1 /* 2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/gcId.hpp" 27 #include "gc/shared/workgroup.hpp" 28 #include "gc/shared/workerManager.hpp" 29 #include "memory/allocation.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "runtime/atomic.inline.hpp" 32 #include "runtime/os.hpp" 33 #include "runtime/semaphore.hpp" 34 #include "runtime/thread.inline.hpp" 35 36 // Definitions of WorkGang methods. 37 38 // The current implementation will exit if the allocation 39 // of any worker fails. 40 void AbstractWorkGang::initialize_workers() { 41 log_develop_trace(gc, workgang)("Constructing work gang %s with %u threads", name(), total_workers()); 42 _workers = NEW_C_HEAP_ARRAY(AbstractGangWorker*, total_workers(), mtInternal); 43 if (_workers == NULL) { 44 vm_exit_out_of_memory(0, OOM_MALLOC_ERROR, "Cannot create GangWorker array."); 45 } 46 47 add_workers(true); 48 } 49 50 51 AbstractGangWorker* AbstractWorkGang::install_worker(uint worker_id) { 52 AbstractGangWorker* new_worker = allocate_worker(worker_id); 53 set_thread(worker_id, new_worker); 54 return new_worker; 55 } 56 57 void AbstractWorkGang::add_workers(bool initializing) { 58 59 os::ThreadType worker_type; 60 if (are_ConcurrentGC_threads()) { 61 worker_type = os::cgc_thread; 62 } else { 63 worker_type = os::pgc_thread; 64 } 65 66 _created_workers = WorkerManager::add_workers(this, 67 _active_workers, 68 _total_workers, 69 _created_workers, 70 worker_type, 71 initializing); 72 _active_workers = MIN2(_created_workers, _active_workers); 73 } 74 75 AbstractGangWorker* AbstractWorkGang::worker(uint i) const { 76 // Array index bounds checking. 77 AbstractGangWorker* result = NULL; 78 assert(_workers != NULL, "No workers for indexing"); 79 assert(i < total_workers(), "Worker index out of bounds"); 80 result = _workers[i]; 81 assert(result != NULL, "Indexing to null worker"); 82 return result; 83 } 84 85 void AbstractWorkGang::print_worker_threads_on(outputStream* st) const { 86 uint workers = created_workers(); 87 for (uint i = 0; i < workers; i++) { 88 worker(i)->print_on(st); 89 st->cr(); 90 } 91 } 92 93 void AbstractWorkGang::threads_do(ThreadClosure* tc) const { 94 assert(tc != NULL, "Null ThreadClosure"); 95 uint workers = created_workers(); 96 for (uint i = 0; i < workers; i++) { 97 tc->do_thread(worker(i)); 98 } 99 } 100 101 // WorkGang dispatcher implemented with semaphores. 102 // 103 // Semaphores don't require the worker threads to re-claim the lock when they wake up. 104 // This helps lowering the latency when starting and stopping the worker threads. 105 class SemaphoreGangTaskDispatcher : public GangTaskDispatcher { 106 // The task currently being dispatched to the GangWorkers. 107 AbstractGangTask* _task; 108 109 volatile uint _started; 110 volatile uint _not_finished; 111 112 // Semaphore used to start the GangWorkers. 113 Semaphore* _start_semaphore; 114 // Semaphore used to notify the coordinator that all workers are done. 115 Semaphore* _end_semaphore; 116 117 public: 118 SemaphoreGangTaskDispatcher() : 119 _task(NULL), 120 _started(0), 121 _not_finished(0), 122 _start_semaphore(new Semaphore()), 123 _end_semaphore(new Semaphore()) 124 { } 125 126 ~SemaphoreGangTaskDispatcher() { 127 delete _start_semaphore; 128 delete _end_semaphore; 129 } 130 131 void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) { 132 // No workers are allowed to read the state variables until they have been signaled. 133 _task = task; 134 _not_finished = num_workers; 135 136 // Dispatch 'num_workers' number of tasks. 137 _start_semaphore->signal(num_workers); 138 139 // Wait for the last worker to signal the coordinator. 140 _end_semaphore->wait(); 141 142 // No workers are allowed to read the state variables after the coordinator has been signaled. 143 assert(_not_finished == 0, "%d not finished workers?", _not_finished); 144 _task = NULL; 145 _started = 0; 146 147 } 148 149 WorkData worker_wait_for_task() { 150 // Wait for the coordinator to dispatch a task. 151 _start_semaphore->wait(); 152 153 uint num_started = (uint) Atomic::add(1, (volatile jint*)&_started); 154 155 // Subtract one to get a zero-indexed worker id. 156 uint worker_id = num_started - 1; 157 158 return WorkData(_task, worker_id); 159 } 160 161 void worker_done_with_task() { 162 // Mark that the worker is done with the task. 163 // The worker is not allowed to read the state variables after this line. 164 uint not_finished = (uint) Atomic::add(-1, (volatile jint*)&_not_finished); 165 166 // The last worker signals to the coordinator that all work is completed. 167 if (not_finished == 0) { 168 _end_semaphore->signal(); 169 } 170 } 171 }; 172 173 class MutexGangTaskDispatcher : public GangTaskDispatcher { 174 AbstractGangTask* _task; 175 176 volatile uint _started; 177 volatile uint _finished; 178 volatile uint _num_workers; 179 180 Monitor* _monitor; 181 182 public: 183 MutexGangTaskDispatcher() 184 : _task(NULL), 185 _monitor(new Monitor(Monitor::leaf, "WorkGang dispatcher lock", false, Monitor::_safepoint_check_never)), 186 _started(0), 187 _finished(0), 188 _num_workers(0) {} 189 190 ~MutexGangTaskDispatcher() { 191 delete _monitor; 192 } 193 194 void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) { 195 MutexLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag); 196 197 _task = task; 198 _num_workers = num_workers; 199 200 // Tell the workers to get to work. 201 _monitor->notify_all(); 202 203 // Wait for them to finish. 204 while (_finished < _num_workers) { 205 _monitor->wait(/* no_safepoint_check */ true); 206 } 207 208 _task = NULL; 209 _num_workers = 0; 210 _started = 0; 211 _finished = 0; 212 } 213 214 WorkData worker_wait_for_task() { 215 MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag); 216 217 while (_num_workers == 0 || _started == _num_workers) { 218 _monitor->wait(/* no_safepoint_check */ true); 219 } 220 221 _started++; 222 223 // Subtract one to get a zero-indexed worker id. 224 uint worker_id = _started - 1; 225 226 return WorkData(_task, worker_id); 227 } 228 229 void worker_done_with_task() { 230 MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag); 231 232 _finished++; 233 234 if (_finished == _num_workers) { 235 // This will wake up all workers and not only the coordinator. 236 _monitor->notify_all(); 237 } 238 } 239 }; 240 241 static GangTaskDispatcher* create_dispatcher() { 242 if (UseSemaphoreGCThreadsSynchronization) { 243 return new SemaphoreGangTaskDispatcher(); 244 } 245 246 return new MutexGangTaskDispatcher(); 247 } 248 249 WorkGang::WorkGang(const char* name, 250 uint workers, 251 bool are_GC_task_threads, 252 bool are_ConcurrentGC_threads) : 253 AbstractWorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads), 254 _dispatcher(create_dispatcher()) 255 { } 256 257 AbstractGangWorker* WorkGang::allocate_worker(uint worker_id) { 258 return new GangWorker(this, worker_id); 259 } 260 261 void WorkGang::run_task(AbstractGangTask* task) { 262 run_task(task, active_workers()); 263 } 264 265 void WorkGang::run_task(AbstractGangTask* task, uint num_workers) { 266 guarantee(num_workers <= active_workers(), 267 "Trying to execute task %s with %u workers which is more than the amount of active workers %u.", 268 task->name(), num_workers, active_workers()); 269 guarantee(num_workers > 0, "Trying to execute task %s with zero workers", task->name()); 270 _dispatcher->coordinator_execute_on_workers(task, num_workers); 271 } 272 273 AbstractGangWorker::AbstractGangWorker(AbstractWorkGang* gang, uint id) { 274 _gang = gang; 275 set_id(id); 276 set_name("%s#%d", gang->name(), id); 277 } 278 279 void AbstractGangWorker::run() { 280 initialize(); 281 loop(); 282 } 283 284 void AbstractGangWorker::initialize() { 285 this->record_stack_base_and_size(); 286 this->initialize_named_thread(); 287 assert(_gang != NULL, "No gang to run in"); 288 os::set_priority(this, NearMaxPriority); 289 log_develop_trace(gc, workgang)("Running gang worker for gang %s id %u", gang()->name(), id()); 290 // The VM thread should not execute here because MutexLocker's are used 291 // as (opposed to MutexLockerEx's). 292 assert(!Thread::current()->is_VM_thread(), "VM thread should not be part" 293 " of a work gang"); 294 } 295 296 bool AbstractGangWorker::is_GC_task_thread() const { 297 return gang()->are_GC_task_threads(); 298 } 299 300 bool AbstractGangWorker::is_ConcurrentGC_thread() const { 301 return gang()->are_ConcurrentGC_threads(); 302 } 303 304 void AbstractGangWorker::print_on(outputStream* st) const { 305 st->print("\"%s\" ", name()); 306 Thread::print_on(st); 307 st->cr(); 308 } 309 310 WorkData GangWorker::wait_for_task() { 311 return gang()->dispatcher()->worker_wait_for_task(); 312 } 313 314 void GangWorker::signal_task_done() { 315 gang()->dispatcher()->worker_done_with_task(); 316 } 317 318 void GangWorker::run_task(WorkData data) { 319 GCIdMark gc_id_mark(data._task->gc_id()); 320 log_develop_trace(gc, workgang)("Running work gang: %s task: %s worker: %u", name(), data._task->name(), data._worker_id); 321 322 data._task->work(data._worker_id); 323 324 log_develop_trace(gc, workgang)("Finished work gang: %s task: %s worker: %u thread: " PTR_FORMAT, 325 name(), data._task->name(), data._worker_id, p2i(Thread::current())); 326 } 327 328 void GangWorker::loop() { 329 while (true) { 330 WorkData data = wait_for_task(); 331 332 run_task(data); 333 334 signal_task_done(); 335 } 336 } 337 338 // *** WorkGangBarrierSync 339 340 WorkGangBarrierSync::WorkGangBarrierSync() 341 : _monitor(Mutex::safepoint, "work gang barrier sync", true, 342 Monitor::_safepoint_check_never), 343 _n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) { 344 } 345 346 WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name) 347 : _monitor(Mutex::safepoint, name, true, Monitor::_safepoint_check_never), 348 _n_workers(n_workers), _n_completed(0), _should_reset(false), _aborted(false) { 349 } 350 351 void WorkGangBarrierSync::set_n_workers(uint n_workers) { 352 _n_workers = n_workers; 353 _n_completed = 0; 354 _should_reset = false; 355 _aborted = false; 356 } 357 358 bool WorkGangBarrierSync::enter() { 359 MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag); 360 if (should_reset()) { 361 // The should_reset() was set and we are the first worker to enter 362 // the sync barrier. We will zero the n_completed() count which 363 // effectively resets the barrier. 364 zero_completed(); 365 set_should_reset(false); 366 } 367 inc_completed(); 368 if (n_completed() == n_workers()) { 369 // At this point we would like to reset the barrier to be ready in 370 // case it is used again. However, we cannot set n_completed() to 371 // 0, even after the notify_all(), given that some other workers 372 // might still be waiting for n_completed() to become == 373 // n_workers(). So, if we set n_completed() to 0, those workers 374 // will get stuck (as they will wake up, see that n_completed() != 375 // n_workers() and go back to sleep). Instead, we raise the 376 // should_reset() flag and the barrier will be reset the first 377 // time a worker enters it again. 378 set_should_reset(true); 379 monitor()->notify_all(); 380 } else { 381 while (n_completed() != n_workers() && !aborted()) { 382 monitor()->wait(/* no_safepoint_check */ true); 383 } 384 } 385 return !aborted(); 386 } 387 388 void WorkGangBarrierSync::abort() { 389 MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag); 390 set_aborted(); 391 monitor()->notify_all(); 392 } 393 394 // SubTasksDone functions. 395 396 SubTasksDone::SubTasksDone(uint n) : 397 _n_tasks(n), _tasks(NULL) { 398 _tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal); 399 guarantee(_tasks != NULL, "alloc failure"); 400 clear(); 401 } 402 403 bool SubTasksDone::valid() { 404 return _tasks != NULL; 405 } 406 407 void SubTasksDone::clear() { 408 for (uint i = 0; i < _n_tasks; i++) { 409 _tasks[i] = 0; 410 } 411 _threads_completed = 0; 412 #ifdef ASSERT 413 _claimed = 0; 414 #endif 415 } 416 417 bool SubTasksDone::is_task_claimed(uint t) { 418 assert(t < _n_tasks, "bad task id."); 419 uint old = _tasks[t]; 420 if (old == 0) { 421 old = Atomic::cmpxchg(1, &_tasks[t], 0); 422 } 423 assert(_tasks[t] == 1, "What else?"); 424 bool res = old != 0; 425 #ifdef ASSERT 426 if (!res) { 427 assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?"); 428 Atomic::inc((volatile jint*) &_claimed); 429 } 430 #endif 431 return res; 432 } 433 434 void SubTasksDone::all_tasks_completed(uint n_threads) { 435 jint observed = _threads_completed; 436 jint old; 437 do { 438 old = observed; 439 observed = Atomic::cmpxchg(old+1, &_threads_completed, old); 440 } while (observed != old); 441 // If this was the last thread checking in, clear the tasks. 442 uint adjusted_thread_count = (n_threads == 0 ? 1 : n_threads); 443 if (observed + 1 == (jint)adjusted_thread_count) { 444 clear(); 445 } 446 } 447 448 449 SubTasksDone::~SubTasksDone() { 450 if (_tasks != NULL) FREE_C_HEAP_ARRAY(jint, _tasks); 451 } 452 453 // *** SequentialSubTasksDone 454 455 void SequentialSubTasksDone::clear() { 456 _n_tasks = _n_claimed = 0; 457 _n_threads = _n_completed = 0; 458 } 459 460 bool SequentialSubTasksDone::valid() { 461 return _n_threads > 0; 462 } 463 464 bool SequentialSubTasksDone::is_task_claimed(uint& t) { 465 uint* n_claimed_ptr = &_n_claimed; 466 t = *n_claimed_ptr; 467 while (t < _n_tasks) { 468 jint res = Atomic::cmpxchg(t+1, n_claimed_ptr, t); 469 if (res == (jint)t) { 470 return false; 471 } 472 t = *n_claimed_ptr; 473 } 474 return true; 475 } 476 477 bool SequentialSubTasksDone::all_tasks_completed() { 478 uint* n_completed_ptr = &_n_completed; 479 uint complete = *n_completed_ptr; 480 while (true) { 481 uint res = Atomic::cmpxchg(complete+1, n_completed_ptr, complete); 482 if (res == complete) { 483 break; 484 } 485 complete = res; 486 } 487 if (complete+1 == _n_threads) { 488 clear(); 489 return true; 490 } 491 return false; 492 }