) {
3109     _task->yield();
3110   } else {
3111     ParallelTaskTerminator::yield();
3112   }
3113 }
3114 
3115 ////////////////////////////////////////////////////////////////
3116 // Concurrent Marking Algorithm Sketch
3117 ////////////////////////////////////////////////////////////////
3118 // Until all tasks exhausted (both spaces):
3119 // -- claim next available chunk
3120 // -- bump global finger via CAS
3121 // -- find first object that starts in this chunk
3122 //    and start scanning bitmap from that position
3123 // -- scan marked objects for oops
3124 // -- CAS-mark target, and if successful:
3125 //    . if target oop is above global finger (volatile read)
3126 //      nothing to do
3127 //    . if target oop is in chunk and above local finger
3128 //        then nothing to do
3129 //    . else push on work-queue
3130 // -- Deal with possible overflow issues:
3131 //    . local work-queue overflow causes stuff to be pushed on
3132 //      global (common) overflow queue
3133 //    . always first empty local work queue
3134 //    . then get a batch of oops from global work queue if any
3135 //    . then do work stealing
3136 // -- When all tasks claimed (both spaces)
3137 //    and local work queue empty,
3138 //    then in a loop do:
3139 //    . check global overflow stack; steal a batch of oops and trace
3140 //    . try to steal from other threads oif GOS is empty
3141 //    . if neither is available, offer termination
3142 // -- Terminate and return result
3143 //
3144 void CMSConcMarkingTask::work(uint worker_id) {
3145   elapsedTimer _timer;
3146   ResourceMark rm;
3147   HandleMark hm;
3148 
3149   DEBUG_ONLY(_collector->verify_overflow_empty();)
3150 
3151   // Before we begin work, our work queue should be empty
3152   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3153   // Scan the bitmap covering _cms_space, tracing through grey objects.
3154   _timer.start();
3155   do_scan_and_mark(worker_id, _cms_space);
3156   _timer.stop();
3157   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3158 
3159   // ... do work stealing
3160   _timer.reset();
3161   _timer.start();
3162   do_work_steal(worker_id);
3163   _timer.stop();
3164   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3165   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3166   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3167   // Note that under the current task protocol, the
3168   // following assertion is true even of the spaces
3169   // expanded since the completion of the concurrent
3170   // marking. XXX This will likely change under a strict
3171   // ABORT semantics.
3172   // After perm removal the comparison was changed to
3173   // greater than or equal to from strictly greater than.
3174   // Before perm removal the highest address sweep would
3175   // have been at the end of perm gen but now is at the
3176   // end of the tenured gen.
3177   assert(_global_finger >=  _cms_space->end(),
3178          "All tasks have been completed");
3179   DEBUG_ONLY(_collector->verify_overflow_empty();)
3180 }
3181 
3182 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3183   HeapWord* read = _global_finger;
3184   HeapWord* cur  = read;
3185   while (f > read) {
3186     cur = read;
3187     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3188     if (cur == read) {
3189       // our cas succeeded
3190       assert(_global_finger >= f, "protocol consistency");
3191       break;
3192     }
3193   }
3194 }
3195 
3196 // This is really inefficient, and should be redone by
3197 // using (not yet available) block-read and -write interfaces to the
3198 // stack and the work_queue. XXX FIX ME !!!
3199 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3200                                                       OopTaskQueue* work_q) {
3201   // Fast lock-free check
3202   if (ovflw_stk->length() == 0) {
3203     return false;
3204   }
3205   assert(work_q->size() == 0, "Shouldn't steal");
3206   MutexLockerEx ml(ovflw_stk->par_lock(),
3207                    Mutex::_no_safepoint_check_flag);
3208   // Grab up to 1/4 the size of the work queue
3209   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3210                     (size_t)ParGCDesiredObjsFromOverflowList);
3211   num = MIN2(num, ovflw_stk->length());
3212   for (int i = (int) num; i > 0; i--) {
3213     oop cur = ovflw_stk->pop();
3214     assert(cur != NULL, "Counted wrong?");
3215     work_q->push(cur);
3216   }
3217   return num > 0;
3218 }
3219 
3220 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3221   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3222   int n_tasks = pst->n_tasks();
3223   // We allow that there may be no tasks to do here because
3224   // we are restarting after a stack overflow.
3225   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3226   uint nth_task = 0;
3227 
3228   HeapWord* aligned_start = sp->bottom();
3229   if (sp->used_region().contains(_restart_addr)) {
3230     // Align down to a card boundary for the start of 0th task
3231     // for this space.
3232     aligned_start =
3233       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3234                                  CardTableModRefBS::card_size);
3235   }
3236 
3237   size_t chunk_size = sp->marking_task_size();
3238   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3239     // Having claimed the nth task in this space,
3240     // compute the chunk that it corresponds to:
3241     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3242                                aligned_start + (nth_task+1)*chunk_size);
3243     // Try and bump the global finger via a CAS;
3244     // note that we need to do the global finger bump
3245     // _before_ taking the intersection below, because
3246     // the task corresponding to that region will be
3247     // deemed done even if the used_region() expands
3248     // because of allocation -- as it almost certainly will
3249     // during start-up while the threads yield in the
3250     // closure below.
3251     HeapWord* finger = span.end();
3252     bump_global_finger(finger);   // atomically
3253     // There are null tasks here corresponding to chunks
3254     // beyond the "top" address of the space.
3255     span = span.intersection(sp->used_region());
3256     if (!span.is_empty()) {  // Non-null task
3257       HeapWord* prev_obj;
3258       assert(!span.contains(_restart_addr) || nth_task == 0,
3259              "Inconsistency");
3260       if (nth_task == 0) {
3261         // For the 0th task, we'll not need to compute a block_start.
3262         if (span.contains(_restart_addr)) {
3263           // In the case of a restart because of stack overflow,
3264           // we might additionally skip a chunk prefix.
3265           prev_obj = _restart_addr;
3266         } else {
3267           prev_obj = span.start();
3268         }
3269       } else {
3270         // We want to skip the first object because
3271         // the protocol is to scan any object in its entirety
3272         // that _starts_ in this span; a fortiori, any
3273         // object starting in an earlier span is scanned
3274         // as part of an earlier claimed task.
3275         // Below we use the "careful" version of block_start
3276         // so we do not try to navigate uninitialized objects.
3277         prev_obj = sp->block_start_careful(span.start());
3278         // Below we use a variant of block_size that uses the
3279         // Printezis bits to avoid waiting for allocated
3280         // objects to become initialized/parsable.
3281         while (prev_obj < span.start()) {
3282           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3283           if (sz > 0) {
3284             prev_obj += sz;
3285           } else {
3286             // In this case we may end up doing a bit of redundant
3287             // scanning, but that appears unavoidable, short of
3288             // locking the free list locks; see bug 6324141.
3289             break;
3290           }
3291         }
3292       }
3293       if (prev_obj < span.end()) {
3294         MemRegion my_span = MemRegion(prev_obj, span.end());
3295         // Do the marking work within a non-empty span --
3296         // the last argument to the constructor indicates whether the
3297         // iteration should be incremental with periodic yields.
3298         ParMarkFromRootsClosure cl(this, _collector, my_span,
3299                                    &_collector->_markBitMap,
3300                                    work_queue(i),
3301                                    &_collector->_markStack);
3302         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3303       } // else nothing to do for this task
3304     }   // else nothing to do for this task
3305   }
3306   // We'd be tempted to assert here that since there are no
3307   // more tasks left to claim in this space, the global_finger
3308   // must exceed space->top() and a fortiori space->end(). However,
3309   // that would not quite be correct because the bumping of
3310   // global_finger occurs strictly after the claiming of a task,
3311   // so by the time we reach here the global finger may not yet
3312   // have been bumped up by the thread that claimed the last
3313   // task.
3314   pst->all_tasks_completed();
3315 }
3316 
3317 class ParConcMarkingClosure: public MetadataAwareOopClosure {
3318  private:
3319   CMSCollector* _collector;
3320   CMSConcMarkingTask* _task;
3321   MemRegion     _span;
3322   CMSBitMap*    _bit_map;
3323   CMSMarkStack* _overflow_stack;
3324   OopTaskQueue* _work_queue;
3325  protected:
3326   DO_OOP_WORK_DEFN
3327  public:
3328   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3329                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3330     MetadataAwareOopClosure(collector->ref_processor()),
3331     _collector(collector),
3332     _task(task),
3333     _span(collector->_span),
3334     _work_queue(work_queue),
3335     _bit_map(bit_map),
3336     _overflow_stack(overflow_stack)
3337   { }
3338   virtual void do_oop(oop* p);
3339   virtual void do_oop(narrowOop* p);
3340 
3341   void trim_queue(size_t max);
3342   void handle_stack_overflow(HeapWord* lost);
3343   void do_yield_check() {
3344     if (_task->should_yield()) {
3345       _task->yield();
3346     }
3347   }
3348 };
3349 
3350 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3351 
3352 // Grey object scanning during work stealing phase --
3353 // the salient assumption here is that any references
3354 // that are in these stolen objects being scanned must
3355 // already have been initialized (else they would not have
3356 // been published), so we do not need to check for
3357 // uninitialized objects before pushing here.
3358 void ParConcMarkingClosure::do_oop(oop obj) {
3359   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3360   HeapWord* addr = (HeapWord*)obj;
3361   // Check if oop points into the CMS generation
3362   // and is not marked
3363   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3364     // a white object ...
3365     // If we manage to "claim" the object, by being the
3366     // first thread to mark it, then we push it on our
3367     // marking stack
3368     if (_bit_map->par_mark(addr)) {     // ... now grey
3369       // push on work queue (grey set)
3370       bool simulate_overflow = false;
3371       NOT_PRODUCT(
3372         if (CMSMarkStackOverflowALot &&
3373             _collector->simulate_overflow()) {
3374           // simulate a stack overflow
3375           simulate_overflow = true;
3376         }
3377       )
3378       if (simulate_overflow ||
3379           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3380         // stack overflow
3381         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3382         // We cannot assert that the overflow stack is full because
3383         // it may have been emptied since.
3384         assert(simulate_overflow ||
3385                _work_queue->size() == _work_queue->max_elems(),
3386               "Else push should have succeeded");
3387         handle_stack_overflow(addr);
3388       }
3389     } // Else, some other thread got there first
3390     do_yield_check();
3391   }
3392 }
3393 
3394 void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3395 void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3396 
3397 void ParConcMarkingClosure::trim_queue(size_t max) {
3398   while (_work_queue->size() > max) {
3399     oop new_oop;
3400     if (_work_queue->pop_local(new_oop)) {
3401       assert(new_oop->is_oop(), "Should be an oop");
3402       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3403       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3404       new_oop->oop_iterate(this);  // do_oop() above
3405       do_yield_check();
3406     }
3407   }
3408 }
3409 
3410 // Upon stack overflow, we discard (part of) the stack,
3411 // remembering the least address amongst those discarded
3412 // in CMSCollector's _restart_address.
3413 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3414   // We need to do this under a mutex to prevent other
3415   // workers from interfering with the work done below.
3416   MutexLockerEx ml(_overflow_stack->par_lock(),
3417                    Mutex::_no_safepoint_check_flag);
3418   // Remember the least grey address discarded
3419   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3420   _collector->lower_restart_addr(ra);
3421   _overflow_stack->reset();  // discard stack contents
3422   _overflow_stack->expand(); // expand the stack if possible
3423 }
3424 
3425 
3426 void CMSConcMarkingTask::do_work_steal(int i) {
3427   OopTaskQueue* work_q = work_queue(i);
3428   oop obj_to_scan;
3429   CMSBitMap* bm = &(_collector->_markBitMap);
3430   CMSMarkStack* ovflw = &(_collector->_markStack);
3431   int* seed = _collector->hash_seed(i);
3432   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3433   while (true) {
3434     cl.trim_queue(0);
3435     assert(work_q->size() == 0, "Should have been emptied above");
3436     if (get_work_from_overflow_stack(ovflw, work_q)) {
3437       // Can't assert below because the work obtained from the
3438       // overflow stack may already have been stolen from us.
3439       // assert(work_q->size() > 0, "Work from overflow stack");
3440       continue;
3441     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3442       assert(obj_to_scan->is_oop(), "Should be an oop");
3443       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3444       obj_to_scan->oop_iterate(&cl);
3445     } else if (terminator()->offer_termination(&_term_term)) {
3446       assert(work_q->size() == 0, "Impossible!");
3447       break;
3448     } else if (yielding() || should_yield()) {
3449       yield();
3450     }
3451   }
3452 }
3453 
3454 // This is run by the CMS (coordinator) thread.
3455 void CMSConcMarkingTask::coordinator_yield() {
3456   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3457          "CMS thread should hold CMS token");
3458   // First give up the locks, then yield, then re-lock
3459   // We should probably use a constructor/destructor idiom to
3460   // do this unlock/lock or modify the MutexUnlocker class to
3461   // serve our purpose. XXX
3462   assert_lock_strong(_bit_map_lock);
3463   _bit_map_lock->unlock();
3464   ConcurrentMarkSweepThread::desynchronize(true);
3465   _collector->stopTimer();
3466   _collector->incrementYields();
3467 
3468   // It is possible for whichever thread initiated the yield request
3469   // not to get a chance to wake up and take the bitmap lock between
3470   // this thread releasing it and reacquiring it. So, while the
3471   // should_yield() flag is on, let's sleep for a bit to give the
3472   // other thread a chance to wake up. The limit imposed on the number
3473   // of iterations is defensive, to avoid any unforseen circumstances
3474   // putting us into an infinite loop. Since it's always been this
3475   // (coordinator_yield()) method that was observed to cause the
3476   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3477   // which is by default non-zero. For the other seven methods that
3478   // also perform the yield operation, as are using a different
3479   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3480   // can enable the sleeping for those methods too, if necessary.
3481   // See 6442774.
3482   //
3483   // We really need to reconsider the synchronization between the GC
3484   // thread and the yield-requesting threads in the future and we
3485   // should really use wait/notify, which is the recommended
3486   // way of doing this type of interaction. Additionally, we should
3487   // consolidate the eight methods that do the yield operation and they
3488   // are almost identical into one for better maintainability and
3489   // readability. See 6445193.
3490   //
3491   // Tony 2006.06.29
3492   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3493                    ConcurrentMarkSweepThread::should_yield() &&
3494                    !CMSCollector::foregroundGCIsActive(); ++i) {
3495     os::sleep(Thread::current(), 1, false);
3496   }
3497 
3498   ConcurrentMarkSweepThread::synchronize(true);
3499   _bit_map_lock->lock_without_safepoint_check();
3500   _collector->startTimer();
3501 }
3502 
3503 bool CMSCollector::do_marking_mt() {
3504   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3505   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3506                                                                   conc_workers()->active_workers(),
3507                                                                   Threads::number_of_non_daemon_threads());
3508   conc_workers()->set_active_workers(num_workers);
3509 
3510   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3511 
3512   CMSConcMarkingTask tsk(this,
3513                          cms_space,
3514                          conc_workers(),
3515                          task_queues());
3516 
3517   // Since the actual number of workers we get may be different
3518   // from the number we requested above, do we need to do anything different
3519   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3520   // class?? XXX
3521   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3522 
3523   // Refs discovery is already non-atomic.
3524   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3525   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3526   conc_workers()->start_task(&tsk);
3527   while (tsk.yielded()) {
3528     tsk.coordinator_yield();
3529     conc_workers()->continue_task(&tsk);
3530   }
3531   // If the task was aborted, _restart_addr will be non-NULL
3532   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3533   while (_restart_addr != NULL) {
3534     // XXX For now we do not make use of ABORTED state and have not
3535     // yet implemented the right abort semantics (even in the original
3536     // single-threaded CMS case). That needs some more investigation
3537     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3538     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3539     // If _restart_addr is non-NULL, a marking stack overflow
3540     // occurred; we need to do a fresh marking iteration from the
3541     // indicated restart address.
3542     if (_foregroundGCIsActive) {
3543       // We may be running into repeated stack overflows, having
3544       // reached the limit of the stack size, while making very
3545       // slow forward progress. It may be best to bail out and
3546       // let the foreground collector do its job.
3547       // Clear _restart_addr, so that foreground GC
3548       // works from scratch. This avoids the headache of
3549       // a "rescan" which would otherwise be needed because
3550       // of the dirty mod union table & card table.
3551       _restart_addr = NULL;
3552       return false;
3553     }
3554     // Adjust the task to restart from _restart_addr
3555     tsk.reset(_restart_addr);
3556     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3557                   _restart_addr);
3558     _restart_addr = NULL;
3559     // Get the workers going again
3560     conc_workers()->start_task(&tsk);
3561     while (tsk.yielded()) {
3562       tsk.coordinator_yield();
3563       conc_workers()->continue_task(&tsk);
3564     }
3565   }
3566   assert(tsk.completed(), "Inconsistency");
3567   assert(tsk.result() == true, "Inconsistency");
3568   return true;
3569 }
3570 
3571 bool CMSCollector::do_marking_st() {
3572   ResourceMark rm;
3573   HandleMark   hm;
3574 
3575   // Temporarily make refs discovery single threaded (non-MT)
3576   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3577   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3578     &_markStack, CMSYield);
3579   // the last argument to iterate indicates whether the iteration
3580   // should be incremental with periodic yields.
3581   _markBitMap.iterate(&markFromRootsClosure);
3582   // If _restart_addr is non-NULL, a marking stack overflow
3583   // occurred; we need to do a fresh iteration from the
3584   // indicated restart address.
3585   while (_restart_addr != NULL) {
3586     if (_foregroundGCIsActive) {
3587       // We may be running into repeated stack overflows, having
3588       // reached the limit of the stack size, while making very
3589       // slow forward progress. It may be best to bail out and
3590       // let the foreground collector do its job.
3591       // Clear _restart_addr, so that foreground GC
3592       // works from scratch. This avoids the headache of
3593       // a "rescan" which would otherwise be needed because
3594       // of the dirty mod union table & card table.
3595       _restart_addr = NULL;
3596       return false;  // indicating failure to complete marking
3597     }
3598     // Deal with stack overflow:
3599     // we restart marking from _restart_addr
3600     HeapWord* ra = _restart_addr;
3601     markFromRootsClosure.reset(ra);
3602     _restart_addr = NULL;
3603     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3604   }
3605   return true;
3606 }
3607 
3608 void CMSCollector::preclean() {
3609   check_correct_thread_executing();
3610   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3611   verify_work_stacks_empty();
3612   verify_overflow_empty();
3613   _abort_preclean = false;
3614   if (CMSPrecleaningEnabled) {
3615     if (!CMSEdenChunksRecordAlways) {
3616       _eden_chunk_index = 0;
3617     }
3618     size_t used = get_eden_used();
3619     size_t capacity = get_eden_capacity();
3620     // Don't start sampling unless we will get sufficiently
3621     // many samples.
3622     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3623                 * CMSScheduleRemarkEdenPenetration)) {
3624       _start_sampling = true;
3625     } else {
3626       _start_sampling = false;
3627     }
3628     GCTraceCPUTime tcpu;
3629     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3630     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3631   }
3632   CMSTokenSync x(true); // is cms thread
3633   if (CMSPrecleaningEnabled) {
3634     sample_eden();
3635     _collectorState = AbortablePreclean;
3636   } else {
3637     _collectorState = FinalMarking;
3638   }
3639   verify_work_stacks_empty();
3640   verify_overflow_empty();
3641 }
3642 
3643 // Try and schedule the remark such that young gen
3644 // occupancy is CMSScheduleRemarkEdenPenetration %.
3645 void CMSCollector::abortable_preclean() {
3646   check_correct_thread_executing();
3647   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3648   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3649 
3650   // If Eden's current occupancy is below this threshold,
3651   // immediately schedule the remark; else preclean
3652   // past the next scavenge in an effort to
3653   // schedule the pause as described above. By choosing
3654   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3655   // we will never do an actual abortable preclean cycle.
3656   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3657     GCTraceCPUTime tcpu;
3658     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3659     // We need more smarts in the abortable preclean
3660     // loop below to deal with cases where allocation
3661     // in young gen is very very slow, and our precleaning
3662     // is running a losing race against a horde of
3663     // mutators intent on flooding us with CMS updates
3664     // (dirty cards).
3665     // One, admittedly dumb, strategy is to give up
3666     // after a certain number of abortable precleaning loops
3667     // or after a certain maximum time. We want to make
3668     // this smarter in the next iteration.
3669     // XXX FIX ME!!! YSR
3670     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3671     while (!(should_abort_preclean() ||
3672              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3673       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3674       cumworkdone += workdone;
3675       loops++;
3676       // Voluntarily terminate abortable preclean phase if we have
3677       // been at it for too long.
3678       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3679           loops >= CMSMaxAbortablePrecleanLoops) {
3680         log_debug(gc)(" CMS: abort preclean due to loops ");
3681         break;
3682       }
3683       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3684         log_debug(gc)(" CMS: abort preclean due to time ");
3685         break;
3686       }
3687       // If we are doing little work each iteration, we should
3688       // take a short break.
3689       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3690         // Sleep for some time, waiting for work to accumulate
3691         stopTimer();
3692         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3693         startTimer();
3694         waited++;
3695       }
3696     }
3697     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3698                                loops, waited, cumworkdone);
3699   }
3700   CMSTokenSync x(true); // is cms thread
3701   if (_collectorState != Idling) {
3702     assert(_collectorState == AbortablePreclean,
3703            "Spontaneous state transition?");
3704     _collectorState = FinalMarking;
3705   } // Else, a foreground collection completed this CMS cycle.
3706   return;
3707 }
3708 
3709 // Respond to an Eden sampling opportunity
3710 void CMSCollector::sample_eden() {
3711   // Make sure a young gc cannot sneak in between our
3712   // reading and recording of a sample.
3713   assert(Thread::current()->is_ConcurrentGC_thread(),
3714          "Only the cms thread may collect Eden samples");
3715   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3716          "Should collect samples while holding CMS token");
3717   if (!_start_sampling) {
3718     return;
3719   }
3720   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3721   // is populated by the young generation.
3722   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3723     if (_eden_chunk_index < _eden_chunk_capacity) {
3724       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3725       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3726              "Unexpected state of Eden");
3727       // We'd like to check that what we just sampled is an oop-start address;
3728       // however, we cannot do that here since the object may not yet have been
3729       // initialized. So we'll instead do the check when we _use_ this sample
3730       // later.
3731       if (_eden_chunk_index == 0 ||
3732           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3733                          _eden_chunk_array[_eden_chunk_index-1])
3734            >= CMSSamplingGrain)) {
3735         _eden_chunk_index++;  // commit sample
3736       }
3737     }
3738   }
3739   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3740     size_t used = get_eden_used();
3741     size_t capacity = get_eden_capacity();
3742     assert(used <= capacity, "Unexpected state of Eden");
3743     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3744       _abort_preclean = true;
3745     }
3746   }
3747 }
3748 
3749 
3750 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3751   assert(_collectorState == Precleaning ||
3752          _collectorState == AbortablePreclean, "incorrect state");
3753   ResourceMark rm;
3754   HandleMark   hm;
3755 
3756   // Precleaning is currently not MT but the reference processor
3757   // may be set for MT.  Disable it temporarily here.
3758   ReferenceProcessor* rp = ref_processor();
3759   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3760 
3761   // Do one pass of scrubbing the discovered reference lists
3762   // to remove any reference objects with strongly-reachable
3763   // referents.
3764   if (clean_refs) {
3765     CMSPrecleanRefsYieldClosure yield_cl(this);
3766     assert(rp->span().equals(_span), "Spans should be equal");
3767     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3768                                    &_markStack, true /* preclean */);
3769     CMSDrainMarkingStackClosure complete_trace(this,
3770                                    _span, &_markBitMap, &_markStack,
3771                                    &keep_alive, true /* preclean */);
3772 
3773     // We don't want this step to interfere with a young
3774     // collection because we don't want to take CPU
3775     // or memory bandwidth away from the young GC threads
3776     // (which may be as many as there are CPUs).
3777     // Note that we don't need to protect ourselves from
3778     // interference with mutators because they can't
3779     // manipulate the discovered reference lists nor affect
3780     // the computed reachability of the referents, the
3781     // only properties manipulated by the precleaning
3782     // of these reference lists.
3783     stopTimer();
3784     CMSTokenSyncWithLocks x(true /* is cms thread */,
3785                             bitMapLock());
3786     startTimer();
3787     sample_eden();
3788 
3789     // The following will yield to allow foreground
3790     // collection to proceed promptly. XXX YSR:
3791     // The code in this method may need further
3792     // tweaking for better performance and some restructuring
3793     // for cleaner interfaces.
3794     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3795     rp->preclean_discovered_references(
3796           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3797           gc_timer);
3798   }
3799 
3800   if (clean_survivor) {  // preclean the active survivor space(s)
3801     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3802                              &_markBitMap, &_modUnionTable,
3803                              &_markStack, true /* precleaning phase */);
3804     stopTimer();
3805     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3806                              bitMapLock());
3807     startTimer();
3808     unsigned int before_count =
3809       GenCollectedHeap::heap()->total_collections();
3810     SurvivorSpacePrecleanClosure
3811       sss_cl(this, _span, &_markBitMap, &_markStack,
3812              &pam_cl, before_count, CMSYield);
3813     _young_gen->from()->object_iterate_careful(&sss_cl);
3814     _young_gen->to()->object_iterate_careful(&sss_cl);
3815   }
3816   MarkRefsIntoAndScanClosure
3817     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3818              &_markStack, this, CMSYield,
3819              true /* precleaning phase */);
3820   // CAUTION: The following closure has persistent state that may need to
3821   // be reset upon a decrease in the sequence of addresses it
3822   // processes.
3823   ScanMarkedObjectsAgainCarefullyClosure
3824     smoac_cl(this, _span,
3825       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3826 
3827   // Preclean dirty cards in ModUnionTable and CardTable using
3828   // appropriate convergence criterion;
3829   // repeat CMSPrecleanIter times unless we find that
3830   // we are losing.
3831   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3832   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3833          "Bad convergence multiplier");
3834   assert(CMSPrecleanThreshold >= 100,
3835          "Unreasonably low CMSPrecleanThreshold");
3836 
3837   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3838   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3839        numIter < CMSPrecleanIter;
3840        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3841     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3842     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3843     // Either there are very few dirty cards, so re-mark
3844     // pause will be small anyway, or our pre-cleaning isn't
3845     // that much faster than the rate at which cards are being
3846     // dirtied, so we might as well stop and re-mark since
3847     // precleaning won't improve our re-mark time by much.
3848     if (curNumCards <= CMSPrecleanThreshold ||
3849         (numIter > 0 &&
3850          (curNumCards * CMSPrecleanDenominator >
3851          lastNumCards * CMSPrecleanNumerator))) {
3852       numIter++;
3853       cumNumCards += curNumCards;
3854       break;
3855     }
3856   }
3857 
3858   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3859 
3860   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3861   cumNumCards += curNumCards;
3862   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3863                              curNumCards, cumNumCards, numIter);
3864   return cumNumCards;   // as a measure of useful work done
3865 }
3866 
3867 // PRECLEANING NOTES:
3868 // Precleaning involves:
3869 // . reading the bits of the modUnionTable and clearing the set bits.
3870 // . For the cards corresponding to the set bits, we scan the
3871 //   objects on those cards. This means we need the free_list_lock
3872 //   so that we can safely iterate over the CMS space when scanning
3873 //   for oops.
3874 // . When we scan the objects, we'll be both reading and setting
3875 //   marks in the marking bit map, so we'll need the marking bit map.
3876 // . For protecting _collector_state transitions, we take the CGC_lock.
3877 //   Note that any races in the reading of of card table entries by the
3878 //   CMS thread on the one hand and the clearing of those entries by the
3879 //   VM thread or the setting of those entries by the mutator threads on the
3880 //   other are quite benign. However, for efficiency it makes sense to keep
3881 //   the VM thread from racing with the CMS thread while the latter is
3882 //   dirty card info to the modUnionTable. We therefore also use the
3883 //   CGC_lock to protect the reading of the card table and the mod union
3884 //   table by the CM thread.
3885 // . We run concurrently with mutator updates, so scanning
3886 //   needs to be done carefully  -- we should not try to scan
3887 //   potentially uninitialized objects.
3888 //
3889 // Locking strategy: While holding the CGC_lock, we scan over and
3890 // reset a maximal dirty range of the mod union / card tables, then lock
3891 // the free_list_lock and bitmap lock to do a full marking, then
3892 // release these locks; and repeat the cycle. This allows for a
3893 // certain amount of fairness in the sharing of these locks between
3894 // the CMS collector on the one hand, and the VM thread and the
3895 // mutators on the other.
3896 
3897 // NOTE: preclean_mod_union_table() and preclean_card_table()
3898 // further below are largely identical; if you need to modify
3899 // one of these methods, please check the other method too.
3900 
3901 size_t CMSCollector::preclean_mod_union_table(
3902   ConcurrentMarkSweepGeneration* old_gen,
3903   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3904   verify_work_stacks_empty();
3905   verify_overflow_empty();
3906 
3907   // strategy: starting with the first card, accumulate contiguous
3908   // ranges of dirty cards; clear these cards, then scan the region
3909   // covered by these cards.
3910 
3911   // Since all of the MUT is committed ahead, we can just use
3912   // that, in case the generations expand while we are precleaning.
3913   // It might also be fine to just use the committed part of the
3914   // generation, but we might potentially miss cards when the
3915   // generation is rapidly expanding while we are in the midst
3916   // of precleaning.
3917   HeapWord* startAddr = old_gen->reserved().start();
3918   HeapWord* endAddr   = old_gen->reserved().end();
3919 
3920   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3921 
3922   size_t numDirtyCards, cumNumDirtyCards;
3923   HeapWord *nextAddr, *lastAddr;
3924   for (cumNumDirtyCards = numDirtyCards = 0,
3925        nextAddr = lastAddr = startAddr;
3926        nextAddr < endAddr;
3927        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3928 
3929     ResourceMark rm;
3930     HandleMark   hm;
3931 
3932     MemRegion dirtyRegion;
3933     {
3934       stopTimer();
3935       // Potential yield point
3936       CMSTokenSync ts(true);
3937       startTimer();
3938       sample_eden();
3939       // Get dirty region starting at nextOffset (inclusive),
3940       // simultaneously clearing it.
3941       dirtyRegion =
3942         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3943       assert(dirtyRegion.start() >= nextAddr,
3944              "returned region inconsistent?");
3945     }
3946     // Remember where the next search should begin.
3947     // The returned region (if non-empty) is a right open interval,
3948     // so lastOffset is obtained from the right end of that
3949     // interval.
3950     lastAddr = dirtyRegion.end();
3951     // Should do something more transparent and less hacky XXX
3952     numDirtyCards =
3953       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3954 
3955     // We'll scan the cards in the dirty region (with periodic
3956     // yields for foreground GC as needed).
3957     if (!dirtyRegion.is_empty()) {
3958       assert(numDirtyCards > 0, "consistency check");
3959       HeapWord* stop_point = NULL;
3960       stopTimer();
3961       // Potential yield point
3962       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3963                                bitMapLock());
3964       startTimer();
3965       {
3966         verify_work_stacks_empty();
3967         verify_overflow_empty();
3968         sample_eden();
3969         stop_point =
3970           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3971       }
3972       if (stop_point != NULL) {
3973         // The careful iteration stopped early either because it found an
3974         // uninitialized object, or because we were in the midst of an
3975         // "abortable preclean", which should now be aborted. Redirty
3976         // the bits corresponding to the partially-scanned or unscanned
3977         // cards. We'll either restart at the next block boundary or
3978         // abort the preclean.
3979         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3980                "Should only be AbortablePreclean.");
3981         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3982         if (should_abort_preclean()) {
3983           break; // out of preclean loop
3984         } else {
3985           // Compute the next address at which preclean should pick up;
3986           // might need bitMapLock in order to read P-bits.
3987           lastAddr = next_card_start_after_block(stop_point);
3988         }
3989       }
3990     } else {
3991       assert(lastAddr == endAddr, "consistency check");
3992       assert(numDirtyCards == 0, "consistency check");
3993       break;
3994     }
3995   }
3996   verify_work_stacks_empty();
3997   verify_overflow_empty();
3998   return cumNumDirtyCards;
3999 }
4000 
4001 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4002 // below are largely identical; if you need to modify
4003 // one of these methods, please check the other method too.
4004 
4005 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4006   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4007   // strategy: it's similar to precleamModUnionTable above, in that
4008   // we accumulate contiguous ranges of dirty cards, mark these cards
4009   // precleaned, then scan the region covered by these cards.
4010   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4011   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4012 
4013   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4014 
4015   size_t numDirtyCards, cumNumDirtyCards;
4016   HeapWord *lastAddr, *nextAddr;
4017 
4018   for (cumNumDirtyCards = numDirtyCards = 0,
4019        nextAddr = lastAddr = startAddr;
4020        nextAddr < endAddr;
4021        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4022 
4023     ResourceMark rm;
4024     HandleMark   hm;
4025 
4026     MemRegion dirtyRegion;
4027     {
4028       // See comments in "Precleaning notes" above on why we
4029       // do this locking. XXX Could the locking overheads be
4030       // too high when dirty cards are sparse? [I don't think so.]
4031       stopTimer();
4032       CMSTokenSync x(true); // is cms thread
4033       startTimer();
4034       sample_eden();
4035       // Get and clear dirty region from card table
4036       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4037                                     MemRegion(nextAddr, endAddr),
4038                                     true,
4039                                     CardTableModRefBS::precleaned_card_val());
4040 
4041       assert(dirtyRegion.start() >= nextAddr,
4042              "returned region inconsistent?");
4043     }
4044     lastAddr = dirtyRegion.end();
4045     numDirtyCards =
4046       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4047 
4048     if (!dirtyRegion.is_empty()) {
4049       stopTimer();
4050       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4051       startTimer();
4052       sample_eden();
4053       verify_work_stacks_empty();
4054       verify_overflow_empty();
4055       HeapWord* stop_point =
4056         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4057       if (stop_point != NULL) {
4058         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4059                "Should only be AbortablePreclean.");
4060         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4061         if (should_abort_preclean()) {
4062           break; // out of preclean loop
4063         } else {
4064           // Compute the next address at which preclean should pick up.
4065           lastAddr = next_card_start_after_block(stop_point);
4066         }
4067       }
4068     } else {
4069       break;
4070     }
4071   }
4072   verify_work_stacks_empty();
4073   verify_overflow_empty();
4074   return cumNumDirtyCards;
4075 }
4076 
4077 class PrecleanKlassClosure : public KlassClosure {
4078   KlassToOopClosure _cm_klass_closure;
4079  public:
4080   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4081   void do_klass(Klass* k) {
4082     if (k->has_accumulated_modified_oops()) {
4083       k->clear_accumulated_modified_oops();
4084 
4085       _cm_klass_closure.do_klass(k);
4086     }
4087   }
4088 };
4089 
4090 // The freelist lock is needed to prevent asserts, is it really needed?
4091 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4092 
4093   cl->set_freelistLock(freelistLock);
4094 
4095   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4096 
4097   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4098   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4099   PrecleanKlassClosure preclean_klass_closure(cl);
4100   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4101 
4102   verify_work_stacks_empty();
4103   verify_overflow_empty();
4104 }
4105 
4106 void CMSCollector::checkpointRootsFinal() {
4107   assert(_collectorState == FinalMarking, "incorrect state transition?");
4108   check_correct_thread_executing();
4109   // world is stopped at this checkpoint
4110   assert(SafepointSynchronize::is_at_safepoint(),
4111          "world should be stopped");
4112   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4113 
4114   verify_work_stacks_empty();
4115   verify_overflow_empty();
4116 
4117   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4118                 _young_gen->used() / K, _young_gen->capacity() / K);
4119   {
4120     if (CMSScavengeBeforeRemark) {
4121       GenCollectedHeap* gch = GenCollectedHeap::heap();
4122       // Temporarily set flag to false, GCH->do_collection will
4123       // expect it to be false and set to true
4124       FlagSetting fl(gch->_is_gc_active, false);
4125 
4126       gch->do_collection(true,                      // full (i.e. force, see below)
4127                          false,                     // !clear_all_soft_refs
4128                          0,                         // size
4129                          false,                     // is_tlab
4130                          GenCollectedHeap::YoungGen // type
4131         );
4132     }
4133     FreelistLocker x(this);
4134     MutexLockerEx y(bitMapLock(),
4135                     Mutex::_no_safepoint_check_flag);
4136     checkpointRootsFinalWork();
4137   }
4138   verify_work_stacks_empty();
4139   verify_overflow_empty();
4140 }
4141 
4142 void CMSCollector::checkpointRootsFinalWork() {
4143   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4144 
4145   assert(haveFreelistLocks(), "must have free list locks");
4146   assert_lock_strong(bitMapLock());
4147 
4148   ResourceMark rm;
4149   HandleMark   hm;
4150 
4151   GenCollectedHeap* gch = GenCollectedHeap::heap();
4152 
4153   if (should_unload_classes()) {
4154     CodeCache::gc_prologue();
4155   }
4156   assert(haveFreelistLocks(), "must have free list locks");
4157   assert_lock_strong(bitMapLock());
4158 
4159   // We might assume that we need not fill TLAB's when
4160   // CMSScavengeBeforeRemark is set, because we may have just done
4161   // a scavenge which would have filled all TLAB's -- and besides
4162   // Eden would be empty. This however may not always be the case --
4163   // for instance although we asked for a scavenge, it may not have
4164   // happened because of a JNI critical section. We probably need
4165   // a policy for deciding whether we can in that case wait until
4166   // the critical section releases and then do the remark following
4167   // the scavenge, and skip it here. In the absence of that policy,
4168   // or of an indication of whether the scavenge did indeed occur,
4169   // we cannot rely on TLAB's having been filled and must do
4170   // so here just in case a scavenge did not happen.
4171   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4172   // Update the saved marks which may affect the root scans.
4173   gch->save_marks();
4174 
4175   print_eden_and_survivor_chunk_arrays();
4176 
4177   {
4178 #if defined(COMPILER2) || INCLUDE_JVMCI
4179     DerivedPointerTableDeactivate dpt_deact;
4180 #endif
4181 
4182     // Note on the role of the mod union table:
4183     // Since the marker in "markFromRoots" marks concurrently with
4184     // mutators, it is possible for some reachable objects not to have been
4185     // scanned. For instance, an only reference to an object A was
4186     // placed in object B after the marker scanned B. Unless B is rescanned,
4187     // A would be collected. Such updates to references in marked objects
4188     // are detected via the mod union table which is the set of all cards
4189     // dirtied since the first checkpoint in this GC cycle and prior to
4190     // the most recent young generation GC, minus those cleaned up by the
4191     // concurrent precleaning.
4192     if (CMSParallelRemarkEnabled) {
4193       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4194       do_remark_parallel();
4195     } else {
4196       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4197       do_remark_non_parallel();
4198     }
4199   }
4200   verify_work_stacks_empty();
4201   verify_overflow_empty();
4202 
4203   {
4204     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4205     refProcessingWork();
4206   }
4207   verify_work_stacks_empty();
4208   verify_overflow_empty();
4209 
4210   if (should_unload_classes()) {
4211     CodeCache::gc_epilogue();
4212   }
4213   JvmtiExport::gc_epilogue();
4214 
4215   // If we encountered any (marking stack / work queue) overflow
4216   // events during the current CMS cycle, take appropriate
4217   // remedial measures, where possible, so as to try and avoid
4218   // recurrence of that condition.
4219   assert(_markStack.isEmpty(), "No grey objects");
4220   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4221                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4222   if (ser_ovflw > 0) {
4223     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4224                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4225     _markStack.expand();
4226     _ser_pmc_remark_ovflw = 0;
4227     _ser_pmc_preclean_ovflw = 0;
4228     _ser_kac_preclean_ovflw = 0;
4229     _ser_kac_ovflw = 0;
4230   }
4231   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4232      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4233                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4234      _par_pmc_remark_ovflw = 0;
4235     _par_kac_ovflw = 0;
4236   }
4237    if (_markStack._hit_limit > 0) {
4238      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4239                           _markStack._hit_limit);
4240    }
4241    if (_markStack._failed_double > 0) {
4242      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4243                           _markStack._failed_double, _markStack.capacity());
4244    }
4245   _markStack._hit_limit = 0;
4246   _markStack._failed_double = 0;
4247 
4248   if ((VerifyAfterGC || VerifyDuringGC) &&
4249       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4250     verify_after_remark();
4251   }
4252 
4253   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4254 
4255   // Change under the freelistLocks.
4256   _collectorState = Sweeping;
4257   // Call isAllClear() under bitMapLock
4258   assert(_modUnionTable.isAllClear(),
4259       "Should be clear by end of the final marking");
4260   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4261       "Should be clear by end of the final marking");
4262 }
4263 
4264 void CMSParInitialMarkTask::work(uint worker_id) {
4265   elapsedTimer _timer;
4266   ResourceMark rm;
4267   HandleMark   hm;
4268 
4269   // ---------- scan from roots --------------
4270   _timer.start();
4271   GenCollectedHeap* gch = GenCollectedHeap::heap();
4272   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4273 
4274   // ---------- young gen roots --------------
4275   {
4276     work_on_young_gen_roots(&par_mri_cl);
4277     _timer.stop();
4278     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4279   }
4280 
4281   // ---------- remaining roots --------------
4282   _timer.reset();
4283   _timer.start();
4284 
4285   CLDToOopClosure cld_closure(&par_mri_cl, true);
4286 
4287   gch->gen_process_roots(_strong_roots_scope,
4288                          GenCollectedHeap::OldGen,
4289                          false,     // yg was scanned above
4290                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4291                          _collector->should_unload_classes(),
4292                          &par_mri_cl,
4293                          NULL,
4294                          &cld_closure);
4295   assert(_collector->should_unload_classes()
4296          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4297          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4298   _timer.stop();
4299   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4300 }
4301 
4302 // Parallel remark task
4303 class CMSParRemarkTask: public CMSParMarkTask {
4304   CompactibleFreeListSpace* _cms_space;
4305 
4306   // The per-thread work queues, available here for stealing.
4307   OopTaskQueueSet*       _task_queues;
4308   ParallelTaskTerminator _term;
4309   StrongRootsScope*      _strong_roots_scope;
4310 
4311  public:
4312   // A value of 0 passed to n_workers will cause the number of
4313   // workers to be taken from the active workers in the work gang.
4314   CMSParRemarkTask(CMSCollector* collector,
4315                    CompactibleFreeListSpace* cms_space,
4316                    uint n_workers, WorkGang* workers,
4317                    OopTaskQueueSet* task_queues,
4318                    StrongRootsScope* strong_roots_scope):
4319     CMSParMarkTask("Rescan roots and grey objects in parallel",
4320                    collector, n_workers),
4321     _cms_space(cms_space),
4322     _task_queues(task_queues),
4323     _term(n_workers, task_queues),
4324     _strong_roots_scope(strong_roots_scope) { }
4325 
4326   OopTaskQueueSet* task_queues() { return _task_queues; }
4327 
4328   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4329 
4330   ParallelTaskTerminator* terminator() { return &_term; }
4331   uint n_workers() { return _n_workers; }
4332 
4333   void work(uint worker_id);
4334 
4335  private:
4336   // ... of  dirty cards in old space
4337   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4338                                   ParMarkRefsIntoAndScanClosure* cl);
4339 
4340   // ... work stealing for the above
4341   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4342 };
4343 
4344 class RemarkKlassClosure : public KlassClosure {
4345   KlassToOopClosure _cm_klass_closure;
4346  public:
4347   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4348   void do_klass(Klass* k) {
4349     // Check if we have modified any oops in the Klass during the concurrent marking.
4350     if (k->has_accumulated_modified_oops()) {
4351       k->clear_accumulated_modified_oops();
4352 
4353       // We could have transfered the current modified marks to the accumulated marks,
4354       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4355     } else if (k->has_modified_oops()) {
4356       // Don't clear anything, this info is needed by the next young collection.
4357     } else {
4358       // No modified oops in the Klass.
4359       return;
4360     }
4361 
4362     // The klass has modified fields, need to scan the klass.
4363     _cm_klass_closure.do_klass(k);
4364   }
4365 };
4366 
4367 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4368   ParNewGeneration* young_gen = _collector->_young_gen;
4369   ContiguousSpace* eden_space = young_gen->eden();
4370   ContiguousSpace* from_space = young_gen->from();
4371   ContiguousSpace* to_space   = young_gen->to();
4372 
4373   HeapWord** eca = _collector->_eden_chunk_array;
4374   size_t     ect = _collector->_eden_chunk_index;
4375   HeapWord** sca = _collector->_survivor_chunk_array;
4376   size_t     sct = _collector->_survivor_chunk_index;
4377 
4378   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4379   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4380 
4381   do_young_space_rescan(cl, to_space, NULL, 0);
4382   do_young_space_rescan(cl, from_space, sca, sct);
4383   do_young_space_rescan(cl, eden_space, eca, ect);
4384 }
4385 
4386 // work_queue(i) is passed to the closure
4387 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4388 // also is passed to do_dirty_card_rescan_tasks() and to
4389 // do_work_steal() to select the i-th task_queue.
4390 
4391 void CMSParRemarkTask::work(uint worker_id) {
4392   elapsedTimer _timer;
4393   ResourceMark rm;
4394   HandleMark   hm;
4395 
4396   // ---------- rescan from roots --------------
4397   _timer.start();
4398   GenCollectedHeap* gch = GenCollectedHeap::heap();
4399   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4400     _collector->_span, _collector->ref_processor(),
4401     &(_collector->_markBitMap),
4402     work_queue(worker_id));
4403 
4404   // Rescan young gen roots first since these are likely
4405   // coarsely partitioned and may, on that account, constitute
4406   // the critical path; thus, it's best to start off that
4407   // work first.
4408   // ---------- young gen roots --------------
4409   {
4410     work_on_young_gen_roots(&par_mrias_cl);
4411     _timer.stop();
4412     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4413   }
4414 
4415   // ---------- remaining roots --------------
4416   _timer.reset();
4417   _timer.start();
4418   gch->gen_process_roots(_strong_roots_scope,
4419                          GenCollectedHeap::OldGen,
4420                          false,     // yg was scanned above
4421                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4422                          _collector->should_unload_classes(),
4423                          &par_mrias_cl,
4424                          NULL,
4425                          NULL);     // The dirty klasses will be handled below
4426 
4427   assert(_collector->should_unload_classes()
4428          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4429          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4430   _timer.stop();
4431   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4432 
4433   // ---------- unhandled CLD scanning ----------
4434   if (worker_id == 0) { // Single threaded at the moment.
4435     _timer.reset();
4436     _timer.start();
4437 
4438     // Scan all new class loader data objects and new dependencies that were
4439     // introduced during concurrent marking.
4440     ResourceMark rm;
4441     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4442     for (int i = 0; i < array->length(); i++) {
4443       par_mrias_cl.do_cld_nv(array->at(i));
4444     }
4445 
4446     // We don't need to keep track of new CLDs anymore.
4447     ClassLoaderDataGraph::remember_new_clds(false);
4448 
4449     _timer.stop();
4450     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4451   }
4452 
4453   // ---------- dirty klass scanning ----------
4454   if (worker_id == 0) { // Single threaded at the moment.
4455     _timer.reset();
4456     _timer.start();
4457 
4458     // Scan all classes that was dirtied during the concurrent marking phase.
4459     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4460     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4461 
4462     _timer.stop();
4463     log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4464   }
4465 
4466   // We might have added oops to ClassLoaderData::_handles during the
4467   // concurrent marking phase. These oops point to newly allocated objects
4468   // that are guaranteed to be kept alive. Either by the direct allocation
4469   // code, or when the young collector processes the roots. Hence,
4470   // we don't have to revisit the _handles block during the remark phase.
4471 
4472   // ---------- rescan dirty cards ------------
4473   _timer.reset();
4474   _timer.start();
4475 
4476   // Do the rescan tasks for each of the two spaces
4477   // (cms_space) in turn.
4478   // "worker_id" is passed to select the task_queue for "worker_id"
4479   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4480   _timer.stop();
4481   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4482 
4483   // ---------- steal work from other threads ...
4484   // ---------- ... and drain overflow list.
4485   _timer.reset();
4486   _timer.start();
4487   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4488   _timer.stop();
4489   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4490 }
4491 
4492 void
4493 CMSParMarkTask::do_young_space_rescan(
4494   OopsInGenClosure* cl, ContiguousSpace* space,
4495   HeapWord** chunk_array, size_t chunk_top) {
4496   // Until all tasks completed:
4497   // . claim an unclaimed task
4498   // . compute region boundaries corresponding to task claimed
4499   //   using chunk_array
4500   // . par_oop_iterate(cl) over that region
4501 
4502   ResourceMark rm;
4503   HandleMark   hm;
4504 
4505   SequentialSubTasksDone* pst = space->par_seq_tasks();
4506 
4507   uint nth_task = 0;
4508   uint n_tasks  = pst->n_tasks();
4509 
4510   if (n_tasks > 0) {
4511     assert(pst->valid(), "Uninitialized use?");
4512     HeapWord *start, *end;
4513     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4514       // We claimed task # nth_task; compute its boundaries.
4515       if (chunk_top == 0) {  // no samples were taken
4516         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4517         start = space->bottom();
4518         end   = space->top();
4519       } else if (nth_task == 0) {
4520         start = space->bottom();
4521         end   = chunk_array[nth_task];
4522       } else if (nth_task < (uint)chunk_top) {
4523         assert(nth_task >= 1, "Control point invariant");
4524         start = chunk_array[nth_task - 1];
4525         end   = chunk_array[nth_task];
4526       } else {
4527         assert(nth_task == (uint)chunk_top, "Control point invariant");
4528         start = chunk_array[chunk_top - 1];
4529         end   = space->top();
4530       }
4531       MemRegion mr(start, end);
4532       // Verify that mr is in space
4533       assert(mr.is_empty() || space->used_region().contains(mr),
4534              "Should be in space");
4535       // Verify that "start" is an object boundary
4536       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4537              "Should be an oop");
4538       space->par_oop_iterate(mr, cl);
4539     }
4540     pst->all_tasks_completed();
4541   }
4542 }
4543 
4544 void
4545 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4546   CompactibleFreeListSpace* sp, int i,
4547   ParMarkRefsIntoAndScanClosure* cl) {
4548   // Until all tasks completed:
4549   // . claim an unclaimed task
4550   // . compute region boundaries corresponding to task claimed
4551   // . transfer dirty bits ct->mut for that region
4552   // . apply rescanclosure to dirty mut bits for that region
4553 
4554   ResourceMark rm;
4555   HandleMark   hm;
4556 
4557   OopTaskQueue* work_q = work_queue(i);
4558   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4559   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4560   // CAUTION: This closure has state that persists across calls to
4561   // the work method dirty_range_iterate_clear() in that it has
4562   // embedded in it a (subtype of) UpwardsObjectClosure. The
4563   // use of that state in the embedded UpwardsObjectClosure instance
4564   // assumes that the cards are always iterated (even if in parallel
4565   // by several threads) in monotonically increasing order per each
4566   // thread. This is true of the implementation below which picks
4567   // card ranges (chunks) in monotonically increasing order globally
4568   // and, a-fortiori, in monotonically increasing order per thread
4569   // (the latter order being a subsequence of the former).
4570   // If the work code below is ever reorganized into a more chaotic
4571   // work-partitioning form than the current "sequential tasks"
4572   // paradigm, the use of that persistent state will have to be
4573   // revisited and modified appropriately. See also related
4574   // bug 4756801 work on which should examine this code to make
4575   // sure that the changes there do not run counter to the
4576   // assumptions made here and necessary for correctness and
4577   // efficiency. Note also that this code might yield inefficient
4578   // behavior in the case of very large objects that span one or
4579   // more work chunks. Such objects would potentially be scanned
4580   // several times redundantly. Work on 4756801 should try and
4581   // address that performance anomaly if at all possible. XXX
4582   MemRegion  full_span  = _collector->_span;
4583   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4584   MarkFromDirtyCardsClosure
4585     greyRescanClosure(_collector, full_span, // entire span of interest
4586                       sp, bm, work_q, cl);
4587 
4588   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4589   assert(pst->valid(), "Uninitialized use?");
4590   uint nth_task = 0;
4591   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4592   MemRegion span = sp->used_region();
4593   HeapWord* start_addr = span.start();
4594   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4595                                            alignment);
4596   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4597   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4598          start_addr, "Check alignment");
4599   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4600          chunk_size, "Check alignment");
4601 
4602   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4603     // Having claimed the nth_task, compute corresponding mem-region,
4604     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4605     // The alignment restriction ensures that we do not need any
4606     // synchronization with other gang-workers while setting or
4607     // clearing bits in thus chunk of the MUT.
4608     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4609                                     start_addr + (nth_task+1)*chunk_size);
4610     // The last chunk's end might be way beyond end of the
4611     // used region. In that case pull back appropriately.
4612     if (this_span.end() > end_addr) {
4613       this_span.set_end(end_addr);
4614       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4615     }
4616     // Iterate over the dirty cards covering this chunk, marking them
4617     // precleaned, and setting the corresponding bits in the mod union
4618     // table. Since we have been careful to partition at Card and MUT-word
4619     // boundaries no synchronization is needed between parallel threads.
4620     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4621                                                  &modUnionClosure);
4622 
4623     // Having transferred these marks into the modUnionTable,
4624     // rescan the marked objects on the dirty cards in the modUnionTable.
4625     // Even if this is at a synchronous collection, the initial marking
4626     // may have been done during an asynchronous collection so there
4627     // may be dirty bits in the mod-union table.
4628     _collector->_modUnionTable.dirty_range_iterate_clear(
4629                   this_span, &greyRescanClosure);
4630     _collector->_modUnionTable.verifyNoOneBitsInRange(
4631                                  this_span.start(),
4632                                  this_span.end());
4633   }
4634   pst->all_tasks_completed();  // declare that i am done
4635 }
4636 
4637 // . see if we can share work_queues with ParNew? XXX
4638 void
4639 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4640                                 int* seed) {
4641   OopTaskQueue* work_q = work_queue(i);
4642   NOT_PRODUCT(int num_steals = 0;)
4643   oop obj_to_scan;
4644   CMSBitMap* bm = &(_collector->_markBitMap);
4645 
4646   while (true) {
4647     // Completely finish any left over work from (an) earlier round(s)
4648     cl->trim_queue(0);
4649     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4650                                          (size_t)ParGCDesiredObjsFromOverflowList);
4651     // Now check if there's any work in the overflow list
4652     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4653     // only affects the number of attempts made to get work from the
4654     // overflow list and does not affect the number of workers.  Just
4655     // pass ParallelGCThreads so this behavior is unchanged.
4656     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4657                                                 work_q,
4658                                                 ParallelGCThreads)) {
4659       // found something in global overflow list;
4660       // not yet ready to go stealing work from others.
4661       // We'd like to assert(work_q->size() != 0, ...)
4662       // because we just took work from the overflow list,
4663       // but of course we can't since all of that could have
4664       // been already stolen from us.
4665       // "He giveth and He taketh away."
4666       continue;
4667     }
4668     // Verify that we have no work before we resort to stealing
4669     assert(work_q->size() == 0, "Have work, shouldn't steal");
4670     // Try to steal from other queues that have work
4671     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4672       NOT_PRODUCT(num_steals++;)
4673       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4674       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4675       // Do scanning work
4676       obj_to_scan->oop_iterate(cl);
4677       // Loop around, finish this work, and try to steal some more
4678     } else if (terminator()->offer_termination()) {
4679         break;  // nirvana from the infinite cycle
4680     }
4681   }
4682   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4683   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4684          "Else our work is not yet done");
4685 }
4686 
4687 // Record object boundaries in _eden_chunk_array by sampling the eden
4688 // top in the slow-path eden object allocation code path and record
4689 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4690 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4691 // sampling in sample_eden() that activates during the part of the
4692 // preclean phase.
4693 void CMSCollector::sample_eden_chunk() {
4694   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4695     if (_eden_chunk_lock->try_lock()) {
4696       // Record a sample. This is the critical section. The contents
4697       // of the _eden_chunk_array have to be non-decreasing in the
4698       // address order.
4699       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4700       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4701              "Unexpected state of Eden");
4702       if (_eden_chunk_index == 0 ||
4703           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4704            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4705                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4706         _eden_chunk_index++;  // commit sample
4707       }
4708       _eden_chunk_lock->unlock();
4709     }
4710   }
4711 }
4712 
4713 // Return a thread-local PLAB recording array, as appropriate.
4714 void* CMSCollector::get_data_recorder(int thr_num) {
4715   if (_survivor_plab_array != NULL &&
4716       (CMSPLABRecordAlways ||
4717        (_collectorState > Marking && _collectorState < FinalMarking))) {
4718     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4719     ChunkArray* ca = &_survivor_plab_array[thr_num];
4720     ca->reset();   // clear it so that fresh data is recorded
4721     return (void*) ca;
4722   } else {
4723     return NULL;
4724   }
4725 }
4726 
4727 // Reset all the thread-local PLAB recording arrays
4728 void CMSCollector::reset_survivor_plab_arrays() {
4729   for (uint i = 0; i < ParallelGCThreads; i++) {
4730     _survivor_plab_array[i].reset();
4731   }
4732 }
4733 
4734 // Merge the per-thread plab arrays into the global survivor chunk
4735 // array which will provide the partitioning of the survivor space
4736 // for CMS initial scan and rescan.
4737 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4738                                               int no_of_gc_threads) {
4739   assert(_survivor_plab_array  != NULL, "Error");
4740   assert(_survivor_chunk_array != NULL, "Error");
4741   assert(_collectorState == FinalMarking ||
4742          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4743   for (int j = 0; j < no_of_gc_threads; j++) {
4744     _cursor[j] = 0;
4745   }
4746   HeapWord* top = surv->top();
4747   size_t i;
4748   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4749     HeapWord* min_val = top;          // Higher than any PLAB address
4750     uint      min_tid = 0;            // position of min_val this round
4751     for (int j = 0; j < no_of_gc_threads; j++) {
4752       ChunkArray* cur_sca = &_survivor_plab_array[j];
4753       if (_cursor[j] == cur_sca->end()) {
4754         continue;
4755       }
4756       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4757       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4758       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4759       if (cur_val < min_val) {
4760         min_tid = j;
4761         min_val = cur_val;
4762       } else {
4763         assert(cur_val < top, "All recorded addresses should be less");
4764       }
4765     }
4766     // At this point min_val and min_tid are respectively
4767     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4768     // and the thread (j) that witnesses that address.
4769     // We record this address in the _survivor_chunk_array[i]
4770     // and increment _cursor[min_tid] prior to the next round i.
4771     if (min_val == top) {
4772       break;
4773     }
4774     _survivor_chunk_array[i] = min_val;
4775     _cursor[min_tid]++;
4776   }
4777   // We are all done; record the size of the _survivor_chunk_array
4778   _survivor_chunk_index = i; // exclusive: [0, i)
4779   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4780   // Verify that we used up all the recorded entries
4781   #ifdef ASSERT
4782     size_t total = 0;
4783     for (int j = 0; j < no_of_gc_threads; j++) {
4784       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4785       total += _cursor[j];
4786     }
4787     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4788     // Check that the merged array is in sorted order
4789     if (total > 0) {
4790       for (size_t i = 0; i < total - 1; i++) {
4791         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4792                                      i, p2i(_survivor_chunk_array[i]));
4793         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4794                "Not sorted");
4795       }
4796     }
4797   #endif // ASSERT
4798 }
4799 
4800 // Set up the space's par_seq_tasks structure for work claiming
4801 // for parallel initial scan and rescan of young gen.
4802 // See ParRescanTask where this is currently used.
4803 void
4804 CMSCollector::
4805 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4806   assert(n_threads > 0, "Unexpected n_threads argument");
4807 
4808   // Eden space
4809   if (!_young_gen->eden()->is_empty()) {
4810     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4811     assert(!pst->valid(), "Clobbering existing data?");
4812     // Each valid entry in [0, _eden_chunk_index) represents a task.
4813     size_t n_tasks = _eden_chunk_index + 1;
4814     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4815     // Sets the condition for completion of the subtask (how many threads
4816     // need to finish in order to be done).
4817     pst->set_n_threads(n_threads);
4818     pst->set_n_tasks((int)n_tasks);
4819   }
4820 
4821   // Merge the survivor plab arrays into _survivor_chunk_array
4822   if (_survivor_plab_array != NULL) {
4823     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4824   } else {
4825     assert(_survivor_chunk_index == 0, "Error");
4826   }
4827 
4828   // To space
4829   {
4830     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4831     assert(!pst->valid(), "Clobbering existing data?");
4832     // Sets the condition for completion of the subtask (how many threads
4833     // need to finish in order to be done).
4834     pst->set_n_threads(n_threads);
4835     pst->set_n_tasks(1);
4836     assert(pst->valid(), "Error");
4837   }
4838 
4839   // From space
4840   {
4841     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4842     assert(!pst->valid(), "Clobbering existing data?");
4843     size_t n_tasks = _survivor_chunk_index + 1;
4844     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4845     // Sets the condition for completion of the subtask (how many threads
4846     // need to finish in order to be done).
4847     pst->set_n_threads(n_threads);
4848     pst->set_n_tasks((int)n_tasks);
4849     assert(pst->valid(), "Error");
4850   }
4851 }
4852 
4853 // Parallel version of remark
4854 void CMSCollector::do_remark_parallel() {
4855   GenCollectedHeap* gch = GenCollectedHeap::heap();
4856   WorkGang* workers = gch->workers();
4857   assert(workers != NULL, "Need parallel worker threads.");
4858   // Choose to use the number of GC workers most recently set
4859   // into "active_workers".
4860   uint n_workers = workers->active_workers();
4861 
4862   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4863 
4864   StrongRootsScope srs(n_workers);
4865 
4866   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4867 
4868   // We won't be iterating over the cards in the card table updating
4869   // the younger_gen cards, so we shouldn't call the following else
4870   // the verification code as well as subsequent younger_refs_iterate
4871   // code would get confused. XXX
4872   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4873 
4874   // The young gen rescan work will not be done as part of
4875   // process_roots (which currently doesn't know how to
4876   // parallelize such a scan), but rather will be broken up into
4877   // a set of parallel tasks (via the sampling that the [abortable]
4878   // preclean phase did of eden, plus the [two] tasks of
4879   // scanning the [two] survivor spaces. Further fine-grain
4880   // parallelization of the scanning of the survivor spaces
4881   // themselves, and of precleaning of the young gen itself
4882   // is deferred to the future.
4883   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4884 
4885   // The dirty card rescan work is broken up into a "sequence"
4886   // of parallel tasks (per constituent space) that are dynamically
4887   // claimed by the parallel threads.
4888   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4889 
4890   // It turns out that even when we're using 1 thread, doing the work in a
4891   // separate thread causes wide variance in run times.  We can't help this
4892   // in the multi-threaded case, but we special-case n=1 here to get
4893   // repeatable measurements of the 1-thread overhead of the parallel code.
4894   if (n_workers > 1) {
4895     // Make refs discovery MT-safe, if it isn't already: it may not
4896     // necessarily be so, since it's possible that we are doing
4897     // ST marking.
4898     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4899     workers->run_task(&tsk);
4900   } else {
4901     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4902     tsk.work(0);
4903   }
4904 
4905   // restore, single-threaded for now, any preserved marks
4906   // as a result of work_q overflow
4907   restore_preserved_marks_if_any();
4908 }
4909 
4910 // Non-parallel version of remark
4911 void CMSCollector::do_remark_non_parallel() {
4912   ResourceMark rm;
4913   HandleMark   hm;
4914   GenCollectedHeap* gch = GenCollectedHeap::heap();
4915   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4916 
4917   MarkRefsIntoAndScanClosure
4918     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4919              &_markStack, this,
4920              false /* should_yield */, false /* not precleaning */);
4921   MarkFromDirtyCardsClosure
4922     markFromDirtyCardsClosure(this, _span,
4923                               NULL,  // space is set further below
4924                               &_markBitMap, &_markStack, &mrias_cl);
4925   {
4926     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4927     // Iterate over the dirty cards, setting the corresponding bits in the
4928     // mod union table.
4929     {
4930       ModUnionClosure modUnionClosure(&_modUnionTable);
4931       _ct->ct_bs()->dirty_card_iterate(
4932                       _cmsGen->used_region(),
4933                       &modUnionClosure);
4934     }
4935     // Having transferred these marks into the modUnionTable, we just need
4936     // to rescan the marked objects on the dirty cards in the modUnionTable.
4937     // The initial marking may have been done during an asynchronous
4938     // collection so there may be dirty bits in the mod-union table.
4939     const int alignment =
4940       CardTableModRefBS::card_size * BitsPerWord;
4941     {
4942       // ... First handle dirty cards in CMS gen
4943       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4944       MemRegion ur = _cmsGen->used_region();
4945       HeapWord* lb = ur.start();
4946       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4947       MemRegion cms_span(lb, ub);
4948       _modUnionTable.dirty_range_iterate_clear(cms_span,
4949                                                &markFromDirtyCardsClosure);
4950       verify_work_stacks_empty();
4951       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4952     }
4953   }
4954   if (VerifyDuringGC &&
4955       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4956     HandleMark hm;  // Discard invalid handles created during verification
4957     Universe::verify();
4958   }
4959   {
4960     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4961 
4962     verify_work_stacks_empty();
4963 
4964     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4965     StrongRootsScope srs(1);
4966 
4967     gch->gen_process_roots(&srs,
4968                            GenCollectedHeap::OldGen,
4969                            true,  // young gen as roots
4970                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
4971                            should_unload_classes(),
4972                            &mrias_cl,
4973                            NULL,
4974                            NULL); // The dirty klasses will be handled below
4975 
4976     assert(should_unload_classes()
4977            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4978            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4979   }
4980 
4981   {
4982     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4983 
4984     verify_work_stacks_empty();
4985 
4986     // Scan all class loader data objects that might have been introduced
4987     // during concurrent marking.
4988     ResourceMark rm;
4989     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4990     for (int i = 0; i < array->length(); i++) {
4991       mrias_cl.do_cld_nv(array->at(i));
4992     }
4993 
4994     // We don't need to keep track of new CLDs anymore.
4995     ClassLoaderDataGraph::remember_new_clds(false);
4996 
4997     verify_work_stacks_empty();
4998   }
4999 
5000   {
5001     GCTraceTime(Trace, gc, phases) t("Dirty Klass Scan", _gc_timer_cm);
5002 
5003     verify_work_stacks_empty();
5004 
5005     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5006     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5007 
5008     verify_work_stacks_empty();
5009   }
5010 
5011   // We might have added oops to ClassLoaderData::_handles during the
5012   // concurrent marking phase. These oops point to newly allocated objects
5013   // that are guaranteed to be kept alive. Either by the direct allocation
5014   // code, or when the young collector processes the roots. Hence,
5015   // we don't have to revisit the _handles block during the remark phase.
5016 
5017   verify_work_stacks_empty();
5018   // Restore evacuated mark words, if any, used for overflow list links
5019   restore_preserved_marks_if_any();
5020 
5021   verify_overflow_empty();
5022 }
5023 
5024 ////////////////////////////////////////////////////////
5025 // Parallel Reference Processing Task Proxy Class
5026 ////////////////////////////////////////////////////////
5027 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5028   OopTaskQueueSet*       _queues;
5029   ParallelTaskTerminator _terminator;
5030  public:
5031   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5032     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5033   ParallelTaskTerminator* terminator() { return &_terminator; }
5034   OopTaskQueueSet* queues() { return _queues; }
5035 };
5036 
5037 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5038   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5039   CMSCollector*          _collector;
5040   CMSBitMap*             _mark_bit_map;
5041   const MemRegion        _span;
5042   ProcessTask&           _task;
5043 
5044 public:
5045   CMSRefProcTaskProxy(ProcessTask&     task,
5046                       CMSCollector*    collector,
5047                       const MemRegion& span,
5048                       CMSBitMap*       mark_bit_map,
5049                       AbstractWorkGang* workers,
5050                       OopTaskQueueSet* task_queues):
5051     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5052       task_queues,
5053       workers->active_workers()),
5054     _task(task),
5055     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5056   {
5057     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5058            "Inconsistency in _span");
5059   }
5060 
5061   OopTaskQueueSet* task_queues() { return queues(); }
5062 
5063   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5064 
5065   void do_work_steal(int i,
5066                      CMSParDrainMarkingStackClosure* drain,
5067                      CMSParKeepAliveClosure* keep_alive,
5068                      int* seed);
5069 
5070   virtual void work(uint worker_id);
5071 };
5072 
5073 void CMSRefProcTaskProxy::work(uint worker_id) {
5074   ResourceMark rm;
5075   HandleMark hm;
5076   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5077   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5078                                         _mark_bit_map,
5079                                         work_queue(worker_id));
5080   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5081                                                  _mark_bit_map,
5082                                                  work_queue(worker_id));
5083   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5084   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5085   if (_task.marks_oops_alive()) {
5086     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5087                   _collector->hash_seed(worker_id));
5088   }
5089   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5090   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5091 }
5092 
5093 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5094   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5095   EnqueueTask& _task;
5096 
5097 public:
5098   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5099     : AbstractGangTask("Enqueue reference objects in parallel"),
5100       _task(task)
5101   { }
5102 
5103   virtual void work(uint worker_id)
5104   {
5105     _task.work(worker_id);
5106   }
5107 };
5108 
5109 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5110   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5111    _span(span),
5112    _bit_map(bit_map),
5113    _work_queue(work_queue),
5114    _mark_and_push(collector, span, bit_map, work_queue),
5115    _low_water_mark(MIN2((work_queue->max_elems()/4),
5116                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5117 { }
5118 
5119 // . see if we can share work_queues with ParNew? XXX
5120 void CMSRefProcTaskProxy::do_work_steal(int i,
5121   CMSParDrainMarkingStackClosure* drain,
5122   CMSParKeepAliveClosure* keep_alive,
5123   int* seed) {
5124   OopTaskQueue* work_q = work_queue(i);
5125   NOT_PRODUCT(int num_steals = 0;)
5126   oop obj_to_scan;
5127 
5128   while (true) {
5129     // Completely finish any left over work from (an) earlier round(s)
5130     drain->trim_queue(0);
5131     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5132                                          (size_t)ParGCDesiredObjsFromOverflowList);
5133     // Now check if there's any work in the overflow list
5134     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5135     // only affects the number of attempts made to get work from the
5136     // overflow list and does not affect the number of workers.  Just
5137     // pass ParallelGCThreads so this behavior is unchanged.
5138     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5139                                                 work_q,
5140                                                 ParallelGCThreads)) {
5141       // Found something in global overflow list;
5142       // not yet ready to go stealing work from others.
5143       // We'd like to assert(work_q->size() != 0, ...)
5144       // because we just took work from the overflow list,
5145       // but of course we can't, since all of that might have
5146       // been already stolen from us.
5147       continue;
5148     }
5149     // Verify that we have no work before we resort to stealing
5150     assert(work_q->size() == 0, "Have work, shouldn't steal");
5151     // Try to steal from other queues that have work
5152     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5153       NOT_PRODUCT(num_steals++;)
5154       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5155       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5156       // Do scanning work
5157       obj_to_scan->oop_iterate(keep_alive);
5158       // Loop around, finish this work, and try to steal some more
5159     } else if (terminator()->offer_termination()) {
5160       break;  // nirvana from the infinite cycle
5161     }
5162   }
5163   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5164 }
5165 
5166 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5167 {
5168   GenCollectedHeap* gch = GenCollectedHeap::heap();
5169   WorkGang* workers = gch->workers();
5170   assert(workers != NULL, "Need parallel worker threads.");
5171   CMSRefProcTaskProxy rp_task(task, &_collector,
5172                               _collector.ref_processor()->span(),
5173                               _collector.markBitMap(),
5174                               workers, _collector.task_queues());
5175   workers->run_task(&rp_task);
5176 }
5177 
5178 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5179 {
5180 
5181   GenCollectedHeap* gch = GenCollectedHeap::heap();
5182   WorkGang* workers = gch->workers();
5183   assert(workers != NULL, "Need parallel worker threads.");
5184   CMSRefEnqueueTaskProxy enq_task(task);
5185   workers->run_task(&enq_task);
5186 }
5187 
5188 void CMSCollector::refProcessingWork() {
5189   ResourceMark rm;
5190   HandleMark   hm;
5191 
5192   ReferenceProcessor* rp = ref_processor();
5193   assert(rp->span().equals(_span), "Spans should be equal");
5194   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5195   // Process weak references.
5196   rp->setup_policy(false);
5197   verify_work_stacks_empty();
5198 
5199   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5200                                           &_markStack, false /* !preclean */);
5201   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5202                                 _span, &_markBitMap, &_markStack,
5203                                 &cmsKeepAliveClosure, false /* !preclean */);
5204   {
5205     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5206 
5207     ReferenceProcessorStats stats;
5208     if (rp->processing_is_mt()) {
5209       // Set the degree of MT here.  If the discovery is done MT, there
5210       // may have been a different number of threads doing the discovery
5211       // and a different number of discovered lists may have Ref objects.
5212       // That is OK as long as the Reference lists are balanced (see
5213       // balance_all_queues() and balance_queues()).
5214       GenCollectedHeap* gch = GenCollectedHeap::heap();
5215       uint active_workers = ParallelGCThreads;
5216       WorkGang* workers = gch->workers();
5217       if (workers != NULL) {
5218         active_workers = workers->active_workers();
5219         // The expectation is that active_workers will have already
5220         // been set to a reasonable value.  If it has not been set,
5221         // investigate.
5222         assert(active_workers > 0, "Should have been set during scavenge");
5223       }
5224       rp->set_active_mt_degree(active_workers);
5225       CMSRefProcTaskExecutor task_executor(*this);
5226       stats = rp->process_discovered_references(&_is_alive_closure,
5227                                         &cmsKeepAliveClosure,
5228                                         &cmsDrainMarkingStackClosure,
5229                                         &task_executor,
5230                                         _gc_timer_cm);
5231     } else {
5232       stats = rp->process_discovered_references(&_is_alive_closure,
5233                                         &cmsKeepAliveClosure,
5234                                         &cmsDrainMarkingStackClosure,
5235                                         NULL,
5236                                         _gc_timer_cm);
5237     }
5238     _gc_tracer_cm->report_gc_reference_stats(stats);
5239 
5240   }
5241 
5242   // This is the point where the entire marking should have completed.
5243   verify_work_stacks_empty();
5244 
5245   if (should_unload_classes()) {
5246     {
5247       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5248 
5249       // Unload classes and purge the SystemDictionary.
5250       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5251 
5252       // Unload nmethods.
5253       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5254 
5255       // Prune dead klasses from subklass/sibling/implementor lists.
5256       Klass::clean_weak_klass_links(&_is_alive_closure);
5257     }
5258 
5259     {
5260       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5261       // Clean up unreferenced symbols in symbol table.
5262       SymbolTable::unlink();
5263     }
5264 
5265     {
5266       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5267       // Delete entries for dead interned strings.
5268       StringTable::unlink(&_is_alive_closure);
5269     }
5270   }
5271 
5272 
5273   // Restore any preserved marks as a result of mark stack or
5274   // work queue overflow
5275   restore_preserved_marks_if_any();  // done single-threaded for now
5276 
5277   rp->set_enqueuing_is_done(true);
5278   if (rp->processing_is_mt()) {
5279     rp->balance_all_queues();
5280     CMSRefProcTaskExecutor task_executor(*this);
5281     rp->enqueue_discovered_references(&task_executor);
5282   } else {
5283     rp->enqueue_discovered_references(NULL);
5284   }
5285   rp->verify_no_references_recorded();
5286   assert(!rp->discovery_enabled(), "should have been disabled");
5287 }
5288 
5289 #ifndef PRODUCT
5290 void CMSCollector::check_correct_thread_executing() {
5291   Thread* t = Thread::current();
5292   // Only the VM thread or the CMS thread should be here.
5293   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5294          "Unexpected thread type");
5295   // If this is the vm thread, the foreground process
5296   // should not be waiting.  Note that _foregroundGCIsActive is
5297   // true while the foreground collector is waiting.
5298   if (_foregroundGCShouldWait) {
5299     // We cannot be the VM thread
5300     assert(t->is_ConcurrentGC_thread(),
5301            "Should be CMS thread");
5302   } else {
5303     // We can be the CMS thread only if we are in a stop-world
5304     // phase of CMS collection.
5305     if (t->is_ConcurrentGC_thread()) {
5306       assert(_collectorState == InitialMarking ||
5307              _collectorState == FinalMarking,
5308              "Should be a stop-world phase");
5309       // The CMS thread should be holding the CMS_token.
5310       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5311              "Potential interference with concurrently "
5312              "executing VM thread");
5313     }
5314   }
5315 }
5316 #endif
5317 
5318 void CMSCollector::sweep() {
5319   assert(_collectorState == Sweeping, "just checking");
5320   check_correct_thread_executing();
5321   verify_work_stacks_empty();
5322   verify_overflow_empty();
5323   increment_sweep_count();
5324   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5325 
5326   _inter_sweep_timer.stop();
5327   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5328 
5329   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5330   _intra_sweep_timer.reset();
5331   _intra_sweep_timer.start();
5332   {
5333     GCTraceCPUTime tcpu;
5334     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5335     // First sweep the old gen
5336     {
5337       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5338                                bitMapLock());
5339       sweepWork(_cmsGen);
5340     }
5341 
5342     // Update Universe::_heap_*_at_gc figures.
5343     // We need all the free list locks to make the abstract state
5344     // transition from Sweeping to Resetting. See detailed note
5345     // further below.
5346     {
5347       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5348       // Update heap occupancy information which is used as
5349       // input to soft ref clearing policy at the next gc.
5350       Universe::update_heap_info_at_gc();
5351       _collectorState = Resizing;
5352     }
5353   }
5354   verify_work_stacks_empty();
5355   verify_overflow_empty();
5356 
5357   if (should_unload_classes()) {
5358     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5359     // requires that the virtual spaces are stable and not deleted.
5360     ClassLoaderDataGraph::set_should_purge(true);
5361   }
5362 
5363   _intra_sweep_timer.stop();
5364   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5365 
5366   _inter_sweep_timer.reset();
5367   _inter_sweep_timer.start();
5368 
5369   // We need to use a monotonically non-decreasing time in ms
5370   // or we will see time-warp warnings and os::javaTimeMillis()
5371   // does not guarantee monotonicity.
5372   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5373   update_time_of_last_gc(now);
5374 
5375   // NOTE on abstract state transitions:
5376   // Mutators allocate-live and/or mark the mod-union table dirty
5377   // based on the state of the collection.  The former is done in
5378   // the interval [Marking, Sweeping] and the latter in the interval
5379   // [Marking, Sweeping).  Thus the transitions into the Marking state
5380   // and out of the Sweeping state must be synchronously visible
5381   // globally to the mutators.
5382   // The transition into the Marking state happens with the world
5383   // stopped so the mutators will globally see it.  Sweeping is
5384   // done asynchronously by the background collector so the transition
5385   // from the Sweeping state to the Resizing state must be done
5386   // under the freelistLock (as is the check for whether to
5387   // allocate-live and whether to dirty the mod-union table).
5388   assert(_collectorState == Resizing, "Change of collector state to"
5389     " Resizing must be done under the freelistLocks (plural)");
5390 
5391   // Now that sweeping has been completed, we clear
5392   // the incremental_collection_failed flag,
5393   // thus inviting a younger gen collection to promote into
5394   // this generation. If such a promotion may still fail,
5395   // the flag will be set again when a young collection is
5396   // attempted.
5397   GenCollectedHeap* gch = GenCollectedHeap::heap();
5398   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5399   gch->update_full_collections_completed(_collection_count_start);
5400 }
5401 
5402 // FIX ME!!! Looks like this belongs in CFLSpace, with
5403 // CMSGen merely delegating to it.
5404 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5405   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5406   HeapWord*  minAddr        = _cmsSpace->bottom();
5407   HeapWord*  largestAddr    =
5408     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5409   if (largestAddr == NULL) {
5410     // The dictionary appears to be empty.  In this case
5411     // try to coalesce at the end of the heap.
5412     largestAddr = _cmsSpace->end();
5413   }
5414   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5415   size_t nearLargestOffset =
5416     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5417   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5418                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5419   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5420 }
5421 
5422 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5423   return addr >= _cmsSpace->nearLargestChunk();
5424 }
5425 
5426 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5427   return _cmsSpace->find_chunk_at_end();
5428 }
5429 
5430 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5431                                                     bool full) {
5432   // If the young generation has been collected, gather any statistics
5433   // that are of interest at this point.
5434   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5435   if (!full && current_is_young) {
5436     // Gather statistics on the young generation collection.
5437     collector()->stats().record_gc0_end(used());
5438   }
5439 }
5440 
5441 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5442   // We iterate over the space(s) underlying this generation,
5443   // checking the mark bit map to see if the bits corresponding
5444   // to specific blocks are marked or not. Blocks that are
5445   // marked are live and are not swept up. All remaining blocks
5446   // are swept up, with coalescing on-the-fly as we sweep up
5447   // contiguous free and/or garbage blocks:
5448   // We need to ensure that the sweeper synchronizes with allocators
5449   // and stop-the-world collectors. In particular, the following
5450   // locks are used:
5451   // . CMS token: if this is held, a stop the world collection cannot occur
5452   // . freelistLock: if this is held no allocation can occur from this
5453   //                 generation by another thread
5454   // . bitMapLock: if this is held, no other thread can access or update
5455   //
5456 
5457   // Note that we need to hold the freelistLock if we use
5458   // block iterate below; else the iterator might go awry if
5459   // a mutator (or promotion) causes block contents to change
5460   // (for instance if the allocator divvies up a block).
5461   // If we hold the free list lock, for all practical purposes
5462   // young generation GC's can't occur (they'll usually need to
5463   // promote), so we might as well prevent all young generation
5464   // GC's while we do a sweeping step. For the same reason, we might
5465   // as well take the bit map lock for the entire duration
5466 
5467   // check that we hold the requisite locks
5468   assert(have_cms_token(), "Should hold cms token");
5469   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5470   assert_lock_strong(old_gen->freelistLock());
5471   assert_lock_strong(bitMapLock());
5472 
5473   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5474   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5475   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5476                                           _inter_sweep_estimate.padded_average(),
5477                                           _intra_sweep_estimate.padded_average());
5478   old_gen->setNearLargestChunk();
5479 
5480   {
5481     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5482     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5483     // We need to free-up/coalesce garbage/blocks from a
5484     // co-terminal free run. This is done in the SweepClosure
5485     // destructor; so, do not remove this scope, else the
5486     // end-of-sweep-census below will be off by a little bit.
5487   }
5488   old_gen->cmsSpace()->sweep_completed();
5489   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5490   if (should_unload_classes()) {                // unloaded classes this cycle,
5491     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5492   } else {                                      // did not unload classes,
5493     _concurrent_cycles_since_last_unload++;     // ... increment count
5494   }
5495 }
5496 
5497 // Reset CMS data structures (for now just the marking bit map)
5498 // preparatory for the next cycle.
5499 void CMSCollector::reset_concurrent() {
5500   CMSTokenSyncWithLocks ts(true, bitMapLock());
5501 
5502   // If the state is not "Resetting", the foreground  thread
5503   // has done a collection and the resetting.
5504   if (_collectorState != Resetting) {
5505     assert(_collectorState == Idling, "The state should only change"
5506       " because the foreground collector has finished the collection");
5507     return;
5508   }
5509 
5510   {
5511     // Clear the mark bitmap (no grey objects to start with)
5512     // for the next cycle.
5513     GCTraceCPUTime tcpu;
5514     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5515 
5516     HeapWord* curAddr = _markBitMap.startWord();
5517     while (curAddr < _markBitMap.endWord()) {
5518       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5519       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5520       _markBitMap.clear_large_range(chunk);
5521       if (ConcurrentMarkSweepThread::should_yield() &&
5522           !foregroundGCIsActive() &&
5523           CMSYield) {
5524         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5525                "CMS thread should hold CMS token");
5526         assert_lock_strong(bitMapLock());
5527         bitMapLock()->unlock();
5528         ConcurrentMarkSweepThread::desynchronize(true);
5529         stopTimer();
5530         incrementYields();
5531 
5532         // See the comment in coordinator_yield()
5533         for (unsigned i = 0; i < CMSYieldSleepCount &&
5534                          ConcurrentMarkSweepThread::should_yield() &&
5535                          !CMSCollector::foregroundGCIsActive(); ++i) {
5536           os::sleep(Thread::current(), 1, false);
5537         }
5538 
5539         ConcurrentMarkSweepThread::synchronize(true);
5540         bitMapLock()->lock_without_safepoint_check();
5541         startTimer();
5542       }
5543       curAddr = chunk.end();
5544     }
5545     // A successful mostly concurrent collection has been done.
5546     // Because only the full (i.e., concurrent mode failure) collections
5547     // are being measured for gc overhead limits, clean the "near" flag
5548     // and count.
5549     size_policy()->reset_gc_overhead_limit_count();
5550     _collectorState = Idling;
5551   }
5552 
5553   register_gc_end();
5554 }
5555 
5556 // Same as above but for STW paths
5557 void CMSCollector::reset_stw() {
5558   // already have the lock
5559   assert(_collectorState == Resetting, "just checking");
5560   assert_lock_strong(bitMapLock());
5561   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5562   _markBitMap.clear_all();
5563   _collectorState = Idling;
5564   register_gc_end();
5565 }
5566 
5567 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5568   GCTraceCPUTime tcpu;
5569   TraceCollectorStats tcs(counters());
5570 
5571   switch (op) {
5572     case CMS_op_checkpointRootsInitial: {
5573       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5574       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5575       checkpointRootsInitial();
5576       break;
5577     }
5578     case CMS_op_checkpointRootsFinal: {
5579       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5580       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5581       checkpointRootsFinal();
5582       break;
5583     }
5584     default:
5585       fatal("No such CMS_op");
5586   }
5587 }
5588 
5589 #ifndef PRODUCT
5590 size_t const CMSCollector::skip_header_HeapWords() {
5591   return FreeChunk::header_size();
5592 }
5593 
5594 // Try and collect here conditions that should hold when
5595 // CMS thread is exiting. The idea is that the foreground GC
5596 // thread should not be blocked if it wants to terminate
5597 // the CMS thread and yet continue to run the VM for a while
5598 // after that.
5599 void CMSCollector::verify_ok_to_terminate() const {
5600   assert(Thread::current()->is_ConcurrentGC_thread(),
5601          "should be called by CMS thread");
5602   assert(!_foregroundGCShouldWait, "should be false");
5603   // We could check here that all the various low-level locks
5604   // are not held by the CMS thread, but that is overkill; see
5605   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5606   // is checked.
5607 }
5608 #endif
5609 
5610 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5611    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5612           "missing Printezis mark?");
5613   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5614   size_t size = pointer_delta(nextOneAddr + 1, addr);
5615   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5616          "alignment problem");
5617   assert(size >= 3, "Necessary for Printezis marks to work");
5618   return size;
5619 }
5620 
5621 // A variant of the above (block_size_using_printezis_bits()) except
5622 // that we return 0 if the P-bits are not yet set.
5623 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5624   if (_markBitMap.isMarked(addr + 1)) {
5625     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5626     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5627     size_t size = pointer_delta(nextOneAddr + 1, addr);
5628     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5629            "alignment problem");
5630     assert(size >= 3, "Necessary for Printezis marks to work");
5631     return size;
5632   }
5633   return 0;
5634 }
5635 
5636 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5637   size_t sz = 0;
5638   oop p = (oop)addr;
5639   if (p->klass_or_null() != NULL) {
5640     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5641   } else {
5642     sz = block_size_using_printezis_bits(addr);
5643   }
5644   assert(sz > 0, "size must be nonzero");
5645   HeapWord* next_block = addr + sz;
5646   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5647                                              CardTableModRefBS::card_size);
5648   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5649          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5650          "must be different cards");
5651   return next_card;
5652 }
5653 
5654 
5655 // CMS Bit Map Wrapper /////////////////////////////////////////
5656 
5657 // Construct a CMS bit map infrastructure, but don't create the
5658 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5659 // further below.
5660 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5661   _bm(),
5662   _shifter(shifter),
5663   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5664                                     Monitor::_safepoint_check_sometimes) : NULL)
5665 {
5666   _bmStartWord = 0;
5667   _bmWordSize  = 0;
5668 }
5669 
5670 bool CMSBitMap::allocate(MemRegion mr) {
5671   _bmStartWord = mr.start();
5672   _bmWordSize  = mr.word_size();
5673   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5674                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5675   if (!brs.is_reserved()) {
5676     log_warning(gc)("CMS bit map allocation failure");
5677     return false;
5678   }
5679   // For now we'll just commit all of the bit map up front.
5680   // Later on we'll try to be more parsimonious with swap.
5681   if (!_virtual_space.initialize(brs, brs.size())) {
5682     log_warning(gc)("CMS bit map backing store failure");
5683     return false;
5684   }
5685   assert(_virtual_space.committed_size() == brs.size(),
5686          "didn't reserve backing store for all of CMS bit map?");
5687   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5688          _bmWordSize, "inconsistency in bit map sizing");
5689   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5690 
5691   // bm.clear(); // can we rely on getting zero'd memory? verify below
5692   assert(isAllClear(),
5693          "Expected zero'd memory from ReservedSpace constructor");
5694   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5695          "consistency check");
5696   return true;
5697 }
5698 
5699 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5700   HeapWord *next_addr, *end_addr, *last_addr;
5701   assert_locked();
5702   assert(covers(mr), "out-of-range error");
5703   // XXX assert that start and end are appropriately aligned
5704   for (next_addr = mr.start(), end_addr = mr.end();
5705        next_addr < end_addr; next_addr = last_addr) {
5706     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5707     last_addr = dirty_region.end();
5708     if (!dirty_region.is_empty()) {
5709       cl->do_MemRegion(dirty_region);
5710     } else {
5711       assert(last_addr == end_addr, "program logic");
5712       return;
5713     }
5714   }
5715 }
5716 
5717 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5718   _bm.print_on_error(st, prefix);
5719 }
5720 
5721 #ifndef PRODUCT
5722 void CMSBitMap::assert_locked() const {
5723   CMSLockVerifier::assert_locked(lock());
5724 }
5725 
5726 bool CMSBitMap::covers(MemRegion mr) const {
5727   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5728   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5729          "size inconsistency");
5730   return (mr.start() >= _bmStartWord) &&
5731          (mr.end()   <= endWord());
5732 }
5733 
5734 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5735     return (start >= _bmStartWord && (start + size) <= endWord());
5736 }
5737 
5738 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5739   // verify that there are no 1 bits in the interval [left, right)
5740   FalseBitMapClosure falseBitMapClosure;
5741   iterate(&falseBitMapClosure, left, right);
5742 }
5743 
5744 void CMSBitMap::region_invariant(MemRegion mr)
5745 {
5746   assert_locked();
5747   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5748   assert(!mr.is_empty(), "unexpected empty region");
5749   assert(covers(mr), "mr should be covered by bit map");
5750   // convert address range into offset range
5751   size_t start_ofs = heapWordToOffset(mr.start());
5752   // Make sure that end() is appropriately aligned
5753   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5754                         (1 << (_shifter+LogHeapWordSize))),
5755          "Misaligned mr.end()");
5756   size_t end_ofs   = heapWordToOffset(mr.end());
5757   assert(end_ofs > start_ofs, "Should mark at least one bit");
5758 }
5759 
5760 #endif
5761 
5762 bool CMSMarkStack::allocate(size_t size) {
5763   // allocate a stack of the requisite depth
5764   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5765                    size * sizeof(oop)));
5766   if (!rs.is_reserved()) {
5767     log_warning(gc)("CMSMarkStack allocation failure");
5768     return false;
5769   }
5770   if (!_virtual_space.initialize(rs, rs.size())) {
5771     log_warning(gc)("CMSMarkStack backing store failure");
5772     return false;
5773   }
5774   assert(_virtual_space.committed_size() == rs.size(),
5775          "didn't reserve backing store for all of CMS stack?");
5776   _base = (oop*)(_virtual_space.low());
5777   _index = 0;
5778   _capacity = size;
5779   NOT_PRODUCT(_max_depth = 0);
5780   return true;
5781 }
5782 
5783 // XXX FIX ME !!! In the MT case we come in here holding a
5784 // leaf lock. For printing we need to take a further lock
5785 // which has lower rank. We need to recalibrate the two
5786 // lock-ranks involved in order to be able to print the
5787 // messages below. (Or defer the printing to the caller.
5788 // For now we take the expedient path of just disabling the
5789 // messages for the problematic case.)
5790 void CMSMarkStack::expand() {
5791   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5792   if (_capacity == MarkStackSizeMax) {
5793     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5794       // We print a warning message only once per CMS cycle.
5795       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5796     }
5797     return;
5798   }
5799   // Double capacity if possible
5800   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5801   // Do not give up existing stack until we have managed to
5802   // get the double capacity that we desired.
5803   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5804                    new_capacity * sizeof(oop)));
5805   if (rs.is_reserved()) {
5806     // Release the backing store associated with old stack
5807     _virtual_space.release();
5808     // Reinitialize virtual space for new stack
5809     if (!_virtual_space.initialize(rs, rs.size())) {
5810       fatal("Not enough swap for expanded marking stack");
5811     }
5812     _base = (oop*)(_virtual_space.low());
5813     _index = 0;
5814     _capacity = new_capacity;
5815   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5816     // Failed to double capacity, continue;
5817     // we print a detail message only once per CMS cycle.
5818     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5819                         _capacity / K, new_capacity / K);
5820   }
5821 }
5822 
5823 
5824 // Closures
5825 // XXX: there seems to be a lot of code  duplication here;
5826 // should refactor and consolidate common code.
5827 
5828 // This closure is used to mark refs into the CMS generation in
5829 // the CMS bit map. Called at the first checkpoint. This closure
5830 // assumes that we do not need to re-mark dirty cards; if the CMS
5831 // generation on which this is used is not an oldest
5832 // generation then this will lose younger_gen cards!
5833 
5834 MarkRefsIntoClosure::MarkRefsIntoClosure(
5835   MemRegion span, CMSBitMap* bitMap):
5836     _span(span),
5837     _bitMap(bitMap)
5838 {
5839   assert(ref_processor() == NULL, "deliberately left NULL");
5840   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5841 }
5842 
5843 void MarkRefsIntoClosure::do_oop(oop obj) {
5844   // if p points into _span, then mark corresponding bit in _markBitMap
5845   assert(obj->is_oop(), "expected an oop");
5846   HeapWord* addr = (HeapWord*)obj;
5847   if (_span.contains(addr)) {
5848     // this should be made more efficient
5849     _bitMap->mark(addr);
5850   }
5851 }
5852 
5853 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5854 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5855 
5856 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5857   MemRegion span, CMSBitMap* bitMap):
5858     _span(span),
5859     _bitMap(bitMap)
5860 {
5861   assert(ref_processor() == NULL, "deliberately left NULL");
5862   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5863 }
5864 
5865 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5866   // if p points into _span, then mark corresponding bit in _markBitMap
5867   assert(obj->is_oop(), "expected an oop");
5868   HeapWord* addr = (HeapWord*)obj;
5869   if (_span.contains(addr)) {
5870     // this should be made more efficient
5871     _bitMap->par_mark(addr);
5872   }
5873 }
5874 
5875 void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5876 void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5877 
5878 // A variant of the above, used for CMS marking verification.
5879 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5880   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5881     _span(span),
5882     _verification_bm(verification_bm),
5883     _cms_bm(cms_bm)
5884 {
5885   assert(ref_processor() == NULL, "deliberately left NULL");
5886   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5887 }
5888 
5889 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5890   // if p points into _span, then mark corresponding bit in _markBitMap
5891   assert(obj->is_oop(), "expected an oop");
5892   HeapWord* addr = (HeapWord*)obj;
5893   if (_span.contains(addr)) {
5894     _verification_bm->mark(addr);
5895     if (!_cms_bm->isMarked(addr)) {
5896       Log(gc, verify) log;
5897       ResourceMark rm;
5898       oop(addr)->print_on(log.error_stream());
5899       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5900       fatal("... aborting");
5901     }
5902   }
5903 }
5904 
5905 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5906 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5907 
5908 //////////////////////////////////////////////////
5909 // MarkRefsIntoAndScanClosure
5910 //////////////////////////////////////////////////
5911 
5912 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5913                                                        ReferenceProcessor* rp,
5914                                                        CMSBitMap* bit_map,
5915                                                        CMSBitMap* mod_union_table,
5916                                                        CMSMarkStack*  mark_stack,
5917                                                        CMSCollector* collector,
5918                                                        bool should_yield,
5919                                                        bool concurrent_precleaning):
5920   _collector(collector),
5921   _span(span),
5922   _bit_map(bit_map),
5923   _mark_stack(mark_stack),
5924   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5925                       mark_stack, concurrent_precleaning),
5926   _yield(should_yield),
5927   _concurrent_precleaning(concurrent_precleaning),
5928   _freelistLock(NULL)
5929 {
5930   // FIXME: Should initialize in base class constructor.
5931   assert(rp != NULL, "ref_processor shouldn't be NULL");
5932   set_ref_processor_internal(rp);
5933 }
5934 
5935 // This closure is used to mark refs into the CMS generation at the
5936 // second (final) checkpoint, and to scan and transitively follow
5937 // the unmarked oops. It is also used during the concurrent precleaning
5938 // phase while scanning objects on dirty cards in the CMS generation.
5939 // The marks are made in the marking bit map and the marking stack is
5940 // used for keeping the (newly) grey objects during the scan.
5941 // The parallel version (Par_...) appears further below.
5942 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5943   if (obj != NULL) {
5944     assert(obj->is_oop(), "expected an oop");
5945     HeapWord* addr = (HeapWord*)obj;
5946     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5947     assert(_collector->overflow_list_is_empty(),
5948            "overflow list should be empty");
5949     if (_span.contains(addr) &&
5950         !_bit_map->isMarked(addr)) {
5951       // mark bit map (object is now grey)
5952       _bit_map->mark(addr);
5953       // push on marking stack (stack should be empty), and drain the
5954       // stack by applying this closure to the oops in the oops popped
5955       // from the stack (i.e. blacken the grey objects)
5956       bool res = _mark_stack->push(obj);
5957       assert(res, "Should have space to push on empty stack");
5958       do {
5959         oop new_oop = _mark_stack->pop();
5960         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5961         assert(_bit_map->isMarked((HeapWord*)new_oop),
5962                "only grey objects on this stack");
5963         // iterate over the oops in this oop, marking and pushing
5964         // the ones in CMS heap (i.e. in _span).
5965         new_oop->oop_iterate(&_pushAndMarkClosure);
5966         // check if it's time to yield
5967         do_yield_check();
5968       } while (!_mark_stack->isEmpty() ||
5969                (!_concurrent_precleaning && take_from_overflow_list()));
5970         // if marking stack is empty, and we are not doing this
5971         // during precleaning, then check the overflow list
5972     }
5973     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5974     assert(_collector->overflow_list_is_empty(),
5975            "overflow list was drained above");
5976 
5977     assert(_collector->no_preserved_marks(),
5978            "All preserved marks should have been restored above");
5979   }
5980 }
5981 
5982 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5983 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5984 
5985 void MarkRefsIntoAndScanClosure::do_yield_work() {
5986   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5987          "CMS thread should hold CMS token");
5988   assert_lock_strong(_freelistLock);
5989   assert_lock_strong(_bit_map->lock());
5990   // relinquish the free_list_lock and bitMaplock()
5991   _bit_map->lock()->unlock();
5992   _freelistLock->unlock();
5993   ConcurrentMarkSweepThread::desynchronize(true);
5994   _collector->stopTimer();
5995   _collector->incrementYields();
5996 
5997   // See the comment in coordinator_yield()
5998   for (unsigned i = 0;
5999        i < CMSYieldSleepCount &&
6000        ConcurrentMarkSweepThread::should_yield() &&
6001        !CMSCollector::foregroundGCIsActive();
6002        ++i) {
6003     os::sleep(Thread::current(), 1, false);
6004   }
6005 
6006   ConcurrentMarkSweepThread::synchronize(true);
6007   _freelistLock->lock_without_safepoint_check();
6008   _bit_map->lock()->lock_without_safepoint_check();
6009   _collector->startTimer();
6010 }
6011 
6012 ///////////////////////////////////////////////////////////
6013 // ParMarkRefsIntoAndScanClosure: a parallel version of
6014 //                                MarkRefsIntoAndScanClosure
6015 ///////////////////////////////////////////////////////////
6016 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6017   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6018   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6019   _span(span),
6020   _bit_map(bit_map),
6021   _work_queue(work_queue),
6022   _low_water_mark(MIN2((work_queue->max_elems()/4),
6023                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6024   _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6025 {
6026   // FIXME: Should initialize in base class constructor.
6027   assert(rp != NULL, "ref_processor shouldn't be NULL");
6028   set_ref_processor_internal(rp);
6029 }
6030 
6031 // This closure is used to mark refs into the CMS generation at the
6032 // second (final) checkpoint, and to scan and transitively follow
6033 // the unmarked oops. The marks are made in the marking bit map and
6034 // the work_queue is used for keeping the (newly) grey objects during
6035 // the scan phase whence they are also available for stealing by parallel
6036 // threads. Since the marking bit map is shared, updates are
6037 // synchronized (via CAS).
6038 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6039   if (obj != NULL) {
6040     // Ignore mark word because this could be an already marked oop
6041     // that may be chained at the end of the overflow list.
6042     assert(obj->is_oop(true), "expected an oop");
6043     HeapWord* addr = (HeapWord*)obj;
6044     if (_span.contains(addr) &&
6045         !_bit_map->isMarked(addr)) {
6046       // mark bit map (object will become grey):
6047       // It is possible for several threads to be
6048       // trying to "claim" this object concurrently;
6049       // the unique thread that succeeds in marking the
6050       // object first will do the subsequent push on
6051       // to the work queue (or overflow list).
6052       if (_bit_map->par_mark(addr)) {
6053         // push on work_queue (which may not be empty), and trim the
6054         // queue to an appropriate length by applying this closure to
6055         // the oops in the oops popped from the stack (i.e. blacken the
6056         // grey objects)
6057         bool res = _work_queue->push(obj);
6058         assert(res, "Low water mark should be less than capacity?");
6059         trim_queue(_low_water_mark);
6060       } // Else, another thread claimed the object
6061     }
6062   }
6063 }
6064 
6065 void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6066 void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6067 
6068 // This closure is used to rescan the marked objects on the dirty cards
6069 // in the mod union table and the card table proper.
6070 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6071   oop p, MemRegion mr) {
6072 
6073   size_t size = 0;
6074   HeapWord* addr = (HeapWord*)p;
6075   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6076   assert(_span.contains(addr), "we are scanning the CMS generation");
6077   // check if it's time to yield
6078   if (do_yield_check()) {
6079     // We yielded for some foreground stop-world work,
6080     // and we have been asked to abort this ongoing preclean cycle.
6081     return 0;
6082   }
6083   if (_bitMap->isMarked(addr)) {
6084     // it's marked; is it potentially uninitialized?
6085     if (p->klass_or_null() != NULL) {
6086         // an initialized object; ignore mark word in verification below
6087         // since we are running concurrent with mutators
6088         assert(p->is_oop(true), "should be an oop");
6089         if (p->is_objArray()) {
6090           // objArrays are precisely marked; restrict scanning
6091           // to dirty cards only.
6092           size = CompactibleFreeListSpace::adjustObjectSize(
6093                    p->oop_iterate_size(_scanningClosure, mr));
6094         } else {
6095           // A non-array may have been imprecisely marked; we need
6096           // to scan object in its entirety.
6097           size = CompactibleFreeListSpace::adjustObjectSize(
6098                    p->oop_iterate_size(_scanningClosure));
6099         }
6100         #ifdef ASSERT
6101           size_t direct_size =
6102             CompactibleFreeListSpace::adjustObjectSize(p->size());
6103           assert(size == direct_size, "Inconsistency in size");
6104           assert(size >= 3, "Necessary for Printezis marks to work");
6105           if (!_bitMap->isMarked(addr+1)) {
6106             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6107           } else {
6108             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6109             assert(_bitMap->isMarked(addr+size-1),
6110                    "inconsistent Printezis mark");
6111           }
6112         #endif // ASSERT
6113     } else {
6114       // An uninitialized object.
6115       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6116       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6117       size = pointer_delta(nextOneAddr + 1, addr);
6118       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6119              "alignment problem");
6120       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6121       // will dirty the card when the klass pointer is installed in the
6122       // object (signaling the completion of initialization).
6123     }
6124   } else {
6125     // Either a not yet marked object or an uninitialized object
6126     if (p->klass_or_null() == NULL) {
6127       // An uninitialized object, skip to the next card, since
6128       // we may not be able to read its P-bits yet.
6129       assert(size == 0, "Initial value");
6130     } else {
6131       // An object not (yet) reached by marking: we merely need to
6132       // compute its size so as to go look at the next block.
6133       assert(p->is_oop(true), "should be an oop");
6134       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6135     }
6136   }
6137   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6138   return size;
6139 }
6140 
6141 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6142   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6143          "CMS thread should hold CMS token");
6144   assert_lock_strong(_freelistLock);
6145   assert_lock_strong(_bitMap->lock());
6146   // relinquish the free_list_lock and bitMaplock()
6147   _bitMap->lock()->unlock();
6148   _freelistLock->unlock();
6149   ConcurrentMarkSweepThread::desynchronize(true);
6150   _collector->stopTimer();
6151   _collector->incrementYields();
6152 
6153   // See the comment in coordinator_yield()
6154   for (unsigned i = 0; i < CMSYieldSleepCount &&
6155                    ConcurrentMarkSweepThread::should_yield() &&
6156                    !CMSCollector::foregroundGCIsActive(); ++i) {
6157     os::sleep(Thread::current(), 1, false);
6158   }
6159 
6160   ConcurrentMarkSweepThread::synchronize(true);
6161   _freelistLock->lock_without_safepoint_check();
6162   _bitMap->lock()->lock_without_safepoint_check();
6163   _collector->startTimer();
6164 }
6165 
6166 
6167 //////////////////////////////////////////////////////////////////
6168 // SurvivorSpacePrecleanClosure
6169 //////////////////////////////////////////////////////////////////
6170 // This (single-threaded) closure is used to preclean the oops in
6171 // the survivor spaces.
6172 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6173 
6174   HeapWord* addr = (HeapWord*)p;
6175   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6176   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6177   assert(p->klass_or_null() != NULL, "object should be initialized");
6178   // an initialized object; ignore mark word in verification below
6179   // since we are running concurrent with mutators
6180   assert(p->is_oop(true), "should be an oop");
6181   // Note that we do not yield while we iterate over
6182   // the interior oops of p, pushing the relevant ones
6183   // on our marking stack.
6184   size_t size = p->oop_iterate_size(_scanning_closure);
6185   do_yield_check();
6186   // Observe that below, we do not abandon the preclean
6187   // phase as soon as we should; rather we empty the
6188   // marking stack before returning. This is to satisfy
6189   // some existing assertions. In general, it may be a
6190   // good idea to abort immediately and complete the marking
6191   // from the grey objects at a later time.
6192   while (!_mark_stack->isEmpty()) {
6193     oop new_oop = _mark_stack->pop();
6194     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6195     assert(_bit_map->isMarked((HeapWord*)new_oop),
6196            "only grey objects on this stack");
6197     // iterate over the oops in this oop, marking and pushing
6198     // the ones in CMS heap (i.e. in _span).
6199     new_oop->oop_iterate(_scanning_closure);
6200     // check if it's time to yield
6201     do_yield_check();
6202   }
6203   unsigned int after_count =
6204     GenCollectedHeap::heap()->total_collections();
6205   bool abort = (_before_count != after_count) ||
6206                _collector->should_abort_preclean();
6207   return abort ? 0 : size;
6208 }
6209 
6210 void SurvivorSpacePrecleanClosure::do_yield_work() {
6211   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6212          "CMS thread should hold CMS token");
6213   assert_lock_strong(_bit_map->lock());
6214   // Relinquish the bit map lock
6215   _bit_map->lock()->unlock();
6216   ConcurrentMarkSweepThread::desynchronize(true);
6217   _collector->stopTimer();
6218   _collector->incrementYields();
6219 
6220   // See the comment in coordinator_yield()
6221   for (unsigned i = 0; i < CMSYieldSleepCount &&
6222                        ConcurrentMarkSweepThread::should_yield() &&
6223                        !CMSCollector::foregroundGCIsActive(); ++i) {
6224     os::sleep(Thread::current(), 1, false);
6225   }
6226 
6227   ConcurrentMarkSweepThread::synchronize(true);
6228   _bit_map->lock()->lock_without_safepoint_check();
6229   _collector->startTimer();
6230 }
6231 
6232 // This closure is used to rescan the marked objects on the dirty cards
6233 // in the mod union table and the card table proper. In the parallel
6234 // case, although the bitMap is shared, we do a single read so the
6235 // isMarked() query is "safe".
6236 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6237   // Ignore mark word because we are running concurrent with mutators
6238   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6239   HeapWord* addr = (HeapWord*)p;
6240   assert(_span.contains(addr), "we are scanning the CMS generation");
6241   bool is_obj_array = false;
6242   #ifdef ASSERT
6243     if (!_parallel) {
6244       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6245       assert(_collector->overflow_list_is_empty(),
6246              "overflow list should be empty");
6247 
6248     }
6249   #endif // ASSERT
6250   if (_bit_map->isMarked(addr)) {
6251     // Obj arrays are precisely marked, non-arrays are not;
6252     // so we scan objArrays precisely and non-arrays in their
6253     // entirety.
6254     if (p->is_objArray()) {
6255       is_obj_array = true;
6256       if (_parallel) {
6257         p->oop_iterate(_par_scan_closure, mr);
6258       } else {
6259         p->oop_iterate(_scan_closure, mr);
6260       }
6261     } else {
6262       if (_parallel) {
6263         p->oop_iterate(_par_scan_closure);
6264       } else {
6265         p->oop_iterate(_scan_closure);
6266       }
6267     }
6268   }
6269   #ifdef ASSERT
6270     if (!_parallel) {
6271       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6272       assert(_collector->overflow_list_is_empty(),
6273              "overflow list should be empty");
6274 
6275     }
6276   #endif // ASSERT
6277   return is_obj_array;
6278 }
6279 
6280 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6281                         MemRegion span,
6282                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6283                         bool should_yield, bool verifying):
6284   _collector(collector),
6285   _span(span),
6286   _bitMap(bitMap),
6287   _mut(&collector->_modUnionTable),
6288   _markStack(markStack),
6289   _yield(should_yield),
6290   _skipBits(0)
6291 {
6292   assert(_markStack->isEmpty(), "stack should be empty");
6293   _finger = _bitMap->startWord();
6294   _threshold = _finger;
6295   assert(_collector->_restart_addr == NULL, "Sanity check");
6296   assert(_span.contains(_finger), "Out of bounds _finger?");
6297   DEBUG_ONLY(_verifying = verifying;)
6298 }
6299 
6300 void MarkFromRootsClosure::reset(HeapWord* addr) {
6301   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6302   assert(_span.contains(addr), "Out of bounds _finger?");
6303   _finger = addr;
6304   _threshold = (HeapWord*)round_to(
6305                  (intptr_t)_finger, CardTableModRefBS::card_size);
6306 }
6307 
6308 // Should revisit to see if this should be restructured for
6309 // greater efficiency.
6310 bool MarkFromRootsClosure::do_bit(size_t offset) {
6311   if (_skipBits > 0) {
6312     _skipBits--;
6313     return true;
6314   }
6315   // convert offset into a HeapWord*
6316   HeapWord* addr = _bitMap->startWord() + offset;
6317   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6318          "address out of range");
6319   assert(_bitMap->isMarked(addr), "tautology");
6320   if (_bitMap->isMarked(addr+1)) {
6321     // this is an allocated but not yet initialized object
6322     assert(_skipBits == 0, "tautology");
6323     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6324     oop p = oop(addr);
6325     if (p->klass_or_null() == NULL) {
6326       DEBUG_ONLY(if (!_verifying) {)
6327         // We re-dirty the cards on which this object lies and increase
6328         // the _threshold so that we'll come back to scan this object
6329         // during the preclean or remark phase. (CMSCleanOnEnter)
6330         if (CMSCleanOnEnter) {
6331           size_t sz = _collector->block_size_using_printezis_bits(addr);
6332           HeapWord* end_card_addr   = (HeapWord*)round_to(
6333                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6334           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6335           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6336           // Bump _threshold to end_card_addr; note that
6337           // _threshold cannot possibly exceed end_card_addr, anyhow.
6338           // This prevents future clearing of the card as the scan proceeds
6339           // to the right.
6340           assert(_threshold <= end_card_addr,
6341                  "Because we are just scanning into this object");
6342           if (_threshold < end_card_addr) {
6343             _threshold = end_card_addr;
6344           }
6345           if (p->klass_or_null() != NULL) {
6346             // Redirty the range of cards...
6347             _mut->mark_range(redirty_range);
6348           } // ...else the setting of klass will dirty the card anyway.
6349         }
6350       DEBUG_ONLY(})
6351       return true;
6352     }
6353   }
6354   scanOopsInOop(addr);
6355   return true;
6356 }
6357 
6358 // We take a break if we've been at this for a while,
6359 // so as to avoid monopolizing the locks involved.
6360 void MarkFromRootsClosure::do_yield_work() {
6361   // First give up the locks, then yield, then re-lock
6362   // We should probably use a constructor/destructor idiom to
6363   // do this unlock/lock or modify the MutexUnlocker class to
6364   // serve our purpose. XXX
6365   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6366          "CMS thread should hold CMS token");
6367   assert_lock_strong(_bitMap->lock());
6368   _bitMap->lock()->unlock();
6369   ConcurrentMarkSweepThread::desynchronize(true);
6370   _collector->stopTimer();
6371   _collector->incrementYields();
6372 
6373   // See the comment in coordinator_yield()
6374   for (unsigned i = 0; i < CMSYieldSleepCount &&
6375                        ConcurrentMarkSweepThread::should_yield() &&
6376                        !CMSCollector::foregroundGCIsActive(); ++i) {
6377     os::sleep(Thread::current(), 1, false);
6378   }
6379 
6380   ConcurrentMarkSweepThread::synchronize(true);
6381   _bitMap->lock()->lock_without_safepoint_check();
6382   _collector->startTimer();
6383 }
6384 
6385 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6386   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6387   assert(_markStack->isEmpty(),
6388          "should drain stack to limit stack usage");
6389   // convert ptr to an oop preparatory to scanning
6390   oop obj = oop(ptr);
6391   // Ignore mark word in verification below, since we
6392   // may be running concurrent with mutators.
6393   assert(obj->is_oop(true), "should be an oop");
6394   assert(_finger <= ptr, "_finger runneth ahead");
6395   // advance the finger to right end of this object
6396   _finger = ptr + obj->size();
6397   assert(_finger > ptr, "we just incremented it above");
6398   // On large heaps, it may take us some time to get through
6399   // the marking phase. During
6400   // this time it's possible that a lot of mutations have
6401   // accumulated in the card table and the mod union table --
6402   // these mutation records are redundant until we have
6403   // actually traced into the corresponding card.
6404   // Here, we check whether advancing the finger would make
6405   // us cross into a new card, and if so clear corresponding
6406   // cards in the MUT (preclean them in the card-table in the
6407   // future).
6408 
6409   DEBUG_ONLY(if (!_verifying) {)
6410     // The clean-on-enter optimization is disabled by default,
6411     // until we fix 6178663.
6412     if (CMSCleanOnEnter && (_finger > _threshold)) {
6413       // [_threshold, _finger) represents the interval
6414       // of cards to be cleared  in MUT (or precleaned in card table).
6415       // The set of cards to be cleared is all those that overlap
6416       // with the interval [_threshold, _finger); note that
6417       // _threshold is always kept card-aligned but _finger isn't
6418       // always card-aligned.
6419       HeapWord* old_threshold = _threshold;
6420       assert(old_threshold == (HeapWord*)round_to(
6421               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6422              "_threshold should always be card-aligned");
6423       _threshold = (HeapWord*)round_to(
6424                      (intptr_t)_finger, CardTableModRefBS::card_size);
6425       MemRegion mr(old_threshold, _threshold);
6426       assert(!mr.is_empty(), "Control point invariant");
6427       assert(_span.contains(mr), "Should clear within span");
6428       _mut->clear_range(mr);
6429     }
6430   DEBUG_ONLY(})
6431   // Note: the finger doesn't advance while we drain
6432   // the stack below.
6433   PushOrMarkClosure pushOrMarkClosure(_collector,
6434                                       _span, _bitMap, _markStack,
6435                                       _finger, this);
6436   bool res = _markStack->push(obj);
6437   assert(res, "Empty non-zero size stack should have space for single push");
6438   while (!_markStack->isEmpty()) {
6439     oop new_oop = _markStack->pop();
6440     // Skip verifying header mark word below because we are
6441     // running concurrent with mutators.
6442     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6443     // now scan this oop's oops
6444     new_oop->oop_iterate(&pushOrMarkClosure);
6445     do_yield_check();
6446   }
6447   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6448 }
6449 
6450 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6451                        CMSCollector* collector, MemRegion span,
6452                        CMSBitMap* bit_map,
6453                        OopTaskQueue* work_queue,
6454                        CMSMarkStack*  overflow_stack):
6455   _collector(collector),
6456   _whole_span(collector->_span),
6457   _span(span),
6458   _bit_map(bit_map),
6459   _mut(&collector->_modUnionTable),
6460   _work_queue(work_queue),
6461   _overflow_stack(overflow_stack),
6462   _skip_bits(0),
6463   _task(task)
6464 {
6465   assert(_work_queue->size() == 0, "work_queue should be empty");
6466   _finger = span.start();
6467   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6468   assert(_span.contains(_finger), "Out of bounds _finger?");
6469 }
6470 
6471 // Should revisit to see if this should be restructured for
6472 // greater efficiency.
6473 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6474   if (_skip_bits > 0) {
6475     _skip_bits--;
6476     return true;
6477   }
6478   // convert offset into a HeapWord*
6479   HeapWord* addr = _bit_map->startWord() + offset;
6480   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6481          "address out of range");
6482   assert(_bit_map->isMarked(addr), "tautology");
6483   if (_bit_map->isMarked(addr+1)) {
6484     // this is an allocated object that might not yet be initialized
6485     assert(_skip_bits == 0, "tautology");
6486     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6487     oop p = oop(addr);
6488     if (p->klass_or_null() == NULL) {
6489       // in the case of Clean-on-Enter optimization, redirty card
6490       // and avoid clearing card by increasing  the threshold.
6491       return true;
6492     }
6493   }
6494   scan_oops_in_oop(addr);
6495   return true;
6496 }
6497 
6498 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6499   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6500   // Should we assert that our work queue is empty or
6501   // below some drain limit?
6502   assert(_work_queue->size() == 0,
6503          "should drain stack to limit stack usage");
6504   // convert ptr to an oop preparatory to scanning
6505   oop obj = oop(ptr);
6506   // Ignore mark word in verification below, since we
6507   // may be running concurrent with mutators.
6508   assert(obj->is_oop(true), "should be an oop");
6509   assert(_finger <= ptr, "_finger runneth ahead");
6510   // advance the finger to right end of this object
6511   _finger = ptr + obj->size();
6512   assert(_finger > ptr, "we just incremented it above");
6513   // On large heaps, it may take us some time to get through
6514   // the marking phase. During
6515   // this time it's possible that a lot of mutations have
6516   // accumulated in the card table and the mod union table --
6517   // these mutation records are redundant until we have
6518   // actually traced into the corresponding card.
6519   // Here, we check whether advancing the finger would make
6520   // us cross into a new card, and if so clear corresponding
6521   // cards in the MUT (preclean them in the card-table in the
6522   // future).
6523 
6524   // The clean-on-enter optimization is disabled by default,
6525   // until we fix 6178663.
6526   if (CMSCleanOnEnter && (_finger > _threshold)) {
6527     // [_threshold, _finger) represents the interval
6528     // of cards to be cleared  in MUT (or precleaned in card table).
6529     // The set of cards to be cleared is all those that overlap
6530     // with the interval [_threshold, _finger); note that
6531     // _threshold is always kept card-aligned but _finger isn't
6532     // always card-aligned.
6533     HeapWord* old_threshold = _threshold;
6534     assert(old_threshold == (HeapWord*)round_to(
6535             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6536            "_threshold should always be card-aligned");
6537     _threshold = (HeapWord*)round_to(
6538                    (intptr_t)_finger, CardTableModRefBS::card_size);
6539     MemRegion mr(old_threshold, _threshold);
6540     assert(!mr.is_empty(), "Control point invariant");
6541     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6542     _mut->clear_range(mr);
6543   }
6544 
6545   // Note: the local finger doesn't advance while we drain
6546   // the stack below, but the global finger sure can and will.
6547   HeapWord** gfa = _task->global_finger_addr();
6548   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6549                                          _span, _bit_map,
6550                                          _work_queue,
6551                                          _overflow_stack,
6552                                          _finger,
6553                                          gfa, this);
6554   bool res = _work_queue->push(obj);   // overflow could occur here
6555   assert(res, "Will hold once we use workqueues");
6556   while (true) {
6557     oop new_oop;
6558     if (!_work_queue->pop_local(new_oop)) {
6559       // We emptied our work_queue; check if there's stuff that can
6560       // be gotten from the overflow stack.
6561       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6562             _overflow_stack, _work_queue)) {
6563         do_yield_check();
6564         continue;
6565       } else {  // done
6566         break;
6567       }
6568     }
6569     // Skip verifying header mark word below because we are
6570     // running concurrent with mutators.
6571     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6572     // now scan this oop's oops
6573     new_oop->oop_iterate(&pushOrMarkClosure);
6574     do_yield_check();
6575   }
6576   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6577 }
6578 
6579 // Yield in response to a request from VM Thread or
6580 // from mutators.
6581 void ParMarkFromRootsClosure::do_yield_work() {
6582   assert(_task != NULL, "sanity");
6583   _task->yield();
6584 }
6585 
6586 // A variant of the above used for verifying CMS marking work.
6587 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6588                         MemRegion span,
6589                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6590                         CMSMarkStack*  mark_stack):
6591   _collector(collector),
6592   _span(span),
6593   _verification_bm(verification_bm),
6594   _cms_bm(cms_bm),
6595   _mark_stack(mark_stack),
6596   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6597                       mark_stack)
6598 {
6599   assert(_mark_stack->isEmpty(), "stack should be empty");
6600   _finger = _verification_bm->startWord();
6601   assert(_collector->_restart_addr == NULL, "Sanity check");
6602   assert(_span.contains(_finger), "Out of bounds _finger?");
6603 }
6604 
6605 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6606   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6607   assert(_span.contains(addr), "Out of bounds _finger?");
6608   _finger = addr;
6609 }
6610 
6611 // Should revisit to see if this should be restructured for
6612 // greater efficiency.
6613 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6614   // convert offset into a HeapWord*
6615   HeapWord* addr = _verification_bm->startWord() + offset;
6616   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6617          "address out of range");
6618   assert(_verification_bm->isMarked(addr), "tautology");
6619   assert(_cms_bm->isMarked(addr), "tautology");
6620 
6621   assert(_mark_stack->isEmpty(),
6622          "should drain stack to limit stack usage");
6623   // convert addr to an oop preparatory to scanning
6624   oop obj = oop(addr);
6625   assert(obj->is_oop(), "should be an oop");
6626   assert(_finger <= addr, "_finger runneth ahead");
6627   // advance the finger to right end of this object
6628   _finger = addr + obj->size();
6629   assert(_finger > addr, "we just incremented it above");
6630   // Note: the finger doesn't advance while we drain
6631   // the stack below.
6632   bool res = _mark_stack->push(obj);
6633   assert(res, "Empty non-zero size stack should have space for single push");
6634   while (!_mark_stack->isEmpty()) {
6635     oop new_oop = _mark_stack->pop();
6636     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6637     // now scan this oop's oops
6638     new_oop->oop_iterate(&_pam_verify_closure);
6639   }
6640   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6641   return true;
6642 }
6643 
6644 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6645   CMSCollector* collector, MemRegion span,
6646   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6647   CMSMarkStack*  mark_stack):
6648   MetadataAwareOopClosure(collector->ref_processor()),
6649   _collector(collector),
6650   _span(span),
6651   _verification_bm(verification_bm),
6652   _cms_bm(cms_bm),
6653   _mark_stack(mark_stack)
6654 { }
6655 
6656 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6657 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6658 
6659 // Upon stack overflow, we discard (part of) the stack,
6660 // remembering the least address amongst those discarded
6661 // in CMSCollector's _restart_address.
6662 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6663   // Remember the least grey address discarded
6664   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6665   _collector->lower_restart_addr(ra);
6666   _mark_stack->reset();  // discard stack contents
6667   _mark_stack->expand(); // expand the stack if possible
6668 }
6669 
6670 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6671   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6672   HeapWord* addr = (HeapWord*)obj;
6673   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6674     // Oop lies in _span and isn't yet grey or black
6675     _verification_bm->mark(addr);            // now grey
6676     if (!_cms_bm->isMarked(addr)) {
6677       Log(gc, verify) log;
6678       ResourceMark rm;
6679       oop(addr)->print_on(log.error_stream());
6680       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6681       fatal("... aborting");
6682     }
6683 
6684     if (!_mark_stack->push(obj)) { // stack overflow
6685       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6686       assert(_mark_stack->isFull(), "Else push should have succeeded");
6687       handle_stack_overflow(addr);
6688     }
6689     // anything including and to the right of _finger
6690     // will be scanned as we iterate over the remainder of the
6691     // bit map
6692   }
6693 }
6694 
6695 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6696                      MemRegion span,
6697                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6698                      HeapWord* finger, MarkFromRootsClosure* parent) :
6699   MetadataAwareOopClosure(collector->ref_processor()),
6700   _collector(collector),
6701   _span(span),
6702   _bitMap(bitMap),
6703   _markStack(markStack),
6704   _finger(finger),
6705   _parent(parent)
6706 { }
6707 
6708 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6709                                            MemRegion span,
6710                                            CMSBitMap* bit_map,
6711                                            OopTaskQueue* work_queue,
6712                                            CMSMarkStack*  overflow_stack,
6713                                            HeapWord* finger,
6714                                            HeapWord** global_finger_addr,
6715                                            ParMarkFromRootsClosure* parent) :
6716   MetadataAwareOopClosure(collector->ref_processor()),
6717   _collector(collector),
6718   _whole_span(collector->_span),
6719   _span(span),
6720   _bit_map(bit_map),
6721   _work_queue(work_queue),
6722   _overflow_stack(overflow_stack),
6723   _finger(finger),
6724   _global_finger_addr(global_finger_addr),
6725   _parent(parent)
6726 { }
6727 
6728 // Assumes thread-safe access by callers, who are
6729 // responsible for mutual exclusion.
6730 void CMSCollector::lower_restart_addr(HeapWord* low) {
6731   assert(_span.contains(low), "Out of bounds addr");
6732   if (_restart_addr == NULL) {
6733     _restart_addr = low;
6734   } else {
6735     _restart_addr = MIN2(_restart_addr, low);
6736   }
6737 }
6738 
6739 // Upon stack overflow, we discard (part of) the stack,
6740 // remembering the least address amongst those discarded
6741 // in CMSCollector's _restart_address.
6742 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6743   // Remember the least grey address discarded
6744   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6745   _collector->lower_restart_addr(ra);
6746   _markStack->reset();  // discard stack contents
6747   _markStack->expand(); // expand the stack if possible
6748 }
6749 
6750 // Upon stack overflow, we discard (part of) the stack,
6751 // remembering the least address amongst those discarded
6752 // in CMSCollector's _restart_address.
6753 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6754   // We need to do this under a mutex to prevent other
6755   // workers from interfering with the work done below.
6756   MutexLockerEx ml(_overflow_stack->par_lock(),
6757                    Mutex::_no_safepoint_check_flag);
6758   // Remember the least grey address discarded
6759   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6760   _collector->lower_restart_addr(ra);
6761   _overflow_stack->reset();  // discard stack contents
6762   _overflow_stack->expand(); // expand the stack if possible
6763 }
6764 
6765 void PushOrMarkClosure::do_oop(oop obj) {
6766   // Ignore mark word because we are running concurrent with mutators.
6767   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6768   HeapWord* addr = (HeapWord*)obj;
6769   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6770     // Oop lies in _span and isn't yet grey or black
6771     _bitMap->mark(addr);            // now grey
6772     if (addr < _finger) {
6773       // the bit map iteration has already either passed, or
6774       // sampled, this bit in the bit map; we'll need to
6775       // use the marking stack to scan this oop's oops.
6776       bool simulate_overflow = false;
6777       NOT_PRODUCT(
6778         if (CMSMarkStackOverflowALot &&
6779             _collector->simulate_overflow()) {
6780           // simulate a stack overflow
6781           simulate_overflow = true;
6782         }
6783       )
6784       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6785         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6786         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6787         handle_stack_overflow(addr);
6788       }
6789     }
6790     // anything including and to the right of _finger
6791     // will be scanned as we iterate over the remainder of the
6792     // bit map
6793     do_yield_check();
6794   }
6795 }
6796 
6797 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6798 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6799 
6800 void ParPushOrMarkClosure::do_oop(oop obj) {
6801   // Ignore mark word because we are running concurrent with mutators.
6802   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6803   HeapWord* addr = (HeapWord*)obj;
6804   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6805     // Oop lies in _span and isn't yet grey or black
6806     // We read the global_finger (volatile read) strictly after marking oop
6807     bool res = _bit_map->par_mark(addr);    // now grey
6808     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6809     // Should we push this marked oop on our stack?
6810     // -- if someone else marked it, nothing to do
6811     // -- if target oop is above global finger nothing to do
6812     // -- if target oop is in chunk and above local finger
6813     //      then nothing to do
6814     // -- else push on work queue
6815     if (   !res       // someone else marked it, they will deal with it
6816         || (addr >= *gfa)  // will be scanned in a later task
6817         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6818       return;
6819     }
6820     // the bit map iteration has already either passed, or
6821     // sampled, this bit in the bit map; we'll need to
6822     // use the marking stack to scan this oop's oops.
6823     bool simulate_overflow = false;
6824     NOT_PRODUCT(
6825       if (CMSMarkStackOverflowALot &&
6826           _collector->simulate_overflow()) {
6827         // simulate a stack overflow
6828         simulate_overflow = true;
6829       }
6830     )
6831     if (simulate_overflow ||
6832         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6833       // stack overflow
6834       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6835       // We cannot assert that the overflow stack is full because
6836       // it may have been emptied since.
6837       assert(simulate_overflow ||
6838              _work_queue->size() == _work_queue->max_elems(),
6839             "Else push should have succeeded");
6840       handle_stack_overflow(addr);
6841     }
6842     do_yield_check();
6843   }
6844 }
6845 
6846 void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6847 void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6848 
6849 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6850                                        MemRegion span,
6851                                        ReferenceProcessor* rp,
6852                                        CMSBitMap* bit_map,
6853                                        CMSBitMap* mod_union_table,
6854                                        CMSMarkStack*  mark_stack,
6855                                        bool           concurrent_precleaning):
6856   MetadataAwareOopClosure(rp),
6857   _collector(collector),
6858   _span(span),
6859   _bit_map(bit_map),
6860   _mod_union_table(mod_union_table),
6861   _mark_stack(mark_stack),
6862   _concurrent_precleaning(concurrent_precleaning)
6863 {
6864   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6865 }
6866 
6867 // Grey object rescan during pre-cleaning and second checkpoint phases --
6868 // the non-parallel version (the parallel version appears further below.)
6869 void PushAndMarkClosure::do_oop(oop obj) {
6870   // Ignore mark word verification. If during concurrent precleaning,
6871   // the object monitor may be locked. If during the checkpoint
6872   // phases, the object may already have been reached by a  different
6873   // path and may be at the end of the global overflow list (so
6874   // the mark word may be NULL).
6875   assert(obj->is_oop_or_null(true /* ignore mark word */),
6876          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6877   HeapWord* addr = (HeapWord*)obj;
6878   // Check if oop points into the CMS generation
6879   // and is not marked
6880   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6881     // a white object ...
6882     _bit_map->mark(addr);         // ... now grey
6883     // push on the marking stack (grey set)
6884     bool simulate_overflow = false;
6885     NOT_PRODUCT(
6886       if (CMSMarkStackOverflowALot &&
6887           _collector->simulate_overflow()) {
6888         // simulate a stack overflow
6889         simulate_overflow = true;
6890       }
6891     )
6892     if (simulate_overflow || !_mark_stack->push(obj)) {
6893       if (_concurrent_precleaning) {
6894          // During precleaning we can just dirty the appropriate card(s)
6895          // in the mod union table, thus ensuring that the object remains
6896          // in the grey set  and continue. In the case of object arrays
6897          // we need to dirty all of the cards that the object spans,
6898          // since the rescan of object arrays will be limited to the
6899          // dirty cards.
6900          // Note that no one can be interfering with us in this action
6901          // of dirtying the mod union table, so no locking or atomics
6902          // are required.
6903          if (obj->is_objArray()) {
6904            size_t sz = obj->size();
6905            HeapWord* end_card_addr = (HeapWord*)round_to(
6906                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6907            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6908            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6909            _mod_union_table->mark_range(redirty_range);
6910          } else {
6911            _mod_union_table->mark(addr);
6912          }
6913          _collector->_ser_pmc_preclean_ovflw++;
6914       } else {
6915          // During the remark phase, we need to remember this oop
6916          // in the overflow list.
6917          _collector->push_on_overflow_list(obj);
6918          _collector->_ser_pmc_remark_ovflw++;
6919       }
6920     }
6921   }
6922 }
6923 
6924 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6925                                              MemRegion span,
6926                                              ReferenceProcessor* rp,
6927                                              CMSBitMap* bit_map,
6928                                              OopTaskQueue* work_queue):
6929   MetadataAwareOopClosure(rp),
6930   _collector(collector),
6931   _span(span),
6932   _bit_map(bit_map),
6933   _work_queue(work_queue)
6934 {
6935   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6936 }
6937 
6938 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6939 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6940 
6941 // Grey object rescan during second checkpoint phase --
6942 // the parallel version.
6943 void ParPushAndMarkClosure::do_oop(oop obj) {
6944   // In the assert below, we ignore the mark word because
6945   // this oop may point to an already visited object that is
6946   // on the overflow stack (in which case the mark word has
6947   // been hijacked for chaining into the overflow stack --
6948   // if this is the last object in the overflow stack then
6949   // its mark word will be NULL). Because this object may
6950   // have been subsequently popped off the global overflow
6951   // stack, and the mark word possibly restored to the prototypical
6952   // value, by the time we get to examined this failing assert in
6953   // the debugger, is_oop_or_null(false) may subsequently start
6954   // to hold.
6955   assert(obj->is_oop_or_null(true),
6956          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6957   HeapWord* addr = (HeapWord*)obj;
6958   // Check if oop points into the CMS generation
6959   // and is not marked
6960   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6961     // a white object ...
6962     // If we manage to "claim" the object, by being the
6963     // first thread to mark it, then we push it on our
6964     // marking stack
6965     if (_bit_map->par_mark(addr)) {     // ... now grey
6966       // push on work queue (grey set)
6967       bool simulate_overflow = false;
6968       NOT_PRODUCT(
6969         if (CMSMarkStackOverflowALot &&
6970             _collector->par_simulate_overflow()) {
6971           // simulate a stack overflow
6972           simulate_overflow = true;
6973         }
6974       )
6975       if (simulate_overflow || !_work_queue->push(obj)) {
6976         _collector->par_push_on_overflow_list(obj);
6977         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6978       }
6979     } // Else, some other thread got there first
6980   }
6981 }
6982 
6983 void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6984 void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6985 
6986 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6987   Mutex* bml = _collector->bitMapLock();
6988   assert_lock_strong(bml);
6989   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6990          "CMS thread should hold CMS token");
6991 
6992   bml->unlock();
6993   ConcurrentMarkSweepThread::desynchronize(true);
6994 
6995   _collector->stopTimer();
6996   _collector->incrementYields();
6997 
6998   // See the comment in coordinator_yield()
6999   for (unsigned i = 0; i < CMSYieldSleepCount &&
7000                        ConcurrentMarkSweepThread::should_yield() &&
7001                        !CMSCollector::foregroundGCIsActive(); ++i) {
7002     os::sleep(Thread::current(), 1, false);
7003   }
7004 
7005   ConcurrentMarkSweepThread::synchronize(true);
7006   bml->lock();
7007 
7008   _collector->startTimer();
7009 }
7010 
7011 bool CMSPrecleanRefsYieldClosure::should_return() {
7012   if (ConcurrentMarkSweepThread::should_yield()) {
7013     do_yield_work();
7014   }
7015   return _collector->foregroundGCIsActive();
7016 }
7017 
7018 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7019   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7020          "mr should be aligned to start at a card boundary");
7021   // We'd like to assert:
7022   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7023   //        "mr should be a range of cards");
7024   // However, that would be too strong in one case -- the last
7025   // partition ends at _unallocated_block which, in general, can be
7026   // an arbitrary boundary, not necessarily card aligned.
7027   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7028   _space->object_iterate_mem(mr, &_scan_cl);
7029 }
7030 
7031 SweepClosure::SweepClosure(CMSCollector* collector,
7032                            ConcurrentMarkSweepGeneration* g,
7033                            CMSBitMap* bitMap, bool should_yield) :
7034   _collector(collector),
7035   _g(g),
7036   _sp(g->cmsSpace()),
7037   _limit(_sp->sweep_limit()),
7038   _freelistLock(_sp->freelistLock()),
7039   _bitMap(bitMap),
7040   _yield(should_yield),
7041   _inFreeRange(false),           // No free range at beginning of sweep
7042   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7043   _lastFreeRangeCoalesced(false),
7044   _freeFinger(g->used_region().start())
7045 {
7046   NOT_PRODUCT(
7047     _numObjectsFreed = 0;
7048     _numWordsFreed   = 0;
7049     _numObjectsLive = 0;
7050     _numWordsLive = 0;
7051     _numObjectsAlreadyFree = 0;
7052     _numWordsAlreadyFree = 0;
7053     _last_fc = NULL;
7054 
7055     _sp->initializeIndexedFreeListArrayReturnedBytes();
7056     _sp->dictionary()->initialize_dict_returned_bytes();
7057   )
7058   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7059          "sweep _limit out of bounds");
7060   log_develop_trace(gc, sweep)("====================");
7061   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7062 }
7063 
7064 void SweepClosure::print_on(outputStream* st) const {
7065   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7066                p2i(_sp->bottom()), p2i(_sp->end()));
7067   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7068   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7069   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7070   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7071                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7072 }
7073 
7074 #ifndef PRODUCT
7075 // Assertion checking only:  no useful work in product mode --
7076 // however, if any of the flags below become product flags,
7077 // you may need to review this code to see if it needs to be
7078 // enabled in product mode.
7079 SweepClosure::~SweepClosure() {
7080   assert_lock_strong(_freelistLock);
7081   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7082          "sweep _limit out of bounds");
7083   if (inFreeRange()) {
7084     Log(gc, sweep) log;
7085     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7086     ResourceMark rm;
7087     print_on(log.error_stream());
7088     ShouldNotReachHere();
7089   }
7090 
7091   if (log_is_enabled(Debug, gc, sweep)) {
7092     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7093                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7094     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7095                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7096     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7097     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7098   }
7099 
7100   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7101     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7102     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7103     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7104     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7105                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7106   }
7107   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7108   log_develop_trace(gc, sweep)("================");
7109 }
7110 #endif  // PRODUCT
7111 
7112 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7113     bool freeRangeInFreeLists) {
7114   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7115                                p2i(freeFinger), freeRangeInFreeLists);
7116   assert(!inFreeRange(), "Trampling existing free range");
7117   set_inFreeRange(true);
7118   set_lastFreeRangeCoalesced(false);
7119 
7120   set_freeFinger(freeFinger);
7121   set_freeRangeInFreeLists(freeRangeInFreeLists);
7122   if (CMSTestInFreeList) {
7123     if (freeRangeInFreeLists) {
7124       FreeChunk* fc = (FreeChunk*) freeFinger;
7125       assert(fc->is_free(), "A chunk on the free list should be free.");
7126       assert(fc->size() > 0, "Free range should have a size");
7127       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7128     }
7129   }
7130 }
7131 
7132 // Note that the sweeper runs concurrently with mutators. Thus,
7133 // it is possible for direct allocation in this generation to happen
7134 // in the middle of the sweep. Note that the sweeper also coalesces
7135 // contiguous free blocks. Thus, unless the sweeper and the allocator
7136 // synchronize appropriately freshly allocated blocks may get swept up.
7137 // This is accomplished by the sweeper locking the free lists while
7138 // it is sweeping. Thus blocks that are determined to be free are
7139 // indeed free. There is however one additional complication:
7140 // blocks that have been allocated since the final checkpoint and
7141 // mark, will not have been marked and so would be treated as
7142 // unreachable and swept up. To prevent this, the allocator marks
7143 // the bit map when allocating during the sweep phase. This leads,
7144 // however, to a further complication -- objects may have been allocated
7145 // but not yet initialized -- in the sense that the header isn't yet
7146 // installed. The sweeper can not then determine the size of the block
7147 // in order to skip over it. To deal with this case, we use a technique
7148 // (due to Printezis) to encode such uninitialized block sizes in the
7149 // bit map. Since the bit map uses a bit per every HeapWord, but the
7150 // CMS generation has a minimum object size of 3 HeapWords, it follows
7151 // that "normal marks" won't be adjacent in the bit map (there will
7152 // always be at least two 0 bits between successive 1 bits). We make use
7153 // of these "unused" bits to represent uninitialized blocks -- the bit
7154 // corresponding to the start of the uninitialized object and the next
7155 // bit are both set. Finally, a 1 bit marks the end of the object that
7156 // started with the two consecutive 1 bits to indicate its potentially
7157 // uninitialized state.
7158 
7159 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7160   FreeChunk* fc = (FreeChunk*)addr;
7161   size_t res;
7162 
7163   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7164   // than "addr == _limit" because although _limit was a block boundary when
7165   // we started the sweep, it may no longer be one because heap expansion
7166   // may have caused us to coalesce the block ending at the address _limit
7167   // with a newly expanded chunk (this happens when _limit was set to the
7168   // previous _end of the space), so we may have stepped past _limit:
7169   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7170   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7171     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7172            "sweep _limit out of bounds");
7173     assert(addr < _sp->end(), "addr out of bounds");
7174     // Flush any free range we might be holding as a single
7175     // coalesced chunk to the appropriate free list.
7176     if (inFreeRange()) {
7177       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7178              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7179       flush_cur_free_chunk(freeFinger(),
7180                            pointer_delta(addr, freeFinger()));
7181       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7182                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7183                                    lastFreeRangeCoalesced() ? 1 : 0);
7184     }
7185 
7186     // help the iterator loop finish
7187     return pointer_delta(_sp->end(), addr);
7188   }
7189 
7190   assert(addr < _limit, "sweep invariant");
7191   // check if we should yield
7192   do_yield_check(addr);
7193   if (fc->is_free()) {
7194     // Chunk that is already free
7195     res = fc->size();
7196     do_already_free_chunk(fc);
7197     debug_only(_sp->verifyFreeLists());
7198     // If we flush the chunk at hand in lookahead_and_flush()
7199     // and it's coalesced with a preceding chunk, then the
7200     // process of "mangling" the payload of the coalesced block
7201     // will cause erasure of the size information from the
7202     // (erstwhile) header of all the coalesced blocks but the
7203     // first, so the first disjunct in the assert will not hold
7204     // in that specific case (in which case the second disjunct
7205     // will hold).
7206     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7207            "Otherwise the size info doesn't change at this step");
7208     NOT_PRODUCT(
7209       _numObjectsAlreadyFree++;
7210       _numWordsAlreadyFree += res;
7211     )
7212     NOT_PRODUCT(_last_fc = fc;)
7213   } else if (!_bitMap->isMarked(addr)) {
7214     // Chunk is fresh garbage
7215     res = do_garbage_chunk(fc);
7216     debug_only(_sp->verifyFreeLists());
7217     NOT_PRODUCT(
7218       _numObjectsFreed++;
7219       _numWordsFreed += res;
7220     )
7221   } else {
7222     // Chunk that is alive.
7223     res = do_live_chunk(fc);
7224     debug_only(_sp->verifyFreeLists());
7225     NOT_PRODUCT(
7226         _numObjectsLive++;
7227         _numWordsLive += res;
7228     )
7229   }
7230   return res;
7231 }
7232 
7233 // For the smart allocation, record following
7234 //  split deaths - a free chunk is removed from its free list because
7235 //      it is being split into two or more chunks.
7236 //  split birth - a free chunk is being added to its free list because
7237 //      a larger free chunk has been split and resulted in this free chunk.
7238 //  coal death - a free chunk is being removed from its free list because
7239 //      it is being coalesced into a large free chunk.
7240 //  coal birth - a free chunk is being added to its free list because
7241 //      it was created when two or more free chunks where coalesced into
7242 //      this free chunk.
7243 //
7244 // These statistics are used to determine the desired number of free
7245 // chunks of a given size.  The desired number is chosen to be relative
7246 // to the end of a CMS sweep.  The desired number at the end of a sweep
7247 // is the
7248 //      count-at-end-of-previous-sweep (an amount that was enough)
7249 //              - count-at-beginning-of-current-sweep  (the excess)
7250 //              + split-births  (gains in this size during interval)
7251 //              - split-deaths  (demands on this size during interval)
7252 // where the interval is from the end of one sweep to the end of the
7253 // next.
7254 //
7255 // When sweeping the sweeper maintains an accumulated chunk which is
7256 // the chunk that is made up of chunks that have been coalesced.  That
7257 // will be termed the left-hand chunk.  A new chunk of garbage that
7258 // is being considered for coalescing will be referred to as the
7259 // right-hand chunk.
7260 //
7261 // When making a decision on whether to coalesce a right-hand chunk with
7262 // the current left-hand chunk, the current count vs. the desired count
7263 // of the left-hand chunk is considered.  Also if the right-hand chunk
7264 // is near the large chunk at the end of the heap (see
7265 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7266 // left-hand chunk is coalesced.
7267 //
7268 // When making a decision about whether to split a chunk, the desired count
7269 // vs. the current count of the candidate to be split is also considered.
7270 // If the candidate is underpopulated (currently fewer chunks than desired)
7271 // a chunk of an overpopulated (currently more chunks than desired) size may
7272 // be chosen.  The "hint" associated with a free list, if non-null, points
7273 // to a free list which may be overpopulated.
7274 //
7275 
7276 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7277   const size_t size = fc->size();
7278   // Chunks that cannot be coalesced are not in the
7279   // free lists.
7280   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7281     assert(_sp->verify_chunk_in_free_list(fc),
7282            "free chunk should be in free lists");
7283   }
7284   // a chunk that is already free, should not have been
7285   // marked in the bit map
7286   HeapWord* const addr = (HeapWord*) fc;
7287   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7288   // Verify that the bit map has no bits marked between
7289   // addr and purported end of this block.
7290   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7291 
7292   // Some chunks cannot be coalesced under any circumstances.
7293   // See the definition of cantCoalesce().
7294   if (!fc->cantCoalesce()) {
7295     // This chunk can potentially be coalesced.
7296     // All the work is done in
7297     do_post_free_or_garbage_chunk(fc, size);
7298     // Note that if the chunk is not coalescable (the else arm
7299     // below), we unconditionally flush, without needing to do
7300     // a "lookahead," as we do below.
7301     if (inFreeRange()) lookahead_and_flush(fc, size);
7302   } else {
7303     // Code path common to both original and adaptive free lists.
7304 
7305     // cant coalesce with previous block; this should be treated
7306     // as the end of a free run if any
7307     if (inFreeRange()) {
7308       // we kicked some butt; time to pick up the garbage
7309       assert(freeFinger() < addr, "freeFinger points too high");
7310       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7311     }
7312     // else, nothing to do, just continue
7313   }
7314 }
7315 
7316 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7317   // This is a chunk of garbage.  It is not in any free list.
7318   // Add it to a free list or let it possibly be coalesced into
7319   // a larger chunk.
7320   HeapWord* const addr = (HeapWord*) fc;
7321   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7322 
7323   // Verify that the bit map has no bits marked between
7324   // addr and purported end of just dead object.
7325   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7326   do_post_free_or_garbage_chunk(fc, size);
7327 
7328   assert(_limit >= addr + size,
7329          "A freshly garbage chunk can't possibly straddle over _limit");
7330   if (inFreeRange()) lookahead_and_flush(fc, size);
7331   return size;
7332 }
7333 
7334 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7335   HeapWord* addr = (HeapWord*) fc;
7336   // The sweeper has just found a live object. Return any accumulated
7337   // left hand chunk to the free lists.
7338   if (inFreeRange()) {
7339     assert(freeFinger() < addr, "freeFinger points too high");
7340     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7341   }
7342 
7343   // This object is live: we'd normally expect this to be
7344   // an oop, and like to assert the following:
7345   // assert(oop(addr)->is_oop(), "live block should be an oop");
7346   // However, as we commented above, this may be an object whose
7347   // header hasn't yet been initialized.
7348   size_t size;
7349   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7350   if (_bitMap->isMarked(addr + 1)) {
7351     // Determine the size from the bit map, rather than trying to
7352     // compute it from the object header.
7353     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7354     size = pointer_delta(nextOneAddr + 1, addr);
7355     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7356            "alignment problem");
7357 
7358 #ifdef ASSERT
7359       if (oop(addr)->klass_or_null() != NULL) {
7360         // Ignore mark word because we are running concurrent with mutators
7361         assert(oop(addr)->is_oop(true), "live block should be an oop");
7362         assert(size ==
7363                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7364                "P-mark and computed size do not agree");
7365       }
7366 #endif
7367 
7368   } else {
7369     // This should be an initialized object that's alive.
7370     assert(oop(addr)->klass_or_null() != NULL,
7371            "Should be an initialized object");
7372     // Ignore mark word because we are running concurrent with mutators
7373     assert(oop(addr)->is_oop(true), "live block should be an oop");
7374     // Verify that the bit map has no bits marked between
7375     // addr and purported end of this block.
7376     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7377     assert(size >= 3, "Necessary for Printezis marks to work");
7378     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7379     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7380   }
7381   return size;
7382 }
7383 
7384 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7385                                                  size_t chunkSize) {
7386   // do_post_free_or_garbage_chunk() should only be called in the case
7387   // of the adaptive free list allocator.
7388   const bool fcInFreeLists = fc->is_free();
7389   assert((HeapWord*)fc <= _limit, "sweep invariant");
7390   if (CMSTestInFreeList && fcInFreeLists) {
7391     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7392   }
7393 
7394   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7395 
7396   HeapWord* const fc_addr = (HeapWord*) fc;
7397 
7398   bool coalesce = false;
7399   const size_t left  = pointer_delta(fc_addr, freeFinger());
7400   const size_t right = chunkSize;
7401   switch (FLSCoalescePolicy) {
7402     // numeric value forms a coalition aggressiveness metric
7403     case 0:  { // never coalesce
7404       coalesce = false;
7405       break;
7406     }
7407     case 1: { // coalesce if left & right chunks on overpopulated lists
7408       coalesce = _sp->coalOverPopulated(left) &&
7409                  _sp->coalOverPopulated(right);
7410       break;
7411     }
7412     case 2: { // coalesce if left chunk on overpopulated list (default)
7413       coalesce = _sp->coalOverPopulated(left);
7414       break;
7415     }
7416     case 3: { // coalesce if left OR right chunk on overpopulated list
7417       coalesce = _sp->coalOverPopulated(left) ||
7418                  _sp->coalOverPopulated(right);
7419       break;
7420     }
7421     case 4: { // always coalesce
7422       coalesce = true;
7423       break;
7424     }
7425     default:
7426      ShouldNotReachHere();
7427   }
7428 
7429   // Should the current free range be coalesced?
7430   // If the chunk is in a free range and either we decided to coalesce above
7431   // or the chunk is near the large block at the end of the heap
7432   // (isNearLargestChunk() returns true), then coalesce this chunk.
7433   const bool doCoalesce = inFreeRange()
7434                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7435   if (doCoalesce) {
7436     // Coalesce the current free range on the left with the new
7437     // chunk on the right.  If either is on a free list,
7438     // it must be removed from the list and stashed in the closure.
7439     if (freeRangeInFreeLists()) {
7440       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7441       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7442              "Size of free range is inconsistent with chunk size.");
7443       if (CMSTestInFreeList) {
7444         assert(_sp->verify_chunk_in_free_list(ffc),
7445                "Chunk is not in free lists");
7446       }
7447       _sp->coalDeath(ffc->size());
7448       _sp->removeFreeChunkFromFreeLists(ffc);
7449       set_freeRangeInFreeLists(false);
7450     }
7451     if (fcInFreeLists) {
7452       _sp->coalDeath(chunkSize);
7453       assert(fc->size() == chunkSize,
7454         "The chunk has the wrong size or is not in the free lists");
7455       _sp->removeFreeChunkFromFreeLists(fc);
7456     }
7457     set_lastFreeRangeCoalesced(true);
7458     print_free_block_coalesced(fc);
7459   } else {  // not in a free range and/or should not coalesce
7460     // Return the current free range and start a new one.
7461     if (inFreeRange()) {
7462       // In a free range but cannot coalesce with the right hand chunk.
7463       // Put the current free range into the free lists.
7464       flush_cur_free_chunk(freeFinger(),
7465                            pointer_delta(fc_addr, freeFinger()));
7466     }
7467     // Set up for new free range.  Pass along whether the right hand
7468     // chunk is in the free lists.
7469     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7470   }
7471 }
7472 
7473 // Lookahead flush:
7474 // If we are tracking a free range, and this is the last chunk that
7475 // we'll look at because its end crosses past _limit, we'll preemptively
7476 // flush it along with any free range we may be holding on to. Note that
7477 // this can be the case only for an already free or freshly garbage
7478 // chunk. If this block is an object, it can never straddle
7479 // over _limit. The "straddling" occurs when _limit is set at
7480 // the previous end of the space when this cycle started, and
7481 // a subsequent heap expansion caused the previously co-terminal
7482 // free block to be coalesced with the newly expanded portion,
7483 // thus rendering _limit a non-block-boundary making it dangerous
7484 // for the sweeper to step over and examine.
7485 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7486   assert(inFreeRange(), "Should only be called if currently in a free range.");
7487   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7488   assert(_sp->used_region().contains(eob - 1),
7489          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7490          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7491          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7492          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7493   if (eob >= _limit) {
7494     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7495     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7496                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7497                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7498                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7499     // Return the storage we are tracking back into the free lists.
7500     log_develop_trace(gc, sweep)("Flushing ... ");
7501     assert(freeFinger() < eob, "Error");
7502     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7503   }
7504 }
7505 
7506 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7507   assert(inFreeRange(), "Should only be called if currently in a free range.");
7508   assert(size > 0,
7509     "A zero sized chunk cannot be added to the free lists.");
7510   if (!freeRangeInFreeLists()) {
7511     if (CMSTestInFreeList) {
7512       FreeChunk* fc = (FreeChunk*) chunk;
7513       fc->set_size(size);
7514       assert(!_sp->verify_chunk_in_free_list(fc),
7515              "chunk should not be in free lists yet");
7516     }
7517     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7518     // A new free range is going to be starting.  The current
7519     // free range has not been added to the free lists yet or
7520     // was removed so add it back.
7521     // If the current free range was coalesced, then the death
7522     // of the free range was recorded.  Record a birth now.
7523     if (lastFreeRangeCoalesced()) {
7524       _sp->coalBirth(size);
7525     }
7526     _sp->addChunkAndRepairOffsetTable(chunk, size,
7527             lastFreeRangeCoalesced());
7528   } else {
7529     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7530   }
7531   set_inFreeRange(false);
7532   set_freeRangeInFreeLists(false);
7533 }
7534 
7535 // We take a break if we've been at this for a while,
7536 // so as to avoid monopolizing the locks involved.
7537 void SweepClosure::do_yield_work(HeapWord* addr) {
7538   // Return current free chunk being used for coalescing (if any)
7539   // to the appropriate freelist.  After yielding, the next
7540   // free block encountered will start a coalescing range of
7541   // free blocks.  If the next free block is adjacent to the
7542   // chunk just flushed, they will need to wait for the next
7543   // sweep to be coalesced.
7544   if (inFreeRange()) {
7545     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7546   }
7547 
7548   // First give up the locks, then yield, then re-lock.
7549   // We should probably use a constructor/destructor idiom to
7550   // do this unlock/lock or modify the MutexUnlocker class to
7551   // serve our purpose. XXX
7552   assert_lock_strong(_bitMap->lock());
7553   assert_lock_strong(_freelistLock);
7554   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7555          "CMS thread should hold CMS token");
7556   _bitMap->lock()->unlock();
7557   _freelistLock->unlock();
7558   ConcurrentMarkSweepThread::desynchronize(true);
7559   _collector->stopTimer();
7560   _collector->incrementYields();
7561 
7562   // See the comment in coordinator_yield()
7563   for (unsigned i = 0; i < CMSYieldSleepCount &&
7564                        ConcurrentMarkSweepThread::should_yield() &&
7565                        !CMSCollector::foregroundGCIsActive(); ++i) {
7566     os::sleep(Thread::current(), 1, false);
7567   }
7568 
7569   ConcurrentMarkSweepThread::synchronize(true);
7570   _freelistLock->lock();
7571   _bitMap->lock()->lock_without_safepoint_check();
7572   _collector->startTimer();
7573 }
7574 
7575 #ifndef PRODUCT
7576 // This is actually very useful in a product build if it can
7577 // be called from the debugger.  Compile it into the product
7578 // as needed.
7579 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7580   return debug_cms_space->verify_chunk_in_free_list(fc);
7581 }
7582 #endif
7583 
7584 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7585   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7586                                p2i(fc), fc->size());
7587 }
7588 
7589 // CMSIsAliveClosure
7590 bool CMSIsAliveClosure::do_object_b(oop obj) {
7591   HeapWord* addr = (HeapWord*)obj;
7592   return addr != NULL &&
7593          (!_span.contains(addr) || _bit_map->isMarked(addr));
7594 }
7595 
7596 
7597 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7598                       MemRegion span,
7599                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7600                       bool cpc):
7601   _collector(collector),
7602   _span(span),
7603   _bit_map(bit_map),
7604   _mark_stack(mark_stack),
7605   _concurrent_precleaning(cpc) {
7606   assert(!_span.is_empty(), "Empty span could spell trouble");
7607 }
7608 
7609 
7610 // CMSKeepAliveClosure: the serial version
7611 void CMSKeepAliveClosure::do_oop(oop obj) {
7612   HeapWord* addr = (HeapWord*)obj;
7613   if (_span.contains(addr) &&
7614       !_bit_map->isMarked(addr)) {
7615     _bit_map->mark(addr);
7616     bool simulate_overflow = false;
7617     NOT_PRODUCT(
7618       if (CMSMarkStackOverflowALot &&
7619           _collector->simulate_overflow()) {
7620         // simulate a stack overflow
7621         simulate_overflow = true;
7622       }
7623     )
7624     if (simulate_overflow || !_mark_stack->push(obj)) {
7625       if (_concurrent_precleaning) {
7626         // We dirty the overflown object and let the remark
7627         // phase deal with it.
7628         assert(_collector->overflow_list_is_empty(), "Error");
7629         // In the case of object arrays, we need to dirty all of
7630         // the cards that the object spans. No locking or atomics
7631         // are needed since no one else can be mutating the mod union
7632         // table.
7633         if (obj->is_objArray()) {
7634           size_t sz = obj->size();
7635           HeapWord* end_card_addr =
7636             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7637           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7638           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7639           _collector->_modUnionTable.mark_range(redirty_range);
7640         } else {
7641           _collector->_modUnionTable.mark(addr);
7642         }
7643         _collector->_ser_kac_preclean_ovflw++;
7644       } else {
7645         _collector->push_on_overflow_list(obj);
7646         _collector->_ser_kac_ovflw++;
7647       }
7648     }
7649   }
7650 }
7651 
7652 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7653 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7654 
7655 // CMSParKeepAliveClosure: a parallel version of the above.
7656 // The work queues are private to each closure (thread),
7657 // but (may be) available for stealing by other threads.
7658 void CMSParKeepAliveClosure::do_oop(oop obj) {
7659   HeapWord* addr = (HeapWord*)obj;
7660   if (_span.contains(addr) &&
7661       !_bit_map->isMarked(addr)) {
7662     // In general, during recursive tracing, several threads
7663     // may be concurrently getting here; the first one to
7664     // "tag" it, claims it.
7665     if (_bit_map->par_mark(addr)) {
7666       bool res = _work_queue->push(obj);
7667       assert(res, "Low water mark should be much less than capacity");
7668       // Do a recursive trim in the hope that this will keep
7669       // stack usage lower, but leave some oops for potential stealers
7670       trim_queue(_low_water_mark);
7671     } // Else, another thread got there first
7672   }
7673 }
7674 
7675 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7676 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7677 
7678 void CMSParKeepAliveClosure::trim_queue(uint max) {
7679   while (_work_queue->size() > max) {
7680     oop new_oop;
7681     if (_work_queue->pop_local(new_oop)) {
7682       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7683       assert(_bit_map->isMarked((HeapWord*)new_oop),
7684              "no white objects on this stack!");
7685       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7686       // iterate over the oops in this oop, marking and pushing
7687       // the ones in CMS heap (i.e. in _span).
7688       new_oop->oop_iterate(&_mark_and_push);
7689     }
7690   }
7691 }
7692 
7693 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7694                                 CMSCollector* collector,
7695                                 MemRegion span, CMSBitMap* bit_map,
7696                                 OopTaskQueue* work_queue):
7697   _collector(collector),
7698   _span(span),
7699   _bit_map(bit_map),
7700   _work_queue(work_queue) { }
7701 
7702 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7703   HeapWord* addr = (HeapWord*)obj;
7704   if (_span.contains(addr) &&
7705       !_bit_map->isMarked(addr)) {
7706     if (_bit_map->par_mark(addr)) {
7707       bool simulate_overflow = false;
7708       NOT_PRODUCT(
7709         if (CMSMarkStackOverflowALot &&
7710             _collector->par_simulate_overflow()) {
7711           // simulate a stack overflow
7712           simulate_overflow = true;
7713         }
7714       )
7715       if (simulate_overflow || !_work_queue->push(obj)) {
7716         _collector->par_push_on_overflow_list(obj);
7717         _collector->_par_kac_ovflw++;
7718       }
7719     } // Else another thread got there already
7720   }
7721 }
7722 
7723 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7724 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7725 
7726 //////////////////////////////////////////////////////////////////
7727 //  CMSExpansionCause                /////////////////////////////
7728 //////////////////////////////////////////////////////////////////
7729 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7730   switch (cause) {
7731     case _no_expansion:
7732       return "No expansion";
7733     case _satisfy_free_ratio:
7734       return "Free ratio";
7735     case _satisfy_promotion:
7736       return "Satisfy promotion";
7737     case _satisfy_allocation:
7738       return "allocation";
7739     case _allocate_par_lab:
7740       return "Par LAB";
7741     case _allocate_par_spooling_space:
7742       return "Par Spooling Space";
7743     case _adaptive_size_policy:
7744       return "Ergonomics";
7745     default:
7746       return "unknown";
7747   }
7748 }
7749 
7750 void CMSDrainMarkingStackClosure::do_void() {
7751   // the max number to take from overflow list at a time
7752   const size_t num = _mark_stack->capacity()/4;
7753   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7754          "Overflow list should be NULL during concurrent phases");
7755   while (!_mark_stack->isEmpty() ||
7756          // if stack is empty, check the overflow list
7757          _collector->take_from_overflow_list(num, _mark_stack)) {
7758     oop obj = _mark_stack->pop();
7759     HeapWord* addr = (HeapWord*)obj;
7760     assert(_span.contains(addr), "Should be within span");
7761     assert(_bit_map->isMarked(addr), "Should be marked");
7762     assert(obj->is_oop(), "Should be an oop");
7763     obj->oop_iterate(_keep_alive);
7764   }
7765 }
7766 
7767 void CMSParDrainMarkingStackClosure::do_void() {
7768   // drain queue
7769   trim_queue(0);
7770 }
7771 
7772 // Trim our work_queue so its length is below max at return
7773 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7774   while (_work_queue->size() > max) {
7775     oop new_oop;
7776     if (_work_queue->pop_local(new_oop)) {
7777       assert(new_oop->is_oop(), "Expected an oop");
7778       assert(_bit_map->isMarked((HeapWord*)new_oop),
7779              "no white objects on this stack!");
7780       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7781       // iterate over the oops in this oop, marking and pushing
7782       // the ones in CMS heap (i.e. in _span).
7783       new_oop->oop_iterate(&_mark_and_push);
7784     }
7785   }
7786 }
7787 
7788 ////////////////////////////////////////////////////////////////////
7789 // Support for Marking Stack Overflow list handling and related code
7790 ////////////////////////////////////////////////////////////////////
7791 // Much of the following code is similar in shape and spirit to the
7792 // code used in ParNewGC. We should try and share that code
7793 // as much as possible in the future.
7794 
7795 #ifndef PRODUCT
7796 // Debugging support for CMSStackOverflowALot
7797 
7798 // It's OK to call this multi-threaded;  the worst thing
7799 // that can happen is that we'll get a bunch of closely
7800 // spaced simulated overflows, but that's OK, in fact
7801 // probably good as it would exercise the overflow code
7802 // under contention.
7803 bool CMSCollector::simulate_overflow() {
7804   if (_overflow_counter-- <= 0) { // just being defensive
7805     _overflow_counter = CMSMarkStackOverflowInterval;
7806     return true;
7807   } else {
7808     return false;
7809   }
7810 }
7811 
7812 bool CMSCollector::par_simulate_overflow() {
7813   return simulate_overflow();
7814 }
7815 #endif
7816 
7817 // Single-threaded
7818 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7819   assert(stack->isEmpty(), "Expected precondition");
7820   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7821   size_t i = num;
7822   oop  cur = _overflow_list;
7823   const markOop proto = markOopDesc::prototype();
7824   NOT_PRODUCT(ssize_t n = 0;)
7825   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7826     next = oop(cur->mark());
7827     cur->set_mark(proto);   // until proven otherwise
7828     assert(cur->is_oop(), "Should be an oop");
7829     bool res = stack->push(cur);
7830     assert(res, "Bit off more than can chew?");
7831     NOT_PRODUCT(n++;)
7832   }
7833   _overflow_list = cur;
7834 #ifndef PRODUCT
7835   assert(_num_par_pushes >= n, "Too many pops?");
7836   _num_par_pushes -=n;
7837 #endif
7838   return !stack->isEmpty();
7839 }
7840 
7841 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7842 // (MT-safe) Get a prefix of at most "num" from the list.
7843 // The overflow list is chained through the mark word of
7844 // each object in the list. We fetch the entire list,
7845 // break off a prefix of the right size and return the
7846 // remainder. If other threads try to take objects from
7847 // the overflow list at that time, they will wait for
7848 // some time to see if data becomes available. If (and
7849 // only if) another thread places one or more object(s)
7850 // on the global list before we have returned the suffix
7851 // to the global list, we will walk down our local list
7852 // to find its end and append the global list to
7853 // our suffix before returning it. This suffix walk can
7854 // prove to be expensive (quadratic in the amount of traffic)
7855 // when there are many objects in the overflow list and
7856 // there is much producer-consumer contention on the list.
7857 // *NOTE*: The overflow list manipulation code here and
7858 // in ParNewGeneration:: are very similar in shape,
7859 // except that in the ParNew case we use the old (from/eden)
7860 // copy of the object to thread the list via its klass word.
7861 // Because of the common code, if you make any changes in
7862 // the code below, please check the ParNew version to see if
7863 // similar changes might be needed.
7864 // CR 6797058 has been filed to consolidate the common code.
7865 bool CMSCollector::par_take_from_overflow_list(size_t num,
7866                                                OopTaskQueue* work_q,
7867                                                int no_of_gc_threads) {
7868   assert(work_q->size() == 0, "First empty local work queue");
7869   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7870   if (_overflow_list == NULL) {
7871     return false;
7872   }
7873   // Grab the entire list; we'll put back a suffix
7874   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7875   Thread* tid = Thread::current();
7876   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7877   // set to ParallelGCThreads.
7878   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7879   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7880   // If the list is busy, we spin for a short while,
7881   // sleeping between attempts to get the list.
7882   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7883     os::sleep(tid, sleep_time_millis, false);
7884     if (_overflow_list == NULL) {
7885       // Nothing left to take
7886       return false;
7887     } else if (_overflow_list != BUSY) {
7888       // Try and grab the prefix
7889       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7890     }
7891   }
7892   // If the list was found to be empty, or we spun long
7893   // enough, we give up and return empty-handed. If we leave
7894   // the list in the BUSY state below, it must be the case that
7895   // some other thread holds the overflow list and will set it
7896   // to a non-BUSY state in the future.
7897   if (prefix == NULL || prefix == BUSY) {
7898      // Nothing to take or waited long enough
7899      if (prefix == NULL) {
7900        // Write back the NULL in case we overwrote it with BUSY above
7901        // and it is still the same value.
7902        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7903      }
7904      return false;
7905   }
7906   assert(prefix != NULL && prefix != BUSY, "Error");
7907   size_t i = num;
7908   oop cur = prefix;
7909   // Walk down the first "num" objects, unless we reach the end.
7910   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7911   if (cur->mark() == NULL) {
7912     // We have "num" or fewer elements in the list, so there
7913     // is nothing to return to the global list.
7914     // Write back the NULL in lieu of the BUSY we wrote
7915     // above, if it is still the same value.
7916     if (_overflow_list == BUSY) {
7917       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7918     }
7919   } else {
7920     // Chop off the suffix and return it to the global list.
7921     assert(cur->mark() != BUSY, "Error");
7922     oop suffix_head = cur->mark(); // suffix will be put back on global list
7923     cur->set_mark(NULL);           // break off suffix
7924     // It's possible that the list is still in the empty(busy) state
7925     // we left it in a short while ago; in that case we may be
7926     // able to place back the suffix without incurring the cost
7927     // of a walk down the list.
7928     oop observed_overflow_list = _overflow_list;
7929     oop cur_overflow_list = observed_overflow_list;
7930     bool attached = false;
7931     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7932       observed_overflow_list =
7933         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7934       if (cur_overflow_list == observed_overflow_list) {
7935         attached = true;
7936         break;
7937       } else cur_overflow_list = observed_overflow_list;
7938     }
7939     if (!attached) {
7940       // Too bad, someone else sneaked in (at least) an element; we'll need
7941       // to do a splice. Find tail of suffix so we can prepend suffix to global
7942       // list.
7943       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7944       oop suffix_tail = cur;
7945       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7946              "Tautology");
7947       observed_overflow_list = _overflow_list;
7948       do {
7949         cur_overflow_list = observed_overflow_list;
7950         if (cur_overflow_list != BUSY) {
7951           // Do the splice ...
7952           suffix_tail->set_mark(markOop(cur_overflow_list));
7953         } else { // cur_overflow_list == BUSY
7954           suffix_tail->set_mark(NULL);
7955         }
7956         // ... and try to place spliced list back on overflow_list ...
7957         observed_overflow_list =
7958           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7959       } while (cur_overflow_list != observed_overflow_list);
7960       // ... until we have succeeded in doing so.
7961     }
7962   }
7963 
7964   // Push the prefix elements on work_q
7965   assert(prefix != NULL, "control point invariant");
7966   const markOop proto = markOopDesc::prototype();
7967   oop next;
7968   NOT_PRODUCT(ssize_t n = 0;)
7969   for (cur = prefix; cur != NULL; cur = next) {
7970     next = oop(cur->mark());
7971     cur->set_mark(proto);   // until proven otherwise
7972     assert(cur->is_oop(), "Should be an oop");
7973     bool res = work_q->push(cur);
7974     assert(res, "Bit off more than we can chew?");
7975     NOT_PRODUCT(n++;)
7976   }
7977 #ifndef PRODUCT
7978   assert(_num_par_pushes >= n, "Too many pops?");
7979   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7980 #endif
7981   return true;
7982 }
7983 
7984 // Single-threaded
7985 void CMSCollector::push_on_overflow_list(oop p) {
7986   NOT_PRODUCT(_num_par_pushes++;)
7987   assert(p->is_oop(), "Not an oop");
7988   preserve_mark_if_necessary(p);
7989   p->set_mark((markOop)_overflow_list);
7990   _overflow_list = p;
7991 }
7992 
7993 // Multi-threaded; use CAS to prepend to overflow list
7994 void CMSCollector::par_push_on_overflow_list(oop p) {
7995   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7996   assert(p->is_oop(), "Not an oop");
7997   par_preserve_mark_if_necessary(p);
7998   oop observed_overflow_list = _overflow_list;
7999   oop cur_overflow_list;
8000   do {
8001     cur_overflow_list = observed_overflow_list;
8002     if (cur_overflow_list != BUSY) {
8003       p->set_mark(markOop(cur_overflow_list));
8004     } else {
8005       p->set_mark(NULL);
8006     }
8007     observed_overflow_list =
8008       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8009   } while (cur_overflow_list != observed_overflow_list);
8010 }
8011 #undef BUSY
8012 
8013 // Single threaded
8014 // General Note on GrowableArray: pushes may silently fail
8015 // because we are (temporarily) out of C-heap for expanding
8016 // the stack. The problem is quite ubiquitous and affects
8017 // a lot of code in the JVM. The prudent thing for GrowableArray
8018 // to do (for now) is to exit with an error. However, that may
8019 // be too draconian in some cases because the caller may be
8020 // able to recover without much harm. For such cases, we
8021 // should probably introduce a "soft_push" method which returns
8022 // an indication of success or failure with the assumption that
8023 // the caller may be able to recover from a failure; code in
8024 // the VM can then be changed, incrementally, to deal with such
8025 // failures where possible, thus, incrementally hardening the VM
8026 // in such low resource situations.
8027 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8028   _preserved_oop_stack.push(p);
8029   _preserved_mark_stack.push(m);
8030   assert(m == p->mark(), "Mark word changed");
8031   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8032          "bijection");
8033 }
8034 
8035 // Single threaded
8036 void CMSCollector::preserve_mark_if_necessary(oop p) {
8037   markOop m = p->mark();
8038   if (m->must_be_preserved(p)) {
8039     preserve_mark_work(p, m);
8040   }
8041 }
8042 
8043 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8044   markOop m = p->mark();
8045   if (m->must_be_preserved(p)) {
8046     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8047     // Even though we read the mark word without holding
8048     // the lock, we are assured that it will not change
8049     // because we "own" this oop, so no other thread can
8050     // be trying to push it on the overflow list; see
8051     // the assertion in preserve_mark_work() that checks
8052     // that m == p->mark().
8053     preserve_mark_work(p, m);
8054   }
8055 }
8056 
8057 // We should be able to do this multi-threaded,
8058 // a chunk of stack being a task (this is
8059 // correct because each oop only ever appears
8060 // once in the overflow list. However, it's
8061 // not very easy to completely overlap this with
8062 // other operations, so will generally not be done
8063 // until all work's been completed. Because we
8064 // expect the preserved oop stack (set) to be small,
8065 // it's probably fine to do this single-threaded.
8066 // We can explore cleverer concurrent/overlapped/parallel
8067 // processing of preserved marks if we feel the
8068 // need for this in the future. Stack overflow should
8069 // be so rare in practice and, when it happens, its
8070 // effect on performance so great that this will
8071 // likely just be in the noise anyway.
8072 void CMSCollector::restore_preserved_marks_if_any() {
8073   assert(SafepointSynchronize::is_at_safepoint(),
8074          "world should be stopped");
8075   assert(Thread::current()->is_ConcurrentGC_thread() ||
8076          Thread::current()->is_VM_thread(),
8077          "should be single-threaded");
8078   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8079          "bijection");
8080 
8081   while (!_preserved_oop_stack.is_empty()) {
8082     oop p = _preserved_oop_stack.pop();
8083     assert(p->is_oop(), "Should be an oop");
8084     assert(_span.contains(p), "oop should be in _span");
8085     assert(p->mark() == markOopDesc::prototype(),
8086            "Set when taken from overflow list");
8087     markOop m = _preserved_mark_stack.pop();
8088     p->set_mark(m);
8089   }
8090   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8091          "stacks were cleared above");
8092 }
8093 
8094 #ifndef PRODUCT
8095 bool CMSCollector::no_preserved_marks() const {
8096   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8097 }
8098 #endif
8099 
8100 // Transfer some number of overflown objects to usual marking
8101 // stack. Return true if some objects were transferred.
8102 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8103   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8104                     (size_t)ParGCDesiredObjsFromOverflowList);
8105 
8106   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8107   assert(_collector->overflow_list_is_empty() || res,
8108          "If list is not empty, we should have taken something");
8109   assert(!res || !_mark_stack->isEmpty(),
8110          "If we took something, it should now be on our stack");
8111   return res;
8112 }
8113 
8114 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8115   size_t res = _sp->block_size_no_stall(addr, _collector);
8116   if (_sp->block_is_obj(addr)) {
8117     if (_live_bit_map->isMarked(addr)) {
8118       // It can't have been dead in a previous cycle
8119       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8120     } else {
8121       _dead_bit_map->mark(addr);      // mark the dead object
8122     }
8123   }
8124   // Could be 0, if the block size could not be computed without stalling.
8125   return res;
8126 }
8127 
8128 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8129 
8130   switch (phase) {
8131     case CMSCollector::InitialMarking:
8132       initialize(true  /* fullGC */ ,
8133                  cause /* cause of the GC */,
8134                  true  /* recordGCBeginTime */,
8135                  true  /* recordPreGCUsage */,
8136                  false /* recordPeakUsage */,
8137                  false /* recordPostGCusage */,
8138                  true  /* recordAccumulatedGCTime */,
8139                  false /* recordGCEndTime */,
8140                  false /* countCollection */  );
8141       break;
8142 
8143     case CMSCollector::FinalMarking:
8144       initialize(true  /* fullGC */ ,
8145                  cause /* cause of the GC */,
8146                  false /* recordGCBeginTime */,
8147                  false /* recordPreGCUsage */,
8148                  false /* recordPeakUsage */,
8149                  false /* recordPostGCusage */,
8150                  true  /* recordAccumulatedGCTime */,
8151                  false /* recordGCEndTime */,
8152                  false /* countCollection */  );
8153       break;
8154 
8155     case CMSCollector::Sweeping:
8156       initialize(true  /* fullGC */ ,
8157                  cause /* cause of the GC */,
8158                  false /* recordGCBeginTime */,
8159                  false /* recordPreGCUsage */,
8160                  true  /* recordPeakUsage */,
8161                  true  /* recordPostGCusage */,
8162                  false /* recordAccumulatedGCTime */,
8163                  true  /* recordGCEndTime */,
8164                  true  /* countCollection */  );
8165       break;
8166 
8167     default:
8168       ShouldNotReachHere();
8169   }
8170 }