1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/instanceKlass.hpp"
  39 #include "oops/objArrayOop.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/symbol.hpp"
  42 #include "prims/jvm_misc.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiThreadState.hpp"
  45 #include "prims/privilegedStack.hpp"
  46 #include "runtime/aprofiler.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/fprofiler.hpp"
  51 #include "runtime/frame.inline.hpp"
  52 #include "runtime/init.hpp"
  53 #include "runtime/interfaceSupport.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/jniPeriodicChecker.hpp"
  57 #include "runtime/memprofiler.hpp"
  58 #include "runtime/mutexLocker.hpp"
  59 #include "runtime/objectMonitor.hpp"
  60 #include "runtime/osThread.hpp"
  61 #include "runtime/safepoint.hpp"
  62 #include "runtime/sharedRuntime.hpp"
  63 #include "runtime/statSampler.hpp"
  64 #include "runtime/stubRoutines.hpp"
  65 #include "runtime/task.hpp"
  66 #include "runtime/threadCritical.hpp"
  67 #include "runtime/threadLocalStorage.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "runtime/vframe_hp.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "runtime/vm_operations.hpp"
  73 #include "services/attachListener.hpp"
  74 #include "services/management.hpp"
  75 #include "services/threadService.hpp"
  76 #include "utilities/defaultStream.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/preserveException.hpp"
  80 #ifdef TARGET_OS_FAMILY_linux
  81 # include "os_linux.inline.hpp"
  82 # include "thread_linux.inline.hpp"
  83 #endif
  84 #ifdef TARGET_OS_FAMILY_solaris
  85 # include "os_solaris.inline.hpp"
  86 # include "thread_solaris.inline.hpp"
  87 #endif
  88 #ifdef TARGET_OS_FAMILY_windows
  89 # include "os_windows.inline.hpp"
  90 # include "thread_windows.inline.hpp"
  91 #endif
  92 #ifndef SERIALGC
  93 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  94 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  95 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  96 #endif
  97 #ifdef COMPILER1
  98 #include "c1/c1_Compiler.hpp"
  99 #endif
 100 #ifdef COMPILER2
 101 #include "opto/c2compiler.hpp"
 102 #include "opto/idealGraphPrinter.hpp"
 103 #endif
 104 
 105 #ifdef DTRACE_ENABLED
 106 
 107 // Only bother with this argument setup if dtrace is available
 108 
 109 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 110 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 111 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 112   intptr_t, intptr_t, bool);
 113 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 114   intptr_t, intptr_t, bool);
 115 
 116 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 117   {                                                                        \
 118     ResourceMark rm(this);                                                 \
 119     int len = 0;                                                           \
 120     const char* name = (javathread)->get_thread_name();                    \
 121     len = strlen(name);                                                    \
 122     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 123       name, len,                                                           \
 124       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 125       (javathread)->osthread()->thread_id(),                               \
 126       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 127   }
 128 
 129 #else //  ndef DTRACE_ENABLED
 130 
 131 #define DTRACE_THREAD_PROBE(probe, javathread)
 132 
 133 #endif // ndef DTRACE_ENABLED
 134 
 135 // Class hierarchy
 136 // - Thread
 137 //   - VMThread
 138 //   - WatcherThread
 139 //   - ConcurrentMarkSweepThread
 140 //   - JavaThread
 141 //     - CompilerThread
 142 
 143 // ======= Thread ========
 144 
 145 // Support for forcing alignment of thread objects for biased locking
 146 void* Thread::operator new(size_t size) {
 147   if (UseBiasedLocking) {
 148     const int alignment = markOopDesc::biased_lock_alignment;
 149     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 150     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
 151     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 152     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 153            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 154            "JavaThread alignment code overflowed allocated storage");
 155     if (TraceBiasedLocking) {
 156       if (aligned_addr != real_malloc_addr)
 157         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 158                       real_malloc_addr, aligned_addr);
 159     }
 160     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 161     return aligned_addr;
 162   } else {
 163     return CHeapObj::operator new(size);
 164   }
 165 }
 166 
 167 void Thread::operator delete(void* p) {
 168   if (UseBiasedLocking) {
 169     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 170     CHeapObj::operator delete(real_malloc_addr);
 171   } else {
 172     CHeapObj::operator delete(p);
 173   }
 174 }
 175 
 176 
 177 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 178 // JavaThread
 179 
 180 
 181 Thread::Thread() {
 182   // stack and get_thread
 183   set_stack_base(NULL);
 184   set_stack_size(0);
 185   set_self_raw_id(0);
 186   set_lgrp_id(-1);
 187 
 188   // allocated data structures
 189   set_osthread(NULL);
 190   set_resource_area(new ResourceArea());
 191   set_handle_area(new HandleArea(NULL));
 192   set_active_handles(NULL);
 193   set_free_handle_block(NULL);
 194   set_last_handle_mark(NULL);
 195 
 196   // This initial value ==> never claimed.
 197   _oops_do_parity = 0;
 198 
 199   // the handle mark links itself to last_handle_mark
 200   new HandleMark(this);
 201 
 202   // plain initialization
 203   debug_only(_owned_locks = NULL;)
 204   debug_only(_allow_allocation_count = 0;)
 205   NOT_PRODUCT(_allow_safepoint_count = 0;)
 206   NOT_PRODUCT(_skip_gcalot = false;)
 207   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 208   _jvmti_env_iteration_count = 0;
 209   set_allocated_bytes(0);
 210   _vm_operation_started_count = 0;
 211   _vm_operation_completed_count = 0;
 212   _current_pending_monitor = NULL;
 213   _current_pending_monitor_is_from_java = true;
 214   _current_waiting_monitor = NULL;
 215   _num_nested_signal = 0;
 216   omFreeList = NULL ;
 217   omFreeCount = 0 ;
 218   omFreeProvision = 32 ;
 219   omInUseList = NULL ;
 220   omInUseCount = 0 ;
 221 
 222   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 223   _suspend_flags = 0;
 224 
 225   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 226   _hashStateX = os::random() ;
 227   _hashStateY = 842502087 ;
 228   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 229   _hashStateW = 273326509 ;
 230 
 231   _OnTrap   = 0 ;
 232   _schedctl = NULL ;
 233   _Stalled  = 0 ;
 234   _TypeTag  = 0x2BAD ;
 235 
 236   // Many of the following fields are effectively final - immutable
 237   // Note that nascent threads can't use the Native Monitor-Mutex
 238   // construct until the _MutexEvent is initialized ...
 239   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 240   // we might instead use a stack of ParkEvents that we could provision on-demand.
 241   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 242   // and ::Release()
 243   _ParkEvent   = ParkEvent::Allocate (this) ;
 244   _SleepEvent  = ParkEvent::Allocate (this) ;
 245   _MutexEvent  = ParkEvent::Allocate (this) ;
 246   _MuxEvent    = ParkEvent::Allocate (this) ;
 247 
 248 #ifdef CHECK_UNHANDLED_OOPS
 249   if (CheckUnhandledOops) {
 250     _unhandled_oops = new UnhandledOops(this);
 251   }
 252 #endif // CHECK_UNHANDLED_OOPS
 253 #ifdef ASSERT
 254   if (UseBiasedLocking) {
 255     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 256     assert(this == _real_malloc_address ||
 257            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 258            "bug in forced alignment of thread objects");
 259   }
 260 #endif /* ASSERT */
 261 }
 262 
 263 void Thread::initialize_thread_local_storage() {
 264   // Note: Make sure this method only calls
 265   // non-blocking operations. Otherwise, it might not work
 266   // with the thread-startup/safepoint interaction.
 267 
 268   // During Java thread startup, safepoint code should allow this
 269   // method to complete because it may need to allocate memory to
 270   // store information for the new thread.
 271 
 272   // initialize structure dependent on thread local storage
 273   ThreadLocalStorage::set_thread(this);
 274 
 275   // set up any platform-specific state.
 276   os::initialize_thread();
 277 
 278 }
 279 
 280 void Thread::record_stack_base_and_size() {
 281   set_stack_base(os::current_stack_base());
 282   set_stack_size(os::current_stack_size());
 283 }
 284 
 285 
 286 Thread::~Thread() {
 287   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 288   ObjectSynchronizer::omFlush (this) ;
 289 
 290   // deallocate data structures
 291   delete resource_area();
 292   // since the handle marks are using the handle area, we have to deallocated the root
 293   // handle mark before deallocating the thread's handle area,
 294   assert(last_handle_mark() != NULL, "check we have an element");
 295   delete last_handle_mark();
 296   assert(last_handle_mark() == NULL, "check we have reached the end");
 297 
 298   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 299   // We NULL out the fields for good hygiene.
 300   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 301   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 302   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 303   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 304 
 305   delete handle_area();
 306 
 307   // osthread() can be NULL, if creation of thread failed.
 308   if (osthread() != NULL) os::free_thread(osthread());
 309 
 310   delete _SR_lock;
 311 
 312   // clear thread local storage if the Thread is deleting itself
 313   if (this == Thread::current()) {
 314     ThreadLocalStorage::set_thread(NULL);
 315   } else {
 316     // In the case where we're not the current thread, invalidate all the
 317     // caches in case some code tries to get the current thread or the
 318     // thread that was destroyed, and gets stale information.
 319     ThreadLocalStorage::invalidate_all();
 320   }
 321   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 322 }
 323 
 324 // NOTE: dummy function for assertion purpose.
 325 void Thread::run() {
 326   ShouldNotReachHere();
 327 }
 328 
 329 #ifdef ASSERT
 330 // Private method to check for dangling thread pointer
 331 void check_for_dangling_thread_pointer(Thread *thread) {
 332  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 333          "possibility of dangling Thread pointer");
 334 }
 335 #endif
 336 
 337 
 338 #ifndef PRODUCT
 339 // Tracing method for basic thread operations
 340 void Thread::trace(const char* msg, const Thread* const thread) {
 341   if (!TraceThreadEvents) return;
 342   ResourceMark rm;
 343   ThreadCritical tc;
 344   const char *name = "non-Java thread";
 345   int prio = -1;
 346   if (thread->is_Java_thread()
 347       && !thread->is_Compiler_thread()) {
 348     // The Threads_lock must be held to get information about
 349     // this thread but may not be in some situations when
 350     // tracing  thread events.
 351     bool release_Threads_lock = false;
 352     if (!Threads_lock->owned_by_self()) {
 353       Threads_lock->lock();
 354       release_Threads_lock = true;
 355     }
 356     JavaThread* jt = (JavaThread *)thread;
 357     name = (char *)jt->get_thread_name();
 358     oop thread_oop = jt->threadObj();
 359     if (thread_oop != NULL) {
 360       prio = java_lang_Thread::priority(thread_oop);
 361     }
 362     if (release_Threads_lock) {
 363       Threads_lock->unlock();
 364     }
 365   }
 366   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 367 }
 368 #endif
 369 
 370 
 371 ThreadPriority Thread::get_priority(const Thread* const thread) {
 372   trace("get priority", thread);
 373   ThreadPriority priority;
 374   // Can return an error!
 375   (void)os::get_priority(thread, priority);
 376   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 377   return priority;
 378 }
 379 
 380 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 381   trace("set priority", thread);
 382   debug_only(check_for_dangling_thread_pointer(thread);)
 383   // Can return an error!
 384   (void)os::set_priority(thread, priority);
 385 }
 386 
 387 
 388 void Thread::start(Thread* thread) {
 389   trace("start", thread);
 390   // Start is different from resume in that its safety is guaranteed by context or
 391   // being called from a Java method synchronized on the Thread object.
 392   if (!DisableStartThread) {
 393     if (thread->is_Java_thread()) {
 394       // Initialize the thread state to RUNNABLE before starting this thread.
 395       // Can not set it after the thread started because we do not know the
 396       // exact thread state at that time. It could be in MONITOR_WAIT or
 397       // in SLEEPING or some other state.
 398       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 399                                           java_lang_Thread::RUNNABLE);
 400     }
 401     os::start_thread(thread);
 402   }
 403 }
 404 
 405 // Enqueue a VM_Operation to do the job for us - sometime later
 406 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 407   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 408   VMThread::execute(vm_stop);
 409 }
 410 
 411 
 412 //
 413 // Check if an external suspend request has completed (or has been
 414 // cancelled). Returns true if the thread is externally suspended and
 415 // false otherwise.
 416 //
 417 // The bits parameter returns information about the code path through
 418 // the routine. Useful for debugging:
 419 //
 420 // set in is_ext_suspend_completed():
 421 // 0x00000001 - routine was entered
 422 // 0x00000010 - routine return false at end
 423 // 0x00000100 - thread exited (return false)
 424 // 0x00000200 - suspend request cancelled (return false)
 425 // 0x00000400 - thread suspended (return true)
 426 // 0x00001000 - thread is in a suspend equivalent state (return true)
 427 // 0x00002000 - thread is native and walkable (return true)
 428 // 0x00004000 - thread is native_trans and walkable (needed retry)
 429 //
 430 // set in wait_for_ext_suspend_completion():
 431 // 0x00010000 - routine was entered
 432 // 0x00020000 - suspend request cancelled before loop (return false)
 433 // 0x00040000 - thread suspended before loop (return true)
 434 // 0x00080000 - suspend request cancelled in loop (return false)
 435 // 0x00100000 - thread suspended in loop (return true)
 436 // 0x00200000 - suspend not completed during retry loop (return false)
 437 //
 438 
 439 // Helper class for tracing suspend wait debug bits.
 440 //
 441 // 0x00000100 indicates that the target thread exited before it could
 442 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 443 // 0x00080000 each indicate a cancelled suspend request so they don't
 444 // count as wait failures either.
 445 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 446 
 447 class TraceSuspendDebugBits : public StackObj {
 448  private:
 449   JavaThread * jt;
 450   bool         is_wait;
 451   bool         called_by_wait;  // meaningful when !is_wait
 452   uint32_t *   bits;
 453 
 454  public:
 455   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 456                         uint32_t *_bits) {
 457     jt             = _jt;
 458     is_wait        = _is_wait;
 459     called_by_wait = _called_by_wait;
 460     bits           = _bits;
 461   }
 462 
 463   ~TraceSuspendDebugBits() {
 464     if (!is_wait) {
 465 #if 1
 466       // By default, don't trace bits for is_ext_suspend_completed() calls.
 467       // That trace is very chatty.
 468       return;
 469 #else
 470       if (!called_by_wait) {
 471         // If tracing for is_ext_suspend_completed() is enabled, then only
 472         // trace calls to it from wait_for_ext_suspend_completion()
 473         return;
 474       }
 475 #endif
 476     }
 477 
 478     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 479       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 480         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 481         ResourceMark rm;
 482 
 483         tty->print_cr(
 484             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 485             jt->get_thread_name(), *bits);
 486 
 487         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 488       }
 489     }
 490   }
 491 };
 492 #undef DEBUG_FALSE_BITS
 493 
 494 
 495 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 496   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 497 
 498   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 499   bool do_trans_retry;           // flag to force the retry
 500 
 501   *bits |= 0x00000001;
 502 
 503   do {
 504     do_trans_retry = false;
 505 
 506     if (is_exiting()) {
 507       // Thread is in the process of exiting. This is always checked
 508       // first to reduce the risk of dereferencing a freed JavaThread.
 509       *bits |= 0x00000100;
 510       return false;
 511     }
 512 
 513     if (!is_external_suspend()) {
 514       // Suspend request is cancelled. This is always checked before
 515       // is_ext_suspended() to reduce the risk of a rogue resume
 516       // confusing the thread that made the suspend request.
 517       *bits |= 0x00000200;
 518       return false;
 519     }
 520 
 521     if (is_ext_suspended()) {
 522       // thread is suspended
 523       *bits |= 0x00000400;
 524       return true;
 525     }
 526 
 527     // Now that we no longer do hard suspends of threads running
 528     // native code, the target thread can be changing thread state
 529     // while we are in this routine:
 530     //
 531     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 532     //
 533     // We save a copy of the thread state as observed at this moment
 534     // and make our decision about suspend completeness based on the
 535     // copy. This closes the race where the thread state is seen as
 536     // _thread_in_native_trans in the if-thread_blocked check, but is
 537     // seen as _thread_blocked in if-thread_in_native_trans check.
 538     JavaThreadState save_state = thread_state();
 539 
 540     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 541       // If the thread's state is _thread_blocked and this blocking
 542       // condition is known to be equivalent to a suspend, then we can
 543       // consider the thread to be externally suspended. This means that
 544       // the code that sets _thread_blocked has been modified to do
 545       // self-suspension if the blocking condition releases. We also
 546       // used to check for CONDVAR_WAIT here, but that is now covered by
 547       // the _thread_blocked with self-suspension check.
 548       //
 549       // Return true since we wouldn't be here unless there was still an
 550       // external suspend request.
 551       *bits |= 0x00001000;
 552       return true;
 553     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 554       // Threads running native code will self-suspend on native==>VM/Java
 555       // transitions. If its stack is walkable (should always be the case
 556       // unless this function is called before the actual java_suspend()
 557       // call), then the wait is done.
 558       *bits |= 0x00002000;
 559       return true;
 560     } else if (!called_by_wait && !did_trans_retry &&
 561                save_state == _thread_in_native_trans &&
 562                frame_anchor()->walkable()) {
 563       // The thread is transitioning from thread_in_native to another
 564       // thread state. check_safepoint_and_suspend_for_native_trans()
 565       // will force the thread to self-suspend. If it hasn't gotten
 566       // there yet we may have caught the thread in-between the native
 567       // code check above and the self-suspend. Lucky us. If we were
 568       // called by wait_for_ext_suspend_completion(), then it
 569       // will be doing the retries so we don't have to.
 570       //
 571       // Since we use the saved thread state in the if-statement above,
 572       // there is a chance that the thread has already transitioned to
 573       // _thread_blocked by the time we get here. In that case, we will
 574       // make a single unnecessary pass through the logic below. This
 575       // doesn't hurt anything since we still do the trans retry.
 576 
 577       *bits |= 0x00004000;
 578 
 579       // Once the thread leaves thread_in_native_trans for another
 580       // thread state, we break out of this retry loop. We shouldn't
 581       // need this flag to prevent us from getting back here, but
 582       // sometimes paranoia is good.
 583       did_trans_retry = true;
 584 
 585       // We wait for the thread to transition to a more usable state.
 586       for (int i = 1; i <= SuspendRetryCount; i++) {
 587         // We used to do an "os::yield_all(i)" call here with the intention
 588         // that yielding would increase on each retry. However, the parameter
 589         // is ignored on Linux which means the yield didn't scale up. Waiting
 590         // on the SR_lock below provides a much more predictable scale up for
 591         // the delay. It also provides a simple/direct point to check for any
 592         // safepoint requests from the VMThread
 593 
 594         // temporarily drops SR_lock while doing wait with safepoint check
 595         // (if we're a JavaThread - the WatcherThread can also call this)
 596         // and increase delay with each retry
 597         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 598 
 599         // check the actual thread state instead of what we saved above
 600         if (thread_state() != _thread_in_native_trans) {
 601           // the thread has transitioned to another thread state so
 602           // try all the checks (except this one) one more time.
 603           do_trans_retry = true;
 604           break;
 605         }
 606       } // end retry loop
 607 
 608 
 609     }
 610   } while (do_trans_retry);
 611 
 612   *bits |= 0x00000010;
 613   return false;
 614 }
 615 
 616 //
 617 // Wait for an external suspend request to complete (or be cancelled).
 618 // Returns true if the thread is externally suspended and false otherwise.
 619 //
 620 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 621        uint32_t *bits) {
 622   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 623                              false /* !called_by_wait */, bits);
 624 
 625   // local flag copies to minimize SR_lock hold time
 626   bool is_suspended;
 627   bool pending;
 628   uint32_t reset_bits;
 629 
 630   // set a marker so is_ext_suspend_completed() knows we are the caller
 631   *bits |= 0x00010000;
 632 
 633   // We use reset_bits to reinitialize the bits value at the top of
 634   // each retry loop. This allows the caller to make use of any
 635   // unused bits for their own marking purposes.
 636   reset_bits = *bits;
 637 
 638   {
 639     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 640     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 641                                             delay, bits);
 642     pending = is_external_suspend();
 643   }
 644   // must release SR_lock to allow suspension to complete
 645 
 646   if (!pending) {
 647     // A cancelled suspend request is the only false return from
 648     // is_ext_suspend_completed() that keeps us from entering the
 649     // retry loop.
 650     *bits |= 0x00020000;
 651     return false;
 652   }
 653 
 654   if (is_suspended) {
 655     *bits |= 0x00040000;
 656     return true;
 657   }
 658 
 659   for (int i = 1; i <= retries; i++) {
 660     *bits = reset_bits;  // reinit to only track last retry
 661 
 662     // We used to do an "os::yield_all(i)" call here with the intention
 663     // that yielding would increase on each retry. However, the parameter
 664     // is ignored on Linux which means the yield didn't scale up. Waiting
 665     // on the SR_lock below provides a much more predictable scale up for
 666     // the delay. It also provides a simple/direct point to check for any
 667     // safepoint requests from the VMThread
 668 
 669     {
 670       MutexLocker ml(SR_lock());
 671       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 672       // can also call this)  and increase delay with each retry
 673       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 674 
 675       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 676                                               delay, bits);
 677 
 678       // It is possible for the external suspend request to be cancelled
 679       // (by a resume) before the actual suspend operation is completed.
 680       // Refresh our local copy to see if we still need to wait.
 681       pending = is_external_suspend();
 682     }
 683 
 684     if (!pending) {
 685       // A cancelled suspend request is the only false return from
 686       // is_ext_suspend_completed() that keeps us from staying in the
 687       // retry loop.
 688       *bits |= 0x00080000;
 689       return false;
 690     }
 691 
 692     if (is_suspended) {
 693       *bits |= 0x00100000;
 694       return true;
 695     }
 696   } // end retry loop
 697 
 698   // thread did not suspend after all our retries
 699   *bits |= 0x00200000;
 700   return false;
 701 }
 702 
 703 #ifndef PRODUCT
 704 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 705 
 706   // This should not need to be atomic as the only way for simultaneous
 707   // updates is via interrupts. Even then this should be rare or non-existant
 708   // and we don't care that much anyway.
 709 
 710   int index = _jmp_ring_index;
 711   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 712   _jmp_ring[index]._target = (intptr_t) target;
 713   _jmp_ring[index]._instruction = (intptr_t) instr;
 714   _jmp_ring[index]._file = file;
 715   _jmp_ring[index]._line = line;
 716 }
 717 #endif /* PRODUCT */
 718 
 719 // Called by flat profiler
 720 // Callers have already called wait_for_ext_suspend_completion
 721 // The assertion for that is currently too complex to put here:
 722 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 723   bool gotframe = false;
 724   // self suspension saves needed state.
 725   if (has_last_Java_frame() && _anchor.walkable()) {
 726      *_fr = pd_last_frame();
 727      gotframe = true;
 728   }
 729   return gotframe;
 730 }
 731 
 732 void Thread::interrupt(Thread* thread) {
 733   trace("interrupt", thread);
 734   debug_only(check_for_dangling_thread_pointer(thread);)
 735   os::interrupt(thread);
 736 }
 737 
 738 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 739   trace("is_interrupted", thread);
 740   debug_only(check_for_dangling_thread_pointer(thread);)
 741   // Note:  If clear_interrupted==false, this simply fetches and
 742   // returns the value of the field osthread()->interrupted().
 743   return os::is_interrupted(thread, clear_interrupted);
 744 }
 745 
 746 
 747 // GC Support
 748 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 749   jint thread_parity = _oops_do_parity;
 750   if (thread_parity != strong_roots_parity) {
 751     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 752     if (res == thread_parity) {
 753       return true;
 754     } else {
 755       guarantee(res == strong_roots_parity, "Or else what?");
 756       assert(SharedHeap::heap()->n_par_threads() > 0,
 757              "Should only fail when parallel.");
 758       return false;
 759     }
 760   }
 761   assert(SharedHeap::heap()->n_par_threads() > 0,
 762          "Should only fail when parallel.");
 763   return false;
 764 }
 765 
 766 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 767   active_handles()->oops_do(f);
 768   // Do oop for ThreadShadow
 769   f->do_oop((oop*)&_pending_exception);
 770   handle_area()->oops_do(f);
 771 }
 772 
 773 void Thread::nmethods_do(CodeBlobClosure* cf) {
 774   // no nmethods in a generic thread...
 775 }
 776 
 777 void Thread::print_on(outputStream* st) const {
 778   // get_priority assumes osthread initialized
 779   if (osthread() != NULL) {
 780     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 781     osthread()->print_on(st);
 782   }
 783   debug_only(if (WizardMode) print_owned_locks_on(st);)
 784 }
 785 
 786 // Thread::print_on_error() is called by fatal error handler. Don't use
 787 // any lock or allocate memory.
 788 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 789   if      (is_VM_thread())                  st->print("VMThread");
 790   else if (is_Compiler_thread())            st->print("CompilerThread");
 791   else if (is_Java_thread())                st->print("JavaThread");
 792   else if (is_GC_task_thread())             st->print("GCTaskThread");
 793   else if (is_Watcher_thread())             st->print("WatcherThread");
 794   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 795   else st->print("Thread");
 796 
 797   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 798             _stack_base - _stack_size, _stack_base);
 799 
 800   if (osthread()) {
 801     st->print(" [id=%d]", osthread()->thread_id());
 802   }
 803 }
 804 
 805 #ifdef ASSERT
 806 void Thread::print_owned_locks_on(outputStream* st) const {
 807   Monitor *cur = _owned_locks;
 808   if (cur == NULL) {
 809     st->print(" (no locks) ");
 810   } else {
 811     st->print_cr(" Locks owned:");
 812     while(cur) {
 813       cur->print_on(st);
 814       cur = cur->next();
 815     }
 816   }
 817 }
 818 
 819 static int ref_use_count  = 0;
 820 
 821 bool Thread::owns_locks_but_compiled_lock() const {
 822   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 823     if (cur != Compile_lock) return true;
 824   }
 825   return false;
 826 }
 827 
 828 
 829 #endif
 830 
 831 #ifndef PRODUCT
 832 
 833 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 834 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 835 // no threads which allow_vm_block's are held
 836 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 837     // Check if current thread is allowed to block at a safepoint
 838     if (!(_allow_safepoint_count == 0))
 839       fatal("Possible safepoint reached by thread that does not allow it");
 840     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 841       fatal("LEAF method calling lock?");
 842     }
 843 
 844 #ifdef ASSERT
 845     if (potential_vm_operation && is_Java_thread()
 846         && !Universe::is_bootstrapping()) {
 847       // Make sure we do not hold any locks that the VM thread also uses.
 848       // This could potentially lead to deadlocks
 849       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 850         // Threads_lock is special, since the safepoint synchronization will not start before this is
 851         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 852         // since it is used to transfer control between JavaThreads and the VMThread
 853         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 854         if ( (cur->allow_vm_block() &&
 855               cur != Threads_lock &&
 856               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 857               cur != VMOperationRequest_lock &&
 858               cur != VMOperationQueue_lock) ||
 859               cur->rank() == Mutex::special) {
 860           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 861         }
 862       }
 863     }
 864 
 865     if (GCALotAtAllSafepoints) {
 866       // We could enter a safepoint here and thus have a gc
 867       InterfaceSupport::check_gc_alot();
 868     }
 869 #endif
 870 }
 871 #endif
 872 
 873 bool Thread::is_in_stack(address adr) const {
 874   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 875   address end = os::current_stack_pointer();
 876   if (stack_base() >= adr && adr >= end) return true;
 877 
 878   return false;
 879 }
 880 
 881 
 882 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 883 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 884 // used for compilation in the future. If that change is made, the need for these methods
 885 // should be revisited, and they should be removed if possible.
 886 
 887 bool Thread::is_lock_owned(address adr) const {
 888   return on_local_stack(adr);
 889 }
 890 
 891 bool Thread::set_as_starting_thread() {
 892  // NOTE: this must be called inside the main thread.
 893   return os::create_main_thread((JavaThread*)this);
 894 }
 895 
 896 static void initialize_class(Symbol* class_name, TRAPS) {
 897   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 898   instanceKlass::cast(klass)->initialize(CHECK);
 899 }
 900 
 901 
 902 // Creates the initial ThreadGroup
 903 static Handle create_initial_thread_group(TRAPS) {
 904   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 905   instanceKlassHandle klass (THREAD, k);
 906 
 907   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 908   {
 909     JavaValue result(T_VOID);
 910     JavaCalls::call_special(&result,
 911                             system_instance,
 912                             klass,
 913                             vmSymbols::object_initializer_name(),
 914                             vmSymbols::void_method_signature(),
 915                             CHECK_NH);
 916   }
 917   Universe::set_system_thread_group(system_instance());
 918 
 919   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 920   {
 921     JavaValue result(T_VOID);
 922     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 923     JavaCalls::call_special(&result,
 924                             main_instance,
 925                             klass,
 926                             vmSymbols::object_initializer_name(),
 927                             vmSymbols::threadgroup_string_void_signature(),
 928                             system_instance,
 929                             string,
 930                             CHECK_NH);
 931   }
 932   return main_instance;
 933 }
 934 
 935 // Creates the initial Thread
 936 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 937   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 938   instanceKlassHandle klass (THREAD, k);
 939   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 940 
 941   java_lang_Thread::set_thread(thread_oop(), thread);
 942   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 943   thread->set_threadObj(thread_oop());
 944 
 945   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 946 
 947   JavaValue result(T_VOID);
 948   JavaCalls::call_special(&result, thread_oop,
 949                                    klass,
 950                                    vmSymbols::object_initializer_name(),
 951                                    vmSymbols::threadgroup_string_void_signature(),
 952                                    thread_group,
 953                                    string,
 954                                    CHECK_NULL);
 955   return thread_oop();
 956 }
 957 
 958 static void call_initializeSystemClass(TRAPS) {
 959   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 960   instanceKlassHandle klass (THREAD, k);
 961 
 962   JavaValue result(T_VOID);
 963   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 964                                          vmSymbols::void_method_signature(), CHECK);
 965 }
 966 
 967 // General purpose hook into Java code, run once when the VM is initialized.
 968 // The Java library method itself may be changed independently from the VM.
 969 static void call_postVMInitHook(TRAPS) {
 970   klassOop k = SystemDictionary::sun_misc_PostVMInitHook_klass();
 971   instanceKlassHandle klass (THREAD, k);
 972   if (klass.not_null()) {
 973     JavaValue result(T_VOID);
 974     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
 975                                            vmSymbols::void_method_signature(),
 976                                            CHECK);
 977   }
 978 }
 979 
 980 static void reset_vm_info_property(TRAPS) {
 981   // the vm info string
 982   ResourceMark rm(THREAD);
 983   const char *vm_info = VM_Version::vm_info_string();
 984 
 985   // java.lang.System class
 986   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 987   instanceKlassHandle klass (THREAD, k);
 988 
 989   // setProperty arguments
 990   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 991   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 992 
 993   // return value
 994   JavaValue r(T_OBJECT);
 995 
 996   // public static String setProperty(String key, String value);
 997   JavaCalls::call_static(&r,
 998                          klass,
 999                          vmSymbols::setProperty_name(),
1000                          vmSymbols::string_string_string_signature(),
1001                          key_str,
1002                          value_str,
1003                          CHECK);
1004 }
1005 
1006 
1007 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1008   assert(thread_group.not_null(), "thread group should be specified");
1009   assert(threadObj() == NULL, "should only create Java thread object once");
1010 
1011   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1012   instanceKlassHandle klass (THREAD, k);
1013   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1014 
1015   java_lang_Thread::set_thread(thread_oop(), this);
1016   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1017   set_threadObj(thread_oop());
1018 
1019   JavaValue result(T_VOID);
1020   if (thread_name != NULL) {
1021     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1022     // Thread gets assigned specified name and null target
1023     JavaCalls::call_special(&result,
1024                             thread_oop,
1025                             klass,
1026                             vmSymbols::object_initializer_name(),
1027                             vmSymbols::threadgroup_string_void_signature(),
1028                             thread_group, // Argument 1
1029                             name,         // Argument 2
1030                             THREAD);
1031   } else {
1032     // Thread gets assigned name "Thread-nnn" and null target
1033     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1034     JavaCalls::call_special(&result,
1035                             thread_oop,
1036                             klass,
1037                             vmSymbols::object_initializer_name(),
1038                             vmSymbols::threadgroup_runnable_void_signature(),
1039                             thread_group, // Argument 1
1040                             Handle(),     // Argument 2
1041                             THREAD);
1042   }
1043 
1044 
1045   if (daemon) {
1046       java_lang_Thread::set_daemon(thread_oop());
1047   }
1048 
1049   if (HAS_PENDING_EXCEPTION) {
1050     return;
1051   }
1052 
1053   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1054   Handle threadObj(this, this->threadObj());
1055 
1056   JavaCalls::call_special(&result,
1057                          thread_group,
1058                          group,
1059                          vmSymbols::add_method_name(),
1060                          vmSymbols::thread_void_signature(),
1061                          threadObj,          // Arg 1
1062                          THREAD);
1063 
1064 
1065 }
1066 
1067 // NamedThread --  non-JavaThread subclasses with multiple
1068 // uniquely named instances should derive from this.
1069 NamedThread::NamedThread() : Thread() {
1070   _name = NULL;
1071   _processed_thread = NULL;
1072 }
1073 
1074 NamedThread::~NamedThread() {
1075   if (_name != NULL) {
1076     FREE_C_HEAP_ARRAY(char, _name);
1077     _name = NULL;
1078   }
1079 }
1080 
1081 void NamedThread::set_name(const char* format, ...) {
1082   guarantee(_name == NULL, "Only get to set name once.");
1083   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1084   guarantee(_name != NULL, "alloc failure");
1085   va_list ap;
1086   va_start(ap, format);
1087   jio_vsnprintf(_name, max_name_len, format, ap);
1088   va_end(ap);
1089 }
1090 
1091 // ======= WatcherThread ========
1092 
1093 // The watcher thread exists to simulate timer interrupts.  It should
1094 // be replaced by an abstraction over whatever native support for
1095 // timer interrupts exists on the platform.
1096 
1097 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1098 volatile bool  WatcherThread::_should_terminate = false;
1099 
1100 WatcherThread::WatcherThread() : Thread() {
1101   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1102   if (os::create_thread(this, os::watcher_thread)) {
1103     _watcher_thread = this;
1104 
1105     // Set the watcher thread to the highest OS priority which should not be
1106     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1107     // is created. The only normal thread using this priority is the reference
1108     // handler thread, which runs for very short intervals only.
1109     // If the VMThread's priority is not lower than the WatcherThread profiling
1110     // will be inaccurate.
1111     os::set_priority(this, MaxPriority);
1112     if (!DisableStartThread) {
1113       os::start_thread(this);
1114     }
1115   }
1116 }
1117 
1118 void WatcherThread::run() {
1119   assert(this == watcher_thread(), "just checking");
1120 
1121   this->record_stack_base_and_size();
1122   this->initialize_thread_local_storage();
1123   this->set_active_handles(JNIHandleBlock::allocate_block());
1124   while(!_should_terminate) {
1125     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1126     assert(watcher_thread() == this,  "thread consistency check");
1127 
1128     // Calculate how long it'll be until the next PeriodicTask work
1129     // should be done, and sleep that amount of time.
1130     size_t time_to_wait = PeriodicTask::time_to_wait();
1131 
1132     // we expect this to timeout - we only ever get unparked when
1133     // we should terminate
1134     {
1135       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1136 
1137       jlong prev_time = os::javaTimeNanos();
1138       for (;;) {
1139         int res= _SleepEvent->park(time_to_wait);
1140         if (res == OS_TIMEOUT || _should_terminate)
1141           break;
1142         // spurious wakeup of some kind
1143         jlong now = os::javaTimeNanos();
1144         time_to_wait -= (now - prev_time) / 1000000;
1145         if (time_to_wait <= 0)
1146           break;
1147         prev_time = now;
1148       }
1149     }
1150 
1151     if (is_error_reported()) {
1152       // A fatal error has happened, the error handler(VMError::report_and_die)
1153       // should abort JVM after creating an error log file. However in some
1154       // rare cases, the error handler itself might deadlock. Here we try to
1155       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1156       //
1157       // This code is in WatcherThread because WatcherThread wakes up
1158       // periodically so the fatal error handler doesn't need to do anything;
1159       // also because the WatcherThread is less likely to crash than other
1160       // threads.
1161 
1162       for (;;) {
1163         if (!ShowMessageBoxOnError
1164          && (OnError == NULL || OnError[0] == '\0')
1165          && Arguments::abort_hook() == NULL) {
1166              os::sleep(this, 2 * 60 * 1000, false);
1167              fdStream err(defaultStream::output_fd());
1168              err.print_raw_cr("# [ timer expired, abort... ]");
1169              // skip atexit/vm_exit/vm_abort hooks
1170              os::die();
1171         }
1172 
1173         // Wake up 5 seconds later, the fatal handler may reset OnError or
1174         // ShowMessageBoxOnError when it is ready to abort.
1175         os::sleep(this, 5 * 1000, false);
1176       }
1177     }
1178 
1179     PeriodicTask::real_time_tick(time_to_wait);
1180 
1181     // If we have no more tasks left due to dynamic disenrollment,
1182     // shut down the thread since we don't currently support dynamic enrollment
1183     if (PeriodicTask::num_tasks() == 0) {
1184       _should_terminate = true;
1185     }
1186   }
1187 
1188   // Signal that it is terminated
1189   {
1190     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1191     _watcher_thread = NULL;
1192     Terminator_lock->notify();
1193   }
1194 
1195   // Thread destructor usually does this..
1196   ThreadLocalStorage::set_thread(NULL);
1197 }
1198 
1199 void WatcherThread::start() {
1200   if (watcher_thread() == NULL) {
1201     _should_terminate = false;
1202     // Create the single instance of WatcherThread
1203     new WatcherThread();
1204   }
1205 }
1206 
1207 void WatcherThread::stop() {
1208   // it is ok to take late safepoints here, if needed
1209   MutexLocker mu(Terminator_lock);
1210   _should_terminate = true;
1211   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1212 
1213   Thread* watcher = watcher_thread();
1214   if (watcher != NULL)
1215     watcher->_SleepEvent->unpark();
1216 
1217   while(watcher_thread() != NULL) {
1218     // This wait should make safepoint checks, wait without a timeout,
1219     // and wait as a suspend-equivalent condition.
1220     //
1221     // Note: If the FlatProfiler is running, then this thread is waiting
1222     // for the WatcherThread to terminate and the WatcherThread, via the
1223     // FlatProfiler task, is waiting for the external suspend request on
1224     // this thread to complete. wait_for_ext_suspend_completion() will
1225     // eventually timeout, but that takes time. Making this wait a
1226     // suspend-equivalent condition solves that timeout problem.
1227     //
1228     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1229                           Mutex::_as_suspend_equivalent_flag);
1230   }
1231 }
1232 
1233 void WatcherThread::print_on(outputStream* st) const {
1234   st->print("\"%s\" ", name());
1235   Thread::print_on(st);
1236   st->cr();
1237 }
1238 
1239 // ======= JavaThread ========
1240 
1241 // A JavaThread is a normal Java thread
1242 
1243 void JavaThread::initialize() {
1244   // Initialize fields
1245 
1246   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1247   set_claimed_par_id(-1);
1248 
1249   set_saved_exception_pc(NULL);
1250   set_threadObj(NULL);
1251   _anchor.clear();
1252   set_entry_point(NULL);
1253   set_jni_functions(jni_functions());
1254   set_callee_target(NULL);
1255   set_vm_result(NULL);
1256   set_vm_result_2(NULL);
1257   set_vframe_array_head(NULL);
1258   set_vframe_array_last(NULL);
1259   set_deferred_locals(NULL);
1260   set_deopt_mark(NULL);
1261   set_deopt_nmethod(NULL);
1262   clear_must_deopt_id();
1263   set_monitor_chunks(NULL);
1264   set_next(NULL);
1265   set_thread_state(_thread_new);
1266   _terminated = _not_terminated;
1267   _privileged_stack_top = NULL;
1268   _array_for_gc = NULL;
1269   _suspend_equivalent = false;
1270   _in_deopt_handler = 0;
1271   _doing_unsafe_access = false;
1272   _stack_guard_state = stack_guard_unused;
1273   _exception_oop = NULL;
1274   _exception_pc  = 0;
1275   _exception_handler_pc = 0;
1276   _exception_stack_size = 0;
1277   _is_method_handle_return = 0;
1278   _jvmti_thread_state= NULL;
1279   _should_post_on_exceptions_flag = JNI_FALSE;
1280   _jvmti_get_loaded_classes_closure = NULL;
1281   _interp_only_mode    = 0;
1282   _special_runtime_exit_condition = _no_async_condition;
1283   _pending_async_exception = NULL;
1284   _is_compiling = false;
1285   _thread_stat = NULL;
1286   _thread_stat = new ThreadStatistics();
1287   _blocked_on_compilation = false;
1288   _jni_active_critical = 0;
1289   _do_not_unlock_if_synchronized = false;
1290   _cached_monitor_info = NULL;
1291   _parker = Parker::Allocate(this) ;
1292 
1293 #ifndef PRODUCT
1294   _jmp_ring_index = 0;
1295   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1296     record_jump(NULL, NULL, NULL, 0);
1297   }
1298 #endif /* PRODUCT */
1299 
1300   set_thread_profiler(NULL);
1301   if (FlatProfiler::is_active()) {
1302     // This is where we would decide to either give each thread it's own profiler
1303     // or use one global one from FlatProfiler,
1304     // or up to some count of the number of profiled threads, etc.
1305     ThreadProfiler* pp = new ThreadProfiler();
1306     pp->engage();
1307     set_thread_profiler(pp);
1308   }
1309 
1310   // Setup safepoint state info for this thread
1311   ThreadSafepointState::create(this);
1312 
1313   debug_only(_java_call_counter = 0);
1314 
1315   // JVMTI PopFrame support
1316   _popframe_condition = popframe_inactive;
1317   _popframe_preserved_args = NULL;
1318   _popframe_preserved_args_size = 0;
1319 
1320   pd_initialize();
1321 }
1322 
1323 #ifndef SERIALGC
1324 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1325 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1326 #endif // !SERIALGC
1327 
1328 JavaThread::JavaThread(bool is_attaching) :
1329   Thread()
1330 #ifndef SERIALGC
1331   , _satb_mark_queue(&_satb_mark_queue_set),
1332   _dirty_card_queue(&_dirty_card_queue_set)
1333 #endif // !SERIALGC
1334 {
1335   initialize();
1336   _is_attaching = is_attaching;
1337   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1338 }
1339 
1340 bool JavaThread::reguard_stack(address cur_sp) {
1341   if (_stack_guard_state != stack_guard_yellow_disabled) {
1342     return true; // Stack already guarded or guard pages not needed.
1343   }
1344 
1345   if (register_stack_overflow()) {
1346     // For those architectures which have separate register and
1347     // memory stacks, we must check the register stack to see if
1348     // it has overflowed.
1349     return false;
1350   }
1351 
1352   // Java code never executes within the yellow zone: the latter is only
1353   // there to provoke an exception during stack banging.  If java code
1354   // is executing there, either StackShadowPages should be larger, or
1355   // some exception code in c1, c2 or the interpreter isn't unwinding
1356   // when it should.
1357   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1358 
1359   enable_stack_yellow_zone();
1360   return true;
1361 }
1362 
1363 bool JavaThread::reguard_stack(void) {
1364   return reguard_stack(os::current_stack_pointer());
1365 }
1366 
1367 
1368 void JavaThread::block_if_vm_exited() {
1369   if (_terminated == _vm_exited) {
1370     // _vm_exited is set at safepoint, and Threads_lock is never released
1371     // we will block here forever
1372     Threads_lock->lock_without_safepoint_check();
1373     ShouldNotReachHere();
1374   }
1375 }
1376 
1377 
1378 // Remove this ifdef when C1 is ported to the compiler interface.
1379 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1380 
1381 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1382   Thread()
1383 #ifndef SERIALGC
1384   , _satb_mark_queue(&_satb_mark_queue_set),
1385   _dirty_card_queue(&_dirty_card_queue_set)
1386 #endif // !SERIALGC
1387 {
1388   if (TraceThreadEvents) {
1389     tty->print_cr("creating thread %p", this);
1390   }
1391   initialize();
1392   _is_attaching = false;
1393   set_entry_point(entry_point);
1394   // Create the native thread itself.
1395   // %note runtime_23
1396   os::ThreadType thr_type = os::java_thread;
1397   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1398                                                      os::java_thread;
1399   os::create_thread(this, thr_type, stack_sz);
1400 
1401   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1402   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1403   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1404   // the exception consists of creating the exception object & initializing it, initialization
1405   // will leave the VM via a JavaCall and then all locks must be unlocked).
1406   //
1407   // The thread is still suspended when we reach here. Thread must be explicit started
1408   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1409   // by calling Threads:add. The reason why this is not done here, is because the thread
1410   // object must be fully initialized (take a look at JVM_Start)
1411 }
1412 
1413 JavaThread::~JavaThread() {
1414   if (TraceThreadEvents) {
1415       tty->print_cr("terminate thread %p", this);
1416   }
1417 
1418   // JSR166 -- return the parker to the free list
1419   Parker::Release(_parker);
1420   _parker = NULL ;
1421 
1422   // Free any remaining  previous UnrollBlock
1423   vframeArray* old_array = vframe_array_last();
1424 
1425   if (old_array != NULL) {
1426     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1427     old_array->set_unroll_block(NULL);
1428     delete old_info;
1429     delete old_array;
1430   }
1431 
1432   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1433   if (deferred != NULL) {
1434     // This can only happen if thread is destroyed before deoptimization occurs.
1435     assert(deferred->length() != 0, "empty array!");
1436     do {
1437       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1438       deferred->remove_at(0);
1439       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1440       delete dlv;
1441     } while (deferred->length() != 0);
1442     delete deferred;
1443   }
1444 
1445   // All Java related clean up happens in exit
1446   ThreadSafepointState::destroy(this);
1447   if (_thread_profiler != NULL) delete _thread_profiler;
1448   if (_thread_stat != NULL) delete _thread_stat;
1449 }
1450 
1451 
1452 // The first routine called by a new Java thread
1453 void JavaThread::run() {
1454   // initialize thread-local alloc buffer related fields
1455   this->initialize_tlab();
1456 
1457   // used to test validitity of stack trace backs
1458   this->record_base_of_stack_pointer();
1459 
1460   // Record real stack base and size.
1461   this->record_stack_base_and_size();
1462 
1463   // Initialize thread local storage; set before calling MutexLocker
1464   this->initialize_thread_local_storage();
1465 
1466   this->create_stack_guard_pages();
1467 
1468   this->cache_global_variables();
1469 
1470   // Thread is now sufficient initialized to be handled by the safepoint code as being
1471   // in the VM. Change thread state from _thread_new to _thread_in_vm
1472   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1473 
1474   assert(JavaThread::current() == this, "sanity check");
1475   assert(!Thread::current()->owns_locks(), "sanity check");
1476 
1477   DTRACE_THREAD_PROBE(start, this);
1478 
1479   // This operation might block. We call that after all safepoint checks for a new thread has
1480   // been completed.
1481   this->set_active_handles(JNIHandleBlock::allocate_block());
1482 
1483   if (JvmtiExport::should_post_thread_life()) {
1484     JvmtiExport::post_thread_start(this);
1485   }
1486 
1487   // We call another function to do the rest so we are sure that the stack addresses used
1488   // from there will be lower than the stack base just computed
1489   thread_main_inner();
1490 
1491   // Note, thread is no longer valid at this point!
1492 }
1493 
1494 
1495 void JavaThread::thread_main_inner() {
1496   assert(JavaThread::current() == this, "sanity check");
1497   assert(this->threadObj() != NULL, "just checking");
1498 
1499   // Execute thread entry point unless this thread has a pending exception
1500   // or has been stopped before starting.
1501   // Note: Due to JVM_StopThread we can have pending exceptions already!
1502   if (!this->has_pending_exception() &&
1503       !java_lang_Thread::is_stillborn(this->threadObj())) {
1504     HandleMark hm(this);
1505     this->entry_point()(this, this);
1506   }
1507 
1508   DTRACE_THREAD_PROBE(stop, this);
1509 
1510   this->exit(false);
1511   delete this;
1512 }
1513 
1514 
1515 static void ensure_join(JavaThread* thread) {
1516   // We do not need to grap the Threads_lock, since we are operating on ourself.
1517   Handle threadObj(thread, thread->threadObj());
1518   assert(threadObj.not_null(), "java thread object must exist");
1519   ObjectLocker lock(threadObj, thread);
1520   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1521   thread->clear_pending_exception();
1522   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1523   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1524   // Clear the native thread instance - this makes isAlive return false and allows the join()
1525   // to complete once we've done the notify_all below
1526   java_lang_Thread::set_thread(threadObj(), NULL);
1527   lock.notify_all(thread);
1528   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1529   thread->clear_pending_exception();
1530 }
1531 
1532 
1533 // For any new cleanup additions, please check to see if they need to be applied to
1534 // cleanup_failed_attach_current_thread as well.
1535 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1536   assert(this == JavaThread::current(),  "thread consistency check");
1537   if (!InitializeJavaLangSystem) return;
1538 
1539   HandleMark hm(this);
1540   Handle uncaught_exception(this, this->pending_exception());
1541   this->clear_pending_exception();
1542   Handle threadObj(this, this->threadObj());
1543   assert(threadObj.not_null(), "Java thread object should be created");
1544 
1545   if (get_thread_profiler() != NULL) {
1546     get_thread_profiler()->disengage();
1547     ResourceMark rm;
1548     get_thread_profiler()->print(get_thread_name());
1549   }
1550 
1551 
1552   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1553   {
1554     EXCEPTION_MARK;
1555 
1556     CLEAR_PENDING_EXCEPTION;
1557   }
1558   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1559   // has to be fixed by a runtime query method
1560   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1561     // JSR-166: change call from from ThreadGroup.uncaughtException to
1562     // java.lang.Thread.dispatchUncaughtException
1563     if (uncaught_exception.not_null()) {
1564       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1565       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1566         (address)uncaught_exception(), (address)threadObj(), (address)group());
1567       {
1568         EXCEPTION_MARK;
1569         // Check if the method Thread.dispatchUncaughtException() exists. If so
1570         // call it.  Otherwise we have an older library without the JSR-166 changes,
1571         // so call ThreadGroup.uncaughtException()
1572         KlassHandle recvrKlass(THREAD, threadObj->klass());
1573         CallInfo callinfo;
1574         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1575         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1576                                            vmSymbols::dispatchUncaughtException_name(),
1577                                            vmSymbols::throwable_void_signature(),
1578                                            KlassHandle(), false, false, THREAD);
1579         CLEAR_PENDING_EXCEPTION;
1580         methodHandle method = callinfo.selected_method();
1581         if (method.not_null()) {
1582           JavaValue result(T_VOID);
1583           JavaCalls::call_virtual(&result,
1584                                   threadObj, thread_klass,
1585                                   vmSymbols::dispatchUncaughtException_name(),
1586                                   vmSymbols::throwable_void_signature(),
1587                                   uncaught_exception,
1588                                   THREAD);
1589         } else {
1590           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1591           JavaValue result(T_VOID);
1592           JavaCalls::call_virtual(&result,
1593                                   group, thread_group,
1594                                   vmSymbols::uncaughtException_name(),
1595                                   vmSymbols::thread_throwable_void_signature(),
1596                                   threadObj,           // Arg 1
1597                                   uncaught_exception,  // Arg 2
1598                                   THREAD);
1599         }
1600         if (HAS_PENDING_EXCEPTION) {
1601           ResourceMark rm(this);
1602           jio_fprintf(defaultStream::error_stream(),
1603                 "\nException: %s thrown from the UncaughtExceptionHandler"
1604                 " in thread \"%s\"\n",
1605                 Klass::cast(pending_exception()->klass())->external_name(),
1606                 get_thread_name());
1607           CLEAR_PENDING_EXCEPTION;
1608         }
1609       }
1610     }
1611 
1612     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1613     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1614     // is deprecated anyhow.
1615     { int count = 3;
1616       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1617         EXCEPTION_MARK;
1618         JavaValue result(T_VOID);
1619         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1620         JavaCalls::call_virtual(&result,
1621                               threadObj, thread_klass,
1622                               vmSymbols::exit_method_name(),
1623                               vmSymbols::void_method_signature(),
1624                               THREAD);
1625         CLEAR_PENDING_EXCEPTION;
1626       }
1627     }
1628 
1629     // notify JVMTI
1630     if (JvmtiExport::should_post_thread_life()) {
1631       JvmtiExport::post_thread_end(this);
1632     }
1633 
1634     // We have notified the agents that we are exiting, before we go on,
1635     // we must check for a pending external suspend request and honor it
1636     // in order to not surprise the thread that made the suspend request.
1637     while (true) {
1638       {
1639         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1640         if (!is_external_suspend()) {
1641           set_terminated(_thread_exiting);
1642           ThreadService::current_thread_exiting(this);
1643           break;
1644         }
1645         // Implied else:
1646         // Things get a little tricky here. We have a pending external
1647         // suspend request, but we are holding the SR_lock so we
1648         // can't just self-suspend. So we temporarily drop the lock
1649         // and then self-suspend.
1650       }
1651 
1652       ThreadBlockInVM tbivm(this);
1653       java_suspend_self();
1654 
1655       // We're done with this suspend request, but we have to loop around
1656       // and check again. Eventually we will get SR_lock without a pending
1657       // external suspend request and will be able to mark ourselves as
1658       // exiting.
1659     }
1660     // no more external suspends are allowed at this point
1661   } else {
1662     // before_exit() has already posted JVMTI THREAD_END events
1663   }
1664 
1665   // Notify waiters on thread object. This has to be done after exit() is called
1666   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1667   // group should have the destroyed bit set before waiters are notified).
1668   ensure_join(this);
1669   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1670 
1671   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1672   // held by this thread must be released.  A detach operation must only
1673   // get here if there are no Java frames on the stack.  Therefore, any
1674   // owned monitors at this point MUST be JNI-acquired monitors which are
1675   // pre-inflated and in the monitor cache.
1676   //
1677   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1678   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1679     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1680     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1681     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1682   }
1683 
1684   // These things needs to be done while we are still a Java Thread. Make sure that thread
1685   // is in a consistent state, in case GC happens
1686   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1687 
1688   if (active_handles() != NULL) {
1689     JNIHandleBlock* block = active_handles();
1690     set_active_handles(NULL);
1691     JNIHandleBlock::release_block(block);
1692   }
1693 
1694   if (free_handle_block() != NULL) {
1695     JNIHandleBlock* block = free_handle_block();
1696     set_free_handle_block(NULL);
1697     JNIHandleBlock::release_block(block);
1698   }
1699 
1700   // These have to be removed while this is still a valid thread.
1701   remove_stack_guard_pages();
1702 
1703   if (UseTLAB) {
1704     tlab().make_parsable(true);  // retire TLAB
1705   }
1706 
1707   if (JvmtiEnv::environments_might_exist()) {
1708     JvmtiExport::cleanup_thread(this);
1709   }
1710 
1711 #ifndef SERIALGC
1712   // We must flush G1-related buffers before removing a thread from
1713   // the list of active threads.
1714   if (UseG1GC) {
1715     flush_barrier_queues();
1716   }
1717 #endif
1718 
1719   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1720   Threads::remove(this);
1721 }
1722 
1723 #ifndef SERIALGC
1724 // Flush G1-related queues.
1725 void JavaThread::flush_barrier_queues() {
1726   satb_mark_queue().flush();
1727   dirty_card_queue().flush();
1728 }
1729 
1730 void JavaThread::initialize_queues() {
1731   assert(!SafepointSynchronize::is_at_safepoint(),
1732          "we should not be at a safepoint");
1733 
1734   ObjPtrQueue& satb_queue = satb_mark_queue();
1735   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1736   // The SATB queue should have been constructed with its active
1737   // field set to false.
1738   assert(!satb_queue.is_active(), "SATB queue should not be active");
1739   assert(satb_queue.is_empty(), "SATB queue should be empty");
1740   // If we are creating the thread during a marking cycle, we should
1741   // set the active field of the SATB queue to true.
1742   if (satb_queue_set.is_active()) {
1743     satb_queue.set_active(true);
1744   }
1745 
1746   DirtyCardQueue& dirty_queue = dirty_card_queue();
1747   // The dirty card queue should have been constructed with its
1748   // active field set to true.
1749   assert(dirty_queue.is_active(), "dirty card queue should be active");
1750 }
1751 #endif // !SERIALGC
1752 
1753 void JavaThread::cleanup_failed_attach_current_thread() {
1754   if (get_thread_profiler() != NULL) {
1755     get_thread_profiler()->disengage();
1756     ResourceMark rm;
1757     get_thread_profiler()->print(get_thread_name());
1758   }
1759 
1760   if (active_handles() != NULL) {
1761     JNIHandleBlock* block = active_handles();
1762     set_active_handles(NULL);
1763     JNIHandleBlock::release_block(block);
1764   }
1765 
1766   if (free_handle_block() != NULL) {
1767     JNIHandleBlock* block = free_handle_block();
1768     set_free_handle_block(NULL);
1769     JNIHandleBlock::release_block(block);
1770   }
1771 
1772   // These have to be removed while this is still a valid thread.
1773   remove_stack_guard_pages();
1774 
1775   if (UseTLAB) {
1776     tlab().make_parsable(true);  // retire TLAB, if any
1777   }
1778 
1779 #ifndef SERIALGC
1780   if (UseG1GC) {
1781     flush_barrier_queues();
1782   }
1783 #endif
1784 
1785   Threads::remove(this);
1786   delete this;
1787 }
1788 
1789 
1790 
1791 
1792 JavaThread* JavaThread::active() {
1793   Thread* thread = ThreadLocalStorage::thread();
1794   assert(thread != NULL, "just checking");
1795   if (thread->is_Java_thread()) {
1796     return (JavaThread*) thread;
1797   } else {
1798     assert(thread->is_VM_thread(), "this must be a vm thread");
1799     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1800     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1801     assert(ret->is_Java_thread(), "must be a Java thread");
1802     return ret;
1803   }
1804 }
1805 
1806 bool JavaThread::is_lock_owned(address adr) const {
1807   if (Thread::is_lock_owned(adr)) return true;
1808 
1809   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1810     if (chunk->contains(adr)) return true;
1811   }
1812 
1813   return false;
1814 }
1815 
1816 
1817 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1818   chunk->set_next(monitor_chunks());
1819   set_monitor_chunks(chunk);
1820 }
1821 
1822 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1823   guarantee(monitor_chunks() != NULL, "must be non empty");
1824   if (monitor_chunks() == chunk) {
1825     set_monitor_chunks(chunk->next());
1826   } else {
1827     MonitorChunk* prev = monitor_chunks();
1828     while (prev->next() != chunk) prev = prev->next();
1829     prev->set_next(chunk->next());
1830   }
1831 }
1832 
1833 // JVM support.
1834 
1835 // Note: this function shouldn't block if it's called in
1836 // _thread_in_native_trans state (such as from
1837 // check_special_condition_for_native_trans()).
1838 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1839 
1840   if (has_last_Java_frame() && has_async_condition()) {
1841     // If we are at a polling page safepoint (not a poll return)
1842     // then we must defer async exception because live registers
1843     // will be clobbered by the exception path. Poll return is
1844     // ok because the call we a returning from already collides
1845     // with exception handling registers and so there is no issue.
1846     // (The exception handling path kills call result registers but
1847     //  this is ok since the exception kills the result anyway).
1848 
1849     if (is_at_poll_safepoint()) {
1850       // if the code we are returning to has deoptimized we must defer
1851       // the exception otherwise live registers get clobbered on the
1852       // exception path before deoptimization is able to retrieve them.
1853       //
1854       RegisterMap map(this, false);
1855       frame caller_fr = last_frame().sender(&map);
1856       assert(caller_fr.is_compiled_frame(), "what?");
1857       if (caller_fr.is_deoptimized_frame()) {
1858         if (TraceExceptions) {
1859           ResourceMark rm;
1860           tty->print_cr("deferred async exception at compiled safepoint");
1861         }
1862         return;
1863       }
1864     }
1865   }
1866 
1867   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1868   if (condition == _no_async_condition) {
1869     // Conditions have changed since has_special_runtime_exit_condition()
1870     // was called:
1871     // - if we were here only because of an external suspend request,
1872     //   then that was taken care of above (or cancelled) so we are done
1873     // - if we were here because of another async request, then it has
1874     //   been cleared between the has_special_runtime_exit_condition()
1875     //   and now so again we are done
1876     return;
1877   }
1878 
1879   // Check for pending async. exception
1880   if (_pending_async_exception != NULL) {
1881     // Only overwrite an already pending exception, if it is not a threadDeath.
1882     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1883 
1884       // We cannot call Exceptions::_throw(...) here because we cannot block
1885       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1886 
1887       if (TraceExceptions) {
1888         ResourceMark rm;
1889         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1890         if (has_last_Java_frame() ) {
1891           frame f = last_frame();
1892           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1893         }
1894         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1895       }
1896       _pending_async_exception = NULL;
1897       clear_has_async_exception();
1898     }
1899   }
1900 
1901   if (check_unsafe_error &&
1902       condition == _async_unsafe_access_error && !has_pending_exception()) {
1903     condition = _no_async_condition;  // done
1904     switch (thread_state()) {
1905     case _thread_in_vm:
1906       {
1907         JavaThread* THREAD = this;
1908         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1909       }
1910     case _thread_in_native:
1911       {
1912         ThreadInVMfromNative tiv(this);
1913         JavaThread* THREAD = this;
1914         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1915       }
1916     case _thread_in_Java:
1917       {
1918         ThreadInVMfromJava tiv(this);
1919         JavaThread* THREAD = this;
1920         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1921       }
1922     default:
1923       ShouldNotReachHere();
1924     }
1925   }
1926 
1927   assert(condition == _no_async_condition || has_pending_exception() ||
1928          (!check_unsafe_error && condition == _async_unsafe_access_error),
1929          "must have handled the async condition, if no exception");
1930 }
1931 
1932 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1933   //
1934   // Check for pending external suspend. Internal suspend requests do
1935   // not use handle_special_runtime_exit_condition().
1936   // If JNIEnv proxies are allowed, don't self-suspend if the target
1937   // thread is not the current thread. In older versions of jdbx, jdbx
1938   // threads could call into the VM with another thread's JNIEnv so we
1939   // can be here operating on behalf of a suspended thread (4432884).
1940   bool do_self_suspend = is_external_suspend_with_lock();
1941   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1942     //
1943     // Because thread is external suspended the safepoint code will count
1944     // thread as at a safepoint. This can be odd because we can be here
1945     // as _thread_in_Java which would normally transition to _thread_blocked
1946     // at a safepoint. We would like to mark the thread as _thread_blocked
1947     // before calling java_suspend_self like all other callers of it but
1948     // we must then observe proper safepoint protocol. (We can't leave
1949     // _thread_blocked with a safepoint in progress). However we can be
1950     // here as _thread_in_native_trans so we can't use a normal transition
1951     // constructor/destructor pair because they assert on that type of
1952     // transition. We could do something like:
1953     //
1954     // JavaThreadState state = thread_state();
1955     // set_thread_state(_thread_in_vm);
1956     // {
1957     //   ThreadBlockInVM tbivm(this);
1958     //   java_suspend_self()
1959     // }
1960     // set_thread_state(_thread_in_vm_trans);
1961     // if (safepoint) block;
1962     // set_thread_state(state);
1963     //
1964     // but that is pretty messy. Instead we just go with the way the
1965     // code has worked before and note that this is the only path to
1966     // java_suspend_self that doesn't put the thread in _thread_blocked
1967     // mode.
1968 
1969     frame_anchor()->make_walkable(this);
1970     java_suspend_self();
1971 
1972     // We might be here for reasons in addition to the self-suspend request
1973     // so check for other async requests.
1974   }
1975 
1976   if (check_asyncs) {
1977     check_and_handle_async_exceptions();
1978   }
1979 }
1980 
1981 void JavaThread::send_thread_stop(oop java_throwable)  {
1982   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1983   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1984   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1985 
1986   // Do not throw asynchronous exceptions against the compiler thread
1987   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1988   if (is_Compiler_thread()) return;
1989 
1990   {
1991     // Actually throw the Throwable against the target Thread - however
1992     // only if there is no thread death exception installed already.
1993     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1994       // If the topmost frame is a runtime stub, then we are calling into
1995       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1996       // must deoptimize the caller before continuing, as the compiled  exception handler table
1997       // may not be valid
1998       if (has_last_Java_frame()) {
1999         frame f = last_frame();
2000         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2001           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2002           RegisterMap reg_map(this, UseBiasedLocking);
2003           frame compiled_frame = f.sender(&reg_map);
2004           if (compiled_frame.can_be_deoptimized()) {
2005             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2006           }
2007         }
2008       }
2009 
2010       // Set async. pending exception in thread.
2011       set_pending_async_exception(java_throwable);
2012 
2013       if (TraceExceptions) {
2014        ResourceMark rm;
2015        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2016       }
2017       // for AbortVMOnException flag
2018       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
2019     }
2020   }
2021 
2022 
2023   // Interrupt thread so it will wake up from a potential wait()
2024   Thread::interrupt(this);
2025 }
2026 
2027 // External suspension mechanism.
2028 //
2029 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2030 // to any VM_locks and it is at a transition
2031 // Self-suspension will happen on the transition out of the vm.
2032 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2033 //
2034 // Guarantees on return:
2035 //   + Target thread will not execute any new bytecode (that's why we need to
2036 //     force a safepoint)
2037 //   + Target thread will not enter any new monitors
2038 //
2039 void JavaThread::java_suspend() {
2040   { MutexLocker mu(Threads_lock);
2041     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2042        return;
2043     }
2044   }
2045 
2046   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2047     if (!is_external_suspend()) {
2048       // a racing resume has cancelled us; bail out now
2049       return;
2050     }
2051 
2052     // suspend is done
2053     uint32_t debug_bits = 0;
2054     // Warning: is_ext_suspend_completed() may temporarily drop the
2055     // SR_lock to allow the thread to reach a stable thread state if
2056     // it is currently in a transient thread state.
2057     if (is_ext_suspend_completed(false /* !called_by_wait */,
2058                                  SuspendRetryDelay, &debug_bits) ) {
2059       return;
2060     }
2061   }
2062 
2063   VM_ForceSafepoint vm_suspend;
2064   VMThread::execute(&vm_suspend);
2065 }
2066 
2067 // Part II of external suspension.
2068 // A JavaThread self suspends when it detects a pending external suspend
2069 // request. This is usually on transitions. It is also done in places
2070 // where continuing to the next transition would surprise the caller,
2071 // e.g., monitor entry.
2072 //
2073 // Returns the number of times that the thread self-suspended.
2074 //
2075 // Note: DO NOT call java_suspend_self() when you just want to block current
2076 //       thread. java_suspend_self() is the second stage of cooperative
2077 //       suspension for external suspend requests and should only be used
2078 //       to complete an external suspend request.
2079 //
2080 int JavaThread::java_suspend_self() {
2081   int ret = 0;
2082 
2083   // we are in the process of exiting so don't suspend
2084   if (is_exiting()) {
2085      clear_external_suspend();
2086      return ret;
2087   }
2088 
2089   assert(_anchor.walkable() ||
2090     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2091     "must have walkable stack");
2092 
2093   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2094 
2095   assert(!this->is_ext_suspended(),
2096     "a thread trying to self-suspend should not already be suspended");
2097 
2098   if (this->is_suspend_equivalent()) {
2099     // If we are self-suspending as a result of the lifting of a
2100     // suspend equivalent condition, then the suspend_equivalent
2101     // flag is not cleared until we set the ext_suspended flag so
2102     // that wait_for_ext_suspend_completion() returns consistent
2103     // results.
2104     this->clear_suspend_equivalent();
2105   }
2106 
2107   // A racing resume may have cancelled us before we grabbed SR_lock
2108   // above. Or another external suspend request could be waiting for us
2109   // by the time we return from SR_lock()->wait(). The thread
2110   // that requested the suspension may already be trying to walk our
2111   // stack and if we return now, we can change the stack out from under
2112   // it. This would be a "bad thing (TM)" and cause the stack walker
2113   // to crash. We stay self-suspended until there are no more pending
2114   // external suspend requests.
2115   while (is_external_suspend()) {
2116     ret++;
2117     this->set_ext_suspended();
2118 
2119     // _ext_suspended flag is cleared by java_resume()
2120     while (is_ext_suspended()) {
2121       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2122     }
2123   }
2124 
2125   return ret;
2126 }
2127 
2128 #ifdef ASSERT
2129 // verify the JavaThread has not yet been published in the Threads::list, and
2130 // hence doesn't need protection from concurrent access at this stage
2131 void JavaThread::verify_not_published() {
2132   if (!Threads_lock->owned_by_self()) {
2133    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2134    assert( !Threads::includes(this),
2135            "java thread shouldn't have been published yet!");
2136   }
2137   else {
2138    assert( !Threads::includes(this),
2139            "java thread shouldn't have been published yet!");
2140   }
2141 }
2142 #endif
2143 
2144 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2145 // progress or when _suspend_flags is non-zero.
2146 // Current thread needs to self-suspend if there is a suspend request and/or
2147 // block if a safepoint is in progress.
2148 // Async exception ISN'T checked.
2149 // Note only the ThreadInVMfromNative transition can call this function
2150 // directly and when thread state is _thread_in_native_trans
2151 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2152   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2153 
2154   JavaThread *curJT = JavaThread::current();
2155   bool do_self_suspend = thread->is_external_suspend();
2156 
2157   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2158 
2159   // If JNIEnv proxies are allowed, don't self-suspend if the target
2160   // thread is not the current thread. In older versions of jdbx, jdbx
2161   // threads could call into the VM with another thread's JNIEnv so we
2162   // can be here operating on behalf of a suspended thread (4432884).
2163   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2164     JavaThreadState state = thread->thread_state();
2165 
2166     // We mark this thread_blocked state as a suspend-equivalent so
2167     // that a caller to is_ext_suspend_completed() won't be confused.
2168     // The suspend-equivalent state is cleared by java_suspend_self().
2169     thread->set_suspend_equivalent();
2170 
2171     // If the safepoint code sees the _thread_in_native_trans state, it will
2172     // wait until the thread changes to other thread state. There is no
2173     // guarantee on how soon we can obtain the SR_lock and complete the
2174     // self-suspend request. It would be a bad idea to let safepoint wait for
2175     // too long. Temporarily change the state to _thread_blocked to
2176     // let the VM thread know that this thread is ready for GC. The problem
2177     // of changing thread state is that safepoint could happen just after
2178     // java_suspend_self() returns after being resumed, and VM thread will
2179     // see the _thread_blocked state. We must check for safepoint
2180     // after restoring the state and make sure we won't leave while a safepoint
2181     // is in progress.
2182     thread->set_thread_state(_thread_blocked);
2183     thread->java_suspend_self();
2184     thread->set_thread_state(state);
2185     // Make sure new state is seen by VM thread
2186     if (os::is_MP()) {
2187       if (UseMembar) {
2188         // Force a fence between the write above and read below
2189         OrderAccess::fence();
2190       } else {
2191         // Must use this rather than serialization page in particular on Windows
2192         InterfaceSupport::serialize_memory(thread);
2193       }
2194     }
2195   }
2196 
2197   if (SafepointSynchronize::do_call_back()) {
2198     // If we are safepointing, then block the caller which may not be
2199     // the same as the target thread (see above).
2200     SafepointSynchronize::block(curJT);
2201   }
2202 
2203   if (thread->is_deopt_suspend()) {
2204     thread->clear_deopt_suspend();
2205     RegisterMap map(thread, false);
2206     frame f = thread->last_frame();
2207     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2208       f = f.sender(&map);
2209     }
2210     if (f.id() == thread->must_deopt_id()) {
2211       thread->clear_must_deopt_id();
2212       f.deoptimize(thread);
2213     } else {
2214       fatal("missed deoptimization!");
2215     }
2216   }
2217 }
2218 
2219 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2220 // progress or when _suspend_flags is non-zero.
2221 // Current thread needs to self-suspend if there is a suspend request and/or
2222 // block if a safepoint is in progress.
2223 // Also check for pending async exception (not including unsafe access error).
2224 // Note only the native==>VM/Java barriers can call this function and when
2225 // thread state is _thread_in_native_trans.
2226 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2227   check_safepoint_and_suspend_for_native_trans(thread);
2228 
2229   if (thread->has_async_exception()) {
2230     // We are in _thread_in_native_trans state, don't handle unsafe
2231     // access error since that may block.
2232     thread->check_and_handle_async_exceptions(false);
2233   }
2234 }
2235 
2236 // We need to guarantee the Threads_lock here, since resumes are not
2237 // allowed during safepoint synchronization
2238 // Can only resume from an external suspension
2239 void JavaThread::java_resume() {
2240   assert_locked_or_safepoint(Threads_lock);
2241 
2242   // Sanity check: thread is gone, has started exiting or the thread
2243   // was not externally suspended.
2244   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2245     return;
2246   }
2247 
2248   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2249 
2250   clear_external_suspend();
2251 
2252   if (is_ext_suspended()) {
2253     clear_ext_suspended();
2254     SR_lock()->notify_all();
2255   }
2256 }
2257 
2258 void JavaThread::create_stack_guard_pages() {
2259   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2260   address low_addr = stack_base() - stack_size();
2261   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2262 
2263   int allocate = os::allocate_stack_guard_pages();
2264   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2265 
2266   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2267     warning("Attempt to allocate stack guard pages failed.");
2268     return;
2269   }
2270 
2271   if (os::guard_memory((char *) low_addr, len)) {
2272     _stack_guard_state = stack_guard_enabled;
2273   } else {
2274     warning("Attempt to protect stack guard pages failed.");
2275     if (os::uncommit_memory((char *) low_addr, len)) {
2276       warning("Attempt to deallocate stack guard pages failed.");
2277     }
2278   }
2279 }
2280 
2281 void JavaThread::remove_stack_guard_pages() {
2282   if (_stack_guard_state == stack_guard_unused) return;
2283   address low_addr = stack_base() - stack_size();
2284   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2285 
2286   if (os::allocate_stack_guard_pages()) {
2287     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2288       _stack_guard_state = stack_guard_unused;
2289     } else {
2290       warning("Attempt to deallocate stack guard pages failed.");
2291     }
2292   } else {
2293     if (_stack_guard_state == stack_guard_unused) return;
2294     if (os::unguard_memory((char *) low_addr, len)) {
2295       _stack_guard_state = stack_guard_unused;
2296     } else {
2297         warning("Attempt to unprotect stack guard pages failed.");
2298     }
2299   }
2300 }
2301 
2302 void JavaThread::enable_stack_yellow_zone() {
2303   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2304   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2305 
2306   // The base notation is from the stacks point of view, growing downward.
2307   // We need to adjust it to work correctly with guard_memory()
2308   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2309 
2310   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2311   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2312 
2313   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2314     _stack_guard_state = stack_guard_enabled;
2315   } else {
2316     warning("Attempt to guard stack yellow zone failed.");
2317   }
2318   enable_register_stack_guard();
2319 }
2320 
2321 void JavaThread::disable_stack_yellow_zone() {
2322   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2323   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2324 
2325   // Simply return if called for a thread that does not use guard pages.
2326   if (_stack_guard_state == stack_guard_unused) return;
2327 
2328   // The base notation is from the stacks point of view, growing downward.
2329   // We need to adjust it to work correctly with guard_memory()
2330   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2331 
2332   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2333     _stack_guard_state = stack_guard_yellow_disabled;
2334   } else {
2335     warning("Attempt to unguard stack yellow zone failed.");
2336   }
2337   disable_register_stack_guard();
2338 }
2339 
2340 void JavaThread::enable_stack_red_zone() {
2341   // The base notation is from the stacks point of view, growing downward.
2342   // We need to adjust it to work correctly with guard_memory()
2343   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2344   address base = stack_red_zone_base() - stack_red_zone_size();
2345 
2346   guarantee(base < stack_base(),"Error calculating stack red zone");
2347   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2348 
2349   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2350     warning("Attempt to guard stack red zone failed.");
2351   }
2352 }
2353 
2354 void JavaThread::disable_stack_red_zone() {
2355   // The base notation is from the stacks point of view, growing downward.
2356   // We need to adjust it to work correctly with guard_memory()
2357   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2358   address base = stack_red_zone_base() - stack_red_zone_size();
2359   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2360     warning("Attempt to unguard stack red zone failed.");
2361   }
2362 }
2363 
2364 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2365   // ignore is there is no stack
2366   if (!has_last_Java_frame()) return;
2367   // traverse the stack frames. Starts from top frame.
2368   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2369     frame* fr = fst.current();
2370     f(fr, fst.register_map());
2371   }
2372 }
2373 
2374 
2375 #ifndef PRODUCT
2376 // Deoptimization
2377 // Function for testing deoptimization
2378 void JavaThread::deoptimize() {
2379   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2380   StackFrameStream fst(this, UseBiasedLocking);
2381   bool deopt = false;           // Dump stack only if a deopt actually happens.
2382   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2383   // Iterate over all frames in the thread and deoptimize
2384   for(; !fst.is_done(); fst.next()) {
2385     if(fst.current()->can_be_deoptimized()) {
2386 
2387       if (only_at) {
2388         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2389         // consists of comma or carriage return separated numbers so
2390         // search for the current bci in that string.
2391         address pc = fst.current()->pc();
2392         nmethod* nm =  (nmethod*) fst.current()->cb();
2393         ScopeDesc* sd = nm->scope_desc_at( pc);
2394         char buffer[8];
2395         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2396         size_t len = strlen(buffer);
2397         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2398         while (found != NULL) {
2399           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2400               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2401             // Check that the bci found is bracketed by terminators.
2402             break;
2403           }
2404           found = strstr(found + 1, buffer);
2405         }
2406         if (!found) {
2407           continue;
2408         }
2409       }
2410 
2411       if (DebugDeoptimization && !deopt) {
2412         deopt = true; // One-time only print before deopt
2413         tty->print_cr("[BEFORE Deoptimization]");
2414         trace_frames();
2415         trace_stack();
2416       }
2417       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2418     }
2419   }
2420 
2421   if (DebugDeoptimization && deopt) {
2422     tty->print_cr("[AFTER Deoptimization]");
2423     trace_frames();
2424   }
2425 }
2426 
2427 
2428 // Make zombies
2429 void JavaThread::make_zombies() {
2430   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2431     if (fst.current()->can_be_deoptimized()) {
2432       // it is a Java nmethod
2433       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2434       nm->make_not_entrant();
2435     }
2436   }
2437 }
2438 #endif // PRODUCT
2439 
2440 
2441 void JavaThread::deoptimized_wrt_marked_nmethods() {
2442   if (!has_last_Java_frame()) return;
2443   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2444   StackFrameStream fst(this, UseBiasedLocking);
2445   for(; !fst.is_done(); fst.next()) {
2446     if (fst.current()->should_be_deoptimized()) {
2447       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2448     }
2449   }
2450 }
2451 
2452 
2453 // GC support
2454 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2455 
2456 void JavaThread::gc_epilogue() {
2457   frames_do(frame_gc_epilogue);
2458 }
2459 
2460 
2461 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2462 
2463 void JavaThread::gc_prologue() {
2464   frames_do(frame_gc_prologue);
2465 }
2466 
2467 // If the caller is a NamedThread, then remember, in the current scope,
2468 // the given JavaThread in its _processed_thread field.
2469 class RememberProcessedThread: public StackObj {
2470   NamedThread* _cur_thr;
2471 public:
2472   RememberProcessedThread(JavaThread* jthr) {
2473     Thread* thread = Thread::current();
2474     if (thread->is_Named_thread()) {
2475       _cur_thr = (NamedThread *)thread;
2476       _cur_thr->set_processed_thread(jthr);
2477     } else {
2478       _cur_thr = NULL;
2479     }
2480   }
2481 
2482   ~RememberProcessedThread() {
2483     if (_cur_thr) {
2484       _cur_thr->set_processed_thread(NULL);
2485     }
2486   }
2487 };
2488 
2489 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2490   // Verify that the deferred card marks have been flushed.
2491   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2492 
2493   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2494   // since there may be more than one thread using each ThreadProfiler.
2495 
2496   // Traverse the GCHandles
2497   Thread::oops_do(f, cf);
2498 
2499   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2500           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2501 
2502   if (has_last_Java_frame()) {
2503     // Record JavaThread to GC thread
2504     RememberProcessedThread rpt(this);
2505 
2506     // Traverse the privileged stack
2507     if (_privileged_stack_top != NULL) {
2508       _privileged_stack_top->oops_do(f);
2509     }
2510 
2511     // traverse the registered growable array
2512     if (_array_for_gc != NULL) {
2513       for (int index = 0; index < _array_for_gc->length(); index++) {
2514         f->do_oop(_array_for_gc->adr_at(index));
2515       }
2516     }
2517 
2518     // Traverse the monitor chunks
2519     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2520       chunk->oops_do(f);
2521     }
2522 
2523     // Traverse the execution stack
2524     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2525       fst.current()->oops_do(f, cf, fst.register_map());
2526     }
2527   }
2528 
2529   // callee_target is never live across a gc point so NULL it here should
2530   // it still contain a methdOop.
2531 
2532   set_callee_target(NULL);
2533 
2534   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2535   // If we have deferred set_locals there might be oops waiting to be
2536   // written
2537   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2538   if (list != NULL) {
2539     for (int i = 0; i < list->length(); i++) {
2540       list->at(i)->oops_do(f);
2541     }
2542   }
2543 
2544   // Traverse instance variables at the end since the GC may be moving things
2545   // around using this function
2546   f->do_oop((oop*) &_threadObj);
2547   f->do_oop((oop*) &_vm_result);
2548   f->do_oop((oop*) &_vm_result_2);
2549   f->do_oop((oop*) &_exception_oop);
2550   f->do_oop((oop*) &_pending_async_exception);
2551 
2552   if (jvmti_thread_state() != NULL) {
2553     jvmti_thread_state()->oops_do(f);
2554   }
2555 }
2556 
2557 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2558   Thread::nmethods_do(cf);  // (super method is a no-op)
2559 
2560   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2561           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2562 
2563   if (has_last_Java_frame()) {
2564     // Traverse the execution stack
2565     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2566       fst.current()->nmethods_do(cf);
2567     }
2568   }
2569 }
2570 
2571 // Printing
2572 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2573   switch (_thread_state) {
2574   case _thread_uninitialized:     return "_thread_uninitialized";
2575   case _thread_new:               return "_thread_new";
2576   case _thread_new_trans:         return "_thread_new_trans";
2577   case _thread_in_native:         return "_thread_in_native";
2578   case _thread_in_native_trans:   return "_thread_in_native_trans";
2579   case _thread_in_vm:             return "_thread_in_vm";
2580   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2581   case _thread_in_Java:           return "_thread_in_Java";
2582   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2583   case _thread_blocked:           return "_thread_blocked";
2584   case _thread_blocked_trans:     return "_thread_blocked_trans";
2585   default:                        return "unknown thread state";
2586   }
2587 }
2588 
2589 #ifndef PRODUCT
2590 void JavaThread::print_thread_state_on(outputStream *st) const {
2591   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2592 };
2593 void JavaThread::print_thread_state() const {
2594   print_thread_state_on(tty);
2595 };
2596 #endif // PRODUCT
2597 
2598 // Called by Threads::print() for VM_PrintThreads operation
2599 void JavaThread::print_on(outputStream *st) const {
2600   st->print("\"%s\" ", get_thread_name());
2601   oop thread_oop = threadObj();
2602   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2603   Thread::print_on(st);
2604   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2605   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2606   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2607     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2608   }
2609 #ifndef PRODUCT
2610   print_thread_state_on(st);
2611   _safepoint_state->print_on(st);
2612 #endif // PRODUCT
2613 }
2614 
2615 // Called by fatal error handler. The difference between this and
2616 // JavaThread::print() is that we can't grab lock or allocate memory.
2617 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2618   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2619   oop thread_obj = threadObj();
2620   if (thread_obj != NULL) {
2621      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2622   }
2623   st->print(" [");
2624   st->print("%s", _get_thread_state_name(_thread_state));
2625   if (osthread()) {
2626     st->print(", id=%d", osthread()->thread_id());
2627   }
2628   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2629             _stack_base - _stack_size, _stack_base);
2630   st->print("]");
2631   return;
2632 }
2633 
2634 // Verification
2635 
2636 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2637 
2638 void JavaThread::verify() {
2639   // Verify oops in the thread.
2640   oops_do(&VerifyOopClosure::verify_oop, NULL);
2641 
2642   // Verify the stack frames.
2643   frames_do(frame_verify);
2644 }
2645 
2646 // CR 6300358 (sub-CR 2137150)
2647 // Most callers of this method assume that it can't return NULL but a
2648 // thread may not have a name whilst it is in the process of attaching to
2649 // the VM - see CR 6412693, and there are places where a JavaThread can be
2650 // seen prior to having it's threadObj set (eg JNI attaching threads and
2651 // if vm exit occurs during initialization). These cases can all be accounted
2652 // for such that this method never returns NULL.
2653 const char* JavaThread::get_thread_name() const {
2654 #ifdef ASSERT
2655   // early safepoints can hit while current thread does not yet have TLS
2656   if (!SafepointSynchronize::is_at_safepoint()) {
2657     Thread *cur = Thread::current();
2658     if (!(cur->is_Java_thread() && cur == this)) {
2659       // Current JavaThreads are allowed to get their own name without
2660       // the Threads_lock.
2661       assert_locked_or_safepoint(Threads_lock);
2662     }
2663   }
2664 #endif // ASSERT
2665     return get_thread_name_string();
2666 }
2667 
2668 // Returns a non-NULL representation of this thread's name, or a suitable
2669 // descriptive string if there is no set name
2670 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2671   const char* name_str;
2672   oop thread_obj = threadObj();
2673   if (thread_obj != NULL) {
2674     typeArrayOop name = java_lang_Thread::name(thread_obj);
2675     if (name != NULL) {
2676       if (buf == NULL) {
2677         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2678       }
2679       else {
2680         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2681       }
2682     }
2683     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2684       name_str = "<no-name - thread is attaching>";
2685     }
2686     else {
2687       name_str = Thread::name();
2688     }
2689   }
2690   else {
2691     name_str = Thread::name();
2692   }
2693   assert(name_str != NULL, "unexpected NULL thread name");
2694   return name_str;
2695 }
2696 
2697 
2698 const char* JavaThread::get_threadgroup_name() const {
2699   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2700   oop thread_obj = threadObj();
2701   if (thread_obj != NULL) {
2702     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2703     if (thread_group != NULL) {
2704       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2705       // ThreadGroup.name can be null
2706       if (name != NULL) {
2707         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2708         return str;
2709       }
2710     }
2711   }
2712   return NULL;
2713 }
2714 
2715 const char* JavaThread::get_parent_name() const {
2716   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2717   oop thread_obj = threadObj();
2718   if (thread_obj != NULL) {
2719     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2720     if (thread_group != NULL) {
2721       oop parent = java_lang_ThreadGroup::parent(thread_group);
2722       if (parent != NULL) {
2723         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2724         // ThreadGroup.name can be null
2725         if (name != NULL) {
2726           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2727           return str;
2728         }
2729       }
2730     }
2731   }
2732   return NULL;
2733 }
2734 
2735 ThreadPriority JavaThread::java_priority() const {
2736   oop thr_oop = threadObj();
2737   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2738   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2739   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2740   return priority;
2741 }
2742 
2743 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2744 
2745   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2746   // Link Java Thread object <-> C++ Thread
2747 
2748   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2749   // and put it into a new Handle.  The Handle "thread_oop" can then
2750   // be used to pass the C++ thread object to other methods.
2751 
2752   // Set the Java level thread object (jthread) field of the
2753   // new thread (a JavaThread *) to C++ thread object using the
2754   // "thread_oop" handle.
2755 
2756   // Set the thread field (a JavaThread *) of the
2757   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2758 
2759   Handle thread_oop(Thread::current(),
2760                     JNIHandles::resolve_non_null(jni_thread));
2761   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2762     "must be initialized");
2763   set_threadObj(thread_oop());
2764   java_lang_Thread::set_thread(thread_oop(), this);
2765 
2766   if (prio == NoPriority) {
2767     prio = java_lang_Thread::priority(thread_oop());
2768     assert(prio != NoPriority, "A valid priority should be present");
2769   }
2770 
2771   // Push the Java priority down to the native thread; needs Threads_lock
2772   Thread::set_priority(this, prio);
2773 
2774   // Add the new thread to the Threads list and set it in motion.
2775   // We must have threads lock in order to call Threads::add.
2776   // It is crucial that we do not block before the thread is
2777   // added to the Threads list for if a GC happens, then the java_thread oop
2778   // will not be visited by GC.
2779   Threads::add(this);
2780 }
2781 
2782 oop JavaThread::current_park_blocker() {
2783   // Support for JSR-166 locks
2784   oop thread_oop = threadObj();
2785   if (thread_oop != NULL &&
2786       JDK_Version::current().supports_thread_park_blocker()) {
2787     return java_lang_Thread::park_blocker(thread_oop);
2788   }
2789   return NULL;
2790 }
2791 
2792 
2793 void JavaThread::print_stack_on(outputStream* st) {
2794   if (!has_last_Java_frame()) return;
2795   ResourceMark rm;
2796   HandleMark   hm;
2797 
2798   RegisterMap reg_map(this);
2799   vframe* start_vf = last_java_vframe(&reg_map);
2800   int count = 0;
2801   for (vframe* f = start_vf; f; f = f->sender() ) {
2802     if (f->is_java_frame()) {
2803       javaVFrame* jvf = javaVFrame::cast(f);
2804       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2805 
2806       // Print out lock information
2807       if (JavaMonitorsInStackTrace) {
2808         jvf->print_lock_info_on(st, count);
2809       }
2810     } else {
2811       // Ignore non-Java frames
2812     }
2813 
2814     // Bail-out case for too deep stacks
2815     count++;
2816     if (MaxJavaStackTraceDepth == count) return;
2817   }
2818 }
2819 
2820 
2821 // JVMTI PopFrame support
2822 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2823   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2824   if (in_bytes(size_in_bytes) != 0) {
2825     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2826     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2827     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2828   }
2829 }
2830 
2831 void* JavaThread::popframe_preserved_args() {
2832   return _popframe_preserved_args;
2833 }
2834 
2835 ByteSize JavaThread::popframe_preserved_args_size() {
2836   return in_ByteSize(_popframe_preserved_args_size);
2837 }
2838 
2839 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2840   int sz = in_bytes(popframe_preserved_args_size());
2841   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2842   return in_WordSize(sz / wordSize);
2843 }
2844 
2845 void JavaThread::popframe_free_preserved_args() {
2846   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2847   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2848   _popframe_preserved_args = NULL;
2849   _popframe_preserved_args_size = 0;
2850 }
2851 
2852 #ifndef PRODUCT
2853 
2854 void JavaThread::trace_frames() {
2855   tty->print_cr("[Describe stack]");
2856   int frame_no = 1;
2857   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2858     tty->print("  %d. ", frame_no++);
2859     fst.current()->print_value_on(tty,this);
2860     tty->cr();
2861   }
2862 }
2863 
2864 
2865 #ifdef ASSERT
2866 // Print or validate the layout of stack frames
2867 void JavaThread::print_frame_layout(int depth, bool validate_only) {
2868   ResourceMark rm;
2869   PRESERVE_EXCEPTION_MARK;
2870   FrameValues values;
2871   int frame_no = 0;
2872   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
2873     fst.current()->describe(values, ++frame_no);
2874     if (depth == frame_no) break;
2875   }
2876   if (validate_only) {
2877     values.validate();
2878   } else {
2879     tty->print_cr("[Describe stack layout]");
2880     values.print();
2881   }
2882 }
2883 #endif
2884 
2885 void JavaThread::trace_stack_from(vframe* start_vf) {
2886   ResourceMark rm;
2887   int vframe_no = 1;
2888   for (vframe* f = start_vf; f; f = f->sender() ) {
2889     if (f->is_java_frame()) {
2890       javaVFrame::cast(f)->print_activation(vframe_no++);
2891     } else {
2892       f->print();
2893     }
2894     if (vframe_no > StackPrintLimit) {
2895       tty->print_cr("...<more frames>...");
2896       return;
2897     }
2898   }
2899 }
2900 
2901 
2902 void JavaThread::trace_stack() {
2903   if (!has_last_Java_frame()) return;
2904   ResourceMark rm;
2905   HandleMark   hm;
2906   RegisterMap reg_map(this);
2907   trace_stack_from(last_java_vframe(&reg_map));
2908 }
2909 
2910 
2911 #endif // PRODUCT
2912 
2913 
2914 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2915   assert(reg_map != NULL, "a map must be given");
2916   frame f = last_frame();
2917   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2918     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2919   }
2920   return NULL;
2921 }
2922 
2923 
2924 klassOop JavaThread::security_get_caller_class(int depth) {
2925   vframeStream vfst(this);
2926   vfst.security_get_caller_frame(depth);
2927   if (!vfst.at_end()) {
2928     return vfst.method()->method_holder();
2929   }
2930   return NULL;
2931 }
2932 
2933 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2934   assert(thread->is_Compiler_thread(), "must be compiler thread");
2935   CompileBroker::compiler_thread_loop();
2936 }
2937 
2938 // Create a CompilerThread
2939 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2940 : JavaThread(&compiler_thread_entry) {
2941   _env   = NULL;
2942   _log   = NULL;
2943   _task  = NULL;
2944   _queue = queue;
2945   _counters = counters;
2946   _buffer_blob = NULL;
2947   _scanned_nmethod = NULL;
2948 
2949 #ifndef PRODUCT
2950   _ideal_graph_printer = NULL;
2951 #endif
2952 }
2953 
2954 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2955   JavaThread::oops_do(f, cf);
2956   if (_scanned_nmethod != NULL && cf != NULL) {
2957     // Safepoints can occur when the sweeper is scanning an nmethod so
2958     // process it here to make sure it isn't unloaded in the middle of
2959     // a scan.
2960     cf->do_code_blob(_scanned_nmethod);
2961   }
2962 }
2963 
2964 // ======= Threads ========
2965 
2966 // The Threads class links together all active threads, and provides
2967 // operations over all threads.  It is protected by its own Mutex
2968 // lock, which is also used in other contexts to protect thread
2969 // operations from having the thread being operated on from exiting
2970 // and going away unexpectedly (e.g., safepoint synchronization)
2971 
2972 JavaThread* Threads::_thread_list = NULL;
2973 int         Threads::_number_of_threads = 0;
2974 int         Threads::_number_of_non_daemon_threads = 0;
2975 int         Threads::_return_code = 0;
2976 size_t      JavaThread::_stack_size_at_create = 0;
2977 
2978 // All JavaThreads
2979 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2980 
2981 void os_stream();
2982 
2983 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2984 void Threads::threads_do(ThreadClosure* tc) {
2985   assert_locked_or_safepoint(Threads_lock);
2986   // ALL_JAVA_THREADS iterates through all JavaThreads
2987   ALL_JAVA_THREADS(p) {
2988     tc->do_thread(p);
2989   }
2990   // Someday we could have a table or list of all non-JavaThreads.
2991   // For now, just manually iterate through them.
2992   tc->do_thread(VMThread::vm_thread());
2993   Universe::heap()->gc_threads_do(tc);
2994   WatcherThread *wt = WatcherThread::watcher_thread();
2995   // Strictly speaking, the following NULL check isn't sufficient to make sure
2996   // the data for WatcherThread is still valid upon being examined. However,
2997   // considering that WatchThread terminates when the VM is on the way to
2998   // exit at safepoint, the chance of the above is extremely small. The right
2999   // way to prevent termination of WatcherThread would be to acquire
3000   // Terminator_lock, but we can't do that without violating the lock rank
3001   // checking in some cases.
3002   if (wt != NULL)
3003     tc->do_thread(wt);
3004 
3005   // If CompilerThreads ever become non-JavaThreads, add them here
3006 }
3007 
3008 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3009 
3010   extern void JDK_Version_init();
3011 
3012   // Check version
3013   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3014 
3015   // Initialize the output stream module
3016   ostream_init();
3017 
3018   // Process java launcher properties.
3019   Arguments::process_sun_java_launcher_properties(args);
3020 
3021   // Initialize the os module before using TLS
3022   os::init();
3023 
3024   // Initialize system properties.
3025   Arguments::init_system_properties();
3026 
3027   // So that JDK version can be used as a discrimintor when parsing arguments
3028   JDK_Version_init();
3029 
3030   // Update/Initialize System properties after JDK version number is known
3031   Arguments::init_version_specific_system_properties();
3032 
3033   // Parse arguments
3034   jint parse_result = Arguments::parse(args);
3035   if (parse_result != JNI_OK) return parse_result;
3036 
3037   if (PauseAtStartup) {
3038     os::pause();
3039   }
3040 
3041   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3042 
3043   // Record VM creation timing statistics
3044   TraceVmCreationTime create_vm_timer;
3045   create_vm_timer.start();
3046 
3047   // Timing (must come after argument parsing)
3048   TraceTime timer("Create VM", TraceStartupTime);
3049 
3050   // Initialize the os module after parsing the args
3051   jint os_init_2_result = os::init_2();
3052   if (os_init_2_result != JNI_OK) return os_init_2_result;
3053 
3054   // Initialize output stream logging
3055   ostream_init_log();
3056 
3057   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3058   // Must be before create_vm_init_agents()
3059   if (Arguments::init_libraries_at_startup()) {
3060     convert_vm_init_libraries_to_agents();
3061   }
3062 
3063   // Launch -agentlib/-agentpath and converted -Xrun agents
3064   if (Arguments::init_agents_at_startup()) {
3065     create_vm_init_agents();
3066   }
3067 
3068   // Initialize Threads state
3069   _thread_list = NULL;
3070   _number_of_threads = 0;
3071   _number_of_non_daemon_threads = 0;
3072 
3073   // Initialize TLS
3074   ThreadLocalStorage::init();
3075 
3076   // Initialize global data structures and create system classes in heap
3077   vm_init_globals();
3078 
3079   // Attach the main thread to this os thread
3080   JavaThread* main_thread = new JavaThread();
3081   main_thread->set_thread_state(_thread_in_vm);
3082   // must do this before set_active_handles and initialize_thread_local_storage
3083   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3084   // change the stack size recorded here to one based on the java thread
3085   // stacksize. This adjusted size is what is used to figure the placement
3086   // of the guard pages.
3087   main_thread->record_stack_base_and_size();
3088   main_thread->initialize_thread_local_storage();
3089 
3090   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3091 
3092   if (!main_thread->set_as_starting_thread()) {
3093     vm_shutdown_during_initialization(
3094       "Failed necessary internal allocation. Out of swap space");
3095     delete main_thread;
3096     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3097     return JNI_ENOMEM;
3098   }
3099 
3100   // Enable guard page *after* os::create_main_thread(), otherwise it would
3101   // crash Linux VM, see notes in os_linux.cpp.
3102   main_thread->create_stack_guard_pages();
3103 
3104   // Initialize Java-Level synchronization subsystem
3105   ObjectMonitor::Initialize() ;
3106 
3107   // Initialize global modules
3108   jint status = init_globals();
3109   if (status != JNI_OK) {
3110     delete main_thread;
3111     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3112     return status;
3113   }
3114 
3115   // Should be done after the heap is fully created
3116   main_thread->cache_global_variables();
3117 
3118   HandleMark hm;
3119 
3120   { MutexLocker mu(Threads_lock);
3121     Threads::add(main_thread);
3122   }
3123 
3124   // Any JVMTI raw monitors entered in onload will transition into
3125   // real raw monitor. VM is setup enough here for raw monitor enter.
3126   JvmtiExport::transition_pending_onload_raw_monitors();
3127 
3128   if (VerifyBeforeGC &&
3129       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3130     Universe::heap()->prepare_for_verify();
3131     Universe::verify();   // make sure we're starting with a clean slate
3132   }
3133 
3134   // Create the VMThread
3135   { TraceTime timer("Start VMThread", TraceStartupTime);
3136     VMThread::create();
3137     Thread* vmthread = VMThread::vm_thread();
3138 
3139     if (!os::create_thread(vmthread, os::vm_thread))
3140       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3141 
3142     // Wait for the VM thread to become ready, and VMThread::run to initialize
3143     // Monitors can have spurious returns, must always check another state flag
3144     {
3145       MutexLocker ml(Notify_lock);
3146       os::start_thread(vmthread);
3147       while (vmthread->active_handles() == NULL) {
3148         Notify_lock->wait();
3149       }
3150     }
3151   }
3152 
3153   assert (Universe::is_fully_initialized(), "not initialized");
3154   EXCEPTION_MARK;
3155 
3156   // At this point, the Universe is initialized, but we have not executed
3157   // any byte code.  Now is a good time (the only time) to dump out the
3158   // internal state of the JVM for sharing.
3159 
3160   if (DumpSharedSpaces) {
3161     Universe::heap()->preload_and_dump(CHECK_0);
3162     ShouldNotReachHere();
3163   }
3164 
3165   // Always call even when there are not JVMTI environments yet, since environments
3166   // may be attached late and JVMTI must track phases of VM execution
3167   JvmtiExport::enter_start_phase();
3168 
3169   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3170   JvmtiExport::post_vm_start();
3171 
3172   {
3173     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3174 
3175     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3176       create_vm_init_libraries();
3177     }
3178 
3179     if (InitializeJavaLangString) {
3180       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3181     } else {
3182       warning("java.lang.String not initialized");
3183     }
3184 
3185     if (AggressiveOpts) {
3186       {
3187         // Forcibly initialize java/util/HashMap and mutate the private
3188         // static final "frontCacheEnabled" field before we start creating instances
3189 #ifdef ASSERT
3190         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3191         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3192 #endif
3193         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3194         KlassHandle k = KlassHandle(THREAD, k_o);
3195         guarantee(k.not_null(), "Must find java/util/HashMap");
3196         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3197         ik->initialize(CHECK_0);
3198         fieldDescriptor fd;
3199         // Possible we might not find this field; if so, don't break
3200         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3201           k()->java_mirror()->bool_field_put(fd.offset(), true);
3202         }
3203       }
3204 
3205       if (UseStringCache) {
3206         // Forcibly initialize java/lang/StringValue and mutate the private
3207         // static final "stringCacheEnabled" field before we start creating instances
3208         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3209         // Possible that StringValue isn't present: if so, silently don't break
3210         if (k_o != NULL) {
3211           KlassHandle k = KlassHandle(THREAD, k_o);
3212           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3213           ik->initialize(CHECK_0);
3214           fieldDescriptor fd;
3215           // Possible we might not find this field: if so, silently don't break
3216           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3217             k()->java_mirror()->bool_field_put(fd.offset(), true);
3218           }
3219         }
3220       }
3221     }
3222 
3223     // Initialize java_lang.System (needed before creating the thread)
3224     if (InitializeJavaLangSystem) {
3225       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3226       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3227       Handle thread_group = create_initial_thread_group(CHECK_0);
3228       Universe::set_main_thread_group(thread_group());
3229       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3230       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3231       main_thread->set_threadObj(thread_object);
3232       // Set thread status to running since main thread has
3233       // been started and running.
3234       java_lang_Thread::set_thread_status(thread_object,
3235                                           java_lang_Thread::RUNNABLE);
3236 
3237       // The VM preresolve methods to these classes. Make sure that get initialized
3238       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3239       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3240       // The VM creates & returns objects of this class. Make sure it's initialized.
3241       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3242       call_initializeSystemClass(CHECK_0);
3243     } else {
3244       warning("java.lang.System not initialized");
3245     }
3246 
3247     // an instance of OutOfMemory exception has been allocated earlier
3248     if (InitializeJavaLangExceptionsErrors) {
3249       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3250       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3251       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3252       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3253       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3254       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3255       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3256     } else {
3257       warning("java.lang.OutOfMemoryError has not been initialized");
3258       warning("java.lang.NullPointerException has not been initialized");
3259       warning("java.lang.ClassCastException has not been initialized");
3260       warning("java.lang.ArrayStoreException has not been initialized");
3261       warning("java.lang.ArithmeticException has not been initialized");
3262       warning("java.lang.StackOverflowError has not been initialized");
3263     }
3264   }
3265 
3266   // See        : bugid 4211085.
3267   // Background : the static initializer of java.lang.Compiler tries to read
3268   //              property"java.compiler" and read & write property "java.vm.info".
3269   //              When a security manager is installed through the command line
3270   //              option "-Djava.security.manager", the above properties are not
3271   //              readable and the static initializer for java.lang.Compiler fails
3272   //              resulting in a NoClassDefFoundError.  This can happen in any
3273   //              user code which calls methods in java.lang.Compiler.
3274   // Hack :       the hack is to pre-load and initialize this class, so that only
3275   //              system domains are on the stack when the properties are read.
3276   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3277   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3278   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3279   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3280   //              Once that is done, we should remove this hack.
3281   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3282 
3283   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3284   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3285   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3286   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3287   // This should also be taken out as soon as 4211383 gets fixed.
3288   reset_vm_info_property(CHECK_0);
3289 
3290   quicken_jni_functions();
3291 
3292   // Set flag that basic initialization has completed. Used by exceptions and various
3293   // debug stuff, that does not work until all basic classes have been initialized.
3294   set_init_completed();
3295 
3296   HS_DTRACE_PROBE(hotspot, vm__init__end);
3297 
3298   // record VM initialization completion time
3299   Management::record_vm_init_completed();
3300 
3301   // Compute system loader. Note that this has to occur after set_init_completed, since
3302   // valid exceptions may be thrown in the process.
3303   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3304   // set_init_completed has just been called, causing exceptions not to be shortcut
3305   // anymore. We call vm_exit_during_initialization directly instead.
3306   SystemDictionary::compute_java_system_loader(THREAD);
3307   if (HAS_PENDING_EXCEPTION) {
3308     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3309   }
3310 
3311 #ifndef SERIALGC
3312   // Support for ConcurrentMarkSweep. This should be cleaned up
3313   // and better encapsulated. The ugly nested if test would go away
3314   // once things are properly refactored. XXX YSR
3315   if (UseConcMarkSweepGC || UseG1GC) {
3316     if (UseConcMarkSweepGC) {
3317       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3318     } else {
3319       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3320     }
3321     if (HAS_PENDING_EXCEPTION) {
3322       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3323     }
3324   }
3325 #endif // SERIALGC
3326 
3327   // Always call even when there are not JVMTI environments yet, since environments
3328   // may be attached late and JVMTI must track phases of VM execution
3329   JvmtiExport::enter_live_phase();
3330 
3331   // Signal Dispatcher needs to be started before VMInit event is posted
3332   os::signal_init();
3333 
3334   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3335   if (!DisableAttachMechanism) {
3336     if (StartAttachListener || AttachListener::init_at_startup()) {
3337       AttachListener::init();
3338     }
3339   }
3340 
3341   // Launch -Xrun agents
3342   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3343   // back-end can launch with -Xdebug -Xrunjdwp.
3344   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3345     create_vm_init_libraries();
3346   }
3347 
3348   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3349   JvmtiExport::post_vm_initialized();
3350 
3351   Chunk::start_chunk_pool_cleaner_task();
3352 
3353   // initialize compiler(s)
3354   CompileBroker::compilation_init();
3355 
3356   Management::initialize(THREAD);
3357   if (HAS_PENDING_EXCEPTION) {
3358     // management agent fails to start possibly due to
3359     // configuration problem and is responsible for printing
3360     // stack trace if appropriate. Simply exit VM.
3361     vm_exit(1);
3362   }
3363 
3364   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3365   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3366   if (MemProfiling)                   MemProfiler::engage();
3367   StatSampler::engage();
3368   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3369 
3370   BiasedLocking::init();
3371 
3372   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3373     call_postVMInitHook(THREAD);
3374     // The Java side of PostVMInitHook.run must deal with all
3375     // exceptions and provide means of diagnosis.
3376     if (HAS_PENDING_EXCEPTION) {
3377       CLEAR_PENDING_EXCEPTION;
3378     }
3379   }
3380 
3381   // Start up the WatcherThread if there are any periodic tasks
3382   // NOTE:  All PeriodicTasks should be registered by now. If they
3383   //   aren't, late joiners might appear to start slowly (we might
3384   //   take a while to process their first tick).
3385   if (PeriodicTask::num_tasks() > 0) {
3386     WatcherThread::start();
3387   }
3388 
3389   // Give os specific code one last chance to start
3390   os::init_3();
3391 
3392   create_vm_timer.end();
3393   return JNI_OK;
3394 }
3395 
3396 // type for the Agent_OnLoad and JVM_OnLoad entry points
3397 extern "C" {
3398   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3399 }
3400 // Find a command line agent library and return its entry point for
3401 //         -agentlib:  -agentpath:   -Xrun
3402 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3403 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3404   OnLoadEntry_t on_load_entry = NULL;
3405   void *library = agent->os_lib();  // check if we have looked it up before
3406 
3407   if (library == NULL) {
3408     char buffer[JVM_MAXPATHLEN];
3409     char ebuf[1024];
3410     const char *name = agent->name();
3411     const char *msg = "Could not find agent library ";
3412 
3413     if (agent->is_absolute_path()) {
3414       library = os::dll_load(name, ebuf, sizeof ebuf);
3415       if (library == NULL) {
3416         const char *sub_msg = " in absolute path, with error: ";
3417         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3418         char *buf = NEW_C_HEAP_ARRAY(char, len);
3419         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3420         // If we can't find the agent, exit.
3421         vm_exit_during_initialization(buf, NULL);
3422         FREE_C_HEAP_ARRAY(char, buf);
3423       }
3424     } else {
3425       // Try to load the agent from the standard dll directory
3426       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3427       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3428 #ifdef KERNEL
3429       // Download instrument dll
3430       if (library == NULL && strcmp(name, "instrument") == 0) {
3431         char *props = Arguments::get_kernel_properties();
3432         char *home  = Arguments::get_java_home();
3433         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3434                       " sun.jkernel.DownloadManager -download client_jvm";
3435         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3436         char *cmd = NEW_C_HEAP_ARRAY(char, length);
3437         jio_snprintf(cmd, length, fmt, home, props);
3438         int status = os::fork_and_exec(cmd);
3439         FreeHeap(props);
3440         if (status == -1) {
3441           warning(cmd);
3442           vm_exit_during_initialization("fork_and_exec failed: %s",
3443                                          strerror(errno));
3444         }
3445         FREE_C_HEAP_ARRAY(char, cmd);
3446         // when this comes back the instrument.dll should be where it belongs.
3447         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3448       }
3449 #endif // KERNEL
3450       if (library == NULL) { // Try the local directory
3451         char ns[1] = {0};
3452         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3453         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3454         if (library == NULL) {
3455           const char *sub_msg = " on the library path, with error: ";
3456           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3457           char *buf = NEW_C_HEAP_ARRAY(char, len);
3458           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3459           // If we can't find the agent, exit.
3460           vm_exit_during_initialization(buf, NULL);
3461           FREE_C_HEAP_ARRAY(char, buf);
3462         }
3463       }
3464     }
3465     agent->set_os_lib(library);
3466   }
3467 
3468   // Find the OnLoad function.
3469   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3470     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3471     if (on_load_entry != NULL) break;
3472   }
3473   return on_load_entry;
3474 }
3475 
3476 // Find the JVM_OnLoad entry point
3477 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3478   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3479   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3480 }
3481 
3482 // Find the Agent_OnLoad entry point
3483 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3484   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3485   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3486 }
3487 
3488 // For backwards compatibility with -Xrun
3489 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3490 // treated like -agentpath:
3491 // Must be called before agent libraries are created
3492 void Threads::convert_vm_init_libraries_to_agents() {
3493   AgentLibrary* agent;
3494   AgentLibrary* next;
3495 
3496   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3497     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3498     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3499 
3500     // If there is an JVM_OnLoad function it will get called later,
3501     // otherwise see if there is an Agent_OnLoad
3502     if (on_load_entry == NULL) {
3503       on_load_entry = lookup_agent_on_load(agent);
3504       if (on_load_entry != NULL) {
3505         // switch it to the agent list -- so that Agent_OnLoad will be called,
3506         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3507         Arguments::convert_library_to_agent(agent);
3508       } else {
3509         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3510       }
3511     }
3512   }
3513 }
3514 
3515 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3516 // Invokes Agent_OnLoad
3517 // Called very early -- before JavaThreads exist
3518 void Threads::create_vm_init_agents() {
3519   extern struct JavaVM_ main_vm;
3520   AgentLibrary* agent;
3521 
3522   JvmtiExport::enter_onload_phase();
3523   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3524     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3525 
3526     if (on_load_entry != NULL) {
3527       // Invoke the Agent_OnLoad function
3528       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3529       if (err != JNI_OK) {
3530         vm_exit_during_initialization("agent library failed to init", agent->name());
3531       }
3532     } else {
3533       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3534     }
3535   }
3536   JvmtiExport::enter_primordial_phase();
3537 }
3538 
3539 extern "C" {
3540   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3541 }
3542 
3543 void Threads::shutdown_vm_agents() {
3544   // Send any Agent_OnUnload notifications
3545   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3546   extern struct JavaVM_ main_vm;
3547   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3548 
3549     // Find the Agent_OnUnload function.
3550     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3551       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3552                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3553 
3554       // Invoke the Agent_OnUnload function
3555       if (unload_entry != NULL) {
3556         JavaThread* thread = JavaThread::current();
3557         ThreadToNativeFromVM ttn(thread);
3558         HandleMark hm(thread);
3559         (*unload_entry)(&main_vm);
3560         break;
3561       }
3562     }
3563   }
3564 }
3565 
3566 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3567 // Invokes JVM_OnLoad
3568 void Threads::create_vm_init_libraries() {
3569   extern struct JavaVM_ main_vm;
3570   AgentLibrary* agent;
3571 
3572   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3573     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3574 
3575     if (on_load_entry != NULL) {
3576       // Invoke the JVM_OnLoad function
3577       JavaThread* thread = JavaThread::current();
3578       ThreadToNativeFromVM ttn(thread);
3579       HandleMark hm(thread);
3580       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3581       if (err != JNI_OK) {
3582         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3583       }
3584     } else {
3585       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3586     }
3587   }
3588 }
3589 
3590 // Last thread running calls java.lang.Shutdown.shutdown()
3591 void JavaThread::invoke_shutdown_hooks() {
3592   HandleMark hm(this);
3593 
3594   // We could get here with a pending exception, if so clear it now.
3595   if (this->has_pending_exception()) {
3596     this->clear_pending_exception();
3597   }
3598 
3599   EXCEPTION_MARK;
3600   klassOop k =
3601     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3602                                       THREAD);
3603   if (k != NULL) {
3604     // SystemDictionary::resolve_or_null will return null if there was
3605     // an exception.  If we cannot load the Shutdown class, just don't
3606     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3607     // and finalizers (if runFinalizersOnExit is set) won't be run.
3608     // Note that if a shutdown hook was registered or runFinalizersOnExit
3609     // was called, the Shutdown class would have already been loaded
3610     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3611     instanceKlassHandle shutdown_klass (THREAD, k);
3612     JavaValue result(T_VOID);
3613     JavaCalls::call_static(&result,
3614                            shutdown_klass,
3615                            vmSymbols::shutdown_method_name(),
3616                            vmSymbols::void_method_signature(),
3617                            THREAD);
3618   }
3619   CLEAR_PENDING_EXCEPTION;
3620 }
3621 
3622 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3623 // the program falls off the end of main(). Another VM exit path is through
3624 // vm_exit() when the program calls System.exit() to return a value or when
3625 // there is a serious error in VM. The two shutdown paths are not exactly
3626 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3627 // and VM_Exit op at VM level.
3628 //
3629 // Shutdown sequence:
3630 //   + Wait until we are the last non-daemon thread to execute
3631 //     <-- every thing is still working at this moment -->
3632 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3633 //        shutdown hooks, run finalizers if finalization-on-exit
3634 //   + Call before_exit(), prepare for VM exit
3635 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3636 //        currently the only user of this mechanism is File.deleteOnExit())
3637 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3638 //        post thread end and vm death events to JVMTI,
3639 //        stop signal thread
3640 //   + Call JavaThread::exit(), it will:
3641 //      > release JNI handle blocks, remove stack guard pages
3642 //      > remove this thread from Threads list
3643 //     <-- no more Java code from this thread after this point -->
3644 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3645 //     the compiler threads at safepoint
3646 //     <-- do not use anything that could get blocked by Safepoint -->
3647 //   + Disable tracing at JNI/JVM barriers
3648 //   + Set _vm_exited flag for threads that are still running native code
3649 //   + Delete this thread
3650 //   + Call exit_globals()
3651 //      > deletes tty
3652 //      > deletes PerfMemory resources
3653 //   + Return to caller
3654 
3655 bool Threads::destroy_vm() {
3656   JavaThread* thread = JavaThread::current();
3657 
3658   // Wait until we are the last non-daemon thread to execute
3659   { MutexLocker nu(Threads_lock);
3660     while (Threads::number_of_non_daemon_threads() > 1 )
3661       // This wait should make safepoint checks, wait without a timeout,
3662       // and wait as a suspend-equivalent condition.
3663       //
3664       // Note: If the FlatProfiler is running and this thread is waiting
3665       // for another non-daemon thread to finish, then the FlatProfiler
3666       // is waiting for the external suspend request on this thread to
3667       // complete. wait_for_ext_suspend_completion() will eventually
3668       // timeout, but that takes time. Making this wait a suspend-
3669       // equivalent condition solves that timeout problem.
3670       //
3671       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3672                          Mutex::_as_suspend_equivalent_flag);
3673   }
3674 
3675   // Hang forever on exit if we are reporting an error.
3676   if (ShowMessageBoxOnError && is_error_reported()) {
3677     os::infinite_sleep();
3678   }
3679   os::wait_for_keypress_at_exit();
3680 
3681   if (JDK_Version::is_jdk12x_version()) {
3682     // We are the last thread running, so check if finalizers should be run.
3683     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3684     HandleMark rm(thread);
3685     Universe::run_finalizers_on_exit();
3686   } else {
3687     // run Java level shutdown hooks
3688     thread->invoke_shutdown_hooks();
3689   }
3690 
3691   before_exit(thread);
3692 
3693   thread->exit(true);
3694 
3695   // Stop VM thread.
3696   {
3697     // 4945125 The vm thread comes to a safepoint during exit.
3698     // GC vm_operations can get caught at the safepoint, and the
3699     // heap is unparseable if they are caught. Grab the Heap_lock
3700     // to prevent this. The GC vm_operations will not be able to
3701     // queue until after the vm thread is dead.
3702     // After this point, we'll never emerge out of the safepoint before
3703     // the VM exits, so concurrent GC threads do not need to be explicitly
3704     // stopped; they remain inactive until the process exits.
3705     // Note: some concurrent G1 threads may be running during a safepoint,
3706     // but these will not be accessing the heap, just some G1-specific side
3707     // data structures that are not accessed by any other threads but them
3708     // after this point in a terminal safepoint.
3709 
3710     MutexLocker ml(Heap_lock);
3711 
3712     VMThread::wait_for_vm_thread_exit();
3713     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3714     VMThread::destroy();
3715   }
3716 
3717   // clean up ideal graph printers
3718 #if defined(COMPILER2) && !defined(PRODUCT)
3719   IdealGraphPrinter::clean_up();
3720 #endif
3721 
3722   // Now, all Java threads are gone except daemon threads. Daemon threads
3723   // running Java code or in VM are stopped by the Safepoint. However,
3724   // daemon threads executing native code are still running.  But they
3725   // will be stopped at native=>Java/VM barriers. Note that we can't
3726   // simply kill or suspend them, as it is inherently deadlock-prone.
3727 
3728 #ifndef PRODUCT
3729   // disable function tracing at JNI/JVM barriers
3730   TraceJNICalls = false;
3731   TraceJVMCalls = false;
3732   TraceRuntimeCalls = false;
3733 #endif
3734 
3735   VM_Exit::set_vm_exited();
3736 
3737   notify_vm_shutdown();
3738 
3739   delete thread;
3740 
3741   // exit_globals() will delete tty
3742   exit_globals();
3743 
3744   return true;
3745 }
3746 
3747 
3748 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3749   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3750   return is_supported_jni_version(version);
3751 }
3752 
3753 
3754 jboolean Threads::is_supported_jni_version(jint version) {
3755   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3756   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3757   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3758   return JNI_FALSE;
3759 }
3760 
3761 
3762 void Threads::add(JavaThread* p, bool force_daemon) {
3763   // The threads lock must be owned at this point
3764   assert_locked_or_safepoint(Threads_lock);
3765 
3766   // See the comment for this method in thread.hpp for its purpose and
3767   // why it is called here.
3768   p->initialize_queues();
3769   p->set_next(_thread_list);
3770   _thread_list = p;
3771   _number_of_threads++;
3772   oop threadObj = p->threadObj();
3773   bool daemon = true;
3774   // Bootstrapping problem: threadObj can be null for initial
3775   // JavaThread (or for threads attached via JNI)
3776   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3777     _number_of_non_daemon_threads++;
3778     daemon = false;
3779   }
3780 
3781   ThreadService::add_thread(p, daemon);
3782 
3783   // Possible GC point.
3784   Events::log("Thread added: " INTPTR_FORMAT, p);
3785 }
3786 
3787 void Threads::remove(JavaThread* p) {
3788   // Extra scope needed for Thread_lock, so we can check
3789   // that we do not remove thread without safepoint code notice
3790   { MutexLocker ml(Threads_lock);
3791 
3792     assert(includes(p), "p must be present");
3793 
3794     JavaThread* current = _thread_list;
3795     JavaThread* prev    = NULL;
3796 
3797     while (current != p) {
3798       prev    = current;
3799       current = current->next();
3800     }
3801 
3802     if (prev) {
3803       prev->set_next(current->next());
3804     } else {
3805       _thread_list = p->next();
3806     }
3807     _number_of_threads--;
3808     oop threadObj = p->threadObj();
3809     bool daemon = true;
3810     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3811       _number_of_non_daemon_threads--;
3812       daemon = false;
3813 
3814       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3815       // on destroy_vm will wake up.
3816       if (number_of_non_daemon_threads() == 1)
3817         Threads_lock->notify_all();
3818     }
3819     ThreadService::remove_thread(p, daemon);
3820 
3821     // Make sure that safepoint code disregard this thread. This is needed since
3822     // the thread might mess around with locks after this point. This can cause it
3823     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3824     // of this thread since it is removed from the queue.
3825     p->set_terminated_value();
3826   } // unlock Threads_lock
3827 
3828   // Since Events::log uses a lock, we grab it outside the Threads_lock
3829   Events::log("Thread exited: " INTPTR_FORMAT, p);
3830 }
3831 
3832 // Threads_lock must be held when this is called (or must be called during a safepoint)
3833 bool Threads::includes(JavaThread* p) {
3834   assert(Threads_lock->is_locked(), "sanity check");
3835   ALL_JAVA_THREADS(q) {
3836     if (q == p ) {
3837       return true;
3838     }
3839   }
3840   return false;
3841 }
3842 
3843 // Operations on the Threads list for GC.  These are not explicitly locked,
3844 // but the garbage collector must provide a safe context for them to run.
3845 // In particular, these things should never be called when the Threads_lock
3846 // is held by some other thread. (Note: the Safepoint abstraction also
3847 // uses the Threads_lock to gurantee this property. It also makes sure that
3848 // all threads gets blocked when exiting or starting).
3849 
3850 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3851   ALL_JAVA_THREADS(p) {
3852     p->oops_do(f, cf);
3853   }
3854   VMThread::vm_thread()->oops_do(f, cf);
3855 }
3856 
3857 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3858   // Introduce a mechanism allowing parallel threads to claim threads as
3859   // root groups.  Overhead should be small enough to use all the time,
3860   // even in sequential code.
3861   SharedHeap* sh = SharedHeap::heap();
3862   bool is_par = (sh->n_par_threads() > 0);
3863   int cp = SharedHeap::heap()->strong_roots_parity();
3864   ALL_JAVA_THREADS(p) {
3865     if (p->claim_oops_do(is_par, cp)) {
3866       p->oops_do(f, cf);
3867     }
3868   }
3869   VMThread* vmt = VMThread::vm_thread();
3870   if (vmt->claim_oops_do(is_par, cp)) {
3871     vmt->oops_do(f, cf);
3872   }
3873 }
3874 
3875 #ifndef SERIALGC
3876 // Used by ParallelScavenge
3877 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3878   ALL_JAVA_THREADS(p) {
3879     q->enqueue(new ThreadRootsTask(p));
3880   }
3881   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3882 }
3883 
3884 // Used by Parallel Old
3885 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3886   ALL_JAVA_THREADS(p) {
3887     q->enqueue(new ThreadRootsMarkingTask(p));
3888   }
3889   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3890 }
3891 #endif // SERIALGC
3892 
3893 void Threads::nmethods_do(CodeBlobClosure* cf) {
3894   ALL_JAVA_THREADS(p) {
3895     p->nmethods_do(cf);
3896   }
3897   VMThread::vm_thread()->nmethods_do(cf);
3898 }
3899 
3900 void Threads::gc_epilogue() {
3901   ALL_JAVA_THREADS(p) {
3902     p->gc_epilogue();
3903   }
3904 }
3905 
3906 void Threads::gc_prologue() {
3907   ALL_JAVA_THREADS(p) {
3908     p->gc_prologue();
3909   }
3910 }
3911 
3912 void Threads::deoptimized_wrt_marked_nmethods() {
3913   ALL_JAVA_THREADS(p) {
3914     p->deoptimized_wrt_marked_nmethods();
3915   }
3916 }
3917 
3918 
3919 // Get count Java threads that are waiting to enter the specified monitor.
3920 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3921   address monitor, bool doLock) {
3922   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3923     "must grab Threads_lock or be at safepoint");
3924   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3925 
3926   int i = 0;
3927   {
3928     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3929     ALL_JAVA_THREADS(p) {
3930       if (p->is_Compiler_thread()) continue;
3931 
3932       address pending = (address)p->current_pending_monitor();
3933       if (pending == monitor) {             // found a match
3934         if (i < count) result->append(p);   // save the first count matches
3935         i++;
3936       }
3937     }
3938   }
3939   return result;
3940 }
3941 
3942 
3943 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3944   assert(doLock ||
3945          Threads_lock->owned_by_self() ||
3946          SafepointSynchronize::is_at_safepoint(),
3947          "must grab Threads_lock or be at safepoint");
3948 
3949   // NULL owner means not locked so we can skip the search
3950   if (owner == NULL) return NULL;
3951 
3952   {
3953     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3954     ALL_JAVA_THREADS(p) {
3955       // first, see if owner is the address of a Java thread
3956       if (owner == (address)p) return p;
3957     }
3958   }
3959   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3960   if (UseHeavyMonitors) return NULL;
3961 
3962   //
3963   // If we didn't find a matching Java thread and we didn't force use of
3964   // heavyweight monitors, then the owner is the stack address of the
3965   // Lock Word in the owning Java thread's stack.
3966   //
3967   JavaThread* the_owner = NULL;
3968   {
3969     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3970     ALL_JAVA_THREADS(q) {
3971       if (q->is_lock_owned(owner)) {
3972         the_owner = q;
3973         break;
3974       }
3975     }
3976   }
3977   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3978   return the_owner;
3979 }
3980 
3981 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3982 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3983   char buf[32];
3984   st->print_cr(os::local_time_string(buf, sizeof(buf)));
3985 
3986   st->print_cr("Full thread dump %s (%s %s):",
3987                 Abstract_VM_Version::vm_name(),
3988                 Abstract_VM_Version::vm_release(),
3989                 Abstract_VM_Version::vm_info_string()
3990                );
3991   st->cr();
3992 
3993 #ifndef SERIALGC
3994   // Dump concurrent locks
3995   ConcurrentLocksDump concurrent_locks;
3996   if (print_concurrent_locks) {
3997     concurrent_locks.dump_at_safepoint();
3998   }
3999 #endif // SERIALGC
4000 
4001   ALL_JAVA_THREADS(p) {
4002     ResourceMark rm;
4003     p->print_on(st);
4004     if (print_stacks) {
4005       if (internal_format) {
4006         p->trace_stack();
4007       } else {
4008         p->print_stack_on(st);
4009       }
4010     }
4011     st->cr();
4012 #ifndef SERIALGC
4013     if (print_concurrent_locks) {
4014       concurrent_locks.print_locks_on(p, st);
4015     }
4016 #endif // SERIALGC
4017   }
4018 
4019   VMThread::vm_thread()->print_on(st);
4020   st->cr();
4021   Universe::heap()->print_gc_threads_on(st);
4022   WatcherThread* wt = WatcherThread::watcher_thread();
4023   if (wt != NULL) wt->print_on(st);
4024   st->cr();
4025   CompileBroker::print_compiler_threads_on(st);
4026   st->flush();
4027 }
4028 
4029 // Threads::print_on_error() is called by fatal error handler. It's possible
4030 // that VM is not at safepoint and/or current thread is inside signal handler.
4031 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4032 // memory (even in resource area), it might deadlock the error handler.
4033 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4034   bool found_current = false;
4035   st->print_cr("Java Threads: ( => current thread )");
4036   ALL_JAVA_THREADS(thread) {
4037     bool is_current = (current == thread);
4038     found_current = found_current || is_current;
4039 
4040     st->print("%s", is_current ? "=>" : "  ");
4041 
4042     st->print(PTR_FORMAT, thread);
4043     st->print(" ");
4044     thread->print_on_error(st, buf, buflen);
4045     st->cr();
4046   }
4047   st->cr();
4048 
4049   st->print_cr("Other Threads:");
4050   if (VMThread::vm_thread()) {
4051     bool is_current = (current == VMThread::vm_thread());
4052     found_current = found_current || is_current;
4053     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4054 
4055     st->print(PTR_FORMAT, VMThread::vm_thread());
4056     st->print(" ");
4057     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4058     st->cr();
4059   }
4060   WatcherThread* wt = WatcherThread::watcher_thread();
4061   if (wt != NULL) {
4062     bool is_current = (current == wt);
4063     found_current = found_current || is_current;
4064     st->print("%s", is_current ? "=>" : "  ");
4065 
4066     st->print(PTR_FORMAT, wt);
4067     st->print(" ");
4068     wt->print_on_error(st, buf, buflen);
4069     st->cr();
4070   }
4071   if (!found_current) {
4072     st->cr();
4073     st->print("=>" PTR_FORMAT " (exited) ", current);
4074     current->print_on_error(st, buf, buflen);
4075     st->cr();
4076   }
4077 }
4078 
4079 // Internal SpinLock and Mutex
4080 // Based on ParkEvent
4081 
4082 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4083 //
4084 // We employ SpinLocks _only for low-contention, fixed-length
4085 // short-duration critical sections where we're concerned
4086 // about native mutex_t or HotSpot Mutex:: latency.
4087 // The mux construct provides a spin-then-block mutual exclusion
4088 // mechanism.
4089 //
4090 // Testing has shown that contention on the ListLock guarding gFreeList
4091 // is common.  If we implement ListLock as a simple SpinLock it's common
4092 // for the JVM to devolve to yielding with little progress.  This is true
4093 // despite the fact that the critical sections protected by ListLock are
4094 // extremely short.
4095 //
4096 // TODO-FIXME: ListLock should be of type SpinLock.
4097 // We should make this a 1st-class type, integrated into the lock
4098 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4099 // should have sufficient padding to avoid false-sharing and excessive
4100 // cache-coherency traffic.
4101 
4102 
4103 typedef volatile int SpinLockT ;
4104 
4105 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4106   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4107      return ;   // normal fast-path return
4108   }
4109 
4110   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4111   TEVENT (SpinAcquire - ctx) ;
4112   int ctr = 0 ;
4113   int Yields = 0 ;
4114   for (;;) {
4115      while (*adr != 0) {
4116         ++ctr ;
4117         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4118            if (Yields > 5) {
4119              // Consider using a simple NakedSleep() instead.
4120              // Then SpinAcquire could be called by non-JVM threads
4121              Thread::current()->_ParkEvent->park(1) ;
4122            } else {
4123              os::NakedYield() ;
4124              ++Yields ;
4125            }
4126         } else {
4127            SpinPause() ;
4128         }
4129      }
4130      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4131   }
4132 }
4133 
4134 void Thread::SpinRelease (volatile int * adr) {
4135   assert (*adr != 0, "invariant") ;
4136   OrderAccess::fence() ;      // guarantee at least release consistency.
4137   // Roach-motel semantics.
4138   // It's safe if subsequent LDs and STs float "up" into the critical section,
4139   // but prior LDs and STs within the critical section can't be allowed
4140   // to reorder or float past the ST that releases the lock.
4141   *adr = 0 ;
4142 }
4143 
4144 // muxAcquire and muxRelease:
4145 //
4146 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4147 //    The LSB of the word is set IFF the lock is held.
4148 //    The remainder of the word points to the head of a singly-linked list
4149 //    of threads blocked on the lock.
4150 //
4151 // *  The current implementation of muxAcquire-muxRelease uses its own
4152 //    dedicated Thread._MuxEvent instance.  If we're interested in
4153 //    minimizing the peak number of extant ParkEvent instances then
4154 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4155 //    as certain invariants were satisfied.  Specifically, care would need
4156 //    to be taken with regards to consuming unpark() "permits".
4157 //    A safe rule of thumb is that a thread would never call muxAcquire()
4158 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4159 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4160 //    consume an unpark() permit intended for monitorenter, for instance.
4161 //    One way around this would be to widen the restricted-range semaphore
4162 //    implemented in park().  Another alternative would be to provide
4163 //    multiple instances of the PlatformEvent() for each thread.  One
4164 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4165 //
4166 // *  Usage:
4167 //    -- Only as leaf locks
4168 //    -- for short-term locking only as muxAcquire does not perform
4169 //       thread state transitions.
4170 //
4171 // Alternatives:
4172 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4173 //    but with parking or spin-then-park instead of pure spinning.
4174 // *  Use Taura-Oyama-Yonenzawa locks.
4175 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4176 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4177 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4178 //    acquiring threads use timers (ParkTimed) to detect and recover from
4179 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4180 //    boundaries by using placement-new.
4181 // *  Augment MCS with advisory back-link fields maintained with CAS().
4182 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4183 //    The validity of the backlinks must be ratified before we trust the value.
4184 //    If the backlinks are invalid the exiting thread must back-track through the
4185 //    the forward links, which are always trustworthy.
4186 // *  Add a successor indication.  The LockWord is currently encoded as
4187 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4188 //    to provide the usual futile-wakeup optimization.
4189 //    See RTStt for details.
4190 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4191 //
4192 
4193 
4194 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4195 enum MuxBits { LOCKBIT = 1 } ;
4196 
4197 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4198   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4199   if (w == 0) return ;
4200   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4201      return ;
4202   }
4203 
4204   TEVENT (muxAcquire - Contention) ;
4205   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4206   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4207   for (;;) {
4208      int its = (os::is_MP() ? 100 : 0) + 1 ;
4209 
4210      // Optional spin phase: spin-then-park strategy
4211      while (--its >= 0) {
4212        w = *Lock ;
4213        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4214           return ;
4215        }
4216      }
4217 
4218      Self->reset() ;
4219      Self->OnList = intptr_t(Lock) ;
4220      // The following fence() isn't _strictly necessary as the subsequent
4221      // CAS() both serializes execution and ratifies the fetched *Lock value.
4222      OrderAccess::fence();
4223      for (;;) {
4224         w = *Lock ;
4225         if ((w & LOCKBIT) == 0) {
4226             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4227                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4228                 return ;
4229             }
4230             continue ;      // Interference -- *Lock changed -- Just retry
4231         }
4232         assert (w & LOCKBIT, "invariant") ;
4233         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4234         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4235      }
4236 
4237      while (Self->OnList != 0) {
4238         Self->park() ;
4239      }
4240   }
4241 }
4242 
4243 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4244   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4245   if (w == 0) return ;
4246   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4247     return ;
4248   }
4249 
4250   TEVENT (muxAcquire - Contention) ;
4251   ParkEvent * ReleaseAfter = NULL ;
4252   if (ev == NULL) {
4253     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4254   }
4255   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4256   for (;;) {
4257     guarantee (ev->OnList == 0, "invariant") ;
4258     int its = (os::is_MP() ? 100 : 0) + 1 ;
4259 
4260     // Optional spin phase: spin-then-park strategy
4261     while (--its >= 0) {
4262       w = *Lock ;
4263       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4264         if (ReleaseAfter != NULL) {
4265           ParkEvent::Release (ReleaseAfter) ;
4266         }
4267         return ;
4268       }
4269     }
4270 
4271     ev->reset() ;
4272     ev->OnList = intptr_t(Lock) ;
4273     // The following fence() isn't _strictly necessary as the subsequent
4274     // CAS() both serializes execution and ratifies the fetched *Lock value.
4275     OrderAccess::fence();
4276     for (;;) {
4277       w = *Lock ;
4278       if ((w & LOCKBIT) == 0) {
4279         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4280           ev->OnList = 0 ;
4281           // We call ::Release while holding the outer lock, thus
4282           // artificially lengthening the critical section.
4283           // Consider deferring the ::Release() until the subsequent unlock(),
4284           // after we've dropped the outer lock.
4285           if (ReleaseAfter != NULL) {
4286             ParkEvent::Release (ReleaseAfter) ;
4287           }
4288           return ;
4289         }
4290         continue ;      // Interference -- *Lock changed -- Just retry
4291       }
4292       assert (w & LOCKBIT, "invariant") ;
4293       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4294       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4295     }
4296 
4297     while (ev->OnList != 0) {
4298       ev->park() ;
4299     }
4300   }
4301 }
4302 
4303 // Release() must extract a successor from the list and then wake that thread.
4304 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4305 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4306 // Release() would :
4307 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4308 // (B) Extract a successor from the private list "in-hand"
4309 // (C) attempt to CAS() the residual back into *Lock over null.
4310 //     If there were any newly arrived threads and the CAS() would fail.
4311 //     In that case Release() would detach the RATs, re-merge the list in-hand
4312 //     with the RATs and repeat as needed.  Alternately, Release() might
4313 //     detach and extract a successor, but then pass the residual list to the wakee.
4314 //     The wakee would be responsible for reattaching and remerging before it
4315 //     competed for the lock.
4316 //
4317 // Both "pop" and DMR are immune from ABA corruption -- there can be
4318 // multiple concurrent pushers, but only one popper or detacher.
4319 // This implementation pops from the head of the list.  This is unfair,
4320 // but tends to provide excellent throughput as hot threads remain hot.
4321 // (We wake recently run threads first).
4322 
4323 void Thread::muxRelease (volatile intptr_t * Lock)  {
4324   for (;;) {
4325     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4326     assert (w & LOCKBIT, "invariant") ;
4327     if (w == LOCKBIT) return ;
4328     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4329     assert (List != NULL, "invariant") ;
4330     assert (List->OnList == intptr_t(Lock), "invariant") ;
4331     ParkEvent * nxt = List->ListNext ;
4332 
4333     // The following CAS() releases the lock and pops the head element.
4334     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4335       continue ;
4336     }
4337     List->OnList = 0 ;
4338     OrderAccess::fence() ;
4339     List->unpark () ;
4340     return ;
4341   }
4342 }
4343 
4344 
4345 void Threads::verify() {
4346   ALL_JAVA_THREADS(p) {
4347     p->verify();
4348   }
4349   VMThread* thread = VMThread::vm_thread();
4350   if (thread != NULL) thread->verify();
4351 }