1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  27 
  28 #include "gc_implementation/g1/heapRegionSets.hpp"
  29 #include "utilities/taskqueue.hpp"
  30 
  31 class G1CollectedHeap;
  32 class CMTask;
  33 typedef GenericTaskQueue<oop>            CMTaskQueue;
  34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
  35 
  36 // Closure used by CM during concurrent reference discovery
  37 // and reference processing (during remarking) to determine
  38 // if a particular object is alive. It is primarily used
  39 // to determine if referents of discovered reference objects
  40 // are alive. An instance is also embedded into the
  41 // reference processor as the _is_alive_non_header field
  42 class G1CMIsAliveClosure: public BoolObjectClosure {
  43   G1CollectedHeap* _g1;
  44  public:
  45   G1CMIsAliveClosure(G1CollectedHeap* g1) :
  46     _g1(g1)
  47   {}
  48 
  49   void do_object(oop obj) {
  50     ShouldNotCallThis();
  51   }
  52   bool do_object_b(oop obj);
  53 };
  54 
  55 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  56 // class, with one bit per (1<<_shifter) HeapWords.
  57 
  58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  59  protected:
  60   HeapWord* _bmStartWord;      // base address of range covered by map
  61   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  62   const int _shifter;          // map to char or bit
  63   VirtualSpace _virtual_space; // underlying the bit map
  64   BitMap    _bm;               // the bit map itself
  65 
  66  public:
  67   // constructor
  68   CMBitMapRO(ReservedSpace rs, int shifter);
  69 
  70   enum { do_yield = true };
  71 
  72   // inquiries
  73   HeapWord* startWord()   const { return _bmStartWord; }
  74   size_t    sizeInWords() const { return _bmWordSize;  }
  75   // the following is one past the last word in space
  76   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  77 
  78   // read marks
  79 
  80   bool isMarked(HeapWord* addr) const {
  81     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  82            "outside underlying space?");
  83     return _bm.at(heapWordToOffset(addr));
  84   }
  85 
  86   // iteration
  87   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
  88   bool iterate(BitMapClosure* cl, MemRegion mr);
  89 
  90   // Return the address corresponding to the next marked bit at or after
  91   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  92   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  93   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
  94                                      HeapWord* limit = NULL) const;
  95   // Return the address corresponding to the next unmarked bit at or after
  96   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  97   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  98   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
  99                                        HeapWord* limit = NULL) const;
 100 
 101   // conversion utilities
 102   // XXX Fix these so that offsets are size_t's...
 103   HeapWord* offsetToHeapWord(size_t offset) const {
 104     return _bmStartWord + (offset << _shifter);
 105   }
 106   size_t heapWordToOffset(HeapWord* addr) const {
 107     return pointer_delta(addr, _bmStartWord) >> _shifter;
 108   }
 109   int heapWordDiffToOffsetDiff(size_t diff) const;
 110   HeapWord* nextWord(HeapWord* addr) {
 111     return offsetToHeapWord(heapWordToOffset(addr) + 1);
 112   }
 113 
 114   void mostly_disjoint_range_union(BitMap*   from_bitmap,
 115                                    size_t    from_start_index,
 116                                    HeapWord* to_start_word,
 117                                    size_t    word_num);
 118 
 119   // debugging
 120   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
 121 };
 122 
 123 class CMBitMap : public CMBitMapRO {
 124 
 125  public:
 126   // constructor
 127   CMBitMap(ReservedSpace rs, int shifter) :
 128     CMBitMapRO(rs, shifter) {}
 129 
 130   // write marks
 131   void mark(HeapWord* addr) {
 132     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 133            "outside underlying space?");
 134     _bm.set_bit(heapWordToOffset(addr));
 135   }
 136   void clear(HeapWord* addr) {
 137     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 138            "outside underlying space?");
 139     _bm.clear_bit(heapWordToOffset(addr));
 140   }
 141   bool parMark(HeapWord* addr) {
 142     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 143            "outside underlying space?");
 144     return _bm.par_set_bit(heapWordToOffset(addr));
 145   }
 146   bool parClear(HeapWord* addr) {
 147     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 148            "outside underlying space?");
 149     return _bm.par_clear_bit(heapWordToOffset(addr));
 150   }
 151   void markRange(MemRegion mr);
 152   void clearAll();
 153   void clearRange(MemRegion mr);
 154 
 155   // Starting at the bit corresponding to "addr" (inclusive), find the next
 156   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
 157   // the end of this run (stopping at "end_addr").  Return the MemRegion
 158   // covering from the start of the region corresponding to the first bit
 159   // of the run to the end of the region corresponding to the last bit of
 160   // the run.  If there is no "1" bit at or after "addr", return an empty
 161   // MemRegion.
 162   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
 163 };
 164 
 165 // Represents a marking stack used by the CM collector.
 166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
 168   ConcurrentMark* _cm;
 169   oop*   _base;      // bottom of stack
 170   jint   _index;     // one more than last occupied index
 171   jint   _capacity;  // max #elements
 172   jint   _oops_do_bound;  // Number of elements to include in next iteration.
 173   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
 174 
 175   bool   _overflow;
 176   DEBUG_ONLY(bool _drain_in_progress;)
 177   DEBUG_ONLY(bool _drain_in_progress_yields;)
 178 
 179  public:
 180   CMMarkStack(ConcurrentMark* cm);
 181   ~CMMarkStack();
 182 
 183   void allocate(size_t size);
 184 
 185   oop pop() {
 186     if (!isEmpty()) {
 187       return _base[--_index] ;
 188     }
 189     return NULL;
 190   }
 191 
 192   // If overflow happens, don't do the push, and record the overflow.
 193   // *Requires* that "ptr" is already marked.
 194   void push(oop ptr) {
 195     if (isFull()) {
 196       // Record overflow.
 197       _overflow = true;
 198       return;
 199     } else {
 200       _base[_index++] = ptr;
 201       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 202     }
 203   }
 204   // Non-block impl.  Note: concurrency is allowed only with other
 205   // "par_push" operations, not with "pop" or "drain".  We would need
 206   // parallel versions of them if such concurrency was desired.
 207   void par_push(oop ptr);
 208 
 209   // Pushes the first "n" elements of "ptr_arr" on the stack.
 210   // Non-block impl.  Note: concurrency is allowed only with other
 211   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
 212   void par_adjoin_arr(oop* ptr_arr, int n);
 213 
 214   // Pushes the first "n" elements of "ptr_arr" on the stack.
 215   // Locking impl: concurrency is allowed only with
 216   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 217   // locking strategy.
 218   void par_push_arr(oop* ptr_arr, int n);
 219 
 220   // If returns false, the array was empty.  Otherwise, removes up to "max"
 221   // elements from the stack, and transfers them to "ptr_arr" in an
 222   // unspecified order.  The actual number transferred is given in "n" ("n
 223   // == 0" is deliberately redundant with the return value.)  Locking impl:
 224   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 225   // operations, which use the same locking strategy.
 226   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 227 
 228   // Drain the mark stack, applying the given closure to all fields of
 229   // objects on the stack.  (That is, continue until the stack is empty,
 230   // even if closure applications add entries to the stack.)  The "bm"
 231   // argument, if non-null, may be used to verify that only marked objects
 232   // are on the mark stack.  If "yield_after" is "true", then the
 233   // concurrent marker performing the drain offers to yield after
 234   // processing each object.  If a yield occurs, stops the drain operation
 235   // and returns false.  Otherwise, returns true.
 236   template<class OopClosureClass>
 237   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
 238 
 239   bool isEmpty()    { return _index == 0; }
 240   bool isFull()     { return _index == _capacity; }
 241   int maxElems()    { return _capacity; }
 242 
 243   bool overflow() { return _overflow; }
 244   void clear_overflow() { _overflow = false; }
 245 
 246   int  size() { return _index; }
 247 
 248   void setEmpty()   { _index = 0; clear_overflow(); }
 249 
 250   // Record the current size; a subsequent "oops_do" will iterate only over
 251   // indices valid at the time of this call.
 252   void set_oops_do_bound(jint bound = -1) {
 253     if (bound == -1) {
 254       _oops_do_bound = _index;
 255     } else {
 256       _oops_do_bound = bound;
 257     }
 258   }
 259   jint oops_do_bound() { return _oops_do_bound; }
 260   // iterate over the oops in the mark stack, up to the bound recorded via
 261   // the call above.
 262   void oops_do(OopClosure* f);
 263 };
 264 
 265 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
 266   MemRegion* _base;
 267   jint _capacity;
 268   jint _index;
 269   jint _oops_do_bound;
 270   bool _overflow;
 271 public:
 272   CMRegionStack();
 273   ~CMRegionStack();
 274   void allocate(size_t size);
 275 
 276   // This is lock-free; assumes that it will only be called in parallel
 277   // with other "push" operations (no pops).
 278   void push_lock_free(MemRegion mr);
 279 
 280   // Lock-free; assumes that it will only be called in parallel
 281   // with other "pop" operations (no pushes).
 282   MemRegion pop_lock_free();
 283 
 284 #if 0
 285   // The routines that manipulate the region stack with a lock are
 286   // not currently used. They should be retained, however, as a
 287   // diagnostic aid.
 288 
 289   // These two are the implementations that use a lock. They can be
 290   // called concurrently with each other but they should not be called
 291   // concurrently with the lock-free versions (push() / pop()).
 292   void push_with_lock(MemRegion mr);
 293   MemRegion pop_with_lock();
 294 #endif
 295 
 296   bool isEmpty()    { return _index == 0; }
 297   bool isFull()     { return _index == _capacity; }
 298 
 299   bool overflow() { return _overflow; }
 300   void clear_overflow() { _overflow = false; }
 301 
 302   int  size() { return _index; }
 303 
 304   // It iterates over the entries in the region stack and it
 305   // invalidates (i.e. assigns MemRegion()) the ones that point to
 306   // regions in the collection set.
 307   bool invalidate_entries_into_cset();
 308 
 309   // This gives an upper bound up to which the iteration in
 310   // invalidate_entries_into_cset() will reach. This prevents
 311   // newly-added entries to be unnecessarily scanned.
 312   void set_oops_do_bound() {
 313     _oops_do_bound = _index;
 314   }
 315 
 316   void setEmpty()   { _index = 0; clear_overflow(); }
 317 };
 318 
 319 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
 320 private:
 321 #ifndef PRODUCT
 322   uintx _num_remaining;
 323   bool _force;
 324 #endif // !defined(PRODUCT)
 325 
 326 public:
 327   void init() PRODUCT_RETURN;
 328   void update() PRODUCT_RETURN;
 329   bool should_force() PRODUCT_RETURN_( return false; );
 330 };
 331 
 332 // this will enable a variety of different statistics per GC task
 333 #define _MARKING_STATS_       0
 334 // this will enable the higher verbose levels
 335 #define _MARKING_VERBOSE_     0
 336 
 337 #if _MARKING_STATS_
 338 #define statsOnly(statement)  \
 339 do {                          \
 340   statement ;                 \
 341 } while (0)
 342 #else // _MARKING_STATS_
 343 #define statsOnly(statement)  \
 344 do {                          \
 345 } while (0)
 346 #endif // _MARKING_STATS_
 347 
 348 typedef enum {
 349   no_verbose  = 0,   // verbose turned off
 350   stats_verbose,     // only prints stats at the end of marking
 351   low_verbose,       // low verbose, mostly per region and per major event
 352   medium_verbose,    // a bit more detailed than low
 353   high_verbose       // per object verbose
 354 } CMVerboseLevel;
 355 
 356 
 357 class ConcurrentMarkThread;
 358 
 359 class ConcurrentMark: public CHeapObj {
 360   friend class ConcurrentMarkThread;
 361   friend class CMTask;
 362   friend class CMBitMapClosure;
 363   friend class CSetMarkOopClosure;
 364   friend class CMGlobalObjectClosure;
 365   friend class CMRemarkTask;
 366   friend class CMConcurrentMarkingTask;
 367   friend class G1ParNoteEndTask;
 368   friend class CalcLiveObjectsClosure;
 369   friend class G1CMRefProcTaskProxy;
 370   friend class G1CMRefProcTaskExecutor;
 371   friend class G1CMParKeepAliveAndDrainClosure;
 372   friend class G1CMParDrainMarkingStackClosure;
 373 
 374 protected:
 375   ConcurrentMarkThread* _cmThread;   // the thread doing the work
 376   G1CollectedHeap*      _g1h;        // the heap.
 377   size_t                _parallel_marking_threads; // the number of marking
 378                                                    // threads we're use
 379   size_t                _max_parallel_marking_threads; // max number of marking
 380                                                    // threads we'll ever use
 381   double                _sleep_factor; // how much we have to sleep, with
 382                                        // respect to the work we just did, to
 383                                        // meet the marking overhead goal
 384   double                _marking_task_overhead; // marking target overhead for
 385                                                 // a single task
 386 
 387   // same as the two above, but for the cleanup task
 388   double                _cleanup_sleep_factor;
 389   double                _cleanup_task_overhead;
 390 
 391   FreeRegionList        _cleanup_list;
 392 
 393   // CMS marking support structures
 394   CMBitMap                _markBitMap1;
 395   CMBitMap                _markBitMap2;
 396   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
 397   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
 398   bool                    _at_least_one_mark_complete;
 399 
 400   BitMap                  _region_bm;
 401   BitMap                  _card_bm;
 402 
 403   // Heap bounds
 404   HeapWord*               _heap_start;
 405   HeapWord*               _heap_end;
 406 
 407   // For gray objects
 408   CMMarkStack             _markStack; // Grey objects behind global finger.
 409   CMRegionStack           _regionStack; // Grey regions behind global finger.
 410   HeapWord* volatile      _finger;  // the global finger, region aligned,
 411                                     // always points to the end of the
 412                                     // last claimed region
 413 
 414   // marking tasks
 415   size_t                  _max_task_num; // maximum task number
 416   size_t                  _active_tasks; // task num currently active
 417   CMTask**                _tasks;        // task queue array (max_task_num len)
 418   CMTaskQueueSet*         _task_queues;  // task queue set
 419   ParallelTaskTerminator  _terminator;   // for termination
 420 
 421   // Two sync barriers that are used to synchronise tasks when an
 422   // overflow occurs. The algorithm is the following. All tasks enter
 423   // the first one to ensure that they have all stopped manipulating
 424   // the global data structures. After they exit it, they re-initialise
 425   // their data structures and task 0 re-initialises the global data
 426   // structures. Then, they enter the second sync barrier. This
 427   // ensure, that no task starts doing work before all data
 428   // structures (local and global) have been re-initialised. When they
 429   // exit it, they are free to start working again.
 430   WorkGangBarrierSync     _first_overflow_barrier_sync;
 431   WorkGangBarrierSync     _second_overflow_barrier_sync;
 432 
 433 
 434   // this is set by any task, when an overflow on the global data
 435   // structures is detected.
 436   volatile bool           _has_overflown;
 437   // true: marking is concurrent, false: we're in remark
 438   volatile bool           _concurrent;
 439   // set at the end of a Full GC so that marking aborts
 440   volatile bool           _has_aborted;
 441 
 442   // used when remark aborts due to an overflow to indicate that
 443   // another concurrent marking phase should start
 444   volatile bool           _restart_for_overflow;
 445 
 446   // This is true from the very start of concurrent marking until the
 447   // point when all the tasks complete their work. It is really used
 448   // to determine the points between the end of concurrent marking and
 449   // time of remark.
 450   volatile bool           _concurrent_marking_in_progress;
 451 
 452   // verbose level
 453   CMVerboseLevel          _verbose_level;
 454 
 455   // These two fields are used to implement the optimisation that
 456   // avoids pushing objects on the global/region stack if there are
 457   // no collection set regions above the lowest finger.
 458 
 459   // This is the lowest finger (among the global and local fingers),
 460   // which is calculated before a new collection set is chosen.
 461   HeapWord* _min_finger;
 462   // If this flag is true, objects/regions that are marked below the
 463   // finger should be pushed on the stack(s). If this is flag is
 464   // false, it is safe not to push them on the stack(s).
 465   bool      _should_gray_objects;
 466 
 467   // All of these times are in ms.
 468   NumberSeq _init_times;
 469   NumberSeq _remark_times;
 470   NumberSeq   _remark_mark_times;
 471   NumberSeq   _remark_weak_ref_times;
 472   NumberSeq _cleanup_times;
 473   double    _total_counting_time;
 474   double    _total_rs_scrub_time;
 475 
 476   double*   _accum_task_vtime;   // accumulated task vtime
 477 
 478   FlexibleWorkGang* _parallel_workers;
 479 
 480   ForceOverflowSettings _force_overflow_conc;
 481   ForceOverflowSettings _force_overflow_stw;
 482 
 483   void weakRefsWork(bool clear_all_soft_refs);
 484 
 485   void swapMarkBitMaps();
 486 
 487   // It resets the global marking data structures, as well as the
 488   // task local ones; should be called during initial mark.
 489   void reset();
 490   // It resets all the marking data structures.
 491   void clear_marking_state(bool clear_overflow = true);
 492 
 493   // It should be called to indicate which phase we're in (concurrent
 494   // mark or remark) and how many threads are currently active.
 495   void set_phase(size_t active_tasks, bool concurrent);
 496   // We do this after we're done with marking so that the marking data
 497   // structures are initialised to a sensible and predictable state.
 498   void set_non_marking_state();
 499 
 500   // prints all gathered CM-related statistics
 501   void print_stats();
 502 
 503   bool cleanup_list_is_empty() {
 504     return _cleanup_list.is_empty();
 505   }
 506 
 507   // accessor methods
 508   size_t parallel_marking_threads() { return _parallel_marking_threads; }
 509   size_t max_parallel_marking_threads() { return _max_parallel_marking_threads;}
 510   double sleep_factor()             { return _sleep_factor; }
 511   double marking_task_overhead()    { return _marking_task_overhead;}
 512   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
 513   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
 514 
 515   HeapWord*               finger()        { return _finger;   }
 516   bool                    concurrent()    { return _concurrent; }
 517   size_t                  active_tasks()  { return _active_tasks; }
 518   ParallelTaskTerminator* terminator()    { return &_terminator; }
 519 
 520   // It claims the next available region to be scanned by a marking
 521   // task. It might return NULL if the next region is empty or we have
 522   // run out of regions. In the latter case, out_of_regions()
 523   // determines whether we've really run out of regions or the task
 524   // should call claim_region() again.  This might seem a bit
 525   // awkward. Originally, the code was written so that claim_region()
 526   // either successfully returned with a non-empty region or there
 527   // were no more regions to be claimed. The problem with this was
 528   // that, in certain circumstances, it iterated over large chunks of
 529   // the heap finding only empty regions and, while it was working, it
 530   // was preventing the calling task to call its regular clock
 531   // method. So, this way, each task will spend very little time in
 532   // claim_region() and is allowed to call the regular clock method
 533   // frequently.
 534   HeapRegion* claim_region(int task);
 535 
 536   // It determines whether we've run out of regions to scan.
 537   bool        out_of_regions() { return _finger == _heap_end; }
 538 
 539   // Returns the task with the given id
 540   CMTask* task(int id) {
 541     assert(0 <= id && id < (int) _active_tasks,
 542            "task id not within active bounds");
 543     return _tasks[id];
 544   }
 545 
 546   // Returns the task queue with the given id
 547   CMTaskQueue* task_queue(int id) {
 548     assert(0 <= id && id < (int) _active_tasks,
 549            "task queue id not within active bounds");
 550     return (CMTaskQueue*) _task_queues->queue(id);
 551   }
 552 
 553   // Returns the task queue set
 554   CMTaskQueueSet* task_queues()  { return _task_queues; }
 555 
 556   // Access / manipulation of the overflow flag which is set to
 557   // indicate that the global stack or region stack has overflown
 558   bool has_overflown()           { return _has_overflown; }
 559   void set_has_overflown()       { _has_overflown = true; }
 560   void clear_has_overflown()     { _has_overflown = false; }
 561 
 562   bool has_aborted()             { return _has_aborted; }
 563   bool restart_for_overflow()    { return _restart_for_overflow; }
 564 
 565   // Methods to enter the two overflow sync barriers
 566   void enter_first_sync_barrier(int task_num);
 567   void enter_second_sync_barrier(int task_num);
 568 
 569   ForceOverflowSettings* force_overflow_conc() {
 570     return &_force_overflow_conc;
 571   }
 572 
 573   ForceOverflowSettings* force_overflow_stw() {
 574     return &_force_overflow_stw;
 575   }
 576 
 577   ForceOverflowSettings* force_overflow() {
 578     if (concurrent()) {
 579       return force_overflow_conc();
 580     } else {
 581       return force_overflow_stw();
 582     }
 583   }
 584 
 585 public:
 586   // Manipulation of the global mark stack.
 587   // Notice that the first mark_stack_push is CAS-based, whereas the
 588   // two below are Mutex-based. This is OK since the first one is only
 589   // called during evacuation pauses and doesn't compete with the
 590   // other two (which are called by the marking tasks during
 591   // concurrent marking or remark).
 592   bool mark_stack_push(oop p) {
 593     _markStack.par_push(p);
 594     if (_markStack.overflow()) {
 595       set_has_overflown();
 596       return false;
 597     }
 598     return true;
 599   }
 600   bool mark_stack_push(oop* arr, int n) {
 601     _markStack.par_push_arr(arr, n);
 602     if (_markStack.overflow()) {
 603       set_has_overflown();
 604       return false;
 605     }
 606     return true;
 607   }
 608   void mark_stack_pop(oop* arr, int max, int* n) {
 609     _markStack.par_pop_arr(arr, max, n);
 610   }
 611   size_t mark_stack_size()                { return _markStack.size(); }
 612   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 613   bool mark_stack_overflow()              { return _markStack.overflow(); }
 614   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 615 
 616   // (Lock-free) Manipulation of the region stack
 617   bool region_stack_push_lock_free(MemRegion mr) {
 618     // Currently we only call the lock-free version during evacuation
 619     // pauses.
 620     assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
 621 
 622     _regionStack.push_lock_free(mr);
 623     if (_regionStack.overflow()) {
 624       set_has_overflown();
 625       return false;
 626     }
 627     return true;
 628   }
 629 
 630   // Lock-free version of region-stack pop. Should only be
 631   // called in tandem with other lock-free pops.
 632   MemRegion region_stack_pop_lock_free() {
 633     return _regionStack.pop_lock_free();
 634   }
 635 
 636 #if 0
 637   // The routines that manipulate the region stack with a lock are
 638   // not currently used. They should be retained, however, as a
 639   // diagnostic aid.
 640 
 641   bool region_stack_push_with_lock(MemRegion mr) {
 642     // Currently we only call the lock-based version during either
 643     // concurrent marking or remark.
 644     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
 645            "if we are at a safepoint it should be the remark safepoint");
 646 
 647     _regionStack.push_with_lock(mr);
 648     if (_regionStack.overflow()) {
 649       set_has_overflown();
 650       return false;
 651     }
 652     return true;
 653   }
 654 
 655   MemRegion region_stack_pop_with_lock() {
 656     // Currently we only call the lock-based version during either
 657     // concurrent marking or remark.
 658     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
 659            "if we are at a safepoint it should be the remark safepoint");
 660 
 661     return _regionStack.pop_with_lock();
 662   }
 663 #endif
 664 
 665   int region_stack_size()               { return _regionStack.size(); }
 666   bool region_stack_overflow()          { return _regionStack.overflow(); }
 667   bool region_stack_empty()             { return _regionStack.isEmpty(); }
 668 
 669   // Iterate over any regions that were aborted while draining the
 670   // region stack (any such regions are saved in the corresponding
 671   // CMTask) and invalidate (i.e. assign to the empty MemRegion())
 672   // any regions that point into the collection set.
 673   bool invalidate_aborted_regions_in_cset();
 674 
 675   // Returns true if there are any aborted memory regions.
 676   bool has_aborted_regions();
 677 
 678   bool concurrent_marking_in_progress() {
 679     return _concurrent_marking_in_progress;
 680   }
 681   void set_concurrent_marking_in_progress() {
 682     _concurrent_marking_in_progress = true;
 683   }
 684   void clear_concurrent_marking_in_progress() {
 685     _concurrent_marking_in_progress = false;
 686   }
 687 
 688   void update_accum_task_vtime(int i, double vtime) {
 689     _accum_task_vtime[i] += vtime;
 690   }
 691 
 692   double all_task_accum_vtime() {
 693     double ret = 0.0;
 694     for (int i = 0; i < (int)_max_task_num; ++i)
 695       ret += _accum_task_vtime[i];
 696     return ret;
 697   }
 698 
 699   // Attempts to steal an object from the task queues of other tasks
 700   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
 701     return _task_queues->steal(task_num, hash_seed, obj);
 702   }
 703 
 704   // It grays an object by first marking it. Then, if it's behind the
 705   // global finger, it also pushes it on the global stack.
 706   void deal_with_reference(oop obj);
 707 
 708   ConcurrentMark(ReservedSpace rs, int max_regions);
 709   ~ConcurrentMark();
 710   ConcurrentMarkThread* cmThread() { return _cmThread; }
 711 
 712   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 713   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 714 
 715   // Returns the number of GC threads to be used in a concurrent
 716   // phase based on the number of GC threads being used in a STW
 717   // phase.
 718   size_t scale_parallel_threads(size_t n_par_threads);
 719 
 720   // Calculates the number of GC threads to be used in a concurrent phase.
 721   size_t calc_parallel_marking_threads();
 722 
 723   // The following three are interaction between CM and
 724   // G1CollectedHeap
 725 
 726   // This notifies CM that a root during initial-mark needs to be
 727   // grayed and it's MT-safe. Currently, we just mark it. But, in the
 728   // future, we can experiment with pushing it on the stack and we can
 729   // do this without changing G1CollectedHeap.
 730   void grayRoot(oop p);
 731   // It's used during evacuation pauses to gray a region, if
 732   // necessary, and it's MT-safe. It assumes that the caller has
 733   // marked any objects on that region. If _should_gray_objects is
 734   // true and we're still doing concurrent marking, the region is
 735   // pushed on the region stack, if it is located below the global
 736   // finger, otherwise we do nothing.
 737   void grayRegionIfNecessary(MemRegion mr);
 738   // It's used during evacuation pauses to mark and, if necessary,
 739   // gray a single object and it's MT-safe. It assumes the caller did
 740   // not mark the object. If _should_gray_objects is true and we're
 741   // still doing concurrent marking, the objects is pushed on the
 742   // global stack, if it is located below the global finger, otherwise
 743   // we do nothing.
 744   void markAndGrayObjectIfNecessary(oop p);
 745 
 746   // It iterates over the heap and for each object it comes across it
 747   // will dump the contents of its reference fields, as well as
 748   // liveness information for the object and its referents. The dump
 749   // will be written to a file with the following name:
 750   // G1PrintReachableBaseFile + "." + str.
 751   // vo decides whether the prev (vo == UsePrevMarking), the next
 752   // (vo == UseNextMarking) marking information, or the mark word
 753   // (vo == UseMarkWord) will be used to determine the liveness of
 754   // each object / referent.
 755   // If all is true, all objects in the heap will be dumped, otherwise
 756   // only the live ones. In the dump the following symbols / breviations
 757   // are used:
 758   //   M : an explicitly live object (its bitmap bit is set)
 759   //   > : an implicitly live object (over tams)
 760   //   O : an object outside the G1 heap (typically: in the perm gen)
 761   //   NOT : a reference field whose referent is not live
 762   //   AND MARKED : indicates that an object is both explicitly and
 763   //   implicitly live (it should be one or the other, not both)
 764   void print_reachable(const char* str,
 765                        VerifyOption vo, bool all) PRODUCT_RETURN;
 766 
 767   // Clear the next marking bitmap (will be called concurrently).
 768   void clearNextBitmap();
 769 
 770   // These two do the work that needs to be done before and after the
 771   // initial root checkpoint. Since this checkpoint can be done at two
 772   // different points (i.e. an explicit pause or piggy-backed on a
 773   // young collection), then it's nice to be able to easily share the
 774   // pre/post code. It might be the case that we can put everything in
 775   // the post method. TP
 776   void checkpointRootsInitialPre();
 777   void checkpointRootsInitialPost();
 778 
 779   // Do concurrent phase of marking, to a tentative transitive closure.
 780   void markFromRoots();
 781 
 782   // Process all unprocessed SATB buffers. It is called at the
 783   // beginning of an evacuation pause.
 784   void drainAllSATBBuffers();
 785 
 786   void checkpointRootsFinal(bool clear_all_soft_refs);
 787   void checkpointRootsFinalWork();
 788   void calcDesiredRegions();
 789   void cleanup();
 790   void completeCleanup();
 791 
 792   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 793   // this carefully!
 794   void markPrev(oop p);
 795   void clear(oop p);
 796   // Clears marks for all objects in the given range, for both prev and
 797   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
 798   // this carefully!
 799   void clearRangeBothMaps(MemRegion mr);
 800 
 801   // Record the current top of the mark and region stacks; a
 802   // subsequent oops_do() on the mark stack and
 803   // invalidate_entries_into_cset() on the region stack will iterate
 804   // only over indices valid at the time of this call.
 805   void set_oops_do_bound() {
 806     _markStack.set_oops_do_bound();
 807     _regionStack.set_oops_do_bound();
 808   }
 809   // Iterate over the oops in the mark stack and all local queues. It
 810   // also calls invalidate_entries_into_cset() on the region stack.
 811   void oops_do(OopClosure* f);
 812   // It is called at the end of an evacuation pause during marking so
 813   // that CM is notified of where the new end of the heap is. It
 814   // doesn't do anything if concurrent_marking_in_progress() is false,
 815   // unless the force parameter is true.
 816   void update_g1_committed(bool force = false);
 817 
 818   void complete_marking_in_collection_set();
 819 
 820   // It indicates that a new collection set is being chosen.
 821   void newCSet();
 822 
 823   // It registers a collection set heap region with CM. This is used
 824   // to determine whether any heap regions are located above the finger.
 825   void registerCSetRegion(HeapRegion* hr);
 826 
 827   // Resets the region fields of any active CMTask whose region fields
 828   // are in the collection set (i.e. the region currently claimed by
 829   // the CMTask will be evacuated and may be used, subsequently, as
 830   // an alloc region). When this happens the region fields in the CMTask
 831   // are stale and, hence, should be cleared causing the worker thread
 832   // to claim a new region.
 833   void reset_active_task_region_fields_in_cset();
 834 
 835   // Registers the maximum region-end associated with a set of
 836   // regions with CM. Again this is used to determine whether any
 837   // heap regions are located above the finger.
 838   void register_collection_set_finger(HeapWord* max_finger) {
 839     // max_finger is the highest heap region end of the regions currently
 840     // contained in the collection set. If this value is larger than
 841     // _min_finger then we need to gray objects.
 842     // This routine is like registerCSetRegion but for an entire
 843     // collection of regions.
 844     if (max_finger > _min_finger) {
 845       _should_gray_objects = true;
 846     }
 847   }
 848 
 849   // Returns "true" if at least one mark has been completed.
 850   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
 851 
 852   bool isMarked(oop p) const {
 853     assert(p != NULL && p->is_oop(), "expected an oop");
 854     HeapWord* addr = (HeapWord*)p;
 855     assert(addr >= _nextMarkBitMap->startWord() ||
 856            addr < _nextMarkBitMap->endWord(), "in a region");
 857 
 858     return _nextMarkBitMap->isMarked(addr);
 859   }
 860 
 861   inline bool not_yet_marked(oop p) const;
 862 
 863   // XXX Debug code
 864   bool containing_card_is_marked(void* p);
 865   bool containing_cards_are_marked(void* start, void* last);
 866 
 867   bool isPrevMarked(oop p) const {
 868     assert(p != NULL && p->is_oop(), "expected an oop");
 869     HeapWord* addr = (HeapWord*)p;
 870     assert(addr >= _prevMarkBitMap->startWord() ||
 871            addr < _prevMarkBitMap->endWord(), "in a region");
 872 
 873     return _prevMarkBitMap->isMarked(addr);
 874   }
 875 
 876   inline bool do_yield_check(int worker_i = 0);
 877   inline bool should_yield();
 878 
 879   // Called to abort the marking cycle after a Full GC takes palce.
 880   void abort();
 881 
 882   // This prints the global/local fingers. It is used for debugging.
 883   NOT_PRODUCT(void print_finger();)
 884 
 885   void print_summary_info();
 886 
 887   void print_worker_threads_on(outputStream* st) const;
 888 
 889   // The following indicate whether a given verbose level has been
 890   // set. Notice that anything above stats is conditional to
 891   // _MARKING_VERBOSE_ having been set to 1
 892   bool verbose_stats() {
 893     return _verbose_level >= stats_verbose;
 894   }
 895   bool verbose_low() {
 896     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
 897   }
 898   bool verbose_medium() {
 899     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
 900   }
 901   bool verbose_high() {
 902     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
 903   }
 904 };
 905 
 906 // A class representing a marking task.
 907 class CMTask : public TerminatorTerminator {
 908 private:
 909   enum PrivateConstants {
 910     // the regular clock call is called once the scanned words reaches
 911     // this limit
 912     words_scanned_period          = 12*1024,
 913     // the regular clock call is called once the number of visited
 914     // references reaches this limit
 915     refs_reached_period           = 384,
 916     // initial value for the hash seed, used in the work stealing code
 917     init_hash_seed                = 17,
 918     // how many entries will be transferred between global stack and
 919     // local queues
 920     global_stack_transfer_size    = 16
 921   };
 922 
 923   int                         _task_id;
 924   G1CollectedHeap*            _g1h;
 925   ConcurrentMark*             _cm;
 926   CMBitMap*                   _nextMarkBitMap;
 927   // the task queue of this task
 928   CMTaskQueue*                _task_queue;
 929 private:
 930   // the task queue set---needed for stealing
 931   CMTaskQueueSet*             _task_queues;
 932   // indicates whether the task has been claimed---this is only  for
 933   // debugging purposes
 934   bool                        _claimed;
 935 
 936   // number of calls to this task
 937   int                         _calls;
 938 
 939   // when the virtual timer reaches this time, the marking step should
 940   // exit
 941   double                      _time_target_ms;
 942   // the start time of the current marking step
 943   double                      _start_time_ms;
 944 
 945   // the oop closure used for iterations over oops
 946   G1CMOopClosure*             _cm_oop_closure;
 947 
 948   // the region this task is scanning, NULL if we're not scanning any
 949   HeapRegion*                 _curr_region;
 950   // the local finger of this task, NULL if we're not scanning a region
 951   HeapWord*                   _finger;
 952   // limit of the region this task is scanning, NULL if we're not scanning one
 953   HeapWord*                   _region_limit;
 954 
 955   // This is used only when we scan regions popped from the region
 956   // stack. It records what the last object on such a region we
 957   // scanned was. It is used to ensure that, if we abort region
 958   // iteration, we do not rescan the first part of the region. This
 959   // should be NULL when we're not scanning a region from the region
 960   // stack.
 961   HeapWord*                   _region_finger;
 962 
 963   // If we abort while scanning a region we record the remaining
 964   // unscanned portion and check this field when marking restarts.
 965   // This avoids having to push on the region stack while other
 966   // marking threads may still be popping regions.
 967   // If we were to push the unscanned portion directly to the
 968   // region stack then we would need to using locking versions
 969   // of the push and pop operations.
 970   MemRegion                   _aborted_region;
 971 
 972   // the number of words this task has scanned
 973   size_t                      _words_scanned;
 974   // When _words_scanned reaches this limit, the regular clock is
 975   // called. Notice that this might be decreased under certain
 976   // circumstances (i.e. when we believe that we did an expensive
 977   // operation).
 978   size_t                      _words_scanned_limit;
 979   // the initial value of _words_scanned_limit (i.e. what it was
 980   // before it was decreased).
 981   size_t                      _real_words_scanned_limit;
 982 
 983   // the number of references this task has visited
 984   size_t                      _refs_reached;
 985   // When _refs_reached reaches this limit, the regular clock is
 986   // called. Notice this this might be decreased under certain
 987   // circumstances (i.e. when we believe that we did an expensive
 988   // operation).
 989   size_t                      _refs_reached_limit;
 990   // the initial value of _refs_reached_limit (i.e. what it was before
 991   // it was decreased).
 992   size_t                      _real_refs_reached_limit;
 993 
 994   // used by the work stealing stuff
 995   int                         _hash_seed;
 996   // if this is true, then the task has aborted for some reason
 997   bool                        _has_aborted;
 998   // set when the task aborts because it has met its time quota
 999   bool                        _has_timed_out;
1000   // true when we're draining SATB buffers; this avoids the task
1001   // aborting due to SATB buffers being available (as we're already
1002   // dealing with them)
1003   bool                        _draining_satb_buffers;
1004 
1005   // number sequence of past step times
1006   NumberSeq                   _step_times_ms;
1007   // elapsed time of this task
1008   double                      _elapsed_time_ms;
1009   // termination time of this task
1010   double                      _termination_time_ms;
1011   // when this task got into the termination protocol
1012   double                      _termination_start_time_ms;
1013 
1014   // true when the task is during a concurrent phase, false when it is
1015   // in the remark phase (so, in the latter case, we do not have to
1016   // check all the things that we have to check during the concurrent
1017   // phase, i.e. SATB buffer availability...)
1018   bool                        _concurrent;
1019 
1020   TruncatedSeq                _marking_step_diffs_ms;
1021 
1022   // LOTS of statistics related with this task
1023 #if _MARKING_STATS_
1024   NumberSeq                   _all_clock_intervals_ms;
1025   double                      _interval_start_time_ms;
1026 
1027   int                         _aborted;
1028   int                         _aborted_overflow;
1029   int                         _aborted_cm_aborted;
1030   int                         _aborted_yield;
1031   int                         _aborted_timed_out;
1032   int                         _aborted_satb;
1033   int                         _aborted_termination;
1034 
1035   int                         _steal_attempts;
1036   int                         _steals;
1037 
1038   int                         _clock_due_to_marking;
1039   int                         _clock_due_to_scanning;
1040 
1041   int                         _local_pushes;
1042   int                         _local_pops;
1043   int                         _local_max_size;
1044   int                         _objs_scanned;
1045 
1046   int                         _global_pushes;
1047   int                         _global_pops;
1048   int                         _global_max_size;
1049 
1050   int                         _global_transfers_to;
1051   int                         _global_transfers_from;
1052 
1053   int                         _region_stack_pops;
1054 
1055   int                         _regions_claimed;
1056   int                         _objs_found_on_bitmap;
1057 
1058   int                         _satb_buffers_processed;
1059 #endif // _MARKING_STATS_
1060 
1061   // it updates the local fields after this task has claimed
1062   // a new region to scan
1063   void setup_for_region(HeapRegion* hr);
1064   // it brings up-to-date the limit of the region
1065   void update_region_limit();
1066 
1067   // called when either the words scanned or the refs visited limit
1068   // has been reached
1069   void reached_limit();
1070   // recalculates the words scanned and refs visited limits
1071   void recalculate_limits();
1072   // decreases the words scanned and refs visited limits when we reach
1073   // an expensive operation
1074   void decrease_limits();
1075   // it checks whether the words scanned or refs visited reached their
1076   // respective limit and calls reached_limit() if they have
1077   void check_limits() {
1078     if (_words_scanned >= _words_scanned_limit ||
1079         _refs_reached >= _refs_reached_limit) {
1080       reached_limit();
1081     }
1082   }
1083   // this is supposed to be called regularly during a marking step as
1084   // it checks a bunch of conditions that might cause the marking step
1085   // to abort
1086   void regular_clock_call();
1087   bool concurrent() { return _concurrent; }
1088 
1089 public:
1090   // It resets the task; it should be called right at the beginning of
1091   // a marking phase.
1092   void reset(CMBitMap* _nextMarkBitMap);
1093   // it clears all the fields that correspond to a claimed region.
1094   void clear_region_fields();
1095 
1096   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
1097 
1098   // The main method of this class which performs a marking step
1099   // trying not to exceed the given duration. However, it might exit
1100   // prematurely, according to some conditions (i.e. SATB buffers are
1101   // available for processing).
1102   void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
1103 
1104   // These two calls start and stop the timer
1105   void record_start_time() {
1106     _elapsed_time_ms = os::elapsedTime() * 1000.0;
1107   }
1108   void record_end_time() {
1109     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
1110   }
1111 
1112   // returns the task ID
1113   int task_id() { return _task_id; }
1114 
1115   // From TerminatorTerminator. It determines whether this task should
1116   // exit the termination protocol after it's entered it.
1117   virtual bool should_exit_termination();
1118 
1119   // Resets the local region fields after a task has finished scanning a
1120   // region; or when they have become stale as a result of the region
1121   // being evacuated.
1122   void giveup_current_region();
1123 
1124   HeapWord* finger()            { return _finger; }
1125 
1126   bool has_aborted()            { return _has_aborted; }
1127   void set_has_aborted()        { _has_aborted = true; }
1128   void clear_has_aborted()      { _has_aborted = false; }
1129   bool has_timed_out()          { return _has_timed_out; }
1130   bool claimed()                { return _claimed; }
1131 
1132   // Support routines for the partially scanned region that may be
1133   // recorded as a result of aborting while draining the CMRegionStack
1134   MemRegion aborted_region()    { return _aborted_region; }
1135   void set_aborted_region(MemRegion mr)
1136                                 { _aborted_region = mr; }
1137 
1138   // Clears any recorded partially scanned region
1139   void clear_aborted_region()   { set_aborted_region(MemRegion()); }
1140 
1141   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
1142 
1143   // It grays the object by marking it and, if necessary, pushing it
1144   // on the local queue
1145   inline void deal_with_reference(oop obj);
1146 
1147   // It scans an object and visits its children.
1148   void scan_object(oop obj);
1149 
1150   // It pushes an object on the local queue.
1151   inline void push(oop obj);
1152 
1153   // These two move entries to/from the global stack.
1154   void move_entries_to_global_stack();
1155   void get_entries_from_global_stack();
1156 
1157   // It pops and scans objects from the local queue. If partially is
1158   // true, then it stops when the queue size is of a given limit. If
1159   // partially is false, then it stops when the queue is empty.
1160   void drain_local_queue(bool partially);
1161   // It moves entries from the global stack to the local queue and
1162   // drains the local queue. If partially is true, then it stops when
1163   // both the global stack and the local queue reach a given size. If
1164   // partially if false, it tries to empty them totally.
1165   void drain_global_stack(bool partially);
1166   // It keeps picking SATB buffers and processing them until no SATB
1167   // buffers are available.
1168   void drain_satb_buffers();
1169   // It keeps popping regions from the region stack and processing
1170   // them until the region stack is empty.
1171   void drain_region_stack(BitMapClosure* closure);
1172 
1173   // moves the local finger to a new location
1174   inline void move_finger_to(HeapWord* new_finger) {
1175     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
1176     _finger = new_finger;
1177   }
1178 
1179   // moves the region finger to a new location
1180   inline void move_region_finger_to(HeapWord* new_finger) {
1181     assert(new_finger < _cm->finger(), "invariant");
1182     _region_finger = new_finger;
1183   }
1184 
1185   CMTask(int task_num, ConcurrentMark *cm,
1186          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
1187 
1188   // it prints statistics associated with this task
1189   void print_stats();
1190 
1191 #if _MARKING_STATS_
1192   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
1193 #endif // _MARKING_STATS_
1194 };
1195 
1196 // Class that's used to to print out per-region liveness
1197 // information. It's currently used at the end of marking and also
1198 // after we sort the old regions at the end of the cleanup operation.
1199 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
1200 private:
1201   outputStream* _out;
1202 
1203   // Accumulators for these values.
1204   size_t _total_used_bytes;
1205   size_t _total_capacity_bytes;
1206   size_t _total_prev_live_bytes;
1207   size_t _total_next_live_bytes;
1208 
1209   // These are set up when we come across a "stars humongous" region
1210   // (as this is where most of this information is stored, not in the
1211   // subsequent "continues humongous" regions). After that, for every
1212   // region in a given humongous region series we deduce the right
1213   // values for it by simply subtracting the appropriate amount from
1214   // these fields. All these values should reach 0 after we've visited
1215   // the last region in the series.
1216   size_t _hum_used_bytes;
1217   size_t _hum_capacity_bytes;
1218   size_t _hum_prev_live_bytes;
1219   size_t _hum_next_live_bytes;
1220 
1221   static double perc(size_t val, size_t total) {
1222     if (total == 0) {
1223       return 0.0;
1224     } else {
1225       return 100.0 * ((double) val / (double) total);
1226     }
1227   }
1228 
1229   static double bytes_to_mb(size_t val) {
1230     return (double) val / (double) M;
1231   }
1232 
1233   // See the .cpp file.
1234   size_t get_hum_bytes(size_t* hum_bytes);
1235   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
1236                      size_t* prev_live_bytes, size_t* next_live_bytes);
1237 
1238 public:
1239   // The header and footer are printed in the constructor and
1240   // destructor respectively.
1241   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
1242   virtual bool doHeapRegion(HeapRegion* r);
1243   ~G1PrintRegionLivenessInfoClosure();
1244 };
1245 
1246 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP