1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1MarkSweep.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  39 #include "gc_implementation/g1/vm_operations_g1.hpp"
  40 #include "gc_implementation/shared/isGCActiveMark.hpp"
  41 #include "memory/gcLocker.inline.hpp"
  42 #include "memory/genOopClosures.inline.hpp"
  43 #include "memory/generationSpec.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/oop.pcgc.inline.hpp"
  46 #include "runtime/aprofiler.hpp"
  47 #include "runtime/vmThread.hpp"
  48 
  49 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  50 
  51 // turn it on so that the contents of the young list (scan-only /
  52 // to-be-collected) are printed at "strategic" points before / during
  53 // / after the collection --- this is useful for debugging
  54 #define YOUNG_LIST_VERBOSE 0
  55 // CURRENT STATUS
  56 // This file is under construction.  Search for "FIXME".
  57 
  58 // INVARIANTS/NOTES
  59 //
  60 // All allocation activity covered by the G1CollectedHeap interface is
  61 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  62 // and allocate_new_tlab, which are the "entry" points to the
  63 // allocation code from the rest of the JVM.  (Note that this does not
  64 // apply to TLAB allocation, which is not part of this interface: it
  65 // is done by clients of this interface.)
  66 
  67 // Local to this file.
  68 
  69 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  70   SuspendibleThreadSet* _sts;
  71   G1RemSet* _g1rs;
  72   ConcurrentG1Refine* _cg1r;
  73   bool _concurrent;
  74 public:
  75   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  76                               G1RemSet* g1rs,
  77                               ConcurrentG1Refine* cg1r) :
  78     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  79   {}
  80   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  81     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  82     // This path is executed by the concurrent refine or mutator threads,
  83     // concurrently, and so we do not care if card_ptr contains references
  84     // that point into the collection set.
  85     assert(!oops_into_cset, "should be");
  86 
  87     if (_concurrent && _sts->should_yield()) {
  88       // Caller will actually yield.
  89       return false;
  90     }
  91     // Otherwise, we finished successfully; return true.
  92     return true;
  93   }
  94   void set_concurrent(bool b) { _concurrent = b; }
  95 };
  96 
  97 
  98 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  99   int _calls;
 100   G1CollectedHeap* _g1h;
 101   CardTableModRefBS* _ctbs;
 102   int _histo[256];
 103 public:
 104   ClearLoggedCardTableEntryClosure() :
 105     _calls(0)
 106   {
 107     _g1h = G1CollectedHeap::heap();
 108     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 109     for (int i = 0; i < 256; i++) _histo[i] = 0;
 110   }
 111   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 112     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 113       _calls++;
 114       unsigned char* ujb = (unsigned char*)card_ptr;
 115       int ind = (int)(*ujb);
 116       _histo[ind]++;
 117       *card_ptr = -1;
 118     }
 119     return true;
 120   }
 121   int calls() { return _calls; }
 122   void print_histo() {
 123     gclog_or_tty->print_cr("Card table value histogram:");
 124     for (int i = 0; i < 256; i++) {
 125       if (_histo[i] != 0) {
 126         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 127       }
 128     }
 129   }
 130 };
 131 
 132 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 133   int _calls;
 134   G1CollectedHeap* _g1h;
 135   CardTableModRefBS* _ctbs;
 136 public:
 137   RedirtyLoggedCardTableEntryClosure() :
 138     _calls(0)
 139   {
 140     _g1h = G1CollectedHeap::heap();
 141     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 142   }
 143   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 144     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 145       _calls++;
 146       *card_ptr = 0;
 147     }
 148     return true;
 149   }
 150   int calls() { return _calls; }
 151 };
 152 
 153 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 154 public:
 155   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 156     *card_ptr = CardTableModRefBS::dirty_card_val();
 157     return true;
 158   }
 159 };
 160 
 161 YoungList::YoungList(G1CollectedHeap* g1h)
 162   : _g1h(g1h), _head(NULL),
 163     _length(0),
 164     _last_sampled_rs_lengths(0),
 165     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
 166 {
 167   guarantee( check_list_empty(false), "just making sure..." );
 168 }
 169 
 170 void YoungList::push_region(HeapRegion *hr) {
 171   assert(!hr->is_young(), "should not already be young");
 172   assert(hr->get_next_young_region() == NULL, "cause it should!");
 173 
 174   hr->set_next_young_region(_head);
 175   _head = hr;
 176 
 177   hr->set_young();
 178   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
 179   ++_length;
 180 }
 181 
 182 void YoungList::add_survivor_region(HeapRegion* hr) {
 183   assert(hr->is_survivor(), "should be flagged as survivor region");
 184   assert(hr->get_next_young_region() == NULL, "cause it should!");
 185 
 186   hr->set_next_young_region(_survivor_head);
 187   if (_survivor_head == NULL) {
 188     _survivor_tail = hr;
 189   }
 190   _survivor_head = hr;
 191 
 192   ++_survivor_length;
 193 }
 194 
 195 void YoungList::empty_list(HeapRegion* list) {
 196   while (list != NULL) {
 197     HeapRegion* next = list->get_next_young_region();
 198     list->set_next_young_region(NULL);
 199     list->uninstall_surv_rate_group();
 200     list->set_not_young();
 201     list = next;
 202   }
 203 }
 204 
 205 void YoungList::empty_list() {
 206   assert(check_list_well_formed(), "young list should be well formed");
 207 
 208   empty_list(_head);
 209   _head = NULL;
 210   _length = 0;
 211 
 212   empty_list(_survivor_head);
 213   _survivor_head = NULL;
 214   _survivor_tail = NULL;
 215   _survivor_length = 0;
 216 
 217   _last_sampled_rs_lengths = 0;
 218 
 219   assert(check_list_empty(false), "just making sure...");
 220 }
 221 
 222 bool YoungList::check_list_well_formed() {
 223   bool ret = true;
 224 
 225   size_t length = 0;
 226   HeapRegion* curr = _head;
 227   HeapRegion* last = NULL;
 228   while (curr != NULL) {
 229     if (!curr->is_young()) {
 230       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 231                              "incorrectly tagged (y: %d, surv: %d)",
 232                              curr->bottom(), curr->end(),
 233                              curr->is_young(), curr->is_survivor());
 234       ret = false;
 235     }
 236     ++length;
 237     last = curr;
 238     curr = curr->get_next_young_region();
 239   }
 240   ret = ret && (length == _length);
 241 
 242   if (!ret) {
 243     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 244     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
 245                            length, _length);
 246   }
 247 
 248   return ret;
 249 }
 250 
 251 bool YoungList::check_list_empty(bool check_sample) {
 252   bool ret = true;
 253 
 254   if (_length != 0) {
 255     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
 256                   _length);
 257     ret = false;
 258   }
 259   if (check_sample && _last_sampled_rs_lengths != 0) {
 260     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 261     ret = false;
 262   }
 263   if (_head != NULL) {
 264     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 265     ret = false;
 266   }
 267   if (!ret) {
 268     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 269   }
 270 
 271   return ret;
 272 }
 273 
 274 void
 275 YoungList::rs_length_sampling_init() {
 276   _sampled_rs_lengths = 0;
 277   _curr               = _head;
 278 }
 279 
 280 bool
 281 YoungList::rs_length_sampling_more() {
 282   return _curr != NULL;
 283 }
 284 
 285 void
 286 YoungList::rs_length_sampling_next() {
 287   assert( _curr != NULL, "invariant" );
 288   size_t rs_length = _curr->rem_set()->occupied();
 289 
 290   _sampled_rs_lengths += rs_length;
 291 
 292   // The current region may not yet have been added to the
 293   // incremental collection set (it gets added when it is
 294   // retired as the current allocation region).
 295   if (_curr->in_collection_set()) {
 296     // Update the collection set policy information for this region
 297     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 298   }
 299 
 300   _curr = _curr->get_next_young_region();
 301   if (_curr == NULL) {
 302     _last_sampled_rs_lengths = _sampled_rs_lengths;
 303     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 304   }
 305 }
 306 
 307 void
 308 YoungList::reset_auxilary_lists() {
 309   guarantee( is_empty(), "young list should be empty" );
 310   assert(check_list_well_formed(), "young list should be well formed");
 311 
 312   // Add survivor regions to SurvRateGroup.
 313   _g1h->g1_policy()->note_start_adding_survivor_regions();
 314   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 315 
 316   for (HeapRegion* curr = _survivor_head;
 317        curr != NULL;
 318        curr = curr->get_next_young_region()) {
 319     _g1h->g1_policy()->set_region_survivors(curr);
 320 
 321     // The region is a non-empty survivor so let's add it to
 322     // the incremental collection set for the next evacuation
 323     // pause.
 324     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 325   }
 326   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 327 
 328   _head   = _survivor_head;
 329   _length = _survivor_length;
 330   if (_survivor_head != NULL) {
 331     assert(_survivor_tail != NULL, "cause it shouldn't be");
 332     assert(_survivor_length > 0, "invariant");
 333     _survivor_tail->set_next_young_region(NULL);
 334   }
 335 
 336   // Don't clear the survivor list handles until the start of
 337   // the next evacuation pause - we need it in order to re-tag
 338   // the survivor regions from this evacuation pause as 'young'
 339   // at the start of the next.
 340 
 341   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 342 
 343   assert(check_list_well_formed(), "young list should be well formed");
 344 }
 345 
 346 void YoungList::print() {
 347   HeapRegion* lists[] = {_head,   _survivor_head};
 348   const char* names[] = {"YOUNG", "SURVIVOR"};
 349 
 350   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 351     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 352     HeapRegion *curr = lists[list];
 353     if (curr == NULL)
 354       gclog_or_tty->print_cr("  empty");
 355     while (curr != NULL) {
 356       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 357                              "age: %4d, y: %d, surv: %d",
 358                              curr->bottom(), curr->end(),
 359                              curr->top(),
 360                              curr->prev_top_at_mark_start(),
 361                              curr->next_top_at_mark_start(),
 362                              curr->top_at_conc_mark_count(),
 363                              curr->age_in_surv_rate_group_cond(),
 364                              curr->is_young(),
 365                              curr->is_survivor());
 366       curr = curr->get_next_young_region();
 367     }
 368   }
 369 
 370   gclog_or_tty->print_cr("");
 371 }
 372 
 373 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 374 {
 375   // Claim the right to put the region on the dirty cards region list
 376   // by installing a self pointer.
 377   HeapRegion* next = hr->get_next_dirty_cards_region();
 378   if (next == NULL) {
 379     HeapRegion* res = (HeapRegion*)
 380       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 381                           NULL);
 382     if (res == NULL) {
 383       HeapRegion* head;
 384       do {
 385         // Put the region to the dirty cards region list.
 386         head = _dirty_cards_region_list;
 387         next = (HeapRegion*)
 388           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 389         if (next == head) {
 390           assert(hr->get_next_dirty_cards_region() == hr,
 391                  "hr->get_next_dirty_cards_region() != hr");
 392           if (next == NULL) {
 393             // The last region in the list points to itself.
 394             hr->set_next_dirty_cards_region(hr);
 395           } else {
 396             hr->set_next_dirty_cards_region(next);
 397           }
 398         }
 399       } while (next != head);
 400     }
 401   }
 402 }
 403 
 404 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 405 {
 406   HeapRegion* head;
 407   HeapRegion* hr;
 408   do {
 409     head = _dirty_cards_region_list;
 410     if (head == NULL) {
 411       return NULL;
 412     }
 413     HeapRegion* new_head = head->get_next_dirty_cards_region();
 414     if (head == new_head) {
 415       // The last region.
 416       new_head = NULL;
 417     }
 418     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 419                                           head);
 420   } while (hr != head);
 421   assert(hr != NULL, "invariant");
 422   hr->set_next_dirty_cards_region(NULL);
 423   return hr;
 424 }
 425 
 426 void G1CollectedHeap::stop_conc_gc_threads() {
 427   _cg1r->stop();
 428   _cmThread->stop();
 429 }
 430 
 431 #ifdef ASSERT
 432 // A region is added to the collection set as it is retired
 433 // so an address p can point to a region which will be in the
 434 // collection set but has not yet been retired.  This method
 435 // therefore is only accurate during a GC pause after all
 436 // regions have been retired.  It is used for debugging
 437 // to check if an nmethod has references to objects that can
 438 // be move during a partial collection.  Though it can be
 439 // inaccurate, it is sufficient for G1 because the conservative
 440 // implementation of is_scavengable() for G1 will indicate that
 441 // all nmethods must be scanned during a partial collection.
 442 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 443   HeapRegion* hr = heap_region_containing(p);
 444   return hr != NULL && hr->in_collection_set();
 445 }
 446 #endif
 447 
 448 // Returns true if the reference points to an object that
 449 // can move in an incremental collecction.
 450 bool G1CollectedHeap::is_scavengable(const void* p) {
 451   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 452   G1CollectorPolicy* g1p = g1h->g1_policy();
 453   HeapRegion* hr = heap_region_containing(p);
 454   if (hr == NULL) {
 455      // perm gen (or null)
 456      return false;
 457   } else {
 458     return !hr->isHumongous();
 459   }
 460 }
 461 
 462 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 463   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 464   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 465 
 466   // Count the dirty cards at the start.
 467   CountNonCleanMemRegionClosure count1(this);
 468   ct_bs->mod_card_iterate(&count1);
 469   int orig_count = count1.n();
 470 
 471   // First clear the logged cards.
 472   ClearLoggedCardTableEntryClosure clear;
 473   dcqs.set_closure(&clear);
 474   dcqs.apply_closure_to_all_completed_buffers();
 475   dcqs.iterate_closure_all_threads(false);
 476   clear.print_histo();
 477 
 478   // Now ensure that there's no dirty cards.
 479   CountNonCleanMemRegionClosure count2(this);
 480   ct_bs->mod_card_iterate(&count2);
 481   if (count2.n() != 0) {
 482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 483                            count2.n(), orig_count);
 484   }
 485   guarantee(count2.n() == 0, "Card table should be clean.");
 486 
 487   RedirtyLoggedCardTableEntryClosure redirty;
 488   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 489   dcqs.apply_closure_to_all_completed_buffers();
 490   dcqs.iterate_closure_all_threads(false);
 491   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 492                          clear.calls(), orig_count);
 493   guarantee(redirty.calls() == clear.calls(),
 494             "Or else mechanism is broken.");
 495 
 496   CountNonCleanMemRegionClosure count3(this);
 497   ct_bs->mod_card_iterate(&count3);
 498   if (count3.n() != orig_count) {
 499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 500                            orig_count, count3.n());
 501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 502   }
 503 
 504   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 505 }
 506 
 507 // Private class members.
 508 
 509 G1CollectedHeap* G1CollectedHeap::_g1h;
 510 
 511 // Private methods.
 512 
 513 HeapRegion*
 514 G1CollectedHeap::new_region_try_secondary_free_list() {
 515   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 516   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 517     if (!_secondary_free_list.is_empty()) {
 518       if (G1ConcRegionFreeingVerbose) {
 519         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 520                                "secondary_free_list has "SIZE_FORMAT" entries",
 521                                _secondary_free_list.length());
 522       }
 523       // It looks as if there are free regions available on the
 524       // secondary_free_list. Let's move them to the free_list and try
 525       // again to allocate from it.
 526       append_secondary_free_list();
 527 
 528       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 529              "empty we should have moved at least one entry to the free_list");
 530       HeapRegion* res = _free_list.remove_head();
 531       if (G1ConcRegionFreeingVerbose) {
 532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 533                                "allocated "HR_FORMAT" from secondary_free_list",
 534                                HR_FORMAT_PARAMS(res));
 535       }
 536       return res;
 537     }
 538 
 539     // Wait here until we get notifed either when (a) there are no
 540     // more free regions coming or (b) some regions have been moved on
 541     // the secondary_free_list.
 542     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 543   }
 544 
 545   if (G1ConcRegionFreeingVerbose) {
 546     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 547                            "could not allocate from secondary_free_list");
 548   }
 549   return NULL;
 550 }
 551 
 552 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 553   assert(!isHumongous(word_size) ||
 554                                   word_size <= (size_t) HeapRegion::GrainWords,
 555          "the only time we use this to allocate a humongous region is "
 556          "when we are allocating a single humongous region");
 557 
 558   HeapRegion* res;
 559   if (G1StressConcRegionFreeing) {
 560     if (!_secondary_free_list.is_empty()) {
 561       if (G1ConcRegionFreeingVerbose) {
 562         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                                "forced to look at the secondary_free_list");
 564       }
 565       res = new_region_try_secondary_free_list();
 566       if (res != NULL) {
 567         return res;
 568       }
 569     }
 570   }
 571   res = _free_list.remove_head_or_null();
 572   if (res == NULL) {
 573     if (G1ConcRegionFreeingVerbose) {
 574       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 575                              "res == NULL, trying the secondary_free_list");
 576     }
 577     res = new_region_try_secondary_free_list();
 578   }
 579   if (res == NULL && do_expand) {
 580     if (expand(word_size * HeapWordSize)) {
 581       // Even though the heap was expanded, it might not have reached
 582       // the desired size. So, we cannot assume that the allocation
 583       // will succeed.
 584       res = _free_list.remove_head_or_null();
 585     }
 586   }
 587   return res;
 588 }
 589 
 590 HeapRegion* G1CollectedHeap::new_gc_alloc_region(int purpose,
 591                                                  size_t word_size) {
 592   HeapRegion* alloc_region = NULL;
 593   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
 594     alloc_region = new_region(word_size, true /* do_expand */);
 595     if (alloc_region != NULL) {
 596       if (purpose == GCAllocForSurvived) {
 597         _hr_printer.alloc(alloc_region, G1HRPrinter::Survivor);
 598         alloc_region->set_survivor();
 599       } else {
 600         _hr_printer.alloc(alloc_region, G1HRPrinter::Old);
 601       }
 602       ++_gc_alloc_region_counts[purpose];
 603     }
 604   } else {
 605     g1_policy()->note_alloc_region_limit_reached(purpose);
 606   }
 607   return alloc_region;
 608 }
 609 
 610 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
 611                                                           size_t word_size) {
 612   assert(isHumongous(word_size), "word_size should be humongous");
 613   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 614 
 615   size_t first = G1_NULL_HRS_INDEX;
 616   if (num_regions == 1) {
 617     // Only one region to allocate, no need to go through the slower
 618     // path. The caller will attempt the expasion if this fails, so
 619     // let's not try to expand here too.
 620     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 621     if (hr != NULL) {
 622       first = hr->hrs_index();
 623     } else {
 624       first = G1_NULL_HRS_INDEX;
 625     }
 626   } else {
 627     // We can't allocate humongous regions while cleanupComplete() is
 628     // running, since some of the regions we find to be empty might not
 629     // yet be added to the free list and it is not straightforward to
 630     // know which list they are on so that we can remove them. Note
 631     // that we only need to do this if we need to allocate more than
 632     // one region to satisfy the current humongous allocation
 633     // request. If we are only allocating one region we use the common
 634     // region allocation code (see above).
 635     wait_while_free_regions_coming();
 636     append_secondary_free_list_if_not_empty_with_lock();
 637 
 638     if (free_regions() >= num_regions) {
 639       first = _hrs.find_contiguous(num_regions);
 640       if (first != G1_NULL_HRS_INDEX) {
 641         for (size_t i = first; i < first + num_regions; ++i) {
 642           HeapRegion* hr = region_at(i);
 643           assert(hr->is_empty(), "sanity");
 644           assert(is_on_master_free_list(hr), "sanity");
 645           hr->set_pending_removal(true);
 646         }
 647         _free_list.remove_all_pending(num_regions);
 648       }
 649     }
 650   }
 651   return first;
 652 }
 653 
 654 HeapWord*
 655 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
 656                                                            size_t num_regions,
 657                                                            size_t word_size) {
 658   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 659   assert(isHumongous(word_size), "word_size should be humongous");
 660   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 661 
 662   // Index of last region in the series + 1.
 663   size_t last = first + num_regions;
 664 
 665   // We need to initialize the region(s) we just discovered. This is
 666   // a bit tricky given that it can happen concurrently with
 667   // refinement threads refining cards on these regions and
 668   // potentially wanting to refine the BOT as they are scanning
 669   // those cards (this can happen shortly after a cleanup; see CR
 670   // 6991377). So we have to set up the region(s) carefully and in
 671   // a specific order.
 672 
 673   // The word size sum of all the regions we will allocate.
 674   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
 675   assert(word_size <= word_size_sum, "sanity");
 676 
 677   // This will be the "starts humongous" region.
 678   HeapRegion* first_hr = region_at(first);
 679   // The header of the new object will be placed at the bottom of
 680   // the first region.
 681   HeapWord* new_obj = first_hr->bottom();
 682   // This will be the new end of the first region in the series that
 683   // should also match the end of the last region in the seriers.
 684   HeapWord* new_end = new_obj + word_size_sum;
 685   // This will be the new top of the first region that will reflect
 686   // this allocation.
 687   HeapWord* new_top = new_obj + word_size;
 688 
 689   // First, we need to zero the header of the space that we will be
 690   // allocating. When we update top further down, some refinement
 691   // threads might try to scan the region. By zeroing the header we
 692   // ensure that any thread that will try to scan the region will
 693   // come across the zero klass word and bail out.
 694   //
 695   // NOTE: It would not have been correct to have used
 696   // CollectedHeap::fill_with_object() and make the space look like
 697   // an int array. The thread that is doing the allocation will
 698   // later update the object header to a potentially different array
 699   // type and, for a very short period of time, the klass and length
 700   // fields will be inconsistent. This could cause a refinement
 701   // thread to calculate the object size incorrectly.
 702   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 703 
 704   // We will set up the first region as "starts humongous". This
 705   // will also update the BOT covering all the regions to reflect
 706   // that there is a single object that starts at the bottom of the
 707   // first region.
 708   first_hr->set_startsHumongous(new_top, new_end);
 709 
 710   // Then, if there are any, we will set up the "continues
 711   // humongous" regions.
 712   HeapRegion* hr = NULL;
 713   for (size_t i = first + 1; i < last; ++i) {
 714     hr = region_at(i);
 715     hr->set_continuesHumongous(first_hr);
 716   }
 717   // If we have "continues humongous" regions (hr != NULL), then the
 718   // end of the last one should match new_end.
 719   assert(hr == NULL || hr->end() == new_end, "sanity");
 720 
 721   // Up to this point no concurrent thread would have been able to
 722   // do any scanning on any region in this series. All the top
 723   // fields still point to bottom, so the intersection between
 724   // [bottom,top] and [card_start,card_end] will be empty. Before we
 725   // update the top fields, we'll do a storestore to make sure that
 726   // no thread sees the update to top before the zeroing of the
 727   // object header and the BOT initialization.
 728   OrderAccess::storestore();
 729 
 730   // Now that the BOT and the object header have been initialized,
 731   // we can update top of the "starts humongous" region.
 732   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 733          "new_top should be in this region");
 734   first_hr->set_top(new_top);
 735   if (_hr_printer.is_active()) {
 736     HeapWord* bottom = first_hr->bottom();
 737     HeapWord* end = first_hr->orig_end();
 738     if ((first + 1) == last) {
 739       // the series has a single humongous region
 740       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 741     } else {
 742       // the series has more than one humongous regions
 743       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 744     }
 745   }
 746 
 747   // Now, we will update the top fields of the "continues humongous"
 748   // regions. The reason we need to do this is that, otherwise,
 749   // these regions would look empty and this will confuse parts of
 750   // G1. For example, the code that looks for a consecutive number
 751   // of empty regions will consider them empty and try to
 752   // re-allocate them. We can extend is_empty() to also include
 753   // !continuesHumongous(), but it is easier to just update the top
 754   // fields here. The way we set top for all regions (i.e., top ==
 755   // end for all regions but the last one, top == new_top for the
 756   // last one) is actually used when we will free up the humongous
 757   // region in free_humongous_region().
 758   hr = NULL;
 759   for (size_t i = first + 1; i < last; ++i) {
 760     hr = region_at(i);
 761     if ((i + 1) == last) {
 762       // last continues humongous region
 763       assert(hr->bottom() < new_top && new_top <= hr->end(),
 764              "new_top should fall on this region");
 765       hr->set_top(new_top);
 766       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 767     } else {
 768       // not last one
 769       assert(new_top > hr->end(), "new_top should be above this region");
 770       hr->set_top(hr->end());
 771       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 772     }
 773   }
 774   // If we have continues humongous regions (hr != NULL), then the
 775   // end of the last one should match new_end and its top should
 776   // match new_top.
 777   assert(hr == NULL ||
 778          (hr->end() == new_end && hr->top() == new_top), "sanity");
 779 
 780   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 781   _summary_bytes_used += first_hr->used();
 782   _humongous_set.add(first_hr);
 783 
 784   return new_obj;
 785 }
 786 
 787 // If could fit into free regions w/o expansion, try.
 788 // Otherwise, if can expand, do so.
 789 // Otherwise, if using ex regions might help, try with ex given back.
 790 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 791   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 792 
 793   verify_region_sets_optional();
 794 
 795   size_t num_regions =
 796          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 797   size_t x_size = expansion_regions();
 798   size_t fs = _hrs.free_suffix();
 799   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
 800   if (first == G1_NULL_HRS_INDEX) {
 801     // The only thing we can do now is attempt expansion.
 802     if (fs + x_size >= num_regions) {
 803       // If the number of regions we're trying to allocate for this
 804       // object is at most the number of regions in the free suffix,
 805       // then the call to humongous_obj_allocate_find_first() above
 806       // should have succeeded and we wouldn't be here.
 807       //
 808       // We should only be trying to expand when the free suffix is
 809       // not sufficient for the object _and_ we have some expansion
 810       // room available.
 811       assert(num_regions > fs, "earlier allocation should have succeeded");
 812 
 813       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 814         // Even though the heap was expanded, it might not have
 815         // reached the desired size. So, we cannot assume that the
 816         // allocation will succeed.
 817         first = humongous_obj_allocate_find_first(num_regions, word_size);
 818       }
 819     }
 820   }
 821 
 822   HeapWord* result = NULL;
 823   if (first != G1_NULL_HRS_INDEX) {
 824     result =
 825       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 826     assert(result != NULL, "it should always return a valid result");
 827   }
 828 
 829   verify_region_sets_optional();
 830 
 831   return result;
 832 }
 833 
 834 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 835   assert_heap_not_locked_and_not_at_safepoint();
 836   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 837 
 838   unsigned int dummy_gc_count_before;
 839   return attempt_allocation(word_size, &dummy_gc_count_before);
 840 }
 841 
 842 HeapWord*
 843 G1CollectedHeap::mem_allocate(size_t word_size,
 844                               bool*  gc_overhead_limit_was_exceeded) {
 845   assert_heap_not_locked_and_not_at_safepoint();
 846 
 847   // Loop until the allocation is satisified, or unsatisfied after GC.
 848   for (int try_count = 1; /* we'll return */; try_count += 1) {
 849     unsigned int gc_count_before;
 850 
 851     HeapWord* result = NULL;
 852     if (!isHumongous(word_size)) {
 853       result = attempt_allocation(word_size, &gc_count_before);
 854     } else {
 855       result = attempt_allocation_humongous(word_size, &gc_count_before);
 856     }
 857     if (result != NULL) {
 858       return result;
 859     }
 860 
 861     // Create the garbage collection operation...
 862     VM_G1CollectForAllocation op(gc_count_before, word_size);
 863     // ...and get the VM thread to execute it.
 864     VMThread::execute(&op);
 865 
 866     if (op.prologue_succeeded() && op.pause_succeeded()) {
 867       // If the operation was successful we'll return the result even
 868       // if it is NULL. If the allocation attempt failed immediately
 869       // after a Full GC, it's unlikely we'll be able to allocate now.
 870       HeapWord* result = op.result();
 871       if (result != NULL && !isHumongous(word_size)) {
 872         // Allocations that take place on VM operations do not do any
 873         // card dirtying and we have to do it here. We only have to do
 874         // this for non-humongous allocations, though.
 875         dirty_young_block(result, word_size);
 876       }
 877       return result;
 878     } else {
 879       assert(op.result() == NULL,
 880              "the result should be NULL if the VM op did not succeed");
 881     }
 882 
 883     // Give a warning if we seem to be looping forever.
 884     if ((QueuedAllocationWarningCount > 0) &&
 885         (try_count % QueuedAllocationWarningCount == 0)) {
 886       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 887     }
 888   }
 889 
 890   ShouldNotReachHere();
 891   return NULL;
 892 }
 893 
 894 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 895                                            unsigned int *gc_count_before_ret) {
 896   // Make sure you read the note in attempt_allocation_humongous().
 897 
 898   assert_heap_not_locked_and_not_at_safepoint();
 899   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 900          "be called for humongous allocation requests");
 901 
 902   // We should only get here after the first-level allocation attempt
 903   // (attempt_allocation()) failed to allocate.
 904 
 905   // We will loop until a) we manage to successfully perform the
 906   // allocation or b) we successfully schedule a collection which
 907   // fails to perform the allocation. b) is the only case when we'll
 908   // return NULL.
 909   HeapWord* result = NULL;
 910   for (int try_count = 1; /* we'll return */; try_count += 1) {
 911     bool should_try_gc;
 912     unsigned int gc_count_before;
 913 
 914     {
 915       MutexLockerEx x(Heap_lock);
 916 
 917       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 918                                                       false /* bot_updates */);
 919       if (result != NULL) {
 920         return result;
 921       }
 922 
 923       // If we reach here, attempt_allocation_locked() above failed to
 924       // allocate a new region. So the mutator alloc region should be NULL.
 925       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 926 
 927       if (GC_locker::is_active_and_needs_gc()) {
 928         if (g1_policy()->can_expand_young_list()) {
 929           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 930                                                       false /* bot_updates */);
 931           if (result != NULL) {
 932             return result;
 933           }
 934         }
 935         should_try_gc = false;
 936       } else {
 937         // Read the GC count while still holding the Heap_lock.
 938         gc_count_before = SharedHeap::heap()->total_collections();
 939         should_try_gc = true;
 940       }
 941     }
 942 
 943     if (should_try_gc) {
 944       bool succeeded;
 945       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 946       if (result != NULL) {
 947         assert(succeeded, "only way to get back a non-NULL result");
 948         return result;
 949       }
 950 
 951       if (succeeded) {
 952         // If we get here we successfully scheduled a collection which
 953         // failed to allocate. No point in trying to allocate
 954         // further. We'll just return NULL.
 955         MutexLockerEx x(Heap_lock);
 956         *gc_count_before_ret = SharedHeap::heap()->total_collections();
 957         return NULL;
 958       }
 959     } else {
 960       GC_locker::stall_until_clear();
 961     }
 962 
 963     // We can reach here if we were unsuccessul in scheduling a
 964     // collection (because another thread beat us to it) or if we were
 965     // stalled due to the GC locker. In either can we should retry the
 966     // allocation attempt in case another thread successfully
 967     // performed a collection and reclaimed enough space. We do the
 968     // first attempt (without holding the Heap_lock) here and the
 969     // follow-on attempt will be at the start of the next loop
 970     // iteration (after taking the Heap_lock).
 971     result = _mutator_alloc_region.attempt_allocation(word_size,
 972                                                       false /* bot_updates */);
 973     if (result != NULL ){
 974       return result;
 975     }
 976 
 977     // Give a warning if we seem to be looping forever.
 978     if ((QueuedAllocationWarningCount > 0) &&
 979         (try_count % QueuedAllocationWarningCount == 0)) {
 980       warning("G1CollectedHeap::attempt_allocation_slow() "
 981               "retries %d times", try_count);
 982     }
 983   }
 984 
 985   ShouldNotReachHere();
 986   return NULL;
 987 }
 988 
 989 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 990                                           unsigned int * gc_count_before_ret) {
 991   // The structure of this method has a lot of similarities to
 992   // attempt_allocation_slow(). The reason these two were not merged
 993   // into a single one is that such a method would require several "if
 994   // allocation is not humongous do this, otherwise do that"
 995   // conditional paths which would obscure its flow. In fact, an early
 996   // version of this code did use a unified method which was harder to
 997   // follow and, as a result, it had subtle bugs that were hard to
 998   // track down. So keeping these two methods separate allows each to
 999   // be more readable. It will be good to keep these two in sync as
1000   // much as possible.
1001 
1002   assert_heap_not_locked_and_not_at_safepoint();
1003   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1004          "should only be called for humongous allocations");
1005 
1006   // We will loop until a) we manage to successfully perform the
1007   // allocation or b) we successfully schedule a collection which
1008   // fails to perform the allocation. b) is the only case when we'll
1009   // return NULL.
1010   HeapWord* result = NULL;
1011   for (int try_count = 1; /* we'll return */; try_count += 1) {
1012     bool should_try_gc;
1013     unsigned int gc_count_before;
1014 
1015     {
1016       MutexLockerEx x(Heap_lock);
1017 
1018       // Given that humongous objects are not allocated in young
1019       // regions, we'll first try to do the allocation without doing a
1020       // collection hoping that there's enough space in the heap.
1021       result = humongous_obj_allocate(word_size);
1022       if (result != NULL) {
1023         return result;
1024       }
1025 
1026       if (GC_locker::is_active_and_needs_gc()) {
1027         should_try_gc = false;
1028       } else {
1029         // Read the GC count while still holding the Heap_lock.
1030         gc_count_before = SharedHeap::heap()->total_collections();
1031         should_try_gc = true;
1032       }
1033     }
1034 
1035     if (should_try_gc) {
1036       // If we failed to allocate the humongous object, we should try to
1037       // do a collection pause (if we're allowed) in case it reclaims
1038       // enough space for the allocation to succeed after the pause.
1039 
1040       bool succeeded;
1041       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1042       if (result != NULL) {
1043         assert(succeeded, "only way to get back a non-NULL result");
1044         return result;
1045       }
1046 
1047       if (succeeded) {
1048         // If we get here we successfully scheduled a collection which
1049         // failed to allocate. No point in trying to allocate
1050         // further. We'll just return NULL.
1051         MutexLockerEx x(Heap_lock);
1052         *gc_count_before_ret = SharedHeap::heap()->total_collections();
1053         return NULL;
1054       }
1055     } else {
1056       GC_locker::stall_until_clear();
1057     }
1058 
1059     // We can reach here if we were unsuccessul in scheduling a
1060     // collection (because another thread beat us to it) or if we were
1061     // stalled due to the GC locker. In either can we should retry the
1062     // allocation attempt in case another thread successfully
1063     // performed a collection and reclaimed enough space.  Give a
1064     // warning if we seem to be looping forever.
1065 
1066     if ((QueuedAllocationWarningCount > 0) &&
1067         (try_count % QueuedAllocationWarningCount == 0)) {
1068       warning("G1CollectedHeap::attempt_allocation_humongous() "
1069               "retries %d times", try_count);
1070     }
1071   }
1072 
1073   ShouldNotReachHere();
1074   return NULL;
1075 }
1076 
1077 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1078                                        bool expect_null_mutator_alloc_region) {
1079   assert_at_safepoint(true /* should_be_vm_thread */);
1080   assert(_mutator_alloc_region.get() == NULL ||
1081                                              !expect_null_mutator_alloc_region,
1082          "the current alloc region was unexpectedly found to be non-NULL");
1083 
1084   if (!isHumongous(word_size)) {
1085     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1086                                                       false /* bot_updates */);
1087   } else {
1088     return humongous_obj_allocate(word_size);
1089   }
1090 
1091   ShouldNotReachHere();
1092 }
1093 
1094 void G1CollectedHeap::abandon_gc_alloc_regions() {
1095   // first, make sure that the GC alloc region list is empty (it should!)
1096   assert(_gc_alloc_region_list == NULL, "invariant");
1097   release_gc_alloc_regions(true /* totally */);
1098 }
1099 
1100 class PostMCRemSetClearClosure: public HeapRegionClosure {
1101   ModRefBarrierSet* _mr_bs;
1102 public:
1103   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1104   bool doHeapRegion(HeapRegion* r) {
1105     r->reset_gc_time_stamp();
1106     if (r->continuesHumongous())
1107       return false;
1108     HeapRegionRemSet* hrrs = r->rem_set();
1109     if (hrrs != NULL) hrrs->clear();
1110     // You might think here that we could clear just the cards
1111     // corresponding to the used region.  But no: if we leave a dirty card
1112     // in a region we might allocate into, then it would prevent that card
1113     // from being enqueued, and cause it to be missed.
1114     // Re: the performance cost: we shouldn't be doing full GC anyway!
1115     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1116     return false;
1117   }
1118 };
1119 
1120 
1121 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
1122   ModRefBarrierSet* _mr_bs;
1123 public:
1124   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1125   bool doHeapRegion(HeapRegion* r) {
1126     if (r->continuesHumongous()) return false;
1127     if (r->used_region().word_size() != 0) {
1128       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
1129     }
1130     return false;
1131   }
1132 };
1133 
1134 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1135   G1CollectedHeap*   _g1h;
1136   UpdateRSOopClosure _cl;
1137   int                _worker_i;
1138 public:
1139   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1140     _cl(g1->g1_rem_set(), worker_i),
1141     _worker_i(worker_i),
1142     _g1h(g1)
1143   { }
1144 
1145   bool doHeapRegion(HeapRegion* r) {
1146     if (!r->continuesHumongous()) {
1147       _cl.set_from(r);
1148       r->oop_iterate(&_cl);
1149     }
1150     return false;
1151   }
1152 };
1153 
1154 class ParRebuildRSTask: public AbstractGangTask {
1155   G1CollectedHeap* _g1;
1156 public:
1157   ParRebuildRSTask(G1CollectedHeap* g1)
1158     : AbstractGangTask("ParRebuildRSTask"),
1159       _g1(g1)
1160   { }
1161 
1162   void work(int i) {
1163     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
1164     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
1165                                          HeapRegion::RebuildRSClaimValue);
1166   }
1167 };
1168 
1169 class PostCompactionPrinterClosure: public HeapRegionClosure {
1170 private:
1171   G1HRPrinter* _hr_printer;
1172 public:
1173   bool doHeapRegion(HeapRegion* hr) {
1174     assert(!hr->is_young(), "not expecting to find young regions");
1175     // We only generate output for non-empty regions.
1176     if (!hr->is_empty()) {
1177       if (!hr->isHumongous()) {
1178         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1179       } else if (hr->startsHumongous()) {
1180         if (hr->capacity() == (size_t) HeapRegion::GrainBytes) {
1181           // single humongous region
1182           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1183         } else {
1184           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1185         }
1186       } else {
1187         assert(hr->continuesHumongous(), "only way to get here");
1188         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1189       }
1190     }
1191     return false;
1192   }
1193 
1194   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1195     : _hr_printer(hr_printer) { }
1196 };
1197 
1198 bool G1CollectedHeap::do_collection(bool explicit_gc,
1199                                     bool clear_all_soft_refs,
1200                                     size_t word_size) {
1201   assert_at_safepoint(true /* should_be_vm_thread */);
1202 
1203   if (GC_locker::check_active_before_gc()) {
1204     return false;
1205   }
1206 
1207   SvcGCMarker sgcm(SvcGCMarker::FULL);
1208   ResourceMark rm;
1209 
1210   if (PrintHeapAtGC) {
1211     Universe::print_heap_before_gc();
1212   }
1213 
1214   verify_region_sets_optional();
1215 
1216   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1217                            collector_policy()->should_clear_all_soft_refs();
1218 
1219   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1220 
1221   {
1222     IsGCActiveMark x;
1223 
1224     // Timing
1225     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
1226     assert(!system_gc || explicit_gc, "invariant");
1227     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
1228     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1229     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1230                 PrintGC, true, gclog_or_tty);
1231 
1232     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1233     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1234 
1235     double start = os::elapsedTime();
1236     g1_policy()->record_full_collection_start();
1237 
1238     wait_while_free_regions_coming();
1239     append_secondary_free_list_if_not_empty_with_lock();
1240 
1241     gc_prologue(true);
1242     increment_total_collections(true /* full gc */);
1243 
1244     size_t g1h_prev_used = used();
1245     assert(used() == recalculate_used(), "Should be equal");
1246 
1247     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1248       HandleMark hm;  // Discard invalid handles created during verification
1249       gclog_or_tty->print(" VerifyBeforeGC:");
1250       prepare_for_verify();
1251       Universe::verify(/* allow dirty */ true,
1252                        /* silent      */ false,
1253                        /* option      */ VerifyOption_G1UsePrevMarking);
1254 
1255     }
1256 
1257     COMPILER2_PRESENT(DerivedPointerTable::clear());
1258 
1259     // We want to discover references, but not process them yet.
1260     // This mode is disabled in
1261     // instanceRefKlass::process_discovered_references if the
1262     // generation does some collection work, or
1263     // instanceRefKlass::enqueue_discovered_references if the
1264     // generation returns without doing any work.
1265 
1266     // Disable discovery and empty the discovered lists
1267     // for the CM ref processor.
1268     ref_processor_cm()->disable_discovery();
1269     ref_processor_cm()->abandon_partial_discovery();
1270     ref_processor_cm()->verify_no_references_recorded();
1271 
1272     // Abandon current iterations of concurrent marking and concurrent
1273     // refinement, if any are in progress.
1274     concurrent_mark()->abort();
1275 
1276     // Make sure we'll choose a new allocation region afterwards.
1277     release_mutator_alloc_region();
1278     abandon_gc_alloc_regions();
1279     g1_rem_set()->cleanupHRRS();
1280     tear_down_region_lists();
1281 
1282     // We should call this after we retire any currently active alloc
1283     // regions so that all the ALLOC / RETIRE events are generated
1284     // before the start GC event.
1285     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1286 
1287     // We may have added regions to the current incremental collection
1288     // set between the last GC or pause and now. We need to clear the
1289     // incremental collection set and then start rebuilding it afresh
1290     // after this full GC.
1291     abandon_collection_set(g1_policy()->inc_cset_head());
1292     g1_policy()->clear_incremental_cset();
1293     g1_policy()->stop_incremental_cset_building();
1294 
1295     if (g1_policy()->in_young_gc_mode()) {
1296       empty_young_list();
1297       g1_policy()->set_full_young_gcs(true);
1298     }
1299 
1300     // See the comments in g1CollectedHeap.hpp and 
1301     // G1CollectedHeap::ref_processing_init() about
1302     // how reference processing currently works in G1.
1303 
1304     assert(!ref_processor_stw()->discovery_enabled(), "Precondition");
1305     ref_processor_stw()->verify_no_references_recorded();
1306 
1307     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1308     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1309 
1310     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1311     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1312 
1313     ref_processor_stw()->enable_discovery();
1314     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1315 
1316     // Do collection work
1317     {
1318       HandleMark hm;  // Discard invalid handles created during gc
1319       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1320     }
1321 
1322     assert(free_regions() == 0, "we should not have added any free regions");
1323     rebuild_region_lists();
1324 
1325     _summary_bytes_used = recalculate_used();
1326 
1327     // Enqueue any discovered reference objects that have
1328     // not been removed from the discovered lists.
1329     ref_processor_stw()->enqueue_discovered_references();
1330 
1331     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1332 
1333     MemoryService::track_memory_usage();
1334 
1335     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1336       HandleMark hm;  // Discard invalid handles created during verification
1337       gclog_or_tty->print(" VerifyAfterGC:");
1338       prepare_for_verify();
1339       Universe::verify(/* allow dirty */ false,
1340                        /* silent      */ false,
1341                        /* option      */ VerifyOption_G1UsePrevMarking);
1342 
1343     }
1344 
1345     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1346     ref_processor_stw()->verify_no_references_recorded();
1347 
1348     // Note: since we've just done a full GC, concurrent
1349     // marking is no longer active. Therefore we need not
1350     // re-enable reference discovery for the CM ref processor.
1351     // That will be done at the start of the next marking cycle.
1352     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1353     ref_processor_cm()->verify_no_references_recorded();
1354 
1355     reset_gc_time_stamp();
1356     // Since everything potentially moved, we will clear all remembered
1357     // sets, and clear all cards.  Later we will rebuild remebered
1358     // sets. We will also reset the GC time stamps of the regions.
1359     PostMCRemSetClearClosure rs_clear(mr_bs());
1360     heap_region_iterate(&rs_clear);
1361 
1362     // Resize the heap if necessary.
1363     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1364 
1365     if (_hr_printer.is_active()) {
1366       // We should do this after we potentially resize the heap so
1367       // that all the COMMIT / UNCOMMIT events are generated before
1368       // the end GC event.
1369 
1370       PostCompactionPrinterClosure cl(hr_printer());
1371       heap_region_iterate(&cl);
1372 
1373       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1374     }
1375 
1376     if (_cg1r->use_cache()) {
1377       _cg1r->clear_and_record_card_counts();
1378       _cg1r->clear_hot_cache();
1379     }
1380 
1381     // Rebuild remembered sets of all regions.
1382 
1383     if (G1CollectedHeap::use_parallel_gc_threads()) {
1384       ParRebuildRSTask rebuild_rs_task(this);
1385       assert(check_heap_region_claim_values(
1386              HeapRegion::InitialClaimValue), "sanity check");
1387       set_par_threads(workers()->total_workers());
1388       workers()->run_task(&rebuild_rs_task);
1389       set_par_threads(0);
1390       assert(check_heap_region_claim_values(
1391              HeapRegion::RebuildRSClaimValue), "sanity check");
1392       reset_heap_region_claim_values();
1393     } else {
1394       RebuildRSOutOfRegionClosure rebuild_rs(this);
1395       heap_region_iterate(&rebuild_rs);
1396     }
1397 
1398     if (PrintGC) {
1399       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1400     }
1401 
1402     if (true) { // FIXME
1403       // Ask the permanent generation to adjust size for full collections
1404       perm()->compute_new_size();
1405     }
1406 
1407     // Start a new incremental collection set for the next pause
1408     assert(g1_policy()->collection_set() == NULL, "must be");
1409     g1_policy()->start_incremental_cset_building();
1410 
1411     // Clear the _cset_fast_test bitmap in anticipation of adding
1412     // regions to the incremental collection set for the next
1413     // evacuation pause.
1414     clear_cset_fast_test();
1415 
1416     init_mutator_alloc_region();
1417 
1418     double end = os::elapsedTime();
1419     g1_policy()->record_full_collection_end();
1420 
1421 #ifdef TRACESPINNING
1422     ParallelTaskTerminator::print_termination_counts();
1423 #endif
1424 
1425     gc_epilogue(true);
1426 
1427     // Discard all rset updates
1428     JavaThread::dirty_card_queue_set().abandon_logs();
1429     assert(!G1DeferredRSUpdate
1430            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1431   }
1432 
1433   if (g1_policy()->in_young_gc_mode()) {
1434     _young_list->reset_sampled_info();
1435     // At this point there should be no regions in the
1436     // entire heap tagged as young.
1437     assert( check_young_list_empty(true /* check_heap */),
1438             "young list should be empty at this point");
1439   }
1440 
1441   // Update the number of full collections that have been completed.
1442   increment_full_collections_completed(false /* concurrent */);
1443 
1444   _hrs.verify_optional();
1445   verify_region_sets_optional();
1446 
1447   if (PrintHeapAtGC) {
1448     Universe::print_heap_after_gc();
1449   }
1450   g1mm()->update_counters();
1451 
1452   return true;
1453 }
1454 
1455 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1456   // do_collection() will return whether it succeeded in performing
1457   // the GC. Currently, there is no facility on the
1458   // do_full_collection() API to notify the caller than the collection
1459   // did not succeed (e.g., because it was locked out by the GC
1460   // locker). So, right now, we'll ignore the return value.
1461   bool dummy = do_collection(true,                /* explicit_gc */
1462                              clear_all_soft_refs,
1463                              0                    /* word_size */);
1464 }
1465 
1466 // This code is mostly copied from TenuredGeneration.
1467 void
1468 G1CollectedHeap::
1469 resize_if_necessary_after_full_collection(size_t word_size) {
1470   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1471 
1472   // Include the current allocation, if any, and bytes that will be
1473   // pre-allocated to support collections, as "used".
1474   const size_t used_after_gc = used();
1475   const size_t capacity_after_gc = capacity();
1476   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1477 
1478   // This is enforced in arguments.cpp.
1479   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1480          "otherwise the code below doesn't make sense");
1481 
1482   // We don't have floating point command-line arguments
1483   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1484   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1485   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1486   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1487 
1488   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1489   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1490 
1491   // We have to be careful here as these two calculations can overflow
1492   // 32-bit size_t's.
1493   double used_after_gc_d = (double) used_after_gc;
1494   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1495   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1496 
1497   // Let's make sure that they are both under the max heap size, which
1498   // by default will make them fit into a size_t.
1499   double desired_capacity_upper_bound = (double) max_heap_size;
1500   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1501                                     desired_capacity_upper_bound);
1502   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1503                                     desired_capacity_upper_bound);
1504 
1505   // We can now safely turn them into size_t's.
1506   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1507   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1508 
1509   // This assert only makes sense here, before we adjust them
1510   // with respect to the min and max heap size.
1511   assert(minimum_desired_capacity <= maximum_desired_capacity,
1512          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1513                  "maximum_desired_capacity = "SIZE_FORMAT,
1514                  minimum_desired_capacity, maximum_desired_capacity));
1515 
1516   // Should not be greater than the heap max size. No need to adjust
1517   // it with respect to the heap min size as it's a lower bound (i.e.,
1518   // we'll try to make the capacity larger than it, not smaller).
1519   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1520   // Should not be less than the heap min size. No need to adjust it
1521   // with respect to the heap max size as it's an upper bound (i.e.,
1522   // we'll try to make the capacity smaller than it, not greater).
1523   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1524 
1525   if (PrintGC && Verbose) {
1526     const double free_percentage =
1527       (double) free_after_gc / (double) capacity_after_gc;
1528     gclog_or_tty->print_cr("Computing new size after full GC ");
1529     gclog_or_tty->print_cr("  "
1530                            "  minimum_free_percentage: %6.2f",
1531                            minimum_free_percentage);
1532     gclog_or_tty->print_cr("  "
1533                            "  maximum_free_percentage: %6.2f",
1534                            maximum_free_percentage);
1535     gclog_or_tty->print_cr("  "
1536                            "  capacity: %6.1fK"
1537                            "  minimum_desired_capacity: %6.1fK"
1538                            "  maximum_desired_capacity: %6.1fK",
1539                            (double) capacity_after_gc / (double) K,
1540                            (double) minimum_desired_capacity / (double) K,
1541                            (double) maximum_desired_capacity / (double) K);
1542     gclog_or_tty->print_cr("  "
1543                            "  free_after_gc: %6.1fK"
1544                            "  used_after_gc: %6.1fK",
1545                            (double) free_after_gc / (double) K,
1546                            (double) used_after_gc / (double) K);
1547     gclog_or_tty->print_cr("  "
1548                            "   free_percentage: %6.2f",
1549                            free_percentage);
1550   }
1551   if (capacity_after_gc < minimum_desired_capacity) {
1552     // Don't expand unless it's significant
1553     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1554     if (expand(expand_bytes)) {
1555       if (PrintGC && Verbose) {
1556         gclog_or_tty->print_cr("  "
1557                                "  expanding:"
1558                                "  max_heap_size: %6.1fK"
1559                                "  minimum_desired_capacity: %6.1fK"
1560                                "  expand_bytes: %6.1fK",
1561                                (double) max_heap_size / (double) K,
1562                                (double) minimum_desired_capacity / (double) K,
1563                                (double) expand_bytes / (double) K);
1564       }
1565     }
1566 
1567     // No expansion, now see if we want to shrink
1568   } else if (capacity_after_gc > maximum_desired_capacity) {
1569     // Capacity too large, compute shrinking size
1570     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1571     shrink(shrink_bytes);
1572     if (PrintGC && Verbose) {
1573       gclog_or_tty->print_cr("  "
1574                              "  shrinking:"
1575                              "  min_heap_size: %6.1fK"
1576                              "  maximum_desired_capacity: %6.1fK"
1577                              "  shrink_bytes: %6.1fK",
1578                              (double) min_heap_size / (double) K,
1579                              (double) maximum_desired_capacity / (double) K,
1580                              (double) shrink_bytes / (double) K);
1581     }
1582   }
1583 }
1584 
1585 
1586 HeapWord*
1587 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1588                                            bool* succeeded) {
1589   assert_at_safepoint(true /* should_be_vm_thread */);
1590 
1591   *succeeded = true;
1592   // Let's attempt the allocation first.
1593   HeapWord* result =
1594     attempt_allocation_at_safepoint(word_size,
1595                                  false /* expect_null_mutator_alloc_region */);
1596   if (result != NULL) {
1597     assert(*succeeded, "sanity");
1598     return result;
1599   }
1600 
1601   // In a G1 heap, we're supposed to keep allocation from failing by
1602   // incremental pauses.  Therefore, at least for now, we'll favor
1603   // expansion over collection.  (This might change in the future if we can
1604   // do something smarter than full collection to satisfy a failed alloc.)
1605   result = expand_and_allocate(word_size);
1606   if (result != NULL) {
1607     assert(*succeeded, "sanity");
1608     return result;
1609   }
1610 
1611   // Expansion didn't work, we'll try to do a Full GC.
1612   bool gc_succeeded = do_collection(false, /* explicit_gc */
1613                                     false, /* clear_all_soft_refs */
1614                                     word_size);
1615   if (!gc_succeeded) {
1616     *succeeded = false;
1617     return NULL;
1618   }
1619 
1620   // Retry the allocation
1621   result = attempt_allocation_at_safepoint(word_size,
1622                                   true /* expect_null_mutator_alloc_region */);
1623   if (result != NULL) {
1624     assert(*succeeded, "sanity");
1625     return result;
1626   }
1627 
1628   // Then, try a Full GC that will collect all soft references.
1629   gc_succeeded = do_collection(false, /* explicit_gc */
1630                                true,  /* clear_all_soft_refs */
1631                                word_size);
1632   if (!gc_succeeded) {
1633     *succeeded = false;
1634     return NULL;
1635   }
1636 
1637   // Retry the allocation once more
1638   result = attempt_allocation_at_safepoint(word_size,
1639                                   true /* expect_null_mutator_alloc_region */);
1640   if (result != NULL) {
1641     assert(*succeeded, "sanity");
1642     return result;
1643   }
1644 
1645   assert(!collector_policy()->should_clear_all_soft_refs(),
1646          "Flag should have been handled and cleared prior to this point");
1647 
1648   // What else?  We might try synchronous finalization later.  If the total
1649   // space available is large enough for the allocation, then a more
1650   // complete compaction phase than we've tried so far might be
1651   // appropriate.
1652   assert(*succeeded, "sanity");
1653   return NULL;
1654 }
1655 
1656 // Attempting to expand the heap sufficiently
1657 // to support an allocation of the given "word_size".  If
1658 // successful, perform the allocation and return the address of the
1659 // allocated block, or else "NULL".
1660 
1661 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1662   assert_at_safepoint(true /* should_be_vm_thread */);
1663 
1664   verify_region_sets_optional();
1665 
1666   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1667   if (expand(expand_bytes)) {
1668     _hrs.verify_optional();
1669     verify_region_sets_optional();
1670     return attempt_allocation_at_safepoint(word_size,
1671                                  false /* expect_null_mutator_alloc_region */);
1672   }
1673   return NULL;
1674 }
1675 
1676 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1677                                              HeapWord* new_end) {
1678   assert(old_end != new_end, "don't call this otherwise");
1679   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1680 
1681   // Update the committed mem region.
1682   _g1_committed.set_end(new_end);
1683   // Tell the card table about the update.
1684   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1685   // Tell the BOT about the update.
1686   _bot_shared->resize(_g1_committed.word_size());
1687 }
1688 
1689 bool G1CollectedHeap::expand(size_t expand_bytes) {
1690   size_t old_mem_size = _g1_storage.committed_size();
1691   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1692   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1693                                        HeapRegion::GrainBytes);
1694 
1695   if (Verbose && PrintGC) {
1696     gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
1697                            old_mem_size/K, aligned_expand_bytes/K);
1698   }
1699 
1700   // First commit the memory.
1701   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1702   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1703   if (successful) {
1704     // Then propagate this update to the necessary data structures.
1705     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1706     update_committed_space(old_end, new_end);
1707 
1708     FreeRegionList expansion_list("Local Expansion List");
1709     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1710     assert(mr.start() == old_end, "post-condition");
1711     // mr might be a smaller region than what was requested if
1712     // expand_by() was unable to allocate the HeapRegion instances
1713     assert(mr.end() <= new_end, "post-condition");
1714 
1715     size_t actual_expand_bytes = mr.byte_size();
1716     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1717     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1718            "post-condition");
1719     if (actual_expand_bytes < aligned_expand_bytes) {
1720       // We could not expand _hrs to the desired size. In this case we
1721       // need to shrink the committed space accordingly.
1722       assert(mr.end() < new_end, "invariant");
1723 
1724       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1725       // First uncommit the memory.
1726       _g1_storage.shrink_by(diff_bytes);
1727       // Then propagate this update to the necessary data structures.
1728       update_committed_space(new_end, mr.end());
1729     }
1730     _free_list.add_as_tail(&expansion_list);
1731 
1732     if (_hr_printer.is_active()) {
1733       HeapWord* curr = mr.start();
1734       while (curr < mr.end()) {
1735         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1736         _hr_printer.commit(curr, curr_end);
1737         curr = curr_end;
1738       }
1739       assert(curr == mr.end(), "post-condition");
1740     }
1741   } else {
1742     // The expansion of the virtual storage space was unsuccessful.
1743     // Let's see if it was because we ran out of swap.
1744     if (G1ExitOnExpansionFailure &&
1745         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1746       // We had head room...
1747       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1748     }
1749   }
1750 
1751   if (Verbose && PrintGC) {
1752     size_t new_mem_size = _g1_storage.committed_size();
1753     gclog_or_tty->print_cr("...%s, expanded to %ldK",
1754                            (successful ? "Successful" : "Failed"),
1755                            new_mem_size/K);
1756   }
1757   return successful;
1758 }
1759 
1760 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1761   size_t old_mem_size = _g1_storage.committed_size();
1762   size_t aligned_shrink_bytes =
1763     ReservedSpace::page_align_size_down(shrink_bytes);
1764   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1765                                          HeapRegion::GrainBytes);
1766   size_t num_regions_deleted = 0;
1767   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1768   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1769   assert(mr.end() == old_end, "post-condition");
1770   if (mr.byte_size() > 0) {
1771     if (_hr_printer.is_active()) {
1772       HeapWord* curr = mr.end();
1773       while (curr > mr.start()) {
1774         HeapWord* curr_end = curr;
1775         curr -= HeapRegion::GrainWords;
1776         _hr_printer.uncommit(curr, curr_end);
1777       }
1778       assert(curr == mr.start(), "post-condition");
1779     }
1780 
1781     _g1_storage.shrink_by(mr.byte_size());
1782     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1783     assert(mr.start() == new_end, "post-condition");
1784 
1785     _expansion_regions += num_regions_deleted;
1786     update_committed_space(old_end, new_end);
1787     HeapRegionRemSet::shrink_heap(n_regions());
1788 
1789     if (Verbose && PrintGC) {
1790       size_t new_mem_size = _g1_storage.committed_size();
1791       gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
1792                              old_mem_size/K, aligned_shrink_bytes/K,
1793                              new_mem_size/K);
1794     }
1795   }
1796 }
1797 
1798 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1799   verify_region_sets_optional();
1800 
1801   release_gc_alloc_regions(true /* totally */);
1802   // Instead of tearing down / rebuilding the free lists here, we
1803   // could instead use the remove_all_pending() method on free_list to
1804   // remove only the ones that we need to remove.
1805   tear_down_region_lists();  // We will rebuild them in a moment.
1806   shrink_helper(shrink_bytes);
1807   rebuild_region_lists();
1808 
1809   _hrs.verify_optional();
1810   verify_region_sets_optional();
1811 }
1812 
1813 // Public methods.
1814 
1815 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1816 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1817 #endif // _MSC_VER
1818 
1819 
1820 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1821   SharedHeap(policy_),
1822   _g1_policy(policy_),
1823   _dirty_card_queue_set(false),
1824   _into_cset_dirty_card_queue_set(false),
1825   _is_alive_closure_cm(this),
1826   _is_alive_closure_stw(this),
1827   _ref_processor_cm(NULL),
1828   _ref_processor_stw(NULL),
1829   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1830   _bot_shared(NULL),
1831   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1832   _evac_failure_scan_stack(NULL) ,
1833   _mark_in_progress(false),
1834   _cg1r(NULL), _summary_bytes_used(0),
1835   _refine_cte_cl(NULL),
1836   _full_collection(false),
1837   _free_list("Master Free List"),
1838   _secondary_free_list("Secondary Free List"),
1839   _humongous_set("Master Humongous Set"),
1840   _free_regions_coming(false),
1841   _young_list(new YoungList(this)),
1842   _gc_time_stamp(0),
1843   _surviving_young_words(NULL),
1844   _full_collections_completed(0),
1845   _in_cset_fast_test(NULL),
1846   _in_cset_fast_test_base(NULL),
1847   _dirty_cards_region_list(NULL) {
1848   _g1h = this; // To catch bugs.
1849   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1850     vm_exit_during_initialization("Failed necessary allocation.");
1851   }
1852 
1853   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1854 
1855   int n_queues = MAX2((int)ParallelGCThreads, 1);
1856   _task_queues = new RefToScanQueueSet(n_queues);
1857 
1858   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1859   assert(n_rem_sets > 0, "Invariant.");
1860 
1861   HeapRegionRemSetIterator** iter_arr =
1862     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1863   for (int i = 0; i < n_queues; i++) {
1864     iter_arr[i] = new HeapRegionRemSetIterator();
1865   }
1866   _rem_set_iterator = iter_arr;
1867 
1868   for (int i = 0; i < n_queues; i++) {
1869     RefToScanQueue* q = new RefToScanQueue();
1870     q->initialize();
1871     _task_queues->register_queue(i, q);
1872   }
1873 
1874   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1875     _gc_alloc_regions[ap]          = NULL;
1876     _gc_alloc_region_counts[ap]    = 0;
1877     _retained_gc_alloc_regions[ap] = NULL;
1878     // by default, we do not retain a GC alloc region for each ap;
1879     // we'll override this, when appropriate, below
1880     _retain_gc_alloc_region[ap]    = false;
1881   }
1882 
1883   // We will try to remember the last half-full tenured region we
1884   // allocated to at the end of a collection so that we can re-use it
1885   // during the next collection.
1886   _retain_gc_alloc_region[GCAllocForTenured]  = true;
1887 
1888   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1889 }
1890 
1891 jint G1CollectedHeap::initialize() {
1892   CollectedHeap::pre_initialize();
1893   os::enable_vtime();
1894 
1895   // Necessary to satisfy locking discipline assertions.
1896 
1897   MutexLocker x(Heap_lock);
1898 
1899   // We have to initialize the printer before committing the heap, as
1900   // it will be used then.
1901   _hr_printer.set_active(G1PrintHeapRegions);
1902 
1903   // While there are no constraints in the GC code that HeapWordSize
1904   // be any particular value, there are multiple other areas in the
1905   // system which believe this to be true (e.g. oop->object_size in some
1906   // cases incorrectly returns the size in wordSize units rather than
1907   // HeapWordSize).
1908   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1909 
1910   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1911   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1912 
1913   // Ensure that the sizes are properly aligned.
1914   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1915   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1916 
1917   _cg1r = new ConcurrentG1Refine();
1918 
1919   // Reserve the maximum.
1920   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1921   // Includes the perm-gen.
1922 
1923   // When compressed oops are enabled, the preferred heap base
1924   // is calculated by subtracting the requested size from the
1925   // 32Gb boundary and using the result as the base address for
1926   // heap reservation. If the requested size is not aligned to
1927   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1928   // into the ReservedHeapSpace constructor) then the actual
1929   // base of the reserved heap may end up differing from the
1930   // address that was requested (i.e. the preferred heap base).
1931   // If this happens then we could end up using a non-optimal
1932   // compressed oops mode.
1933 
1934   // Since max_byte_size is aligned to the size of a heap region (checked
1935   // above), we also need to align the perm gen size as it might not be.
1936   const size_t total_reserved = max_byte_size +
1937                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1938   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1939 
1940   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1941 
1942   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1943                             UseLargePages, addr);
1944 
1945   if (UseCompressedOops) {
1946     if (addr != NULL && !heap_rs.is_reserved()) {
1947       // Failed to reserve at specified address - the requested memory
1948       // region is taken already, for example, by 'java' launcher.
1949       // Try again to reserver heap higher.
1950       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1951 
1952       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1953                                  UseLargePages, addr);
1954 
1955       if (addr != NULL && !heap_rs0.is_reserved()) {
1956         // Failed to reserve at specified address again - give up.
1957         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1958         assert(addr == NULL, "");
1959 
1960         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1961                                    UseLargePages, addr);
1962         heap_rs = heap_rs1;
1963       } else {
1964         heap_rs = heap_rs0;
1965       }
1966     }
1967   }
1968 
1969   if (!heap_rs.is_reserved()) {
1970     vm_exit_during_initialization("Could not reserve enough space for object heap");
1971     return JNI_ENOMEM;
1972   }
1973 
1974   // It is important to do this in a way such that concurrent readers can't
1975   // temporarily think somethings in the heap.  (I've actually seen this
1976   // happen in asserts: DLD.)
1977   _reserved.set_word_size(0);
1978   _reserved.set_start((HeapWord*)heap_rs.base());
1979   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1980 
1981   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1982 
1983   // Create the gen rem set (and barrier set) for the entire reserved region.
1984   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1985   set_barrier_set(rem_set()->bs());
1986   if (barrier_set()->is_a(BarrierSet::ModRef)) {
1987     _mr_bs = (ModRefBarrierSet*)_barrier_set;
1988   } else {
1989     vm_exit_during_initialization("G1 requires a mod ref bs.");
1990     return JNI_ENOMEM;
1991   }
1992 
1993   // Also create a G1 rem set.
1994   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1995     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1996   } else {
1997     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1998     return JNI_ENOMEM;
1999   }
2000 
2001   // Carve out the G1 part of the heap.
2002 
2003   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2004   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2005                            g1_rs.size()/HeapWordSize);
2006   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
2007 
2008   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2009 
2010   _g1_storage.initialize(g1_rs, 0);
2011   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2012   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2013                   (HeapWord*) _g1_reserved.end(),
2014                   _expansion_regions);
2015 
2016   // 6843694 - ensure that the maximum region index can fit
2017   // in the remembered set structures.
2018   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2019   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2020 
2021   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2022   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2023   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
2024             "too many cards per region");
2025 
2026   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2027 
2028   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2029                                              heap_word_size(init_byte_size));
2030 
2031   _g1h = this;
2032 
2033    _in_cset_fast_test_length = max_regions();
2034    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
2035 
2036    // We're biasing _in_cset_fast_test to avoid subtracting the
2037    // beginning of the heap every time we want to index; basically
2038    // it's the same with what we do with the card table.
2039    _in_cset_fast_test = _in_cset_fast_test_base -
2040                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2041 
2042    // Clear the _cset_fast_test bitmap in anticipation of adding
2043    // regions to the incremental collection set for the first
2044    // evacuation pause.
2045    clear_cset_fast_test();
2046 
2047   // Create the ConcurrentMark data structure and thread.
2048   // (Must do this late, so that "max_regions" is defined.)
2049   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
2050   _cmThread = _cm->cmThread();
2051 
2052   // Initialize the from_card cache structure of HeapRegionRemSet.
2053   HeapRegionRemSet::init_heap(max_regions());
2054 
2055   // Now expand into the initial heap size.
2056   if (!expand(init_byte_size)) {
2057     vm_exit_during_initialization("Failed to allocate initial heap.");
2058     return JNI_ENOMEM;
2059   }
2060 
2061   // Perform any initialization actions delegated to the policy.
2062   g1_policy()->init();
2063 
2064   g1_policy()->note_start_of_mark_thread();
2065 
2066   _refine_cte_cl =
2067     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2068                                     g1_rem_set(),
2069                                     concurrent_g1_refine());
2070   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2071 
2072   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2073                                                SATB_Q_FL_lock,
2074                                                G1SATBProcessCompletedThreshold,
2075                                                Shared_SATB_Q_lock);
2076 
2077   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2078                                                 DirtyCardQ_FL_lock,
2079                                                 concurrent_g1_refine()->yellow_zone(),
2080                                                 concurrent_g1_refine()->red_zone(),
2081                                                 Shared_DirtyCardQ_lock);
2082 
2083   if (G1DeferredRSUpdate) {
2084     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2085                                       DirtyCardQ_FL_lock,
2086                                       -1, // never trigger processing
2087                                       -1, // no limit on length
2088                                       Shared_DirtyCardQ_lock,
2089                                       &JavaThread::dirty_card_queue_set());
2090   }
2091 
2092   // Initialize the card queue set used to hold cards containing
2093   // references into the collection set.
2094   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2095                                              DirtyCardQ_FL_lock,
2096                                              -1, // never trigger processing
2097                                              -1, // no limit on length
2098                                              Shared_DirtyCardQ_lock,
2099                                              &JavaThread::dirty_card_queue_set());
2100 
2101   // In case we're keeping closure specialization stats, initialize those
2102   // counts and that mechanism.
2103   SpecializationStats::clear();
2104 
2105   _gc_alloc_region_list = NULL;
2106 
2107   // Do later initialization work for concurrent refinement.
2108   _cg1r->init();
2109 
2110   // Here we allocate the dummy full region that is required by the
2111   // G1AllocRegion class. If we don't pass an address in the reserved
2112   // space here, lots of asserts fire.
2113 
2114   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2115                                              _g1_reserved.start());
2116   // We'll re-use the same region whether the alloc region will
2117   // require BOT updates or not and, if it doesn't, then a non-young
2118   // region will complain that it cannot support allocations without
2119   // BOT updates. So we'll tag the dummy region as young to avoid that.
2120   dummy_region->set_young();
2121   // Make sure it's full.
2122   dummy_region->set_top(dummy_region->end());
2123   G1AllocRegion::setup(this, dummy_region);
2124 
2125   init_mutator_alloc_region();
2126 
2127   // Do create of the monitoring and management support so that
2128   // values in the heap have been properly initialized.
2129   _g1mm = new G1MonitoringSupport(this, &_g1_storage);
2130 
2131   return JNI_OK;
2132 }
2133 
2134 void G1CollectedHeap::ref_processing_init() {
2135   // Reference processing in G1 currently works as follows:
2136   //
2137   // * There are two reference processor instances. One is
2138   //   used to record and process discovered references
2139   //   during concurrent marking; the other is used to
2140   //   record and process references during STW pauses
2141   //   (both full and incremental).
2142   // * Both ref processors need to 'span' the entire heap as
2143   //   the regions in the collection set may be dotted around.
2144   //   
2145   // * For the concurrent marking ref processor:   
2146   //   * Reference discovery is enabled at initial marking.
2147   //   * Reference discovery is disabled and the discovered
2148   //     references processed etc during remarking.
2149   //   * Reference discovery is MT (see below).
2150   //   * Reference discovery requires a barrier (see below).
2151   //   * Reference processing may or may not be MT
2152   //     (depending on the value of ParallelRefProcEnabled
2153   //     and ParallelGCThreads).
2154   //   * A full GC disables reference discovery by the CM
2155   //     ref processor and abandons any entries on it's
2156   //     discovered lists.
2157   //
2158   // * For the STW processor:
2159   //   * Non MT discovery is enabled at the start of a full GC.
2160   //   * Processing and enqueueing during a full GC is non-MT.
2161   //   * During a full GC, references are processed after marking.
2162   //
2163   //   * Discovery (may or may not be MT) is enabled at the start
2164   //     of an incremental evacuation pause.
2165   //   * References are processed near the end of a STW evacuation pause.
2166   //   * For both types of GC:
2167   //     * Discovery is atomic - i.e. not concurrent.
2168   //     * Reference discovery will not need a barrier.
2169 
2170   SharedHeap::ref_processing_init();
2171   MemRegion mr = reserved_region();
2172 
2173   // Concurrent Mark ref processor
2174   _ref_processor_cm =
2175     new ReferenceProcessor(mr,    // span
2176                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2177                                 // mt processing
2178                            (int) ParallelGCThreads,
2179                                 // degree of mt processing
2180                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2181                                 // mt discovery
2182                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2183                                 // degree of mt discovery
2184                            false,
2185                                 // Reference discovery is not atomic
2186                            &_is_alive_closure_cm,
2187                                 // is alive closure for efficiency
2188                            true);
2189                                 // Setting next fields of discovered
2190                                 // lists requires a barrier.
2191 
2192   // STW ref processor
2193   _ref_processor_stw =
2194     new ReferenceProcessor(mr,    // span
2195                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2196                                 // mt processing
2197                            MAX2((int)ParallelGCThreads, 1),
2198                                 // degree of mt processing
2199                            (ParallelGCThreads > 1),
2200                                 // mt discovery
2201                            MAX2((int)ParallelGCThreads, 1),
2202                                 // degree of mt discovery
2203                            true,
2204                                 // Reference discovery is atomic
2205                            &_is_alive_closure_stw,
2206                                 // is alive closure for efficiency
2207                            false);
2208                                 // Setting next fields of discovered
2209                                 // lists requires a barrier.
2210 }
2211 
2212 size_t G1CollectedHeap::capacity() const {
2213   return _g1_committed.byte_size();
2214 }
2215 
2216 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2217                                                  DirtyCardQueue* into_cset_dcq,
2218                                                  bool concurrent,
2219                                                  int worker_i) {
2220   // Clean cards in the hot card cache
2221   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2222 
2223   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2224   int n_completed_buffers = 0;
2225   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2226     n_completed_buffers++;
2227   }
2228   g1_policy()->record_update_rs_processed_buffers(worker_i,
2229                                                   (double) n_completed_buffers);
2230   dcqs.clear_n_completed_buffers();
2231   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2232 }
2233 
2234 
2235 // Computes the sum of the storage used by the various regions.
2236 
2237 size_t G1CollectedHeap::used() const {
2238   assert(Heap_lock->owner() != NULL,
2239          "Should be owned on this thread's behalf.");
2240   size_t result = _summary_bytes_used;
2241   // Read only once in case it is set to NULL concurrently
2242   HeapRegion* hr = _mutator_alloc_region.get();
2243   if (hr != NULL)
2244     result += hr->used();
2245   return result;
2246 }
2247 
2248 size_t G1CollectedHeap::used_unlocked() const {
2249   size_t result = _summary_bytes_used;
2250   return result;
2251 }
2252 
2253 class SumUsedClosure: public HeapRegionClosure {
2254   size_t _used;
2255 public:
2256   SumUsedClosure() : _used(0) {}
2257   bool doHeapRegion(HeapRegion* r) {
2258     if (!r->continuesHumongous()) {
2259       _used += r->used();
2260     }
2261     return false;
2262   }
2263   size_t result() { return _used; }
2264 };
2265 
2266 size_t G1CollectedHeap::recalculate_used() const {
2267   SumUsedClosure blk;
2268   heap_region_iterate(&blk);
2269   return blk.result();
2270 }
2271 
2272 #ifndef PRODUCT
2273 class SumUsedRegionsClosure: public HeapRegionClosure {
2274   size_t _num;
2275 public:
2276   SumUsedRegionsClosure() : _num(0) {}
2277   bool doHeapRegion(HeapRegion* r) {
2278     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
2279       _num += 1;
2280     }
2281     return false;
2282   }
2283   size_t result() { return _num; }
2284 };
2285 
2286 size_t G1CollectedHeap::recalculate_used_regions() const {
2287   SumUsedRegionsClosure blk;
2288   heap_region_iterate(&blk);
2289   return blk.result();
2290 }
2291 #endif // PRODUCT
2292 
2293 size_t G1CollectedHeap::unsafe_max_alloc() {
2294   if (free_regions() > 0) return HeapRegion::GrainBytes;
2295   // otherwise, is there space in the current allocation region?
2296 
2297   // We need to store the current allocation region in a local variable
2298   // here. The problem is that this method doesn't take any locks and
2299   // there may be other threads which overwrite the current allocation
2300   // region field. attempt_allocation(), for example, sets it to NULL
2301   // and this can happen *after* the NULL check here but before the call
2302   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2303   // to be a problem in the optimized build, since the two loads of the
2304   // current allocation region field are optimized away.
2305   HeapRegion* hr = _mutator_alloc_region.get();
2306   if (hr == NULL) {
2307     return 0;
2308   }
2309   return hr->free();
2310 }
2311 
2312 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2313   return
2314     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
2315      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
2316 }
2317 
2318 #ifndef PRODUCT
2319 void G1CollectedHeap::allocate_dummy_regions() {
2320   // Let's fill up most of the region
2321   size_t word_size = HeapRegion::GrainWords - 1024;
2322   // And as a result the region we'll allocate will be humongous.
2323   guarantee(isHumongous(word_size), "sanity");
2324 
2325   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2326     // Let's use the existing mechanism for the allocation
2327     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2328     if (dummy_obj != NULL) {
2329       MemRegion mr(dummy_obj, word_size);
2330       CollectedHeap::fill_with_object(mr);
2331     } else {
2332       // If we can't allocate once, we probably cannot allocate
2333       // again. Let's get out of the loop.
2334       break;
2335     }
2336   }
2337 }
2338 #endif // !PRODUCT
2339 
2340 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2341   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2342 
2343   // We assume that if concurrent == true, then the caller is a
2344   // concurrent thread that was joined the Suspendible Thread
2345   // Set. If there's ever a cheap way to check this, we should add an
2346   // assert here.
2347 
2348   // We have already incremented _total_full_collections at the start
2349   // of the GC, so total_full_collections() represents how many full
2350   // collections have been started.
2351   unsigned int full_collections_started = total_full_collections();
2352 
2353   // Given that this method is called at the end of a Full GC or of a
2354   // concurrent cycle, and those can be nested (i.e., a Full GC can
2355   // interrupt a concurrent cycle), the number of full collections
2356   // completed should be either one (in the case where there was no
2357   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2358   // behind the number of full collections started.
2359 
2360   // This is the case for the inner caller, i.e. a Full GC.
2361   assert(concurrent ||
2362          (full_collections_started == _full_collections_completed + 1) ||
2363          (full_collections_started == _full_collections_completed + 2),
2364          err_msg("for inner caller (Full GC): full_collections_started = %u "
2365                  "is inconsistent with _full_collections_completed = %u",
2366                  full_collections_started, _full_collections_completed));
2367 
2368   // This is the case for the outer caller, i.e. the concurrent cycle.
2369   assert(!concurrent ||
2370          (full_collections_started == _full_collections_completed + 1),
2371          err_msg("for outer caller (concurrent cycle): "
2372                  "full_collections_started = %u "
2373                  "is inconsistent with _full_collections_completed = %u",
2374                  full_collections_started, _full_collections_completed));
2375 
2376   _full_collections_completed += 1;
2377 
2378   // We need to clear the "in_progress" flag in the CM thread before
2379   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2380   // is set) so that if a waiter requests another System.gc() it doesn't
2381   // incorrectly see that a marking cyle is still in progress.
2382   if (concurrent) {
2383     _cmThread->clear_in_progress();
2384   }
2385 
2386   // This notify_all() will ensure that a thread that called
2387   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2388   // and it's waiting for a full GC to finish will be woken up. It is
2389   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2390   FullGCCount_lock->notify_all();
2391 }
2392 
2393 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2394   assert_at_safepoint(true /* should_be_vm_thread */);
2395   GCCauseSetter gcs(this, cause);
2396   switch (cause) {
2397     case GCCause::_heap_inspection:
2398     case GCCause::_heap_dump: {
2399       HandleMark hm;
2400       do_full_collection(false);         // don't clear all soft refs
2401       break;
2402     }
2403     default: // XXX FIX ME
2404       ShouldNotReachHere(); // Unexpected use of this function
2405   }
2406 }
2407 
2408 void G1CollectedHeap::collect(GCCause::Cause cause) {
2409   // The caller doesn't have the Heap_lock
2410   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2411 
2412   unsigned int gc_count_before;
2413   unsigned int full_gc_count_before;
2414   {
2415     MutexLocker ml(Heap_lock);
2416 
2417     // Read the GC count while holding the Heap_lock
2418     gc_count_before = SharedHeap::heap()->total_collections();
2419     full_gc_count_before = SharedHeap::heap()->total_full_collections();
2420   }
2421 
2422   if (should_do_concurrent_full_gc(cause)) {
2423     // Schedule an initial-mark evacuation pause that will start a
2424     // concurrent cycle. We're setting word_size to 0 which means that
2425     // we are not requesting a post-GC allocation.
2426     VM_G1IncCollectionPause op(gc_count_before,
2427                                0,     /* word_size */
2428                                true,  /* should_initiate_conc_mark */
2429                                g1_policy()->max_pause_time_ms(),
2430                                cause);
2431     VMThread::execute(&op);
2432   } else {
2433     if (cause == GCCause::_gc_locker
2434         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2435 
2436       // Schedule a standard evacuation pause. We're setting word_size
2437       // to 0 which means that we are not requesting a post-GC allocation.
2438       VM_G1IncCollectionPause op(gc_count_before,
2439                                  0,     /* word_size */
2440                                  false, /* should_initiate_conc_mark */
2441                                  g1_policy()->max_pause_time_ms(),
2442                                  cause);
2443       VMThread::execute(&op);
2444     } else {
2445       // Schedule a Full GC.
2446       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2447       VMThread::execute(&op);
2448     }
2449   }
2450 }
2451 
2452 bool G1CollectedHeap::is_in(const void* p) const {
2453   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
2454   if (hr != NULL) {
2455     return hr->is_in(p);
2456   } else {
2457     return _perm_gen->as_gen()->is_in(p);
2458   }
2459 }
2460 
2461 // Iteration functions.
2462 
2463 // Iterates an OopClosure over all ref-containing fields of objects
2464 // within a HeapRegion.
2465 
2466 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2467   MemRegion _mr;
2468   OopClosure* _cl;
2469 public:
2470   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2471     : _mr(mr), _cl(cl) {}
2472   bool doHeapRegion(HeapRegion* r) {
2473     if (! r->continuesHumongous()) {
2474       r->oop_iterate(_cl);
2475     }
2476     return false;
2477   }
2478 };
2479 
2480 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2481   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2482   heap_region_iterate(&blk);
2483   if (do_perm) {
2484     perm_gen()->oop_iterate(cl);
2485   }
2486 }
2487 
2488 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2489   IterateOopClosureRegionClosure blk(mr, cl);
2490   heap_region_iterate(&blk);
2491   if (do_perm) {
2492     perm_gen()->oop_iterate(cl);
2493   }
2494 }
2495 
2496 // Iterates an ObjectClosure over all objects within a HeapRegion.
2497 
2498 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2499   ObjectClosure* _cl;
2500 public:
2501   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2502   bool doHeapRegion(HeapRegion* r) {
2503     if (! r->continuesHumongous()) {
2504       r->object_iterate(_cl);
2505     }
2506     return false;
2507   }
2508 };
2509 
2510 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2511   IterateObjectClosureRegionClosure blk(cl);
2512   heap_region_iterate(&blk);
2513   if (do_perm) {
2514     perm_gen()->object_iterate(cl);
2515   }
2516 }
2517 
2518 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2519   // FIXME: is this right?
2520   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2521 }
2522 
2523 // Calls a SpaceClosure on a HeapRegion.
2524 
2525 class SpaceClosureRegionClosure: public HeapRegionClosure {
2526   SpaceClosure* _cl;
2527 public:
2528   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2529   bool doHeapRegion(HeapRegion* r) {
2530     _cl->do_space(r);
2531     return false;
2532   }
2533 };
2534 
2535 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2536   SpaceClosureRegionClosure blk(cl);
2537   heap_region_iterate(&blk);
2538 }
2539 
2540 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2541   _hrs.iterate(cl);
2542 }
2543 
2544 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2545                                                HeapRegionClosure* cl) const {
2546   _hrs.iterate_from(r, cl);
2547 }
2548 
2549 void
2550 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2551                                                  int worker,
2552                                                  jint claim_value) {
2553   const size_t regions = n_regions();
2554   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2555   // try to spread out the starting points of the workers
2556   const size_t start_index = regions / worker_num * (size_t) worker;
2557 
2558   // each worker will actually look at all regions
2559   for (size_t count = 0; count < regions; ++count) {
2560     const size_t index = (start_index + count) % regions;
2561     assert(0 <= index && index < regions, "sanity");
2562     HeapRegion* r = region_at(index);
2563     // we'll ignore "continues humongous" regions (we'll process them
2564     // when we come across their corresponding "start humongous"
2565     // region) and regions already claimed
2566     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2567       continue;
2568     }
2569     // OK, try to claim it
2570     if (r->claimHeapRegion(claim_value)) {
2571       // success!
2572       assert(!r->continuesHumongous(), "sanity");
2573       if (r->startsHumongous()) {
2574         // If the region is "starts humongous" we'll iterate over its
2575         // "continues humongous" first; in fact we'll do them
2576         // first. The order is important. In on case, calling the
2577         // closure on the "starts humongous" region might de-allocate
2578         // and clear all its "continues humongous" regions and, as a
2579         // result, we might end up processing them twice. So, we'll do
2580         // them first (notice: most closures will ignore them anyway) and
2581         // then we'll do the "starts humongous" region.
2582         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
2583           HeapRegion* chr = region_at(ch_index);
2584 
2585           // if the region has already been claimed or it's not
2586           // "continues humongous" we're done
2587           if (chr->claim_value() == claim_value ||
2588               !chr->continuesHumongous()) {
2589             break;
2590           }
2591 
2592           // Noone should have claimed it directly. We can given
2593           // that we claimed its "starts humongous" region.
2594           assert(chr->claim_value() != claim_value, "sanity");
2595           assert(chr->humongous_start_region() == r, "sanity");
2596 
2597           if (chr->claimHeapRegion(claim_value)) {
2598             // we should always be able to claim it; noone else should
2599             // be trying to claim this region
2600 
2601             bool res2 = cl->doHeapRegion(chr);
2602             assert(!res2, "Should not abort");
2603 
2604             // Right now, this holds (i.e., no closure that actually
2605             // does something with "continues humongous" regions
2606             // clears them). We might have to weaken it in the future,
2607             // but let's leave these two asserts here for extra safety.
2608             assert(chr->continuesHumongous(), "should still be the case");
2609             assert(chr->humongous_start_region() == r, "sanity");
2610           } else {
2611             guarantee(false, "we should not reach here");
2612           }
2613         }
2614       }
2615 
2616       assert(!r->continuesHumongous(), "sanity");
2617       bool res = cl->doHeapRegion(r);
2618       assert(!res, "Should not abort");
2619     }
2620   }
2621 }
2622 
2623 class ResetClaimValuesClosure: public HeapRegionClosure {
2624 public:
2625   bool doHeapRegion(HeapRegion* r) {
2626     r->set_claim_value(HeapRegion::InitialClaimValue);
2627     return false;
2628   }
2629 };
2630 
2631 void
2632 G1CollectedHeap::reset_heap_region_claim_values() {
2633   ResetClaimValuesClosure blk;
2634   heap_region_iterate(&blk);
2635 }
2636 
2637 #ifdef ASSERT
2638 // This checks whether all regions in the heap have the correct claim
2639 // value. I also piggy-backed on this a check to ensure that the
2640 // humongous_start_region() information on "continues humongous"
2641 // regions is correct.
2642 
2643 class CheckClaimValuesClosure : public HeapRegionClosure {
2644 private:
2645   jint _claim_value;
2646   size_t _failures;
2647   HeapRegion* _sh_region;
2648 public:
2649   CheckClaimValuesClosure(jint claim_value) :
2650     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2651   bool doHeapRegion(HeapRegion* r) {
2652     if (r->claim_value() != _claim_value) {
2653       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2654                              "claim value = %d, should be %d",
2655                              r->bottom(), r->end(), r->claim_value(),
2656                              _claim_value);
2657       ++_failures;
2658     }
2659     if (!r->isHumongous()) {
2660       _sh_region = NULL;
2661     } else if (r->startsHumongous()) {
2662       _sh_region = r;
2663     } else if (r->continuesHumongous()) {
2664       if (r->humongous_start_region() != _sh_region) {
2665         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
2666                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2667                                r->bottom(), r->end(),
2668                                r->humongous_start_region(),
2669                                _sh_region);
2670         ++_failures;
2671       }
2672     }
2673     return false;
2674   }
2675   size_t failures() {
2676     return _failures;
2677   }
2678 };
2679 
2680 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2681   CheckClaimValuesClosure cl(claim_value);
2682   heap_region_iterate(&cl);
2683   return cl.failures() == 0;
2684 }
2685 #endif // ASSERT
2686 
2687 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2688   HeapRegion* r = g1_policy()->collection_set();
2689   while (r != NULL) {
2690     HeapRegion* next = r->next_in_collection_set();
2691     if (cl->doHeapRegion(r)) {
2692       cl->incomplete();
2693       return;
2694     }
2695     r = next;
2696   }
2697 }
2698 
2699 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2700                                                   HeapRegionClosure *cl) {
2701   if (r == NULL) {
2702     // The CSet is empty so there's nothing to do.
2703     return;
2704   }
2705 
2706   assert(r->in_collection_set(),
2707          "Start region must be a member of the collection set.");
2708   HeapRegion* cur = r;
2709   while (cur != NULL) {
2710     HeapRegion* next = cur->next_in_collection_set();
2711     if (cl->doHeapRegion(cur) && false) {
2712       cl->incomplete();
2713       return;
2714     }
2715     cur = next;
2716   }
2717   cur = g1_policy()->collection_set();
2718   while (cur != r) {
2719     HeapRegion* next = cur->next_in_collection_set();
2720     if (cl->doHeapRegion(cur) && false) {
2721       cl->incomplete();
2722       return;
2723     }
2724     cur = next;
2725   }
2726 }
2727 
2728 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2729   return n_regions() > 0 ? region_at(0) : NULL;
2730 }
2731 
2732 
2733 Space* G1CollectedHeap::space_containing(const void* addr) const {
2734   Space* res = heap_region_containing(addr);
2735   if (res == NULL)
2736     res = perm_gen()->space_containing(addr);
2737   return res;
2738 }
2739 
2740 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2741   Space* sp = space_containing(addr);
2742   if (sp != NULL) {
2743     return sp->block_start(addr);
2744   }
2745   return NULL;
2746 }
2747 
2748 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2749   Space* sp = space_containing(addr);
2750   assert(sp != NULL, "block_size of address outside of heap");
2751   return sp->block_size(addr);
2752 }
2753 
2754 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2755   Space* sp = space_containing(addr);
2756   return sp->block_is_obj(addr);
2757 }
2758 
2759 bool G1CollectedHeap::supports_tlab_allocation() const {
2760   return true;
2761 }
2762 
2763 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2764   return HeapRegion::GrainBytes;
2765 }
2766 
2767 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2768   // Return the remaining space in the cur alloc region, but not less than
2769   // the min TLAB size.
2770 
2771   // Also, this value can be at most the humongous object threshold,
2772   // since we can't allow tlabs to grow big enough to accomodate
2773   // humongous objects.
2774 
2775   HeapRegion* hr = _mutator_alloc_region.get();
2776   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2777   if (hr == NULL) {
2778     return max_tlab_size;
2779   } else {
2780     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2781   }
2782 }
2783 
2784 size_t G1CollectedHeap::max_capacity() const {
2785   return _g1_reserved.byte_size();
2786 }
2787 
2788 jlong G1CollectedHeap::millis_since_last_gc() {
2789   // assert(false, "NYI");
2790   return 0;
2791 }
2792 
2793 void G1CollectedHeap::prepare_for_verify() {
2794   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2795     ensure_parsability(false);
2796   }
2797   g1_rem_set()->prepare_for_verify();
2798 }
2799 
2800 class VerifyLivenessOopClosure: public OopClosure {
2801   G1CollectedHeap* _g1h;
2802   VerifyOption _vo;
2803 public:
2804   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2805     _g1h(g1h), _vo(vo)
2806   { }
2807   void do_oop(narrowOop *p) { do_oop_work(p); }
2808   void do_oop(      oop *p) { do_oop_work(p); }
2809 
2810   template <class T> void do_oop_work(T *p) {
2811     oop obj = oopDesc::load_decode_heap_oop(p);
2812     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2813               "Dead object referenced by a not dead object");
2814   }
2815 };
2816 
2817 class VerifyObjsInRegionClosure: public ObjectClosure {
2818 private:
2819   G1CollectedHeap* _g1h;
2820   size_t _live_bytes;
2821   HeapRegion *_hr;
2822   VerifyOption _vo;
2823 public:
2824   // _vo == UsePrevMarking -> use "prev" marking information,
2825   // _vo == UseNextMarking -> use "next" marking information,
2826   // _vo == UseMarkWord    -> use mark word from object header.
2827   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2828     : _live_bytes(0), _hr(hr), _vo(vo) {
2829     _g1h = G1CollectedHeap::heap();
2830   }
2831   void do_object(oop o) {
2832     VerifyLivenessOopClosure isLive(_g1h, _vo);
2833     assert(o != NULL, "Huh?");
2834     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2835       // If the object is alive according to the mark word,
2836       // then verify that the marking information agrees.
2837       // Note we can't verify the contra-positive of the
2838       // above: if the object is dead (according to the mark
2839       // word), it may not be marked, or may have been marked
2840       // but has since became dead, or may have been allocated
2841       // since the last marking.
2842       if (_vo == VerifyOption_G1UseMarkWord) {
2843         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2844       }
2845 
2846       o->oop_iterate(&isLive);
2847       if (!_hr->obj_allocated_since_prev_marking(o)) {
2848         size_t obj_size = o->size();    // Make sure we don't overflow
2849         _live_bytes += (obj_size * HeapWordSize);
2850       }
2851     }
2852   }
2853   size_t live_bytes() { return _live_bytes; }
2854 };
2855 
2856 class PrintObjsInRegionClosure : public ObjectClosure {
2857   HeapRegion *_hr;
2858   G1CollectedHeap *_g1;
2859 public:
2860   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2861     _g1 = G1CollectedHeap::heap();
2862   };
2863 
2864   void do_object(oop o) {
2865     if (o != NULL) {
2866       HeapWord *start = (HeapWord *) o;
2867       size_t word_sz = o->size();
2868       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2869                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2870                           (void*) o, word_sz,
2871                           _g1->isMarkedPrev(o),
2872                           _g1->isMarkedNext(o),
2873                           _hr->obj_allocated_since_prev_marking(o));
2874       HeapWord *end = start + word_sz;
2875       HeapWord *cur;
2876       int *val;
2877       for (cur = start; cur < end; cur++) {
2878         val = (int *) cur;
2879         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
2880       }
2881     }
2882   }
2883 };
2884 
2885 class VerifyRegionClosure: public HeapRegionClosure {
2886 private:
2887   bool         _allow_dirty;
2888   bool         _par;
2889   VerifyOption _vo;
2890   bool         _failures;
2891 public:
2892   // _vo == UsePrevMarking -> use "prev" marking information,
2893   // _vo == UseNextMarking -> use "next" marking information,
2894   // _vo == UseMarkWord    -> use mark word from object header.
2895   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
2896     : _allow_dirty(allow_dirty),
2897       _par(par),
2898       _vo(vo),
2899       _failures(false) {}
2900 
2901   bool failures() {
2902     return _failures;
2903   }
2904 
2905   bool doHeapRegion(HeapRegion* r) {
2906     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
2907               "Should be unclaimed at verify points.");
2908     if (!r->continuesHumongous()) {
2909       bool failures = false;
2910       r->verify(_allow_dirty, _vo, &failures);
2911       if (failures) {
2912         _failures = true;
2913       } else {
2914         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2915         r->object_iterate(&not_dead_yet_cl);
2916         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2917           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2918                                  "max_live_bytes "SIZE_FORMAT" "
2919                                  "< calculated "SIZE_FORMAT,
2920                                  r->bottom(), r->end(),
2921                                  r->max_live_bytes(),
2922                                  not_dead_yet_cl.live_bytes());
2923           _failures = true;
2924         }
2925       }
2926     }
2927     return false; // stop the region iteration if we hit a failure
2928   }
2929 };
2930 
2931 class VerifyRootsClosure: public OopsInGenClosure {
2932 private:
2933   G1CollectedHeap* _g1h;
2934   VerifyOption     _vo;
2935   bool             _failures;
2936 public:
2937   // _vo == UsePrevMarking -> use "prev" marking information,
2938   // _vo == UseNextMarking -> use "next" marking information,
2939   // _vo == UseMarkWord    -> use mark word from object header.
2940   VerifyRootsClosure(VerifyOption vo) :
2941     _g1h(G1CollectedHeap::heap()),
2942     _vo(vo),
2943     _failures(false) { }
2944 
2945   bool failures() { return _failures; }
2946 
2947   template <class T> void do_oop_nv(T* p) {
2948     T heap_oop = oopDesc::load_heap_oop(p);
2949     if (!oopDesc::is_null(heap_oop)) {
2950       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2951       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2952         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2953                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2954         if (_vo == VerifyOption_G1UseMarkWord) {
2955           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2956         }
2957         obj->print_on(gclog_or_tty);
2958         _failures = true;
2959       }
2960     }
2961   }
2962 
2963   void do_oop(oop* p)       { do_oop_nv(p); }
2964   void do_oop(narrowOop* p) { do_oop_nv(p); }
2965 };
2966 
2967 // This is the task used for parallel heap verification.
2968 
2969 class G1ParVerifyTask: public AbstractGangTask {
2970 private:
2971   G1CollectedHeap* _g1h;
2972   bool             _allow_dirty;
2973   VerifyOption     _vo;
2974   bool             _failures;
2975 
2976 public:
2977   // _vo == UsePrevMarking -> use "prev" marking information,
2978   // _vo == UseNextMarking -> use "next" marking information,
2979   // _vo == UseMarkWord    -> use mark word from object header.
2980   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
2981     AbstractGangTask("Parallel verify task"),
2982     _g1h(g1h),
2983     _allow_dirty(allow_dirty),
2984     _vo(vo),
2985     _failures(false) { }
2986 
2987   bool failures() {
2988     return _failures;
2989   }
2990 
2991   void work(int worker_i) {
2992     HandleMark hm;
2993     VerifyRegionClosure blk(_allow_dirty, true, _vo);
2994     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
2995                                           HeapRegion::ParVerifyClaimValue);
2996     if (blk.failures()) {
2997       _failures = true;
2998     }
2999   }
3000 };
3001 
3002 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
3003   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
3004 }
3005 
3006 void G1CollectedHeap::verify(bool allow_dirty,
3007                              bool silent,
3008                              VerifyOption vo) {
3009   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3010     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3011     VerifyRootsClosure rootsCl(vo);
3012     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3013 
3014     // We apply the relevant closures to all the oops in the
3015     // system dictionary, the string table and the code cache.
3016     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3017 
3018     process_strong_roots(true,      // activate StrongRootsScope
3019                          true,      // we set "collecting perm gen" to true,
3020                                     // so we don't reset the dirty cards in the perm gen.
3021                          SharedHeap::ScanningOption(so),  // roots scanning options
3022                          &rootsCl,
3023                          &blobsCl,
3024                          &rootsCl);
3025 
3026     // If we're verifying after the marking phase of a Full GC then we can't
3027     // treat the perm gen as roots into the G1 heap. Some of the objects in
3028     // the perm gen may be dead and hence not marked. If one of these dead
3029     // objects is considered to be a root then we may end up with a false
3030     // "Root location <x> points to dead ob <y>" failure.
3031     if (vo != VerifyOption_G1UseMarkWord) {
3032       // Since we used "collecting_perm_gen" == true above, we will not have
3033       // checked the refs from perm into the G1-collected heap. We check those
3034       // references explicitly below. Whether the relevant cards are dirty
3035       // is checked further below in the rem set verification.
3036       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3037       perm_gen()->oop_iterate(&rootsCl);
3038     }
3039     bool failures = rootsCl.failures();
3040 
3041     if (vo != VerifyOption_G1UseMarkWord) {
3042       // If we're verifying during a full GC then the region sets
3043       // will have been torn down at the start of the GC. Therefore
3044       // verifying the region sets will fail. So we only verify
3045       // the region sets when not in a full GC.
3046       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3047       verify_region_sets();
3048     }
3049 
3050     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3051     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3052       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3053              "sanity check");
3054 
3055       G1ParVerifyTask task(this, allow_dirty, vo);
3056       int n_workers = workers()->total_workers();
3057       set_par_threads(n_workers);
3058       workers()->run_task(&task);
3059       set_par_threads(0);
3060       if (task.failures()) {
3061         failures = true;
3062       }
3063 
3064       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3065              "sanity check");
3066 
3067       reset_heap_region_claim_values();
3068 
3069       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3070              "sanity check");
3071     } else {
3072       VerifyRegionClosure blk(allow_dirty, false, vo);
3073       heap_region_iterate(&blk);
3074       if (blk.failures()) {
3075         failures = true;
3076       }
3077     }
3078     if (!silent) gclog_or_tty->print("RemSet ");
3079     rem_set()->verify();
3080 
3081     if (failures) {
3082       gclog_or_tty->print_cr("Heap:");
3083       print_on(gclog_or_tty, true /* extended */);
3084       gclog_or_tty->print_cr("");
3085 #ifndef PRODUCT
3086       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3087         concurrent_mark()->print_reachable("at-verification-failure",
3088                                            vo, false /* all */);
3089       }
3090 #endif
3091       gclog_or_tty->flush();
3092     }
3093     guarantee(!failures, "there should not have been any failures");
3094   } else {
3095     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3096   }
3097 }
3098 
3099 class PrintRegionClosure: public HeapRegionClosure {
3100   outputStream* _st;
3101 public:
3102   PrintRegionClosure(outputStream* st) : _st(st) {}
3103   bool doHeapRegion(HeapRegion* r) {
3104     r->print_on(_st);
3105     return false;
3106   }
3107 };
3108 
3109 void G1CollectedHeap::print() const { print_on(tty); }
3110 
3111 void G1CollectedHeap::print_on(outputStream* st) const {
3112   print_on(st, PrintHeapAtGCExtended);
3113 }
3114 
3115 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
3116   st->print(" %-20s", "garbage-first heap");
3117   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3118             capacity()/K, used_unlocked()/K);
3119   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3120             _g1_storage.low_boundary(),
3121             _g1_storage.high(),
3122             _g1_storage.high_boundary());
3123   st->cr();
3124   st->print("  region size " SIZE_FORMAT "K, ",
3125             HeapRegion::GrainBytes/K);
3126   size_t young_regions = _young_list->length();
3127   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
3128             young_regions, young_regions * HeapRegion::GrainBytes / K);
3129   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
3130   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
3131             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
3132   st->cr();
3133   perm()->as_gen()->print_on(st);
3134   if (extended) {
3135     st->cr();
3136     print_on_extended(st);
3137   }
3138 }
3139 
3140 void G1CollectedHeap::print_on_extended(outputStream* st) const {
3141   PrintRegionClosure blk(st);
3142   heap_region_iterate(&blk);
3143 }
3144 
3145 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3146   if (G1CollectedHeap::use_parallel_gc_threads()) {
3147     workers()->print_worker_threads_on(st);
3148   }
3149   _cmThread->print_on(st);
3150   st->cr();
3151   _cm->print_worker_threads_on(st);
3152   _cg1r->print_worker_threads_on(st);
3153   st->cr();
3154 }
3155 
3156 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3157   if (G1CollectedHeap::use_parallel_gc_threads()) {
3158     workers()->threads_do(tc);
3159   }
3160   tc->do_thread(_cmThread);
3161   _cg1r->threads_do(tc);
3162 }
3163 
3164 void G1CollectedHeap::print_tracing_info() const {
3165   // We'll overload this to mean "trace GC pause statistics."
3166   if (TraceGen0Time || TraceGen1Time) {
3167     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3168     // to that.
3169     g1_policy()->print_tracing_info();
3170   }
3171   if (G1SummarizeRSetStats) {
3172     g1_rem_set()->print_summary_info();
3173   }
3174   if (G1SummarizeConcMark) {
3175     concurrent_mark()->print_summary_info();
3176   }
3177   g1_policy()->print_yg_surv_rate_info();
3178   SpecializationStats::print();
3179 }
3180 
3181 #ifndef PRODUCT
3182 // Helpful for debugging RSet issues.
3183 
3184 class PrintRSetsClosure : public HeapRegionClosure {
3185 private:
3186   const char* _msg;
3187   size_t _occupied_sum;
3188 
3189 public:
3190   bool doHeapRegion(HeapRegion* r) {
3191     HeapRegionRemSet* hrrs = r->rem_set();
3192     size_t occupied = hrrs->occupied();
3193     _occupied_sum += occupied;
3194 
3195     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3196                            HR_FORMAT_PARAMS(r));
3197     if (occupied == 0) {
3198       gclog_or_tty->print_cr("  RSet is empty");
3199     } else {
3200       hrrs->print();
3201     }
3202     gclog_or_tty->print_cr("----------");
3203     return false;
3204   }
3205 
3206   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3207     gclog_or_tty->cr();
3208     gclog_or_tty->print_cr("========================================");
3209     gclog_or_tty->print_cr(msg);
3210     gclog_or_tty->cr();
3211   }
3212 
3213   ~PrintRSetsClosure() {
3214     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3215     gclog_or_tty->print_cr("========================================");
3216     gclog_or_tty->cr();
3217   }
3218 };
3219 
3220 void G1CollectedHeap::print_cset_rsets() {
3221   PrintRSetsClosure cl("Printing CSet RSets");
3222   collection_set_iterate(&cl);
3223 }
3224 
3225 void G1CollectedHeap::print_all_rsets() {
3226   PrintRSetsClosure cl("Printing All RSets");;
3227   heap_region_iterate(&cl);
3228 }
3229 #endif // PRODUCT
3230 
3231 G1CollectedHeap* G1CollectedHeap::heap() {
3232   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3233          "not a garbage-first heap");
3234   return _g1h;
3235 }
3236 
3237 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3238   // always_do_update_barrier = false;
3239   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3240   // Call allocation profiler
3241   AllocationProfiler::iterate_since_last_gc();
3242   // Fill TLAB's and such
3243   ensure_parsability(true);
3244 }
3245 
3246 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3247   // FIXME: what is this about?
3248   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3249   // is set.
3250   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3251                         "derived pointer present"));
3252   // always_do_update_barrier = true;
3253 
3254   // We have just completed a GC. Update the soft reference
3255   // policy with the new heap occupancy
3256   Universe::update_heap_info_at_gc();
3257 }
3258 
3259 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3260                                                unsigned int gc_count_before,
3261                                                bool* succeeded) {
3262   assert_heap_not_locked_and_not_at_safepoint();
3263   g1_policy()->record_stop_world_start();
3264   VM_G1IncCollectionPause op(gc_count_before,
3265                              word_size,
3266                              false, /* should_initiate_conc_mark */
3267                              g1_policy()->max_pause_time_ms(),
3268                              GCCause::_g1_inc_collection_pause);
3269   VMThread::execute(&op);
3270 
3271   HeapWord* result = op.result();
3272   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3273   assert(result == NULL || ret_succeeded,
3274          "the result should be NULL if the VM did not succeed");
3275   *succeeded = ret_succeeded;
3276 
3277   assert_heap_not_locked();
3278   return result;
3279 }
3280 
3281 void
3282 G1CollectedHeap::doConcurrentMark() {
3283   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3284   if (!_cmThread->in_progress()) {
3285     _cmThread->set_started();
3286     CGC_lock->notify();
3287   }
3288 }
3289 
3290 void G1CollectedHeap::do_sync_mark() {
3291   _cm->checkpointRootsInitial();
3292   _cm->markFromRoots();
3293   _cm->checkpointRootsFinal(false);
3294 }
3295 
3296 // <NEW PREDICTION>
3297 
3298 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
3299                                                        bool young) {
3300   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
3301 }
3302 
3303 void G1CollectedHeap::check_if_region_is_too_expensive(double
3304                                                            predicted_time_ms) {
3305   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
3306 }
3307 
3308 size_t G1CollectedHeap::pending_card_num() {
3309   size_t extra_cards = 0;
3310   JavaThread *curr = Threads::first();
3311   while (curr != NULL) {
3312     DirtyCardQueue& dcq = curr->dirty_card_queue();
3313     extra_cards += dcq.size();
3314     curr = curr->next();
3315   }
3316   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3317   size_t buffer_size = dcqs.buffer_size();
3318   size_t buffer_num = dcqs.completed_buffers_num();
3319   return buffer_size * buffer_num + extra_cards;
3320 }
3321 
3322 size_t G1CollectedHeap::max_pending_card_num() {
3323   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3324   size_t buffer_size = dcqs.buffer_size();
3325   size_t buffer_num  = dcqs.completed_buffers_num();
3326   int thread_num  = Threads::number_of_threads();
3327   return (buffer_num + thread_num) * buffer_size;
3328 }
3329 
3330 size_t G1CollectedHeap::cards_scanned() {
3331   return g1_rem_set()->cardsScanned();
3332 }
3333 
3334 void
3335 G1CollectedHeap::setup_surviving_young_words() {
3336   guarantee( _surviving_young_words == NULL, "pre-condition" );
3337   size_t array_length = g1_policy()->young_cset_length();
3338   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
3339   if (_surviving_young_words == NULL) {
3340     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3341                           "Not enough space for young surv words summary.");
3342   }
3343   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3344 #ifdef ASSERT
3345   for (size_t i = 0;  i < array_length; ++i) {
3346     assert( _surviving_young_words[i] == 0, "memset above" );
3347   }
3348 #endif // !ASSERT
3349 }
3350 
3351 void
3352 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3353   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3354   size_t array_length = g1_policy()->young_cset_length();
3355   for (size_t i = 0; i < array_length; ++i)
3356     _surviving_young_words[i] += surv_young_words[i];
3357 }
3358 
3359 void
3360 G1CollectedHeap::cleanup_surviving_young_words() {
3361   guarantee( _surviving_young_words != NULL, "pre-condition" );
3362   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3363   _surviving_young_words = NULL;
3364 }
3365 
3366 // </NEW PREDICTION>
3367 
3368 #ifdef ASSERT
3369 class VerifyCSetClosure: public HeapRegionClosure {
3370 public:
3371   bool doHeapRegion(HeapRegion* hr) {
3372     // Here we check that the CSet region's RSet is ready for parallel
3373     // iteration. The fields that we'll verify are only manipulated
3374     // when the region is part of a CSet and is collected. Afterwards,
3375     // we reset these fields when we clear the region's RSet (when the
3376     // region is freed) so they are ready when the region is
3377     // re-allocated. The only exception to this is if there's an
3378     // evacuation failure and instead of freeing the region we leave
3379     // it in the heap. In that case, we reset these fields during
3380     // evacuation failure handling.
3381     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3382 
3383     // Here's a good place to add any other checks we'd like to
3384     // perform on CSet regions.
3385     return false;
3386   }
3387 };
3388 #endif // ASSERT
3389 
3390 #if TASKQUEUE_STATS
3391 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3392   st->print_raw_cr("GC Task Stats");
3393   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3394   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3395 }
3396 
3397 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3398   print_taskqueue_stats_hdr(st);
3399 
3400   TaskQueueStats totals;
3401   const int n = workers() != NULL ? workers()->total_workers() : 1;
3402   for (int i = 0; i < n; ++i) {
3403     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3404     totals += task_queue(i)->stats;
3405   }
3406   st->print_raw("tot "); totals.print(st); st->cr();
3407 
3408   DEBUG_ONLY(totals.verify());
3409 }
3410 
3411 void G1CollectedHeap::reset_taskqueue_stats() {
3412   const int n = workers() != NULL ? workers()->total_workers() : 1;
3413   for (int i = 0; i < n; ++i) {
3414     task_queue(i)->stats.reset();
3415   }
3416 }
3417 #endif // TASKQUEUE_STATS
3418 
3419 bool
3420 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3421   assert_at_safepoint(true /* should_be_vm_thread */);
3422   guarantee(!is_gc_active(), "collection is not reentrant");
3423 
3424   if (GC_locker::check_active_before_gc()) {
3425     return false;
3426   }
3427 
3428   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3429   ResourceMark rm;
3430 
3431   if (PrintHeapAtGC) {
3432     Universe::print_heap_before_gc();
3433   }
3434 
3435   verify_region_sets_optional();
3436   verify_dirty_young_regions();
3437 
3438   {
3439     // This call will decide whether this pause is an initial-mark
3440     // pause. If it is, during_initial_mark_pause() will return true
3441     // for the duration of this pause.
3442     g1_policy()->decide_on_conc_mark_initiation();
3443 
3444     char verbose_str[128];
3445     sprintf(verbose_str, "GC pause ");
3446     if (g1_policy()->in_young_gc_mode()) {
3447       if (g1_policy()->full_young_gcs())
3448         strcat(verbose_str, "(young)");
3449       else
3450         strcat(verbose_str, "(partial)");
3451     }
3452     if (g1_policy()->during_initial_mark_pause()) {
3453       strcat(verbose_str, " (initial-mark)");
3454       // We are about to start a marking cycle, so we increment the
3455       // full collection counter.
3456       increment_total_full_collections();
3457     }
3458 
3459     // if PrintGCDetails is on, we'll print long statistics information
3460     // in the collector policy code, so let's not print this as the output
3461     // is messy if we do.
3462     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
3463     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3464     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3465 
3466     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3467     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3468 
3469     // If the secondary_free_list is not empty, append it to the
3470     // free_list. No need to wait for the cleanup operation to finish;
3471     // the region allocation code will check the secondary_free_list
3472     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3473     // set, skip this step so that the region allocation code has to
3474     // get entries from the secondary_free_list.
3475     if (!G1StressConcRegionFreeing) {
3476       append_secondary_free_list_if_not_empty_with_lock();
3477     }
3478 
3479     increment_gc_time_stamp();
3480 
3481     if (g1_policy()->in_young_gc_mode()) {
3482       assert(check_young_list_well_formed(),
3483              "young list should be well formed");
3484     }
3485 
3486     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3487       IsGCActiveMark x;
3488 
3489       gc_prologue(false);
3490       increment_total_collections(false /* full gc */);
3491 
3492       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3493         HandleMark hm;  // Discard invalid handles created during verification
3494         gclog_or_tty->print(" VerifyBeforeGC:");
3495         prepare_for_verify();
3496         Universe::verify(/* allow dirty */ false,
3497                          /* silent      */ false,
3498                          /* option      */ VerifyOption_G1UsePrevMarking);
3499 
3500       }
3501 
3502       COMPILER2_PRESENT(DerivedPointerTable::clear());
3503 
3504       // Please see comment in g1CollectedHeap.hpp and 
3505       // G1CollectedHeap::ref_processing_init() to see how
3506       // reference processing currently works in G1.
3507 
3508       assert(!ref_processor_stw()->discovery_enabled(), "Precondition");
3509       ref_processor_stw()->verify_no_references_recorded();
3510 
3511       // Enable discovery in the STW reference processor
3512       ref_processor_stw()->enable_discovery();
3513 
3514       {
3515         // We want to temporarily turn off discovery by the
3516         // CM ref processor, if necessary, and turn it back on
3517         // on again later if we do. Using a scoped
3518         // NoRefDiscovery object will do this.
3519         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3520 
3521         // Forget the current alloc region (we might even choose it to be part
3522         // of the collection set!).
3523         release_mutator_alloc_region();
3524 
3525         // We should call this after we retire the mutator alloc
3526         // region(s) so that all the ALLOC / RETIRE events are generated
3527         // before the start GC event.
3528         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3529 
3530         // The elapsed time induced by the start time below deliberately elides
3531         // the possible verification above.
3532         double start_time_sec = os::elapsedTime();
3533         size_t start_used_bytes = used();
3534 
3535 #if YOUNG_LIST_VERBOSE
3536         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3537         _young_list->print();
3538         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3539 #endif // YOUNG_LIST_VERBOSE
3540 
3541         g1_policy()->record_collection_pause_start(start_time_sec,
3542                                                    start_used_bytes);
3543 
3544 #if YOUNG_LIST_VERBOSE
3545         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3546         _young_list->print();
3547 #endif // YOUNG_LIST_VERBOSE
3548 
3549         if (g1_policy()->during_initial_mark_pause()) {
3550           concurrent_mark()->checkpointRootsInitialPre();
3551         }
3552         save_marks();
3553 
3554         // We must do this before any possible evacuation that should propagate
3555         // marks.
3556         if (mark_in_progress()) {
3557           double start_time_sec = os::elapsedTime();
3558 
3559           _cm->drainAllSATBBuffers();
3560           double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
3561           g1_policy()->record_satb_drain_time(finish_mark_ms);
3562         }
3563         // Record the number of elements currently on the mark stack, so we
3564         // only iterate over these.  (Since evacuation may add to the mark
3565         // stack, doing more exposes race conditions.)  If no mark is in
3566         // progress, this will be zero.
3567         _cm->set_oops_do_bound();
3568 
3569         if (mark_in_progress()) {
3570           concurrent_mark()->newCSet();
3571         }
3572 
3573 #if YOUNG_LIST_VERBOSE
3574         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3575         _young_list->print();
3576         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3577 #endif // YOUNG_LIST_VERBOSE
3578 
3579         g1_policy()->choose_collection_set(target_pause_time_ms);
3580 
3581         if (_hr_printer.is_active()) {
3582           HeapRegion* hr = g1_policy()->collection_set();
3583           while (hr != NULL) {
3584             G1HRPrinter::RegionType type;
3585             if (!hr->is_young()) {
3586               type = G1HRPrinter::Old;
3587             } else if (hr->is_survivor()) {
3588               type = G1HRPrinter::Survivor;
3589             } else {
3590               type = G1HRPrinter::Eden;
3591             }
3592             _hr_printer.cset(hr);
3593             hr = hr->next_in_collection_set();
3594           }
3595         }
3596 
3597         // We have chosen the complete collection set. If marking is
3598         // active then, we clear the region fields of any of the
3599         // concurrent marking tasks whose region fields point into
3600         // the collection set as these values will become stale. This
3601         // will cause the owning marking threads to claim a new region
3602         // when marking restarts.
3603         if (mark_in_progress()) {
3604           concurrent_mark()->reset_active_task_region_fields_in_cset();
3605         }
3606 
3607 #ifdef ASSERT
3608         VerifyCSetClosure cl;
3609         collection_set_iterate(&cl);
3610 #endif // ASSERT
3611 
3612         setup_surviving_young_words();
3613 
3614         // Set up the gc allocation regions.
3615         get_gc_alloc_regions();
3616 
3617         // Actually do the work...
3618         evacuate_collection_set();
3619 
3620         free_collection_set(g1_policy()->collection_set());
3621         g1_policy()->clear_collection_set();
3622 
3623         cleanup_surviving_young_words();
3624 
3625         // Start a new incremental collection set for the next pause.
3626         g1_policy()->start_incremental_cset_building();
3627 
3628         // Clear the _cset_fast_test bitmap in anticipation of adding
3629         // regions to the incremental collection set for the next
3630         // evacuation pause.
3631         clear_cset_fast_test();
3632 
3633         if (g1_policy()->in_young_gc_mode()) {
3634           _young_list->reset_sampled_info();
3635 
3636           // Don't check the whole heap at this point as the
3637           // GC alloc regions from this pause have been tagged
3638           // as survivors and moved on to the survivor list.
3639           // Survivor regions will fail the !is_young() check.
3640           assert(check_young_list_empty(false /* check_heap */),
3641                  "young list should be empty");
3642 
3643 #if YOUNG_LIST_VERBOSE
3644           gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3645           _young_list->print();
3646 #endif // YOUNG_LIST_VERBOSE
3647 
3648           g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3649                                             _young_list->first_survivor_region(),
3650                                             _young_list->last_survivor_region());
3651 
3652           _young_list->reset_auxilary_lists();
3653         }
3654 
3655         if (evacuation_failed()) {
3656           _summary_bytes_used = recalculate_used();
3657         } else {
3658           // The "used" of the the collection set have already been subtracted
3659           // when they were freed.  Add in the bytes evacuated.
3660           _summary_bytes_used += g1_policy()->bytes_in_to_space();
3661         }
3662 
3663         if (g1_policy()->in_young_gc_mode() &&
3664             g1_policy()->during_initial_mark_pause()) {
3665           concurrent_mark()->checkpointRootsInitialPost();
3666           set_marking_started();
3667           // CAUTION: after the doConcurrentMark() call below,
3668           // the concurrent marking thread(s) could be running
3669           // concurrently with us. Make sure that anything after
3670           // this point does not assume that we are the only GC thread
3671           // running. Note: of course, the actual marking work will
3672           // not start until the safepoint itself is released in
3673           // ConcurrentGCThread::safepoint_desynchronize().
3674           doConcurrentMark();
3675         }
3676 
3677         allocate_dummy_regions();
3678 
3679 #if YOUNG_LIST_VERBOSE
3680         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3681         _young_list->print();
3682         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3683 #endif // YOUNG_LIST_VERBOSE
3684 
3685         init_mutator_alloc_region();
3686 
3687         double end_time_sec = os::elapsedTime();
3688         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3689         g1_policy()->record_pause_time_ms(pause_time_ms);
3690         g1_policy()->record_collection_pause_end();
3691 
3692         MemoryService::track_memory_usage();
3693 
3694         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3695           HandleMark hm;  // Discard invalid handles created during verification
3696           gclog_or_tty->print(" VerifyAfterGC:");
3697           prepare_for_verify();
3698           Universe::verify(/* allow dirty */ true,
3699                            /* silent      */ false,
3700                            /* option      */ VerifyOption_G1UsePrevMarking);
3701         }
3702 
3703         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3704         ref_processor_stw()->verify_no_references_recorded();
3705 
3706         // CM reference discovery will be re-enabled if necessary.
3707       }
3708 
3709       {
3710         size_t expand_bytes = g1_policy()->expansion_amount();
3711         if (expand_bytes > 0) {
3712           size_t bytes_before = capacity();
3713           if (!expand(expand_bytes)) {
3714             // We failed to expand the heap so let's verify that
3715             // committed/uncommitted amount match the backing store
3716             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3717             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3718           }
3719         }
3720       }
3721 
3722       // We should do this after we potentially expand the heap so
3723       // that all the COMMIT events are generated before the end GC
3724       // event, and after we retire the GC alloc regions so that all
3725       // RETIRE events are generated before the end GC event.
3726       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3727 
3728       // We have to do this after we decide whether to expand the heap or not.
3729       g1_policy()->print_heap_transition();
3730 
3731       if (mark_in_progress()) {
3732         concurrent_mark()->update_g1_committed();
3733       }
3734 
3735 #ifdef TRACESPINNING
3736       ParallelTaskTerminator::print_termination_counts();
3737 #endif
3738 
3739       gc_epilogue(false);
3740     }
3741 
3742     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3743       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3744       print_tracing_info();
3745       vm_exit(-1);
3746     }
3747   }
3748 
3749   _hrs.verify_optional();
3750   verify_region_sets_optional();
3751 
3752   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3753   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3754 
3755   if (PrintHeapAtGC) {
3756     Universe::print_heap_after_gc();
3757   }
3758   g1mm()->update_counters();
3759 
3760   if (G1SummarizeRSetStats &&
3761       (G1SummarizeRSetStatsPeriod > 0) &&
3762       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3763     g1_rem_set()->print_summary_info();
3764   }
3765 
3766   return true;
3767 }
3768 
3769 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3770 {
3771   size_t gclab_word_size;
3772   switch (purpose) {
3773     case GCAllocForSurvived:
3774       gclab_word_size = YoungPLABSize;
3775       break;
3776     case GCAllocForTenured:
3777       gclab_word_size = OldPLABSize;
3778       break;
3779     default:
3780       assert(false, "unknown GCAllocPurpose");
3781       gclab_word_size = OldPLABSize;
3782       break;
3783   }
3784   return gclab_word_size;
3785 }
3786 
3787 void G1CollectedHeap::init_mutator_alloc_region() {
3788   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
3789   _mutator_alloc_region.init();
3790 }
3791 
3792 void G1CollectedHeap::release_mutator_alloc_region() {
3793   _mutator_alloc_region.release();
3794   assert(_mutator_alloc_region.get() == NULL, "post-condition");
3795 }
3796 
3797 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
3798   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
3799   // make sure we don't call set_gc_alloc_region() multiple times on
3800   // the same region
3801   assert(r == NULL || !r->is_gc_alloc_region(),
3802          "shouldn't already be a GC alloc region");
3803   assert(r == NULL || !r->isHumongous(),
3804          "humongous regions shouldn't be used as GC alloc regions");
3805 
3806   HeapWord* original_top = NULL;
3807   if (r != NULL)
3808     original_top = r->top();
3809 
3810   // We will want to record the used space in r as being there before gc.
3811   // One we install it as a GC alloc region it's eligible for allocation.
3812   // So record it now and use it later.
3813   size_t r_used = 0;
3814   if (r != NULL) {
3815     r_used = r->used();
3816 
3817     if (G1CollectedHeap::use_parallel_gc_threads()) {
3818       // need to take the lock to guard against two threads calling
3819       // get_gc_alloc_region concurrently (very unlikely but...)
3820       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3821       r->save_marks();
3822     }
3823   }
3824   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
3825   _gc_alloc_regions[purpose] = r;
3826   if (old_alloc_region != NULL) {
3827     // Replace aliases too.
3828     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3829       if (_gc_alloc_regions[ap] == old_alloc_region) {
3830         _gc_alloc_regions[ap] = r;
3831       }
3832     }
3833   }
3834   if (r != NULL) {
3835     push_gc_alloc_region(r);
3836     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
3837       // We are using a region as a GC alloc region after it has been used
3838       // as a mutator allocation region during the current marking cycle.
3839       // The mutator-allocated objects are currently implicitly marked, but
3840       // when we move hr->next_top_at_mark_start() forward at the the end
3841       // of the GC pause, they won't be.  We therefore mark all objects in
3842       // the "gap".  We do this object-by-object, since marking densely
3843       // does not currently work right with marking bitmap iteration.  This
3844       // means we rely on TLAB filling at the start of pauses, and no
3845       // "resuscitation" of filled TLAB's.  If we want to do this, we need
3846       // to fix the marking bitmap iteration.
3847       HeapWord* curhw = r->next_top_at_mark_start();
3848       HeapWord* t = original_top;
3849 
3850       while (curhw < t) {
3851         oop cur = (oop)curhw;
3852         // We'll assume parallel for generality.  This is rare code.
3853         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
3854         curhw = curhw + cur->size();
3855       }
3856       assert(curhw == t, "Should have parsed correctly.");
3857     }
3858     if (G1PolicyVerbose > 1) {
3859       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
3860                           "for survivors:", r->bottom(), original_top, r->end());
3861       r->print();
3862     }
3863     g1_policy()->record_before_bytes(r_used);
3864   }
3865 }
3866 
3867 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
3868   assert(Thread::current()->is_VM_thread() ||
3869          FreeList_lock->owned_by_self(), "Precondition");
3870   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
3871          "Precondition.");
3872   hr->set_is_gc_alloc_region(true);
3873   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
3874   _gc_alloc_region_list = hr;
3875 }
3876 
3877 #ifdef G1_DEBUG
3878 class FindGCAllocRegion: public HeapRegionClosure {
3879 public:
3880   bool doHeapRegion(HeapRegion* r) {
3881     if (r->is_gc_alloc_region()) {
3882       gclog_or_tty->print_cr("Region "HR_FORMAT" is still a GC alloc region",
3883                              HR_FORMAT_PARAMS(r));
3884     }
3885     return false;
3886   }
3887 };
3888 #endif // G1_DEBUG
3889 
3890 void G1CollectedHeap::forget_alloc_region_list() {
3891   assert_at_safepoint(true /* should_be_vm_thread */);
3892   while (_gc_alloc_region_list != NULL) {
3893     HeapRegion* r = _gc_alloc_region_list;
3894     assert(r->is_gc_alloc_region(), "Invariant.");
3895     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
3896     // newly allocated data in order to be able to apply deferred updates
3897     // before the GC is done for verification purposes (i.e to allow
3898     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
3899     // collection.
3900     r->ContiguousSpace::set_saved_mark();
3901     _gc_alloc_region_list = r->next_gc_alloc_region();
3902     r->set_next_gc_alloc_region(NULL);
3903     r->set_is_gc_alloc_region(false);
3904     if (r->is_survivor()) {
3905       if (r->is_empty()) {
3906         r->set_not_young();
3907       } else {
3908         _young_list->add_survivor_region(r);
3909       }
3910     }
3911   }
3912 #ifdef G1_DEBUG
3913   FindGCAllocRegion fa;
3914   heap_region_iterate(&fa);
3915 #endif // G1_DEBUG
3916 }
3917 
3918 
3919 bool G1CollectedHeap::check_gc_alloc_regions() {
3920   // TODO: allocation regions check
3921   return true;
3922 }
3923 
3924 void G1CollectedHeap::get_gc_alloc_regions() {
3925   // First, let's check that the GC alloc region list is empty (it should)
3926   assert(_gc_alloc_region_list == NULL, "invariant");
3927 
3928   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3929     assert(_gc_alloc_regions[ap] == NULL, "invariant");
3930     assert(_gc_alloc_region_counts[ap] == 0, "invariant");
3931 
3932     // Create new GC alloc regions.
3933     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
3934     _retained_gc_alloc_regions[ap] = NULL;
3935 
3936     if (alloc_region != NULL) {
3937       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
3938 
3939       // let's make sure that the GC alloc region is not tagged as such
3940       // outside a GC operation
3941       assert(!alloc_region->is_gc_alloc_region(), "sanity");
3942 
3943       if (alloc_region->in_collection_set() ||
3944           alloc_region->top() == alloc_region->end() ||
3945           alloc_region->top() == alloc_region->bottom() ||
3946           alloc_region->isHumongous()) {
3947         // we will discard the current GC alloc region if
3948         // * it's in the collection set (it can happen!),
3949         // * it's already full (no point in using it),
3950         // * it's empty (this means that it was emptied during
3951         // a cleanup and it should be on the free list now), or
3952         // * it's humongous (this means that it was emptied
3953         // during a cleanup and was added to the free list, but
3954         // has been subseqently used to allocate a humongous
3955         // object that may be less than the region size).
3956 
3957         alloc_region = NULL;
3958       }
3959     }
3960 
3961     if (alloc_region == NULL) {
3962       // we will get a new GC alloc region
3963       alloc_region = new_gc_alloc_region(ap, HeapRegion::GrainWords);
3964     } else {
3965       // the region was retained from the last collection
3966       ++_gc_alloc_region_counts[ap];
3967 
3968       _hr_printer.reuse(alloc_region);
3969     }
3970 
3971     if (alloc_region != NULL) {
3972       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
3973       set_gc_alloc_region(ap, alloc_region);
3974     }
3975 
3976     assert(_gc_alloc_regions[ap] == NULL ||
3977            _gc_alloc_regions[ap]->is_gc_alloc_region(),
3978            "the GC alloc region should be tagged as such");
3979     assert(_gc_alloc_regions[ap] == NULL ||
3980            _gc_alloc_regions[ap] == _gc_alloc_region_list,
3981            "the GC alloc region should be the same as the GC alloc list head");
3982   }
3983   // Set alternative regions for allocation purposes that have reached
3984   // their limit.
3985   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3986     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
3987     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
3988       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
3989     }
3990   }
3991   assert(check_gc_alloc_regions(), "alloc regions messed up");
3992 }
3993 
3994 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
3995   // We keep a separate list of all regions that have been alloc regions in
3996   // the current collection pause. Forget that now. This method will
3997   // untag the GC alloc regions and tear down the GC alloc region
3998   // list. It's desirable that no regions are tagged as GC alloc
3999   // outside GCs.
4000 
4001   forget_alloc_region_list();
4002 
4003   // The current alloc regions contain objs that have survived
4004   // collection. Make them no longer GC alloc regions.
4005   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
4006     HeapRegion* r = _gc_alloc_regions[ap];
4007     _retained_gc_alloc_regions[ap] = NULL;
4008     _gc_alloc_region_counts[ap] = 0;
4009 
4010     if (r != NULL) {
4011       // we retain nothing on _gc_alloc_regions between GCs
4012       set_gc_alloc_region(ap, NULL);
4013 
4014       if (r->is_empty()) {
4015         // We didn't actually allocate anything in it; let's just put
4016         // it back on the free list.
4017         _free_list.add_as_head(r);
4018       } else if (_retain_gc_alloc_region[ap] && !totally) {
4019         // retain it so that we can use it at the beginning of the next GC
4020         _retained_gc_alloc_regions[ap] = r;
4021       }
4022     }
4023   }
4024 }
4025 
4026 #ifndef PRODUCT
4027 // Useful for debugging
4028 
4029 void G1CollectedHeap::print_gc_alloc_regions() {
4030   gclog_or_tty->print_cr("GC alloc regions");
4031   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
4032     HeapRegion* r = _gc_alloc_regions[ap];
4033     if (r == NULL) {
4034       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
4035     } else {
4036       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
4037                              ap, r->bottom(), r->used());
4038     }
4039   }
4040 }
4041 #endif // PRODUCT
4042 
4043 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4044   _drain_in_progress = false;
4045   set_evac_failure_closure(cl);
4046   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4047 }
4048 
4049 void G1CollectedHeap::finalize_for_evac_failure() {
4050   assert(_evac_failure_scan_stack != NULL &&
4051          _evac_failure_scan_stack->length() == 0,
4052          "Postcondition");
4053   assert(!_drain_in_progress, "Postcondition");
4054   delete _evac_failure_scan_stack;
4055   _evac_failure_scan_stack = NULL;
4056 }
4057 
4058 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
4059 private:
4060   G1CollectedHeap* _g1;
4061   DirtyCardQueue *_dcq;
4062   CardTableModRefBS* _ct_bs;
4063 
4064 public:
4065   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
4066     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
4067 
4068   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4069   virtual void do_oop(      oop* p) { do_oop_work(p); }
4070   template <class T> void do_oop_work(T* p) {
4071     assert(_from->is_in_reserved(p), "paranoia");
4072     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
4073         !_from->is_survivor()) {
4074       size_t card_index = _ct_bs->index_for(p);
4075       if (_ct_bs->mark_card_deferred(card_index)) {
4076         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
4077       }
4078     }
4079   }
4080 };
4081 
4082 class RemoveSelfPointerClosure: public ObjectClosure {
4083 private:
4084   G1CollectedHeap* _g1;
4085   ConcurrentMark* _cm;
4086   HeapRegion* _hr;
4087   size_t _prev_marked_bytes;
4088   size_t _next_marked_bytes;
4089   OopsInHeapRegionClosure *_cl;
4090 public:
4091   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
4092                            OopsInHeapRegionClosure* cl) :
4093     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
4094     _next_marked_bytes(0), _cl(cl) {}
4095 
4096   size_t prev_marked_bytes() { return _prev_marked_bytes; }
4097   size_t next_marked_bytes() { return _next_marked_bytes; }
4098 
4099   // <original comment>
4100   // The original idea here was to coalesce evacuated and dead objects.
4101   // However that caused complications with the block offset table (BOT).
4102   // In particular if there were two TLABs, one of them partially refined.
4103   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
4104   // The BOT entries of the unrefined part of TLAB_2 point to the start
4105   // of TLAB_2. If the last object of the TLAB_1 and the first object
4106   // of TLAB_2 are coalesced, then the cards of the unrefined part
4107   // would point into middle of the filler object.
4108   // The current approach is to not coalesce and leave the BOT contents intact.
4109   // </original comment>
4110   //
4111   // We now reset the BOT when we start the object iteration over the
4112   // region and refine its entries for every object we come across. So
4113   // the above comment is not really relevant and we should be able
4114   // to coalesce dead objects if we want to.
4115   void do_object(oop obj) {
4116     HeapWord* obj_addr = (HeapWord*) obj;
4117     assert(_hr->is_in(obj_addr), "sanity");
4118     size_t obj_size = obj->size();
4119     _hr->update_bot_for_object(obj_addr, obj_size);
4120     if (obj->is_forwarded() && obj->forwardee() == obj) {
4121       // The object failed to move.
4122       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
4123       _cm->markPrev(obj);
4124       assert(_cm->isPrevMarked(obj), "Should be marked!");
4125       _prev_marked_bytes += (obj_size * HeapWordSize);
4126       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
4127         _cm->markAndGrayObjectIfNecessary(obj);
4128       }
4129       obj->set_mark(markOopDesc::prototype());
4130       // While we were processing RSet buffers during the
4131       // collection, we actually didn't scan any cards on the
4132       // collection set, since we didn't want to update remebered
4133       // sets with entries that point into the collection set, given
4134       // that live objects fromthe collection set are about to move
4135       // and such entries will be stale very soon. This change also
4136       // dealt with a reliability issue which involved scanning a
4137       // card in the collection set and coming across an array that
4138       // was being chunked and looking malformed. The problem is
4139       // that, if evacuation fails, we might have remembered set
4140       // entries missing given that we skipped cards on the
4141       // collection set. So, we'll recreate such entries now.
4142       obj->oop_iterate(_cl);
4143       assert(_cm->isPrevMarked(obj), "Should be marked!");
4144     } else {
4145       // The object has been either evacuated or is dead. Fill it with a
4146       // dummy object.
4147       MemRegion mr((HeapWord*)obj, obj_size);
4148       CollectedHeap::fill_with_object(mr);
4149       _cm->clearRangeBothMaps(mr);
4150     }
4151   }
4152 };
4153 
4154 void G1CollectedHeap::remove_self_forwarding_pointers() {
4155   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
4156   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
4157   UpdateRSetDeferred deferred_update(_g1h, &dcq);
4158   OopsInHeapRegionClosure *cl;
4159   if (G1DeferredRSUpdate) {
4160     cl = &deferred_update;
4161   } else {
4162     cl = &immediate_update;
4163   }
4164   HeapRegion* cur = g1_policy()->collection_set();
4165   while (cur != NULL) {
4166     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
4167     assert(!cur->isHumongous(), "sanity");
4168 
4169     if (cur->evacuation_failed()) {
4170       assert(cur->in_collection_set(), "bad CS");
4171       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
4172 
4173       // In the common case we make sure that this is done when the
4174       // region is freed so that it is "ready-to-go" when it's
4175       // re-allocated. However, when evacuation failure happens, a
4176       // region will remain in the heap and might ultimately be added
4177       // to a CSet in the future. So we have to be careful here and
4178       // make sure the region's RSet is ready for parallel iteration
4179       // whenever this might be required in the future.
4180       cur->rem_set()->reset_for_par_iteration();
4181       cur->reset_bot();
4182       cl->set_region(cur);
4183       cur->object_iterate(&rspc);
4184 
4185       // A number of manipulations to make the TAMS be the current top,
4186       // and the marked bytes be the ones observed in the iteration.
4187       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
4188         // The comments below are the postconditions achieved by the
4189         // calls.  Note especially the last such condition, which says that
4190         // the count of marked bytes has been properly restored.
4191         cur->note_start_of_marking(false);
4192         // _next_top_at_mark_start == top, _next_marked_bytes == 0
4193         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
4194         // _next_marked_bytes == prev_marked_bytes.
4195         cur->note_end_of_marking();
4196         // _prev_top_at_mark_start == top(),
4197         // _prev_marked_bytes == prev_marked_bytes
4198       }
4199       // If there is no mark in progress, we modified the _next variables
4200       // above needlessly, but harmlessly.
4201       if (_g1h->mark_in_progress()) {
4202         cur->note_start_of_marking(false);
4203         // _next_top_at_mark_start == top, _next_marked_bytes == 0
4204         // _next_marked_bytes == next_marked_bytes.
4205       }
4206 
4207       // Now make sure the region has the right index in the sorted array.
4208       g1_policy()->note_change_in_marked_bytes(cur);
4209     }
4210     cur = cur->next_in_collection_set();
4211   }
4212   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
4213 
4214   // Now restore saved marks, if any.
4215   if (_objs_with_preserved_marks != NULL) {
4216     assert(_preserved_marks_of_objs != NULL, "Both or none.");
4217     guarantee(_objs_with_preserved_marks->length() ==
4218               _preserved_marks_of_objs->length(), "Both or none.");
4219     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
4220       oop obj   = _objs_with_preserved_marks->at(i);
4221       markOop m = _preserved_marks_of_objs->at(i);
4222       obj->set_mark(m);
4223     }
4224     // Delete the preserved marks growable arrays (allocated on the C heap).
4225     delete _objs_with_preserved_marks;
4226     delete _preserved_marks_of_objs;
4227     _objs_with_preserved_marks = NULL;
4228     _preserved_marks_of_objs = NULL;
4229   }
4230 }
4231 
4232 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4233   _evac_failure_scan_stack->push(obj);
4234 }
4235 
4236 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4237   assert(_evac_failure_scan_stack != NULL, "precondition");
4238 
4239   while (_evac_failure_scan_stack->length() > 0) {
4240      oop obj = _evac_failure_scan_stack->pop();
4241      _evac_failure_closure->set_region(heap_region_containing(obj));
4242      obj->oop_iterate_backwards(_evac_failure_closure);
4243   }
4244 }
4245 
4246 oop
4247 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4248                                                oop old) {
4249   assert(obj_in_cs(old),
4250          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4251                  (HeapWord*) old));
4252   markOop m = old->mark();
4253   oop forward_ptr = old->forward_to_atomic(old);
4254   if (forward_ptr == NULL) {
4255     // Forward-to-self succeeded.
4256     if (_evac_failure_closure != cl) {
4257       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4258       assert(!_drain_in_progress,
4259              "Should only be true while someone holds the lock.");
4260       // Set the global evac-failure closure to the current thread's.
4261       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4262       set_evac_failure_closure(cl);
4263       // Now do the common part.
4264       handle_evacuation_failure_common(old, m);
4265       // Reset to NULL.
4266       set_evac_failure_closure(NULL);
4267     } else {
4268       // The lock is already held, and this is recursive.
4269       assert(_drain_in_progress, "This should only be the recursive case.");
4270       handle_evacuation_failure_common(old, m);
4271     }
4272     return old;
4273   } else {
4274     // Forward-to-self failed. Either someone else managed to allocate
4275     // space for this object (old != forward_ptr) or they beat us in
4276     // self-forwarding it (old == forward_ptr).
4277     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4278            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4279                    "should not be in the CSet",
4280                    (HeapWord*) old, (HeapWord*) forward_ptr));
4281     return forward_ptr;
4282   }
4283 }
4284 
4285 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4286   set_evacuation_failed(true);
4287 
4288   preserve_mark_if_necessary(old, m);
4289 
4290   HeapRegion* r = heap_region_containing(old);
4291   if (!r->evacuation_failed()) {
4292     r->set_evacuation_failed(true);
4293     _hr_printer.evac_failure(r);
4294   }
4295 
4296   push_on_evac_failure_scan_stack(old);
4297 
4298   if (!_drain_in_progress) {
4299     // prevent recursion in copy_to_survivor_space()
4300     _drain_in_progress = true;
4301     drain_evac_failure_scan_stack();
4302     _drain_in_progress = false;
4303   }
4304 }
4305 
4306 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4307   assert(evacuation_failed(), "Oversaving!");
4308   // We want to call the "for_promotion_failure" version only in the
4309   // case of a promotion failure.
4310   if (m->must_be_preserved_for_promotion_failure(obj)) {
4311     if (_objs_with_preserved_marks == NULL) {
4312       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4313       _objs_with_preserved_marks =
4314         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4315       _preserved_marks_of_objs =
4316         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4317     }
4318     _objs_with_preserved_marks->push(obj);
4319     _preserved_marks_of_objs->push(m);
4320   }
4321 }
4322 
4323 // *** Parallel G1 Evacuation
4324 
4325 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4326                                                   size_t word_size) {
4327   assert(!isHumongous(word_size),
4328          err_msg("we should not be seeing humongous allocation requests "
4329                  "during GC, word_size = "SIZE_FORMAT, word_size));
4330 
4331   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
4332   // let the caller handle alloc failure
4333   if (alloc_region == NULL) return NULL;
4334 
4335   HeapWord* block = alloc_region->par_allocate(word_size);
4336   if (block == NULL) {
4337     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
4338   }
4339   return block;
4340 }
4341 
4342 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
4343                                             bool par) {
4344   // Another thread might have obtained alloc_region for the given
4345   // purpose, and might be attempting to allocate in it, and might
4346   // succeed.  Therefore, we can't do the "finalization" stuff on the
4347   // region below until we're sure the last allocation has happened.
4348   // We ensure this by allocating the remaining space with a garbage
4349   // object.
4350   if (par) par_allocate_remaining_space(alloc_region);
4351   // Now we can do the post-GC stuff on the region.
4352   alloc_region->note_end_of_copying();
4353   g1_policy()->record_after_bytes(alloc_region->used());
4354   _hr_printer.retire(alloc_region);
4355 }
4356 
4357 HeapWord*
4358 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
4359                                          HeapRegion*    alloc_region,
4360                                          bool           par,
4361                                          size_t         word_size) {
4362   assert(!isHumongous(word_size),
4363          err_msg("we should not be seeing humongous allocation requests "
4364                  "during GC, word_size = "SIZE_FORMAT, word_size));
4365 
4366   // We need to make sure we serialize calls to this method. Given
4367   // that the FreeList_lock guards accesses to the free_list anyway,
4368   // and we need to potentially remove a region from it, we'll use it
4369   // to protect the whole call.
4370   MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4371 
4372   HeapWord* block = NULL;
4373   // In the parallel case, a previous thread to obtain the lock may have
4374   // already assigned a new gc_alloc_region.
4375   if (alloc_region != _gc_alloc_regions[purpose]) {
4376     assert(par, "But should only happen in parallel case.");
4377     alloc_region = _gc_alloc_regions[purpose];
4378     if (alloc_region == NULL) return NULL;
4379     block = alloc_region->par_allocate(word_size);
4380     if (block != NULL) return block;
4381     // Otherwise, continue; this new region is empty, too.
4382   }
4383   assert(alloc_region != NULL, "We better have an allocation region");
4384   retire_alloc_region(alloc_region, par);
4385 
4386   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
4387     // Cannot allocate more regions for the given purpose.
4388     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
4389     // Is there an alternative?
4390     if (purpose != alt_purpose) {
4391       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
4392       // Has not the alternative region been aliased?
4393       if (alloc_region != alt_region && alt_region != NULL) {
4394         // Try to allocate in the alternative region.
4395         if (par) {
4396           block = alt_region->par_allocate(word_size);
4397         } else {
4398           block = alt_region->allocate(word_size);
4399         }
4400         // Make an alias.
4401         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
4402         if (block != NULL) {
4403           return block;
4404         }
4405         retire_alloc_region(alt_region, par);
4406       }
4407       // Both the allocation region and the alternative one are full
4408       // and aliased, replace them with a new allocation region.
4409       purpose = alt_purpose;
4410     } else {
4411       set_gc_alloc_region(purpose, NULL);
4412       return NULL;
4413     }
4414   }
4415 
4416   // Now allocate a new region for allocation.
4417   alloc_region = new_gc_alloc_region(purpose, word_size);
4418 
4419   // let the caller handle alloc failure
4420   if (alloc_region != NULL) {
4421 
4422     assert(check_gc_alloc_regions(), "alloc regions messed up");
4423     assert(alloc_region->saved_mark_at_top(),
4424            "Mark should have been saved already.");
4425     // This must be done last: once it's installed, other regions may
4426     // allocate in it (without holding the lock.)
4427     set_gc_alloc_region(purpose, alloc_region);
4428 
4429     if (par) {
4430       block = alloc_region->par_allocate(word_size);
4431     } else {
4432       block = alloc_region->allocate(word_size);
4433     }
4434     // Caller handles alloc failure.
4435   } else {
4436     // This sets other apis using the same old alloc region to NULL, also.
4437     set_gc_alloc_region(purpose, NULL);
4438   }
4439   return block;  // May be NULL.
4440 }
4441 
4442 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
4443   HeapWord* block = NULL;
4444   size_t free_words;
4445   do {
4446     free_words = r->free()/HeapWordSize;
4447     // If there's too little space, no one can allocate, so we're done.
4448     if (free_words < CollectedHeap::min_fill_size()) return;
4449     // Otherwise, try to claim it.
4450     block = r->par_allocate(free_words);
4451   } while (block == NULL);
4452   fill_with_object(block, free_words);
4453 }
4454 
4455 #ifndef PRODUCT
4456 bool GCLabBitMapClosure::do_bit(size_t offset) {
4457   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
4458   guarantee(_cm->isMarked(oop(addr)), "it should be!");
4459   return true;
4460 }
4461 #endif // PRODUCT
4462 
4463 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
4464   : _g1h(g1h),
4465     _refs(g1h->task_queue(queue_num)),
4466     _dcq(&g1h->dirty_card_queue_set()),
4467     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4468     _g1_rem(g1h->g1_rem_set()),
4469     _hash_seed(17), _queue_num(queue_num),
4470     _term_attempts(0),
4471     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4472     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4473     _age_table(false),
4474     _strong_roots_time(0), _term_time(0),
4475     _alloc_buffer_waste(0), _undo_waste(0)
4476 {
4477   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4478   // we "sacrifice" entry 0 to keep track of surviving bytes for
4479   // non-young regions (where the age is -1)
4480   // We also add a few elements at the beginning and at the end in
4481   // an attempt to eliminate cache contention
4482   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
4483   size_t array_length = PADDING_ELEM_NUM +
4484                         real_length +
4485                         PADDING_ELEM_NUM;
4486   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4487   if (_surviving_young_words_base == NULL)
4488     vm_exit_out_of_memory(array_length * sizeof(size_t),
4489                           "Not enough space for young surv histo.");
4490   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4491   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
4492 
4493   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4494   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4495 
4496   _start = os::elapsedTime();
4497 }
4498 
4499 void
4500 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4501 {
4502   st->print_raw_cr("GC Termination Stats");
4503   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4504                    " ------waste (KiB)------");
4505   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4506                    "  total   alloc    undo");
4507   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4508                    " ------- ------- -------");
4509 }
4510 
4511 void
4512 G1ParScanThreadState::print_termination_stats(int i,
4513                                               outputStream* const st) const
4514 {
4515   const double elapsed_ms = elapsed_time() * 1000.0;
4516   const double s_roots_ms = strong_roots_time() * 1000.0;
4517   const double term_ms    = term_time() * 1000.0;
4518   st->print_cr("%3d %9.2f %9.2f %6.2f "
4519                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4520                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4521                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4522                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4523                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4524                alloc_buffer_waste() * HeapWordSize / K,
4525                undo_waste() * HeapWordSize / K);
4526 }
4527 
4528 #ifdef ASSERT
4529 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4530   assert(ref != NULL, "invariant");
4531   assert(UseCompressedOops, "sanity");
4532   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4533   oop p = oopDesc::load_decode_heap_oop(ref);
4534   assert(_g1h->is_in_g1_reserved(p),
4535          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4536   return true;
4537 }
4538 
4539 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4540   assert(ref != NULL, "invariant");
4541   if (has_partial_array_mask(ref)) {
4542     // Must be in the collection set--it's already been copied.
4543     oop p = clear_partial_array_mask(ref);
4544     assert(_g1h->obj_in_cs(p),
4545            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4546   } else {
4547     oop p = oopDesc::load_decode_heap_oop(ref);
4548     assert(_g1h->is_in_g1_reserved(p),
4549            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4550   }
4551   return true;
4552 }
4553 
4554 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4555   if (ref.is_narrow()) {
4556     return verify_ref((narrowOop*) ref);
4557   } else {
4558     return verify_ref((oop*) ref);
4559   }
4560 }
4561 #endif // ASSERT
4562 
4563 void G1ParScanThreadState::trim_queue() {
4564   assert(_evac_cl != NULL, "not set");
4565   assert(_evac_failure_cl != NULL, "not set");
4566   assert(_partial_scan_cl != NULL, "not set");
4567 
4568   StarTask ref;
4569   do {
4570     // Drain the overflow stack first, so other threads can steal.
4571     while (refs()->pop_overflow(ref)) {
4572       deal_with_reference(ref);
4573     }
4574 
4575     while (refs()->pop_local(ref)) {
4576       deal_with_reference(ref);
4577     }
4578   } while (!refs()->is_empty());
4579 }
4580 
4581 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
4582   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4583   _par_scan_state(par_scan_state) { }
4584 
4585 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
4586   // This is called _after_ do_oop_work has been called, hence after
4587   // the object has been relocated to its new location and *p points
4588   // to its new location.
4589 
4590   T heap_oop = oopDesc::load_heap_oop(p);
4591   if (!oopDesc::is_null(heap_oop)) {
4592     oop obj = oopDesc::decode_heap_oop(heap_oop);
4593     HeapWord* addr = (HeapWord*)obj;
4594     if (_g1->is_in_g1_reserved(addr)) {
4595       _cm->grayRoot(oop(addr));
4596     }
4597   }
4598 }
4599 
4600 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
4601   size_t    word_sz = old->size();
4602   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4603   // +1 to make the -1 indexes valid...
4604   int       young_index = from_region->young_index_in_cset()+1;
4605   assert( (from_region->is_young() && young_index > 0) ||
4606           (!from_region->is_young() && young_index == 0), "invariant" );
4607   G1CollectorPolicy* g1p = _g1->g1_policy();
4608   markOop m = old->mark();
4609   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4610                                            : m->age();
4611   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4612                                                              word_sz);
4613   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4614   oop       obj     = oop(obj_ptr);
4615 
4616   if (obj_ptr == NULL) {
4617     // This will either forward-to-self, or detect that someone else has
4618     // installed a forwarding pointer.
4619     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4620     return _g1->handle_evacuation_failure_par(cl, old);
4621   }
4622 
4623   // We're going to allocate linearly, so might as well prefetch ahead.
4624   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4625 
4626   oop forward_ptr = old->forward_to_atomic(obj);
4627   if (forward_ptr == NULL) {
4628     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4629     if (g1p->track_object_age(alloc_purpose)) {
4630       // We could simply do obj->incr_age(). However, this causes a
4631       // performance issue. obj->incr_age() will first check whether
4632       // the object has a displaced mark by checking its mark word;
4633       // getting the mark word from the new location of the object
4634       // stalls. So, given that we already have the mark word and we
4635       // are about to install it anyway, it's better to increase the
4636       // age on the mark word, when the object does not have a
4637       // displaced mark word. We're not expecting many objects to have
4638       // a displaced marked word, so that case is not optimized
4639       // further (it could be...) and we simply call obj->incr_age().
4640 
4641       if (m->has_displaced_mark_helper()) {
4642         // in this case, we have to install the mark word first,
4643         // otherwise obj looks to be forwarded (the old mark word,
4644         // which contains the forward pointer, was copied)
4645         obj->set_mark(m);
4646         obj->incr_age();
4647       } else {
4648         m = m->incr_age();
4649         obj->set_mark(m);
4650       }
4651       _par_scan_state->age_table()->add(obj, word_sz);
4652     } else {
4653       obj->set_mark(m);
4654     }
4655 
4656     // preserve "next" mark bit
4657     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
4658       if (!use_local_bitmaps ||
4659           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
4660         // if we couldn't mark it on the local bitmap (this happens when
4661         // the object was not allocated in the GCLab), we have to bite
4662         // the bullet and do the standard parallel mark
4663         _cm->markAndGrayObjectIfNecessary(obj);
4664       }
4665 #if 1
4666       if (_g1->isMarkedNext(old)) {
4667         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
4668       }
4669 #endif
4670     }
4671 
4672     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4673     surv_young_words[young_index] += word_sz;
4674 
4675     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4676       arrayOop(old)->set_length(0);
4677       oop* old_p = set_partial_array_mask(old);
4678       _par_scan_state->push_on_queue(old_p);
4679     } else {
4680       // No point in using the slower heap_region_containing() method,
4681       // given that we know obj is in the heap.
4682       _scanner->set_region(_g1->heap_region_containing_raw(obj));
4683       obj->oop_iterate_backwards(_scanner);
4684     }
4685   } else {
4686     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4687     obj = forward_ptr;
4688   }
4689   return obj;
4690 }
4691 
4692 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
4693 template <class T>
4694 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>::do_oop_work(T* p) {
4695   oop obj = oopDesc::load_decode_heap_oop(p);
4696   assert(barrier != G1BarrierRS || obj != NULL,
4697          "Precondition: G1BarrierRS implies obj is nonNull");
4698 
4699   // here the null check is implicit in the cset_fast_test() test
4700   if (_g1->in_cset_fast_test(obj)) {
4701     if (obj->is_forwarded()) {
4702       oopDesc::encode_store_heap_oop(p, obj->forwardee());
4703     } else {
4704       oop copy_oop = copy_to_survivor_space(obj);
4705       oopDesc::encode_store_heap_oop(p, copy_oop);
4706     }
4707     // When scanning the RS, we only care about objs in CS.
4708     if (barrier == G1BarrierRS) {
4709       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4710     }
4711   }
4712 
4713   if (barrier == G1BarrierEvac && obj != NULL) {
4714     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4715   }
4716 
4717   if (do_gen_barrier && obj != NULL) {
4718     par_do_barrier(p);
4719   }
4720 }
4721 
4722 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4723 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4724 
4725 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4726   assert(has_partial_array_mask(p), "invariant");
4727   oop old = clear_partial_array_mask(p);
4728   assert(old->is_objArray(), "must be obj array");
4729   assert(old->is_forwarded(), "must be forwarded");
4730   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
4731 
4732   objArrayOop obj = objArrayOop(old->forwardee());
4733   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
4734   // Process ParGCArrayScanChunk elements now
4735   // and push the remainder back onto queue
4736   int start     = arrayOop(old)->length();
4737   int end       = obj->length();
4738   int remainder = end - start;
4739   assert(start <= end, "just checking");
4740   if (remainder > 2 * ParGCArrayScanChunk) {
4741     // Test above combines last partial chunk with a full chunk
4742     end = start + ParGCArrayScanChunk;
4743     arrayOop(old)->set_length(end);
4744     // Push remainder.
4745     oop* old_p = set_partial_array_mask(old);
4746     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
4747     _par_scan_state->push_on_queue(old_p);
4748   } else {
4749     // Restore length so that the heap remains parsable in
4750     // case of evacuation failure.
4751     arrayOop(old)->set_length(end);
4752   }
4753   _scanner.set_region(_g1->heap_region_containing_raw(obj));
4754   // process our set of indices (include header in first chunk)
4755   obj->oop_iterate_range(&_scanner, start, end);
4756 }
4757 
4758 class G1ParEvacuateFollowersClosure : public VoidClosure {
4759 protected:
4760   G1CollectedHeap*              _g1h;
4761   G1ParScanThreadState*         _par_scan_state;
4762   RefToScanQueueSet*            _queues;
4763   ParallelTaskTerminator*       _terminator;
4764 
4765   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4766   RefToScanQueueSet*      queues()         { return _queues; }
4767   ParallelTaskTerminator* terminator()     { return _terminator; }
4768 
4769 public:
4770   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4771                                 G1ParScanThreadState* par_scan_state,
4772                                 RefToScanQueueSet* queues,
4773                                 ParallelTaskTerminator* terminator)
4774     : _g1h(g1h), _par_scan_state(par_scan_state),
4775       _queues(queues), _terminator(terminator) {}
4776 
4777   void do_void();
4778 
4779 private:
4780   inline bool offer_termination();
4781 };
4782 
4783 bool G1ParEvacuateFollowersClosure::offer_termination() {
4784   G1ParScanThreadState* const pss = par_scan_state();
4785   pss->start_term_time();
4786   const bool res = terminator()->offer_termination();
4787   pss->end_term_time();
4788   return res;
4789 }
4790 
4791 void G1ParEvacuateFollowersClosure::do_void() {
4792   StarTask stolen_task;
4793   G1ParScanThreadState* const pss = par_scan_state();
4794   pss->trim_queue();
4795 
4796   do {
4797     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4798       assert(pss->verify_task(stolen_task), "sanity");
4799       if (stolen_task.is_narrow()) {
4800         pss->deal_with_reference((narrowOop*) stolen_task);
4801       } else {
4802         pss->deal_with_reference((oop*) stolen_task);
4803       }
4804 
4805       // We've just processed a reference and we might have made
4806       // available new entries on the queues. So we have to make sure
4807       // we drain the queues as necessary.
4808       pss->trim_queue();
4809     }
4810   } while (!offer_termination());
4811 
4812   pss->retire_alloc_buffers();
4813 }
4814 
4815 class G1ParTask : public AbstractGangTask {
4816 protected:
4817   G1CollectedHeap*       _g1h;
4818   RefToScanQueueSet      *_queues;
4819   ParallelTaskTerminator _terminator;
4820   int _n_workers;
4821 
4822   Mutex _stats_lock;
4823   Mutex* stats_lock() { return &_stats_lock; }
4824 
4825   size_t getNCards() {
4826     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4827       / G1BlockOffsetSharedArray::N_bytes;
4828   }
4829 
4830 public:
4831   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
4832     : AbstractGangTask("G1 collection"),
4833       _g1h(g1h),
4834       _queues(task_queues),
4835       _terminator(workers, _queues),
4836       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
4837       _n_workers(workers)
4838   {}
4839 
4840   RefToScanQueueSet* queues() { return _queues; }
4841 
4842   RefToScanQueue *work_queue(int i) {
4843     return queues()->queue(i);
4844   }
4845 
4846   void work(int i) {
4847     if (i >= _n_workers) return;  // no work needed this round
4848 
4849     double start_time_ms = os::elapsedTime() * 1000.0;
4850     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
4851 
4852     ResourceMark rm;
4853     HandleMark   hm;
4854     
4855     ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4856 
4857     G1ParScanThreadState            pss(_g1h, i);
4858     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4859     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4860     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4861 
4862     pss.set_evac_closure(&scan_evac_cl);
4863     pss.set_evac_failure_closure(&evac_failure_cl);
4864     pss.set_partial_scan_closure(&partial_scan_cl);
4865 
4866     G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4867     G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4868 
4869     G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4870     G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4871 
4872     OopClosure*                    scan_root_cl = &only_scan_root_cl;
4873     OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4874 
4875     if (_g1h->g1_policy()->during_initial_mark_pause()) {
4876       // We also need to mark copied objects.
4877       scan_root_cl = &scan_mark_root_cl;
4878       scan_perm_cl = &scan_mark_perm_cl;
4879     }
4880 
4881     // The following closure is used to scan RSets looking for reference
4882     // fields that point into the collection set. The actual field iteration
4883     // is performed by a FilterIntoCSClosure, whose do_oop method calls the
4884     // do_oop method of the following closure.
4885     // Therefore we want to record the reference processor in the
4886     // FilterIntoCSClosure. To do so we record the STW reference
4887     // processor into the following closure and pass it to the
4888     // FilterIntoCSClosure in HeapRegionDCTOC::walk_mem_region_with_cl.
4889     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss, rp);
4890 
4891     pss.start_strong_roots();
4892     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4893                                   SharedHeap::SO_AllClasses,
4894                                   scan_root_cl,
4895                                   &push_heap_rs_cl,
4896                                   scan_perm_cl,
4897                                   i);
4898     pss.end_strong_roots();
4899 
4900     {
4901       double start = os::elapsedTime();
4902       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4903       evac.do_void();
4904       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4905       double term_ms = pss.term_time()*1000.0;
4906       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4907       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4908     }
4909     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4910     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4911 
4912     // Clean up any par-expanded rem sets.
4913     HeapRegionRemSet::par_cleanup();
4914 
4915     if (ParallelGCVerbose) {
4916       MutexLocker x(stats_lock());
4917       pss.print_termination_stats(i);
4918     }
4919 
4920     assert(pss.refs()->is_empty(), "should be empty");
4921     double end_time_ms = os::elapsedTime() * 1000.0;
4922     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4923   }
4924 };
4925 
4926 // *** Common G1 Evacuation Stuff
4927 
4928 // This method is run in a GC worker.
4929 
4930 void
4931 G1CollectedHeap::
4932 g1_process_strong_roots(bool collecting_perm_gen,
4933                         SharedHeap::ScanningOption so,
4934                         OopClosure* scan_non_heap_roots,
4935                         OopsInHeapRegionClosure* scan_rs,
4936                         OopsInGenClosure* scan_perm,
4937                         int worker_i) {
4938 
4939   // First scan the strong roots, including the perm gen.
4940   double ext_roots_start = os::elapsedTime();
4941   double closure_app_time_sec = 0.0;
4942 
4943   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4944   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4945   buf_scan_perm.set_generation(perm_gen());
4946 
4947   // Walk the code cache w/o buffering, because StarTask cannot handle
4948   // unaligned oop locations.
4949   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
4950 
4951   process_strong_roots(false, // no scoping; this is parallel code
4952                        collecting_perm_gen, so,
4953                        &buf_scan_non_heap_roots,
4954                        &eager_scan_code_roots,
4955                        &buf_scan_perm);
4956 
4957   // Now the CM ref_processor roots.
4958   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4959     // We need to treat the discovered reference lists of the
4960     // concurrent mark ref processor as roots and keep entries
4961     // (which are added by the marking threads) on them live
4962     // until they can be processed at the end of marking.
4963     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4964     ref_processor_cm()->oops_do(&buf_scan_non_heap_roots);
4965   }
4966 
4967   // Finish up any enqueued closure apps (attributed as object copy time).
4968   buf_scan_non_heap_roots.done();
4969   buf_scan_perm.done();
4970 
4971   double ext_roots_end = os::elapsedTime();
4972 
4973   g1_policy()->reset_obj_copy_time(worker_i);
4974   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4975                                 buf_scan_non_heap_roots.closure_app_seconds();
4976   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4977 
4978   double ext_root_time_ms =
4979     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4980 
4981   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4982 
4983   // Scan strong roots in mark stack.
4984   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
4985     concurrent_mark()->oops_do(scan_non_heap_roots);
4986   }
4987   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4988   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
4989 
4990   // Now scan the complement of the collection set.
4991   if (scan_rs != NULL) {
4992     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4993   }
4994 
4995   _process_strong_tasks->all_tasks_completed();
4996 }
4997 
4998 void
4999 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
5000                                        OopClosure* non_root_closure) {
5001   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5002   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5003 }
5004 
5005 
5006 class SaveMarksClosure: public HeapRegionClosure {
5007 public:
5008   bool doHeapRegion(HeapRegion* r) {
5009     r->save_marks();
5010     return false;
5011   }
5012 };
5013 
5014 void G1CollectedHeap::save_marks() {
5015   if (!CollectedHeap::use_parallel_gc_threads()) {
5016     SaveMarksClosure sm;
5017     heap_region_iterate(&sm);
5018   }
5019   // We do this even in the parallel case
5020   perm_gen()->save_marks();
5021 }
5022 
5023 // Weak Reference Processing support
5024 
5025 bool G1STWIsAliveClosure::do_object_b(oop p) {
5026   // An object is reachable if it is outside the collection set,
5027   // or is inside and copied.
5028 #ifdef G1_DEBUG
5029   gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
5030                          (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
5031                          !_g1->obj_in_cs(p) || p->is_forwarded());
5032 #endif // G1_DEBUG
5033   return !_g1->obj_in_cs(p) || p->is_forwarded();
5034 }
5035 
5036 // Non Copying Keep Alive closure
5037 class G1KeepAliveClosure: public OopClosure {
5038   G1CollectedHeap* _g1;
5039 public:
5040   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5041   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5042   void do_oop(      oop* p) {
5043     oop obj = *p;
5044 #ifdef G1_DEBUG
5045     gclog_or_tty->print_cr("Non-copy keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
5046                              p, (void*) obj, (void*) *p);
5047 #endif // G1_DEBUG
5048 
5049     if (_g1->obj_in_cs(obj)) {
5050       assert( obj->is_forwarded(), "invariant" );
5051       *p = obj->forwardee();
5052 #ifdef G1_DEBUG
5053       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
5054                                (void*) obj, (void*) *p);
5055 #endif // G1_DEBUG
5056     }
5057   }
5058 };
5059 
5060 // Copying Keep Alive closure - can be called from both
5061 // serial and parallel code as long as different worker
5062 // threads utilize different G1ParScanThreadState instances
5063 // and different queues.
5064 
5065 class G1CopyingKeepAliveClosure: public OopClosure {
5066   G1CollectedHeap*         _g1h;
5067   OopClosure*              _copy_non_heap_obj_cl;
5068   OopsInHeapRegionClosure* _copy_perm_obj_cl;
5069   G1ParScanThreadState*    _par_scan_state;
5070 
5071 public:
5072   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5073                             OopClosure* non_heap_obj_cl,
5074                             OopsInHeapRegionClosure* perm_obj_cl,
5075                             G1ParScanThreadState* pss):
5076     _g1h(g1h),
5077     _copy_non_heap_obj_cl(non_heap_obj_cl),
5078     _copy_perm_obj_cl(perm_obj_cl),
5079     _par_scan_state(pss)
5080   {}
5081 
5082   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5083   virtual void do_oop(      oop* p) { do_oop_work(p); }
5084 
5085   template <class T> void do_oop_work(T* p) {
5086     oop obj = oopDesc::load_decode_heap_oop(p);
5087 #ifdef G1_DEBUG
5088     gclog_or_tty->print_cr("Copying keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
5089                            p, (void*) obj, (void*) *p);
5090 #endif // G1_DEBUG
5091 
5092     if (_g1h->obj_in_cs(obj)) {
5093       // If the referent object has been forwarded (either copied
5094       // to a new location or to itself in the event of an
5095       // evacuation failure) then we need to update the reference
5096       // field and, if both reference and referent are in the G1
5097       // heap, update the RSet for the referent.
5098       //
5099       // If the referent has not been forwarded then we have to keep
5100       // it alive by policy. Therefore we have copy the referent.
5101       // If the reference field is in the G1 heap then we can push
5102       // on the PSS queue. When the queue is drained (after each
5103       // phase of reference processing) the object and it's followers
5104       // will be copied. If the reference field is not in the G1 heap
5105       // then we need to use the the non-heap or perm closures to
5106       // copy the object to avoid updating the RSet.
5107 #ifdef G1_DEBUG
5108       if (obj->is_forwarded()) {
5109         gclog_or_tty->print_cr("     in CSet: forwarded "PTR_FORMAT" -> "PTR_FORMAT,
5110                                (void*) obj, (void*) *p);
5111       }
5112 #endif // G1_DEBUG
5113 
5114       if (_g1h->is_in_g1_reserved(p)) {
5115 #ifdef G1_DEBUG 
5116         gclog_or_tty->print_cr("     in CSet: pushing "PTR_FORMAT, p);
5117 #endif // G1_DEBUG
5118         _par_scan_state->push_on_queue(p);
5119       } else {
5120 #ifdef G1_DEBUG
5121         gclog_or_tty->print_cr("     in CSet: applying closure to "PTR_FORMAT, p);
5122 #endif // G1_DEBUG
5123         // The reference field is not in the G1 heap.
5124         if (_g1h->perm_gen()->is_in(p)) {
5125           _copy_perm_obj_cl->do_oop(p);
5126         } else {
5127           _copy_non_heap_obj_cl->do_oop(p);
5128         }
5129       }
5130     } else {
5131 #ifdef G1_DEBUG
5132       gclog_or_tty->print_cr("     not in CSet");
5133 #endif // G1_DEBUG
5134     }
5135   }  
5136 };
5137 
5138 // Serial drain queue closure. Called as the 'complete_gc'
5139 // closure for each discovered list in some of the
5140 // reference processing phases.
5141 
5142 class G1STWDrainQueueClosure: public VoidClosure {
5143 protected:
5144   G1CollectedHeap* _g1h;
5145   G1ParScanThreadState* _par_scan_state;
5146 
5147   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5148 
5149 public:
5150   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5151     _g1h(g1h),
5152     _par_scan_state(pss)
5153   { }
5154 
5155   void do_void() {
5156     G1ParScanThreadState* const pss = par_scan_state();
5157     pss->trim_queue();
5158   }
5159 };
5160 
5161 // Parallel Reference Processing closures
5162 
5163 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5164 // processing during G1 evacuation pauses.
5165 
5166 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5167 private:
5168   G1CollectedHeap*   _g1h;
5169   RefToScanQueueSet* _queues;
5170   WorkGang*          _workers;
5171   int                _active_workers;
5172 
5173 public:
5174   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5175                         WorkGang* workers,
5176                         RefToScanQueueSet *task_queues, 
5177                         int n_workers) :
5178     _g1h(g1h),
5179     _queues(task_queues),
5180     _workers(workers),
5181     _active_workers(n_workers)
5182   {
5183     assert(n_workers > 0, "shouldn't call this otherwise");
5184   }
5185 
5186   // Executes the given task using concurrent marking worker threads.
5187   virtual void execute(ProcessTask& task);
5188   virtual void execute(EnqueueTask& task);
5189 };
5190 
5191 // Gang task for possibly parallel reference processing
5192 
5193 class G1STWRefProcTaskProxy: public AbstractGangTask {
5194   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5195   ProcessTask&     _proc_task;
5196   G1CollectedHeap* _g1h;
5197   RefToScanQueueSet *_task_queues;
5198   ParallelTaskTerminator* _terminator;
5199 
5200 public:
5201   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5202                      G1CollectedHeap* g1h,
5203                      RefToScanQueueSet *task_queues,
5204                      ParallelTaskTerminator* terminator) :
5205     AbstractGangTask("Process reference objects in parallel"),
5206     _proc_task(proc_task),
5207     _g1h(g1h),
5208     _task_queues(task_queues),
5209     _terminator(terminator)
5210   {}
5211 
5212   virtual void work(int i) {
5213     // The reference processing task executed by a single worker.
5214     ResourceMark rm;
5215     HandleMark   hm;
5216 
5217     G1STWIsAliveClosure is_alive(_g1h); 
5218     
5219     G1ParScanThreadState pss(_g1h, i);
5220 
5221     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5222     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5223     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5224 
5225     pss.set_evac_closure(&scan_evac_cl);
5226     pss.set_evac_failure_closure(&evac_failure_cl);
5227     pss.set_partial_scan_closure(&partial_scan_cl); 
5228     
5229     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5230     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5231 
5232     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5233     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5234 
5235     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5236     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5237 
5238     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5239       // We also need to mark copied objects.
5240       copy_non_heap_cl = &copy_mark_non_heap_cl;
5241       copy_perm_cl = &copy_mark_perm_cl;
5242     }
5243 
5244     // Keep alive closure.
5245     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5246     
5247     // Complete GC closure
5248     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5249 
5250     // Call the reference processing task's work routine. 
5251     _proc_task.work(i, is_alive, keep_alive, drain_queue);
5252 
5253     // Note we cannot assert that the refs array is empty here as not all
5254     // of the processing tasks (specifically phase2 - pp2_work) do not execute
5255     // the complete_gc closure (which ordinarily would drain the queue) so
5256     // the queue may not be empty.
5257   }
5258 };
5259 
5260 // Driver routine for parallel reference processing.
5261 // Creates an instance of the ref processing gang
5262 // task and has the worker threads execute it.
5263 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5264   assert(_workers != NULL, "Need parallel worker threads.");
5265 
5266   ParallelTaskTerminator terminator(_active_workers, _queues);
5267   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5268 
5269   _g1h->set_par_threads(_active_workers);
5270   _workers->run_task(&proc_task_proxy);
5271   _g1h->set_par_threads(0);
5272 }
5273 
5274 // Gang task for parallel reference enqueueing.
5275 
5276 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5277   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5278   EnqueueTask& _enq_task;
5279 
5280 public:
5281   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5282     AbstractGangTask("Enqueue reference objects in parallel"),
5283     _enq_task(enq_task)
5284   { }
5285 
5286   virtual void work(int i) {
5287     _enq_task.work(i);
5288   }
5289 };
5290 
5291 // Driver routine for parallel reference enqueing.
5292 // Creates an instance of the ref enqueueing gang
5293 // task and has the worker threads execute it.
5294 
5295 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5296   assert(_workers != NULL, "Need parallel worker threads.");
5297 
5298   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5299 
5300   _g1h->set_par_threads(_active_workers);
5301   _workers->run_task(&enq_task_proxy);
5302   _g1h->set_par_threads(0);
5303 }
5304 
5305 // End of weak reference support closures
5306 
5307 // Abstract task used to preserve (i.e. copy) any referent objects
5308 // that are in the collection set and are pointed to by reference
5309 // objects discovered by the CM ref processor.
5310 
5311 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5312 protected:
5313   G1CollectedHeap* _g1h;
5314   RefToScanQueueSet      *_queues;
5315   ParallelTaskTerminator _terminator;
5316   int _n_workers;
5317 
5318 public:
5319   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5320     AbstractGangTask("ParPreserveCMReferents"),
5321     _g1h(g1h),
5322     _queues(task_queues),
5323     _terminator(workers, _queues),
5324     _n_workers(workers)
5325   { }
5326 
5327   void work(int i) {
5328     ResourceMark rm;
5329     HandleMark   hm;
5330 
5331     G1ParScanThreadState            pss(_g1h, i);
5332     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5333     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5334     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5335 
5336     pss.set_evac_closure(&scan_evac_cl);
5337     pss.set_evac_failure_closure(&evac_failure_cl);
5338     pss.set_partial_scan_closure(&partial_scan_cl);
5339 
5340     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5341 
5342     // Copying keep alive closure. Applied to referent objects that need
5343     // to be copied.
5344 
5345     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5346     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5347 
5348     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5349     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5350 
5351     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5352     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5353 
5354     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5355       // We also need to mark copied objects.
5356       copy_non_heap_cl = &copy_mark_non_heap_cl;
5357       copy_perm_cl = &copy_mark_perm_cl;
5358     }
5359 
5360     // Keep alive closure.
5361     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5362 
5363     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5364 
5365     int limit = ReferenceProcessor::subclasses_of_ref() * rp->max_num_q();
5366     int stride = MIN2(MAX2(_n_workers, 1), limit);
5367 
5368 #ifdef G1_DEBUG
5369     gclog_or_tty->print_cr("_n_workers = %d", _n_workers);
5370     gclog_or_tty->print_cr("limit = %d", limit);
5371     gclog_or_tty->print_cr("stride = %d", stride);
5372 #endif // G1_DEBUG
5373 
5374     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5375     // So this must be true - but assert just in case someone decides to
5376     // change the worker ids.
5377     assert(0 <= i && i < limit, "sanity");
5378 
5379     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5380     for (int idx = i; idx < limit; idx += stride) {
5381       DiscoveredList& ref_list = rp->discovered_soft_refs()[idx];
5382 #ifdef G1_DEBUG
5383       gclog_or_tty->print_cr("Worker %d: Preserving referents on %s list(%d) - "PTR_FORMAT,
5384                                 i, rp->list_name(idx), idx, (void*)&ref_list);
5385 #endif // G1_DEBUG
5386 
5387       oop ref = ref_list.head();
5388       while (ref != ReferenceProcessor::sentinel_ref()) {
5389 #ifdef G1_DEBUG
5390         if (_g1h->obj_in_cs(ref)) {
5391           gclog_or_tty->print_cr("Boom! Worker %d: Found a reference in CS. Forwarded? %s",
5392               i, (ref->is_forwarded() ? "YES" : "NO"));
5393         }
5394 #endif // G1_DEBUG
5395 
5396         HeapWord* referent_addr = java_lang_ref_Reference::referent_addr(ref);
5397         oop referent = java_lang_ref_Reference::referent(ref);
5398         if (referent != NULL) {
5399           if (UseCompressedOops) {
5400             keep_alive.do_oop((narrowOop*)referent_addr);
5401           } else {
5402             keep_alive.do_oop((oop*)referent_addr);
5403           }
5404         }
5405 
5406         // get the next reference object on the discovered list.
5407         ref = java_lang_ref_Reference::discovered(ref);
5408       }
5409     }
5410 
5411     // Drain the queue - which may cause stealing
5412     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5413     drain_queue.do_void();
5414 
5415     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5416     assert(pss.refs()->is_empty(), "should be");
5417   }
5418 };
5419 
5420 // Weak Reference processing during an evacuation pause (part 1).
5421 void G1CollectedHeap::process_discovered_references() {
5422   double ref_proc_start = os::elapsedTime();
5423   
5424   ReferenceProcessor* rp = _ref_processor_stw;
5425   assert(rp->discovery_enabled(), "should have been enabled");
5426 
5427   // Closure to test whether a referent is alive.
5428   G1STWIsAliveClosure is_alive(this);
5429 
5430   // Even when parallel reference processing is enabled, the processing
5431   // of JNI refs is serial and performed serially by the current thread
5432   // rather than by a worker. The following PSS will be used for processing
5433   // JNI refs.
5434 
5435   // Use only a single queue for this PSS.
5436   G1ParScanThreadState pss(this, 0);
5437 
5438   // We do not embed a reference processor in the copying closures
5439   // while we're actually processing the discovered reference objects.
5440   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5441   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5442   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5443 
5444   pss.set_evac_closure(&scan_evac_cl);
5445   pss.set_evac_failure_closure(&evac_failure_cl);
5446   pss.set_partial_scan_closure(&partial_scan_cl);
5447 
5448   assert(pss.refs()->is_empty(), "pre-condition");
5449 
5450   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5451   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5452 
5453   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5454   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5455 
5456   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5457   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5458 
5459   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5460     // We also need to mark copied objects.
5461     copy_non_heap_cl = &copy_mark_non_heap_cl;
5462     copy_perm_cl = &copy_mark_perm_cl;
5463   }
5464 
5465   // Keep alive closure.
5466   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5467 
5468   // Serial Complete GC closure
5469   G1STWDrainQueueClosure drain_queue(this, &pss);
5470 
5471   // Setup the soft refs policy...
5472   rp->setup_policy(false);
5473 
5474   if (!rp->processing_is_mt()) {
5475     // Serial reference processing...
5476     rp->process_discovered_references(&is_alive,
5477                                       &keep_alive, 
5478                                       &drain_queue,
5479                                       NULL);
5480   } else {
5481     // Parallel reference processing
5482     int active_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
5483     assert(rp->num_q() == active_workers, "sanity");
5484     assert(active_workers <= rp->max_num_q(), "sanity");
5485 
5486     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5487     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5488   }
5489 
5490   // We have completed copying any necessary live referent objects
5491   // (that were not copied during the actual pause) so we can
5492   // retire any active alloc buffers
5493   pss.retire_alloc_buffers();
5494   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5495 
5496   // Any reference objects, in the collection set, that were 'discovered'
5497   // by the CM ref processor should have already been copied (either by
5498   // applying the external root copy closure to the discovered lists, or
5499   // by following an RSet entry).
5500   //
5501   // But some of the referents, that are in the collection set, that these
5502   // reference objects point to may not have been copied: the STW ref
5503   // processor would have seen that the reference object had already
5504   // been 'discovered' and would have skipped discovering the reference,
5505   // but would not have treated the reference object as a regular oop.
5506   // As a reult the copy closure would not have been applied to the
5507   // referent object.
5508   // We need to to copy these referent objects - the references will be
5509   // processed at the end of Remark.
5510 
5511   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 
5512                         workers()->total_workers() : 1);
5513 
5514   set_par_threads(n_workers);
5515   G1ParPreserveCMReferentsTask keep_cm_referents(this, n_workers, _task_queues);
5516   
5517   if (G1CollectedHeap::use_parallel_gc_threads()) {
5518     workers()->run_task(&keep_cm_referents);
5519   } else {
5520     keep_cm_referents.work(0);
5521   }
5522 
5523   set_par_threads(0);
5524 
5525   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5526   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
5527 }
5528 
5529 // Weak Reference processing during an evacuation pause (part 2).
5530 void G1CollectedHeap::enqueue_discovered_references() {
5531   double ref_enq_start = os::elapsedTime();
5532 
5533   ReferenceProcessor* rp = _ref_processor_stw;
5534   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5535 
5536   // Now enqueue any remaining on the discovered lists on to
5537   // the pending list.
5538   if (!rp->processing_is_mt()) {
5539     // Serial reference processing...  
5540     rp->enqueue_discovered_references();
5541   } else {
5542     // Parallel reference enqueuing
5543 
5544     int active_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
5545     assert(rp->num_q() == active_workers, "sanity");
5546     assert(active_workers <= rp->max_num_q(), "sanity");
5547 
5548     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5549     rp->enqueue_discovered_references(&par_task_executor);
5550   }
5551 
5552   rp->verify_no_references_recorded();
5553   assert(!rp->discovery_enabled(), "should have been disabled");
5554 
5555   // FIXME
5556   // CM's referent processing also cleans up the
5557   // string table and symbol tables. Should we
5558   // do that here also?
5559 
5560   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5561   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
5562 }
5563 
5564 void G1CollectedHeap::evacuate_collection_set() {
5565   set_evacuation_failed(false);
5566 
5567   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5568   concurrent_g1_refine()->set_use_cache(false);
5569   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5570 
5571   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
5572   set_par_threads(n_workers);
5573   G1ParTask g1_par_task(this, n_workers, _task_queues);
5574 
5575   init_for_evac_failure(NULL);
5576 
5577   rem_set()->prepare_for_younger_refs_iterate(true);
5578 
5579   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5580   double start_par = os::elapsedTime();
5581 
5582   if (G1CollectedHeap::use_parallel_gc_threads()) {
5583     // The individual threads will set their evac-failure closures.
5584     StrongRootsScope srs(this);
5585     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5586     workers()->run_task(&g1_par_task);
5587   } else {
5588     StrongRootsScope srs(this);
5589     g1_par_task.work(0);
5590   }
5591 
5592   double par_time = (os::elapsedTime() - start_par) * 1000.0;
5593   g1_policy()->record_par_time(par_time);
5594   set_par_threads(0);
5595 
5596   // Process any discovered reference objects - we have
5597   // to do this _before_ we retire the GC alloc regions
5598   // as we may have to copy some 'reachable' referent
5599   // objects (and their reachable sub-graphs) that were
5600   // not copied during the pause.
5601   process_discovered_references();
5602 
5603   // Is this the right thing to do here?  We don't save marks
5604   // on individual heap regions when we allocate from
5605   // them in parallel, so this seems like the correct place for this.
5606   retire_all_alloc_regions();
5607 
5608   // Weak root processing.
5609   // Note: when JSR 292 is enabled and code blobs can contain
5610   // non-perm oops then we will need to process the code blobs
5611   // here too.
5612   {
5613     G1STWIsAliveClosure is_alive(this);
5614     G1KeepAliveClosure keep_alive(this);
5615     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5616   }
5617 
5618   release_gc_alloc_regions(false /* totally */);
5619   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5620 
5621   concurrent_g1_refine()->clear_hot_cache();
5622   concurrent_g1_refine()->set_use_cache(true);
5623 
5624   finalize_for_evac_failure();
5625 
5626   // Must do this before removing self-forwarding pointers, which clears
5627   // the per-region evac-failure flags.
5628   concurrent_mark()->complete_marking_in_collection_set();
5629 
5630   if (evacuation_failed()) {
5631     remove_self_forwarding_pointers();
5632     if (PrintGCDetails) {
5633       gclog_or_tty->print(" (to-space overflow)");
5634     } else if (PrintGC) {
5635       gclog_or_tty->print("--");
5636     }
5637   }
5638 
5639   // Enqueue any remaining references remaining on the STW
5640   // reference processor's discovered lists. We need to do
5641   // this after the card table is cleaned (and verified) as
5642   // the act of enqueuing entries on to the pending list
5643   // will log these updates (and dirty their associated
5644   // cards). We need these updates logged to update any
5645   // RSets.
5646   enqueue_discovered_references();
5647 
5648   if (G1DeferredRSUpdate) {
5649     RedirtyLoggedCardTableEntryFastClosure redirty;
5650     dirty_card_queue_set().set_closure(&redirty);
5651     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5652 
5653     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5654     dcq.merge_bufferlists(&dirty_card_queue_set());
5655     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5656   }
5657   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5658 }
5659 
5660 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5661                                      size_t* pre_used,
5662                                      FreeRegionList* free_list,
5663                                      HumongousRegionSet* humongous_proxy_set,
5664                                      HRRSCleanupTask* hrrs_cleanup_task,
5665                                      bool par) {
5666   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5667     if (hr->isHumongous()) {
5668       assert(hr->startsHumongous(), "we should only see starts humongous");
5669       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5670     } else {
5671       free_region(hr, pre_used, free_list, par);
5672     }
5673   } else {
5674     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5675   }
5676 }
5677 
5678 void G1CollectedHeap::free_region(HeapRegion* hr,
5679                                   size_t* pre_used,
5680                                   FreeRegionList* free_list,
5681                                   bool par) {
5682   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5683   assert(!hr->is_empty(), "the region should not be empty");
5684   assert(free_list != NULL, "pre-condition");
5685 
5686   *pre_used += hr->used();
5687   hr->hr_clear(par, true /* clear_space */);
5688   free_list->add_as_head(hr);
5689 }
5690 
5691 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5692                                      size_t* pre_used,
5693                                      FreeRegionList* free_list,
5694                                      HumongousRegionSet* humongous_proxy_set,
5695                                      bool par) {
5696   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5697   assert(free_list != NULL, "pre-condition");
5698   assert(humongous_proxy_set != NULL, "pre-condition");
5699 
5700   size_t hr_used = hr->used();
5701   size_t hr_capacity = hr->capacity();
5702   size_t hr_pre_used = 0;
5703   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5704   hr->set_notHumongous();
5705   free_region(hr, &hr_pre_used, free_list, par);
5706 
5707   size_t i = hr->hrs_index() + 1;
5708   size_t num = 1;
5709   while (i < n_regions()) {
5710     HeapRegion* curr_hr = region_at(i);
5711     if (!curr_hr->continuesHumongous()) {
5712       break;
5713     }
5714     curr_hr->set_notHumongous();
5715     free_region(curr_hr, &hr_pre_used, free_list, par);
5716     num += 1;
5717     i += 1;
5718   }
5719   assert(hr_pre_used == hr_used,
5720          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5721                  "should be the same", hr_pre_used, hr_used));
5722   *pre_used += hr_pre_used;
5723 }
5724 
5725 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5726                                        FreeRegionList* free_list,
5727                                        HumongousRegionSet* humongous_proxy_set,
5728                                        bool par) {
5729   if (pre_used > 0) {
5730     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5731     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5732     assert(_summary_bytes_used >= pre_used,
5733            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5734                    "should be >= pre_used: "SIZE_FORMAT,
5735                    _summary_bytes_used, pre_used));
5736     _summary_bytes_used -= pre_used;
5737   }
5738   if (free_list != NULL && !free_list->is_empty()) {
5739     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5740     _free_list.add_as_head(free_list);
5741   }
5742   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5743     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5744     _humongous_set.update_from_proxy(humongous_proxy_set);
5745   }
5746 }
5747 
5748 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
5749   while (list != NULL) {
5750     guarantee( list->is_young(), "invariant" );
5751 
5752     HeapWord* bottom = list->bottom();
5753     HeapWord* end = list->end();
5754     MemRegion mr(bottom, end);
5755     ct_bs->dirty(mr);
5756 
5757     list = list->get_next_young_region();
5758   }
5759 }
5760 
5761 
5762 class G1ParCleanupCTTask : public AbstractGangTask {
5763   CardTableModRefBS* _ct_bs;
5764   G1CollectedHeap* _g1h;
5765   HeapRegion* volatile _su_head;
5766 public:
5767   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5768                      G1CollectedHeap* g1h,
5769                      HeapRegion* survivor_list) :
5770     AbstractGangTask("G1 Par Cleanup CT Task"),
5771     _ct_bs(ct_bs),
5772     _g1h(g1h),
5773     _su_head(survivor_list)
5774   { }
5775 
5776   void work(int i) {
5777     HeapRegion* r;
5778     while (r = _g1h->pop_dirty_cards_region()) {
5779       clear_cards(r);
5780     }
5781     // Redirty the cards of the survivor regions.
5782     dirty_list(&this->_su_head);
5783   }
5784 
5785   void clear_cards(HeapRegion* r) {
5786     // Cards for Survivor regions will be dirtied later.
5787     if (!r->is_survivor()) {
5788       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5789     }
5790   }
5791 
5792   void dirty_list(HeapRegion* volatile * head_ptr) {
5793     HeapRegion* head;
5794     do {
5795       // Pop region off the list.
5796       head = *head_ptr;
5797       if (head != NULL) {
5798         HeapRegion* r = (HeapRegion*)
5799           Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
5800         if (r == head) {
5801           assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
5802           _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
5803         }
5804       }
5805     } while (*head_ptr != NULL);
5806   }
5807 };
5808 
5809 
5810 #ifndef PRODUCT
5811 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5812   G1CollectedHeap* _g1h;
5813   CardTableModRefBS* _ct_bs;
5814 public:
5815   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5816     : _g1h(g1h), _ct_bs(ct_bs) { }
5817   virtual bool doHeapRegion(HeapRegion* r) {
5818     if (r->is_survivor()) {
5819       _g1h->verify_dirty_region(r);
5820     } else {
5821       _g1h->verify_not_dirty_region(r);
5822     }
5823     return false;
5824   }
5825 };
5826 
5827 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5828   // All of the region should be clean.
5829   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5830   MemRegion mr(hr->bottom(), hr->end());
5831   ct_bs->verify_not_dirty_region(mr);
5832 }
5833 
5834 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5835   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5836   // dirty allocated blocks as they allocate them. The thread that
5837   // retires each region and replaces it with a new one will do a
5838   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5839   // not dirty that area (one less thing to have to do while holding
5840   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5841   // is dirty.
5842   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5843   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5844   ct_bs->verify_dirty_region(mr);
5845 }
5846 
5847 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5848   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5849   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5850     verify_dirty_region(hr);
5851   }
5852 }
5853 
5854 void G1CollectedHeap::verify_dirty_young_regions() {
5855   verify_dirty_young_list(_young_list->first_region());
5856   verify_dirty_young_list(_young_list->first_survivor_region());
5857 }
5858 #endif
5859 
5860 void G1CollectedHeap::cleanUpCardTable() {
5861   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5862   double start = os::elapsedTime();
5863 
5864   // Iterate over the dirty cards region list.
5865   G1ParCleanupCTTask cleanup_task(ct_bs, this,
5866                                   _young_list->first_survivor_region());
5867 
5868   if (ParallelGCThreads > 0) {
5869     set_par_threads(workers()->total_workers());
5870     workers()->run_task(&cleanup_task);
5871     set_par_threads(0);
5872   } else {
5873     while (_dirty_cards_region_list) {
5874       HeapRegion* r = _dirty_cards_region_list;
5875       cleanup_task.clear_cards(r);
5876       _dirty_cards_region_list = r->get_next_dirty_cards_region();
5877       if (_dirty_cards_region_list == r) {
5878         // The last region.
5879         _dirty_cards_region_list = NULL;
5880       }
5881       r->set_next_dirty_cards_region(NULL);
5882     }
5883     // now, redirty the cards of the survivor regions
5884     // (it seemed faster to do it this way, instead of iterating over
5885     // all regions and then clearing / dirtying as appropriate)
5886     dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
5887   }
5888 
5889   double elapsed = os::elapsedTime() - start;
5890   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
5891 #ifndef PRODUCT
5892   if (G1VerifyCTCleanup || VerifyAfterGC) {
5893     G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5894     heap_region_iterate(&cleanup_verifier);
5895   }
5896 #endif
5897 }
5898 
5899 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5900   size_t pre_used = 0;
5901   FreeRegionList local_free_list("Local List for CSet Freeing");
5902 
5903   double young_time_ms     = 0.0;
5904   double non_young_time_ms = 0.0;
5905 
5906   // Since the collection set is a superset of the the young list,
5907   // all we need to do to clear the young list is clear its
5908   // head and length, and unlink any young regions in the code below
5909   _young_list->clear();
5910 
5911   G1CollectorPolicy* policy = g1_policy();
5912 
5913   double start_sec = os::elapsedTime();
5914   bool non_young = true;
5915 
5916   HeapRegion* cur = cs_head;
5917   int age_bound = -1;
5918   size_t rs_lengths = 0;
5919 
5920   while (cur != NULL) {
5921     assert(!is_on_master_free_list(cur), "sanity");
5922 
5923     if (non_young) {
5924       if (cur->is_young()) {
5925         double end_sec = os::elapsedTime();
5926         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5927         non_young_time_ms += elapsed_ms;
5928 
5929         start_sec = os::elapsedTime();
5930         non_young = false;
5931       }
5932     } else {
5933       double end_sec = os::elapsedTime();
5934       double elapsed_ms = (end_sec - start_sec) * 1000.0;
5935       young_time_ms += elapsed_ms;
5936 
5937       start_sec = os::elapsedTime();
5938       non_young = true;
5939     }
5940 
5941     rs_lengths += cur->rem_set()->occupied();
5942 
5943     HeapRegion* next = cur->next_in_collection_set();
5944     assert(cur->in_collection_set(), "bad CS");
5945     cur->set_next_in_collection_set(NULL);
5946     cur->set_in_collection_set(false);
5947 
5948     if (cur->is_young()) {
5949       int index = cur->young_index_in_cset();
5950       guarantee( index != -1, "invariant" );
5951       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
5952       size_t words_survived = _surviving_young_words[index];
5953       cur->record_surv_words_in_group(words_survived);
5954 
5955       // At this point the we have 'popped' cur from the collection set
5956       // (linked via next_in_collection_set()) but it is still in the
5957       // young list (linked via next_young_region()). Clear the
5958       // _next_young_region field.
5959       cur->set_next_young_region(NULL);
5960     } else {
5961       int index = cur->young_index_in_cset();
5962       guarantee( index == -1, "invariant" );
5963     }
5964 
5965     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5966             (!cur->is_young() && cur->young_index_in_cset() == -1),
5967             "invariant" );
5968 
5969     if (!cur->evacuation_failed()) {
5970       // And the region is empty.
5971       assert(!cur->is_empty(), "Should not have empty regions in a CS.");
5972       free_region(cur, &pre_used, &local_free_list, false /* par */);
5973     } else {
5974       cur->uninstall_surv_rate_group();
5975       if (cur->is_young())
5976         cur->set_young_index_in_cset(-1);
5977       cur->set_not_young();
5978       cur->set_evacuation_failed(false);
5979     }
5980     cur = next;
5981   }
5982 
5983   policy->record_max_rs_lengths(rs_lengths);
5984   policy->cset_regions_freed();
5985 
5986   double end_sec = os::elapsedTime();
5987   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5988   if (non_young)
5989     non_young_time_ms += elapsed_ms;
5990   else
5991     young_time_ms += elapsed_ms;
5992 
5993   update_sets_after_freeing_regions(pre_used, &local_free_list,
5994                                     NULL /* humongous_proxy_set */,
5995                                     false /* par */);
5996   policy->record_young_free_cset_time_ms(young_time_ms);
5997   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
5998 }
5999 
6000 // This routine is similar to the above but does not record
6001 // any policy statistics or update free lists; we are abandoning
6002 // the current incremental collection set in preparation of a
6003 // full collection. After the full GC we will start to build up
6004 // the incremental collection set again.
6005 // This is only called when we're doing a full collection
6006 // and is immediately followed by the tearing down of the young list.
6007 
6008 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6009   HeapRegion* cur = cs_head;
6010 
6011   while (cur != NULL) {
6012     HeapRegion* next = cur->next_in_collection_set();
6013     assert(cur->in_collection_set(), "bad CS");
6014     cur->set_next_in_collection_set(NULL);
6015     cur->set_in_collection_set(false);
6016     cur->set_young_index_in_cset(-1);
6017     cur = next;
6018   }
6019 }
6020 
6021 void G1CollectedHeap::set_free_regions_coming() {
6022   if (G1ConcRegionFreeingVerbose) {
6023     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6024                            "setting free regions coming");
6025   }
6026 
6027   assert(!free_regions_coming(), "pre-condition");
6028   _free_regions_coming = true;
6029 }
6030 
6031 void G1CollectedHeap::reset_free_regions_coming() {
6032   {
6033     assert(free_regions_coming(), "pre-condition");
6034     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6035     _free_regions_coming = false;
6036     SecondaryFreeList_lock->notify_all();
6037   }
6038 
6039   if (G1ConcRegionFreeingVerbose) {
6040     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6041                            "reset free regions coming");
6042   }
6043 }
6044 
6045 void G1CollectedHeap::wait_while_free_regions_coming() {
6046   // Most of the time we won't have to wait, so let's do a quick test
6047   // first before we take the lock.
6048   if (!free_regions_coming()) {
6049     return;
6050   }
6051 
6052   if (G1ConcRegionFreeingVerbose) {
6053     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6054                            "waiting for free regions");
6055   }
6056 
6057   {
6058     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6059     while (free_regions_coming()) {
6060       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6061     }
6062   }
6063 
6064   if (G1ConcRegionFreeingVerbose) {
6065     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6066                            "done waiting for free regions");
6067   }
6068 }
6069 
6070 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6071   assert(heap_lock_held_for_gc(),
6072               "the heap lock should already be held by or for this thread");
6073   _young_list->push_region(hr);
6074   g1_policy()->set_region_short_lived(hr);
6075 }
6076 
6077 class NoYoungRegionsClosure: public HeapRegionClosure {
6078 private:
6079   bool _success;
6080 public:
6081   NoYoungRegionsClosure() : _success(true) { }
6082   bool doHeapRegion(HeapRegion* r) {
6083     if (r->is_young()) {
6084       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6085                              r->bottom(), r->end());
6086       _success = false;
6087     }
6088     return false;
6089   }
6090   bool success() { return _success; }
6091 };
6092 
6093 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6094   bool ret = _young_list->check_list_empty(check_sample);
6095 
6096   if (check_heap) {
6097     NoYoungRegionsClosure closure;
6098     heap_region_iterate(&closure);
6099     ret = ret && closure.success();
6100   }
6101 
6102   return ret;
6103 }
6104 
6105 void G1CollectedHeap::empty_young_list() {
6106   assert(heap_lock_held_for_gc(),
6107               "the heap lock should already be held by or for this thread");
6108   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
6109 
6110   _young_list->empty_list();
6111 }
6112 
6113 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
6114   bool no_allocs = true;
6115   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
6116     HeapRegion* r = _gc_alloc_regions[ap];
6117     no_allocs = r == NULL || r->saved_mark_at_top();
6118   }
6119   return no_allocs;
6120 }
6121 
6122 void G1CollectedHeap::retire_all_alloc_regions() {
6123   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
6124     HeapRegion* r = _gc_alloc_regions[ap];
6125     if (r != NULL) {
6126       // Check for aliases.
6127       bool has_processed_alias = false;
6128       for (int i = 0; i < ap; ++i) {
6129         if (_gc_alloc_regions[i] == r) {
6130           has_processed_alias = true;
6131           break;
6132         }
6133       }
6134       if (!has_processed_alias) {
6135         retire_alloc_region(r, false /* par */);
6136       }
6137     }
6138   }
6139 }
6140 
6141 // Done at the start of full GC.
6142 void G1CollectedHeap::tear_down_region_lists() {
6143   _free_list.remove_all();
6144 }
6145 
6146 class RegionResetter: public HeapRegionClosure {
6147   G1CollectedHeap* _g1h;
6148   FreeRegionList _local_free_list;
6149 
6150 public:
6151   RegionResetter() : _g1h(G1CollectedHeap::heap()),
6152                      _local_free_list("Local Free List for RegionResetter") { }
6153 
6154   bool doHeapRegion(HeapRegion* r) {
6155     if (r->continuesHumongous()) return false;
6156     if (r->top() > r->bottom()) {
6157       if (r->top() < r->end()) {
6158         Copy::fill_to_words(r->top(),
6159                           pointer_delta(r->end(), r->top()));
6160       }
6161     } else {
6162       assert(r->is_empty(), "tautology");
6163       _local_free_list.add_as_tail(r);
6164     }
6165     return false;
6166   }
6167 
6168   void update_free_lists() {
6169     _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
6170                                             false /* par */);
6171   }
6172 };
6173 
6174 // Done at the end of full GC.
6175 void G1CollectedHeap::rebuild_region_lists() {
6176   // This needs to go at the end of the full GC.
6177   RegionResetter rs;
6178   heap_region_iterate(&rs);
6179   rs.update_free_lists();
6180 }
6181 
6182 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6183   _refine_cte_cl->set_concurrent(concurrent);
6184 }
6185 
6186 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6187   HeapRegion* hr = heap_region_containing(p);
6188   if (hr == NULL) {
6189     return is_in_permanent(p);
6190   } else {
6191     return hr->is_in(p);
6192   }
6193 }
6194 
6195 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6196                                                       bool force) {
6197   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6198   assert(!force || g1_policy()->can_expand_young_list(),
6199          "if force is true we should be able to expand the young list");
6200   bool young_list_full = g1_policy()->is_young_list_full();
6201   if (force || !young_list_full) {
6202     HeapRegion* new_alloc_region = new_region(word_size,
6203                                               false /* do_expand */);
6204     if (new_alloc_region != NULL) {
6205       g1_policy()->update_region_num(true /* next_is_young */);
6206       set_region_short_lived_locked(new_alloc_region);
6207       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6208       g1mm()->update_eden_counters();
6209       return new_alloc_region;
6210     }
6211   }
6212   return NULL;
6213 }
6214 
6215 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6216                                                   size_t allocated_bytes) {
6217   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6218   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6219 
6220   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6221   _summary_bytes_used += allocated_bytes;
6222   _hr_printer.retire(alloc_region);
6223 }
6224 
6225 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6226                                                     bool force) {
6227   return _g1h->new_mutator_alloc_region(word_size, force);
6228 }
6229 
6230 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6231                                        size_t allocated_bytes) {
6232   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6233 }
6234 
6235 // Heap region set verification
6236 
6237 class VerifyRegionListsClosure : public HeapRegionClosure {
6238 private:
6239   HumongousRegionSet* _humongous_set;
6240   FreeRegionList*     _free_list;
6241   size_t              _region_count;
6242 
6243 public:
6244   VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
6245                            FreeRegionList* free_list) :
6246     _humongous_set(humongous_set), _free_list(free_list),
6247     _region_count(0) { }
6248 
6249   size_t region_count()      { return _region_count;      }
6250 
6251   bool doHeapRegion(HeapRegion* hr) {
6252     _region_count += 1;
6253 
6254     if (hr->continuesHumongous()) {
6255       return false;
6256     }
6257 
6258     if (hr->is_young()) {
6259       // TODO
6260     } else if (hr->startsHumongous()) {
6261       _humongous_set->verify_next_region(hr);
6262     } else if (hr->is_empty()) {
6263       _free_list->verify_next_region(hr);
6264     }
6265     return false;
6266   }
6267 };
6268 
6269 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
6270                                              HeapWord* bottom) {
6271   HeapWord* end = bottom + HeapRegion::GrainWords;
6272   MemRegion mr(bottom, end);
6273   assert(_g1_reserved.contains(mr), "invariant");
6274   // This might return NULL if the allocation fails
6275   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6276 }
6277 
6278 void G1CollectedHeap::verify_region_sets() {
6279   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6280 
6281   // First, check the explicit lists.
6282   _free_list.verify();
6283   {
6284     // Given that a concurrent operation might be adding regions to
6285     // the secondary free list we have to take the lock before
6286     // verifying it.
6287     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6288     _secondary_free_list.verify();
6289   }
6290   _humongous_set.verify();
6291 
6292   // If a concurrent region freeing operation is in progress it will
6293   // be difficult to correctly attributed any free regions we come
6294   // across to the correct free list given that they might belong to
6295   // one of several (free_list, secondary_free_list, any local lists,
6296   // etc.). So, if that's the case we will skip the rest of the
6297   // verification operation. Alternatively, waiting for the concurrent
6298   // operation to complete will have a non-trivial effect on the GC's
6299   // operation (no concurrent operation will last longer than the
6300   // interval between two calls to verification) and it might hide
6301   // any issues that we would like to catch during testing.
6302   if (free_regions_coming()) {
6303     return;
6304   }
6305 
6306   // Make sure we append the secondary_free_list on the free_list so
6307   // that all free regions we will come across can be safely
6308   // attributed to the free_list.
6309   append_secondary_free_list_if_not_empty_with_lock();
6310 
6311   // Finally, make sure that the region accounting in the lists is
6312   // consistent with what we see in the heap.
6313   _humongous_set.verify_start();
6314   _free_list.verify_start();
6315 
6316   VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
6317   heap_region_iterate(&cl);
6318 
6319   _humongous_set.verify_end();
6320   _free_list.verify_end();
6321 }