1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1AllocRegion.hpp"
  30 #include "gc_implementation/g1/g1HRPrinter.hpp"
  31 #include "gc_implementation/g1/g1RemSet.hpp"
  32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  33 #include "gc_implementation/g1/heapRegionSeq.hpp"
  34 #include "gc_implementation/g1/heapRegionSets.hpp"
  35 #include "gc_implementation/shared/hSpaceCounters.hpp"
  36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
  37 #include "memory/barrierSet.hpp"
  38 #include "memory/memRegion.hpp"
  39 #include "memory/sharedHeap.hpp"
  40 
  41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  42 // It uses the "Garbage First" heap organization and algorithm, which
  43 // may combine concurrent marking with parallel, incremental compaction of
  44 // heap subsets that will yield large amounts of garbage.
  45 
  46 class HeapRegion;
  47 class HRRSCleanupTask;
  48 class PermanentGenerationSpec;
  49 class GenerationSpec;
  50 class OopsInHeapRegionClosure;
  51 class G1ScanHeapEvacClosure;
  52 class ObjectClosure;
  53 class SpaceClosure;
  54 class CompactibleSpaceClosure;
  55 class Space;
  56 class G1CollectorPolicy;
  57 class GenRemSet;
  58 class G1RemSet;
  59 class HeapRegionRemSetIterator;
  60 class ConcurrentMark;
  61 class ConcurrentMarkThread;
  62 class ConcurrentG1Refine;
  63 class GenerationCounters;
  64 
  65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
  66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
  67 
  68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  70 
  71 enum GCAllocPurpose {
  72   GCAllocForTenured,
  73   GCAllocForSurvived,
  74   GCAllocPurposeCount
  75 };
  76 
  77 class YoungList : public CHeapObj {
  78 private:
  79   G1CollectedHeap* _g1h;
  80 
  81   HeapRegion* _head;
  82 
  83   HeapRegion* _survivor_head;
  84   HeapRegion* _survivor_tail;
  85 
  86   HeapRegion* _curr;
  87 
  88   size_t      _length;
  89   size_t      _survivor_length;
  90 
  91   size_t      _last_sampled_rs_lengths;
  92   size_t      _sampled_rs_lengths;
  93 
  94   void         empty_list(HeapRegion* list);
  95 
  96 public:
  97   YoungList(G1CollectedHeap* g1h);
  98 
  99   void         push_region(HeapRegion* hr);
 100   void         add_survivor_region(HeapRegion* hr);
 101 
 102   void         empty_list();
 103   bool         is_empty() { return _length == 0; }
 104   size_t       length() { return _length; }
 105   size_t       survivor_length() { return _survivor_length; }
 106 
 107   // Currently we do not keep track of the used byte sum for the
 108   // young list and the survivors and it'd be quite a lot of work to
 109   // do so. When we'll eventually replace the young list with
 110   // instances of HeapRegionLinkedList we'll get that for free. So,
 111   // we'll report the more accurate information then.
 112   size_t       eden_used_bytes() {
 113     assert(length() >= survivor_length(), "invariant");
 114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
 115   }
 116   size_t       survivor_used_bytes() {
 117     return survivor_length() * HeapRegion::GrainBytes;
 118   }
 119 
 120   void rs_length_sampling_init();
 121   bool rs_length_sampling_more();
 122   void rs_length_sampling_next();
 123 
 124   void reset_sampled_info() {
 125     _last_sampled_rs_lengths =   0;
 126   }
 127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 128 
 129   // for development purposes
 130   void reset_auxilary_lists();
 131   void clear() { _head = NULL; _length = 0; }
 132 
 133   void clear_survivors() {
 134     _survivor_head    = NULL;
 135     _survivor_tail    = NULL;
 136     _survivor_length  = 0;
 137   }
 138 
 139   HeapRegion* first_region() { return _head; }
 140   HeapRegion* first_survivor_region() { return _survivor_head; }
 141   HeapRegion* last_survivor_region() { return _survivor_tail; }
 142 
 143   // debugging
 144   bool          check_list_well_formed();
 145   bool          check_list_empty(bool check_sample = true);
 146   void          print();
 147 };
 148 
 149 class MutatorAllocRegion : public G1AllocRegion {
 150 protected:
 151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 153 public:
 154   MutatorAllocRegion()
 155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 156 };
 157 
 158 // The G1 STW is alive closure.
 159 // An instance is embedded into the G1CH and used as the
 160 // _is_alive_non_header closure in the STW reference
 161 // processor. It is also extensively used during refence
 162 // processing during STW evacuation pauses.
 163 class G1STWIsAliveClosure: public BoolObjectClosure {
 164   G1CollectedHeap* _g1;
 165 public:
 166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 167   void do_object(oop p) { assert(false, "Do not call."); }
 168   bool do_object_b(oop p);
 169 };
 170 
 171 class RefineCardTableEntryClosure;
 172 
 173 class G1CollectedHeap : public SharedHeap {
 174   friend class VM_G1CollectForAllocation;
 175   friend class VM_GenCollectForPermanentAllocation;
 176   friend class VM_G1CollectFull;
 177   friend class VM_G1IncCollectionPause;
 178   friend class VMStructs;
 179   friend class MutatorAllocRegion;
 180 
 181   // Closures used in implementation.
 182   friend class G1ParCopyHelper;
 183   friend class G1IsAliveClosure;
 184   friend class G1EvacuateFollowersClosure;
 185   friend class G1ParScanThreadState;
 186   friend class G1ParScanClosureSuper;
 187   friend class G1ParEvacuateFollowersClosure;
 188   friend class G1ParTask;
 189   friend class G1FreeGarbageRegionClosure;
 190   friend class RefineCardTableEntryClosure;
 191   friend class G1PrepareCompactClosure;
 192   friend class RegionSorter;
 193   friend class RegionResetter;
 194   friend class CountRCClosure;
 195   friend class EvacPopObjClosure;
 196   friend class G1ParCleanupCTTask;
 197 
 198   // Other related classes.
 199   friend class G1MarkSweep;
 200 
 201 private:
 202   // The one and only G1CollectedHeap, so static functions can find it.
 203   static G1CollectedHeap* _g1h;
 204 
 205   static size_t _humongous_object_threshold_in_words;
 206 
 207   // Storage for the G1 heap (excludes the permanent generation).
 208   VirtualSpace _g1_storage;
 209   MemRegion    _g1_reserved;
 210 
 211   // The part of _g1_storage that is currently committed.
 212   MemRegion _g1_committed;
 213 
 214   // The master free list. It will satisfy all new region allocations.
 215   MasterFreeRegionList      _free_list;
 216 
 217   // The secondary free list which contains regions that have been
 218   // freed up during the cleanup process. This will be appended to the
 219   // master free list when appropriate.
 220   SecondaryFreeRegionList   _secondary_free_list;
 221 
 222   // It keeps track of the humongous regions.
 223   MasterHumongousRegionSet  _humongous_set;
 224 
 225   // The number of regions we could create by expansion.
 226   size_t _expansion_regions;
 227 
 228   // The block offset table for the G1 heap.
 229   G1BlockOffsetSharedArray* _bot_shared;
 230 
 231   // Move all of the regions off the free lists, then rebuild those free
 232   // lists, before and after full GC.
 233   void tear_down_region_lists();
 234   void rebuild_region_lists();
 235 
 236   // The sequence of all heap regions in the heap.
 237   HeapRegionSeq _hrs;
 238 
 239   // Alloc region used to satisfy mutator allocation requests.
 240   MutatorAllocRegion _mutator_alloc_region;
 241 
 242   // It resets the mutator alloc region before new allocations can take place.
 243   void init_mutator_alloc_region();
 244 
 245   // It releases the mutator alloc region.
 246   void release_mutator_alloc_region();
 247 
 248   void abandon_gc_alloc_regions();
 249 
 250   // The to-space memory regions into which objects are being copied during
 251   // a GC.
 252   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
 253   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
 254   // These are the regions, one per GCAllocPurpose, that are half-full
 255   // at the end of a collection and that we want to reuse during the
 256   // next collection.
 257   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
 258   // This specifies whether we will keep the last half-full region at
 259   // the end of a collection so that it can be reused during the next
 260   // collection (this is specified per GCAllocPurpose)
 261   bool _retain_gc_alloc_region[GCAllocPurposeCount];
 262 
 263   // A list of the regions that have been set to be alloc regions in the
 264   // current collection.
 265   HeapRegion* _gc_alloc_region_list;
 266 
 267   // Helper for monitoring and management support.
 268   G1MonitoringSupport* _g1mm;
 269 
 270   // Determines PLAB size for a particular allocation purpose.
 271   static size_t desired_plab_sz(GCAllocPurpose purpose);
 272 
 273   // When called by par thread, requires the FreeList_lock to be held.
 274   void push_gc_alloc_region(HeapRegion* hr);
 275 
 276   // This should only be called single-threaded.  Undeclares all GC alloc
 277   // regions.
 278   void forget_alloc_region_list();
 279 
 280   // Should be used to set an alloc region, because there's other
 281   // associated bookkeeping.
 282   void set_gc_alloc_region(int purpose, HeapRegion* r);
 283 
 284   // Check well-formedness of alloc region list.
 285   bool check_gc_alloc_regions();
 286 
 287   // Outside of GC pauses, the number of bytes used in all regions other
 288   // than the current allocation region.
 289   size_t _summary_bytes_used;
 290 
 291   // This is used for a quick test on whether a reference points into
 292   // the collection set or not. Basically, we have an array, with one
 293   // byte per region, and that byte denotes whether the corresponding
 294   // region is in the collection set or not. The entry corresponding
 295   // the bottom of the heap, i.e., region 0, is pointed to by
 296   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 297   // biased so that it actually points to address 0 of the address
 298   // space, to make the test as fast as possible (we can simply shift
 299   // the address to address into it, instead of having to subtract the
 300   // bottom of the heap from the address before shifting it; basically
 301   // it works in the same way the card table works).
 302   bool* _in_cset_fast_test;
 303 
 304   // The allocated array used for the fast test on whether a reference
 305   // points into the collection set or not. This field is also used to
 306   // free the array.
 307   bool* _in_cset_fast_test_base;
 308 
 309   // The length of the _in_cset_fast_test_base array.
 310   size_t _in_cset_fast_test_length;
 311 
 312   volatile unsigned _gc_time_stamp;
 313 
 314   size_t* _surviving_young_words;
 315 
 316   G1HRPrinter _hr_printer;
 317 
 318   void setup_surviving_young_words();
 319   void update_surviving_young_words(size_t* surv_young_words);
 320   void cleanup_surviving_young_words();
 321 
 322   // It decides whether an explicit GC should start a concurrent cycle
 323   // instead of doing a STW GC. Currently, a concurrent cycle is
 324   // explicitly started if:
 325   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 326   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 327   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 328 
 329   // Keeps track of how many "full collections" (i.e., Full GCs or
 330   // concurrent cycles) we have completed. The number of them we have
 331   // started is maintained in _total_full_collections in CollectedHeap.
 332   volatile unsigned int _full_collections_completed;
 333 
 334   // This is a non-product method that is helpful for testing. It is
 335   // called at the end of a GC and artificially expands the heap by
 336   // allocating a number of dead regions. This way we can induce very
 337   // frequent marking cycles and stress the cleanup / concurrent
 338   // cleanup code more (as all the regions that will be allocated by
 339   // this method will be found dead by the marking cycle).
 340   void allocate_dummy_regions() PRODUCT_RETURN;
 341 
 342   // These are macros so that, if the assert fires, we get the correct
 343   // line number, file, etc.
 344 
 345 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 346   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 347           (_extra_message_),                                                  \
 348           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 349           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 350           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 351 
 352 #define assert_heap_locked()                                                  \
 353   do {                                                                        \
 354     assert(Heap_lock->owned_by_self(),                                        \
 355            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 356   } while (0)
 357 
 358 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 359   do {                                                                        \
 360     assert(Heap_lock->owned_by_self() ||                                      \
 361            (SafepointSynchronize::is_at_safepoint() &&                        \
 362              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 363            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 364                                         "should be at a safepoint"));         \
 365   } while (0)
 366 
 367 #define assert_heap_locked_and_not_at_safepoint()                             \
 368   do {                                                                        \
 369     assert(Heap_lock->owned_by_self() &&                                      \
 370                                     !SafepointSynchronize::is_at_safepoint(), \
 371           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 372                                        "should not be at a safepoint"));      \
 373   } while (0)
 374 
 375 #define assert_heap_not_locked()                                              \
 376   do {                                                                        \
 377     assert(!Heap_lock->owned_by_self(),                                       \
 378         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 379   } while (0)
 380 
 381 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 382   do {                                                                        \
 383     assert(!Heap_lock->owned_by_self() &&                                     \
 384                                     !SafepointSynchronize::is_at_safepoint(), \
 385       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 386                                    "should not be at a safepoint"));          \
 387   } while (0)
 388 
 389 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 390   do {                                                                        \
 391     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 392               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 393            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 394   } while (0)
 395 
 396 #define assert_not_at_safepoint()                                             \
 397   do {                                                                        \
 398     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 399            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 400   } while (0)
 401 
 402 protected:
 403 
 404   // Returns "true" iff none of the gc alloc regions have any allocations
 405   // since the last call to "save_marks".
 406   bool all_alloc_regions_no_allocs_since_save_marks();
 407   // Perform finalization stuff on all allocation regions.
 408   void retire_all_alloc_regions();
 409 
 410   // The young region list.
 411   YoungList*  _young_list;
 412 
 413   // The current policy object for the collector.
 414   G1CollectorPolicy* _g1_policy;
 415 
 416   // This is the second level of trying to allocate a new region. If
 417   // new_region() didn't find a region on the free_list, this call will
 418   // check whether there's anything available on the
 419   // secondary_free_list and/or wait for more regions to appear on
 420   // that list, if _free_regions_coming is set.
 421   HeapRegion* new_region_try_secondary_free_list();
 422 
 423   // Try to allocate a single non-humongous HeapRegion sufficient for
 424   // an allocation of the given word_size. If do_expand is true,
 425   // attempt to expand the heap if necessary to satisfy the allocation
 426   // request.
 427   HeapRegion* new_region(size_t word_size, bool do_expand);
 428 
 429   // Try to allocate a new region to be used for allocation by
 430   // a GC thread. It will try to expand the heap if no region is
 431   // available.
 432   HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
 433 
 434   // Attempt to satisfy a humongous allocation request of the given
 435   // size by finding a contiguous set of free regions of num_regions
 436   // length and remove them from the master free list. Return the
 437   // index of the first region or G1_NULL_HRS_INDEX if the search
 438   // was unsuccessful.
 439   size_t humongous_obj_allocate_find_first(size_t num_regions,
 440                                            size_t word_size);
 441 
 442   // Initialize a contiguous set of free regions of length num_regions
 443   // and starting at index first so that they appear as a single
 444   // humongous region.
 445   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
 446                                                       size_t num_regions,
 447                                                       size_t word_size);
 448 
 449   // Attempt to allocate a humongous object of the given size. Return
 450   // NULL if unsuccessful.
 451   HeapWord* humongous_obj_allocate(size_t word_size);
 452 
 453   // The following two methods, allocate_new_tlab() and
 454   // mem_allocate(), are the two main entry points from the runtime
 455   // into the G1's allocation routines. They have the following
 456   // assumptions:
 457   //
 458   // * They should both be called outside safepoints.
 459   //
 460   // * They should both be called without holding the Heap_lock.
 461   //
 462   // * All allocation requests for new TLABs should go to
 463   //   allocate_new_tlab().
 464   //
 465   // * All non-TLAB allocation requests should go to mem_allocate().
 466   //
 467   // * If either call cannot satisfy the allocation request using the
 468   //   current allocating region, they will try to get a new one. If
 469   //   this fails, they will attempt to do an evacuation pause and
 470   //   retry the allocation.
 471   //
 472   // * If all allocation attempts fail, even after trying to schedule
 473   //   an evacuation pause, allocate_new_tlab() will return NULL,
 474   //   whereas mem_allocate() will attempt a heap expansion and/or
 475   //   schedule a Full GC.
 476   //
 477   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 478   //   should never be called with word_size being humongous. All
 479   //   humongous allocation requests should go to mem_allocate() which
 480   //   will satisfy them with a special path.
 481 
 482   virtual HeapWord* allocate_new_tlab(size_t word_size);
 483 
 484   virtual HeapWord* mem_allocate(size_t word_size,
 485                                  bool*  gc_overhead_limit_was_exceeded);
 486 
 487   // The following three methods take a gc_count_before_ret
 488   // parameter which is used to return the GC count if the method
 489   // returns NULL. Given that we are required to read the GC count
 490   // while holding the Heap_lock, and these paths will take the
 491   // Heap_lock at some point, it's easier to get them to read the GC
 492   // count while holding the Heap_lock before they return NULL instead
 493   // of the caller (namely: mem_allocate()) having to also take the
 494   // Heap_lock just to read the GC count.
 495 
 496   // First-level mutator allocation attempt: try to allocate out of
 497   // the mutator alloc region without taking the Heap_lock. This
 498   // should only be used for non-humongous allocations.
 499   inline HeapWord* attempt_allocation(size_t word_size,
 500                                       unsigned int* gc_count_before_ret);
 501 
 502   // Second-level mutator allocation attempt: take the Heap_lock and
 503   // retry the allocation attempt, potentially scheduling a GC
 504   // pause. This should only be used for non-humongous allocations.
 505   HeapWord* attempt_allocation_slow(size_t word_size,
 506                                     unsigned int* gc_count_before_ret);
 507 
 508   // Takes the Heap_lock and attempts a humongous allocation. It can
 509   // potentially schedule a GC pause.
 510   HeapWord* attempt_allocation_humongous(size_t word_size,
 511                                          unsigned int* gc_count_before_ret);
 512 
 513   // Allocation attempt that should be called during safepoints (e.g.,
 514   // at the end of a successful GC). expect_null_mutator_alloc_region
 515   // specifies whether the mutator alloc region is expected to be NULL
 516   // or not.
 517   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 518                                        bool expect_null_mutator_alloc_region);
 519 
 520   // It dirties the cards that cover the block so that so that the post
 521   // write barrier never queues anything when updating objects on this
 522   // block. It is assumed (and in fact we assert) that the block
 523   // belongs to a young region.
 524   inline void dirty_young_block(HeapWord* start, size_t word_size);
 525 
 526   // Allocate blocks during garbage collection. Will ensure an
 527   // allocation region, either by picking one or expanding the
 528   // heap, and then allocate a block of the given size. The block
 529   // may not be a humongous - it must fit into a single heap region.
 530   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 531 
 532   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
 533                                     HeapRegion*    alloc_region,
 534                                     bool           par,
 535                                     size_t         word_size);
 536 
 537   // Ensure that no further allocations can happen in "r", bearing in mind
 538   // that parallel threads might be attempting allocations.
 539   void par_allocate_remaining_space(HeapRegion* r);
 540 
 541   // Retires an allocation region when it is full or at the end of a
 542   // GC pause.
 543   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
 544 
 545   // These two methods are the "callbacks" from the G1AllocRegion class.
 546 
 547   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 548   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 549                                    size_t allocated_bytes);
 550 
 551   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 552   //   inspection request and should collect the entire heap
 553   // - if clear_all_soft_refs is true, all soft references should be
 554   //   cleared during the GC
 555   // - if explicit_gc is false, word_size describes the allocation that
 556   //   the GC should attempt (at least) to satisfy
 557   // - it returns false if it is unable to do the collection due to the
 558   //   GC locker being active, true otherwise
 559   bool do_collection(bool explicit_gc,
 560                      bool clear_all_soft_refs,
 561                      size_t word_size);
 562 
 563   // Callback from VM_G1CollectFull operation.
 564   // Perform a full collection.
 565   void do_full_collection(bool clear_all_soft_refs);
 566 
 567   // Resize the heap if necessary after a full collection.  If this is
 568   // after a collect-for allocation, "word_size" is the allocation size,
 569   // and will be considered part of the used portion of the heap.
 570   void resize_if_necessary_after_full_collection(size_t word_size);
 571 
 572   // Callback from VM_G1CollectForAllocation operation.
 573   // This function does everything necessary/possible to satisfy a
 574   // failed allocation request (including collection, expansion, etc.)
 575   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 576 
 577   // Attempting to expand the heap sufficiently
 578   // to support an allocation of the given "word_size".  If
 579   // successful, perform the allocation and return the address of the
 580   // allocated block, or else "NULL".
 581   HeapWord* expand_and_allocate(size_t word_size);
 582 
 583   // Process any reference objects discovered during
 584   // an incremental evacuation pause.
 585   void process_discovered_references();
 586 
 587   // Enqueue any remaining discovered references
 588   // after processing.
 589   void enqueue_discovered_references();
 590 
 591 public:
 592 
 593   G1MonitoringSupport* g1mm() { return _g1mm; }
 594 
 595   // Expand the garbage-first heap by at least the given size (in bytes!).
 596   // Returns true if the heap was expanded by the requested amount;
 597   // false otherwise.
 598   // (Rounds up to a HeapRegion boundary.)
 599   bool expand(size_t expand_bytes);
 600 
 601   // Do anything common to GC's.
 602   virtual void gc_prologue(bool full);
 603   virtual void gc_epilogue(bool full);
 604 
 605   // We register a region with the fast "in collection set" test. We
 606   // simply set to true the array slot corresponding to this region.
 607   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 608     assert(_in_cset_fast_test_base != NULL, "sanity");
 609     assert(r->in_collection_set(), "invariant");
 610     size_t index = r->hrs_index();
 611     assert(index < _in_cset_fast_test_length, "invariant");
 612     assert(!_in_cset_fast_test_base[index], "invariant");
 613     _in_cset_fast_test_base[index] = true;
 614   }
 615 
 616   // This is a fast test on whether a reference points into the
 617   // collection set or not. It does not assume that the reference
 618   // points into the heap; if it doesn't, it will return false.
 619   bool in_cset_fast_test(oop obj) {
 620     assert(_in_cset_fast_test != NULL, "sanity");
 621     if (_g1_committed.contains((HeapWord*) obj)) {
 622       // no need to subtract the bottom of the heap from obj,
 623       // _in_cset_fast_test is biased
 624       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
 625       bool ret = _in_cset_fast_test[index];
 626       // let's make sure the result is consistent with what the slower
 627       // test returns
 628       assert( ret || !obj_in_cs(obj), "sanity");
 629       assert(!ret ||  obj_in_cs(obj), "sanity");
 630       return ret;
 631     } else {
 632       return false;
 633     }
 634   }
 635 
 636   void clear_cset_fast_test() {
 637     assert(_in_cset_fast_test_base != NULL, "sanity");
 638     memset(_in_cset_fast_test_base, false,
 639         _in_cset_fast_test_length * sizeof(bool));
 640   }
 641 
 642   // This is called at the end of either a concurrent cycle or a Full
 643   // GC to update the number of full collections completed. Those two
 644   // can happen in a nested fashion, i.e., we start a concurrent
 645   // cycle, a Full GC happens half-way through it which ends first,
 646   // and then the cycle notices that a Full GC happened and ends
 647   // too. The concurrent parameter is a boolean to help us do a bit
 648   // tighter consistency checking in the method. If concurrent is
 649   // false, the caller is the inner caller in the nesting (i.e., the
 650   // Full GC). If concurrent is true, the caller is the outer caller
 651   // in this nesting (i.e., the concurrent cycle). Further nesting is
 652   // not currently supported. The end of the this call also notifies
 653   // the FullGCCount_lock in case a Java thread is waiting for a full
 654   // GC to happen (e.g., it called System.gc() with
 655   // +ExplicitGCInvokesConcurrent).
 656   void increment_full_collections_completed(bool concurrent);
 657 
 658   unsigned int full_collections_completed() {
 659     return _full_collections_completed;
 660   }
 661 
 662   G1HRPrinter* hr_printer() { return &_hr_printer; }
 663 
 664 protected:
 665 
 666   // Shrink the garbage-first heap by at most the given size (in bytes!).
 667   // (Rounds down to a HeapRegion boundary.)
 668   virtual void shrink(size_t expand_bytes);
 669   void shrink_helper(size_t expand_bytes);
 670 
 671   #if TASKQUEUE_STATS
 672   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 673   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 674   void reset_taskqueue_stats();
 675   #endif // TASKQUEUE_STATS
 676 
 677   // Schedule the VM operation that will do an evacuation pause to
 678   // satisfy an allocation request of word_size. *succeeded will
 679   // return whether the VM operation was successful (it did do an
 680   // evacuation pause) or not (another thread beat us to it or the GC
 681   // locker was active). Given that we should not be holding the
 682   // Heap_lock when we enter this method, we will pass the
 683   // gc_count_before (i.e., total_collections()) as a parameter since
 684   // it has to be read while holding the Heap_lock. Currently, both
 685   // methods that call do_collection_pause() release the Heap_lock
 686   // before the call, so it's easy to read gc_count_before just before.
 687   HeapWord* do_collection_pause(size_t       word_size,
 688                                 unsigned int gc_count_before,
 689                                 bool*        succeeded);
 690 
 691   // The guts of the incremental collection pause, executed by the vm
 692   // thread. It returns false if it is unable to do the collection due
 693   // to the GC locker being active, true otherwise
 694   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 695 
 696   // Actually do the work of evacuating the collection set.
 697   void evacuate_collection_set();
 698 
 699   // The g1 remembered set of the heap.
 700   G1RemSet* _g1_rem_set;
 701   // And it's mod ref barrier set, used to track updates for the above.
 702   ModRefBarrierSet* _mr_bs;
 703 
 704   // A set of cards that cover the objects for which the Rsets should be updated
 705   // concurrently after the collection.
 706   DirtyCardQueueSet _dirty_card_queue_set;
 707 
 708   // The Heap Region Rem Set Iterator.
 709   HeapRegionRemSetIterator** _rem_set_iterator;
 710 
 711   // The closure used to refine a single card.
 712   RefineCardTableEntryClosure* _refine_cte_cl;
 713 
 714   // A function to check the consistency of dirty card logs.
 715   void check_ct_logs_at_safepoint();
 716 
 717   // A DirtyCardQueueSet that is used to hold cards that contain
 718   // references into the current collection set. This is used to
 719   // update the remembered sets of the regions in the collection
 720   // set in the event of an evacuation failure.
 721   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 722 
 723   // After a collection pause, make the regions in the CS into free
 724   // regions.
 725   void free_collection_set(HeapRegion* cs_head);
 726 
 727   // Abandon the current collection set without recording policy
 728   // statistics or updating free lists.
 729   void abandon_collection_set(HeapRegion* cs_head);
 730 
 731   // Applies "scan_non_heap_roots" to roots outside the heap,
 732   // "scan_rs" to roots inside the heap (having done "set_region" to
 733   // indicate the region in which the root resides), and does "scan_perm"
 734   // (setting the generation to the perm generation.)  If "scan_rs" is
 735   // NULL, then this step is skipped.  The "worker_i"
 736   // param is for use with parallel roots processing, and should be
 737   // the "i" of the calling parallel worker thread's work(i) function.
 738   // In the sequential case this param will be ignored.
 739   void g1_process_strong_roots(bool collecting_perm_gen,
 740                                SharedHeap::ScanningOption so,
 741                                OopClosure* scan_non_heap_roots,
 742                                OopsInHeapRegionClosure* scan_rs,
 743                                OopsInGenClosure* scan_perm,
 744                                int worker_i);
 745 
 746   // Apply "blk" to all the weak roots of the system.  These include
 747   // JNI weak roots, the code cache, system dictionary, symbol table,
 748   // string table, and referents of reachable weak refs.
 749   void g1_process_weak_roots(OopClosure* root_closure,
 750                              OopClosure* non_root_closure);
 751 
 752   // Invoke "save_marks" on all heap regions.
 753   void save_marks();
 754 
 755   // Frees a non-humongous region by initializing its contents and
 756   // adding it to the free list that's passed as a parameter (this is
 757   // usually a local list which will be appended to the master free
 758   // list later). The used bytes of freed regions are accumulated in
 759   // pre_used. If par is true, the region's RSet will not be freed
 760   // up. The assumption is that this will be done later.
 761   void free_region(HeapRegion* hr,
 762                    size_t* pre_used,
 763                    FreeRegionList* free_list,
 764                    bool par);
 765 
 766   // Frees a humongous region by collapsing it into individual regions
 767   // and calling free_region() for each of them. The freed regions
 768   // will be added to the free list that's passed as a parameter (this
 769   // is usually a local list which will be appended to the master free
 770   // list later). The used bytes of freed regions are accumulated in
 771   // pre_used. If par is true, the region's RSet will not be freed
 772   // up. The assumption is that this will be done later.
 773   void free_humongous_region(HeapRegion* hr,
 774                              size_t* pre_used,
 775                              FreeRegionList* free_list,
 776                              HumongousRegionSet* humongous_proxy_set,
 777                              bool par);
 778 
 779   // Notifies all the necessary spaces that the committed space has
 780   // been updated (either expanded or shrunk). It should be called
 781   // after _g1_storage is updated.
 782   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 783 
 784   // The concurrent marker (and the thread it runs in.)
 785   ConcurrentMark* _cm;
 786   ConcurrentMarkThread* _cmThread;
 787   bool _mark_in_progress;
 788 
 789   // The concurrent refiner.
 790   ConcurrentG1Refine* _cg1r;
 791 
 792   // The parallel task queues
 793   RefToScanQueueSet *_task_queues;
 794 
 795   // True iff a evacuation has failed in the current collection.
 796   bool _evacuation_failed;
 797 
 798   // Set the attribute indicating whether evacuation has failed in the
 799   // current collection.
 800   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
 801 
 802   // Failed evacuations cause some logical from-space objects to have
 803   // forwarding pointers to themselves.  Reset them.
 804   void remove_self_forwarding_pointers();
 805 
 806   // When one is non-null, so is the other.  Together, they each pair is
 807   // an object with a preserved mark, and its mark value.
 808   GrowableArray<oop>*     _objs_with_preserved_marks;
 809   GrowableArray<markOop>* _preserved_marks_of_objs;
 810 
 811   // Preserve the mark of "obj", if necessary, in preparation for its mark
 812   // word being overwritten with a self-forwarding-pointer.
 813   void preserve_mark_if_necessary(oop obj, markOop m);
 814 
 815   // The stack of evac-failure objects left to be scanned.
 816   GrowableArray<oop>*    _evac_failure_scan_stack;
 817   // The closure to apply to evac-failure objects.
 818 
 819   OopsInHeapRegionClosure* _evac_failure_closure;
 820   // Set the field above.
 821   void
 822   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 823     _evac_failure_closure = evac_failure_closure;
 824   }
 825 
 826   // Push "obj" on the scan stack.
 827   void push_on_evac_failure_scan_stack(oop obj);
 828   // Process scan stack entries until the stack is empty.
 829   void drain_evac_failure_scan_stack();
 830   // True iff an invocation of "drain_scan_stack" is in progress; to
 831   // prevent unnecessary recursion.
 832   bool _drain_in_progress;
 833 
 834   // Do any necessary initialization for evacuation-failure handling.
 835   // "cl" is the closure that will be used to process evac-failure
 836   // objects.
 837   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 838   // Do any necessary cleanup for evacuation-failure handling data
 839   // structures.
 840   void finalize_for_evac_failure();
 841 
 842   // An attempt to evacuate "obj" has failed; take necessary steps.
 843   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
 844   void handle_evacuation_failure_common(oop obj, markOop m);
 845 
 846   // Ensure that the relevant gc_alloc regions are set.
 847   void get_gc_alloc_regions();
 848   // We're done with GC alloc regions. We are going to tear down the
 849   // gc alloc list and remove the gc alloc tag from all the regions on
 850   // that list. However, we will also retain the last (i.e., the one
 851   // that is half-full) GC alloc region, per GCAllocPurpose, for
 852   // possible reuse during the next collection, provided
 853   // _retain_gc_alloc_region[] indicates that it should be the
 854   // case. Said regions are kept in the _retained_gc_alloc_regions[]
 855   // array. If the parameter totally is set, we will not retain any
 856   // regions, irrespective of what _retain_gc_alloc_region[]
 857   // indicates.
 858   void release_gc_alloc_regions(bool totally);
 859 #ifndef PRODUCT
 860   // Useful for debugging.
 861   void print_gc_alloc_regions();
 862 #endif // !PRODUCT
 863 
 864   // ("Weak") Reference processing support.
 865   //
 866   // G1 has 2 instances of the referece processor class. One
 867   // (_ref_processor_cm) handles reference object discovery
 868   // and subsequent processing during concurrent marking cycles.
 869   //
 870   // The other (_ref_processor_stw) handles reference object
 871   // discovery and processing during full GCs and incremental
 872   // evacuation pauses.
 873   //
 874   // During an incremental pause, reference discovery will be
 875   // temporarily disabled for _ref_processor_cm and will be
 876   // enabled for _ref_processor_stw. At the end of the evacuation
 877   // pause references discovered by _ref_processor_stw will be
 878   // processed and discovery will be disabled. The previous
 879   // setting for reference object discovery for _ref_processor_cm
 880   // will be re-instated.
 881   //
 882   // At the start of marking:
 883   //  * Discovery by the CM ref processor is verified to be inactive
 884   //    and it's discovered lists are empty.
 885   //  * Discovery by the CM ref processor is then enabled.
 886   //
 887   // At the end of marking:
 888   //  * Any references on the CM ref processor's discovered
 889   //    lists are processed (possibly MT).
 890   //
 891   // At the start of full GC we:
 892   //  * Disable discovery by the CM ref processor and
 893   //    empty CM ref processor's discovered lists
 894   //    (without processing any entries).
 895   //  * Verify that the STW ref processor is inactive and it's
 896   //    discovered lists are empty.
 897   //  * Temporarily set STW ref processor discovery as single threaded.
 898   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 899   //    field.
 900   //  * Finally enable discovery by the STW ref processor.
 901   //
 902   // The STW ref processor is used to record any discovered
 903   // references during the full GC.
 904   //
 905   // At the end of a full GC we:
 906   //  * Will enqueue any non-live discovered references on the
 907   //    STW ref processor's discovered lists. This makes the
 908   //    STW ref processor inactive by disabling discovery.
 909   //  * Verify that the CM ref processor is still inactive
 910   //    and no references have been placed on it's discovered
 911   //    lists (also checked as a precondition during initial marking).
 912 
 913   // The (stw) reference processor...
 914   ReferenceProcessor* _ref_processor_stw;
 915 
 916   // Instance of the is_alive closure for embedding into the
 917   // STW reference processor as the _is_alive_non_header field.
 918   // The _is_alive_non_header prevents unnecessary additions to
 919   // the discovered lists during reference discovery.
 920   G1STWIsAliveClosure _is_alive_closure_stw;
 921 
 922   // The (concurrent marking) reference processor...
 923   ReferenceProcessor* _ref_processor_cm;
 924 
 925   // Instance of the concurrent mark is_alive closure for embedding
 926   // into the Concurrent Marking reference processor as the 
 927   // _is_alive_non_header field. The _is_alive_non_header
 928   // prevents unnecessary additions to the discovered lists
 929   // during concurrent discovery.
 930   G1CMIsAliveClosure _is_alive_closure_cm;
 931 
 932   enum G1H_process_strong_roots_tasks {
 933     G1H_PS_mark_stack_oops_do,
 934     G1H_PS_refProcessor_oops_do,
 935     // Leave this one last.
 936     G1H_PS_NumElements
 937   };
 938 
 939   SubTasksDone* _process_strong_tasks;
 940 
 941   volatile bool _free_regions_coming;
 942 
 943 public:
 944 
 945   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
 946 
 947   void set_refine_cte_cl_concurrency(bool concurrent);
 948 
 949   RefToScanQueue *task_queue(int i) const;
 950 
 951   // A set of cards where updates happened during the GC
 952   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 953 
 954   // A DirtyCardQueueSet that is used to hold cards that contain
 955   // references into the current collection set. This is used to
 956   // update the remembered sets of the regions in the collection
 957   // set in the event of an evacuation failure.
 958   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
 959         { return _into_cset_dirty_card_queue_set; }
 960 
 961   // Create a G1CollectedHeap with the specified policy.
 962   // Must call the initialize method afterwards.
 963   // May not return if something goes wrong.
 964   G1CollectedHeap(G1CollectorPolicy* policy);
 965 
 966   // Initialize the G1CollectedHeap to have the initial and
 967   // maximum sizes, permanent generation, and remembered and barrier sets
 968   // specified by the policy object.
 969   jint initialize();
 970 
 971   // Initialize weak reference processing.
 972   virtual void ref_processing_init();
 973 
 974   void set_par_threads(int t) {
 975     SharedHeap::set_par_threads(t);
 976     _process_strong_tasks->set_n_threads(t);
 977   }
 978 
 979   virtual CollectedHeap::Name kind() const {
 980     return CollectedHeap::G1CollectedHeap;
 981   }
 982 
 983   // The current policy object for the collector.
 984   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
 985 
 986   // Adaptive size policy.  No such thing for g1.
 987   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
 988 
 989   // The rem set and barrier set.
 990   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 991   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
 992 
 993   // The rem set iterator.
 994   HeapRegionRemSetIterator* rem_set_iterator(int i) {
 995     return _rem_set_iterator[i];
 996   }
 997 
 998   HeapRegionRemSetIterator* rem_set_iterator() {
 999     return _rem_set_iterator[0];
1000   }
1001 
1002   unsigned get_gc_time_stamp() {
1003     return _gc_time_stamp;
1004   }
1005 
1006   void reset_gc_time_stamp() {
1007     _gc_time_stamp = 0;
1008     OrderAccess::fence();
1009   }
1010 
1011   void increment_gc_time_stamp() {
1012     ++_gc_time_stamp;
1013     OrderAccess::fence();
1014   }
1015 
1016   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1017                                   DirtyCardQueue* into_cset_dcq,
1018                                   bool concurrent, int worker_i);
1019 
1020   // The shared block offset table array.
1021   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1022 
1023   // Reference Processing accessors
1024 
1025   // The STW reference processor....
1026   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1027 
1028   // The Concurent Marking reference processor...
1029   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1030 
1031   virtual size_t capacity() const;
1032   virtual size_t used() const;
1033   // This should be called when we're not holding the heap lock. The
1034   // result might be a bit inaccurate.
1035   size_t used_unlocked() const;
1036   size_t recalculate_used() const;
1037 #ifndef PRODUCT
1038   size_t recalculate_used_regions() const;
1039 #endif // PRODUCT
1040 
1041   // These virtual functions do the actual allocation.
1042   // Some heaps may offer a contiguous region for shared non-blocking
1043   // allocation, via inlined code (by exporting the address of the top and
1044   // end fields defining the extent of the contiguous allocation region.)
1045   // But G1CollectedHeap doesn't yet support this.
1046 
1047   // Return an estimate of the maximum allocation that could be performed
1048   // without triggering any collection or expansion activity.  In a
1049   // generational collector, for example, this is probably the largest
1050   // allocation that could be supported (without expansion) in the youngest
1051   // generation.  It is "unsafe" because no locks are taken; the result
1052   // should be treated as an approximation, not a guarantee, for use in
1053   // heuristic resizing decisions.
1054   virtual size_t unsafe_max_alloc();
1055 
1056   virtual bool is_maximal_no_gc() const {
1057     return _g1_storage.uncommitted_size() == 0;
1058   }
1059 
1060   // The total number of regions in the heap.
1061   size_t n_regions() { return _hrs.length(); }
1062 
1063   // The max number of regions in the heap.
1064   size_t max_regions() { return _hrs.max_length(); }
1065 
1066   // The number of regions that are completely free.
1067   size_t free_regions() { return _free_list.length(); }
1068 
1069   // The number of regions that are not completely free.
1070   size_t used_regions() { return n_regions() - free_regions(); }
1071 
1072   // The number of regions available for "regular" expansion.
1073   size_t expansion_regions() { return _expansion_regions; }
1074 
1075   // Factory method for HeapRegion instances. It will return NULL if
1076   // the allocation fails.
1077   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
1078 
1079   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1080   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1081   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1082   void verify_dirty_young_regions() PRODUCT_RETURN;
1083 
1084   // verify_region_sets() performs verification over the region
1085   // lists. It will be compiled in the product code to be used when
1086   // necessary (i.e., during heap verification).
1087   void verify_region_sets();
1088 
1089   // verify_region_sets_optional() is planted in the code for
1090   // list verification in non-product builds (and it can be enabled in
1091   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
1092 #if HEAP_REGION_SET_FORCE_VERIFY
1093   void verify_region_sets_optional() {
1094     verify_region_sets();
1095   }
1096 #else // HEAP_REGION_SET_FORCE_VERIFY
1097   void verify_region_sets_optional() { }
1098 #endif // HEAP_REGION_SET_FORCE_VERIFY
1099 
1100 #ifdef ASSERT
1101   bool is_on_master_free_list(HeapRegion* hr) {
1102     return hr->containing_set() == &_free_list;
1103   }
1104 
1105   bool is_in_humongous_set(HeapRegion* hr) {
1106     return hr->containing_set() == &_humongous_set;
1107   }
1108 #endif // ASSERT
1109 
1110   // Wrapper for the region list operations that can be called from
1111   // methods outside this class.
1112 
1113   void secondary_free_list_add_as_tail(FreeRegionList* list) {
1114     _secondary_free_list.add_as_tail(list);
1115   }
1116 
1117   void append_secondary_free_list() {
1118     _free_list.add_as_head(&_secondary_free_list);
1119   }
1120 
1121   void append_secondary_free_list_if_not_empty_with_lock() {
1122     // If the secondary free list looks empty there's no reason to
1123     // take the lock and then try to append it.
1124     if (!_secondary_free_list.is_empty()) {
1125       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1126       append_secondary_free_list();
1127     }
1128   }
1129 
1130   void set_free_regions_coming();
1131   void reset_free_regions_coming();
1132   bool free_regions_coming() { return _free_regions_coming; }
1133   void wait_while_free_regions_coming();
1134 
1135   // Perform a collection of the heap; intended for use in implementing
1136   // "System.gc".  This probably implies as full a collection as the
1137   // "CollectedHeap" supports.
1138   virtual void collect(GCCause::Cause cause);
1139 
1140   // The same as above but assume that the caller holds the Heap_lock.
1141   void collect_locked(GCCause::Cause cause);
1142 
1143   // This interface assumes that it's being called by the
1144   // vm thread. It collects the heap assuming that the
1145   // heap lock is already held and that we are executing in
1146   // the context of the vm thread.
1147   virtual void collect_as_vm_thread(GCCause::Cause cause);
1148 
1149   // True iff a evacuation has failed in the most-recent collection.
1150   bool evacuation_failed() { return _evacuation_failed; }
1151 
1152   // It will free a region if it has allocated objects in it that are
1153   // all dead. It calls either free_region() or
1154   // free_humongous_region() depending on the type of the region that
1155   // is passed to it.
1156   void free_region_if_empty(HeapRegion* hr,
1157                             size_t* pre_used,
1158                             FreeRegionList* free_list,
1159                             HumongousRegionSet* humongous_proxy_set,
1160                             HRRSCleanupTask* hrrs_cleanup_task,
1161                             bool par);
1162 
1163   // It appends the free list to the master free list and updates the
1164   // master humongous list according to the contents of the proxy
1165   // list. It also adjusts the total used bytes according to pre_used
1166   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
1167   void update_sets_after_freeing_regions(size_t pre_used,
1168                                        FreeRegionList* free_list,
1169                                        HumongousRegionSet* humongous_proxy_set,
1170                                        bool par);
1171 
1172   // Returns "TRUE" iff "p" points into the allocated area of the heap.
1173   virtual bool is_in(const void* p) const;
1174 
1175   // Return "TRUE" iff the given object address is within the collection
1176   // set.
1177   inline bool obj_in_cs(oop obj);
1178 
1179   // Return "TRUE" iff the given object address is in the reserved
1180   // region of g1 (excluding the permanent generation).
1181   bool is_in_g1_reserved(const void* p) const {
1182     return _g1_reserved.contains(p);
1183   }
1184 
1185   // Returns a MemRegion that corresponds to the space that has been
1186   // reserved for the heap
1187   MemRegion g1_reserved() {
1188     return _g1_reserved;
1189   }
1190 
1191   // Returns a MemRegion that corresponds to the space that has been
1192   // committed in the heap
1193   MemRegion g1_committed() {
1194     return _g1_committed;
1195   }
1196 
1197   virtual bool is_in_closed_subset(const void* p) const;
1198 
1199   // Dirty card table entries covering a list of young regions.
1200   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
1201 
1202   // This resets the card table to all zeros.  It is used after
1203   // a collection pause which used the card table to claim cards.
1204   void cleanUpCardTable();
1205 
1206   // Iteration functions.
1207 
1208   // Iterate over all the ref-containing fields of all objects, calling
1209   // "cl.do_oop" on each.
1210   virtual void oop_iterate(OopClosure* cl) {
1211     oop_iterate(cl, true);
1212   }
1213   void oop_iterate(OopClosure* cl, bool do_perm);
1214 
1215   // Same as above, restricted to a memory region.
1216   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
1217     oop_iterate(mr, cl, true);
1218   }
1219   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
1220 
1221   // Iterate over all objects, calling "cl.do_object" on each.
1222   virtual void object_iterate(ObjectClosure* cl) {
1223     object_iterate(cl, true);
1224   }
1225   virtual void safe_object_iterate(ObjectClosure* cl) {
1226     object_iterate(cl, true);
1227   }
1228   void object_iterate(ObjectClosure* cl, bool do_perm);
1229 
1230   // Iterate over all objects allocated since the last collection, calling
1231   // "cl.do_object" on each.  The heap must have been initialized properly
1232   // to support this function, or else this call will fail.
1233   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
1234 
1235   // Iterate over all spaces in use in the heap, in ascending address order.
1236   virtual void space_iterate(SpaceClosure* cl);
1237 
1238   // Iterate over heap regions, in address order, terminating the
1239   // iteration early if the "doHeapRegion" method returns "true".
1240   void heap_region_iterate(HeapRegionClosure* blk) const;
1241 
1242   // Iterate over heap regions starting with r (or the first region if "r"
1243   // is NULL), in address order, terminating early if the "doHeapRegion"
1244   // method returns "true".
1245   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
1246 
1247   // Return the region with the given index. It assumes the index is valid.
1248   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
1249 
1250   // Divide the heap region sequence into "chunks" of some size (the number
1251   // of regions divided by the number of parallel threads times some
1252   // overpartition factor, currently 4).  Assumes that this will be called
1253   // in parallel by ParallelGCThreads worker threads with discinct worker
1254   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1255   // calls will use the same "claim_value", and that that claim value is
1256   // different from the claim_value of any heap region before the start of
1257   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1258   // attempting to claim the first region in each chunk, and, if
1259   // successful, applying the closure to each region in the chunk (and
1260   // setting the claim value of the second and subsequent regions of the
1261   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1262   // i.e., that a closure never attempt to abort a traversal.
1263   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1264                                        int worker,
1265                                        jint claim_value);
1266 
1267   // It resets all the region claim values to the default.
1268   void reset_heap_region_claim_values();
1269 
1270 #ifdef ASSERT
1271   bool check_heap_region_claim_values(jint claim_value);
1272 #endif // ASSERT
1273 
1274   // Iterate over the regions (if any) in the current collection set.
1275   void collection_set_iterate(HeapRegionClosure* blk);
1276 
1277   // As above but starting from region r
1278   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1279 
1280   // Returns the first (lowest address) compactible space in the heap.
1281   virtual CompactibleSpace* first_compactible_space();
1282 
1283   // A CollectedHeap will contain some number of spaces.  This finds the
1284   // space containing a given address, or else returns NULL.
1285   virtual Space* space_containing(const void* addr) const;
1286 
1287   // A G1CollectedHeap will contain some number of heap regions.  This
1288   // finds the region containing a given address, or else returns NULL.
1289   template <class T>
1290   inline HeapRegion* heap_region_containing(const T addr) const;
1291 
1292   // Like the above, but requires "addr" to be in the heap (to avoid a
1293   // null-check), and unlike the above, may return an continuing humongous
1294   // region.
1295   template <class T>
1296   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1297 
1298   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1299   // each address in the (reserved) heap is a member of exactly
1300   // one block.  The defining characteristic of a block is that it is
1301   // possible to find its size, and thus to progress forward to the next
1302   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1303   // represent Java objects, or they might be free blocks in a
1304   // free-list-based heap (or subheap), as long as the two kinds are
1305   // distinguishable and the size of each is determinable.
1306 
1307   // Returns the address of the start of the "block" that contains the
1308   // address "addr".  We say "blocks" instead of "object" since some heaps
1309   // may not pack objects densely; a chunk may either be an object or a
1310   // non-object.
1311   virtual HeapWord* block_start(const void* addr) const;
1312 
1313   // Requires "addr" to be the start of a chunk, and returns its size.
1314   // "addr + size" is required to be the start of a new chunk, or the end
1315   // of the active area of the heap.
1316   virtual size_t block_size(const HeapWord* addr) const;
1317 
1318   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1319   // the block is an object.
1320   virtual bool block_is_obj(const HeapWord* addr) const;
1321 
1322   // Does this heap support heap inspection? (+PrintClassHistogram)
1323   virtual bool supports_heap_inspection() const { return true; }
1324 
1325   // Section on thread-local allocation buffers (TLABs)
1326   // See CollectedHeap for semantics.
1327 
1328   virtual bool supports_tlab_allocation() const;
1329   virtual size_t tlab_capacity(Thread* thr) const;
1330   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
1331 
1332   // Can a compiler initialize a new object without store barriers?
1333   // This permission only extends from the creation of a new object
1334   // via a TLAB up to the first subsequent safepoint. If such permission
1335   // is granted for this heap type, the compiler promises to call
1336   // defer_store_barrier() below on any slow path allocation of
1337   // a new object for which such initializing store barriers will
1338   // have been elided. G1, like CMS, allows this, but should be
1339   // ready to provide a compensating write barrier as necessary
1340   // if that storage came out of a non-young region. The efficiency
1341   // of this implementation depends crucially on being able to
1342   // answer very efficiently in constant time whether a piece of
1343   // storage in the heap comes from a young region or not.
1344   // See ReduceInitialCardMarks.
1345   virtual bool can_elide_tlab_store_barriers() const {
1346     // 6920090: Temporarily disabled, because of lingering
1347     // instabilities related to RICM with G1. In the
1348     // interim, the option ReduceInitialCardMarksForG1
1349     // below is left solely as a debugging device at least
1350     // until 6920109 fixes the instabilities.
1351     return ReduceInitialCardMarksForG1;
1352   }
1353 
1354   virtual bool card_mark_must_follow_store() const {
1355     return true;
1356   }
1357 
1358   bool is_in_young(const oop obj) {
1359     HeapRegion* hr = heap_region_containing(obj);
1360     return hr != NULL && hr->is_young();
1361   }
1362 
1363 #ifdef ASSERT
1364   virtual bool is_in_partial_collection(const void* p);
1365 #endif
1366 
1367   virtual bool is_scavengable(const void* addr);
1368 
1369   // We don't need barriers for initializing stores to objects
1370   // in the young gen: for the SATB pre-barrier, there is no
1371   // pre-value that needs to be remembered; for the remembered-set
1372   // update logging post-barrier, we don't maintain remembered set
1373   // information for young gen objects. Note that non-generational
1374   // G1 does not have any "young" objects, should not elide
1375   // the rs logging barrier and so should always answer false below.
1376   // However, non-generational G1 (-XX:-G1Gen) appears to have
1377   // bit-rotted so was not tested below.
1378   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1379     // Re 6920090, 6920109 above.
1380     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
1381     assert(G1Gen || !is_in_young(new_obj),
1382            "Non-generational G1 should never return true below");
1383     return is_in_young(new_obj);
1384   }
1385 
1386   // Can a compiler elide a store barrier when it writes
1387   // a permanent oop into the heap?  Applies when the compiler
1388   // is storing x to the heap, where x->is_perm() is true.
1389   virtual bool can_elide_permanent_oop_store_barriers() const {
1390     // At least until perm gen collection is also G1-ified, at
1391     // which point this should return false.
1392     return true;
1393   }
1394 
1395   // Returns "true" iff the given word_size is "very large".
1396   static bool isHumongous(size_t word_size) {
1397     // Note this has to be strictly greater-than as the TLABs
1398     // are capped at the humongous thresold and we want to
1399     // ensure that we don't try to allocate a TLAB as
1400     // humongous and that we don't allocate a humongous
1401     // object in a TLAB.
1402     return word_size > _humongous_object_threshold_in_words;
1403   }
1404 
1405   // Update mod union table with the set of dirty cards.
1406   void updateModUnion();
1407 
1408   // Set the mod union bits corresponding to the given memRegion.  Note
1409   // that this is always a safe operation, since it doesn't clear any
1410   // bits.
1411   void markModUnionRange(MemRegion mr);
1412 
1413   // Records the fact that a marking phase is no longer in progress.
1414   void set_marking_complete() {
1415     _mark_in_progress = false;
1416   }
1417   void set_marking_started() {
1418     _mark_in_progress = true;
1419   }
1420   bool mark_in_progress() {
1421     return _mark_in_progress;
1422   }
1423 
1424   // Print the maximum heap capacity.
1425   virtual size_t max_capacity() const;
1426 
1427   virtual jlong millis_since_last_gc();
1428 
1429   // Perform any cleanup actions necessary before allowing a verification.
1430   virtual void prepare_for_verify();
1431 
1432   // Perform verification.
1433 
1434   // vo == UsePrevMarking  -> use "prev" marking information,
1435   // vo == UseNextMarking -> use "next" marking information
1436   // vo == UseMarkWord    -> use the mark word in the object header
1437   //
1438   // NOTE: Only the "prev" marking information is guaranteed to be
1439   // consistent most of the time, so most calls to this should use
1440   // vo == UsePrevMarking.
1441   // Currently, there is only one case where this is called with
1442   // vo == UseNextMarking, which is to verify the "next" marking
1443   // information at the end of remark.
1444   // Currently there is only one place where this is called with
1445   // vo == UseMarkWord, which is to verify the marking during a
1446   // full GC.
1447   void verify(bool allow_dirty, bool silent, VerifyOption vo);
1448 
1449   // Override; it uses the "prev" marking information
1450   virtual void verify(bool allow_dirty, bool silent);
1451   // Default behavior by calling print(tty);
1452   virtual void print() const;
1453   // This calls print_on(st, PrintHeapAtGCExtended).
1454   virtual void print_on(outputStream* st) const;
1455   // If extended is true, it will print out information for all
1456   // regions in the heap by calling print_on_extended(st).
1457   virtual void print_on(outputStream* st, bool extended) const;
1458   virtual void print_on_extended(outputStream* st) const;
1459 
1460   virtual void print_gc_threads_on(outputStream* st) const;
1461   virtual void gc_threads_do(ThreadClosure* tc) const;
1462 
1463   // Override
1464   void print_tracing_info() const;
1465 
1466   // The following two methods are helpful for debugging RSet issues.
1467   void print_cset_rsets() PRODUCT_RETURN;
1468   void print_all_rsets() PRODUCT_RETURN;
1469 
1470   // Convenience function to be used in situations where the heap type can be
1471   // asserted to be this type.
1472   static G1CollectedHeap* heap();
1473 
1474   void empty_young_list();
1475 
1476   void set_region_short_lived_locked(HeapRegion* hr);
1477   // add appropriate methods for any other surv rate groups
1478 
1479   YoungList* young_list() { return _young_list; }
1480 
1481   // debugging
1482   bool check_young_list_well_formed() {
1483     return _young_list->check_list_well_formed();
1484   }
1485 
1486   bool check_young_list_empty(bool check_heap,
1487                               bool check_sample = true);
1488 
1489   // *** Stuff related to concurrent marking.  It's not clear to me that so
1490   // many of these need to be public.
1491 
1492   // The functions below are helper functions that a subclass of
1493   // "CollectedHeap" can use in the implementation of its virtual
1494   // functions.
1495   // This performs a concurrent marking of the live objects in a
1496   // bitmap off to the side.
1497   void doConcurrentMark();
1498 
1499   // Do a full concurrent marking, synchronously.
1500   void do_sync_mark();
1501 
1502   bool isMarkedPrev(oop obj) const;
1503   bool isMarkedNext(oop obj) const;
1504 
1505   // vo == UsePrevMarking -> use "prev" marking information,
1506   // vo == UseNextMarking -> use "next" marking information,
1507   // vo == UseMarkWord    -> use mark word from object header
1508   bool is_obj_dead_cond(const oop obj,
1509                         const HeapRegion* hr,
1510                         const VerifyOption vo) const {
1511 
1512     switch (vo) {
1513       case VerifyOption_G1UsePrevMarking:
1514         return is_obj_dead(obj, hr);
1515       case VerifyOption_G1UseNextMarking:
1516         return is_obj_ill(obj, hr);
1517       default:
1518         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1519         return !obj->is_gc_marked();
1520     }
1521   }
1522 
1523   // Determine if an object is dead, given the object and also
1524   // the region to which the object belongs. An object is dead
1525   // iff a) it was not allocated since the last mark and b) it
1526   // is not marked.
1527 
1528   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1529     return
1530       !hr->obj_allocated_since_prev_marking(obj) &&
1531       !isMarkedPrev(obj);
1532   }
1533 
1534   // This is used when copying an object to survivor space.
1535   // If the object is marked live, then we mark the copy live.
1536   // If the object is allocated since the start of this mark
1537   // cycle, then we mark the copy live.
1538   // If the object has been around since the previous mark
1539   // phase, and hasn't been marked yet during this phase,
1540   // then we don't mark it, we just wait for the
1541   // current marking cycle to get to it.
1542 
1543   // This function returns true when an object has been
1544   // around since the previous marking and hasn't yet
1545   // been marked during this marking.
1546 
1547   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1548     return
1549       !hr->obj_allocated_since_next_marking(obj) &&
1550       !isMarkedNext(obj);
1551   }
1552 
1553   // Determine if an object is dead, given only the object itself.
1554   // This will find the region to which the object belongs and
1555   // then call the region version of the same function.
1556 
1557   // Added if it is in permanent gen it isn't dead.
1558   // Added if it is NULL it isn't dead.
1559 
1560   // vo == UsePrevMarking -> use "prev" marking information,
1561   // vo == UseNextMarking -> use "next" marking information,
1562   // vo == UseMarkWord    -> use mark word from object header
1563   bool is_obj_dead_cond(const oop obj,
1564                         const VerifyOption vo) const {
1565 
1566     switch (vo) {
1567       case VerifyOption_G1UsePrevMarking:
1568         return is_obj_dead(obj);
1569       case VerifyOption_G1UseNextMarking:
1570         return is_obj_ill(obj);
1571       default:
1572         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1573         return !obj->is_gc_marked();
1574     }
1575   }
1576 
1577   bool is_obj_dead(const oop obj) const {
1578     const HeapRegion* hr = heap_region_containing(obj);
1579     if (hr == NULL) {
1580       if (Universe::heap()->is_in_permanent(obj))
1581         return false;
1582       else if (obj == NULL) return false;
1583       else return true;
1584     }
1585     else return is_obj_dead(obj, hr);
1586   }
1587 
1588   bool is_obj_ill(const oop obj) const {
1589     const HeapRegion* hr = heap_region_containing(obj);
1590     if (hr == NULL) {
1591       if (Universe::heap()->is_in_permanent(obj))
1592         return false;
1593       else if (obj == NULL) return false;
1594       else return true;
1595     }
1596     else return is_obj_ill(obj, hr);
1597   }
1598 
1599   // The following is just to alert the verification code
1600   // that a full collection has occurred and that the
1601   // remembered sets are no longer up to date.
1602   bool _full_collection;
1603   void set_full_collection() { _full_collection = true;}
1604   void clear_full_collection() {_full_collection = false;}
1605   bool full_collection() {return _full_collection;}
1606 
1607   ConcurrentMark* concurrent_mark() const { return _cm; }
1608   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1609 
1610   // The dirty cards region list is used to record a subset of regions
1611   // whose cards need clearing. The list if populated during the
1612   // remembered set scanning and drained during the card table
1613   // cleanup. Although the methods are reentrant, population/draining
1614   // phases must not overlap. For synchronization purposes the last
1615   // element on the list points to itself.
1616   HeapRegion* _dirty_cards_region_list;
1617   void push_dirty_cards_region(HeapRegion* hr);
1618   HeapRegion* pop_dirty_cards_region();
1619 
1620 public:
1621   void stop_conc_gc_threads();
1622 
1623   // <NEW PREDICTION>
1624 
1625   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
1626   void check_if_region_is_too_expensive(double predicted_time_ms);
1627   size_t pending_card_num();
1628   size_t max_pending_card_num();
1629   size_t cards_scanned();
1630 
1631   // </NEW PREDICTION>
1632 
1633 protected:
1634   size_t _max_heap_capacity;
1635 };
1636 
1637 #define use_local_bitmaps         1
1638 #define verify_local_bitmaps      0
1639 #define oop_buffer_length       256
1640 
1641 #ifndef PRODUCT
1642 class GCLabBitMap;
1643 class GCLabBitMapClosure: public BitMapClosure {
1644 private:
1645   ConcurrentMark* _cm;
1646   GCLabBitMap*    _bitmap;
1647 
1648 public:
1649   GCLabBitMapClosure(ConcurrentMark* cm,
1650                      GCLabBitMap* bitmap) {
1651     _cm     = cm;
1652     _bitmap = bitmap;
1653   }
1654 
1655   virtual bool do_bit(size_t offset);
1656 };
1657 #endif // !PRODUCT
1658 
1659 class GCLabBitMap: public BitMap {
1660 private:
1661   ConcurrentMark* _cm;
1662 
1663   int       _shifter;
1664   size_t    _bitmap_word_covers_words;
1665 
1666   // beginning of the heap
1667   HeapWord* _heap_start;
1668 
1669   // this is the actual start of the GCLab
1670   HeapWord* _real_start_word;
1671 
1672   // this is the actual end of the GCLab
1673   HeapWord* _real_end_word;
1674 
1675   // this is the first word, possibly located before the actual start
1676   // of the GCLab, that corresponds to the first bit of the bitmap
1677   HeapWord* _start_word;
1678 
1679   // size of a GCLab in words
1680   size_t _gclab_word_size;
1681 
1682   static int shifter() {
1683     return MinObjAlignment - 1;
1684   }
1685 
1686   // how many heap words does a single bitmap word corresponds to?
1687   static size_t bitmap_word_covers_words() {
1688     return BitsPerWord << shifter();
1689   }
1690 
1691   size_t gclab_word_size() const {
1692     return _gclab_word_size;
1693   }
1694 
1695   // Calculates actual GCLab size in words
1696   size_t gclab_real_word_size() const {
1697     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
1698            / BitsPerWord;
1699   }
1700 
1701   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
1702     size_t bits_in_bitmap = gclab_word_size >> shifter();
1703     // We are going to ensure that the beginning of a word in this
1704     // bitmap also corresponds to the beginning of a word in the
1705     // global marking bitmap. To handle the case where a GCLab
1706     // starts from the middle of the bitmap, we need to add enough
1707     // space (i.e. up to a bitmap word) to ensure that we have
1708     // enough bits in the bitmap.
1709     return bits_in_bitmap + BitsPerWord - 1;
1710   }
1711 public:
1712   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
1713     : BitMap(bitmap_size_in_bits(gclab_word_size)),
1714       _cm(G1CollectedHeap::heap()->concurrent_mark()),
1715       _shifter(shifter()),
1716       _bitmap_word_covers_words(bitmap_word_covers_words()),
1717       _heap_start(heap_start),
1718       _gclab_word_size(gclab_word_size),
1719       _real_start_word(NULL),
1720       _real_end_word(NULL),
1721       _start_word(NULL)
1722   {
1723     guarantee( size_in_words() >= bitmap_size_in_words(),
1724                "just making sure");
1725   }
1726 
1727   inline unsigned heapWordToOffset(HeapWord* addr) {
1728     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
1729     assert(offset < size(), "offset should be within bounds");
1730     return offset;
1731   }
1732 
1733   inline HeapWord* offsetToHeapWord(size_t offset) {
1734     HeapWord* addr =  _start_word + (offset << _shifter);
1735     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
1736     return addr;
1737   }
1738 
1739   bool fields_well_formed() {
1740     bool ret1 = (_real_start_word == NULL) &&
1741                 (_real_end_word == NULL) &&
1742                 (_start_word == NULL);
1743     if (ret1)
1744       return true;
1745 
1746     bool ret2 = _real_start_word >= _start_word &&
1747       _start_word < _real_end_word &&
1748       (_real_start_word + _gclab_word_size) == _real_end_word &&
1749       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
1750                                                               > _real_end_word;
1751     return ret2;
1752   }
1753 
1754   inline bool mark(HeapWord* addr) {
1755     guarantee(use_local_bitmaps, "invariant");
1756     assert(fields_well_formed(), "invariant");
1757 
1758     if (addr >= _real_start_word && addr < _real_end_word) {
1759       assert(!isMarked(addr), "should not have already been marked");
1760 
1761       // first mark it on the bitmap
1762       at_put(heapWordToOffset(addr), true);
1763 
1764       return true;
1765     } else {
1766       return false;
1767     }
1768   }
1769 
1770   inline bool isMarked(HeapWord* addr) {
1771     guarantee(use_local_bitmaps, "invariant");
1772     assert(fields_well_formed(), "invariant");
1773 
1774     return at(heapWordToOffset(addr));
1775   }
1776 
1777   void set_buffer(HeapWord* start) {
1778     guarantee(use_local_bitmaps, "invariant");
1779     clear();
1780 
1781     assert(start != NULL, "invariant");
1782     _real_start_word = start;
1783     _real_end_word   = start + _gclab_word_size;
1784 
1785     size_t diff =
1786       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
1787     _start_word = start - diff;
1788 
1789     assert(fields_well_formed(), "invariant");
1790   }
1791 
1792 #ifndef PRODUCT
1793   void verify() {
1794     // verify that the marks have been propagated
1795     GCLabBitMapClosure cl(_cm, this);
1796     iterate(&cl);
1797   }
1798 #endif // PRODUCT
1799 
1800   void retire() {
1801     guarantee(use_local_bitmaps, "invariant");
1802     assert(fields_well_formed(), "invariant");
1803 
1804     if (_start_word != NULL) {
1805       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
1806 
1807       // this means that the bitmap was set up for the GCLab
1808       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
1809 
1810       mark_bitmap->mostly_disjoint_range_union(this,
1811                                 0, // always start from the start of the bitmap
1812                                 _start_word,
1813                                 gclab_real_word_size());
1814       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
1815 
1816 #ifndef PRODUCT
1817       if (use_local_bitmaps && verify_local_bitmaps)
1818         verify();
1819 #endif // PRODUCT
1820     } else {
1821       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
1822     }
1823   }
1824 
1825   size_t bitmap_size_in_words() const {
1826     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
1827   }
1828 
1829 };
1830 
1831 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1832 private:
1833   bool        _retired;
1834   bool        _during_marking;
1835   GCLabBitMap _bitmap;
1836 
1837 public:
1838   G1ParGCAllocBuffer(size_t gclab_word_size) :
1839     ParGCAllocBuffer(gclab_word_size),
1840     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
1841     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
1842     _retired(false)
1843   { }
1844 
1845   inline bool mark(HeapWord* addr) {
1846     guarantee(use_local_bitmaps, "invariant");
1847     assert(_during_marking, "invariant");
1848     return _bitmap.mark(addr);
1849   }
1850 
1851   inline void set_buf(HeapWord* buf) {
1852     if (use_local_bitmaps && _during_marking)
1853       _bitmap.set_buffer(buf);
1854     ParGCAllocBuffer::set_buf(buf);
1855     _retired = false;
1856   }
1857 
1858   inline void retire(bool end_of_gc, bool retain) {
1859     if (_retired)
1860       return;
1861     if (use_local_bitmaps && _during_marking) {
1862       _bitmap.retire();
1863     }
1864     ParGCAllocBuffer::retire(end_of_gc, retain);
1865     _retired = true;
1866   }
1867 };
1868 
1869 class G1ParScanThreadState : public StackObj {
1870 protected:
1871   G1CollectedHeap* _g1h;
1872   RefToScanQueue*  _refs;
1873   DirtyCardQueue   _dcq;
1874   CardTableModRefBS* _ct_bs;
1875   G1RemSet* _g1_rem;
1876 
1877   G1ParGCAllocBuffer  _surviving_alloc_buffer;
1878   G1ParGCAllocBuffer  _tenured_alloc_buffer;
1879   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
1880   ageTable            _age_table;
1881 
1882   size_t           _alloc_buffer_waste;
1883   size_t           _undo_waste;
1884 
1885   OopsInHeapRegionClosure*      _evac_failure_cl;
1886   G1ParScanHeapEvacClosure*     _evac_cl;
1887   G1ParScanPartialArrayClosure* _partial_scan_cl;
1888 
1889   int _hash_seed;
1890   int _queue_num;
1891 
1892   size_t _term_attempts;
1893 
1894   double _start;
1895   double _start_strong_roots;
1896   double _strong_roots_time;
1897   double _start_term;
1898   double _term_time;
1899 
1900   // Map from young-age-index (0 == not young, 1 is youngest) to
1901   // surviving words. base is what we get back from the malloc call
1902   size_t* _surviving_young_words_base;
1903   // this points into the array, as we use the first few entries for padding
1904   size_t* _surviving_young_words;
1905 
1906 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1907 
1908   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1909 
1910   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1911 
1912   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1913   CardTableModRefBS* ctbs()                      { return _ct_bs; }
1914 
1915   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1916     if (!from->is_survivor()) {
1917       _g1_rem->par_write_ref(from, p, tid);
1918     }
1919   }
1920 
1921   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1922     // If the new value of the field points to the same region or
1923     // is the to-space, we don't need to include it in the Rset updates.
1924     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1925       size_t card_index = ctbs()->index_for(p);
1926       // If the card hasn't been added to the buffer, do it.
1927       if (ctbs()->mark_card_deferred(card_index)) {
1928         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1929       }
1930     }
1931   }
1932 
1933 public:
1934   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
1935 
1936   ~G1ParScanThreadState() {
1937     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
1938   }
1939 
1940   RefToScanQueue*   refs()            { return _refs;             }
1941   ageTable*         age_table()       { return &_age_table;       }
1942 
1943   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1944     return _alloc_buffers[purpose];
1945   }
1946 
1947   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1948   size_t undo_waste() const                      { return _undo_waste; }
1949 
1950 #ifdef ASSERT
1951   bool verify_ref(narrowOop* ref) const;
1952   bool verify_ref(oop* ref) const;
1953   bool verify_task(StarTask ref) const;
1954 #endif // ASSERT
1955 
1956   template <class T> void push_on_queue(T* ref) {
1957     assert(verify_ref(ref), "sanity");
1958     refs()->push(ref);
1959   }
1960 
1961   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1962     if (G1DeferredRSUpdate) {
1963       deferred_rs_update(from, p, tid);
1964     } else {
1965       immediate_rs_update(from, p, tid);
1966     }
1967   }
1968 
1969   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1970 
1971     HeapWord* obj = NULL;
1972     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1973     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1974       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
1975       assert(gclab_word_size == alloc_buf->word_sz(),
1976              "dynamic resizing is not supported");
1977       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
1978       alloc_buf->retire(false, false);
1979 
1980       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1981       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1982       // Otherwise.
1983       alloc_buf->set_buf(buf);
1984 
1985       obj = alloc_buf->allocate(word_sz);
1986       assert(obj != NULL, "buffer was definitely big enough...");
1987     } else {
1988       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1989     }
1990     return obj;
1991   }
1992 
1993   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1994     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
1995     if (obj != NULL) return obj;
1996     return allocate_slow(purpose, word_sz);
1997   }
1998 
1999   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
2000     if (alloc_buffer(purpose)->contains(obj)) {
2001       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
2002              "should contain whole object");
2003       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
2004     } else {
2005       CollectedHeap::fill_with_object(obj, word_sz);
2006       add_to_undo_waste(word_sz);
2007     }
2008   }
2009 
2010   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
2011     _evac_failure_cl = evac_failure_cl;
2012   }
2013   OopsInHeapRegionClosure* evac_failure_closure() {
2014     return _evac_failure_cl;
2015   }
2016 
2017   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
2018     _evac_cl = evac_cl;
2019   }
2020 
2021   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
2022     _partial_scan_cl = partial_scan_cl;
2023   }
2024 
2025   int* hash_seed() { return &_hash_seed; }
2026   int  queue_num() { return _queue_num; }
2027 
2028   size_t term_attempts() const  { return _term_attempts; }
2029   void note_term_attempt() { _term_attempts++; }
2030 
2031   void start_strong_roots() {
2032     _start_strong_roots = os::elapsedTime();
2033   }
2034   void end_strong_roots() {
2035     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
2036   }
2037   double strong_roots_time() const { return _strong_roots_time; }
2038 
2039   void start_term_time() {
2040     note_term_attempt();
2041     _start_term = os::elapsedTime();
2042   }
2043   void end_term_time() {
2044     _term_time += (os::elapsedTime() - _start_term);
2045   }
2046   double term_time() const { return _term_time; }
2047 
2048   double elapsed_time() const {
2049     return os::elapsedTime() - _start;
2050   }
2051 
2052   static void
2053     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
2054   void
2055     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
2056 
2057   size_t* surviving_young_words() {
2058     // We add on to hide entry 0 which accumulates surviving words for
2059     // age -1 regions (i.e. non-young ones)
2060     return _surviving_young_words;
2061   }
2062 
2063   void retire_alloc_buffers() {
2064     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2065       size_t waste = _alloc_buffers[ap]->words_remaining();
2066       add_to_alloc_buffer_waste(waste);
2067       _alloc_buffers[ap]->retire(true, false);
2068     }
2069   }
2070 
2071   template <class T> void deal_with_reference(T* ref_to_scan) {
2072     if (has_partial_array_mask(ref_to_scan)) {
2073       _partial_scan_cl->do_oop_nv(ref_to_scan);
2074     } else {
2075       // Note: we can use "raw" versions of "region_containing" because
2076       // "obj_to_scan" is definitely in the heap, and is not in a
2077       // humongous region.
2078       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
2079       _evac_cl->set_region(r);
2080       _evac_cl->do_oop_nv(ref_to_scan);
2081     }
2082   }
2083 
2084   void deal_with_reference(StarTask ref) {
2085     assert(verify_task(ref), "sanity");
2086     if (ref.is_narrow()) {
2087       deal_with_reference((narrowOop*)ref);
2088     } else {
2089       deal_with_reference((oop*)ref);
2090     }
2091   }
2092 
2093 public:
2094   void trim_queue();
2095 };
2096 
2097 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP