1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentMark.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  32 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  33 #include "runtime/arguments.hpp"
  34 #include "runtime/java.hpp"
  35 #include "runtime/mutexLocker.hpp"
  36 #include "utilities/debug.hpp"
  37 
  38 #define PREDICTIONS_VERBOSE 0
  39 
  40 // <NEW PREDICTION>
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double fully_young_cards_per_entry_ratio_defaults[] = {
  57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  58 };
  59 
  60 static double cost_per_entry_ms_defaults[] = {
  61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  62 };
  63 
  64 static double cost_per_byte_ms_defaults[] = {
  65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  66 };
  67 
  68 // these should be pretty consistent
  69 static double constant_other_time_ms_defaults[] = {
  70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  71 };
  72 
  73 
  74 static double young_other_cost_per_region_ms_defaults[] = {
  75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  76 };
  77 
  78 static double non_young_other_cost_per_region_ms_defaults[] = {
  79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  80 };
  81 
  82 // </NEW PREDICTION>
  83 
  84 // Help class for avoiding interleaved logging
  85 class LineBuffer: public StackObj {
  86 
  87 private:
  88   static const int BUFFER_LEN = 1024;
  89   static const int INDENT_CHARS = 3;
  90   char _buffer[BUFFER_LEN];
  91   int _indent_level;
  92   int _cur;
  93 
  94   void vappend(const char* format, va_list ap) {
  95     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
  96     if (res != -1) {
  97       _cur += res;
  98     } else {
  99       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
 100       _buffer[BUFFER_LEN -1] = 0;
 101       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
 102     }
 103   }
 104 
 105 public:
 106   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
 107     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
 108       _buffer[_cur] = ' ';
 109     }
 110   }
 111 
 112 #ifndef PRODUCT
 113   ~LineBuffer() {
 114     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
 115   }
 116 #endif
 117 
 118   void append(const char* format, ...) {
 119     va_list ap;
 120     va_start(ap, format);
 121     vappend(format, ap);
 122     va_end(ap);
 123   }
 124 
 125   void append_and_print_cr(const char* format, ...) {
 126     va_list ap;
 127     va_start(ap, format);
 128     vappend(format, ap);
 129     va_end(ap);
 130     gclog_or_tty->print_cr("%s", _buffer);
 131     _cur = _indent_level * INDENT_CHARS;
 132   }
 133 };
 134 
 135 G1CollectorPolicy::G1CollectorPolicy() :
 136   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
 137                         ? ParallelGCThreads : 1),
 138 
 139   _n_pauses(0),
 140   _recent_rs_scan_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 141   _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 142   _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
 143   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 144   _all_pause_times_ms(new NumberSeq()),
 145   _stop_world_start(0.0),
 146   _all_stop_world_times_ms(new NumberSeq()),
 147   _all_yield_times_ms(new NumberSeq()),
 148 
 149   _all_mod_union_times_ms(new NumberSeq()),
 150 
 151   _summary(new Summary()),
 152 
 153 #ifndef PRODUCT
 154   _cur_clear_ct_time_ms(0.0),
 155   _min_clear_cc_time_ms(-1.0),
 156   _max_clear_cc_time_ms(-1.0),
 157   _cur_clear_cc_time_ms(0.0),
 158   _cum_clear_cc_time_ms(0.0),
 159   _num_cc_clears(0L),
 160 #endif
 161 
 162   _region_num_young(0),
 163   _region_num_tenured(0),
 164   _prev_region_num_young(0),
 165   _prev_region_num_tenured(0),
 166 
 167   _aux_num(10),
 168   _all_aux_times_ms(new NumberSeq[_aux_num]),
 169   _cur_aux_start_times_ms(new double[_aux_num]),
 170   _cur_aux_times_ms(new double[_aux_num]),
 171   _cur_aux_times_set(new bool[_aux_num]),
 172 
 173   _concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 174   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 175   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
 176 
 177   // <NEW PREDICTION>
 178 
 179   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 180   _prev_collection_pause_end_ms(0.0),
 181   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 182   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 183   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 184   _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 185   _partially_young_cards_per_entry_ratio_seq(
 186                                          new TruncatedSeq(TruncatedSeqLength)),
 187   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 188   _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 189   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 190   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 191   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 192   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 193   _non_young_other_cost_per_region_ms_seq(
 194                                          new TruncatedSeq(TruncatedSeqLength)),
 195 
 196   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 197   _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 198   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 199 
 200   _pause_time_target_ms((double) MaxGCPauseMillis),
 201 
 202   // </NEW PREDICTION>
 203 
 204   _in_young_gc_mode(false),
 205   _full_young_gcs(true),
 206   _full_young_pause_num(0),
 207   _partial_young_pause_num(0),
 208 
 209   _during_marking(false),
 210   _in_marking_window(false),
 211   _in_marking_window_im(false),
 212 
 213   _known_garbage_ratio(0.0),
 214   _known_garbage_bytes(0),
 215 
 216   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
 217 
 218    _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
 219 
 220   _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
 221   _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
 222 
 223   _recent_avg_pause_time_ratio(0.0),
 224   _num_markings(0),
 225   _n_marks(0),
 226   _n_pauses_at_mark_end(0),
 227 
 228   _all_full_gc_times_ms(new NumberSeq()),
 229 
 230   // G1PausesBtwnConcMark defaults to -1
 231   // so the hack is to do the cast  QQQ FIXME
 232   _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
 233   _n_marks_since_last_pause(0),
 234   _initiate_conc_mark_if_possible(false),
 235   _during_initial_mark_pause(false),
 236   _should_revert_to_full_young_gcs(false),
 237   _last_full_young_gc(false),
 238 
 239   _eden_bytes_before_gc(0),
 240   _survivor_bytes_before_gc(0),
 241   _capacity_before_gc(0),
 242 
 243   _prev_collection_pause_used_at_end_bytes(0),
 244 
 245   _collection_set(NULL),
 246   _collection_set_size(0),
 247   _collection_set_bytes_used_before(0),
 248 
 249   // Incremental CSet attributes
 250   _inc_cset_build_state(Inactive),
 251   _inc_cset_head(NULL),
 252   _inc_cset_tail(NULL),
 253   _inc_cset_size(0),
 254   _inc_cset_young_index(0),
 255   _inc_cset_bytes_used_before(0),
 256   _inc_cset_max_finger(NULL),
 257   _inc_cset_recorded_young_bytes(0),
 258   _inc_cset_recorded_rs_lengths(0),
 259   _inc_cset_predicted_elapsed_time_ms(0.0),
 260   _inc_cset_predicted_bytes_to_copy(0),
 261 
 262 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 263 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 264 #endif // _MSC_VER
 265 
 266   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
 267                                                  G1YoungSurvRateNumRegionsSummary)),
 268   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
 269                                               G1YoungSurvRateNumRegionsSummary)),
 270   // add here any more surv rate groups
 271   _recorded_survivor_regions(0),
 272   _recorded_survivor_head(NULL),
 273   _recorded_survivor_tail(NULL),
 274   _survivors_age_table(true),
 275 
 276   _gc_overhead_perc(0.0)
 277 
 278 {
 279   // Set up the region size and associated fields. Given that the
 280   // policy is created before the heap, we have to set this up here,
 281   // so it's done as soon as possible.
 282   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
 283   HeapRegionRemSet::setup_remset_size();
 284 
 285   // Verify PLAB sizes
 286   const uint region_size = HeapRegion::GrainWords;
 287   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 288     char buffer[128];
 289     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most %u",
 290                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 291     vm_exit_during_initialization(buffer);
 292   }
 293 
 294   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 295   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 296 
 297   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
 298   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
 299   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
 300 
 301   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
 302   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
 303 
 304   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
 305 
 306   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
 307 
 308   _par_last_termination_times_ms = new double[_parallel_gc_threads];
 309   _par_last_termination_attempts = new double[_parallel_gc_threads];
 310   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
 311   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
 312 
 313   // start conservatively
 314   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
 315 
 316   // <NEW PREDICTION>
 317 
 318   int index;
 319   if (ParallelGCThreads == 0)
 320     index = 0;
 321   else if (ParallelGCThreads > 8)
 322     index = 7;
 323   else
 324     index = ParallelGCThreads - 1;
 325 
 326   _pending_card_diff_seq->add(0.0);
 327   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 328   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 329   _fully_young_cards_per_entry_ratio_seq->add(
 330                             fully_young_cards_per_entry_ratio_defaults[index]);
 331   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 332   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 333   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 334   _young_other_cost_per_region_ms_seq->add(
 335                                young_other_cost_per_region_ms_defaults[index]);
 336   _non_young_other_cost_per_region_ms_seq->add(
 337                            non_young_other_cost_per_region_ms_defaults[index]);
 338 
 339   // </NEW PREDICTION>
 340 
 341   // Below, we might need to calculate the pause time target based on
 342   // the pause interval. When we do so we are going to give G1 maximum
 343   // flexibility and allow it to do pauses when it needs to. So, we'll
 344   // arrange that the pause interval to be pause time target + 1 to
 345   // ensure that a) the pause time target is maximized with respect to
 346   // the pause interval and b) we maintain the invariant that pause
 347   // time target < pause interval. If the user does not want this
 348   // maximum flexibility, they will have to set the pause interval
 349   // explicitly.
 350 
 351   // First make sure that, if either parameter is set, its value is
 352   // reasonable.
 353   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 354     if (MaxGCPauseMillis < 1) {
 355       vm_exit_during_initialization("MaxGCPauseMillis should be "
 356                                     "greater than 0");
 357     }
 358   }
 359   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 360     if (GCPauseIntervalMillis < 1) {
 361       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 362                                     "greater than 0");
 363     }
 364   }
 365 
 366   // Then, if the pause time target parameter was not set, set it to
 367   // the default value.
 368   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 369     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 370       // The default pause time target in G1 is 200ms
 371       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 372     } else {
 373       // We do not allow the pause interval to be set without the
 374       // pause time target
 375       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 376                                     "without setting MaxGCPauseMillis");
 377     }
 378   }
 379 
 380   // Then, if the interval parameter was not set, set it according to
 381   // the pause time target (this will also deal with the case when the
 382   // pause time target is the default value).
 383   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 384     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 385   }
 386 
 387   // Finally, make sure that the two parameters are consistent.
 388   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 389     char buffer[256];
 390     jio_snprintf(buffer, 256,
 391                  "MaxGCPauseMillis (%u) should be less than "
 392                  "GCPauseIntervalMillis (%u)",
 393                  MaxGCPauseMillis, GCPauseIntervalMillis);
 394     vm_exit_during_initialization(buffer);
 395   }
 396 
 397   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 398   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 399   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 400   _sigma = (double) G1ConfidencePercent / 100.0;
 401 
 402   // start conservatively (around 50ms is about right)
 403   _concurrent_mark_init_times_ms->add(0.05);
 404   _concurrent_mark_remark_times_ms->add(0.05);
 405   _concurrent_mark_cleanup_times_ms->add(0.20);
 406   _tenuring_threshold = MaxTenuringThreshold;
 407 
 408   // if G1FixedSurvivorSpaceSize is 0 which means the size is not
 409   // fixed, then _max_survivor_regions will be calculated at
 410   // calculate_young_list_target_length during initialization
 411   _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
 412 
 413   assert(GCTimeRatio > 0,
 414          "we should have set it to a default value set_g1_gc_flags() "
 415          "if a user set it to 0");
 416   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 417 
 418   initialize_all();
 419 }
 420 
 421 // Increment "i", mod "len"
 422 static void inc_mod(int& i, int len) {
 423   i++; if (i == len) i = 0;
 424 }
 425 
 426 void G1CollectorPolicy::initialize_flags() {
 427   set_min_alignment(HeapRegion::GrainBytes);
 428   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
 429   if (SurvivorRatio < 1) {
 430     vm_exit_during_initialization("Invalid survivor ratio specified");
 431   }
 432   CollectorPolicy::initialize_flags();
 433 }
 434 
 435 // The easiest way to deal with the parsing of the NewSize /
 436 // MaxNewSize / etc. parameteres is to re-use the code in the
 437 // TwoGenerationCollectorPolicy class. This is similar to what
 438 // ParallelScavenge does with its GenerationSizer class (see
 439 // ParallelScavengeHeap::initialize()). We might change this in the
 440 // future, but it's a good start.
 441 class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
 442   size_t size_to_region_num(size_t byte_size) {
 443     return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
 444   }
 445 
 446 public:
 447   G1YoungGenSizer() {
 448     initialize_flags();
 449     initialize_size_info();
 450   }
 451 
 452   size_t min_young_region_num() {
 453     return size_to_region_num(_min_gen0_size);
 454   }
 455   size_t initial_young_region_num() {
 456     return size_to_region_num(_initial_gen0_size);
 457   }
 458   size_t max_young_region_num() {
 459     return size_to_region_num(_max_gen0_size);
 460   }
 461 };
 462 
 463 void G1CollectorPolicy::init() {
 464   // Set aside an initial future to_space.
 465   _g1 = G1CollectedHeap::heap();
 466 
 467   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 468 
 469   initialize_gc_policy_counters();
 470 
 471   if (G1Gen) {
 472     _in_young_gc_mode = true;
 473 
 474     G1YoungGenSizer sizer;
 475     size_t initial_region_num = sizer.initial_young_region_num();
 476 
 477     if (UseAdaptiveSizePolicy) {
 478       set_adaptive_young_list_length(true);
 479       _young_list_fixed_length = 0;
 480     } else {
 481       set_adaptive_young_list_length(false);
 482       _young_list_fixed_length = initial_region_num;
 483     }
 484     _free_regions_at_end_of_collection = _g1->free_regions();
 485     calculate_young_list_min_length();
 486     guarantee( _young_list_min_length == 0, "invariant, not enough info" );
 487     calculate_young_list_target_length();
 488   } else {
 489      _young_list_fixed_length = 0;
 490     _in_young_gc_mode = false;
 491   }
 492 
 493   // We may immediately start allocating regions and placing them on the
 494   // collection set list. Initialize the per-collection set info
 495   start_incremental_cset_building();
 496 }
 497 
 498 // Create the jstat counters for the policy.
 499 void G1CollectorPolicy::initialize_gc_policy_counters()
 500 {
 501   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
 502 }
 503 
 504 void G1CollectorPolicy::calculate_young_list_min_length() {
 505   _young_list_min_length = 0;
 506 
 507   if (!adaptive_young_list_length())
 508     return;
 509 
 510   if (_alloc_rate_ms_seq->num() > 3) {
 511     double now_sec = os::elapsedTime();
 512     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 513     double alloc_rate_ms = predict_alloc_rate_ms();
 514     size_t min_regions = (size_t) ceil(alloc_rate_ms * when_ms);
 515     size_t current_region_num = _g1->young_list()->length();
 516     _young_list_min_length = min_regions + current_region_num;
 517   }
 518 }
 519 
 520 void G1CollectorPolicy::calculate_young_list_target_length() {
 521   if (adaptive_young_list_length()) {
 522     size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 523     calculate_young_list_target_length(rs_lengths);
 524   } else {
 525     if (full_young_gcs())
 526       _young_list_target_length = _young_list_fixed_length;
 527     else
 528       _young_list_target_length = _young_list_fixed_length / 2;
 529   }
 530 
 531   // Make sure we allow the application to allocate at least one
 532   // region before we need to do a collection again.
 533   size_t min_length = _g1->young_list()->length() + 1;
 534   _young_list_target_length = MAX2(_young_list_target_length, min_length);
 535   calculate_max_gc_locker_expansion();
 536   calculate_survivors_policy();
 537 }
 538 
 539 void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
 540   guarantee( adaptive_young_list_length(), "pre-condition" );
 541   guarantee( !_in_marking_window || !_last_full_young_gc, "invariant" );
 542 
 543   double start_time_sec = os::elapsedTime();
 544   size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1ReservePercent);
 545   min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
 546   size_t reserve_regions =
 547     (size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);
 548 
 549   if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
 550     // we are in fully-young mode and there are free regions in the heap
 551 
 552     double survivor_regions_evac_time =
 553         predict_survivor_regions_evac_time();
 554 
 555     double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 556     size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 557     size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 558     size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 559     double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
 560                           + survivor_regions_evac_time;
 561 
 562     // the result
 563     size_t final_young_length = 0;
 564 
 565     size_t init_free_regions =
 566       MAX2((size_t)0, _free_regions_at_end_of_collection - reserve_regions);
 567 
 568     // if we're still under the pause target...
 569     if (base_time_ms <= target_pause_time_ms) {
 570       // We make sure that the shortest young length that makes sense
 571       // fits within the target pause time.
 572       size_t min_young_length = 1;
 573 
 574       if (predict_will_fit(min_young_length, base_time_ms,
 575                                      init_free_regions, target_pause_time_ms)) {
 576         // The shortest young length will fit within the target pause time;
 577         // we'll now check whether the absolute maximum number of young
 578         // regions will fit in the target pause time. If not, we'll do
 579         // a binary search between min_young_length and max_young_length
 580         size_t abs_max_young_length = _free_regions_at_end_of_collection - 1;
 581         size_t max_young_length = abs_max_young_length;
 582 
 583         if (max_young_length > min_young_length) {
 584           // Let's check if the initial max young length will fit within the
 585           // target pause. If so then there is no need to search for a maximal
 586           // young length - we'll return the initial maximum
 587 
 588           if (predict_will_fit(max_young_length, base_time_ms,
 589                                 init_free_regions, target_pause_time_ms)) {
 590             // The maximum young length will satisfy the target pause time.
 591             // We are done so set min young length to this maximum length.
 592             // The code after the loop will then set final_young_length using
 593             // the value cached in the minimum length.
 594             min_young_length = max_young_length;
 595           } else {
 596             // The maximum possible number of young regions will not fit within
 597             // the target pause time so let's search....
 598 
 599             size_t diff = (max_young_length - min_young_length) / 2;
 600             max_young_length = min_young_length + diff;
 601 
 602             while (max_young_length > min_young_length) {
 603               if (predict_will_fit(max_young_length, base_time_ms,
 604                                         init_free_regions, target_pause_time_ms)) {
 605 
 606                 // The current max young length will fit within the target
 607                 // pause time. Note we do not exit the loop here. By setting
 608                 // min = max, and then increasing the max below means that
 609                 // we will continue searching for an upper bound in the
 610                 // range [max..max+diff]
 611                 min_young_length = max_young_length;
 612               }
 613               diff = (max_young_length - min_young_length) / 2;
 614               max_young_length = min_young_length + diff;
 615             }
 616             // the above loop found a maximal young length that will fit
 617             // within the target pause time.
 618           }
 619           assert(min_young_length <= abs_max_young_length, "just checking");
 620         }
 621         final_young_length = min_young_length;
 622       }
 623     }
 624     // and we're done!
 625 
 626     // we should have at least one region in the target young length
 627     _young_list_target_length =
 628                               final_young_length + _recorded_survivor_regions;
 629 
 630     // let's keep an eye of how long we spend on this calculation
 631     // right now, I assume that we'll print it when we need it; we
 632     // should really adde it to the breakdown of a pause
 633     double end_time_sec = os::elapsedTime();
 634     double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;
 635 
 636 #ifdef TRACE_CALC_YOUNG_LENGTH
 637     // leave this in for debugging, just in case
 638     gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT ", "
 639                            "elapsed %1.2lf ms, (%s%s) " SIZE_FORMAT SIZE_FORMAT,
 640                            target_pause_time_ms,
 641                            _young_list_target_length
 642                            elapsed_time_ms,
 643                            full_young_gcs() ? "full" : "partial",
 644                            during_initial_mark_pause() ? " i-m" : "",
 645                            _in_marking_window,
 646                            _in_marking_window_im);
 647 #endif // TRACE_CALC_YOUNG_LENGTH
 648 
 649     if (_young_list_target_length < _young_list_min_length) {
 650       // bummer; this means that, if we do a pause when the maximal
 651       // length dictates, we'll violate the pause spacing target (the
 652       // min length was calculate based on the application's current
 653       // alloc rate);
 654 
 655       // so, we have to bite the bullet, and allocate the minimum
 656       // number. We'll violate our target, but we just can't meet it.
 657 
 658 #ifdef TRACE_CALC_YOUNG_LENGTH
 659       // leave this in for debugging, just in case
 660       gclog_or_tty->print_cr("adjusted target length from "
 661                              SIZE_FORMAT " to " SIZE_FORMAT,
 662                              _young_list_target_length, _young_list_min_length);
 663 #endif // TRACE_CALC_YOUNG_LENGTH
 664 
 665       _young_list_target_length = _young_list_min_length;
 666     }
 667   } else {
 668     // we are in a partially-young mode or we've run out of regions (due
 669     // to evacuation failure)
 670 
 671 #ifdef TRACE_CALC_YOUNG_LENGTH
 672     // leave this in for debugging, just in case
 673     gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
 674                            _young_list_min_length);
 675 #endif // TRACE_CALC_YOUNG_LENGTH
 676     // we'll do the pause as soon as possible by choosing the minimum
 677     _young_list_target_length = _young_list_min_length;
 678   }
 679 
 680   _rs_lengths_prediction = rs_lengths;
 681 }
 682 
 683 // This is used by: calculate_young_list_target_length(rs_length). It
 684 // returns true iff:
 685 //   the predicted pause time for the given young list will not overflow
 686 //   the target pause time
 687 // and:
 688 //   the predicted amount of surviving data will not overflow the
 689 //   the amount of free space available for survivor regions.
 690 //
 691 bool
 692 G1CollectorPolicy::predict_will_fit(size_t young_length,
 693                                     double base_time_ms,
 694                                     size_t init_free_regions,
 695                                     double target_pause_time_ms) {
 696 
 697   if (young_length >= init_free_regions)
 698     // end condition 1: not enough space for the young regions
 699     return false;
 700 
 701   double accum_surv_rate_adj = 0.0;
 702   double accum_surv_rate =
 703     accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
 704 
 705   size_t bytes_to_copy =
 706     (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 707 
 708   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 709 
 710   double young_other_time_ms =
 711                        predict_young_other_time_ms(young_length);
 712 
 713   double pause_time_ms =
 714                    base_time_ms + copy_time_ms + young_other_time_ms;
 715 
 716   if (pause_time_ms > target_pause_time_ms)
 717     // end condition 2: over the target pause time
 718     return false;
 719 
 720   size_t free_bytes =
 721                  (init_free_regions - young_length) * HeapRegion::GrainBytes;
 722 
 723   if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
 724     // end condition 3: out of to-space (conservatively)
 725     return false;
 726 
 727   // success!
 728   return true;
 729 }
 730 
 731 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 732   double survivor_regions_evac_time = 0.0;
 733   for (HeapRegion * r = _recorded_survivor_head;
 734        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 735        r = r->get_next_young_region()) {
 736     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
 737   }
 738   return survivor_regions_evac_time;
 739 }
 740 
 741 void G1CollectorPolicy::check_prediction_validity() {
 742   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 743 
 744   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 745   if (rs_lengths > _rs_lengths_prediction) {
 746     // add 10% to avoid having to recalculate often
 747     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 748     calculate_young_list_target_length(rs_lengths_prediction);
 749   }
 750 }
 751 
 752 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 753                                                bool is_tlab,
 754                                                bool* gc_overhead_limit_was_exceeded) {
 755   guarantee(false, "Not using this policy feature yet.");
 756   return NULL;
 757 }
 758 
 759 // This method controls how a collector handles one or more
 760 // of its generations being fully allocated.
 761 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 762                                                        bool is_tlab) {
 763   guarantee(false, "Not using this policy feature yet.");
 764   return NULL;
 765 }
 766 
 767 
 768 #ifndef PRODUCT
 769 bool G1CollectorPolicy::verify_young_ages() {
 770   HeapRegion* head = _g1->young_list()->first_region();
 771   return
 772     verify_young_ages(head, _short_lived_surv_rate_group);
 773   // also call verify_young_ages on any additional surv rate groups
 774 }
 775 
 776 bool
 777 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 778                                      SurvRateGroup *surv_rate_group) {
 779   guarantee( surv_rate_group != NULL, "pre-condition" );
 780 
 781   const char* name = surv_rate_group->name();
 782   bool ret = true;
 783   int prev_age = -1;
 784 
 785   for (HeapRegion* curr = head;
 786        curr != NULL;
 787        curr = curr->get_next_young_region()) {
 788     SurvRateGroup* group = curr->surv_rate_group();
 789     if (group == NULL && !curr->is_survivor()) {
 790       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 791       ret = false;
 792     }
 793 
 794     if (surv_rate_group == group) {
 795       int age = curr->age_in_surv_rate_group();
 796 
 797       if (age < 0) {
 798         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 799         ret = false;
 800       }
 801 
 802       if (age <= prev_age) {
 803         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 804                                "(%d, %d)", name, age, prev_age);
 805         ret = false;
 806       }
 807       prev_age = age;
 808     }
 809   }
 810 
 811   return ret;
 812 }
 813 #endif // PRODUCT
 814 
 815 void G1CollectorPolicy::record_full_collection_start() {
 816   _cur_collection_start_sec = os::elapsedTime();
 817   // Release the future to-space so that it is available for compaction into.
 818   _g1->set_full_collection();
 819 }
 820 
 821 void G1CollectorPolicy::record_full_collection_end() {
 822   // Consider this like a collection pause for the purposes of allocation
 823   // since last pause.
 824   double end_sec = os::elapsedTime();
 825   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
 826   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 827 
 828   _all_full_gc_times_ms->add(full_gc_time_ms);
 829 
 830   update_recent_gc_times(end_sec, full_gc_time_ms);
 831 
 832   _g1->clear_full_collection();
 833 
 834   // "Nuke" the heuristics that control the fully/partially young GC
 835   // transitions and make sure we start with fully young GCs after the
 836   // Full GC.
 837   set_full_young_gcs(true);
 838   _last_full_young_gc = false;
 839   _should_revert_to_full_young_gcs = false;
 840   clear_initiate_conc_mark_if_possible();
 841   clear_during_initial_mark_pause();
 842   _known_garbage_bytes = 0;
 843   _known_garbage_ratio = 0.0;
 844   _in_marking_window = false;
 845   _in_marking_window_im = false;
 846 
 847   _short_lived_surv_rate_group->start_adding_regions();
 848   // also call this on any additional surv rate groups
 849 
 850   record_survivor_regions(0, NULL, NULL);
 851 
 852   _prev_region_num_young   = _region_num_young;
 853   _prev_region_num_tenured = _region_num_tenured;
 854 
 855   _free_regions_at_end_of_collection = _g1->free_regions();
 856   // Reset survivors SurvRateGroup.
 857   _survivor_surv_rate_group->reset();
 858   calculate_young_list_min_length();
 859   calculate_young_list_target_length();
 860 }
 861 
 862 void G1CollectorPolicy::record_before_bytes(size_t bytes) {
 863   _bytes_in_to_space_before_gc += bytes;
 864 }
 865 
 866 void G1CollectorPolicy::record_after_bytes(size_t bytes) {
 867   _bytes_in_to_space_after_gc += bytes;
 868 }
 869 
 870 void G1CollectorPolicy::record_stop_world_start() {
 871   _stop_world_start = os::elapsedTime();
 872 }
 873 
 874 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
 875                                                       size_t start_used) {
 876   if (PrintGCDetails) {
 877     gclog_or_tty->stamp(PrintGCTimeStamps);
 878     gclog_or_tty->print("[GC pause");
 879     if (in_young_gc_mode())
 880       gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
 881   }
 882 
 883   assert(_g1->used() == _g1->recalculate_used(),
 884          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 885                  _g1->used(), _g1->recalculate_used()));
 886 
 887   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 888   _all_stop_world_times_ms->add(s_w_t_ms);
 889   _stop_world_start = 0.0;
 890 
 891   _cur_collection_start_sec = start_time_sec;
 892   _cur_collection_pause_used_at_start_bytes = start_used;
 893   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
 894   _pending_cards = _g1->pending_card_num();
 895   _max_pending_cards = _g1->max_pending_card_num();
 896 
 897   _bytes_in_to_space_before_gc = 0;
 898   _bytes_in_to_space_after_gc = 0;
 899   _bytes_in_collection_set_before_gc = 0;
 900 
 901   YoungList* young_list = _g1->young_list();
 902   _eden_bytes_before_gc = young_list->eden_used_bytes();
 903   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
 904   _capacity_before_gc = _g1->capacity();
 905 
 906 #ifdef DEBUG
 907   // initialise these to something well known so that we can spot
 908   // if they are not set properly
 909 
 910   for (int i = 0; i < _parallel_gc_threads; ++i) {
 911     _par_last_gc_worker_start_times_ms[i] = -1234.0;
 912     _par_last_ext_root_scan_times_ms[i] = -1234.0;
 913     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
 914     _par_last_update_rs_times_ms[i] = -1234.0;
 915     _par_last_update_rs_processed_buffers[i] = -1234.0;
 916     _par_last_scan_rs_times_ms[i] = -1234.0;
 917     _par_last_obj_copy_times_ms[i] = -1234.0;
 918     _par_last_termination_times_ms[i] = -1234.0;
 919     _par_last_termination_attempts[i] = -1234.0;
 920     _par_last_gc_worker_end_times_ms[i] = -1234.0;
 921     _par_last_gc_worker_times_ms[i] = -1234.0;
 922   }
 923 #endif
 924 
 925   for (int i = 0; i < _aux_num; ++i) {
 926     _cur_aux_times_ms[i] = 0.0;
 927     _cur_aux_times_set[i] = false;
 928   }
 929 
 930   _satb_drain_time_set = false;
 931   _last_satb_drain_processed_buffers = -1;
 932 
 933   if (in_young_gc_mode())
 934     _last_young_gc_full = false;
 935 
 936   // do that for any other surv rate groups
 937   _short_lived_surv_rate_group->stop_adding_regions();
 938   _survivors_age_table.clear();
 939 
 940   assert( verify_young_ages(), "region age verification" );
 941 }
 942 
 943 void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
 944   _mark_closure_time_ms = mark_closure_time_ms;
 945 }
 946 
 947 void G1CollectorPolicy::record_concurrent_mark_init_start() {
 948   _mark_init_start_sec = os::elapsedTime();
 949   guarantee(!in_young_gc_mode(), "should not do be here in young GC mode");
 950 }
 951 
 952 void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
 953                                                    mark_init_elapsed_time_ms) {
 954   _during_marking = true;
 955   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 956   clear_during_initial_mark_pause();
 957   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 958 }
 959 
 960 void G1CollectorPolicy::record_concurrent_mark_init_end() {
 961   double end_time_sec = os::elapsedTime();
 962   double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
 963   _concurrent_mark_init_times_ms->add(elapsed_time_ms);
 964   record_concurrent_mark_init_end_pre(elapsed_time_ms);
 965 
 966   _mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
 967 }
 968 
 969 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 970   _mark_remark_start_sec = os::elapsedTime();
 971   _during_marking = false;
 972 }
 973 
 974 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 975   double end_time_sec = os::elapsedTime();
 976   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 977   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 978   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 979   _prev_collection_pause_end_ms += elapsed_time_ms;
 980 
 981   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 982 }
 983 
 984 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 985   _mark_cleanup_start_sec = os::elapsedTime();
 986 }
 987 
 988 void
 989 G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
 990                                                       size_t max_live_bytes) {
 991   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
 992   record_concurrent_mark_cleanup_end_work2();
 993 }
 994 
 995 void
 996 G1CollectorPolicy::
 997 record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
 998                                          size_t max_live_bytes) {
 999   if (_n_marks < 2) _n_marks++;
1000   if (G1PolicyVerbose > 0)
1001     gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
1002                            " (of " SIZE_FORMAT " MB heap).",
1003                            max_live_bytes/M, _g1->capacity()/M);
1004 }
1005 
1006 // The important thing about this is that it includes "os::elapsedTime".
1007 void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
1008   double end_time_sec = os::elapsedTime();
1009   double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
1010   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1011   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1012   _prev_collection_pause_end_ms += elapsed_time_ms;
1013 
1014   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);
1015 
1016   _num_markings++;
1017 
1018   // We did a marking, so reset the "since_last_mark" variables.
1019   double considerConcMarkCost = 1.0;
1020   // If there are available processors, concurrent activity is free...
1021   if (Threads::number_of_non_daemon_threads() * 2 <
1022       os::active_processor_count()) {
1023     considerConcMarkCost = 0.0;
1024   }
1025   _n_pauses_at_mark_end = _n_pauses;
1026   _n_marks_since_last_pause++;
1027 }
1028 
1029 void
1030 G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
1031   if (in_young_gc_mode()) {
1032     _should_revert_to_full_young_gcs = false;
1033     _last_full_young_gc = true;
1034     _in_marking_window = false;
1035     if (adaptive_young_list_length())
1036       calculate_young_list_target_length();
1037   }
1038 }
1039 
1040 void G1CollectorPolicy::record_concurrent_pause() {
1041   if (_stop_world_start > 0.0) {
1042     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
1043     _all_yield_times_ms->add(yield_ms);
1044   }
1045 }
1046 
1047 void G1CollectorPolicy::record_concurrent_pause_end() {
1048 }
1049 
1050 template<class T>
1051 T sum_of(T* sum_arr, int start, int n, int N) {
1052   T sum = (T)0;
1053   for (int i = 0; i < n; i++) {
1054     int j = (start + i) % N;
1055     sum += sum_arr[j];
1056   }
1057   return sum;
1058 }
1059 
1060 void G1CollectorPolicy::print_par_stats(int level,
1061                                         const char* str,
1062                                         double* data) {
1063   double min = data[0], max = data[0];
1064   double total = 0.0;
1065   LineBuffer buf(level);
1066   buf.append("[%s (ms):", str);
1067   for (uint i = 0; i < ParallelGCThreads; ++i) {
1068     double val = data[i];
1069     if (val < min)
1070       min = val;
1071     if (val > max)
1072       max = val;
1073     total += val;
1074     buf.append("  %3.1lf", val);
1075   }
1076   buf.append_and_print_cr("");
1077   double avg = total / (double) ParallelGCThreads;
1078   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
1079     avg, min, max, max - min);
1080 }
1081 
1082 void G1CollectorPolicy::print_par_sizes(int level,
1083                                         const char* str,
1084                                         double* data) {
1085   double min = data[0], max = data[0];
1086   double total = 0.0;
1087   LineBuffer buf(level);
1088   buf.append("[%s :", str);
1089   for (uint i = 0; i < ParallelGCThreads; ++i) {
1090     double val = data[i];
1091     if (val < min)
1092       min = val;
1093     if (val > max)
1094       max = val;
1095     total += val;
1096     buf.append(" %d", (int) val);
1097   }
1098   buf.append_and_print_cr("");
1099   double avg = total / (double) ParallelGCThreads;
1100   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
1101     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
1102 }
1103 
1104 void G1CollectorPolicy::print_stats (int level,
1105                                      const char* str,
1106                                      double value) {
1107   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
1108 }
1109 
1110 void G1CollectorPolicy::print_stats (int level,
1111                                      const char* str,
1112                                      int value) {
1113   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
1114 }
1115 
1116 double G1CollectorPolicy::avg_value (double* data) {
1117   if (G1CollectedHeap::use_parallel_gc_threads()) {
1118     double ret = 0.0;
1119     for (uint i = 0; i < ParallelGCThreads; ++i)
1120       ret += data[i];
1121     return ret / (double) ParallelGCThreads;
1122   } else {
1123     return data[0];
1124   }
1125 }
1126 
1127 double G1CollectorPolicy::max_value (double* data) {
1128   if (G1CollectedHeap::use_parallel_gc_threads()) {
1129     double ret = data[0];
1130     for (uint i = 1; i < ParallelGCThreads; ++i)
1131       if (data[i] > ret)
1132         ret = data[i];
1133     return ret;
1134   } else {
1135     return data[0];
1136   }
1137 }
1138 
1139 double G1CollectorPolicy::sum_of_values (double* data) {
1140   if (G1CollectedHeap::use_parallel_gc_threads()) {
1141     double sum = 0.0;
1142     for (uint i = 0; i < ParallelGCThreads; i++)
1143       sum += data[i];
1144     return sum;
1145   } else {
1146     return data[0];
1147   }
1148 }
1149 
1150 double G1CollectorPolicy::max_sum (double* data1,
1151                                    double* data2) {
1152   double ret = data1[0] + data2[0];
1153 
1154   if (G1CollectedHeap::use_parallel_gc_threads()) {
1155     for (uint i = 1; i < ParallelGCThreads; ++i) {
1156       double data = data1[i] + data2[i];
1157       if (data > ret)
1158         ret = data;
1159     }
1160   }
1161   return ret;
1162 }
1163 
1164 // Anything below that is considered to be zero
1165 #define MIN_TIMER_GRANULARITY 0.0000001
1166 
1167 void G1CollectorPolicy::record_collection_pause_end() {
1168   double end_time_sec = os::elapsedTime();
1169   double elapsed_ms = _last_pause_time_ms;
1170   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1171   size_t rs_size =
1172     _cur_collection_pause_used_regions_at_start - collection_set_size();
1173   size_t cur_used_bytes = _g1->used();
1174   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
1175   bool last_pause_included_initial_mark = false;
1176   bool update_stats = !_g1->evacuation_failed();
1177 
1178 #ifndef PRODUCT
1179   if (G1YoungSurvRateVerbose) {
1180     gclog_or_tty->print_cr("");
1181     _short_lived_surv_rate_group->print();
1182     // do that for any other surv rate groups too
1183   }
1184 #endif // PRODUCT
1185 
1186   if (in_young_gc_mode()) {
1187     last_pause_included_initial_mark = during_initial_mark_pause();
1188     if (last_pause_included_initial_mark)
1189       record_concurrent_mark_init_end_pre(0.0);
1190 
1191     size_t min_used_targ =
1192       (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1193 
1194 
1195     if (!_g1->mark_in_progress() && !_last_full_young_gc) {
1196       assert(!last_pause_included_initial_mark, "invariant");
1197       if (cur_used_bytes > min_used_targ &&
1198           cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
1199         assert(!during_initial_mark_pause(), "we should not see this here");
1200 
1201         // Note: this might have already been set, if during the last
1202         // pause we decided to start a cycle but at the beginning of
1203         // this pause we decided to postpone it. That's OK.
1204         set_initiate_conc_mark_if_possible();
1205       }
1206     }
1207 
1208     _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
1209   }
1210 
1211   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
1212                           end_time_sec, false);
1213 
1214   guarantee(_cur_collection_pause_used_regions_at_start >=
1215             collection_set_size(),
1216             "Negative RS size?");
1217 
1218   // This assert is exempted when we're doing parallel collection pauses,
1219   // because the fragmentation caused by the parallel GC allocation buffers
1220   // can lead to more memory being used during collection than was used
1221   // before. Best leave this out until the fragmentation problem is fixed.
1222   // Pauses in which evacuation failed can also lead to negative
1223   // collections, since no space is reclaimed from a region containing an
1224   // object whose evacuation failed.
1225   // Further, we're now always doing parallel collection.  But I'm still
1226   // leaving this here as a placeholder for a more precise assertion later.
1227   // (DLD, 10/05.)
1228   assert((true || parallel) // Always using GC LABs now.
1229          || _g1->evacuation_failed()
1230          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
1231          "Negative collection");
1232 
1233   size_t freed_bytes =
1234     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
1235   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1236 
1237   double survival_fraction =
1238     (double)surviving_bytes/
1239     (double)_collection_set_bytes_used_before;
1240 
1241   _n_pauses++;
1242 
1243   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
1244   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
1245   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
1246   double update_rs_processed_buffers =
1247     sum_of_values(_par_last_update_rs_processed_buffers);
1248   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
1249   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
1250   double termination_time = avg_value(_par_last_termination_times_ms);
1251 
1252   double parallel_known_time = update_rs_time +
1253                                ext_root_scan_time +
1254                                mark_stack_scan_time +
1255                                scan_rs_time +
1256                                obj_copy_time +
1257                                termination_time;
1258 
1259   double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
1260 
1261   PauseSummary* summary = _summary;
1262 
1263   if (update_stats) {
1264     _recent_rs_scan_times_ms->add(scan_rs_time);
1265     _recent_pause_times_ms->add(elapsed_ms);
1266     _recent_rs_sizes->add(rs_size);
1267 
1268     MainBodySummary* body_summary = summary->main_body_summary();
1269     guarantee(body_summary != NULL, "should not be null!");
1270 
1271     if (_satb_drain_time_set)
1272       body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
1273     else
1274       body_summary->record_satb_drain_time_ms(0.0);
1275 
1276     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
1277     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
1278     body_summary->record_update_rs_time_ms(update_rs_time);
1279     body_summary->record_scan_rs_time_ms(scan_rs_time);
1280     body_summary->record_obj_copy_time_ms(obj_copy_time);
1281     if (parallel) {
1282       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
1283       body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
1284       body_summary->record_termination_time_ms(termination_time);
1285       body_summary->record_parallel_other_time_ms(parallel_other_time);
1286     }
1287     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
1288 
1289     // We exempt parallel collection from this check because Alloc Buffer
1290     // fragmentation can produce negative collections.  Same with evac
1291     // failure.
1292     // Further, we're now always doing parallel collection.  But I'm still
1293     // leaving this here as a placeholder for a more precise assertion later.
1294     // (DLD, 10/05.
1295     assert((true || parallel)
1296            || _g1->evacuation_failed()
1297            || surviving_bytes <= _collection_set_bytes_used_before,
1298            "Or else negative collection!");
1299     _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
1300     _recent_CS_bytes_surviving->add(surviving_bytes);
1301 
1302     // this is where we update the allocation rate of the application
1303     double app_time_ms =
1304       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
1305     if (app_time_ms < MIN_TIMER_GRANULARITY) {
1306       // This usually happens due to the timer not having the required
1307       // granularity. Some Linuxes are the usual culprits.
1308       // We'll just set it to something (arbitrarily) small.
1309       app_time_ms = 1.0;
1310     }
1311     size_t regions_allocated =
1312       (_region_num_young - _prev_region_num_young) +
1313       (_region_num_tenured - _prev_region_num_tenured);
1314     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1315     _alloc_rate_ms_seq->add(alloc_rate_ms);
1316     _prev_region_num_young   = _region_num_young;
1317     _prev_region_num_tenured = _region_num_tenured;
1318 
1319     double interval_ms =
1320       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1321     update_recent_gc_times(end_time_sec, elapsed_ms);
1322     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1323     if (recent_avg_pause_time_ratio() < 0.0 ||
1324         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1325 #ifndef PRODUCT
1326       // Dump info to allow post-facto debugging
1327       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1328       gclog_or_tty->print_cr("-------------------------------------------");
1329       gclog_or_tty->print_cr("Recent GC Times (ms):");
1330       _recent_gc_times_ms->dump();
1331       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1332       _recent_prev_end_times_for_all_gcs_sec->dump();
1333       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1334                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1335       // In debug mode, terminate the JVM if the user wants to debug at this point.
1336       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1337 #endif  // !PRODUCT
1338       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1339       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1340       if (_recent_avg_pause_time_ratio < 0.0) {
1341         _recent_avg_pause_time_ratio = 0.0;
1342       } else {
1343         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1344         _recent_avg_pause_time_ratio = 1.0;
1345       }
1346     }
1347   }
1348 
1349   if (G1PolicyVerbose > 1) {
1350     gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
1351   }
1352 
1353   if (G1PolicyVerbose > 1) {
1354     gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
1355                            "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
1356                            "      |RS|: " SIZE_FORMAT,
1357                            elapsed_ms, recent_avg_time_for_pauses_ms(),
1358                            scan_rs_time, recent_avg_time_for_rs_scan_ms(),
1359                            rs_size);
1360 
1361     gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
1362                            "       At end " SIZE_FORMAT "K\n"
1363                            "       garbage      : " SIZE_FORMAT "K"
1364                            "       of     " SIZE_FORMAT "K\n"
1365                            "       survival     : %6.2f%%  (%6.2f%% avg)",
1366                            _cur_collection_pause_used_at_start_bytes/K,
1367                            _g1->used()/K, freed_bytes/K,
1368                            _collection_set_bytes_used_before/K,
1369                            survival_fraction*100.0,
1370                            recent_avg_survival_fraction()*100.0);
1371     gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
1372                            recent_avg_pause_time_ratio() * 100.0);
1373   }
1374 
1375   double other_time_ms = elapsed_ms;
1376 
1377   if (_satb_drain_time_set) {
1378     other_time_ms -= _cur_satb_drain_time_ms;
1379   }
1380 
1381   if (parallel) {
1382     other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
1383   } else {
1384     other_time_ms -=
1385       update_rs_time +
1386       ext_root_scan_time + mark_stack_scan_time +
1387       scan_rs_time + obj_copy_time;
1388   }
1389 
1390   if (PrintGCDetails) {
1391     gclog_or_tty->print_cr("%s, %1.8lf secs]",
1392                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
1393                            elapsed_ms / 1000.0);
1394 
1395     if (_satb_drain_time_set) {
1396       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
1397     }
1398     if (_last_satb_drain_processed_buffers >= 0) {
1399       print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
1400     }
1401     if (parallel) {
1402       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
1403       print_par_stats(2, "GC Worker Start Time", _par_last_gc_worker_start_times_ms);
1404       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1405       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
1406       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
1407       print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
1408       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
1409       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
1410       print_par_stats(2, "Termination", _par_last_termination_times_ms);
1411       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
1412       print_par_stats(2, "GC Worker End Time", _par_last_gc_worker_end_times_ms);
1413 
1414       for (int i = 0; i < _parallel_gc_threads; i++) {
1415         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
1416       }
1417       print_par_stats(2, "GC Worker Times", _par_last_gc_worker_times_ms);
1418 
1419       print_stats(2, "Parallel Other", parallel_other_time);
1420       print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
1421     } else {
1422       print_stats(1, "Update RS", update_rs_time);
1423       print_stats(2, "Processed Buffers",
1424                   (int)update_rs_processed_buffers);
1425       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
1426       print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
1427       print_stats(1, "Scan RS", scan_rs_time);
1428       print_stats(1, "Object Copying", obj_copy_time);
1429     }
1430 #ifndef PRODUCT
1431     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
1432     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
1433     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
1434     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
1435     if (_num_cc_clears > 0) {
1436       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
1437     }
1438 #endif
1439     print_stats(1, "Other", other_time_ms);
1440     print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
1441 
1442     for (int i = 0; i < _aux_num; ++i) {
1443       if (_cur_aux_times_set[i]) {
1444         char buffer[96];
1445         sprintf(buffer, "Aux%d", i);
1446         print_stats(1, buffer, _cur_aux_times_ms[i]);
1447       }
1448     }
1449   }
1450 
1451   _all_pause_times_ms->add(elapsed_ms);
1452   if (update_stats) {
1453     summary->record_total_time_ms(elapsed_ms);
1454     summary->record_other_time_ms(other_time_ms);
1455   }
1456   for (int i = 0; i < _aux_num; ++i)
1457     if (_cur_aux_times_set[i])
1458       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
1459 
1460   // Reset marks-between-pauses counter.
1461   _n_marks_since_last_pause = 0;
1462 
1463   // Update the efficiency-since-mark vars.
1464   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
1465   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
1466     // This usually happens due to the timer not having the required
1467     // granularity. Some Linuxes are the usual culprits.
1468     // We'll just set it to something (arbitrarily) small.
1469     proc_ms = 1.0;
1470   }
1471   double cur_efficiency = (double) freed_bytes / proc_ms;
1472 
1473   bool new_in_marking_window = _in_marking_window;
1474   bool new_in_marking_window_im = false;
1475   if (during_initial_mark_pause()) {
1476     new_in_marking_window = true;
1477     new_in_marking_window_im = true;
1478   }
1479 
1480   if (in_young_gc_mode()) {
1481     if (_last_full_young_gc) {
1482       set_full_young_gcs(false);
1483       _last_full_young_gc = false;
1484     }
1485 
1486     if ( !_last_young_gc_full ) {
1487       if ( _should_revert_to_full_young_gcs ||
1488            _known_garbage_ratio < 0.05 ||
1489            (adaptive_young_list_length() &&
1490            (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
1491         set_full_young_gcs(true);
1492       }
1493     }
1494     _should_revert_to_full_young_gcs = false;
1495 
1496     if (_last_young_gc_full && !_during_marking)
1497       _young_gc_eff_seq->add(cur_efficiency);
1498   }
1499 
1500   _short_lived_surv_rate_group->start_adding_regions();
1501   // do that for any other surv rate groupsx
1502 
1503   // <NEW PREDICTION>
1504 
1505   if (update_stats) {
1506     double pause_time_ms = elapsed_ms;
1507 
1508     size_t diff = 0;
1509     if (_max_pending_cards >= _pending_cards)
1510       diff = _max_pending_cards - _pending_cards;
1511     _pending_card_diff_seq->add((double) diff);
1512 
1513     double cost_per_card_ms = 0.0;
1514     if (_pending_cards > 0) {
1515       cost_per_card_ms = update_rs_time / (double) _pending_cards;
1516       _cost_per_card_ms_seq->add(cost_per_card_ms);
1517     }
1518 
1519     size_t cards_scanned = _g1->cards_scanned();
1520 
1521     double cost_per_entry_ms = 0.0;
1522     if (cards_scanned > 10) {
1523       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
1524       if (_last_young_gc_full)
1525         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1526       else
1527         _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1528     }
1529 
1530     if (_max_rs_lengths > 0) {
1531       double cards_per_entry_ratio =
1532         (double) cards_scanned / (double) _max_rs_lengths;
1533       if (_last_young_gc_full)
1534         _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1535       else
1536         _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1537     }
1538 
1539     size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1540     if (rs_length_diff >= 0)
1541       _rs_length_diff_seq->add((double) rs_length_diff);
1542 
1543     size_t copied_bytes = surviving_bytes;
1544     double cost_per_byte_ms = 0.0;
1545     if (copied_bytes > 0) {
1546       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
1547       if (_in_marking_window)
1548         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1549       else
1550         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1551     }
1552 
1553     double all_other_time_ms = pause_time_ms -
1554       (update_rs_time + scan_rs_time + obj_copy_time +
1555        _mark_closure_time_ms + termination_time);
1556 
1557     double young_other_time_ms = 0.0;
1558     if (_recorded_young_regions > 0) {
1559       young_other_time_ms =
1560         _recorded_young_cset_choice_time_ms +
1561         _recorded_young_free_cset_time_ms;
1562       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1563                                              (double) _recorded_young_regions);
1564     }
1565     double non_young_other_time_ms = 0.0;
1566     if (_recorded_non_young_regions > 0) {
1567       non_young_other_time_ms =
1568         _recorded_non_young_cset_choice_time_ms +
1569         _recorded_non_young_free_cset_time_ms;
1570 
1571       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1572                                          (double) _recorded_non_young_regions);
1573     }
1574 
1575     double constant_other_time_ms = all_other_time_ms -
1576       (young_other_time_ms + non_young_other_time_ms);
1577     _constant_other_time_ms_seq->add(constant_other_time_ms);
1578 
1579     double survival_ratio = 0.0;
1580     if (_bytes_in_collection_set_before_gc > 0) {
1581       survival_ratio = (double) bytes_in_to_space_during_gc() /
1582         (double) _bytes_in_collection_set_before_gc;
1583     }
1584 
1585     _pending_cards_seq->add((double) _pending_cards);
1586     _scanned_cards_seq->add((double) cards_scanned);
1587     _rs_lengths_seq->add((double) _max_rs_lengths);
1588 
1589     double expensive_region_limit_ms =
1590       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
1591     if (expensive_region_limit_ms < 0.0) {
1592       // this means that the other time was predicted to be longer than
1593       // than the max pause time
1594       expensive_region_limit_ms = (double) MaxGCPauseMillis;
1595     }
1596     _expensive_region_limit_ms = expensive_region_limit_ms;
1597 
1598     if (PREDICTIONS_VERBOSE) {
1599       gclog_or_tty->print_cr("");
1600       gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
1601                     "REGIONS %d %d %d "
1602                     "PENDING_CARDS %d %d "
1603                     "CARDS_SCANNED %d %d "
1604                     "RS_LENGTHS %d %d "
1605                     "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
1606                     "SURVIVAL_RATIO %1.6lf %1.6lf "
1607                     "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
1608                     "OTHER_YOUNG %1.6lf %1.6lf "
1609                     "OTHER_NON_YOUNG %1.6lf %1.6lf "
1610                     "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
1611                     "ELAPSED %1.6lf %1.6lf ",
1612                     _cur_collection_start_sec,
1613                     (!_last_young_gc_full) ? 2 :
1614                     (last_pause_included_initial_mark) ? 1 : 0,
1615                     _recorded_region_num,
1616                     _recorded_young_regions,
1617                     _recorded_non_young_regions,
1618                     _predicted_pending_cards, _pending_cards,
1619                     _predicted_cards_scanned, cards_scanned,
1620                     _predicted_rs_lengths, _max_rs_lengths,
1621                     _predicted_rs_update_time_ms, update_rs_time,
1622                     _predicted_rs_scan_time_ms, scan_rs_time,
1623                     _predicted_survival_ratio, survival_ratio,
1624                     _predicted_object_copy_time_ms, obj_copy_time,
1625                     _predicted_constant_other_time_ms, constant_other_time_ms,
1626                     _predicted_young_other_time_ms, young_other_time_ms,
1627                     _predicted_non_young_other_time_ms,
1628                     non_young_other_time_ms,
1629                     _vtime_diff_ms, termination_time,
1630                     _predicted_pause_time_ms, elapsed_ms);
1631     }
1632 
1633     if (G1PolicyVerbose > 0) {
1634       gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
1635                     _predicted_pause_time_ms,
1636                     (_within_target) ? "within" : "outside",
1637                     elapsed_ms);
1638     }
1639 
1640   }
1641 
1642   _in_marking_window = new_in_marking_window;
1643   _in_marking_window_im = new_in_marking_window_im;
1644   _free_regions_at_end_of_collection = _g1->free_regions();
1645   calculate_young_list_min_length();
1646   calculate_young_list_target_length();
1647 
1648   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1649   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1650   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1651   // </NEW PREDICTION>
1652 }
1653 
1654 #define EXT_SIZE_FORMAT "%d%s"
1655 #define EXT_SIZE_PARAMS(bytes)                                  \
1656   byte_size_in_proper_unit((bytes)),                            \
1657   proper_unit_for_byte_size((bytes))
1658 
1659 void G1CollectorPolicy::print_heap_transition() {
1660   if (PrintGCDetails) {
1661     YoungList* young_list = _g1->young_list();
1662     size_t eden_bytes = young_list->eden_used_bytes();
1663     size_t survivor_bytes = young_list->survivor_used_bytes();
1664     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
1665     size_t used = _g1->used();
1666     size_t capacity = _g1->capacity();
1667 
1668     gclog_or_tty->print_cr(
1669          "   [Eden: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1670              "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1671              "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1672                      EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1673              EXT_SIZE_PARAMS(_eden_bytes_before_gc),
1674                EXT_SIZE_PARAMS(eden_bytes),
1675              EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
1676                EXT_SIZE_PARAMS(survivor_bytes),
1677              EXT_SIZE_PARAMS(used_before_gc),
1678              EXT_SIZE_PARAMS(_capacity_before_gc),
1679                EXT_SIZE_PARAMS(used),
1680                EXT_SIZE_PARAMS(capacity));
1681   } else if (PrintGC) {
1682     _g1->print_size_transition(gclog_or_tty,
1683                                _cur_collection_pause_used_at_start_bytes,
1684                                _g1->used(), _g1->capacity());
1685   }
1686 }
1687 
1688 // <NEW PREDICTION>
1689 
1690 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1691                                                      double update_rs_processed_buffers,
1692                                                      double goal_ms) {
1693   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1694   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1695 
1696   if (G1UseAdaptiveConcRefinement) {
1697     const int k_gy = 3, k_gr = 6;
1698     const double inc_k = 1.1, dec_k = 0.9;
1699 
1700     int g = cg1r->green_zone();
1701     if (update_rs_time > goal_ms) {
1702       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1703     } else {
1704       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1705         g = (int)MAX2(g * inc_k, g + 1.0);
1706       }
1707     }
1708     // Change the refinement threads params
1709     cg1r->set_green_zone(g);
1710     cg1r->set_yellow_zone(g * k_gy);
1711     cg1r->set_red_zone(g * k_gr);
1712     cg1r->reinitialize_threads();
1713 
1714     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1715     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1716                                     cg1r->yellow_zone());
1717     // Change the barrier params
1718     dcqs.set_process_completed_threshold(processing_threshold);
1719     dcqs.set_max_completed_queue(cg1r->red_zone());
1720   }
1721 
1722   int curr_queue_size = dcqs.completed_buffers_num();
1723   if (curr_queue_size >= cg1r->yellow_zone()) {
1724     dcqs.set_completed_queue_padding(curr_queue_size);
1725   } else {
1726     dcqs.set_completed_queue_padding(0);
1727   }
1728   dcqs.notify_if_necessary();
1729 }
1730 
1731 double
1732 G1CollectorPolicy::
1733 predict_young_collection_elapsed_time_ms(size_t adjustment) {
1734   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
1735 
1736   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1737   size_t young_num = g1h->young_list()->length();
1738   if (young_num == 0)
1739     return 0.0;
1740 
1741   young_num += adjustment;
1742   size_t pending_cards = predict_pending_cards();
1743   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
1744                       predict_rs_length_diff();
1745   size_t card_num;
1746   if (full_young_gcs())
1747     card_num = predict_young_card_num(rs_lengths);
1748   else
1749     card_num = predict_non_young_card_num(rs_lengths);
1750   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
1751   double accum_yg_surv_rate =
1752     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
1753 
1754   size_t bytes_to_copy =
1755     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
1756 
1757   return
1758     predict_rs_update_time_ms(pending_cards) +
1759     predict_rs_scan_time_ms(card_num) +
1760     predict_object_copy_time_ms(bytes_to_copy) +
1761     predict_young_other_time_ms(young_num) +
1762     predict_constant_other_time_ms();
1763 }
1764 
1765 double
1766 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1767   size_t rs_length = predict_rs_length_diff();
1768   size_t card_num;
1769   if (full_young_gcs())
1770     card_num = predict_young_card_num(rs_length);
1771   else
1772     card_num = predict_non_young_card_num(rs_length);
1773   return predict_base_elapsed_time_ms(pending_cards, card_num);
1774 }
1775 
1776 double
1777 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1778                                                 size_t scanned_cards) {
1779   return
1780     predict_rs_update_time_ms(pending_cards) +
1781     predict_rs_scan_time_ms(scanned_cards) +
1782     predict_constant_other_time_ms();
1783 }
1784 
1785 double
1786 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1787                                                   bool young) {
1788   size_t rs_length = hr->rem_set()->occupied();
1789   size_t card_num;
1790   if (full_young_gcs())
1791     card_num = predict_young_card_num(rs_length);
1792   else
1793     card_num = predict_non_young_card_num(rs_length);
1794   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1795 
1796   double region_elapsed_time_ms =
1797     predict_rs_scan_time_ms(card_num) +
1798     predict_object_copy_time_ms(bytes_to_copy);
1799 
1800   if (young)
1801     region_elapsed_time_ms += predict_young_other_time_ms(1);
1802   else
1803     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1804 
1805   return region_elapsed_time_ms;
1806 }
1807 
1808 size_t
1809 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1810   size_t bytes_to_copy;
1811   if (hr->is_marked())
1812     bytes_to_copy = hr->max_live_bytes();
1813   else {
1814     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
1815                "invariant" );
1816     int age = hr->age_in_surv_rate_group();
1817     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1818     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1819   }
1820 
1821   return bytes_to_copy;
1822 }
1823 
1824 void
1825 G1CollectorPolicy::start_recording_regions() {
1826   _recorded_rs_lengths            = 0;
1827   _recorded_young_regions         = 0;
1828   _recorded_non_young_regions     = 0;
1829 
1830 #if PREDICTIONS_VERBOSE
1831   _recorded_marked_bytes          = 0;
1832   _recorded_young_bytes           = 0;
1833   _predicted_bytes_to_copy        = 0;
1834   _predicted_rs_lengths           = 0;
1835   _predicted_cards_scanned        = 0;
1836 #endif // PREDICTIONS_VERBOSE
1837 }
1838 
1839 void
1840 G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
1841 #if PREDICTIONS_VERBOSE
1842   if (!young) {
1843     _recorded_marked_bytes += hr->max_live_bytes();
1844   }
1845   _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
1846 #endif // PREDICTIONS_VERBOSE
1847 
1848   size_t rs_length = hr->rem_set()->occupied();
1849   _recorded_rs_lengths += rs_length;
1850 }
1851 
1852 void
1853 G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
1854   assert(!hr->is_young(), "should not call this");
1855   ++_recorded_non_young_regions;
1856   record_cset_region_info(hr, false);
1857 }
1858 
1859 void
1860 G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
1861   _recorded_young_regions = n_regions;
1862 }
1863 
1864 void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
1865 #if PREDICTIONS_VERBOSE
1866   _recorded_young_bytes = bytes;
1867 #endif // PREDICTIONS_VERBOSE
1868 }
1869 
1870 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1871   _recorded_rs_lengths = rs_lengths;
1872 }
1873 
1874 void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
1875   _predicted_bytes_to_copy = bytes;
1876 }
1877 
1878 void
1879 G1CollectorPolicy::end_recording_regions() {
1880   // The _predicted_pause_time_ms field is referenced in code
1881   // not under PREDICTIONS_VERBOSE. Let's initialize it.
1882   _predicted_pause_time_ms = -1.0;
1883 
1884 #if PREDICTIONS_VERBOSE
1885   _predicted_pending_cards = predict_pending_cards();
1886   _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
1887   if (full_young_gcs())
1888     _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
1889   else
1890     _predicted_cards_scanned +=
1891       predict_non_young_card_num(_predicted_rs_lengths);
1892   _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
1893 
1894   _predicted_rs_update_time_ms =
1895     predict_rs_update_time_ms(_g1->pending_card_num());
1896   _predicted_rs_scan_time_ms =
1897     predict_rs_scan_time_ms(_predicted_cards_scanned);
1898   _predicted_object_copy_time_ms =
1899     predict_object_copy_time_ms(_predicted_bytes_to_copy);
1900   _predicted_constant_other_time_ms =
1901     predict_constant_other_time_ms();
1902   _predicted_young_other_time_ms =
1903     predict_young_other_time_ms(_recorded_young_regions);
1904   _predicted_non_young_other_time_ms =
1905     predict_non_young_other_time_ms(_recorded_non_young_regions);
1906 
1907   _predicted_pause_time_ms =
1908     _predicted_rs_update_time_ms +
1909     _predicted_rs_scan_time_ms +
1910     _predicted_object_copy_time_ms +
1911     _predicted_constant_other_time_ms +
1912     _predicted_young_other_time_ms +
1913     _predicted_non_young_other_time_ms;
1914 #endif // PREDICTIONS_VERBOSE
1915 }
1916 
1917 void G1CollectorPolicy::check_if_region_is_too_expensive(double
1918                                                            predicted_time_ms) {
1919   // I don't think we need to do this when in young GC mode since
1920   // marking will be initiated next time we hit the soft limit anyway...
1921   if (predicted_time_ms > _expensive_region_limit_ms) {
1922     if (!in_young_gc_mode()) {
1923         set_full_young_gcs(true);
1924         // We might want to do something different here. However,
1925         // right now we don't support the non-generational G1 mode
1926         // (and in fact we are planning to remove the associated code,
1927         // see CR 6814390). So, let's leave it as is and this will be
1928         // removed some time in the future
1929         ShouldNotReachHere();
1930         set_during_initial_mark_pause();
1931     } else
1932       // no point in doing another partial one
1933       _should_revert_to_full_young_gcs = true;
1934   }
1935 }
1936 
1937 // </NEW PREDICTION>
1938 
1939 
1940 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1941                                                double elapsed_ms) {
1942   _recent_gc_times_ms->add(elapsed_ms);
1943   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1944   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1945 }
1946 
1947 double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
1948   if (_recent_pause_times_ms->num() == 0) {
1949     return (double) MaxGCPauseMillis;
1950   }
1951   return _recent_pause_times_ms->avg();
1952 }
1953 
1954 double G1CollectorPolicy::recent_avg_time_for_rs_scan_ms() {
1955   if (_recent_rs_scan_times_ms->num() == 0) {
1956     return (double)MaxGCPauseMillis/3.0;
1957   }
1958   return _recent_rs_scan_times_ms->avg();
1959 }
1960 
1961 int G1CollectorPolicy::number_of_recent_gcs() {
1962   assert(_recent_rs_scan_times_ms->num() ==
1963          _recent_pause_times_ms->num(), "Sequence out of sync");
1964   assert(_recent_pause_times_ms->num() ==
1965          _recent_CS_bytes_used_before->num(), "Sequence out of sync");
1966   assert(_recent_CS_bytes_used_before->num() ==
1967          _recent_CS_bytes_surviving->num(), "Sequence out of sync");
1968 
1969   return _recent_pause_times_ms->num();
1970 }
1971 
1972 double G1CollectorPolicy::recent_avg_survival_fraction() {
1973   return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
1974                                            _recent_CS_bytes_used_before);
1975 }
1976 
1977 double G1CollectorPolicy::last_survival_fraction() {
1978   return last_survival_fraction_work(_recent_CS_bytes_surviving,
1979                                      _recent_CS_bytes_used_before);
1980 }
1981 
1982 double
1983 G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
1984                                                      TruncatedSeq* before) {
1985   assert(surviving->num() == before->num(), "Sequence out of sync");
1986   if (before->sum() > 0.0) {
1987       double recent_survival_rate = surviving->sum() / before->sum();
1988       // We exempt parallel collection from this check because Alloc Buffer
1989       // fragmentation can produce negative collections.
1990       // Further, we're now always doing parallel collection.  But I'm still
1991       // leaving this here as a placeholder for a more precise assertion later.
1992       // (DLD, 10/05.)
1993       assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
1994              _g1->evacuation_failed() ||
1995              recent_survival_rate <= 1.0, "Or bad frac");
1996       return recent_survival_rate;
1997   } else {
1998     return 1.0; // Be conservative.
1999   }
2000 }
2001 
2002 double
2003 G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
2004                                                TruncatedSeq* before) {
2005   assert(surviving->num() == before->num(), "Sequence out of sync");
2006   if (surviving->num() > 0 && before->last() > 0.0) {
2007     double last_survival_rate = surviving->last() / before->last();
2008     // We exempt parallel collection from this check because Alloc Buffer
2009     // fragmentation can produce negative collections.
2010     // Further, we're now always doing parallel collection.  But I'm still
2011     // leaving this here as a placeholder for a more precise assertion later.
2012     // (DLD, 10/05.)
2013     assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
2014            last_survival_rate <= 1.0, "Or bad frac");
2015     return last_survival_rate;
2016   } else {
2017     return 1.0;
2018   }
2019 }
2020 
2021 static const int survival_min_obs = 5;
2022 static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
2023 static const double min_survival_rate = 0.1;
2024 
2025 double
2026 G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
2027                                                            double latest) {
2028   double res = avg;
2029   if (number_of_recent_gcs() < survival_min_obs) {
2030     res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
2031   }
2032   res = MAX2(res, latest);
2033   res = MAX2(res, min_survival_rate);
2034   // In the parallel case, LAB fragmentation can produce "negative
2035   // collections"; so can evac failure.  Cap at 1.0
2036   res = MIN2(res, 1.0);
2037   return res;
2038 }
2039 
2040 size_t G1CollectorPolicy::expansion_amount() {
2041   if ((recent_avg_pause_time_ratio() * 100.0) > _gc_overhead_perc) {
2042     // We will double the existing space, or take
2043     // G1ExpandByPercentOfAvailable % of the available expansion
2044     // space, whichever is smaller, bounded below by a minimum
2045     // expansion (unless that's all that's left.)
2046     const size_t min_expand_bytes = 1*M;
2047     size_t reserved_bytes = _g1->max_capacity();
2048     size_t committed_bytes = _g1->capacity();
2049     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
2050     size_t expand_bytes;
2051     size_t expand_bytes_via_pct =
2052       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
2053     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
2054     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
2055     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
2056     if (G1PolicyVerbose > 1) {
2057       gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
2058                  "committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
2059                  "                   Answer = %d.\n",
2060                  recent_avg_pause_time_ratio(),
2061                  byte_size_in_proper_unit(committed_bytes),
2062                  proper_unit_for_byte_size(committed_bytes),
2063                  byte_size_in_proper_unit(uncommitted_bytes),
2064                  proper_unit_for_byte_size(uncommitted_bytes),
2065                  byte_size_in_proper_unit(expand_bytes_via_pct),
2066                  proper_unit_for_byte_size(expand_bytes_via_pct),
2067                  byte_size_in_proper_unit(expand_bytes),
2068                  proper_unit_for_byte_size(expand_bytes));
2069     }
2070     return expand_bytes;
2071   } else {
2072     return 0;
2073   }
2074 }
2075 
2076 void G1CollectorPolicy::note_start_of_mark_thread() {
2077   _mark_thread_startup_sec = os::elapsedTime();
2078 }
2079 
2080 class CountCSClosure: public HeapRegionClosure {
2081   G1CollectorPolicy* _g1_policy;
2082 public:
2083   CountCSClosure(G1CollectorPolicy* g1_policy) :
2084     _g1_policy(g1_policy) {}
2085   bool doHeapRegion(HeapRegion* r) {
2086     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
2087     return false;
2088   }
2089 };
2090 
2091 void G1CollectorPolicy::count_CS_bytes_used() {
2092   CountCSClosure cs_closure(this);
2093   _g1->collection_set_iterate(&cs_closure);
2094 }
2095 
2096 void G1CollectorPolicy::print_summary (int level,
2097                                        const char* str,
2098                                        NumberSeq* seq) const {
2099   double sum = seq->sum();
2100   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
2101                 str, sum / 1000.0, seq->avg());
2102 }
2103 
2104 void G1CollectorPolicy::print_summary_sd (int level,
2105                                           const char* str,
2106                                           NumberSeq* seq) const {
2107   print_summary(level, str, seq);
2108   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2109                 seq->num(), seq->sd(), seq->maximum());
2110 }
2111 
2112 void G1CollectorPolicy::check_other_times(int level,
2113                                         NumberSeq* other_times_ms,
2114                                         NumberSeq* calc_other_times_ms) const {
2115   bool should_print = false;
2116   LineBuffer buf(level + 2);
2117 
2118   double max_sum = MAX2(fabs(other_times_ms->sum()),
2119                         fabs(calc_other_times_ms->sum()));
2120   double min_sum = MIN2(fabs(other_times_ms->sum()),
2121                         fabs(calc_other_times_ms->sum()));
2122   double sum_ratio = max_sum / min_sum;
2123   if (sum_ratio > 1.1) {
2124     should_print = true;
2125     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
2126   }
2127 
2128   double max_avg = MAX2(fabs(other_times_ms->avg()),
2129                         fabs(calc_other_times_ms->avg()));
2130   double min_avg = MIN2(fabs(other_times_ms->avg()),
2131                         fabs(calc_other_times_ms->avg()));
2132   double avg_ratio = max_avg / min_avg;
2133   if (avg_ratio > 1.1) {
2134     should_print = true;
2135     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
2136   }
2137 
2138   if (other_times_ms->sum() < -0.01) {
2139     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
2140   }
2141 
2142   if (other_times_ms->avg() < -0.01) {
2143     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
2144   }
2145 
2146   if (calc_other_times_ms->sum() < -0.01) {
2147     should_print = true;
2148     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
2149   }
2150 
2151   if (calc_other_times_ms->avg() < -0.01) {
2152     should_print = true;
2153     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
2154   }
2155 
2156   if (should_print)
2157     print_summary(level, "Other(Calc)", calc_other_times_ms);
2158 }
2159 
2160 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
2161   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
2162   MainBodySummary*    body_summary = summary->main_body_summary();
2163   if (summary->get_total_seq()->num() > 0) {
2164     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
2165     if (body_summary != NULL) {
2166       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
2167       if (parallel) {
2168         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
2169         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
2170         print_summary(2, "Ext Root Scanning",
2171                       body_summary->get_ext_root_scan_seq());
2172         print_summary(2, "Mark Stack Scanning",
2173                       body_summary->get_mark_stack_scan_seq());
2174         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
2175         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
2176         print_summary(2, "Termination", body_summary->get_termination_seq());
2177         print_summary(2, "Other", body_summary->get_parallel_other_seq());
2178         {
2179           NumberSeq* other_parts[] = {
2180             body_summary->get_update_rs_seq(),
2181             body_summary->get_ext_root_scan_seq(),
2182             body_summary->get_mark_stack_scan_seq(),
2183             body_summary->get_scan_rs_seq(),
2184             body_summary->get_obj_copy_seq(),
2185             body_summary->get_termination_seq()
2186           };
2187           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
2188                                         6, other_parts);
2189           check_other_times(2, body_summary->get_parallel_other_seq(),
2190                             &calc_other_times_ms);
2191         }
2192         print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
2193         print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
2194       } else {
2195         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
2196         print_summary(1, "Ext Root Scanning",
2197                       body_summary->get_ext_root_scan_seq());
2198         print_summary(1, "Mark Stack Scanning",
2199                       body_summary->get_mark_stack_scan_seq());
2200         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
2201         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
2202       }
2203     }
2204     print_summary(1, "Other", summary->get_other_seq());
2205     {
2206       if (body_summary != NULL) {
2207         NumberSeq calc_other_times_ms;
2208         if (parallel) {
2209           // parallel
2210           NumberSeq* other_parts[] = {
2211             body_summary->get_satb_drain_seq(),
2212             body_summary->get_parallel_seq(),
2213             body_summary->get_clear_ct_seq()
2214           };
2215           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2216                                                 3, other_parts);
2217         } else {
2218           // serial
2219           NumberSeq* other_parts[] = {
2220             body_summary->get_satb_drain_seq(),
2221             body_summary->get_update_rs_seq(),
2222             body_summary->get_ext_root_scan_seq(),
2223             body_summary->get_mark_stack_scan_seq(),
2224             body_summary->get_scan_rs_seq(),
2225             body_summary->get_obj_copy_seq()
2226           };
2227           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
2228                                                 6, other_parts);
2229         }
2230         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
2231       }
2232     }
2233   } else {
2234     LineBuffer(1).append_and_print_cr("none");
2235   }
2236   LineBuffer(0).append_and_print_cr("");
2237 }
2238 
2239 void G1CollectorPolicy::print_tracing_info() const {
2240   if (TraceGen0Time) {
2241     gclog_or_tty->print_cr("ALL PAUSES");
2242     print_summary_sd(0, "Total", _all_pause_times_ms);
2243     gclog_or_tty->print_cr("");
2244     gclog_or_tty->print_cr("");
2245     gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
2246     gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
2247     gclog_or_tty->print_cr("");
2248 
2249     gclog_or_tty->print_cr("EVACUATION PAUSES");
2250     print_summary(_summary);
2251 
2252     gclog_or_tty->print_cr("MISC");
2253     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
2254     print_summary_sd(0, "Yields", _all_yield_times_ms);
2255     for (int i = 0; i < _aux_num; ++i) {
2256       if (_all_aux_times_ms[i].num() > 0) {
2257         char buffer[96];
2258         sprintf(buffer, "Aux%d", i);
2259         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
2260       }
2261     }
2262 
2263     size_t all_region_num = _region_num_young + _region_num_tenured;
2264     gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
2265                "Tenured %8d (%6.2lf%%)",
2266                all_region_num,
2267                _region_num_young,
2268                (double) _region_num_young / (double) all_region_num * 100.0,
2269                _region_num_tenured,
2270                (double) _region_num_tenured / (double) all_region_num * 100.0);
2271   }
2272   if (TraceGen1Time) {
2273     if (_all_full_gc_times_ms->num() > 0) {
2274       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2275                  _all_full_gc_times_ms->num(),
2276                  _all_full_gc_times_ms->sum() / 1000.0);
2277       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
2278       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2279                     _all_full_gc_times_ms->sd(),
2280                     _all_full_gc_times_ms->maximum());
2281     }
2282   }
2283 }
2284 
2285 void G1CollectorPolicy::print_yg_surv_rate_info() const {
2286 #ifndef PRODUCT
2287   _short_lived_surv_rate_group->print_surv_rate_summary();
2288   // add this call for any other surv rate groups
2289 #endif // PRODUCT
2290 }
2291 
2292 void
2293 G1CollectorPolicy::update_region_num(bool young) {
2294   if (young) {
2295     ++_region_num_young;
2296   } else {
2297     ++_region_num_tenured;
2298   }
2299 }
2300 
2301 #ifndef PRODUCT
2302 // for debugging, bit of a hack...
2303 static char*
2304 region_num_to_mbs(int length) {
2305   static char buffer[64];
2306   double bytes = (double) (length * HeapRegion::GrainBytes);
2307   double mbs = bytes / (double) (1024 * 1024);
2308   sprintf(buffer, "%7.2lfMB", mbs);
2309   return buffer;
2310 }
2311 #endif // PRODUCT
2312 
2313 size_t G1CollectorPolicy::max_regions(int purpose) {
2314   switch (purpose) {
2315     case GCAllocForSurvived:
2316       return _max_survivor_regions;
2317     case GCAllocForTenured:
2318       return REGIONS_UNLIMITED;
2319     default:
2320       ShouldNotReachHere();
2321       return REGIONS_UNLIMITED;
2322   };
2323 }
2324 
2325 void G1CollectorPolicy::calculate_max_gc_locker_expansion() {
2326   size_t expansion_region_num = 0;
2327   if (GCLockerEdenExpansionPercent > 0) {
2328     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
2329     double expansion_region_num_d = perc * (double) _young_list_target_length;
2330     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
2331     // less than 1.0) we'll get 1.
2332     expansion_region_num = (size_t) ceil(expansion_region_num_d);
2333   } else {
2334     assert(expansion_region_num == 0, "sanity");
2335   }
2336   _young_list_max_length = _young_list_target_length + expansion_region_num;
2337   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
2338 }
2339 
2340 // Calculates survivor space parameters.
2341 void G1CollectorPolicy::calculate_survivors_policy()
2342 {
2343   if (G1FixedSurvivorSpaceSize == 0) {
2344     _max_survivor_regions = _young_list_target_length / SurvivorRatio;
2345   } else {
2346     _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
2347   }
2348 
2349   if (G1FixedTenuringThreshold) {
2350     _tenuring_threshold = MaxTenuringThreshold;
2351   } else {
2352     _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2353         HeapRegion::GrainWords * _max_survivor_regions);
2354   }
2355 }
2356 
2357 #ifndef PRODUCT
2358 class HRSortIndexIsOKClosure: public HeapRegionClosure {
2359   CollectionSetChooser* _chooser;
2360 public:
2361   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
2362     _chooser(chooser) {}
2363 
2364   bool doHeapRegion(HeapRegion* r) {
2365     if (!r->continuesHumongous()) {
2366       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
2367     }
2368     return false;
2369   }
2370 };
2371 
2372 bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
2373   HRSortIndexIsOKClosure cl(_collectionSetChooser);
2374   _g1->heap_region_iterate(&cl);
2375   return true;
2376 }
2377 #endif
2378 
2379 bool
2380 G1CollectorPolicy::force_initial_mark_if_outside_cycle() {
2381   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2382   if (!during_cycle) {
2383     set_initiate_conc_mark_if_possible();
2384     return true;
2385   } else {
2386     return false;
2387   }
2388 }
2389 
2390 void
2391 G1CollectorPolicy::decide_on_conc_mark_initiation() {
2392   // We are about to decide on whether this pause will be an
2393   // initial-mark pause.
2394 
2395   // First, during_initial_mark_pause() should not be already set. We
2396   // will set it here if we have to. However, it should be cleared by
2397   // the end of the pause (it's only set for the duration of an
2398   // initial-mark pause).
2399   assert(!during_initial_mark_pause(), "pre-condition");
2400 
2401   if (initiate_conc_mark_if_possible()) {
2402     // We had noticed on a previous pause that the heap occupancy has
2403     // gone over the initiating threshold and we should start a
2404     // concurrent marking cycle. So we might initiate one.
2405 
2406     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
2407     if (!during_cycle) {
2408       // The concurrent marking thread is not "during a cycle", i.e.,
2409       // it has completed the last one. So we can go ahead and
2410       // initiate a new cycle.
2411 
2412       set_during_initial_mark_pause();
2413 
2414       // And we can now clear initiate_conc_mark_if_possible() as
2415       // we've already acted on it.
2416       clear_initiate_conc_mark_if_possible();
2417     } else {
2418       // The concurrent marking thread is still finishing up the
2419       // previous cycle. If we start one right now the two cycles
2420       // overlap. In particular, the concurrent marking thread might
2421       // be in the process of clearing the next marking bitmap (which
2422       // we will use for the next cycle if we start one). Starting a
2423       // cycle now will be bad given that parts of the marking
2424       // information might get cleared by the marking thread. And we
2425       // cannot wait for the marking thread to finish the cycle as it
2426       // periodically yields while clearing the next marking bitmap
2427       // and, if it's in a yield point, it's waiting for us to
2428       // finish. So, at this point we will not start a cycle and we'll
2429       // let the concurrent marking thread complete the last one.
2430     }
2431   }
2432 }
2433 
2434 void
2435 G1CollectorPolicy_BestRegionsFirst::
2436 record_collection_pause_start(double start_time_sec, size_t start_used) {
2437   G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
2438 }
2439 
2440 class KnownGarbageClosure: public HeapRegionClosure {
2441   CollectionSetChooser* _hrSorted;
2442 
2443 public:
2444   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
2445     _hrSorted(hrSorted)
2446   {}
2447 
2448   bool doHeapRegion(HeapRegion* r) {
2449     // We only include humongous regions in collection
2450     // sets when concurrent mark shows that their contained object is
2451     // unreachable.
2452 
2453     // Do we have any marking information for this region?
2454     if (r->is_marked()) {
2455       // We don't include humongous regions in collection
2456       // sets because we collect them immediately at the end of a marking
2457       // cycle.  We also don't include young regions because we *must*
2458       // include them in the next collection pause.
2459       if (!r->isHumongous() && !r->is_young()) {
2460         _hrSorted->addMarkedHeapRegion(r);
2461       }
2462     }
2463     return false;
2464   }
2465 };
2466 
2467 class ParKnownGarbageHRClosure: public HeapRegionClosure {
2468   CollectionSetChooser* _hrSorted;
2469   jint _marked_regions_added;
2470   jint _chunk_size;
2471   jint _cur_chunk_idx;
2472   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
2473   int _worker;
2474   int _invokes;
2475 
2476   void get_new_chunk() {
2477     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
2478     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
2479   }
2480   void add_region(HeapRegion* r) {
2481     if (_cur_chunk_idx == _cur_chunk_end) {
2482       get_new_chunk();
2483     }
2484     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
2485     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
2486     _marked_regions_added++;
2487     _cur_chunk_idx++;
2488   }
2489 
2490 public:
2491   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
2492                            jint chunk_size,
2493                            int worker) :
2494     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
2495     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
2496     _invokes(0)
2497   {}
2498 
2499   bool doHeapRegion(HeapRegion* r) {
2500     // We only include humongous regions in collection
2501     // sets when concurrent mark shows that their contained object is
2502     // unreachable.
2503     _invokes++;
2504 
2505     // Do we have any marking information for this region?
2506     if (r->is_marked()) {
2507       // We don't include humongous regions in collection
2508       // sets because we collect them immediately at the end of a marking
2509       // cycle.
2510       // We also do not include young regions in collection sets
2511       if (!r->isHumongous() && !r->is_young()) {
2512         add_region(r);
2513       }
2514     }
2515     return false;
2516   }
2517   jint marked_regions_added() { return _marked_regions_added; }
2518   int invokes() { return _invokes; }
2519 };
2520 
2521 class ParKnownGarbageTask: public AbstractGangTask {
2522   CollectionSetChooser* _hrSorted;
2523   jint _chunk_size;
2524   G1CollectedHeap* _g1;
2525 public:
2526   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
2527     AbstractGangTask("ParKnownGarbageTask"),
2528     _hrSorted(hrSorted), _chunk_size(chunk_size),
2529     _g1(G1CollectedHeap::heap())
2530   {}
2531 
2532   void work(int i) {
2533     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
2534     // Back to zero for the claim value.
2535     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
2536                                          HeapRegion::InitialClaimValue);
2537     jint regions_added = parKnownGarbageCl.marked_regions_added();
2538     _hrSorted->incNumMarkedHeapRegions(regions_added);
2539     if (G1PrintParCleanupStats) {
2540       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
2541                  i, parKnownGarbageCl.invokes(), regions_added);
2542     }
2543   }
2544 };
2545 
2546 void
2547 G1CollectorPolicy_BestRegionsFirst::
2548 record_concurrent_mark_cleanup_end(size_t freed_bytes,
2549                                    size_t max_live_bytes) {
2550   double start;
2551   if (G1PrintParCleanupStats) start = os::elapsedTime();
2552   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
2553 
2554   _collectionSetChooser->clearMarkedHeapRegions();
2555   double clear_marked_end;
2556   if (G1PrintParCleanupStats) {
2557     clear_marked_end = os::elapsedTime();
2558     gclog_or_tty->print_cr("  clear marked regions + work1: %8.3f ms.",
2559                   (clear_marked_end - start)*1000.0);
2560   }
2561   if (G1CollectedHeap::use_parallel_gc_threads()) {
2562     const size_t OverpartitionFactor = 4;
2563     const size_t MinWorkUnit = 8;
2564     const size_t WorkUnit =
2565       MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
2566            MinWorkUnit);
2567     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
2568                                                              WorkUnit);
2569     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2570                                             (int) WorkUnit);
2571     _g1->workers()->run_task(&parKnownGarbageTask);
2572 
2573     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2574            "sanity check");
2575   } else {
2576     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
2577     _g1->heap_region_iterate(&knownGarbagecl);
2578   }
2579   double known_garbage_end;
2580   if (G1PrintParCleanupStats) {
2581     known_garbage_end = os::elapsedTime();
2582     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
2583                   (known_garbage_end - clear_marked_end)*1000.0);
2584   }
2585   _collectionSetChooser->sortMarkedHeapRegions();
2586   double sort_end;
2587   if (G1PrintParCleanupStats) {
2588     sort_end = os::elapsedTime();
2589     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
2590                   (sort_end - known_garbage_end)*1000.0);
2591   }
2592 
2593   record_concurrent_mark_cleanup_end_work2();
2594   double work2_end;
2595   if (G1PrintParCleanupStats) {
2596     work2_end = os::elapsedTime();
2597     gclog_or_tty->print_cr("  work2: %8.3f ms.",
2598                   (work2_end - sort_end)*1000.0);
2599   }
2600 }
2601 
2602 // Add the heap region at the head of the non-incremental collection set
2603 void G1CollectorPolicy::
2604 add_to_collection_set(HeapRegion* hr) {
2605   assert(_inc_cset_build_state == Active, "Precondition");
2606   assert(!hr->is_young(), "non-incremental add of young region");
2607 
2608   if (_g1->mark_in_progress())
2609     _g1->concurrent_mark()->registerCSetRegion(hr);
2610 
2611   assert(!hr->in_collection_set(), "should not already be in the CSet");
2612   hr->set_in_collection_set(true);
2613   hr->set_next_in_collection_set(_collection_set);
2614   _collection_set = hr;
2615   _collection_set_size++;
2616   _collection_set_bytes_used_before += hr->used();
2617   _g1->register_region_with_in_cset_fast_test(hr);
2618 }
2619 
2620 // Initialize the per-collection-set information
2621 void G1CollectorPolicy::start_incremental_cset_building() {
2622   assert(_inc_cset_build_state == Inactive, "Precondition");
2623 
2624   _inc_cset_head = NULL;
2625   _inc_cset_tail = NULL;
2626   _inc_cset_size = 0;
2627   _inc_cset_bytes_used_before = 0;
2628 
2629   if (in_young_gc_mode()) {
2630     _inc_cset_young_index = 0;
2631   }
2632 
2633   _inc_cset_max_finger = 0;
2634   _inc_cset_recorded_young_bytes = 0;
2635   _inc_cset_recorded_rs_lengths = 0;
2636   _inc_cset_predicted_elapsed_time_ms = 0;
2637   _inc_cset_predicted_bytes_to_copy = 0;
2638   _inc_cset_build_state = Active;
2639 }
2640 
2641 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
2642   // This routine is used when:
2643   // * adding survivor regions to the incremental cset at the end of an
2644   //   evacuation pause,
2645   // * adding the current allocation region to the incremental cset
2646   //   when it is retired, and
2647   // * updating existing policy information for a region in the
2648   //   incremental cset via young list RSet sampling.
2649   // Therefore this routine may be called at a safepoint by the
2650   // VM thread, or in-between safepoints by mutator threads (when
2651   // retiring the current allocation region) or a concurrent
2652   // refine thread (RSet sampling).
2653 
2654   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
2655   size_t used_bytes = hr->used();
2656 
2657   _inc_cset_recorded_rs_lengths += rs_length;
2658   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
2659 
2660   _inc_cset_bytes_used_before += used_bytes;
2661 
2662   // Cache the values we have added to the aggregated informtion
2663   // in the heap region in case we have to remove this region from
2664   // the incremental collection set, or it is updated by the
2665   // rset sampling code
2666   hr->set_recorded_rs_length(rs_length);
2667   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
2668 
2669 #if PREDICTIONS_VERBOSE
2670   size_t bytes_to_copy = predict_bytes_to_copy(hr);
2671   _inc_cset_predicted_bytes_to_copy += bytes_to_copy;
2672 
2673   // Record the number of bytes used in this region
2674   _inc_cset_recorded_young_bytes += used_bytes;
2675 
2676   // Cache the values we have added to the aggregated informtion
2677   // in the heap region in case we have to remove this region from
2678   // the incremental collection set, or it is updated by the
2679   // rset sampling code
2680   hr->set_predicted_bytes_to_copy(bytes_to_copy);
2681 #endif // PREDICTIONS_VERBOSE
2682 }
2683 
2684 void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
2685   // This routine is currently only called as part of the updating of
2686   // existing policy information for regions in the incremental cset that
2687   // is performed by the concurrent refine thread(s) as part of young list
2688   // RSet sampling. Therefore we should not be at a safepoint.
2689 
2690   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
2691   assert(hr->is_young(), "it should be");
2692 
2693   size_t used_bytes = hr->used();
2694   size_t old_rs_length = hr->recorded_rs_length();
2695   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
2696 
2697   // Subtract the old recorded/predicted policy information for
2698   // the given heap region from the collection set info.
2699   _inc_cset_recorded_rs_lengths -= old_rs_length;
2700   _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
2701 
2702   _inc_cset_bytes_used_before -= used_bytes;
2703 
2704   // Clear the values cached in the heap region
2705   hr->set_recorded_rs_length(0);
2706   hr->set_predicted_elapsed_time_ms(0);
2707 
2708 #if PREDICTIONS_VERBOSE
2709   size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
2710   _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;
2711 
2712   // Subtract the number of bytes used in this region
2713   _inc_cset_recorded_young_bytes -= used_bytes;
2714 
2715   // Clear the values cached in the heap region
2716   hr->set_predicted_bytes_to_copy(0);
2717 #endif // PREDICTIONS_VERBOSE
2718 }
2719 
2720 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
2721   // Update the collection set information that is dependent on the new RS length
2722   assert(hr->is_young(), "Precondition");
2723 
2724   remove_from_incremental_cset_info(hr);
2725   add_to_incremental_cset_info(hr, new_rs_length);
2726 }
2727 
2728 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
2729   assert( hr->is_young(), "invariant");
2730   assert( hr->young_index_in_cset() == -1, "invariant" );
2731   assert(_inc_cset_build_state == Active, "Precondition");
2732 
2733   // We need to clear and set the cached recorded/cached collection set
2734   // information in the heap region here (before the region gets added
2735   // to the collection set). An individual heap region's cached values
2736   // are calculated, aggregated with the policy collection set info,
2737   // and cached in the heap region here (initially) and (subsequently)
2738   // by the Young List sampling code.
2739 
2740   size_t rs_length = hr->rem_set()->occupied();
2741   add_to_incremental_cset_info(hr, rs_length);
2742 
2743   HeapWord* hr_end = hr->end();
2744   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
2745 
2746   assert(!hr->in_collection_set(), "invariant");
2747   hr->set_in_collection_set(true);
2748   assert( hr->next_in_collection_set() == NULL, "invariant");
2749 
2750   _inc_cset_size++;
2751   _g1->register_region_with_in_cset_fast_test(hr);
2752 
2753   hr->set_young_index_in_cset((int) _inc_cset_young_index);
2754   ++_inc_cset_young_index;
2755 }
2756 
2757 // Add the region at the RHS of the incremental cset
2758 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
2759   // We should only ever be appending survivors at the end of a pause
2760   assert( hr->is_survivor(), "Logic");
2761 
2762   // Do the 'common' stuff
2763   add_region_to_incremental_cset_common(hr);
2764 
2765   // Now add the region at the right hand side
2766   if (_inc_cset_tail == NULL) {
2767     assert(_inc_cset_head == NULL, "invariant");
2768     _inc_cset_head = hr;
2769   } else {
2770     _inc_cset_tail->set_next_in_collection_set(hr);
2771   }
2772   _inc_cset_tail = hr;
2773 }
2774 
2775 // Add the region to the LHS of the incremental cset
2776 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
2777   // Survivors should be added to the RHS at the end of a pause
2778   assert(!hr->is_survivor(), "Logic");
2779 
2780   // Do the 'common' stuff
2781   add_region_to_incremental_cset_common(hr);
2782 
2783   // Add the region at the left hand side
2784   hr->set_next_in_collection_set(_inc_cset_head);
2785   if (_inc_cset_head == NULL) {
2786     assert(_inc_cset_tail == NULL, "Invariant");
2787     _inc_cset_tail = hr;
2788   }
2789   _inc_cset_head = hr;
2790 }
2791 
2792 #ifndef PRODUCT
2793 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
2794   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
2795 
2796   st->print_cr("\nCollection_set:");
2797   HeapRegion* csr = list_head;
2798   while (csr != NULL) {
2799     HeapRegion* next = csr->next_in_collection_set();
2800     assert(csr->in_collection_set(), "bad CS");
2801     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
2802                  "age: %4d, y: %d, surv: %d",
2803                         csr->bottom(), csr->end(),
2804                         csr->top(),
2805                         csr->prev_top_at_mark_start(),
2806                         csr->next_top_at_mark_start(),
2807                         csr->top_at_conc_mark_count(),
2808                         csr->age_in_surv_rate_group_cond(),
2809                         csr->is_young(),
2810                         csr->is_survivor());
2811     csr = next;
2812   }
2813 }
2814 #endif // !PRODUCT
2815 
2816 void
2817 G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
2818                                                   double target_pause_time_ms) {
2819   // Set this here - in case we're not doing young collections.
2820   double non_young_start_time_sec = os::elapsedTime();
2821 
2822   start_recording_regions();
2823 
2824   guarantee(target_pause_time_ms > 0.0,
2825             err_msg("target_pause_time_ms = %1.6lf should be positive",
2826                     target_pause_time_ms));
2827   guarantee(_collection_set == NULL, "Precondition");
2828 
2829   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2830   double predicted_pause_time_ms = base_time_ms;
2831 
2832   double time_remaining_ms = target_pause_time_ms - base_time_ms;
2833 
2834   // the 10% and 50% values are arbitrary...
2835   if (time_remaining_ms < 0.10 * target_pause_time_ms) {
2836     time_remaining_ms = 0.50 * target_pause_time_ms;
2837     _within_target = false;
2838   } else {
2839     _within_target = true;
2840   }
2841 
2842   // We figure out the number of bytes available for future to-space.
2843   // For new regions without marking information, we must assume the
2844   // worst-case of complete survival.  If we have marking information for a
2845   // region, we can bound the amount of live data.  We can add a number of
2846   // such regions, as long as the sum of the live data bounds does not
2847   // exceed the available evacuation space.
2848   size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;
2849 
2850   size_t expansion_bytes =
2851     _g1->expansion_regions() * HeapRegion::GrainBytes;
2852 
2853   _collection_set_bytes_used_before = 0;
2854   _collection_set_size = 0;
2855 
2856   // Adjust for expansion and slop.
2857   max_live_bytes = max_live_bytes + expansion_bytes;
2858 
2859   HeapRegion* hr;
2860   if (in_young_gc_mode()) {
2861     double young_start_time_sec = os::elapsedTime();
2862 
2863     if (G1PolicyVerbose > 0) {
2864       gclog_or_tty->print_cr("Adding %d young regions to the CSet",
2865                     _g1->young_list()->length());
2866     }
2867 
2868     _young_cset_length  = 0;
2869     _last_young_gc_full = full_young_gcs() ? true : false;
2870 
2871     if (_last_young_gc_full)
2872       ++_full_young_pause_num;
2873     else
2874       ++_partial_young_pause_num;
2875 
2876     // The young list is laid with the survivor regions from the previous
2877     // pause are appended to the RHS of the young list, i.e.
2878     //   [Newly Young Regions ++ Survivors from last pause].
2879 
2880     hr = _g1->young_list()->first_survivor_region();
2881     while (hr != NULL) {
2882       assert(hr->is_survivor(), "badly formed young list");
2883       hr->set_young();
2884       hr = hr->get_next_young_region();
2885     }
2886 
2887     // Clear the fields that point to the survivor list - they are
2888     // all young now.
2889     _g1->young_list()->clear_survivors();
2890 
2891     if (_g1->mark_in_progress())
2892       _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
2893 
2894     _young_cset_length = _inc_cset_young_index;
2895     _collection_set = _inc_cset_head;
2896     _collection_set_size = _inc_cset_size;
2897     _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2898 
2899     // For young regions in the collection set, we assume the worst
2900     // case of complete survival
2901     max_live_bytes -= _inc_cset_size * HeapRegion::GrainBytes;
2902 
2903     time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
2904     predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2905 
2906     // The number of recorded young regions is the incremental
2907     // collection set's current size
2908     set_recorded_young_regions(_inc_cset_size);
2909     set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2910     set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
2911 #if PREDICTIONS_VERBOSE
2912     set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
2913 #endif // PREDICTIONS_VERBOSE
2914 
2915     if (G1PolicyVerbose > 0) {
2916       gclog_or_tty->print_cr("  Added " PTR_FORMAT " Young Regions to CS.",
2917                              _inc_cset_size);
2918       gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
2919                             max_live_bytes/K);
2920     }
2921 
2922     assert(_inc_cset_size == _g1->young_list()->length(), "Invariant");
2923 
2924     double young_end_time_sec = os::elapsedTime();
2925     _recorded_young_cset_choice_time_ms =
2926       (young_end_time_sec - young_start_time_sec) * 1000.0;
2927 
2928     // We are doing young collections so reset this.
2929     non_young_start_time_sec = young_end_time_sec;
2930 
2931     // Note we can use either _collection_set_size or
2932     // _young_cset_length here
2933     if (_collection_set_size > 0 && _last_young_gc_full) {
2934       // don't bother adding more regions...
2935       goto choose_collection_set_end;
2936     }
2937   }
2938 
2939   if (!in_young_gc_mode() || !full_young_gcs()) {
2940     bool should_continue = true;
2941     NumberSeq seq;
2942     double avg_prediction = 100000000000000000.0; // something very large
2943 
2944     do {
2945       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
2946                                                       avg_prediction);
2947       if (hr != NULL) {
2948         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
2949         time_remaining_ms -= predicted_time_ms;
2950         predicted_pause_time_ms += predicted_time_ms;
2951         add_to_collection_set(hr);
2952         record_non_young_cset_region(hr);
2953         max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
2954         if (G1PolicyVerbose > 0) {
2955           gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
2956                         max_live_bytes/K);
2957         }
2958         seq.add(predicted_time_ms);
2959         avg_prediction = seq.avg() + seq.sd();
2960       }
2961       should_continue =
2962         ( hr != NULL) &&
2963         ( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
2964           : _collection_set_size < _young_list_fixed_length );
2965     } while (should_continue);
2966 
2967     if (!adaptive_young_list_length() &&
2968         _collection_set_size < _young_list_fixed_length)
2969       _should_revert_to_full_young_gcs  = true;
2970   }
2971 
2972 choose_collection_set_end:
2973   stop_incremental_cset_building();
2974 
2975   count_CS_bytes_used();
2976 
2977   end_recording_regions();
2978 
2979   double non_young_end_time_sec = os::elapsedTime();
2980   _recorded_non_young_cset_choice_time_ms =
2981     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
2982 }
2983 
2984 void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
2985   G1CollectorPolicy::record_full_collection_end();
2986   _collectionSetChooser->updateAfterFullCollection();
2987 }
2988 
2989 void G1CollectorPolicy_BestRegionsFirst::
2990 expand_if_possible(size_t numRegions) {
2991   size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
2992   _g1->expand(expansion_bytes);
2993 }
2994 
2995 void G1CollectorPolicy_BestRegionsFirst::
2996 record_collection_pause_end() {
2997   G1CollectorPolicy::record_collection_pause_end();
2998   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
2999 }