1 /* 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP 27 28 #include "gc_implementation/g1/concurrentMark.hpp" 29 #include "gc_implementation/g1/g1AllocRegion.hpp" 30 #include "gc_implementation/g1/g1HRPrinter.hpp" 31 #include "gc_implementation/g1/g1RemSet.hpp" 32 #include "gc_implementation/g1/g1MonitoringSupport.hpp" 33 #include "gc_implementation/g1/heapRegionSeq.hpp" 34 #include "gc_implementation/g1/heapRegionSets.hpp" 35 #include "gc_implementation/shared/hSpaceCounters.hpp" 36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp" 37 #include "memory/barrierSet.hpp" 38 #include "memory/memRegion.hpp" 39 #include "memory/sharedHeap.hpp" 40 41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot. 42 // It uses the "Garbage First" heap organization and algorithm, which 43 // may combine concurrent marking with parallel, incremental compaction of 44 // heap subsets that will yield large amounts of garbage. 45 46 class HeapRegion; 47 class HRRSCleanupTask; 48 class PermanentGenerationSpec; 49 class GenerationSpec; 50 class OopsInHeapRegionClosure; 51 class G1ScanHeapEvacClosure; 52 class ObjectClosure; 53 class SpaceClosure; 54 class CompactibleSpaceClosure; 55 class Space; 56 class G1CollectorPolicy; 57 class GenRemSet; 58 class G1RemSet; 59 class HeapRegionRemSetIterator; 60 class ConcurrentMark; 61 class ConcurrentMarkThread; 62 class ConcurrentG1Refine; 63 class GenerationCounters; 64 65 typedef OverflowTaskQueue<StarTask> RefToScanQueue; 66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet; 67 68 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() ) 69 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion ) 70 71 enum GCAllocPurpose { 72 GCAllocForTenured, 73 GCAllocForSurvived, 74 GCAllocPurposeCount 75 }; 76 77 class YoungList : public CHeapObj { 78 private: 79 G1CollectedHeap* _g1h; 80 81 HeapRegion* _head; 82 83 HeapRegion* _survivor_head; 84 HeapRegion* _survivor_tail; 85 86 HeapRegion* _curr; 87 88 size_t _length; 89 size_t _survivor_length; 90 91 size_t _last_sampled_rs_lengths; 92 size_t _sampled_rs_lengths; 93 94 void empty_list(HeapRegion* list); 95 96 public: 97 YoungList(G1CollectedHeap* g1h); 98 99 void push_region(HeapRegion* hr); 100 void add_survivor_region(HeapRegion* hr); 101 102 void empty_list(); 103 bool is_empty() { return _length == 0; } 104 size_t length() { return _length; } 105 size_t survivor_length() { return _survivor_length; } 106 107 // Currently we do not keep track of the used byte sum for the 108 // young list and the survivors and it'd be quite a lot of work to 109 // do so. When we'll eventually replace the young list with 110 // instances of HeapRegionLinkedList we'll get that for free. So, 111 // we'll report the more accurate information then. 112 size_t eden_used_bytes() { 113 assert(length() >= survivor_length(), "invariant"); 114 return (length() - survivor_length()) * HeapRegion::GrainBytes; 115 } 116 size_t survivor_used_bytes() { 117 return survivor_length() * HeapRegion::GrainBytes; 118 } 119 120 void rs_length_sampling_init(); 121 bool rs_length_sampling_more(); 122 void rs_length_sampling_next(); 123 124 void reset_sampled_info() { 125 _last_sampled_rs_lengths = 0; 126 } 127 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; } 128 129 // for development purposes 130 void reset_auxilary_lists(); 131 void clear() { _head = NULL; _length = 0; } 132 133 void clear_survivors() { 134 _survivor_head = NULL; 135 _survivor_tail = NULL; 136 _survivor_length = 0; 137 } 138 139 HeapRegion* first_region() { return _head; } 140 HeapRegion* first_survivor_region() { return _survivor_head; } 141 HeapRegion* last_survivor_region() { return _survivor_tail; } 142 143 // debugging 144 bool check_list_well_formed(); 145 bool check_list_empty(bool check_sample = true); 146 void print(); 147 }; 148 149 class MutatorAllocRegion : public G1AllocRegion { 150 protected: 151 virtual HeapRegion* allocate_new_region(size_t word_size, bool force); 152 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes); 153 public: 154 MutatorAllocRegion() 155 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { } 156 }; 157 158 // The G1 STW is alive closure. 159 // An instance is embedded into the G1CH and used as the 160 // (optional) _is_alive_non_header closure in the STW 161 // reference processor. It is also extensively used during 162 // refence processing during STW evacuation pauses. 163 class G1STWIsAliveClosure: public BoolObjectClosure { 164 G1CollectedHeap* _g1; 165 public: 166 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 167 void do_object(oop p) { assert(false, "Do not call."); } 168 bool do_object_b(oop p); 169 }; 170 171 class SurvivorGCAllocRegion : public G1AllocRegion { 172 protected: 173 virtual HeapRegion* allocate_new_region(size_t word_size, bool force); 174 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes); 175 public: 176 SurvivorGCAllocRegion() 177 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { } 178 }; 179 180 class OldGCAllocRegion : public G1AllocRegion { 181 protected: 182 virtual HeapRegion* allocate_new_region(size_t word_size, bool force); 183 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes); 184 public: 185 OldGCAllocRegion() 186 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { } 187 }; 188 189 class RefineCardTableEntryClosure; 190 191 class G1CollectedHeap : public SharedHeap { 192 friend class VM_G1CollectForAllocation; 193 friend class VM_GenCollectForPermanentAllocation; 194 friend class VM_G1CollectFull; 195 friend class VM_G1IncCollectionPause; 196 friend class VMStructs; 197 friend class MutatorAllocRegion; 198 friend class SurvivorGCAllocRegion; 199 friend class OldGCAllocRegion; 200 201 // Closures used in implementation. 202 friend class G1ParCopyHelper; 203 friend class G1IsAliveClosure; 204 friend class G1EvacuateFollowersClosure; 205 friend class G1ParScanThreadState; 206 friend class G1ParScanClosureSuper; 207 friend class G1ParEvacuateFollowersClosure; 208 friend class G1ParTask; 209 friend class G1FreeGarbageRegionClosure; 210 friend class RefineCardTableEntryClosure; 211 friend class G1PrepareCompactClosure; 212 friend class RegionSorter; 213 friend class RegionResetter; 214 friend class CountRCClosure; 215 friend class EvacPopObjClosure; 216 friend class G1ParCleanupCTTask; 217 218 // Other related classes. 219 friend class G1MarkSweep; 220 221 private: 222 // The one and only G1CollectedHeap, so static functions can find it. 223 static G1CollectedHeap* _g1h; 224 225 static size_t _humongous_object_threshold_in_words; 226 227 // Storage for the G1 heap (excludes the permanent generation). 228 VirtualSpace _g1_storage; 229 MemRegion _g1_reserved; 230 231 // The part of _g1_storage that is currently committed. 232 MemRegion _g1_committed; 233 234 // The master free list. It will satisfy all new region allocations. 235 MasterFreeRegionList _free_list; 236 237 // The secondary free list which contains regions that have been 238 // freed up during the cleanup process. This will be appended to the 239 // master free list when appropriate. 240 SecondaryFreeRegionList _secondary_free_list; 241 242 // It keeps track of the old regions. 243 MasterOldRegionSet _old_set; 244 245 // It keeps track of the humongous regions. 246 MasterHumongousRegionSet _humongous_set; 247 248 // The number of regions we could create by expansion. 249 size_t _expansion_regions; 250 251 // The block offset table for the G1 heap. 252 G1BlockOffsetSharedArray* _bot_shared; 253 254 // Tears down the region sets / lists so that they are empty and the 255 // regions on the heap do not belong to a region set / list. The 256 // only exception is the humongous set which we leave unaltered. If 257 // free_list_only is true, it will only tear down the master free 258 // list. It is called before a Full GC (free_list_only == false) or 259 // before heap shrinking (free_list_only == true). 260 void tear_down_region_sets(bool free_list_only); 261 262 // Rebuilds the region sets / lists so that they are repopulated to 263 // reflect the contents of the heap. The only exception is the 264 // humongous set which was not torn down in the first place. If 265 // free_list_only is true, it will only rebuild the master free 266 // list. It is called after a Full GC (free_list_only == false) or 267 // after heap shrinking (free_list_only == true). 268 void rebuild_region_sets(bool free_list_only); 269 270 // The sequence of all heap regions in the heap. 271 HeapRegionSeq _hrs; 272 273 // Alloc region used to satisfy mutator allocation requests. 274 MutatorAllocRegion _mutator_alloc_region; 275 276 // Alloc region used to satisfy allocation requests by the GC for 277 // survivor objects. 278 SurvivorGCAllocRegion _survivor_gc_alloc_region; 279 280 // Alloc region used to satisfy allocation requests by the GC for 281 // old objects. 282 OldGCAllocRegion _old_gc_alloc_region; 283 284 // The last old region we allocated to during the last GC. 285 // Typically, it is not full so we should re-use it during the next GC. 286 HeapRegion* _retained_old_gc_alloc_region; 287 288 // It resets the mutator alloc region before new allocations can take place. 289 void init_mutator_alloc_region(); 290 291 // It releases the mutator alloc region. 292 void release_mutator_alloc_region(); 293 294 // It initializes the GC alloc regions at the start of a GC. 295 void init_gc_alloc_regions(); 296 297 // It releases the GC alloc regions at the end of a GC. 298 void release_gc_alloc_regions(); 299 300 // It does any cleanup that needs to be done on the GC alloc regions 301 // before a Full GC. 302 void abandon_gc_alloc_regions(); 303 304 // Helper for monitoring and management support. 305 G1MonitoringSupport* _g1mm; 306 307 // Determines PLAB size for a particular allocation purpose. 308 static size_t desired_plab_sz(GCAllocPurpose purpose); 309 310 // Outside of GC pauses, the number of bytes used in all regions other 311 // than the current allocation region. 312 size_t _summary_bytes_used; 313 314 // This is used for a quick test on whether a reference points into 315 // the collection set or not. Basically, we have an array, with one 316 // byte per region, and that byte denotes whether the corresponding 317 // region is in the collection set or not. The entry corresponding 318 // the bottom of the heap, i.e., region 0, is pointed to by 319 // _in_cset_fast_test_base. The _in_cset_fast_test field has been 320 // biased so that it actually points to address 0 of the address 321 // space, to make the test as fast as possible (we can simply shift 322 // the address to address into it, instead of having to subtract the 323 // bottom of the heap from the address before shifting it; basically 324 // it works in the same way the card table works). 325 bool* _in_cset_fast_test; 326 327 // The allocated array used for the fast test on whether a reference 328 // points into the collection set or not. This field is also used to 329 // free the array. 330 bool* _in_cset_fast_test_base; 331 332 // The length of the _in_cset_fast_test_base array. 333 size_t _in_cset_fast_test_length; 334 335 volatile unsigned _gc_time_stamp; 336 337 size_t* _surviving_young_words; 338 339 G1HRPrinter _hr_printer; 340 341 void setup_surviving_young_words(); 342 void update_surviving_young_words(size_t* surv_young_words); 343 void cleanup_surviving_young_words(); 344 345 // It decides whether an explicit GC should start a concurrent cycle 346 // instead of doing a STW GC. Currently, a concurrent cycle is 347 // explicitly started if: 348 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or 349 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent. 350 bool should_do_concurrent_full_gc(GCCause::Cause cause); 351 352 // Keeps track of how many "full collections" (i.e., Full GCs or 353 // concurrent cycles) we have completed. The number of them we have 354 // started is maintained in _total_full_collections in CollectedHeap. 355 volatile unsigned int _full_collections_completed; 356 357 // This is a non-product method that is helpful for testing. It is 358 // called at the end of a GC and artificially expands the heap by 359 // allocating a number of dead regions. This way we can induce very 360 // frequent marking cycles and stress the cleanup / concurrent 361 // cleanup code more (as all the regions that will be allocated by 362 // this method will be found dead by the marking cycle). 363 void allocate_dummy_regions() PRODUCT_RETURN; 364 365 // These are macros so that, if the assert fires, we get the correct 366 // line number, file, etc. 367 368 #define heap_locking_asserts_err_msg(_extra_message_) \ 369 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \ 370 (_extra_message_), \ 371 BOOL_TO_STR(Heap_lock->owned_by_self()), \ 372 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \ 373 BOOL_TO_STR(Thread::current()->is_VM_thread())) 374 375 #define assert_heap_locked() \ 376 do { \ 377 assert(Heap_lock->owned_by_self(), \ 378 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \ 379 } while (0) 380 381 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \ 382 do { \ 383 assert(Heap_lock->owned_by_self() || \ 384 (SafepointSynchronize::is_at_safepoint() && \ 385 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \ 386 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \ 387 "should be at a safepoint")); \ 388 } while (0) 389 390 #define assert_heap_locked_and_not_at_safepoint() \ 391 do { \ 392 assert(Heap_lock->owned_by_self() && \ 393 !SafepointSynchronize::is_at_safepoint(), \ 394 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \ 395 "should not be at a safepoint")); \ 396 } while (0) 397 398 #define assert_heap_not_locked() \ 399 do { \ 400 assert(!Heap_lock->owned_by_self(), \ 401 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \ 402 } while (0) 403 404 #define assert_heap_not_locked_and_not_at_safepoint() \ 405 do { \ 406 assert(!Heap_lock->owned_by_self() && \ 407 !SafepointSynchronize::is_at_safepoint(), \ 408 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \ 409 "should not be at a safepoint")); \ 410 } while (0) 411 412 #define assert_at_safepoint(_should_be_vm_thread_) \ 413 do { \ 414 assert(SafepointSynchronize::is_at_safepoint() && \ 415 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \ 416 heap_locking_asserts_err_msg("should be at a safepoint")); \ 417 } while (0) 418 419 #define assert_not_at_safepoint() \ 420 do { \ 421 assert(!SafepointSynchronize::is_at_safepoint(), \ 422 heap_locking_asserts_err_msg("should not be at a safepoint")); \ 423 } while (0) 424 425 protected: 426 427 // The young region list. 428 YoungList* _young_list; 429 430 // The current policy object for the collector. 431 G1CollectorPolicy* _g1_policy; 432 433 // This is the second level of trying to allocate a new region. If 434 // new_region() didn't find a region on the free_list, this call will 435 // check whether there's anything available on the 436 // secondary_free_list and/or wait for more regions to appear on 437 // that list, if _free_regions_coming is set. 438 HeapRegion* new_region_try_secondary_free_list(); 439 440 // Try to allocate a single non-humongous HeapRegion sufficient for 441 // an allocation of the given word_size. If do_expand is true, 442 // attempt to expand the heap if necessary to satisfy the allocation 443 // request. 444 HeapRegion* new_region(size_t word_size, bool do_expand); 445 446 // Attempt to satisfy a humongous allocation request of the given 447 // size by finding a contiguous set of free regions of num_regions 448 // length and remove them from the master free list. Return the 449 // index of the first region or G1_NULL_HRS_INDEX if the search 450 // was unsuccessful. 451 size_t humongous_obj_allocate_find_first(size_t num_regions, 452 size_t word_size); 453 454 // Initialize a contiguous set of free regions of length num_regions 455 // and starting at index first so that they appear as a single 456 // humongous region. 457 HeapWord* humongous_obj_allocate_initialize_regions(size_t first, 458 size_t num_regions, 459 size_t word_size); 460 461 // Attempt to allocate a humongous object of the given size. Return 462 // NULL if unsuccessful. 463 HeapWord* humongous_obj_allocate(size_t word_size); 464 465 // The following two methods, allocate_new_tlab() and 466 // mem_allocate(), are the two main entry points from the runtime 467 // into the G1's allocation routines. They have the following 468 // assumptions: 469 // 470 // * They should both be called outside safepoints. 471 // 472 // * They should both be called without holding the Heap_lock. 473 // 474 // * All allocation requests for new TLABs should go to 475 // allocate_new_tlab(). 476 // 477 // * All non-TLAB allocation requests should go to mem_allocate(). 478 // 479 // * If either call cannot satisfy the allocation request using the 480 // current allocating region, they will try to get a new one. If 481 // this fails, they will attempt to do an evacuation pause and 482 // retry the allocation. 483 // 484 // * If all allocation attempts fail, even after trying to schedule 485 // an evacuation pause, allocate_new_tlab() will return NULL, 486 // whereas mem_allocate() will attempt a heap expansion and/or 487 // schedule a Full GC. 488 // 489 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab 490 // should never be called with word_size being humongous. All 491 // humongous allocation requests should go to mem_allocate() which 492 // will satisfy them with a special path. 493 494 virtual HeapWord* allocate_new_tlab(size_t word_size); 495 496 virtual HeapWord* mem_allocate(size_t word_size, 497 bool* gc_overhead_limit_was_exceeded); 498 499 // The following three methods take a gc_count_before_ret 500 // parameter which is used to return the GC count if the method 501 // returns NULL. Given that we are required to read the GC count 502 // while holding the Heap_lock, and these paths will take the 503 // Heap_lock at some point, it's easier to get them to read the GC 504 // count while holding the Heap_lock before they return NULL instead 505 // of the caller (namely: mem_allocate()) having to also take the 506 // Heap_lock just to read the GC count. 507 508 // First-level mutator allocation attempt: try to allocate out of 509 // the mutator alloc region without taking the Heap_lock. This 510 // should only be used for non-humongous allocations. 511 inline HeapWord* attempt_allocation(size_t word_size, 512 unsigned int* gc_count_before_ret); 513 514 // Second-level mutator allocation attempt: take the Heap_lock and 515 // retry the allocation attempt, potentially scheduling a GC 516 // pause. This should only be used for non-humongous allocations. 517 HeapWord* attempt_allocation_slow(size_t word_size, 518 unsigned int* gc_count_before_ret); 519 520 // Takes the Heap_lock and attempts a humongous allocation. It can 521 // potentially schedule a GC pause. 522 HeapWord* attempt_allocation_humongous(size_t word_size, 523 unsigned int* gc_count_before_ret); 524 525 // Allocation attempt that should be called during safepoints (e.g., 526 // at the end of a successful GC). expect_null_mutator_alloc_region 527 // specifies whether the mutator alloc region is expected to be NULL 528 // or not. 529 HeapWord* attempt_allocation_at_safepoint(size_t word_size, 530 bool expect_null_mutator_alloc_region); 531 532 // It dirties the cards that cover the block so that so that the post 533 // write barrier never queues anything when updating objects on this 534 // block. It is assumed (and in fact we assert) that the block 535 // belongs to a young region. 536 inline void dirty_young_block(HeapWord* start, size_t word_size); 537 538 // Allocate blocks during garbage collection. Will ensure an 539 // allocation region, either by picking one or expanding the 540 // heap, and then allocate a block of the given size. The block 541 // may not be a humongous - it must fit into a single heap region. 542 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size); 543 544 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose, 545 HeapRegion* alloc_region, 546 bool par, 547 size_t word_size); 548 549 // Ensure that no further allocations can happen in "r", bearing in mind 550 // that parallel threads might be attempting allocations. 551 void par_allocate_remaining_space(HeapRegion* r); 552 553 // Allocation attempt during GC for a survivor object / PLAB. 554 inline HeapWord* survivor_attempt_allocation(size_t word_size); 555 556 // Allocation attempt during GC for an old object / PLAB. 557 inline HeapWord* old_attempt_allocation(size_t word_size); 558 559 // These methods are the "callbacks" from the G1AllocRegion class. 560 561 // For mutator alloc regions. 562 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force); 563 void retire_mutator_alloc_region(HeapRegion* alloc_region, 564 size_t allocated_bytes); 565 566 // For GC alloc regions. 567 HeapRegion* new_gc_alloc_region(size_t word_size, size_t count, 568 GCAllocPurpose ap); 569 void retire_gc_alloc_region(HeapRegion* alloc_region, 570 size_t allocated_bytes, GCAllocPurpose ap); 571 572 // - if explicit_gc is true, the GC is for a System.gc() or a heap 573 // inspection request and should collect the entire heap 574 // - if clear_all_soft_refs is true, all soft references should be 575 // cleared during the GC 576 // - if explicit_gc is false, word_size describes the allocation that 577 // the GC should attempt (at least) to satisfy 578 // - it returns false if it is unable to do the collection due to the 579 // GC locker being active, true otherwise 580 bool do_collection(bool explicit_gc, 581 bool clear_all_soft_refs, 582 size_t word_size); 583 584 // Callback from VM_G1CollectFull operation. 585 // Perform a full collection. 586 void do_full_collection(bool clear_all_soft_refs); 587 588 // Resize the heap if necessary after a full collection. If this is 589 // after a collect-for allocation, "word_size" is the allocation size, 590 // and will be considered part of the used portion of the heap. 591 void resize_if_necessary_after_full_collection(size_t word_size); 592 593 // Callback from VM_G1CollectForAllocation operation. 594 // This function does everything necessary/possible to satisfy a 595 // failed allocation request (including collection, expansion, etc.) 596 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded); 597 598 // Attempting to expand the heap sufficiently 599 // to support an allocation of the given "word_size". If 600 // successful, perform the allocation and return the address of the 601 // allocated block, or else "NULL". 602 HeapWord* expand_and_allocate(size_t word_size); 603 604 // Process any reference objects discovered during 605 // an incremental evacuation pause. 606 void process_discovered_references(); 607 608 // Enqueue any remaining discovered references 609 // after processing. 610 void enqueue_discovered_references(); 611 612 public: 613 614 G1MonitoringSupport* g1mm() { 615 assert(_g1mm != NULL, "should have been initialized"); 616 return _g1mm; 617 } 618 619 // Expand the garbage-first heap by at least the given size (in bytes!). 620 // Returns true if the heap was expanded by the requested amount; 621 // false otherwise. 622 // (Rounds up to a HeapRegion boundary.) 623 bool expand(size_t expand_bytes); 624 625 // Do anything common to GC's. 626 virtual void gc_prologue(bool full); 627 virtual void gc_epilogue(bool full); 628 629 // We register a region with the fast "in collection set" test. We 630 // simply set to true the array slot corresponding to this region. 631 void register_region_with_in_cset_fast_test(HeapRegion* r) { 632 assert(_in_cset_fast_test_base != NULL, "sanity"); 633 assert(r->in_collection_set(), "invariant"); 634 size_t index = r->hrs_index(); 635 assert(index < _in_cset_fast_test_length, "invariant"); 636 assert(!_in_cset_fast_test_base[index], "invariant"); 637 _in_cset_fast_test_base[index] = true; 638 } 639 640 // This is a fast test on whether a reference points into the 641 // collection set or not. It does not assume that the reference 642 // points into the heap; if it doesn't, it will return false. 643 bool in_cset_fast_test(oop obj) { 644 assert(_in_cset_fast_test != NULL, "sanity"); 645 if (_g1_committed.contains((HeapWord*) obj)) { 646 // no need to subtract the bottom of the heap from obj, 647 // _in_cset_fast_test is biased 648 size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes; 649 bool ret = _in_cset_fast_test[index]; 650 // let's make sure the result is consistent with what the slower 651 // test returns 652 assert( ret || !obj_in_cs(obj), "sanity"); 653 assert(!ret || obj_in_cs(obj), "sanity"); 654 return ret; 655 } else { 656 return false; 657 } 658 } 659 660 void clear_cset_fast_test() { 661 assert(_in_cset_fast_test_base != NULL, "sanity"); 662 memset(_in_cset_fast_test_base, false, 663 _in_cset_fast_test_length * sizeof(bool)); 664 } 665 666 // This is called at the end of either a concurrent cycle or a Full 667 // GC to update the number of full collections completed. Those two 668 // can happen in a nested fashion, i.e., we start a concurrent 669 // cycle, a Full GC happens half-way through it which ends first, 670 // and then the cycle notices that a Full GC happened and ends 671 // too. The concurrent parameter is a boolean to help us do a bit 672 // tighter consistency checking in the method. If concurrent is 673 // false, the caller is the inner caller in the nesting (i.e., the 674 // Full GC). If concurrent is true, the caller is the outer caller 675 // in this nesting (i.e., the concurrent cycle). Further nesting is 676 // not currently supported. The end of the this call also notifies 677 // the FullGCCount_lock in case a Java thread is waiting for a full 678 // GC to happen (e.g., it called System.gc() with 679 // +ExplicitGCInvokesConcurrent). 680 void increment_full_collections_completed(bool concurrent); 681 682 unsigned int full_collections_completed() { 683 return _full_collections_completed; 684 } 685 686 G1HRPrinter* hr_printer() { return &_hr_printer; } 687 688 protected: 689 690 // Shrink the garbage-first heap by at most the given size (in bytes!). 691 // (Rounds down to a HeapRegion boundary.) 692 virtual void shrink(size_t expand_bytes); 693 void shrink_helper(size_t expand_bytes); 694 695 #if TASKQUEUE_STATS 696 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty); 697 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const; 698 void reset_taskqueue_stats(); 699 #endif // TASKQUEUE_STATS 700 701 // Schedule the VM operation that will do an evacuation pause to 702 // satisfy an allocation request of word_size. *succeeded will 703 // return whether the VM operation was successful (it did do an 704 // evacuation pause) or not (another thread beat us to it or the GC 705 // locker was active). Given that we should not be holding the 706 // Heap_lock when we enter this method, we will pass the 707 // gc_count_before (i.e., total_collections()) as a parameter since 708 // it has to be read while holding the Heap_lock. Currently, both 709 // methods that call do_collection_pause() release the Heap_lock 710 // before the call, so it's easy to read gc_count_before just before. 711 HeapWord* do_collection_pause(size_t word_size, 712 unsigned int gc_count_before, 713 bool* succeeded); 714 715 // The guts of the incremental collection pause, executed by the vm 716 // thread. It returns false if it is unable to do the collection due 717 // to the GC locker being active, true otherwise 718 bool do_collection_pause_at_safepoint(double target_pause_time_ms); 719 720 // Actually do the work of evacuating the collection set. 721 void evacuate_collection_set(); 722 723 // The g1 remembered set of the heap. 724 G1RemSet* _g1_rem_set; 725 // And it's mod ref barrier set, used to track updates for the above. 726 ModRefBarrierSet* _mr_bs; 727 728 // A set of cards that cover the objects for which the Rsets should be updated 729 // concurrently after the collection. 730 DirtyCardQueueSet _dirty_card_queue_set; 731 732 // The Heap Region Rem Set Iterator. 733 HeapRegionRemSetIterator** _rem_set_iterator; 734 735 // The closure used to refine a single card. 736 RefineCardTableEntryClosure* _refine_cte_cl; 737 738 // A function to check the consistency of dirty card logs. 739 void check_ct_logs_at_safepoint(); 740 741 // A DirtyCardQueueSet that is used to hold cards that contain 742 // references into the current collection set. This is used to 743 // update the remembered sets of the regions in the collection 744 // set in the event of an evacuation failure. 745 DirtyCardQueueSet _into_cset_dirty_card_queue_set; 746 747 // After a collection pause, make the regions in the CS into free 748 // regions. 749 void free_collection_set(HeapRegion* cs_head); 750 751 // Abandon the current collection set without recording policy 752 // statistics or updating free lists. 753 void abandon_collection_set(HeapRegion* cs_head); 754 755 // Applies "scan_non_heap_roots" to roots outside the heap, 756 // "scan_rs" to roots inside the heap (having done "set_region" to 757 // indicate the region in which the root resides), and does "scan_perm" 758 // (setting the generation to the perm generation.) If "scan_rs" is 759 // NULL, then this step is skipped. The "worker_i" 760 // param is for use with parallel roots processing, and should be 761 // the "i" of the calling parallel worker thread's work(i) function. 762 // In the sequential case this param will be ignored. 763 void g1_process_strong_roots(bool collecting_perm_gen, 764 SharedHeap::ScanningOption so, 765 OopClosure* scan_non_heap_roots, 766 OopsInHeapRegionClosure* scan_rs, 767 OopsInGenClosure* scan_perm, 768 int worker_i); 769 770 // Apply "blk" to all the weak roots of the system. These include 771 // JNI weak roots, the code cache, system dictionary, symbol table, 772 // string table, and referents of reachable weak refs. 773 void g1_process_weak_roots(OopClosure* root_closure, 774 OopClosure* non_root_closure); 775 776 // Frees a non-humongous region by initializing its contents and 777 // adding it to the free list that's passed as a parameter (this is 778 // usually a local list which will be appended to the master free 779 // list later). The used bytes of freed regions are accumulated in 780 // pre_used. If par is true, the region's RSet will not be freed 781 // up. The assumption is that this will be done later. 782 void free_region(HeapRegion* hr, 783 size_t* pre_used, 784 FreeRegionList* free_list, 785 bool par); 786 787 // Frees a humongous region by collapsing it into individual regions 788 // and calling free_region() for each of them. The freed regions 789 // will be added to the free list that's passed as a parameter (this 790 // is usually a local list which will be appended to the master free 791 // list later). The used bytes of freed regions are accumulated in 792 // pre_used. If par is true, the region's RSet will not be freed 793 // up. The assumption is that this will be done later. 794 void free_humongous_region(HeapRegion* hr, 795 size_t* pre_used, 796 FreeRegionList* free_list, 797 HumongousRegionSet* humongous_proxy_set, 798 bool par); 799 800 // Notifies all the necessary spaces that the committed space has 801 // been updated (either expanded or shrunk). It should be called 802 // after _g1_storage is updated. 803 void update_committed_space(HeapWord* old_end, HeapWord* new_end); 804 805 // The concurrent marker (and the thread it runs in.) 806 ConcurrentMark* _cm; 807 ConcurrentMarkThread* _cmThread; 808 bool _mark_in_progress; 809 810 // The concurrent refiner. 811 ConcurrentG1Refine* _cg1r; 812 813 // The parallel task queues 814 RefToScanQueueSet *_task_queues; 815 816 // True iff a evacuation has failed in the current collection. 817 bool _evacuation_failed; 818 819 // Set the attribute indicating whether evacuation has failed in the 820 // current collection. 821 void set_evacuation_failed(bool b) { _evacuation_failed = b; } 822 823 // Failed evacuations cause some logical from-space objects to have 824 // forwarding pointers to themselves. Reset them. 825 void remove_self_forwarding_pointers(); 826 827 // When one is non-null, so is the other. Together, they each pair is 828 // an object with a preserved mark, and its mark value. 829 GrowableArray<oop>* _objs_with_preserved_marks; 830 GrowableArray<markOop>* _preserved_marks_of_objs; 831 832 // Preserve the mark of "obj", if necessary, in preparation for its mark 833 // word being overwritten with a self-forwarding-pointer. 834 void preserve_mark_if_necessary(oop obj, markOop m); 835 836 // The stack of evac-failure objects left to be scanned. 837 GrowableArray<oop>* _evac_failure_scan_stack; 838 // The closure to apply to evac-failure objects. 839 840 OopsInHeapRegionClosure* _evac_failure_closure; 841 // Set the field above. 842 void 843 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) { 844 _evac_failure_closure = evac_failure_closure; 845 } 846 847 // Push "obj" on the scan stack. 848 void push_on_evac_failure_scan_stack(oop obj); 849 // Process scan stack entries until the stack is empty. 850 void drain_evac_failure_scan_stack(); 851 // True iff an invocation of "drain_scan_stack" is in progress; to 852 // prevent unnecessary recursion. 853 bool _drain_in_progress; 854 855 // Do any necessary initialization for evacuation-failure handling. 856 // "cl" is the closure that will be used to process evac-failure 857 // objects. 858 void init_for_evac_failure(OopsInHeapRegionClosure* cl); 859 // Do any necessary cleanup for evacuation-failure handling data 860 // structures. 861 void finalize_for_evac_failure(); 862 863 // An attempt to evacuate "obj" has failed; take necessary steps. 864 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj, 865 bool should_mark_root); 866 void handle_evacuation_failure_common(oop obj, markOop m); 867 868 // ("Weak") Reference processing support. 869 // 870 // G1 has 2 instances of the referece processor class. One 871 // (_ref_processor_cm) handles reference object discovery 872 // and subsequent processing during concurrent marking cycles. 873 // 874 // The other (_ref_processor_stw) handles reference object 875 // discovery and processing during full GCs and incremental 876 // evacuation pauses. 877 // 878 // During an incremental pause, reference discovery will be 879 // temporarily disabled for _ref_processor_cm and will be 880 // enabled for _ref_processor_stw. At the end of the evacuation 881 // pause references discovered by _ref_processor_stw will be 882 // processed and discovery will be disabled. The previous 883 // setting for reference object discovery for _ref_processor_cm 884 // will be re-instated. 885 // 886 // At the start of marking: 887 // * Discovery by the CM ref processor is verified to be inactive 888 // and it's discovered lists are empty. 889 // * Discovery by the CM ref processor is then enabled. 890 // 891 // At the end of marking: 892 // * Any references on the CM ref processor's discovered 893 // lists are processed (possibly MT). 894 // 895 // At the start of full GC we: 896 // * Disable discovery by the CM ref processor and 897 // empty CM ref processor's discovered lists 898 // (without processing any entries). 899 // * Verify that the STW ref processor is inactive and it's 900 // discovered lists are empty. 901 // * Temporarily set STW ref processor discovery as single threaded. 902 // * Temporarily clear the STW ref processor's _is_alive_non_header 903 // field. 904 // * Finally enable discovery by the STW ref processor. 905 // 906 // The STW ref processor is used to record any discovered 907 // references during the full GC. 908 // 909 // At the end of a full GC we: 910 // * Enqueue any reference objects discovered by the STW ref processor 911 // that have non-live referents. This has the side-effect of 912 // making the STW ref processor inactive by disabling discovery. 913 // * Verify that the CM ref processor is still inactive 914 // and no references have been placed on it's discovered 915 // lists (also checked as a precondition during initial marking). 916 917 // The (stw) reference processor... 918 ReferenceProcessor* _ref_processor_stw; 919 920 // During reference object discovery, the _is_alive_non_header 921 // closure (if non-null) is applied to the referent object to 922 // determine whether the referent is live. If so then the 923 // reference object does not need to be 'discovered' and can 924 // be treated as a regular oop. This has the benefit of reducing 925 // the number of 'discovered' reference objects that need to 926 // be processed. 927 // 928 // Instance of the is_alive closure for embedding into the 929 // STW reference processor as the _is_alive_non_header field. 930 // Supplying a value for the _is_alive_non_header field is 931 // optional but doing so prevents unnecessary additions to 932 // the discovered lists during reference discovery. 933 G1STWIsAliveClosure _is_alive_closure_stw; 934 935 // The (concurrent marking) reference processor... 936 ReferenceProcessor* _ref_processor_cm; 937 938 // Instance of the concurrent mark is_alive closure for embedding 939 // into the Concurrent Marking reference processor as the 940 // _is_alive_non_header field. Supplying a value for the 941 // _is_alive_non_header field is optional but doing so prevents 942 // unnecessary additions to the discovered lists during reference 943 // discovery. 944 G1CMIsAliveClosure _is_alive_closure_cm; 945 946 // Cache used by G1CollectedHeap::start_cset_region_for_worker(). 947 HeapRegion** _worker_cset_start_region; 948 949 // Time stamp to validate the regions recorded in the cache 950 // used by G1CollectedHeap::start_cset_region_for_worker(). 951 // The heap region entry for a given worker is valid iff 952 // the associated time stamp value matches the current value 953 // of G1CollectedHeap::_gc_time_stamp. 954 unsigned int* _worker_cset_start_region_time_stamp; 955 956 enum G1H_process_strong_roots_tasks { 957 G1H_PS_mark_stack_oops_do, 958 G1H_PS_refProcessor_oops_do, 959 // Leave this one last. 960 G1H_PS_NumElements 961 }; 962 963 SubTasksDone* _process_strong_tasks; 964 965 volatile bool _free_regions_coming; 966 967 public: 968 969 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; } 970 971 void set_refine_cte_cl_concurrency(bool concurrent); 972 973 RefToScanQueue *task_queue(int i) const; 974 975 // A set of cards where updates happened during the GC 976 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; } 977 978 // A DirtyCardQueueSet that is used to hold cards that contain 979 // references into the current collection set. This is used to 980 // update the remembered sets of the regions in the collection 981 // set in the event of an evacuation failure. 982 DirtyCardQueueSet& into_cset_dirty_card_queue_set() 983 { return _into_cset_dirty_card_queue_set; } 984 985 // Create a G1CollectedHeap with the specified policy. 986 // Must call the initialize method afterwards. 987 // May not return if something goes wrong. 988 G1CollectedHeap(G1CollectorPolicy* policy); 989 990 // Initialize the G1CollectedHeap to have the initial and 991 // maximum sizes, permanent generation, and remembered and barrier sets 992 // specified by the policy object. 993 jint initialize(); 994 995 // Initialize weak reference processing. 996 virtual void ref_processing_init(); 997 998 void set_par_threads(int t) { 999 SharedHeap::set_par_threads(t); 1000 // Done in SharedHeap but oddly there are 1001 // two _process_strong_tasks's in a G1CollectedHeap 1002 // so do it here too. 1003 _process_strong_tasks->set_n_threads(t); 1004 } 1005 1006 // Set _n_par_threads according to a policy TBD. 1007 void set_par_threads(); 1008 1009 void set_n_termination(int t) { 1010 _process_strong_tasks->set_n_threads(t); 1011 } 1012 1013 virtual CollectedHeap::Name kind() const { 1014 return CollectedHeap::G1CollectedHeap; 1015 } 1016 1017 // The current policy object for the collector. 1018 G1CollectorPolicy* g1_policy() const { return _g1_policy; } 1019 1020 // Adaptive size policy. No such thing for g1. 1021 virtual AdaptiveSizePolicy* size_policy() { return NULL; } 1022 1023 // The rem set and barrier set. 1024 G1RemSet* g1_rem_set() const { return _g1_rem_set; } 1025 ModRefBarrierSet* mr_bs() const { return _mr_bs; } 1026 1027 // The rem set iterator. 1028 HeapRegionRemSetIterator* rem_set_iterator(int i) { 1029 return _rem_set_iterator[i]; 1030 } 1031 1032 HeapRegionRemSetIterator* rem_set_iterator() { 1033 return _rem_set_iterator[0]; 1034 } 1035 1036 unsigned get_gc_time_stamp() { 1037 return _gc_time_stamp; 1038 } 1039 1040 void reset_gc_time_stamp() { 1041 _gc_time_stamp = 0; 1042 OrderAccess::fence(); 1043 // Clear the cached CSet starting regions and time stamps. 1044 // Their validity is dependent on the GC timestamp. 1045 clear_cset_start_regions(); 1046 } 1047 1048 void increment_gc_time_stamp() { 1049 ++_gc_time_stamp; 1050 OrderAccess::fence(); 1051 } 1052 1053 void iterate_dirty_card_closure(CardTableEntryClosure* cl, 1054 DirtyCardQueue* into_cset_dcq, 1055 bool concurrent, int worker_i); 1056 1057 // The shared block offset table array. 1058 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; } 1059 1060 // Reference Processing accessors 1061 1062 // The STW reference processor.... 1063 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; } 1064 1065 // The Concurent Marking reference processor... 1066 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; } 1067 1068 virtual size_t capacity() const; 1069 virtual size_t used() const; 1070 // This should be called when we're not holding the heap lock. The 1071 // result might be a bit inaccurate. 1072 size_t used_unlocked() const; 1073 size_t recalculate_used() const; 1074 1075 // These virtual functions do the actual allocation. 1076 // Some heaps may offer a contiguous region for shared non-blocking 1077 // allocation, via inlined code (by exporting the address of the top and 1078 // end fields defining the extent of the contiguous allocation region.) 1079 // But G1CollectedHeap doesn't yet support this. 1080 1081 // Return an estimate of the maximum allocation that could be performed 1082 // without triggering any collection or expansion activity. In a 1083 // generational collector, for example, this is probably the largest 1084 // allocation that could be supported (without expansion) in the youngest 1085 // generation. It is "unsafe" because no locks are taken; the result 1086 // should be treated as an approximation, not a guarantee, for use in 1087 // heuristic resizing decisions. 1088 virtual size_t unsafe_max_alloc(); 1089 1090 virtual bool is_maximal_no_gc() const { 1091 return _g1_storage.uncommitted_size() == 0; 1092 } 1093 1094 // The total number of regions in the heap. 1095 size_t n_regions() { return _hrs.length(); } 1096 1097 // The max number of regions in the heap. 1098 size_t max_regions() { return _hrs.max_length(); } 1099 1100 // The number of regions that are completely free. 1101 size_t free_regions() { return _free_list.length(); } 1102 1103 // The number of regions that are not completely free. 1104 size_t used_regions() { return n_regions() - free_regions(); } 1105 1106 // The number of regions available for "regular" expansion. 1107 size_t expansion_regions() { return _expansion_regions; } 1108 1109 // Factory method for HeapRegion instances. It will return NULL if 1110 // the allocation fails. 1111 HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom); 1112 1113 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN; 1114 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN; 1115 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN; 1116 void verify_dirty_young_regions() PRODUCT_RETURN; 1117 1118 // verify_region_sets() performs verification over the region 1119 // lists. It will be compiled in the product code to be used when 1120 // necessary (i.e., during heap verification). 1121 void verify_region_sets(); 1122 1123 // verify_region_sets_optional() is planted in the code for 1124 // list verification in non-product builds (and it can be enabled in 1125 // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1). 1126 #if HEAP_REGION_SET_FORCE_VERIFY 1127 void verify_region_sets_optional() { 1128 verify_region_sets(); 1129 } 1130 #else // HEAP_REGION_SET_FORCE_VERIFY 1131 void verify_region_sets_optional() { } 1132 #endif // HEAP_REGION_SET_FORCE_VERIFY 1133 1134 #ifdef ASSERT 1135 bool is_on_master_free_list(HeapRegion* hr) { 1136 return hr->containing_set() == &_free_list; 1137 } 1138 1139 bool is_in_humongous_set(HeapRegion* hr) { 1140 return hr->containing_set() == &_humongous_set; 1141 } 1142 #endif // ASSERT 1143 1144 // Wrapper for the region list operations that can be called from 1145 // methods outside this class. 1146 1147 void secondary_free_list_add_as_tail(FreeRegionList* list) { 1148 _secondary_free_list.add_as_tail(list); 1149 } 1150 1151 void append_secondary_free_list() { 1152 _free_list.add_as_head(&_secondary_free_list); 1153 } 1154 1155 void append_secondary_free_list_if_not_empty_with_lock() { 1156 // If the secondary free list looks empty there's no reason to 1157 // take the lock and then try to append it. 1158 if (!_secondary_free_list.is_empty()) { 1159 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 1160 append_secondary_free_list(); 1161 } 1162 } 1163 1164 void old_set_remove(HeapRegion* hr) { 1165 _old_set.remove(hr); 1166 } 1167 1168 void set_free_regions_coming(); 1169 void reset_free_regions_coming(); 1170 bool free_regions_coming() { return _free_regions_coming; } 1171 void wait_while_free_regions_coming(); 1172 1173 // Perform a collection of the heap; intended for use in implementing 1174 // "System.gc". This probably implies as full a collection as the 1175 // "CollectedHeap" supports. 1176 virtual void collect(GCCause::Cause cause); 1177 1178 // The same as above but assume that the caller holds the Heap_lock. 1179 void collect_locked(GCCause::Cause cause); 1180 1181 // This interface assumes that it's being called by the 1182 // vm thread. It collects the heap assuming that the 1183 // heap lock is already held and that we are executing in 1184 // the context of the vm thread. 1185 virtual void collect_as_vm_thread(GCCause::Cause cause); 1186 1187 // True iff a evacuation has failed in the most-recent collection. 1188 bool evacuation_failed() { return _evacuation_failed; } 1189 1190 // It will free a region if it has allocated objects in it that are 1191 // all dead. It calls either free_region() or 1192 // free_humongous_region() depending on the type of the region that 1193 // is passed to it. 1194 void free_region_if_empty(HeapRegion* hr, 1195 size_t* pre_used, 1196 FreeRegionList* free_list, 1197 OldRegionSet* old_proxy_set, 1198 HumongousRegionSet* humongous_proxy_set, 1199 HRRSCleanupTask* hrrs_cleanup_task, 1200 bool par); 1201 1202 // It appends the free list to the master free list and updates the 1203 // master humongous list according to the contents of the proxy 1204 // list. It also adjusts the total used bytes according to pre_used 1205 // (if par is true, it will do so by taking the ParGCRareEvent_lock). 1206 void update_sets_after_freeing_regions(size_t pre_used, 1207 FreeRegionList* free_list, 1208 OldRegionSet* old_proxy_set, 1209 HumongousRegionSet* humongous_proxy_set, 1210 bool par); 1211 1212 // Returns "TRUE" iff "p" points into the committed areas of the heap. 1213 virtual bool is_in(const void* p) const; 1214 1215 // Return "TRUE" iff the given object address is within the collection 1216 // set. 1217 inline bool obj_in_cs(oop obj); 1218 1219 // Return "TRUE" iff the given object address is in the reserved 1220 // region of g1 (excluding the permanent generation). 1221 bool is_in_g1_reserved(const void* p) const { 1222 return _g1_reserved.contains(p); 1223 } 1224 1225 // Returns a MemRegion that corresponds to the space that has been 1226 // reserved for the heap 1227 MemRegion g1_reserved() { 1228 return _g1_reserved; 1229 } 1230 1231 // Returns a MemRegion that corresponds to the space that has been 1232 // committed in the heap 1233 MemRegion g1_committed() { 1234 return _g1_committed; 1235 } 1236 1237 virtual bool is_in_closed_subset(const void* p) const; 1238 1239 // This resets the card table to all zeros. It is used after 1240 // a collection pause which used the card table to claim cards. 1241 void cleanUpCardTable(); 1242 1243 // Iteration functions. 1244 1245 // Iterate over all the ref-containing fields of all objects, calling 1246 // "cl.do_oop" on each. 1247 virtual void oop_iterate(OopClosure* cl) { 1248 oop_iterate(cl, true); 1249 } 1250 void oop_iterate(OopClosure* cl, bool do_perm); 1251 1252 // Same as above, restricted to a memory region. 1253 virtual void oop_iterate(MemRegion mr, OopClosure* cl) { 1254 oop_iterate(mr, cl, true); 1255 } 1256 void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm); 1257 1258 // Iterate over all objects, calling "cl.do_object" on each. 1259 virtual void object_iterate(ObjectClosure* cl) { 1260 object_iterate(cl, true); 1261 } 1262 virtual void safe_object_iterate(ObjectClosure* cl) { 1263 object_iterate(cl, true); 1264 } 1265 void object_iterate(ObjectClosure* cl, bool do_perm); 1266 1267 // Iterate over all objects allocated since the last collection, calling 1268 // "cl.do_object" on each. The heap must have been initialized properly 1269 // to support this function, or else this call will fail. 1270 virtual void object_iterate_since_last_GC(ObjectClosure* cl); 1271 1272 // Iterate over all spaces in use in the heap, in ascending address order. 1273 virtual void space_iterate(SpaceClosure* cl); 1274 1275 // Iterate over heap regions, in address order, terminating the 1276 // iteration early if the "doHeapRegion" method returns "true". 1277 void heap_region_iterate(HeapRegionClosure* blk) const; 1278 1279 // Iterate over heap regions starting with r (or the first region if "r" 1280 // is NULL), in address order, terminating early if the "doHeapRegion" 1281 // method returns "true". 1282 void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const; 1283 1284 // Return the region with the given index. It assumes the index is valid. 1285 HeapRegion* region_at(size_t index) const { return _hrs.at(index); } 1286 1287 // Divide the heap region sequence into "chunks" of some size (the number 1288 // of regions divided by the number of parallel threads times some 1289 // overpartition factor, currently 4). Assumes that this will be called 1290 // in parallel by ParallelGCThreads worker threads with discinct worker 1291 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel 1292 // calls will use the same "claim_value", and that that claim value is 1293 // different from the claim_value of any heap region before the start of 1294 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by 1295 // attempting to claim the first region in each chunk, and, if 1296 // successful, applying the closure to each region in the chunk (and 1297 // setting the claim value of the second and subsequent regions of the 1298 // chunk.) For now requires that "doHeapRegion" always returns "false", 1299 // i.e., that a closure never attempt to abort a traversal. 1300 void heap_region_par_iterate_chunked(HeapRegionClosure* blk, 1301 int worker, 1302 int no_of_par_workers, 1303 jint claim_value); 1304 1305 // It resets all the region claim values to the default. 1306 void reset_heap_region_claim_values(); 1307 1308 #ifdef ASSERT 1309 bool check_heap_region_claim_values(jint claim_value); 1310 1311 // Same as the routine above but only checks regions in the 1312 // current collection set. 1313 bool check_cset_heap_region_claim_values(jint claim_value); 1314 #endif // ASSERT 1315 1316 // Clear the cached cset start regions and (more importantly) 1317 // the time stamps. Called when we reset the GC time stamp. 1318 void clear_cset_start_regions(); 1319 1320 // Given the id of a worker, obtain or calculate a suitable 1321 // starting region for iterating over the current collection set. 1322 HeapRegion* start_cset_region_for_worker(int worker_i); 1323 1324 // Iterate over the regions (if any) in the current collection set. 1325 void collection_set_iterate(HeapRegionClosure* blk); 1326 1327 // As above but starting from region r 1328 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk); 1329 1330 // Returns the first (lowest address) compactible space in the heap. 1331 virtual CompactibleSpace* first_compactible_space(); 1332 1333 // A CollectedHeap will contain some number of spaces. This finds the 1334 // space containing a given address, or else returns NULL. 1335 virtual Space* space_containing(const void* addr) const; 1336 1337 // A G1CollectedHeap will contain some number of heap regions. This 1338 // finds the region containing a given address, or else returns NULL. 1339 template <class T> 1340 inline HeapRegion* heap_region_containing(const T addr) const; 1341 1342 // Like the above, but requires "addr" to be in the heap (to avoid a 1343 // null-check), and unlike the above, may return an continuing humongous 1344 // region. 1345 template <class T> 1346 inline HeapRegion* heap_region_containing_raw(const T addr) const; 1347 1348 // A CollectedHeap is divided into a dense sequence of "blocks"; that is, 1349 // each address in the (reserved) heap is a member of exactly 1350 // one block. The defining characteristic of a block is that it is 1351 // possible to find its size, and thus to progress forward to the next 1352 // block. (Blocks may be of different sizes.) Thus, blocks may 1353 // represent Java objects, or they might be free blocks in a 1354 // free-list-based heap (or subheap), as long as the two kinds are 1355 // distinguishable and the size of each is determinable. 1356 1357 // Returns the address of the start of the "block" that contains the 1358 // address "addr". We say "blocks" instead of "object" since some heaps 1359 // may not pack objects densely; a chunk may either be an object or a 1360 // non-object. 1361 virtual HeapWord* block_start(const void* addr) const; 1362 1363 // Requires "addr" to be the start of a chunk, and returns its size. 1364 // "addr + size" is required to be the start of a new chunk, or the end 1365 // of the active area of the heap. 1366 virtual size_t block_size(const HeapWord* addr) const; 1367 1368 // Requires "addr" to be the start of a block, and returns "TRUE" iff 1369 // the block is an object. 1370 virtual bool block_is_obj(const HeapWord* addr) const; 1371 1372 // Does this heap support heap inspection? (+PrintClassHistogram) 1373 virtual bool supports_heap_inspection() const { return true; } 1374 1375 // Section on thread-local allocation buffers (TLABs) 1376 // See CollectedHeap for semantics. 1377 1378 virtual bool supports_tlab_allocation() const; 1379 virtual size_t tlab_capacity(Thread* thr) const; 1380 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const; 1381 1382 // Can a compiler initialize a new object without store barriers? 1383 // This permission only extends from the creation of a new object 1384 // via a TLAB up to the first subsequent safepoint. If such permission 1385 // is granted for this heap type, the compiler promises to call 1386 // defer_store_barrier() below on any slow path allocation of 1387 // a new object for which such initializing store barriers will 1388 // have been elided. G1, like CMS, allows this, but should be 1389 // ready to provide a compensating write barrier as necessary 1390 // if that storage came out of a non-young region. The efficiency 1391 // of this implementation depends crucially on being able to 1392 // answer very efficiently in constant time whether a piece of 1393 // storage in the heap comes from a young region or not. 1394 // See ReduceInitialCardMarks. 1395 virtual bool can_elide_tlab_store_barriers() const { 1396 return true; 1397 } 1398 1399 virtual bool card_mark_must_follow_store() const { 1400 return true; 1401 } 1402 1403 bool is_in_young(const oop obj) { 1404 HeapRegion* hr = heap_region_containing(obj); 1405 return hr != NULL && hr->is_young(); 1406 } 1407 1408 #ifdef ASSERT 1409 virtual bool is_in_partial_collection(const void* p); 1410 #endif 1411 1412 virtual bool is_scavengable(const void* addr); 1413 1414 // We don't need barriers for initializing stores to objects 1415 // in the young gen: for the SATB pre-barrier, there is no 1416 // pre-value that needs to be remembered; for the remembered-set 1417 // update logging post-barrier, we don't maintain remembered set 1418 // information for young gen objects. 1419 virtual bool can_elide_initializing_store_barrier(oop new_obj) { 1420 return is_in_young(new_obj); 1421 } 1422 1423 // Can a compiler elide a store barrier when it writes 1424 // a permanent oop into the heap? Applies when the compiler 1425 // is storing x to the heap, where x->is_perm() is true. 1426 virtual bool can_elide_permanent_oop_store_barriers() const { 1427 // At least until perm gen collection is also G1-ified, at 1428 // which point this should return false. 1429 return true; 1430 } 1431 1432 // Returns "true" iff the given word_size is "very large". 1433 static bool isHumongous(size_t word_size) { 1434 // Note this has to be strictly greater-than as the TLABs 1435 // are capped at the humongous thresold and we want to 1436 // ensure that we don't try to allocate a TLAB as 1437 // humongous and that we don't allocate a humongous 1438 // object in a TLAB. 1439 return word_size > _humongous_object_threshold_in_words; 1440 } 1441 1442 // Update mod union table with the set of dirty cards. 1443 void updateModUnion(); 1444 1445 // Set the mod union bits corresponding to the given memRegion. Note 1446 // that this is always a safe operation, since it doesn't clear any 1447 // bits. 1448 void markModUnionRange(MemRegion mr); 1449 1450 // Records the fact that a marking phase is no longer in progress. 1451 void set_marking_complete() { 1452 _mark_in_progress = false; 1453 } 1454 void set_marking_started() { 1455 _mark_in_progress = true; 1456 } 1457 bool mark_in_progress() { 1458 return _mark_in_progress; 1459 } 1460 1461 // Print the maximum heap capacity. 1462 virtual size_t max_capacity() const; 1463 1464 virtual jlong millis_since_last_gc(); 1465 1466 // Perform any cleanup actions necessary before allowing a verification. 1467 virtual void prepare_for_verify(); 1468 1469 // Perform verification. 1470 1471 // vo == UsePrevMarking -> use "prev" marking information, 1472 // vo == UseNextMarking -> use "next" marking information 1473 // vo == UseMarkWord -> use the mark word in the object header 1474 // 1475 // NOTE: Only the "prev" marking information is guaranteed to be 1476 // consistent most of the time, so most calls to this should use 1477 // vo == UsePrevMarking. 1478 // Currently, there is only one case where this is called with 1479 // vo == UseNextMarking, which is to verify the "next" marking 1480 // information at the end of remark. 1481 // Currently there is only one place where this is called with 1482 // vo == UseMarkWord, which is to verify the marking during a 1483 // full GC. 1484 void verify(bool allow_dirty, bool silent, VerifyOption vo); 1485 1486 // Override; it uses the "prev" marking information 1487 virtual void verify(bool allow_dirty, bool silent); 1488 virtual void print_on(outputStream* st) const; 1489 virtual void print_extended_on(outputStream* st) const; 1490 1491 virtual void print_gc_threads_on(outputStream* st) const; 1492 virtual void gc_threads_do(ThreadClosure* tc) const; 1493 1494 // Override 1495 void print_tracing_info() const; 1496 1497 // The following two methods are helpful for debugging RSet issues. 1498 void print_cset_rsets() PRODUCT_RETURN; 1499 void print_all_rsets() PRODUCT_RETURN; 1500 1501 // Convenience function to be used in situations where the heap type can be 1502 // asserted to be this type. 1503 static G1CollectedHeap* heap(); 1504 1505 void set_region_short_lived_locked(HeapRegion* hr); 1506 // add appropriate methods for any other surv rate groups 1507 1508 YoungList* young_list() { return _young_list; } 1509 1510 // debugging 1511 bool check_young_list_well_formed() { 1512 return _young_list->check_list_well_formed(); 1513 } 1514 1515 bool check_young_list_empty(bool check_heap, 1516 bool check_sample = true); 1517 1518 // *** Stuff related to concurrent marking. It's not clear to me that so 1519 // many of these need to be public. 1520 1521 // The functions below are helper functions that a subclass of 1522 // "CollectedHeap" can use in the implementation of its virtual 1523 // functions. 1524 // This performs a concurrent marking of the live objects in a 1525 // bitmap off to the side. 1526 void doConcurrentMark(); 1527 1528 bool isMarkedPrev(oop obj) const; 1529 bool isMarkedNext(oop obj) const; 1530 1531 // vo == UsePrevMarking -> use "prev" marking information, 1532 // vo == UseNextMarking -> use "next" marking information, 1533 // vo == UseMarkWord -> use mark word from object header 1534 bool is_obj_dead_cond(const oop obj, 1535 const HeapRegion* hr, 1536 const VerifyOption vo) const { 1537 1538 switch (vo) { 1539 case VerifyOption_G1UsePrevMarking: 1540 return is_obj_dead(obj, hr); 1541 case VerifyOption_G1UseNextMarking: 1542 return is_obj_ill(obj, hr); 1543 default: 1544 assert(vo == VerifyOption_G1UseMarkWord, "must be"); 1545 return !obj->is_gc_marked(); 1546 } 1547 } 1548 1549 // Determine if an object is dead, given the object and also 1550 // the region to which the object belongs. An object is dead 1551 // iff a) it was not allocated since the last mark and b) it 1552 // is not marked. 1553 1554 bool is_obj_dead(const oop obj, const HeapRegion* hr) const { 1555 return 1556 !hr->obj_allocated_since_prev_marking(obj) && 1557 !isMarkedPrev(obj); 1558 } 1559 1560 // This is used when copying an object to survivor space. 1561 // If the object is marked live, then we mark the copy live. 1562 // If the object is allocated since the start of this mark 1563 // cycle, then we mark the copy live. 1564 // If the object has been around since the previous mark 1565 // phase, and hasn't been marked yet during this phase, 1566 // then we don't mark it, we just wait for the 1567 // current marking cycle to get to it. 1568 1569 // This function returns true when an object has been 1570 // around since the previous marking and hasn't yet 1571 // been marked during this marking. 1572 1573 bool is_obj_ill(const oop obj, const HeapRegion* hr) const { 1574 return 1575 !hr->obj_allocated_since_next_marking(obj) && 1576 !isMarkedNext(obj); 1577 } 1578 1579 // Determine if an object is dead, given only the object itself. 1580 // This will find the region to which the object belongs and 1581 // then call the region version of the same function. 1582 1583 // Added if it is in permanent gen it isn't dead. 1584 // Added if it is NULL it isn't dead. 1585 1586 // vo == UsePrevMarking -> use "prev" marking information, 1587 // vo == UseNextMarking -> use "next" marking information, 1588 // vo == UseMarkWord -> use mark word from object header 1589 bool is_obj_dead_cond(const oop obj, 1590 const VerifyOption vo) const { 1591 1592 switch (vo) { 1593 case VerifyOption_G1UsePrevMarking: 1594 return is_obj_dead(obj); 1595 case VerifyOption_G1UseNextMarking: 1596 return is_obj_ill(obj); 1597 default: 1598 assert(vo == VerifyOption_G1UseMarkWord, "must be"); 1599 return !obj->is_gc_marked(); 1600 } 1601 } 1602 1603 bool is_obj_dead(const oop obj) const { 1604 const HeapRegion* hr = heap_region_containing(obj); 1605 if (hr == NULL) { 1606 if (Universe::heap()->is_in_permanent(obj)) 1607 return false; 1608 else if (obj == NULL) return false; 1609 else return true; 1610 } 1611 else return is_obj_dead(obj, hr); 1612 } 1613 1614 bool is_obj_ill(const oop obj) const { 1615 const HeapRegion* hr = heap_region_containing(obj); 1616 if (hr == NULL) { 1617 if (Universe::heap()->is_in_permanent(obj)) 1618 return false; 1619 else if (obj == NULL) return false; 1620 else return true; 1621 } 1622 else return is_obj_ill(obj, hr); 1623 } 1624 1625 // The following is just to alert the verification code 1626 // that a full collection has occurred and that the 1627 // remembered sets are no longer up to date. 1628 bool _full_collection; 1629 void set_full_collection() { _full_collection = true;} 1630 void clear_full_collection() {_full_collection = false;} 1631 bool full_collection() {return _full_collection;} 1632 1633 ConcurrentMark* concurrent_mark() const { return _cm; } 1634 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; } 1635 1636 // The dirty cards region list is used to record a subset of regions 1637 // whose cards need clearing. The list if populated during the 1638 // remembered set scanning and drained during the card table 1639 // cleanup. Although the methods are reentrant, population/draining 1640 // phases must not overlap. For synchronization purposes the last 1641 // element on the list points to itself. 1642 HeapRegion* _dirty_cards_region_list; 1643 void push_dirty_cards_region(HeapRegion* hr); 1644 HeapRegion* pop_dirty_cards_region(); 1645 1646 public: 1647 void stop_conc_gc_threads(); 1648 1649 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young); 1650 void check_if_region_is_too_expensive(double predicted_time_ms); 1651 size_t pending_card_num(); 1652 size_t max_pending_card_num(); 1653 size_t cards_scanned(); 1654 1655 protected: 1656 size_t _max_heap_capacity; 1657 }; 1658 1659 #define use_local_bitmaps 1 1660 #define verify_local_bitmaps 0 1661 #define oop_buffer_length 256 1662 1663 #ifndef PRODUCT 1664 class GCLabBitMap; 1665 class GCLabBitMapClosure: public BitMapClosure { 1666 private: 1667 ConcurrentMark* _cm; 1668 GCLabBitMap* _bitmap; 1669 1670 public: 1671 GCLabBitMapClosure(ConcurrentMark* cm, 1672 GCLabBitMap* bitmap) { 1673 _cm = cm; 1674 _bitmap = bitmap; 1675 } 1676 1677 virtual bool do_bit(size_t offset); 1678 }; 1679 #endif // !PRODUCT 1680 1681 class GCLabBitMap: public BitMap { 1682 private: 1683 ConcurrentMark* _cm; 1684 1685 int _shifter; 1686 size_t _bitmap_word_covers_words; 1687 1688 // beginning of the heap 1689 HeapWord* _heap_start; 1690 1691 // this is the actual start of the GCLab 1692 HeapWord* _real_start_word; 1693 1694 // this is the actual end of the GCLab 1695 HeapWord* _real_end_word; 1696 1697 // this is the first word, possibly located before the actual start 1698 // of the GCLab, that corresponds to the first bit of the bitmap 1699 HeapWord* _start_word; 1700 1701 // size of a GCLab in words 1702 size_t _gclab_word_size; 1703 1704 static int shifter() { 1705 return MinObjAlignment - 1; 1706 } 1707 1708 // how many heap words does a single bitmap word corresponds to? 1709 static size_t bitmap_word_covers_words() { 1710 return BitsPerWord << shifter(); 1711 } 1712 1713 size_t gclab_word_size() const { 1714 return _gclab_word_size; 1715 } 1716 1717 // Calculates actual GCLab size in words 1718 size_t gclab_real_word_size() const { 1719 return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word)) 1720 / BitsPerWord; 1721 } 1722 1723 static size_t bitmap_size_in_bits(size_t gclab_word_size) { 1724 size_t bits_in_bitmap = gclab_word_size >> shifter(); 1725 // We are going to ensure that the beginning of a word in this 1726 // bitmap also corresponds to the beginning of a word in the 1727 // global marking bitmap. To handle the case where a GCLab 1728 // starts from the middle of the bitmap, we need to add enough 1729 // space (i.e. up to a bitmap word) to ensure that we have 1730 // enough bits in the bitmap. 1731 return bits_in_bitmap + BitsPerWord - 1; 1732 } 1733 public: 1734 GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size) 1735 : BitMap(bitmap_size_in_bits(gclab_word_size)), 1736 _cm(G1CollectedHeap::heap()->concurrent_mark()), 1737 _shifter(shifter()), 1738 _bitmap_word_covers_words(bitmap_word_covers_words()), 1739 _heap_start(heap_start), 1740 _gclab_word_size(gclab_word_size), 1741 _real_start_word(NULL), 1742 _real_end_word(NULL), 1743 _start_word(NULL) 1744 { 1745 guarantee( size_in_words() >= bitmap_size_in_words(), 1746 "just making sure"); 1747 } 1748 1749 inline unsigned heapWordToOffset(HeapWord* addr) { 1750 unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter; 1751 assert(offset < size(), "offset should be within bounds"); 1752 return offset; 1753 } 1754 1755 inline HeapWord* offsetToHeapWord(size_t offset) { 1756 HeapWord* addr = _start_word + (offset << _shifter); 1757 assert(_real_start_word <= addr && addr < _real_end_word, "invariant"); 1758 return addr; 1759 } 1760 1761 bool fields_well_formed() { 1762 bool ret1 = (_real_start_word == NULL) && 1763 (_real_end_word == NULL) && 1764 (_start_word == NULL); 1765 if (ret1) 1766 return true; 1767 1768 bool ret2 = _real_start_word >= _start_word && 1769 _start_word < _real_end_word && 1770 (_real_start_word + _gclab_word_size) == _real_end_word && 1771 (_start_word + _gclab_word_size + _bitmap_word_covers_words) 1772 > _real_end_word; 1773 return ret2; 1774 } 1775 1776 inline bool mark(HeapWord* addr) { 1777 guarantee(use_local_bitmaps, "invariant"); 1778 assert(fields_well_formed(), "invariant"); 1779 1780 if (addr >= _real_start_word && addr < _real_end_word) { 1781 assert(!isMarked(addr), "should not have already been marked"); 1782 1783 // first mark it on the bitmap 1784 at_put(heapWordToOffset(addr), true); 1785 1786 return true; 1787 } else { 1788 return false; 1789 } 1790 } 1791 1792 inline bool isMarked(HeapWord* addr) { 1793 guarantee(use_local_bitmaps, "invariant"); 1794 assert(fields_well_formed(), "invariant"); 1795 1796 return at(heapWordToOffset(addr)); 1797 } 1798 1799 void set_buffer(HeapWord* start) { 1800 guarantee(use_local_bitmaps, "invariant"); 1801 clear(); 1802 1803 assert(start != NULL, "invariant"); 1804 _real_start_word = start; 1805 _real_end_word = start + _gclab_word_size; 1806 1807 size_t diff = 1808 pointer_delta(start, _heap_start) % _bitmap_word_covers_words; 1809 _start_word = start - diff; 1810 1811 assert(fields_well_formed(), "invariant"); 1812 } 1813 1814 #ifndef PRODUCT 1815 void verify() { 1816 // verify that the marks have been propagated 1817 GCLabBitMapClosure cl(_cm, this); 1818 iterate(&cl); 1819 } 1820 #endif // PRODUCT 1821 1822 void retire() { 1823 guarantee(use_local_bitmaps, "invariant"); 1824 assert(fields_well_formed(), "invariant"); 1825 1826 if (_start_word != NULL) { 1827 CMBitMap* mark_bitmap = _cm->nextMarkBitMap(); 1828 1829 // this means that the bitmap was set up for the GCLab 1830 assert(_real_start_word != NULL && _real_end_word != NULL, "invariant"); 1831 1832 mark_bitmap->mostly_disjoint_range_union(this, 1833 0, // always start from the start of the bitmap 1834 _start_word, 1835 gclab_real_word_size()); 1836 _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word)); 1837 1838 #ifndef PRODUCT 1839 if (use_local_bitmaps && verify_local_bitmaps) 1840 verify(); 1841 #endif // PRODUCT 1842 } else { 1843 assert(_real_start_word == NULL && _real_end_word == NULL, "invariant"); 1844 } 1845 } 1846 1847 size_t bitmap_size_in_words() const { 1848 return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord; 1849 } 1850 1851 }; 1852 1853 class G1ParGCAllocBuffer: public ParGCAllocBuffer { 1854 private: 1855 bool _retired; 1856 bool _should_mark_objects; 1857 GCLabBitMap _bitmap; 1858 1859 public: 1860 G1ParGCAllocBuffer(size_t gclab_word_size); 1861 1862 inline bool mark(HeapWord* addr) { 1863 guarantee(use_local_bitmaps, "invariant"); 1864 assert(_should_mark_objects, "invariant"); 1865 return _bitmap.mark(addr); 1866 } 1867 1868 inline void set_buf(HeapWord* buf) { 1869 if (use_local_bitmaps && _should_mark_objects) { 1870 _bitmap.set_buffer(buf); 1871 } 1872 ParGCAllocBuffer::set_buf(buf); 1873 _retired = false; 1874 } 1875 1876 inline void retire(bool end_of_gc, bool retain) { 1877 if (_retired) 1878 return; 1879 if (use_local_bitmaps && _should_mark_objects) { 1880 _bitmap.retire(); 1881 } 1882 ParGCAllocBuffer::retire(end_of_gc, retain); 1883 _retired = true; 1884 } 1885 }; 1886 1887 class G1ParScanThreadState : public StackObj { 1888 protected: 1889 G1CollectedHeap* _g1h; 1890 RefToScanQueue* _refs; 1891 DirtyCardQueue _dcq; 1892 CardTableModRefBS* _ct_bs; 1893 G1RemSet* _g1_rem; 1894 1895 G1ParGCAllocBuffer _surviving_alloc_buffer; 1896 G1ParGCAllocBuffer _tenured_alloc_buffer; 1897 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount]; 1898 ageTable _age_table; 1899 1900 size_t _alloc_buffer_waste; 1901 size_t _undo_waste; 1902 1903 OopsInHeapRegionClosure* _evac_failure_cl; 1904 G1ParScanHeapEvacClosure* _evac_cl; 1905 G1ParScanPartialArrayClosure* _partial_scan_cl; 1906 1907 int _hash_seed; 1908 int _queue_num; 1909 1910 size_t _term_attempts; 1911 1912 double _start; 1913 double _start_strong_roots; 1914 double _strong_roots_time; 1915 double _start_term; 1916 double _term_time; 1917 1918 // Map from young-age-index (0 == not young, 1 is youngest) to 1919 // surviving words. base is what we get back from the malloc call 1920 size_t* _surviving_young_words_base; 1921 // this points into the array, as we use the first few entries for padding 1922 size_t* _surviving_young_words; 1923 1924 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t)) 1925 1926 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; } 1927 1928 void add_to_undo_waste(size_t waste) { _undo_waste += waste; } 1929 1930 DirtyCardQueue& dirty_card_queue() { return _dcq; } 1931 CardTableModRefBS* ctbs() { return _ct_bs; } 1932 1933 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) { 1934 if (!from->is_survivor()) { 1935 _g1_rem->par_write_ref(from, p, tid); 1936 } 1937 } 1938 1939 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) { 1940 // If the new value of the field points to the same region or 1941 // is the to-space, we don't need to include it in the Rset updates. 1942 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) { 1943 size_t card_index = ctbs()->index_for(p); 1944 // If the card hasn't been added to the buffer, do it. 1945 if (ctbs()->mark_card_deferred(card_index)) { 1946 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index)); 1947 } 1948 } 1949 } 1950 1951 public: 1952 G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num); 1953 1954 ~G1ParScanThreadState() { 1955 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); 1956 } 1957 1958 RefToScanQueue* refs() { return _refs; } 1959 ageTable* age_table() { return &_age_table; } 1960 1961 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) { 1962 return _alloc_buffers[purpose]; 1963 } 1964 1965 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; } 1966 size_t undo_waste() const { return _undo_waste; } 1967 1968 #ifdef ASSERT 1969 bool verify_ref(narrowOop* ref) const; 1970 bool verify_ref(oop* ref) const; 1971 bool verify_task(StarTask ref) const; 1972 #endif // ASSERT 1973 1974 template <class T> void push_on_queue(T* ref) { 1975 assert(verify_ref(ref), "sanity"); 1976 refs()->push(ref); 1977 } 1978 1979 template <class T> void update_rs(HeapRegion* from, T* p, int tid) { 1980 if (G1DeferredRSUpdate) { 1981 deferred_rs_update(from, p, tid); 1982 } else { 1983 immediate_rs_update(from, p, tid); 1984 } 1985 } 1986 1987 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) { 1988 1989 HeapWord* obj = NULL; 1990 size_t gclab_word_size = _g1h->desired_plab_sz(purpose); 1991 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) { 1992 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose); 1993 assert(gclab_word_size == alloc_buf->word_sz(), 1994 "dynamic resizing is not supported"); 1995 add_to_alloc_buffer_waste(alloc_buf->words_remaining()); 1996 alloc_buf->retire(false, false); 1997 1998 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size); 1999 if (buf == NULL) return NULL; // Let caller handle allocation failure. 2000 // Otherwise. 2001 alloc_buf->set_buf(buf); 2002 2003 obj = alloc_buf->allocate(word_sz); 2004 assert(obj != NULL, "buffer was definitely big enough..."); 2005 } else { 2006 obj = _g1h->par_allocate_during_gc(purpose, word_sz); 2007 } 2008 return obj; 2009 } 2010 2011 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) { 2012 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz); 2013 if (obj != NULL) return obj; 2014 return allocate_slow(purpose, word_sz); 2015 } 2016 2017 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) { 2018 if (alloc_buffer(purpose)->contains(obj)) { 2019 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1), 2020 "should contain whole object"); 2021 alloc_buffer(purpose)->undo_allocation(obj, word_sz); 2022 } else { 2023 CollectedHeap::fill_with_object(obj, word_sz); 2024 add_to_undo_waste(word_sz); 2025 } 2026 } 2027 2028 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) { 2029 _evac_failure_cl = evac_failure_cl; 2030 } 2031 OopsInHeapRegionClosure* evac_failure_closure() { 2032 return _evac_failure_cl; 2033 } 2034 2035 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) { 2036 _evac_cl = evac_cl; 2037 } 2038 2039 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) { 2040 _partial_scan_cl = partial_scan_cl; 2041 } 2042 2043 int* hash_seed() { return &_hash_seed; } 2044 int queue_num() { return _queue_num; } 2045 2046 size_t term_attempts() const { return _term_attempts; } 2047 void note_term_attempt() { _term_attempts++; } 2048 2049 void start_strong_roots() { 2050 _start_strong_roots = os::elapsedTime(); 2051 } 2052 void end_strong_roots() { 2053 _strong_roots_time += (os::elapsedTime() - _start_strong_roots); 2054 } 2055 double strong_roots_time() const { return _strong_roots_time; } 2056 2057 void start_term_time() { 2058 note_term_attempt(); 2059 _start_term = os::elapsedTime(); 2060 } 2061 void end_term_time() { 2062 _term_time += (os::elapsedTime() - _start_term); 2063 } 2064 double term_time() const { return _term_time; } 2065 2066 double elapsed_time() const { 2067 return os::elapsedTime() - _start; 2068 } 2069 2070 static void 2071 print_termination_stats_hdr(outputStream* const st = gclog_or_tty); 2072 void 2073 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const; 2074 2075 size_t* surviving_young_words() { 2076 // We add on to hide entry 0 which accumulates surviving words for 2077 // age -1 regions (i.e. non-young ones) 2078 return _surviving_young_words; 2079 } 2080 2081 void retire_alloc_buffers() { 2082 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) { 2083 size_t waste = _alloc_buffers[ap]->words_remaining(); 2084 add_to_alloc_buffer_waste(waste); 2085 _alloc_buffers[ap]->retire(true, false); 2086 } 2087 } 2088 2089 template <class T> void deal_with_reference(T* ref_to_scan) { 2090 if (has_partial_array_mask(ref_to_scan)) { 2091 _partial_scan_cl->do_oop_nv(ref_to_scan); 2092 } else { 2093 // Note: we can use "raw" versions of "region_containing" because 2094 // "obj_to_scan" is definitely in the heap, and is not in a 2095 // humongous region. 2096 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan); 2097 _evac_cl->set_region(r); 2098 _evac_cl->do_oop_nv(ref_to_scan); 2099 } 2100 } 2101 2102 void deal_with_reference(StarTask ref) { 2103 assert(verify_task(ref), "sanity"); 2104 if (ref.is_narrow()) { 2105 deal_with_reference((narrowOop*)ref); 2106 } else { 2107 deal_with_reference((oop*)ref); 2108 } 2109 } 2110 2111 public: 2112 void trim_queue(); 2113 }; 2114 2115 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP