1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1AllocRegion.hpp"
  30 #include "gc_implementation/g1/g1HRPrinter.hpp"
  31 #include "gc_implementation/g1/g1RemSet.hpp"
  32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  33 #include "gc_implementation/g1/heapRegionSeq.hpp"
  34 #include "gc_implementation/g1/heapRegionSets.hpp"
  35 #include "gc_implementation/shared/hSpaceCounters.hpp"
  36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
  37 #include "memory/barrierSet.hpp"
  38 #include "memory/memRegion.hpp"
  39 #include "memory/sharedHeap.hpp"
  40 
  41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  42 // It uses the "Garbage First" heap organization and algorithm, which
  43 // may combine concurrent marking with parallel, incremental compaction of
  44 // heap subsets that will yield large amounts of garbage.
  45 
  46 class HeapRegion;
  47 class HRRSCleanupTask;
  48 class PermanentGenerationSpec;
  49 class GenerationSpec;
  50 class OopsInHeapRegionClosure;
  51 class G1ScanHeapEvacClosure;
  52 class ObjectClosure;
  53 class SpaceClosure;
  54 class CompactibleSpaceClosure;
  55 class Space;
  56 class G1CollectorPolicy;
  57 class GenRemSet;
  58 class G1RemSet;
  59 class HeapRegionRemSetIterator;
  60 class ConcurrentMark;
  61 class ConcurrentMarkThread;
  62 class ConcurrentG1Refine;
  63 class GenerationCounters;
  64 
  65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
  66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
  67 
  68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  70 
  71 enum GCAllocPurpose {
  72   GCAllocForTenured,
  73   GCAllocForSurvived,
  74   GCAllocPurposeCount
  75 };
  76 
  77 class YoungList : public CHeapObj {
  78 private:
  79   G1CollectedHeap* _g1h;
  80 
  81   HeapRegion* _head;
  82 
  83   HeapRegion* _survivor_head;
  84   HeapRegion* _survivor_tail;
  85 
  86   HeapRegion* _curr;
  87 
  88   size_t      _length;
  89   size_t      _survivor_length;
  90 
  91   size_t      _last_sampled_rs_lengths;
  92   size_t      _sampled_rs_lengths;
  93 
  94   void         empty_list(HeapRegion* list);
  95 
  96 public:
  97   YoungList(G1CollectedHeap* g1h);
  98 
  99   void         push_region(HeapRegion* hr);
 100   void         add_survivor_region(HeapRegion* hr);
 101 
 102   void         empty_list();
 103   bool         is_empty() { return _length == 0; }
 104   size_t       length() { return _length; }
 105   size_t       survivor_length() { return _survivor_length; }
 106 
 107   // Currently we do not keep track of the used byte sum for the
 108   // young list and the survivors and it'd be quite a lot of work to
 109   // do so. When we'll eventually replace the young list with
 110   // instances of HeapRegionLinkedList we'll get that for free. So,
 111   // we'll report the more accurate information then.
 112   size_t       eden_used_bytes() {
 113     assert(length() >= survivor_length(), "invariant");
 114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
 115   }
 116   size_t       survivor_used_bytes() {
 117     return survivor_length() * HeapRegion::GrainBytes;
 118   }
 119 
 120   void rs_length_sampling_init();
 121   bool rs_length_sampling_more();
 122   void rs_length_sampling_next();
 123 
 124   void reset_sampled_info() {
 125     _last_sampled_rs_lengths =   0;
 126   }
 127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 128 
 129   // for development purposes
 130   void reset_auxilary_lists();
 131   void clear() { _head = NULL; _length = 0; }
 132 
 133   void clear_survivors() {
 134     _survivor_head    = NULL;
 135     _survivor_tail    = NULL;
 136     _survivor_length  = 0;
 137   }
 138 
 139   HeapRegion* first_region() { return _head; }
 140   HeapRegion* first_survivor_region() { return _survivor_head; }
 141   HeapRegion* last_survivor_region() { return _survivor_tail; }
 142 
 143   // debugging
 144   bool          check_list_well_formed();
 145   bool          check_list_empty(bool check_sample = true);
 146   void          print();
 147 };
 148 
 149 class MutatorAllocRegion : public G1AllocRegion {
 150 protected:
 151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 153 public:
 154   MutatorAllocRegion()
 155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 156 };
 157 
 158 class RefineCardTableEntryClosure;
 159 class G1CollectedHeap : public SharedHeap {
 160   friend class VM_G1CollectForAllocation;
 161   friend class VM_GenCollectForPermanentAllocation;
 162   friend class VM_G1CollectFull;
 163   friend class VM_G1IncCollectionPause;
 164   friend class VMStructs;
 165   friend class MutatorAllocRegion;
 166 
 167   // Closures used in implementation.
 168   friend class G1ParCopyHelper;
 169   friend class G1IsAliveClosure;
 170   friend class G1EvacuateFollowersClosure;
 171   friend class G1ParScanThreadState;
 172   friend class G1ParScanClosureSuper;
 173   friend class G1ParEvacuateFollowersClosure;
 174   friend class G1ParTask;
 175   friend class G1FreeGarbageRegionClosure;
 176   friend class RefineCardTableEntryClosure;
 177   friend class G1PrepareCompactClosure;
 178   friend class RegionSorter;
 179   friend class RegionResetter;
 180   friend class CountRCClosure;
 181   friend class EvacPopObjClosure;
 182   friend class G1ParCleanupCTTask;
 183 
 184   // Other related classes.
 185   friend class G1MarkSweep;
 186 
 187 private:
 188   // The one and only G1CollectedHeap, so static functions can find it.
 189   static G1CollectedHeap* _g1h;
 190 
 191   static size_t _humongous_object_threshold_in_words;
 192 
 193   // Storage for the G1 heap (excludes the permanent generation).
 194   VirtualSpace _g1_storage;
 195   MemRegion    _g1_reserved;
 196 
 197   // The part of _g1_storage that is currently committed.
 198   MemRegion _g1_committed;
 199 
 200   // The master free list. It will satisfy all new region allocations.
 201   MasterFreeRegionList      _free_list;
 202 
 203   // The secondary free list which contains regions that have been
 204   // freed up during the cleanup process. This will be appended to the
 205   // master free list when appropriate.
 206   SecondaryFreeRegionList   _secondary_free_list;
 207 
 208   // It keeps track of the humongous regions.
 209   MasterHumongousRegionSet  _humongous_set;
 210 
 211   // The number of regions we could create by expansion.
 212   size_t _expansion_regions;
 213 
 214   // The block offset table for the G1 heap.
 215   G1BlockOffsetSharedArray* _bot_shared;
 216 
 217   // Move all of the regions off the free lists, then rebuild those free
 218   // lists, before and after full GC.
 219   void tear_down_region_lists();
 220   void rebuild_region_lists();
 221 
 222   // The sequence of all heap regions in the heap.
 223   HeapRegionSeq _hrs;
 224 
 225   // Alloc region used to satisfy mutator allocation requests.
 226   MutatorAllocRegion _mutator_alloc_region;
 227 
 228   // It resets the mutator alloc region before new allocations can take place.
 229   void init_mutator_alloc_region();
 230 
 231   // It releases the mutator alloc region.
 232   void release_mutator_alloc_region();
 233 
 234   void abandon_gc_alloc_regions();
 235 
 236   // The to-space memory regions into which objects are being copied during
 237   // a GC.
 238   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
 239   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
 240   // These are the regions, one per GCAllocPurpose, that are half-full
 241   // at the end of a collection and that we want to reuse during the
 242   // next collection.
 243   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
 244   // This specifies whether we will keep the last half-full region at
 245   // the end of a collection so that it can be reused during the next
 246   // collection (this is specified per GCAllocPurpose)
 247   bool _retain_gc_alloc_region[GCAllocPurposeCount];
 248 
 249   // A list of the regions that have been set to be alloc regions in the
 250   // current collection.
 251   HeapRegion* _gc_alloc_region_list;
 252 
 253   // Helper for monitoring and management support.
 254   G1MonitoringSupport* _g1mm;
 255 
 256   // Determines PLAB size for a particular allocation purpose.
 257   static size_t desired_plab_sz(GCAllocPurpose purpose);
 258 
 259   // When called by par thread, requires the FreeList_lock to be held.
 260   void push_gc_alloc_region(HeapRegion* hr);
 261 
 262   // This should only be called single-threaded.  Undeclares all GC alloc
 263   // regions.
 264   void forget_alloc_region_list();
 265 
 266   // Should be used to set an alloc region, because there's other
 267   // associated bookkeeping.
 268   void set_gc_alloc_region(int purpose, HeapRegion* r);
 269 
 270   // Check well-formedness of alloc region list.
 271   bool check_gc_alloc_regions();
 272 
 273   // Outside of GC pauses, the number of bytes used in all regions other
 274   // than the current allocation region.
 275   size_t _summary_bytes_used;
 276 
 277   // This is used for a quick test on whether a reference points into
 278   // the collection set or not. Basically, we have an array, with one
 279   // byte per region, and that byte denotes whether the corresponding
 280   // region is in the collection set or not. The entry corresponding
 281   // the bottom of the heap, i.e., region 0, is pointed to by
 282   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 283   // biased so that it actually points to address 0 of the address
 284   // space, to make the test as fast as possible (we can simply shift
 285   // the address to address into it, instead of having to subtract the
 286   // bottom of the heap from the address before shifting it; basically
 287   // it works in the same way the card table works).
 288   bool* _in_cset_fast_test;
 289 
 290   // The allocated array used for the fast test on whether a reference
 291   // points into the collection set or not. This field is also used to
 292   // free the array.
 293   bool* _in_cset_fast_test_base;
 294 
 295   // The length of the _in_cset_fast_test_base array.
 296   size_t _in_cset_fast_test_length;
 297 
 298   volatile unsigned _gc_time_stamp;
 299 
 300   size_t* _surviving_young_words;
 301 
 302   G1HRPrinter _hr_printer;
 303 
 304   void setup_surviving_young_words();
 305   void update_surviving_young_words(size_t* surv_young_words);
 306   void cleanup_surviving_young_words();
 307 
 308   // It decides whether an explicit GC should start a concurrent cycle
 309   // instead of doing a STW GC. Currently, a concurrent cycle is
 310   // explicitly started if:
 311   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 312   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 313   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 314 
 315   // Keeps track of how many "full collections" (i.e., Full GCs or
 316   // concurrent cycles) we have completed. The number of them we have
 317   // started is maintained in _total_full_collections in CollectedHeap.
 318   volatile unsigned int _full_collections_completed;
 319 
 320   // This is a non-product method that is helpful for testing. It is
 321   // called at the end of a GC and artificially expands the heap by
 322   // allocating a number of dead regions. This way we can induce very
 323   // frequent marking cycles and stress the cleanup / concurrent
 324   // cleanup code more (as all the regions that will be allocated by
 325   // this method will be found dead by the marking cycle).
 326   void allocate_dummy_regions() PRODUCT_RETURN;
 327 
 328   // These are macros so that, if the assert fires, we get the correct
 329   // line number, file, etc.
 330 
 331 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 332   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 333           (_extra_message_),                                                  \
 334           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 335           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 336           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 337 
 338 #define assert_heap_locked()                                                  \
 339   do {                                                                        \
 340     assert(Heap_lock->owned_by_self(),                                        \
 341            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 342   } while (0)
 343 
 344 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 345   do {                                                                        \
 346     assert(Heap_lock->owned_by_self() ||                                      \
 347            (SafepointSynchronize::is_at_safepoint() &&                        \
 348              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 349            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 350                                         "should be at a safepoint"));         \
 351   } while (0)
 352 
 353 #define assert_heap_locked_and_not_at_safepoint()                             \
 354   do {                                                                        \
 355     assert(Heap_lock->owned_by_self() &&                                      \
 356                                     !SafepointSynchronize::is_at_safepoint(), \
 357           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 358                                        "should not be at a safepoint"));      \
 359   } while (0)
 360 
 361 #define assert_heap_not_locked()                                              \
 362   do {                                                                        \
 363     assert(!Heap_lock->owned_by_self(),                                       \
 364         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 365   } while (0)
 366 
 367 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 368   do {                                                                        \
 369     assert(!Heap_lock->owned_by_self() &&                                     \
 370                                     !SafepointSynchronize::is_at_safepoint(), \
 371       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 372                                    "should not be at a safepoint"));          \
 373   } while (0)
 374 
 375 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 376   do {                                                                        \
 377     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 378               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 379            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 380   } while (0)
 381 
 382 #define assert_not_at_safepoint()                                             \
 383   do {                                                                        \
 384     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 385            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 386   } while (0)
 387 
 388 protected:
 389 
 390   // Returns "true" iff none of the gc alloc regions have any allocations
 391   // since the last call to "save_marks".
 392   bool all_alloc_regions_no_allocs_since_save_marks();
 393   // Perform finalization stuff on all allocation regions.
 394   void retire_all_alloc_regions();
 395 
 396   // The young region list.
 397   YoungList*  _young_list;
 398 
 399   // The current policy object for the collector.
 400   G1CollectorPolicy* _g1_policy;
 401 
 402   // This is the second level of trying to allocate a new region. If
 403   // new_region() didn't find a region on the free_list, this call will
 404   // check whether there's anything available on the
 405   // secondary_free_list and/or wait for more regions to appear on
 406   // that list, if _free_regions_coming is set.
 407   HeapRegion* new_region_try_secondary_free_list();
 408 
 409   // Try to allocate a single non-humongous HeapRegion sufficient for
 410   // an allocation of the given word_size. If do_expand is true,
 411   // attempt to expand the heap if necessary to satisfy the allocation
 412   // request.
 413   HeapRegion* new_region(size_t word_size, bool do_expand);
 414 
 415   // Try to allocate a new region to be used for allocation by
 416   // a GC thread. It will try to expand the heap if no region is
 417   // available.
 418   HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
 419 
 420   // Attempt to satisfy a humongous allocation request of the given
 421   // size by finding a contiguous set of free regions of num_regions
 422   // length and remove them from the master free list. Return the
 423   // index of the first region or G1_NULL_HRS_INDEX if the search
 424   // was unsuccessful.
 425   size_t humongous_obj_allocate_find_first(size_t num_regions,
 426                                            size_t word_size);
 427 
 428   // Initialize a contiguous set of free regions of length num_regions
 429   // and starting at index first so that they appear as a single
 430   // humongous region.
 431   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
 432                                                       size_t num_regions,
 433                                                       size_t word_size);
 434 
 435   // Attempt to allocate a humongous object of the given size. Return
 436   // NULL if unsuccessful.
 437   HeapWord* humongous_obj_allocate(size_t word_size);
 438 
 439   // The following two methods, allocate_new_tlab() and
 440   // mem_allocate(), are the two main entry points from the runtime
 441   // into the G1's allocation routines. They have the following
 442   // assumptions:
 443   //
 444   // * They should both be called outside safepoints.
 445   //
 446   // * They should both be called without holding the Heap_lock.
 447   //
 448   // * All allocation requests for new TLABs should go to
 449   //   allocate_new_tlab().
 450   //
 451   // * All non-TLAB allocation requests should go to mem_allocate().
 452   //
 453   // * If either call cannot satisfy the allocation request using the
 454   //   current allocating region, they will try to get a new one. If
 455   //   this fails, they will attempt to do an evacuation pause and
 456   //   retry the allocation.
 457   //
 458   // * If all allocation attempts fail, even after trying to schedule
 459   //   an evacuation pause, allocate_new_tlab() will return NULL,
 460   //   whereas mem_allocate() will attempt a heap expansion and/or
 461   //   schedule a Full GC.
 462   //
 463   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 464   //   should never be called with word_size being humongous. All
 465   //   humongous allocation requests should go to mem_allocate() which
 466   //   will satisfy them with a special path.
 467 
 468   virtual HeapWord* allocate_new_tlab(size_t word_size);
 469 
 470   virtual HeapWord* mem_allocate(size_t word_size,
 471                                  bool*  gc_overhead_limit_was_exceeded);
 472 
 473   // The following three methods take a gc_count_before_ret
 474   // parameter which is used to return the GC count if the method
 475   // returns NULL. Given that we are required to read the GC count
 476   // while holding the Heap_lock, and these paths will take the
 477   // Heap_lock at some point, it's easier to get them to read the GC
 478   // count while holding the Heap_lock before they return NULL instead
 479   // of the caller (namely: mem_allocate()) having to also take the
 480   // Heap_lock just to read the GC count.
 481 
 482   // First-level mutator allocation attempt: try to allocate out of
 483   // the mutator alloc region without taking the Heap_lock. This
 484   // should only be used for non-humongous allocations.
 485   inline HeapWord* attempt_allocation(size_t word_size,
 486                                       unsigned int* gc_count_before_ret);
 487 
 488   // Second-level mutator allocation attempt: take the Heap_lock and
 489   // retry the allocation attempt, potentially scheduling a GC
 490   // pause. This should only be used for non-humongous allocations.
 491   HeapWord* attempt_allocation_slow(size_t word_size,
 492                                     unsigned int* gc_count_before_ret);
 493 
 494   // Takes the Heap_lock and attempts a humongous allocation. It can
 495   // potentially schedule a GC pause.
 496   HeapWord* attempt_allocation_humongous(size_t word_size,
 497                                          unsigned int* gc_count_before_ret);
 498 
 499   // Allocation attempt that should be called during safepoints (e.g.,
 500   // at the end of a successful GC). expect_null_mutator_alloc_region
 501   // specifies whether the mutator alloc region is expected to be NULL
 502   // or not.
 503   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 504                                        bool expect_null_mutator_alloc_region);
 505 
 506   // It dirties the cards that cover the block so that so that the post
 507   // write barrier never queues anything when updating objects on this
 508   // block. It is assumed (and in fact we assert) that the block
 509   // belongs to a young region.
 510   inline void dirty_young_block(HeapWord* start, size_t word_size);
 511 
 512   // Allocate blocks during garbage collection. Will ensure an
 513   // allocation region, either by picking one or expanding the
 514   // heap, and then allocate a block of the given size. The block
 515   // may not be a humongous - it must fit into a single heap region.
 516   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 517 
 518   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
 519                                     HeapRegion*    alloc_region,
 520                                     bool           par,
 521                                     size_t         word_size);
 522 
 523   // Ensure that no further allocations can happen in "r", bearing in mind
 524   // that parallel threads might be attempting allocations.
 525   void par_allocate_remaining_space(HeapRegion* r);
 526 
 527   // Retires an allocation region when it is full or at the end of a
 528   // GC pause.
 529   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
 530 
 531   // These two methods are the "callbacks" from the G1AllocRegion class.
 532 
 533   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 534   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 535                                    size_t allocated_bytes);
 536 
 537   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 538   //   inspection request and should collect the entire heap
 539   // - if clear_all_soft_refs is true, all soft references should be
 540   //   cleared during the GC
 541   // - if explicit_gc is false, word_size describes the allocation that
 542   //   the GC should attempt (at least) to satisfy
 543   // - it returns false if it is unable to do the collection due to the
 544   //   GC locker being active, true otherwise
 545   bool do_collection(bool explicit_gc,
 546                      bool clear_all_soft_refs,
 547                      size_t word_size);
 548 
 549   // Callback from VM_G1CollectFull operation.
 550   // Perform a full collection.
 551   void do_full_collection(bool clear_all_soft_refs);
 552 
 553   // Resize the heap if necessary after a full collection.  If this is
 554   // after a collect-for allocation, "word_size" is the allocation size,
 555   // and will be considered part of the used portion of the heap.
 556   void resize_if_necessary_after_full_collection(size_t word_size);
 557 
 558   // Callback from VM_G1CollectForAllocation operation.
 559   // This function does everything necessary/possible to satisfy a
 560   // failed allocation request (including collection, expansion, etc.)
 561   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 562 
 563   // Attempting to expand the heap sufficiently
 564   // to support an allocation of the given "word_size".  If
 565   // successful, perform the allocation and return the address of the
 566   // allocated block, or else "NULL".
 567   HeapWord* expand_and_allocate(size_t word_size);
 568 
 569 public:
 570 
 571   G1MonitoringSupport* g1mm() { return _g1mm; }
 572 
 573   // Expand the garbage-first heap by at least the given size (in bytes!).
 574   // Returns true if the heap was expanded by the requested amount;
 575   // false otherwise.
 576   // (Rounds up to a HeapRegion boundary.)
 577   bool expand(size_t expand_bytes);
 578 
 579   // Do anything common to GC's.
 580   virtual void gc_prologue(bool full);
 581   virtual void gc_epilogue(bool full);
 582 
 583   // We register a region with the fast "in collection set" test. We
 584   // simply set to true the array slot corresponding to this region.
 585   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 586     assert(_in_cset_fast_test_base != NULL, "sanity");
 587     assert(r->in_collection_set(), "invariant");
 588     size_t index = r->hrs_index();
 589     assert(index < _in_cset_fast_test_length, "invariant");
 590     assert(!_in_cset_fast_test_base[index], "invariant");
 591     _in_cset_fast_test_base[index] = true;
 592   }
 593 
 594   // This is a fast test on whether a reference points into the
 595   // collection set or not. It does not assume that the reference
 596   // points into the heap; if it doesn't, it will return false.
 597   bool in_cset_fast_test(oop obj) {
 598     assert(_in_cset_fast_test != NULL, "sanity");
 599     if (_g1_committed.contains((HeapWord*) obj)) {
 600       // no need to subtract the bottom of the heap from obj,
 601       // _in_cset_fast_test is biased
 602       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
 603       bool ret = _in_cset_fast_test[index];
 604       // let's make sure the result is consistent with what the slower
 605       // test returns
 606       assert( ret || !obj_in_cs(obj), "sanity");
 607       assert(!ret ||  obj_in_cs(obj), "sanity");
 608       return ret;
 609     } else {
 610       return false;
 611     }
 612   }
 613 
 614   void clear_cset_fast_test() {
 615     assert(_in_cset_fast_test_base != NULL, "sanity");
 616     memset(_in_cset_fast_test_base, false,
 617         _in_cset_fast_test_length * sizeof(bool));
 618   }
 619 
 620   // This is called at the end of either a concurrent cycle or a Full
 621   // GC to update the number of full collections completed. Those two
 622   // can happen in a nested fashion, i.e., we start a concurrent
 623   // cycle, a Full GC happens half-way through it which ends first,
 624   // and then the cycle notices that a Full GC happened and ends
 625   // too. The concurrent parameter is a boolean to help us do a bit
 626   // tighter consistency checking in the method. If concurrent is
 627   // false, the caller is the inner caller in the nesting (i.e., the
 628   // Full GC). If concurrent is true, the caller is the outer caller
 629   // in this nesting (i.e., the concurrent cycle). Further nesting is
 630   // not currently supported. The end of the this call also notifies
 631   // the FullGCCount_lock in case a Java thread is waiting for a full
 632   // GC to happen (e.g., it called System.gc() with
 633   // +ExplicitGCInvokesConcurrent).
 634   void increment_full_collections_completed(bool concurrent);
 635 
 636   unsigned int full_collections_completed() {
 637     return _full_collections_completed;
 638   }
 639 
 640   G1HRPrinter* hr_printer() { return &_hr_printer; }
 641 
 642 protected:
 643 
 644   // Shrink the garbage-first heap by at most the given size (in bytes!).
 645   // (Rounds down to a HeapRegion boundary.)
 646   virtual void shrink(size_t expand_bytes);
 647   void shrink_helper(size_t expand_bytes);
 648 
 649   #if TASKQUEUE_STATS
 650   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 651   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 652   void reset_taskqueue_stats();
 653   #endif // TASKQUEUE_STATS
 654 
 655   // Schedule the VM operation that will do an evacuation pause to
 656   // satisfy an allocation request of word_size. *succeeded will
 657   // return whether the VM operation was successful (it did do an
 658   // evacuation pause) or not (another thread beat us to it or the GC
 659   // locker was active). Given that we should not be holding the
 660   // Heap_lock when we enter this method, we will pass the
 661   // gc_count_before (i.e., total_collections()) as a parameter since
 662   // it has to be read while holding the Heap_lock. Currently, both
 663   // methods that call do_collection_pause() release the Heap_lock
 664   // before the call, so it's easy to read gc_count_before just before.
 665   HeapWord* do_collection_pause(size_t       word_size,
 666                                 unsigned int gc_count_before,
 667                                 bool*        succeeded);
 668 
 669   // The guts of the incremental collection pause, executed by the vm
 670   // thread. It returns false if it is unable to do the collection due
 671   // to the GC locker being active, true otherwise
 672   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 673 
 674   // Actually do the work of evacuating the collection set.
 675   void evacuate_collection_set();
 676 
 677   // The g1 remembered set of the heap.
 678   G1RemSet* _g1_rem_set;
 679   // And it's mod ref barrier set, used to track updates for the above.
 680   ModRefBarrierSet* _mr_bs;
 681 
 682   // A set of cards that cover the objects for which the Rsets should be updated
 683   // concurrently after the collection.
 684   DirtyCardQueueSet _dirty_card_queue_set;
 685 
 686   // The Heap Region Rem Set Iterator.
 687   HeapRegionRemSetIterator** _rem_set_iterator;
 688 
 689   // The closure used to refine a single card.
 690   RefineCardTableEntryClosure* _refine_cte_cl;
 691 
 692   // A function to check the consistency of dirty card logs.
 693   void check_ct_logs_at_safepoint();
 694 
 695   // A DirtyCardQueueSet that is used to hold cards that contain
 696   // references into the current collection set. This is used to
 697   // update the remembered sets of the regions in the collection
 698   // set in the event of an evacuation failure.
 699   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 700 
 701   // After a collection pause, make the regions in the CS into free
 702   // regions.
 703   void free_collection_set(HeapRegion* cs_head);
 704 
 705   // Abandon the current collection set without recording policy
 706   // statistics or updating free lists.
 707   void abandon_collection_set(HeapRegion* cs_head);
 708 
 709   // Applies "scan_non_heap_roots" to roots outside the heap,
 710   // "scan_rs" to roots inside the heap (having done "set_region" to
 711   // indicate the region in which the root resides), and does "scan_perm"
 712   // (setting the generation to the perm generation.)  If "scan_rs" is
 713   // NULL, then this step is skipped.  The "worker_i"
 714   // param is for use with parallel roots processing, and should be
 715   // the "i" of the calling parallel worker thread's work(i) function.
 716   // In the sequential case this param will be ignored.
 717   void g1_process_strong_roots(bool collecting_perm_gen,
 718                                SharedHeap::ScanningOption so,
 719                                OopClosure* scan_non_heap_roots,
 720                                OopsInHeapRegionClosure* scan_rs,
 721                                OopsInGenClosure* scan_perm,
 722                                int worker_i);
 723 
 724   // Apply "blk" to all the weak roots of the system.  These include
 725   // JNI weak roots, the code cache, system dictionary, symbol table,
 726   // string table, and referents of reachable weak refs.
 727   void g1_process_weak_roots(OopClosure* root_closure,
 728                              OopClosure* non_root_closure);
 729 
 730   // Invoke "save_marks" on all heap regions.
 731   void save_marks();
 732 
 733   // Frees a non-humongous region by initializing its contents and
 734   // adding it to the free list that's passed as a parameter (this is
 735   // usually a local list which will be appended to the master free
 736   // list later). The used bytes of freed regions are accumulated in
 737   // pre_used. If par is true, the region's RSet will not be freed
 738   // up. The assumption is that this will be done later.
 739   void free_region(HeapRegion* hr,
 740                    size_t* pre_used,
 741                    FreeRegionList* free_list,
 742                    bool par);
 743 
 744   // Frees a humongous region by collapsing it into individual regions
 745   // and calling free_region() for each of them. The freed regions
 746   // will be added to the free list that's passed as a parameter (this
 747   // is usually a local list which will be appended to the master free
 748   // list later). The used bytes of freed regions are accumulated in
 749   // pre_used. If par is true, the region's RSet will not be freed
 750   // up. The assumption is that this will be done later.
 751   void free_humongous_region(HeapRegion* hr,
 752                              size_t* pre_used,
 753                              FreeRegionList* free_list,
 754                              HumongousRegionSet* humongous_proxy_set,
 755                              bool par);
 756 
 757   // Notifies all the necessary spaces that the committed space has
 758   // been updated (either expanded or shrunk). It should be called
 759   // after _g1_storage is updated.
 760   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 761 
 762   // The concurrent marker (and the thread it runs in.)
 763   ConcurrentMark* _cm;
 764   ConcurrentMarkThread* _cmThread;
 765   bool _mark_in_progress;
 766 
 767   // The concurrent refiner.
 768   ConcurrentG1Refine* _cg1r;
 769 
 770   // The parallel task queues
 771   RefToScanQueueSet *_task_queues;
 772 
 773   // True iff a evacuation has failed in the current collection.
 774   bool _evacuation_failed;
 775 
 776   // Set the attribute indicating whether evacuation has failed in the
 777   // current collection.
 778   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
 779 
 780   // Failed evacuations cause some logical from-space objects to have
 781   // forwarding pointers to themselves.  Reset them.
 782   void remove_self_forwarding_pointers();
 783 
 784   // When one is non-null, so is the other.  Together, they each pair is
 785   // an object with a preserved mark, and its mark value.
 786   GrowableArray<oop>*     _objs_with_preserved_marks;
 787   GrowableArray<markOop>* _preserved_marks_of_objs;
 788 
 789   // Preserve the mark of "obj", if necessary, in preparation for its mark
 790   // word being overwritten with a self-forwarding-pointer.
 791   void preserve_mark_if_necessary(oop obj, markOop m);
 792 
 793   // The stack of evac-failure objects left to be scanned.
 794   GrowableArray<oop>*    _evac_failure_scan_stack;
 795   // The closure to apply to evac-failure objects.
 796 
 797   OopsInHeapRegionClosure* _evac_failure_closure;
 798   // Set the field above.
 799   void
 800   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 801     _evac_failure_closure = evac_failure_closure;
 802   }
 803 
 804   // Push "obj" on the scan stack.
 805   void push_on_evac_failure_scan_stack(oop obj);
 806   // Process scan stack entries until the stack is empty.
 807   void drain_evac_failure_scan_stack();
 808   // True iff an invocation of "drain_scan_stack" is in progress; to
 809   // prevent unnecessary recursion.
 810   bool _drain_in_progress;
 811 
 812   // Do any necessary initialization for evacuation-failure handling.
 813   // "cl" is the closure that will be used to process evac-failure
 814   // objects.
 815   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 816   // Do any necessary cleanup for evacuation-failure handling data
 817   // structures.
 818   void finalize_for_evac_failure();
 819 
 820   // An attempt to evacuate "obj" has failed; take necessary steps.
 821   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
 822   void handle_evacuation_failure_common(oop obj, markOop m);
 823 
 824   // Ensure that the relevant gc_alloc regions are set.
 825   void get_gc_alloc_regions();
 826   // We're done with GC alloc regions. We are going to tear down the
 827   // gc alloc list and remove the gc alloc tag from all the regions on
 828   // that list. However, we will also retain the last (i.e., the one
 829   // that is half-full) GC alloc region, per GCAllocPurpose, for
 830   // possible reuse during the next collection, provided
 831   // _retain_gc_alloc_region[] indicates that it should be the
 832   // case. Said regions are kept in the _retained_gc_alloc_regions[]
 833   // array. If the parameter totally is set, we will not retain any
 834   // regions, irrespective of what _retain_gc_alloc_region[]
 835   // indicates.
 836   void release_gc_alloc_regions(bool totally);
 837 #ifndef PRODUCT
 838   // Useful for debugging.
 839   void print_gc_alloc_regions();
 840 #endif // !PRODUCT
 841 
 842   // Instance of the concurrent mark is_alive closure for embedding
 843   // into the reference processor as the is_alive_non_header. This
 844   // prevents unnecessary additions to the discovered lists during
 845   // concurrent discovery.
 846   G1CMIsAliveClosure _is_alive_closure;
 847 
 848   // ("Weak") Reference processing support
 849   ReferenceProcessor* _ref_processor;
 850 
 851   enum G1H_process_strong_roots_tasks {
 852     G1H_PS_mark_stack_oops_do,
 853     G1H_PS_refProcessor_oops_do,
 854     // Leave this one last.
 855     G1H_PS_NumElements
 856   };
 857 
 858   SubTasksDone* _process_strong_tasks;
 859 
 860   volatile bool _free_regions_coming;
 861 
 862 public:
 863 
 864   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
 865 
 866   void set_refine_cte_cl_concurrency(bool concurrent);
 867 
 868   RefToScanQueue *task_queue(int i) const;
 869 
 870   // A set of cards where updates happened during the GC
 871   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 872 
 873   // A DirtyCardQueueSet that is used to hold cards that contain
 874   // references into the current collection set. This is used to
 875   // update the remembered sets of the regions in the collection
 876   // set in the event of an evacuation failure.
 877   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
 878         { return _into_cset_dirty_card_queue_set; }
 879 
 880   // Create a G1CollectedHeap with the specified policy.
 881   // Must call the initialize method afterwards.
 882   // May not return if something goes wrong.
 883   G1CollectedHeap(G1CollectorPolicy* policy);
 884 
 885   // Initialize the G1CollectedHeap to have the initial and
 886   // maximum sizes, permanent generation, and remembered and barrier sets
 887   // specified by the policy object.
 888   jint initialize();
 889 
 890   virtual void ref_processing_init();
 891 
 892   void set_par_threads(int t) {
 893     SharedHeap::set_par_threads(t);
 894     _process_strong_tasks->set_n_threads(t);
 895   }
 896 
 897   virtual CollectedHeap::Name kind() const {
 898     return CollectedHeap::G1CollectedHeap;
 899   }
 900 
 901   // The current policy object for the collector.
 902   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
 903 
 904   // Adaptive size policy.  No such thing for g1.
 905   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
 906 
 907   // The rem set and barrier set.
 908   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 909   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
 910 
 911   // The rem set iterator.
 912   HeapRegionRemSetIterator* rem_set_iterator(int i) {
 913     return _rem_set_iterator[i];
 914   }
 915 
 916   HeapRegionRemSetIterator* rem_set_iterator() {
 917     return _rem_set_iterator[0];
 918   }
 919 
 920   unsigned get_gc_time_stamp() {
 921     return _gc_time_stamp;
 922   }
 923 
 924   void reset_gc_time_stamp() {
 925     _gc_time_stamp = 0;
 926     OrderAccess::fence();
 927   }
 928 
 929   void increment_gc_time_stamp() {
 930     ++_gc_time_stamp;
 931     OrderAccess::fence();
 932   }
 933 
 934   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
 935                                   DirtyCardQueue* into_cset_dcq,
 936                                   bool concurrent, int worker_i);
 937 
 938   // The shared block offset table array.
 939   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
 940 
 941   // Reference Processing accessor
 942   ReferenceProcessor* ref_processor() { return _ref_processor; }
 943 
 944   virtual size_t capacity() const;
 945   virtual size_t used() const;
 946   // This should be called when we're not holding the heap lock. The
 947   // result might be a bit inaccurate.
 948   size_t used_unlocked() const;
 949   size_t recalculate_used() const;
 950 #ifndef PRODUCT
 951   size_t recalculate_used_regions() const;
 952 #endif // PRODUCT
 953 
 954   // These virtual functions do the actual allocation.
 955   // Some heaps may offer a contiguous region for shared non-blocking
 956   // allocation, via inlined code (by exporting the address of the top and
 957   // end fields defining the extent of the contiguous allocation region.)
 958   // But G1CollectedHeap doesn't yet support this.
 959 
 960   // Return an estimate of the maximum allocation that could be performed
 961   // without triggering any collection or expansion activity.  In a
 962   // generational collector, for example, this is probably the largest
 963   // allocation that could be supported (without expansion) in the youngest
 964   // generation.  It is "unsafe" because no locks are taken; the result
 965   // should be treated as an approximation, not a guarantee, for use in
 966   // heuristic resizing decisions.
 967   virtual size_t unsafe_max_alloc();
 968 
 969   virtual bool is_maximal_no_gc() const {
 970     return _g1_storage.uncommitted_size() == 0;
 971   }
 972 
 973   // The total number of regions in the heap.
 974   size_t n_regions() { return _hrs.length(); }
 975 
 976   // The max number of regions in the heap.
 977   size_t max_regions() { return _hrs.max_length(); }
 978 
 979   // The number of regions that are completely free.
 980   size_t free_regions() { return _free_list.length(); }
 981 
 982   // The number of regions that are not completely free.
 983   size_t used_regions() { return n_regions() - free_regions(); }
 984 
 985   // The number of regions available for "regular" expansion.
 986   size_t expansion_regions() { return _expansion_regions; }
 987 
 988   // Factory method for HeapRegion instances. It will return NULL if
 989   // the allocation fails.
 990   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
 991 
 992   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
 993   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
 994   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
 995   void verify_dirty_young_regions() PRODUCT_RETURN;
 996 
 997   // verify_region_sets() performs verification over the region
 998   // lists. It will be compiled in the product code to be used when
 999   // necessary (i.e., during heap verification).
1000   void verify_region_sets();
1001 
1002   // verify_region_sets_optional() is planted in the code for
1003   // list verification in non-product builds (and it can be enabled in
1004   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
1005 #if HEAP_REGION_SET_FORCE_VERIFY
1006   void verify_region_sets_optional() {
1007     verify_region_sets();
1008   }
1009 #else // HEAP_REGION_SET_FORCE_VERIFY
1010   void verify_region_sets_optional() { }
1011 #endif // HEAP_REGION_SET_FORCE_VERIFY
1012 
1013 #ifdef ASSERT
1014   bool is_on_master_free_list(HeapRegion* hr) {
1015     return hr->containing_set() == &_free_list;
1016   }
1017 
1018   bool is_in_humongous_set(HeapRegion* hr) {
1019     return hr->containing_set() == &_humongous_set;
1020   }
1021 #endif // ASSERT
1022 
1023   // Wrapper for the region list operations that can be called from
1024   // methods outside this class.
1025 
1026   void secondary_free_list_add_as_tail(FreeRegionList* list) {
1027     _secondary_free_list.add_as_tail(list);
1028   }
1029 
1030   void append_secondary_free_list() {
1031     _free_list.add_as_head(&_secondary_free_list);
1032   }
1033 
1034   void append_secondary_free_list_if_not_empty_with_lock() {
1035     // If the secondary free list looks empty there's no reason to
1036     // take the lock and then try to append it.
1037     if (!_secondary_free_list.is_empty()) {
1038       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1039       append_secondary_free_list();
1040     }
1041   }
1042 
1043   void set_free_regions_coming();
1044   void reset_free_regions_coming();
1045   bool free_regions_coming() { return _free_regions_coming; }
1046   void wait_while_free_regions_coming();
1047 
1048   // Perform a collection of the heap; intended for use in implementing
1049   // "System.gc".  This probably implies as full a collection as the
1050   // "CollectedHeap" supports.
1051   virtual void collect(GCCause::Cause cause);
1052 
1053   // The same as above but assume that the caller holds the Heap_lock.
1054   void collect_locked(GCCause::Cause cause);
1055 
1056   // This interface assumes that it's being called by the
1057   // vm thread. It collects the heap assuming that the
1058   // heap lock is already held and that we are executing in
1059   // the context of the vm thread.
1060   virtual void collect_as_vm_thread(GCCause::Cause cause);
1061 
1062   // True iff a evacuation has failed in the most-recent collection.
1063   bool evacuation_failed() { return _evacuation_failed; }
1064 
1065   // It will free a region if it has allocated objects in it that are
1066   // all dead. It calls either free_region() or
1067   // free_humongous_region() depending on the type of the region that
1068   // is passed to it.
1069   void free_region_if_empty(HeapRegion* hr,
1070                             size_t* pre_used,
1071                             FreeRegionList* free_list,
1072                             HumongousRegionSet* humongous_proxy_set,
1073                             HRRSCleanupTask* hrrs_cleanup_task,
1074                             bool par);
1075 
1076   // It appends the free list to the master free list and updates the
1077   // master humongous list according to the contents of the proxy
1078   // list. It also adjusts the total used bytes according to pre_used
1079   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
1080   void update_sets_after_freeing_regions(size_t pre_used,
1081                                        FreeRegionList* free_list,
1082                                        HumongousRegionSet* humongous_proxy_set,
1083                                        bool par);
1084 
1085   // Returns "TRUE" iff "p" points into the allocated area of the heap.
1086   virtual bool is_in(const void* p) const;
1087 
1088   // Return "TRUE" iff the given object address is within the collection
1089   // set.
1090   inline bool obj_in_cs(oop obj);
1091 
1092   // Return "TRUE" iff the given object address is in the reserved
1093   // region of g1 (excluding the permanent generation).
1094   bool is_in_g1_reserved(const void* p) const {
1095     return _g1_reserved.contains(p);
1096   }
1097 
1098   // Returns a MemRegion that corresponds to the space that has been
1099   // reserved for the heap
1100   MemRegion g1_reserved() {
1101     return _g1_reserved;
1102   }
1103 
1104   // Returns a MemRegion that corresponds to the space that has been
1105   // committed in the heap
1106   MemRegion g1_committed() {
1107     return _g1_committed;
1108   }
1109 
1110   virtual bool is_in_closed_subset(const void* p) const;
1111 
1112   // Dirty card table entries covering a list of young regions.
1113   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
1114 
1115   // This resets the card table to all zeros.  It is used after
1116   // a collection pause which used the card table to claim cards.
1117   void cleanUpCardTable();
1118 
1119   // Iteration functions.
1120 
1121   // Iterate over all the ref-containing fields of all objects, calling
1122   // "cl.do_oop" on each.
1123   virtual void oop_iterate(OopClosure* cl) {
1124     oop_iterate(cl, true);
1125   }
1126   void oop_iterate(OopClosure* cl, bool do_perm);
1127 
1128   // Same as above, restricted to a memory region.
1129   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
1130     oop_iterate(mr, cl, true);
1131   }
1132   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
1133 
1134   // Iterate over all objects, calling "cl.do_object" on each.
1135   virtual void object_iterate(ObjectClosure* cl) {
1136     object_iterate(cl, true);
1137   }
1138   virtual void safe_object_iterate(ObjectClosure* cl) {
1139     object_iterate(cl, true);
1140   }
1141   void object_iterate(ObjectClosure* cl, bool do_perm);
1142 
1143   // Iterate over all objects allocated since the last collection, calling
1144   // "cl.do_object" on each.  The heap must have been initialized properly
1145   // to support this function, or else this call will fail.
1146   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
1147 
1148   // Iterate over all spaces in use in the heap, in ascending address order.
1149   virtual void space_iterate(SpaceClosure* cl);
1150 
1151   // Iterate over heap regions, in address order, terminating the
1152   // iteration early if the "doHeapRegion" method returns "true".
1153   void heap_region_iterate(HeapRegionClosure* blk) const;
1154 
1155   // Iterate over heap regions starting with r (or the first region if "r"
1156   // is NULL), in address order, terminating early if the "doHeapRegion"
1157   // method returns "true".
1158   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
1159 
1160   // Return the region with the given index. It assumes the index is valid.
1161   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
1162 
1163   // Divide the heap region sequence into "chunks" of some size (the number
1164   // of regions divided by the number of parallel threads times some
1165   // overpartition factor, currently 4).  Assumes that this will be called
1166   // in parallel by ParallelGCThreads worker threads with discinct worker
1167   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1168   // calls will use the same "claim_value", and that that claim value is
1169   // different from the claim_value of any heap region before the start of
1170   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1171   // attempting to claim the first region in each chunk, and, if
1172   // successful, applying the closure to each region in the chunk (and
1173   // setting the claim value of the second and subsequent regions of the
1174   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1175   // i.e., that a closure never attempt to abort a traversal.
1176   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1177                                        int worker,
1178                                        jint claim_value);
1179 
1180   // It resets all the region claim values to the default.
1181   void reset_heap_region_claim_values();
1182 
1183 #ifdef ASSERT
1184   bool check_heap_region_claim_values(jint claim_value);
1185 #endif // ASSERT
1186 
1187   // Iterate over the regions (if any) in the current collection set.
1188   void collection_set_iterate(HeapRegionClosure* blk);
1189 
1190   // As above but starting from region r
1191   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1192 
1193   // Returns the first (lowest address) compactible space in the heap.
1194   virtual CompactibleSpace* first_compactible_space();
1195 
1196   // A CollectedHeap will contain some number of spaces.  This finds the
1197   // space containing a given address, or else returns NULL.
1198   virtual Space* space_containing(const void* addr) const;
1199 
1200   // A G1CollectedHeap will contain some number of heap regions.  This
1201   // finds the region containing a given address, or else returns NULL.
1202   template <class T>
1203   inline HeapRegion* heap_region_containing(const T addr) const;
1204 
1205   // Like the above, but requires "addr" to be in the heap (to avoid a
1206   // null-check), and unlike the above, may return an continuing humongous
1207   // region.
1208   template <class T>
1209   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1210 
1211   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1212   // each address in the (reserved) heap is a member of exactly
1213   // one block.  The defining characteristic of a block is that it is
1214   // possible to find its size, and thus to progress forward to the next
1215   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1216   // represent Java objects, or they might be free blocks in a
1217   // free-list-based heap (or subheap), as long as the two kinds are
1218   // distinguishable and the size of each is determinable.
1219 
1220   // Returns the address of the start of the "block" that contains the
1221   // address "addr".  We say "blocks" instead of "object" since some heaps
1222   // may not pack objects densely; a chunk may either be an object or a
1223   // non-object.
1224   virtual HeapWord* block_start(const void* addr) const;
1225 
1226   // Requires "addr" to be the start of a chunk, and returns its size.
1227   // "addr + size" is required to be the start of a new chunk, or the end
1228   // of the active area of the heap.
1229   virtual size_t block_size(const HeapWord* addr) const;
1230 
1231   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1232   // the block is an object.
1233   virtual bool block_is_obj(const HeapWord* addr) const;
1234 
1235   // Does this heap support heap inspection? (+PrintClassHistogram)
1236   virtual bool supports_heap_inspection() const { return true; }
1237 
1238   // Section on thread-local allocation buffers (TLABs)
1239   // See CollectedHeap for semantics.
1240 
1241   virtual bool supports_tlab_allocation() const;
1242   virtual size_t tlab_capacity(Thread* thr) const;
1243   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
1244 
1245   // Can a compiler initialize a new object without store barriers?
1246   // This permission only extends from the creation of a new object
1247   // via a TLAB up to the first subsequent safepoint. If such permission
1248   // is granted for this heap type, the compiler promises to call
1249   // defer_store_barrier() below on any slow path allocation of
1250   // a new object for which such initializing store barriers will
1251   // have been elided. G1, like CMS, allows this, but should be
1252   // ready to provide a compensating write barrier as necessary
1253   // if that storage came out of a non-young region. The efficiency
1254   // of this implementation depends crucially on being able to
1255   // answer very efficiently in constant time whether a piece of
1256   // storage in the heap comes from a young region or not.
1257   // See ReduceInitialCardMarks.
1258   virtual bool can_elide_tlab_store_barriers() const {
1259     // 6920090: Temporarily disabled, because of lingering
1260     // instabilities related to RICM with G1. In the
1261     // interim, the option ReduceInitialCardMarksForG1
1262     // below is left solely as a debugging device at least
1263     // until 6920109 fixes the instabilities.
1264     return ReduceInitialCardMarksForG1;
1265   }
1266 
1267   virtual bool card_mark_must_follow_store() const {
1268     return true;
1269   }
1270 
1271   bool is_in_young(const oop obj) {
1272     HeapRegion* hr = heap_region_containing(obj);
1273     return hr != NULL && hr->is_young();
1274   }
1275 
1276 #ifdef ASSERT
1277   virtual bool is_in_partial_collection(const void* p);
1278 #endif
1279 
1280   virtual bool is_scavengable(const void* addr);
1281 
1282   // We don't need barriers for initializing stores to objects
1283   // in the young gen: for the SATB pre-barrier, there is no
1284   // pre-value that needs to be remembered; for the remembered-set
1285   // update logging post-barrier, we don't maintain remembered set
1286   // information for young gen objects. Note that non-generational
1287   // G1 does not have any "young" objects, should not elide
1288   // the rs logging barrier and so should always answer false below.
1289   // However, non-generational G1 (-XX:-G1Gen) appears to have
1290   // bit-rotted so was not tested below.
1291   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1292     // Re 6920090, 6920109 above.
1293     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
1294     assert(G1Gen || !is_in_young(new_obj),
1295            "Non-generational G1 should never return true below");
1296     return is_in_young(new_obj);
1297   }
1298 
1299   // Can a compiler elide a store barrier when it writes
1300   // a permanent oop into the heap?  Applies when the compiler
1301   // is storing x to the heap, where x->is_perm() is true.
1302   virtual bool can_elide_permanent_oop_store_barriers() const {
1303     // At least until perm gen collection is also G1-ified, at
1304     // which point this should return false.
1305     return true;
1306   }
1307 
1308   // Returns "true" iff the given word_size is "very large".
1309   static bool isHumongous(size_t word_size) {
1310     // Note this has to be strictly greater-than as the TLABs
1311     // are capped at the humongous thresold and we want to
1312     // ensure that we don't try to allocate a TLAB as
1313     // humongous and that we don't allocate a humongous
1314     // object in a TLAB.
1315     return word_size > _humongous_object_threshold_in_words;
1316   }
1317 
1318   // Update mod union table with the set of dirty cards.
1319   void updateModUnion();
1320 
1321   // Set the mod union bits corresponding to the given memRegion.  Note
1322   // that this is always a safe operation, since it doesn't clear any
1323   // bits.
1324   void markModUnionRange(MemRegion mr);
1325 
1326   // Records the fact that a marking phase is no longer in progress.
1327   void set_marking_complete() {
1328     _mark_in_progress = false;
1329   }
1330   void set_marking_started() {
1331     _mark_in_progress = true;
1332   }
1333   bool mark_in_progress() {
1334     return _mark_in_progress;
1335   }
1336 
1337   // Print the maximum heap capacity.
1338   virtual size_t max_capacity() const;
1339 
1340   virtual jlong millis_since_last_gc();
1341 
1342   // Perform any cleanup actions necessary before allowing a verification.
1343   virtual void prepare_for_verify();
1344 
1345   // Perform verification.
1346 
1347   // vo == UsePrevMarking  -> use "prev" marking information,
1348   // vo == UseNextMarking -> use "next" marking information
1349   // vo == UseMarkWord    -> use the mark word in the object header
1350   //
1351   // NOTE: Only the "prev" marking information is guaranteed to be
1352   // consistent most of the time, so most calls to this should use
1353   // vo == UsePrevMarking.
1354   // Currently, there is only one case where this is called with
1355   // vo == UseNextMarking, which is to verify the "next" marking
1356   // information at the end of remark.
1357   // Currently there is only one place where this is called with
1358   // vo == UseMarkWord, which is to verify the marking during a
1359   // full GC.
1360   void verify(bool allow_dirty, bool silent, VerifyOption vo);
1361 
1362   // Override; it uses the "prev" marking information
1363   virtual void verify(bool allow_dirty, bool silent);
1364   // Default behavior by calling print(tty);
1365   virtual void print() const;
1366   // This calls print_on(st, PrintHeapAtGCExtended).
1367   virtual void print_on(outputStream* st) const;
1368   // If extended is true, it will print out information for all
1369   // regions in the heap by calling print_on_extended(st).
1370   virtual void print_on(outputStream* st, bool extended) const;
1371   virtual void print_on_extended(outputStream* st) const;
1372 
1373   virtual void print_gc_threads_on(outputStream* st) const;
1374   virtual void gc_threads_do(ThreadClosure* tc) const;
1375 
1376   // Override
1377   void print_tracing_info() const;
1378 
1379   // The following two methods are helpful for debugging RSet issues.
1380   void print_cset_rsets() PRODUCT_RETURN;
1381   void print_all_rsets() PRODUCT_RETURN;
1382 
1383   // Convenience function to be used in situations where the heap type can be
1384   // asserted to be this type.
1385   static G1CollectedHeap* heap();
1386 
1387   void empty_young_list();
1388 
1389   void set_region_short_lived_locked(HeapRegion* hr);
1390   // add appropriate methods for any other surv rate groups
1391 
1392   YoungList* young_list() { return _young_list; }
1393 
1394   // debugging
1395   bool check_young_list_well_formed() {
1396     return _young_list->check_list_well_formed();
1397   }
1398 
1399   bool check_young_list_empty(bool check_heap,
1400                               bool check_sample = true);
1401 
1402   // *** Stuff related to concurrent marking.  It's not clear to me that so
1403   // many of these need to be public.
1404 
1405   // The functions below are helper functions that a subclass of
1406   // "CollectedHeap" can use in the implementation of its virtual
1407   // functions.
1408   // This performs a concurrent marking of the live objects in a
1409   // bitmap off to the side.
1410   void doConcurrentMark();
1411 
1412   // Do a full concurrent marking, synchronously.
1413   void do_sync_mark();
1414 
1415   bool isMarkedPrev(oop obj) const;
1416   bool isMarkedNext(oop obj) const;
1417 
1418   // vo == UsePrevMarking -> use "prev" marking information,
1419   // vo == UseNextMarking -> use "next" marking information,
1420   // vo == UseMarkWord    -> use mark word from object header
1421   bool is_obj_dead_cond(const oop obj,
1422                         const HeapRegion* hr,
1423                         const VerifyOption vo) const {
1424 
1425     switch (vo) {
1426       case VerifyOption_G1UsePrevMarking:
1427         return is_obj_dead(obj, hr);
1428       case VerifyOption_G1UseNextMarking:
1429         return is_obj_ill(obj, hr);
1430       default:
1431         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1432         return !obj->is_gc_marked();
1433     }
1434   }
1435 
1436   // Determine if an object is dead, given the object and also
1437   // the region to which the object belongs. An object is dead
1438   // iff a) it was not allocated since the last mark and b) it
1439   // is not marked.
1440 
1441   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1442     return
1443       !hr->obj_allocated_since_prev_marking(obj) &&
1444       !isMarkedPrev(obj);
1445   }
1446 
1447   // This is used when copying an object to survivor space.
1448   // If the object is marked live, then we mark the copy live.
1449   // If the object is allocated since the start of this mark
1450   // cycle, then we mark the copy live.
1451   // If the object has been around since the previous mark
1452   // phase, and hasn't been marked yet during this phase,
1453   // then we don't mark it, we just wait for the
1454   // current marking cycle to get to it.
1455 
1456   // This function returns true when an object has been
1457   // around since the previous marking and hasn't yet
1458   // been marked during this marking.
1459 
1460   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1461     return
1462       !hr->obj_allocated_since_next_marking(obj) &&
1463       !isMarkedNext(obj);
1464   }
1465 
1466   // Determine if an object is dead, given only the object itself.
1467   // This will find the region to which the object belongs and
1468   // then call the region version of the same function.
1469 
1470   // Added if it is in permanent gen it isn't dead.
1471   // Added if it is NULL it isn't dead.
1472 
1473   // vo == UsePrevMarking -> use "prev" marking information,
1474   // vo == UseNextMarking -> use "next" marking information,
1475   // vo == UseMarkWord    -> use mark word from object header
1476   bool is_obj_dead_cond(const oop obj,
1477                         const VerifyOption vo) const {
1478 
1479     switch (vo) {
1480       case VerifyOption_G1UsePrevMarking:
1481         return is_obj_dead(obj);
1482       case VerifyOption_G1UseNextMarking:
1483         return is_obj_ill(obj);
1484       default:
1485         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1486         return !obj->is_gc_marked();
1487     }
1488   }
1489 
1490   bool is_obj_dead(const oop obj) const {
1491     const HeapRegion* hr = heap_region_containing(obj);
1492     if (hr == NULL) {
1493       if (Universe::heap()->is_in_permanent(obj))
1494         return false;
1495       else if (obj == NULL) return false;
1496       else return true;
1497     }
1498     else return is_obj_dead(obj, hr);
1499   }
1500 
1501   bool is_obj_ill(const oop obj) const {
1502     const HeapRegion* hr = heap_region_containing(obj);
1503     if (hr == NULL) {
1504       if (Universe::heap()->is_in_permanent(obj))
1505         return false;
1506       else if (obj == NULL) return false;
1507       else return true;
1508     }
1509     else return is_obj_ill(obj, hr);
1510   }
1511 
1512   // The following is just to alert the verification code
1513   // that a full collection has occurred and that the
1514   // remembered sets are no longer up to date.
1515   bool _full_collection;
1516   void set_full_collection() { _full_collection = true;}
1517   void clear_full_collection() {_full_collection = false;}
1518   bool full_collection() {return _full_collection;}
1519 
1520   ConcurrentMark* concurrent_mark() const { return _cm; }
1521   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1522 
1523   // The dirty cards region list is used to record a subset of regions
1524   // whose cards need clearing. The list if populated during the
1525   // remembered set scanning and drained during the card table
1526   // cleanup. Although the methods are reentrant, population/draining
1527   // phases must not overlap. For synchronization purposes the last
1528   // element on the list points to itself.
1529   HeapRegion* _dirty_cards_region_list;
1530   void push_dirty_cards_region(HeapRegion* hr);
1531   HeapRegion* pop_dirty_cards_region();
1532 
1533 public:
1534   void stop_conc_gc_threads();
1535 
1536   // <NEW PREDICTION>
1537 
1538   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
1539   void check_if_region_is_too_expensive(double predicted_time_ms);
1540   size_t pending_card_num();
1541   size_t max_pending_card_num();
1542   size_t cards_scanned();
1543 
1544   // </NEW PREDICTION>
1545 
1546 protected:
1547   size_t _max_heap_capacity;
1548 };
1549 
1550 #define use_local_bitmaps         1
1551 #define verify_local_bitmaps      0
1552 #define oop_buffer_length       256
1553 
1554 #ifndef PRODUCT
1555 class GCLabBitMap;
1556 class GCLabBitMapClosure: public BitMapClosure {
1557 private:
1558   ConcurrentMark* _cm;
1559   GCLabBitMap*    _bitmap;
1560 
1561 public:
1562   GCLabBitMapClosure(ConcurrentMark* cm,
1563                      GCLabBitMap* bitmap) {
1564     _cm     = cm;
1565     _bitmap = bitmap;
1566   }
1567 
1568   virtual bool do_bit(size_t offset);
1569 };
1570 #endif // !PRODUCT
1571 
1572 class GCLabBitMap: public BitMap {
1573 private:
1574   ConcurrentMark* _cm;
1575 
1576   int       _shifter;
1577   size_t    _bitmap_word_covers_words;
1578 
1579   // beginning of the heap
1580   HeapWord* _heap_start;
1581 
1582   // this is the actual start of the GCLab
1583   HeapWord* _real_start_word;
1584 
1585   // this is the actual end of the GCLab
1586   HeapWord* _real_end_word;
1587 
1588   // this is the first word, possibly located before the actual start
1589   // of the GCLab, that corresponds to the first bit of the bitmap
1590   HeapWord* _start_word;
1591 
1592   // size of a GCLab in words
1593   size_t _gclab_word_size;
1594 
1595   static int shifter() {
1596     return MinObjAlignment - 1;
1597   }
1598 
1599   // how many heap words does a single bitmap word corresponds to?
1600   static size_t bitmap_word_covers_words() {
1601     return BitsPerWord << shifter();
1602   }
1603 
1604   size_t gclab_word_size() const {
1605     return _gclab_word_size;
1606   }
1607 
1608   // Calculates actual GCLab size in words
1609   size_t gclab_real_word_size() const {
1610     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
1611            / BitsPerWord;
1612   }
1613 
1614   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
1615     size_t bits_in_bitmap = gclab_word_size >> shifter();
1616     // We are going to ensure that the beginning of a word in this
1617     // bitmap also corresponds to the beginning of a word in the
1618     // global marking bitmap. To handle the case where a GCLab
1619     // starts from the middle of the bitmap, we need to add enough
1620     // space (i.e. up to a bitmap word) to ensure that we have
1621     // enough bits in the bitmap.
1622     return bits_in_bitmap + BitsPerWord - 1;
1623   }
1624 public:
1625   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
1626     : BitMap(bitmap_size_in_bits(gclab_word_size)),
1627       _cm(G1CollectedHeap::heap()->concurrent_mark()),
1628       _shifter(shifter()),
1629       _bitmap_word_covers_words(bitmap_word_covers_words()),
1630       _heap_start(heap_start),
1631       _gclab_word_size(gclab_word_size),
1632       _real_start_word(NULL),
1633       _real_end_word(NULL),
1634       _start_word(NULL)
1635   {
1636     guarantee( size_in_words() >= bitmap_size_in_words(),
1637                "just making sure");
1638   }
1639 
1640   inline unsigned heapWordToOffset(HeapWord* addr) {
1641     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
1642     assert(offset < size(), "offset should be within bounds");
1643     return offset;
1644   }
1645 
1646   inline HeapWord* offsetToHeapWord(size_t offset) {
1647     HeapWord* addr =  _start_word + (offset << _shifter);
1648     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
1649     return addr;
1650   }
1651 
1652   bool fields_well_formed() {
1653     bool ret1 = (_real_start_word == NULL) &&
1654                 (_real_end_word == NULL) &&
1655                 (_start_word == NULL);
1656     if (ret1)
1657       return true;
1658 
1659     bool ret2 = _real_start_word >= _start_word &&
1660       _start_word < _real_end_word &&
1661       (_real_start_word + _gclab_word_size) == _real_end_word &&
1662       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
1663                                                               > _real_end_word;
1664     return ret2;
1665   }
1666 
1667   inline bool mark(HeapWord* addr) {
1668     guarantee(use_local_bitmaps, "invariant");
1669     assert(fields_well_formed(), "invariant");
1670 
1671     if (addr >= _real_start_word && addr < _real_end_word) {
1672       assert(!isMarked(addr), "should not have already been marked");
1673 
1674       // first mark it on the bitmap
1675       at_put(heapWordToOffset(addr), true);
1676 
1677       return true;
1678     } else {
1679       return false;
1680     }
1681   }
1682 
1683   inline bool isMarked(HeapWord* addr) {
1684     guarantee(use_local_bitmaps, "invariant");
1685     assert(fields_well_formed(), "invariant");
1686 
1687     return at(heapWordToOffset(addr));
1688   }
1689 
1690   void set_buffer(HeapWord* start) {
1691     guarantee(use_local_bitmaps, "invariant");
1692     clear();
1693 
1694     assert(start != NULL, "invariant");
1695     _real_start_word = start;
1696     _real_end_word   = start + _gclab_word_size;
1697 
1698     size_t diff =
1699       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
1700     _start_word = start - diff;
1701 
1702     assert(fields_well_formed(), "invariant");
1703   }
1704 
1705 #ifndef PRODUCT
1706   void verify() {
1707     // verify that the marks have been propagated
1708     GCLabBitMapClosure cl(_cm, this);
1709     iterate(&cl);
1710   }
1711 #endif // PRODUCT
1712 
1713   void retire() {
1714     guarantee(use_local_bitmaps, "invariant");
1715     assert(fields_well_formed(), "invariant");
1716 
1717     if (_start_word != NULL) {
1718       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
1719 
1720       // this means that the bitmap was set up for the GCLab
1721       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
1722 
1723       mark_bitmap->mostly_disjoint_range_union(this,
1724                                 0, // always start from the start of the bitmap
1725                                 _start_word,
1726                                 gclab_real_word_size());
1727       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
1728 
1729 #ifndef PRODUCT
1730       if (use_local_bitmaps && verify_local_bitmaps)
1731         verify();
1732 #endif // PRODUCT
1733     } else {
1734       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
1735     }
1736   }
1737 
1738   size_t bitmap_size_in_words() const {
1739     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
1740   }
1741 
1742 };
1743 
1744 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1745 private:
1746   bool        _retired;
1747   bool        _during_marking;
1748   GCLabBitMap _bitmap;
1749 
1750 public:
1751   G1ParGCAllocBuffer(size_t gclab_word_size) :
1752     ParGCAllocBuffer(gclab_word_size),
1753     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
1754     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
1755     _retired(false)
1756   { }
1757 
1758   inline bool mark(HeapWord* addr) {
1759     guarantee(use_local_bitmaps, "invariant");
1760     assert(_during_marking, "invariant");
1761     return _bitmap.mark(addr);
1762   }
1763 
1764   inline void set_buf(HeapWord* buf) {
1765     if (use_local_bitmaps && _during_marking)
1766       _bitmap.set_buffer(buf);
1767     ParGCAllocBuffer::set_buf(buf);
1768     _retired = false;
1769   }
1770 
1771   inline void retire(bool end_of_gc, bool retain) {
1772     if (_retired)
1773       return;
1774     if (use_local_bitmaps && _during_marking) {
1775       _bitmap.retire();
1776     }
1777     ParGCAllocBuffer::retire(end_of_gc, retain);
1778     _retired = true;
1779   }
1780 };
1781 
1782 class G1ParScanThreadState : public StackObj {
1783 protected:
1784   G1CollectedHeap* _g1h;
1785   RefToScanQueue*  _refs;
1786   DirtyCardQueue   _dcq;
1787   CardTableModRefBS* _ct_bs;
1788   G1RemSet* _g1_rem;
1789 
1790   G1ParGCAllocBuffer  _surviving_alloc_buffer;
1791   G1ParGCAllocBuffer  _tenured_alloc_buffer;
1792   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
1793   ageTable            _age_table;
1794 
1795   size_t           _alloc_buffer_waste;
1796   size_t           _undo_waste;
1797 
1798   OopsInHeapRegionClosure*      _evac_failure_cl;
1799   G1ParScanHeapEvacClosure*     _evac_cl;
1800   G1ParScanPartialArrayClosure* _partial_scan_cl;
1801 
1802   int _hash_seed;
1803   int _queue_num;
1804 
1805   size_t _term_attempts;
1806 
1807   double _start;
1808   double _start_strong_roots;
1809   double _strong_roots_time;
1810   double _start_term;
1811   double _term_time;
1812 
1813   // Map from young-age-index (0 == not young, 1 is youngest) to
1814   // surviving words. base is what we get back from the malloc call
1815   size_t* _surviving_young_words_base;
1816   // this points into the array, as we use the first few entries for padding
1817   size_t* _surviving_young_words;
1818 
1819 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1820 
1821   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1822 
1823   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1824 
1825   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1826   CardTableModRefBS* ctbs()                      { return _ct_bs; }
1827 
1828   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1829     if (!from->is_survivor()) {
1830       _g1_rem->par_write_ref(from, p, tid);
1831     }
1832   }
1833 
1834   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1835     // If the new value of the field points to the same region or
1836     // is the to-space, we don't need to include it in the Rset updates.
1837     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1838       size_t card_index = ctbs()->index_for(p);
1839       // If the card hasn't been added to the buffer, do it.
1840       if (ctbs()->mark_card_deferred(card_index)) {
1841         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1842       }
1843     }
1844   }
1845 
1846 public:
1847   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
1848 
1849   ~G1ParScanThreadState() {
1850     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
1851   }
1852 
1853   RefToScanQueue*   refs()            { return _refs;             }
1854   ageTable*         age_table()       { return &_age_table;       }
1855 
1856   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1857     return _alloc_buffers[purpose];
1858   }
1859 
1860   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1861   size_t undo_waste() const                      { return _undo_waste; }
1862 
1863 #ifdef ASSERT
1864   bool verify_ref(narrowOop* ref) const;
1865   bool verify_ref(oop* ref) const;
1866   bool verify_task(StarTask ref) const;
1867 #endif // ASSERT
1868 
1869   template <class T> void push_on_queue(T* ref) {
1870     assert(verify_ref(ref), "sanity");
1871     refs()->push(ref);
1872   }
1873 
1874   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1875     if (G1DeferredRSUpdate) {
1876       deferred_rs_update(from, p, tid);
1877     } else {
1878       immediate_rs_update(from, p, tid);
1879     }
1880   }
1881 
1882   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1883 
1884     HeapWord* obj = NULL;
1885     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1886     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1887       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
1888       assert(gclab_word_size == alloc_buf->word_sz(),
1889              "dynamic resizing is not supported");
1890       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
1891       alloc_buf->retire(false, false);
1892 
1893       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1894       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1895       // Otherwise.
1896       alloc_buf->set_buf(buf);
1897 
1898       obj = alloc_buf->allocate(word_sz);
1899       assert(obj != NULL, "buffer was definitely big enough...");
1900     } else {
1901       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1902     }
1903     return obj;
1904   }
1905 
1906   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1907     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
1908     if (obj != NULL) return obj;
1909     return allocate_slow(purpose, word_sz);
1910   }
1911 
1912   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
1913     if (alloc_buffer(purpose)->contains(obj)) {
1914       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
1915              "should contain whole object");
1916       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
1917     } else {
1918       CollectedHeap::fill_with_object(obj, word_sz);
1919       add_to_undo_waste(word_sz);
1920     }
1921   }
1922 
1923   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
1924     _evac_failure_cl = evac_failure_cl;
1925   }
1926   OopsInHeapRegionClosure* evac_failure_closure() {
1927     return _evac_failure_cl;
1928   }
1929 
1930   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
1931     _evac_cl = evac_cl;
1932   }
1933 
1934   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
1935     _partial_scan_cl = partial_scan_cl;
1936   }
1937 
1938   int* hash_seed() { return &_hash_seed; }
1939   int  queue_num() { return _queue_num; }
1940 
1941   size_t term_attempts() const  { return _term_attempts; }
1942   void note_term_attempt() { _term_attempts++; }
1943 
1944   void start_strong_roots() {
1945     _start_strong_roots = os::elapsedTime();
1946   }
1947   void end_strong_roots() {
1948     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
1949   }
1950   double strong_roots_time() const { return _strong_roots_time; }
1951 
1952   void start_term_time() {
1953     note_term_attempt();
1954     _start_term = os::elapsedTime();
1955   }
1956   void end_term_time() {
1957     _term_time += (os::elapsedTime() - _start_term);
1958   }
1959   double term_time() const { return _term_time; }
1960 
1961   double elapsed_time() const {
1962     return os::elapsedTime() - _start;
1963   }
1964 
1965   static void
1966     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
1967   void
1968     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
1969 
1970   size_t* surviving_young_words() {
1971     // We add on to hide entry 0 which accumulates surviving words for
1972     // age -1 regions (i.e. non-young ones)
1973     return _surviving_young_words;
1974   }
1975 
1976   void retire_alloc_buffers() {
1977     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1978       size_t waste = _alloc_buffers[ap]->words_remaining();
1979       add_to_alloc_buffer_waste(waste);
1980       _alloc_buffers[ap]->retire(true, false);
1981     }
1982   }
1983 
1984   template <class T> void deal_with_reference(T* ref_to_scan) {
1985     if (has_partial_array_mask(ref_to_scan)) {
1986       _partial_scan_cl->do_oop_nv(ref_to_scan);
1987     } else {
1988       // Note: we can use "raw" versions of "region_containing" because
1989       // "obj_to_scan" is definitely in the heap, and is not in a
1990       // humongous region.
1991       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
1992       _evac_cl->set_region(r);
1993       _evac_cl->do_oop_nv(ref_to_scan);
1994     }
1995   }
1996 
1997   void deal_with_reference(StarTask ref) {
1998     assert(verify_task(ref), "sanity");
1999     if (ref.is_narrow()) {
2000       deal_with_reference((narrowOop*)ref);
2001     } else {
2002       deal_with_reference((oop*)ref);
2003     }
2004   }
2005 
2006 public:
2007   void trim_queue();
2008 };
2009 
2010 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP