1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 
  40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
  41 // over and over again and introducing subtle problems through small typos and
  42 // cutting and pasting mistakes. The macros below introduces a number
  43 // sequnce into the following two classes and the methods that access it.
  44 
  45 #define define_num_seq(name)                                                  \
  46 private:                                                                      \
  47   NumberSeq _all_##name##_times_ms;                                           \
  48 public:                                                                       \
  49   void record_##name##_time_ms(double ms) {                                   \
  50     _all_##name##_times_ms.add(ms);                                           \
  51   }                                                                           \
  52   NumberSeq* get_##name##_seq() {                                             \
  53     return &_all_##name##_times_ms;                                           \
  54   }
  55 
  56 class MainBodySummary;
  57 
  58 class PauseSummary: public CHeapObj {
  59   define_num_seq(total)
  60     define_num_seq(other)
  61 
  62 public:
  63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
  64 };
  65 
  66 class MainBodySummary: public CHeapObj {
  67   define_num_seq(satb_drain) // optional
  68   define_num_seq(parallel) // parallel only
  69     define_num_seq(ext_root_scan)
  70     define_num_seq(mark_stack_scan)
  71     define_num_seq(update_rs)
  72     define_num_seq(scan_rs)
  73     define_num_seq(obj_copy)
  74     define_num_seq(termination) // parallel only
  75     define_num_seq(parallel_other) // parallel only
  76   define_num_seq(mark_closure)
  77   define_num_seq(clear_ct)  // parallel only
  78 };
  79 
  80 class Summary: public PauseSummary,
  81                public MainBodySummary {
  82 public:
  83   virtual MainBodySummary*    main_body_summary()    { return this; }
  84 };
  85 
  86 class G1CollectorPolicy: public CollectorPolicy {
  87 protected:
  88   // The number of pauses during the execution.
  89   long _n_pauses;
  90 
  91   // either equal to the number of parallel threads, if ParallelGCThreads
  92   // has been set, or 1 otherwise
  93   int _parallel_gc_threads;
  94 
  95   enum SomePrivateConstants {
  96     NumPrevPausesForHeuristics = 10
  97   };
  98 
  99   G1MMUTracker* _mmu_tracker;
 100 
 101   void initialize_flags();
 102 
 103   void initialize_all() {
 104     initialize_flags();
 105     initialize_size_info();
 106     initialize_perm_generation(PermGen::MarkSweepCompact);
 107   }
 108 
 109   virtual size_t default_init_heap_size() {
 110     // Pick some reasonable default.
 111     return 8*M;
 112   }
 113 
 114   double _cur_collection_start_sec;
 115   size_t _cur_collection_pause_used_at_start_bytes;
 116   size_t _cur_collection_pause_used_regions_at_start;
 117   size_t _prev_collection_pause_used_at_end_bytes;
 118   double _cur_collection_par_time_ms;
 119   double _cur_satb_drain_time_ms;
 120   double _cur_clear_ct_time_ms;
 121   bool   _satb_drain_time_set;
 122   double _cur_ref_proc_time_ms;
 123   double _cur_ref_enq_time_ms;
 124 
 125 #ifndef PRODUCT
 126   // Card Table Count Cache stats
 127   double _min_clear_cc_time_ms;         // min
 128   double _max_clear_cc_time_ms;         // max
 129   double _cur_clear_cc_time_ms;         // clearing time during current pause
 130   double _cum_clear_cc_time_ms;         // cummulative clearing time
 131   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
 132 #endif
 133 
 134   // Statistics for recent GC pauses.  See below for how indexed.
 135   TruncatedSeq* _recent_rs_scan_times_ms;
 136 
 137   // These exclude marking times.
 138   TruncatedSeq* _recent_pause_times_ms;
 139   TruncatedSeq* _recent_gc_times_ms;
 140 
 141   TruncatedSeq* _recent_CS_bytes_used_before;
 142   TruncatedSeq* _recent_CS_bytes_surviving;
 143 
 144   TruncatedSeq* _recent_rs_sizes;
 145 
 146   TruncatedSeq* _concurrent_mark_init_times_ms;
 147   TruncatedSeq* _concurrent_mark_remark_times_ms;
 148   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 149 
 150   Summary*           _summary;
 151 
 152   NumberSeq* _all_pause_times_ms;
 153   NumberSeq* _all_full_gc_times_ms;
 154   double _stop_world_start;
 155   NumberSeq* _all_stop_world_times_ms;
 156   NumberSeq* _all_yield_times_ms;
 157 
 158   size_t     _region_num_young;
 159   size_t     _region_num_tenured;
 160   size_t     _prev_region_num_young;
 161   size_t     _prev_region_num_tenured;
 162 
 163   NumberSeq* _all_mod_union_times_ms;
 164 
 165   int        _aux_num;
 166   NumberSeq* _all_aux_times_ms;
 167   double*    _cur_aux_start_times_ms;
 168   double*    _cur_aux_times_ms;
 169   bool*      _cur_aux_times_set;
 170 
 171   double* _par_last_gc_worker_start_times_ms;
 172   double* _par_last_ext_root_scan_times_ms;
 173   double* _par_last_mark_stack_scan_times_ms;
 174   double* _par_last_update_rs_times_ms;
 175   double* _par_last_update_rs_processed_buffers;
 176   double* _par_last_scan_rs_times_ms;
 177   double* _par_last_obj_copy_times_ms;
 178   double* _par_last_termination_times_ms;
 179   double* _par_last_termination_attempts;
 180   double* _par_last_gc_worker_end_times_ms;
 181   double* _par_last_gc_worker_times_ms;
 182 
 183   // indicates that we are in young GC mode
 184   bool _in_young_gc_mode;
 185 
 186   // indicates whether we are in full young or partially young GC mode
 187   bool _full_young_gcs;
 188 
 189   // if true, then it tries to dynamically adjust the length of the
 190   // young list
 191   bool _adaptive_young_list_length;
 192   size_t _young_list_min_length;
 193   size_t _young_list_target_length;
 194   size_t _young_list_fixed_length;
 195 
 196   // The max number of regions we can extend the eden by while the GC
 197   // locker is active. This should be >= _young_list_target_length;
 198   size_t _young_list_max_length;
 199 
 200   size_t _young_cset_length;
 201   bool   _last_young_gc_full;
 202 
 203   unsigned              _full_young_pause_num;
 204   unsigned              _partial_young_pause_num;
 205 
 206   bool                  _during_marking;
 207   bool                  _in_marking_window;
 208   bool                  _in_marking_window_im;
 209 
 210   SurvRateGroup*        _short_lived_surv_rate_group;
 211   SurvRateGroup*        _survivor_surv_rate_group;
 212   // add here any more surv rate groups
 213 
 214   double                _gc_overhead_perc;
 215 
 216   bool during_marking() {
 217     return _during_marking;
 218   }
 219 
 220   // <NEW PREDICTION>
 221 
 222 private:
 223   enum PredictionConstants {
 224     TruncatedSeqLength = 10
 225   };
 226 
 227   TruncatedSeq* _alloc_rate_ms_seq;
 228   double        _prev_collection_pause_end_ms;
 229 
 230   TruncatedSeq* _pending_card_diff_seq;
 231   TruncatedSeq* _rs_length_diff_seq;
 232   TruncatedSeq* _cost_per_card_ms_seq;
 233   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
 234   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
 235   TruncatedSeq* _cost_per_entry_ms_seq;
 236   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
 237   TruncatedSeq* _cost_per_byte_ms_seq;
 238   TruncatedSeq* _constant_other_time_ms_seq;
 239   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 240   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 241 
 242   TruncatedSeq* _pending_cards_seq;
 243   TruncatedSeq* _scanned_cards_seq;
 244   TruncatedSeq* _rs_lengths_seq;
 245 
 246   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 247 
 248   TruncatedSeq* _young_gc_eff_seq;
 249 
 250   TruncatedSeq* _max_conc_overhead_seq;
 251 
 252   size_t _recorded_young_regions;
 253   size_t _recorded_non_young_regions;
 254   size_t _recorded_region_num;
 255 
 256   size_t _free_regions_at_end_of_collection;
 257 
 258   size_t _recorded_rs_lengths;
 259   size_t _max_rs_lengths;
 260 
 261   size_t _recorded_marked_bytes;
 262   size_t _recorded_young_bytes;
 263 
 264   size_t _predicted_pending_cards;
 265   size_t _predicted_cards_scanned;
 266   size_t _predicted_rs_lengths;
 267   size_t _predicted_bytes_to_copy;
 268 
 269   double _predicted_survival_ratio;
 270   double _predicted_rs_update_time_ms;
 271   double _predicted_rs_scan_time_ms;
 272   double _predicted_object_copy_time_ms;
 273   double _predicted_constant_other_time_ms;
 274   double _predicted_young_other_time_ms;
 275   double _predicted_non_young_other_time_ms;
 276   double _predicted_pause_time_ms;
 277 
 278   double _vtime_diff_ms;
 279 
 280   double _recorded_young_free_cset_time_ms;
 281   double _recorded_non_young_free_cset_time_ms;
 282 
 283   double _sigma;
 284   double _expensive_region_limit_ms;
 285 
 286   size_t _rs_lengths_prediction;
 287 
 288   size_t _known_garbage_bytes;
 289   double _known_garbage_ratio;
 290 
 291   double sigma() {
 292     return _sigma;
 293   }
 294 
 295   // A function that prevents us putting too much stock in small sample
 296   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 297   // of samples.  5 or more samples yields one; fewer scales linearly from
 298   // 2.0 at 1 sample to 1.0 at 5.
 299   double confidence_factor(int samples) {
 300     if (samples > 4) return 1.0;
 301     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 302   }
 303 
 304   double get_new_neg_prediction(TruncatedSeq* seq) {
 305     return seq->davg() - sigma() * seq->dsd();
 306   }
 307 
 308 #ifndef PRODUCT
 309   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 310 #endif // PRODUCT
 311 
 312   void adjust_concurrent_refinement(double update_rs_time,
 313                                     double update_rs_processed_buffers,
 314                                     double goal_ms);
 315 
 316 protected:
 317   double _pause_time_target_ms;
 318   double _recorded_young_cset_choice_time_ms;
 319   double _recorded_non_young_cset_choice_time_ms;
 320   bool   _within_target;
 321   size_t _pending_cards;
 322   size_t _max_pending_cards;
 323 
 324 public:
 325 
 326   void set_region_short_lived(HeapRegion* hr) {
 327     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 328   }
 329 
 330   void set_region_survivors(HeapRegion* hr) {
 331     hr->install_surv_rate_group(_survivor_surv_rate_group);
 332   }
 333 
 334 #ifndef PRODUCT
 335   bool verify_young_ages();
 336 #endif // PRODUCT
 337 
 338   double get_new_prediction(TruncatedSeq* seq) {
 339     return MAX2(seq->davg() + sigma() * seq->dsd(),
 340                 seq->davg() * confidence_factor(seq->num()));
 341   }
 342 
 343   size_t young_cset_length() {
 344     return _young_cset_length;
 345   }
 346 
 347   void record_max_rs_lengths(size_t rs_lengths) {
 348     _max_rs_lengths = rs_lengths;
 349   }
 350 
 351   size_t predict_pending_card_diff() {
 352     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
 353     if (prediction < 0.00001)
 354       return 0;
 355     else
 356       return (size_t) prediction;
 357   }
 358 
 359   size_t predict_pending_cards() {
 360     size_t max_pending_card_num = _g1->max_pending_card_num();
 361     size_t diff = predict_pending_card_diff();
 362     size_t prediction;
 363     if (diff > max_pending_card_num)
 364       prediction = max_pending_card_num;
 365     else
 366       prediction = max_pending_card_num - diff;
 367 
 368     return prediction;
 369   }
 370 
 371   size_t predict_rs_length_diff() {
 372     return (size_t) get_new_prediction(_rs_length_diff_seq);
 373   }
 374 
 375   double predict_alloc_rate_ms() {
 376     return get_new_prediction(_alloc_rate_ms_seq);
 377   }
 378 
 379   double predict_cost_per_card_ms() {
 380     return get_new_prediction(_cost_per_card_ms_seq);
 381   }
 382 
 383   double predict_rs_update_time_ms(size_t pending_cards) {
 384     return (double) pending_cards * predict_cost_per_card_ms();
 385   }
 386 
 387   double predict_fully_young_cards_per_entry_ratio() {
 388     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
 389   }
 390 
 391   double predict_partially_young_cards_per_entry_ratio() {
 392     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
 393       return predict_fully_young_cards_per_entry_ratio();
 394     else
 395       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
 396   }
 397 
 398   size_t predict_young_card_num(size_t rs_length) {
 399     return (size_t) ((double) rs_length *
 400                      predict_fully_young_cards_per_entry_ratio());
 401   }
 402 
 403   size_t predict_non_young_card_num(size_t rs_length) {
 404     return (size_t) ((double) rs_length *
 405                      predict_partially_young_cards_per_entry_ratio());
 406   }
 407 
 408   double predict_rs_scan_time_ms(size_t card_num) {
 409     if (full_young_gcs())
 410       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 411     else
 412       return predict_partially_young_rs_scan_time_ms(card_num);
 413   }
 414 
 415   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
 416     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
 417       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 418     else
 419       return (double) card_num *
 420         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
 421   }
 422 
 423   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 424     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
 425       return 1.1 * (double) bytes_to_copy *
 426         get_new_prediction(_cost_per_byte_ms_seq);
 427     else
 428       return (double) bytes_to_copy *
 429         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 430   }
 431 
 432   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 433     if (_in_marking_window && !_in_marking_window_im)
 434       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 435     else
 436       return (double) bytes_to_copy *
 437         get_new_prediction(_cost_per_byte_ms_seq);
 438   }
 439 
 440   double predict_constant_other_time_ms() {
 441     return get_new_prediction(_constant_other_time_ms_seq);
 442   }
 443 
 444   double predict_young_other_time_ms(size_t young_num) {
 445     return
 446       (double) young_num *
 447       get_new_prediction(_young_other_cost_per_region_ms_seq);
 448   }
 449 
 450   double predict_non_young_other_time_ms(size_t non_young_num) {
 451     return
 452       (double) non_young_num *
 453       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 454   }
 455 
 456   void check_if_region_is_too_expensive(double predicted_time_ms);
 457 
 458   double predict_young_collection_elapsed_time_ms(size_t adjustment);
 459   double predict_base_elapsed_time_ms(size_t pending_cards);
 460   double predict_base_elapsed_time_ms(size_t pending_cards,
 461                                       size_t scanned_cards);
 462   size_t predict_bytes_to_copy(HeapRegion* hr);
 463   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
 464 
 465     // for use by: calculate_young_list_target_length(rs_length)
 466   bool predict_will_fit(size_t young_region_num,
 467                         double base_time_ms,
 468                         size_t init_free_regions,
 469                         double target_pause_time_ms);
 470 
 471   void start_recording_regions();
 472   void record_cset_region_info(HeapRegion* hr, bool young);
 473   void record_non_young_cset_region(HeapRegion* hr);
 474 
 475   void set_recorded_young_regions(size_t n_regions);
 476   void set_recorded_young_bytes(size_t bytes);
 477   void set_recorded_rs_lengths(size_t rs_lengths);
 478   void set_predicted_bytes_to_copy(size_t bytes);
 479 
 480   void end_recording_regions();
 481 
 482   void record_vtime_diff_ms(double vtime_diff_ms) {
 483     _vtime_diff_ms = vtime_diff_ms;
 484   }
 485 
 486   void record_young_free_cset_time_ms(double time_ms) {
 487     _recorded_young_free_cset_time_ms = time_ms;
 488   }
 489 
 490   void record_non_young_free_cset_time_ms(double time_ms) {
 491     _recorded_non_young_free_cset_time_ms = time_ms;
 492   }
 493 
 494   double predict_young_gc_eff() {
 495     return get_new_neg_prediction(_young_gc_eff_seq);
 496   }
 497 
 498   double predict_survivor_regions_evac_time();
 499 
 500   // </NEW PREDICTION>
 501 
 502 public:
 503   void cset_regions_freed() {
 504     bool propagate = _last_young_gc_full && !_in_marking_window;
 505     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 506     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 507     // also call it on any more surv rate groups
 508   }
 509 
 510   void set_known_garbage_bytes(size_t known_garbage_bytes) {
 511     _known_garbage_bytes = known_garbage_bytes;
 512     size_t heap_bytes = _g1->capacity();
 513     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 514   }
 515 
 516   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
 517     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
 518 
 519     _known_garbage_bytes -= known_garbage_bytes;
 520     size_t heap_bytes = _g1->capacity();
 521     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 522   }
 523 
 524   G1MMUTracker* mmu_tracker() {
 525     return _mmu_tracker;
 526   }
 527 
 528   double max_pause_time_ms() {
 529     return _mmu_tracker->max_gc_time() * 1000.0;
 530   }
 531 
 532   double predict_init_time_ms() {
 533     return get_new_prediction(_concurrent_mark_init_times_ms);
 534   }
 535 
 536   double predict_remark_time_ms() {
 537     return get_new_prediction(_concurrent_mark_remark_times_ms);
 538   }
 539 
 540   double predict_cleanup_time_ms() {
 541     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 542   }
 543 
 544   // Returns an estimate of the survival rate of the region at yg-age
 545   // "yg_age".
 546   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 547     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 548     if (seq->num() == 0)
 549       gclog_or_tty->print("BARF! age is %d", age);
 550     guarantee( seq->num() > 0, "invariant" );
 551     double pred = get_new_prediction(seq);
 552     if (pred > 1.0)
 553       pred = 1.0;
 554     return pred;
 555   }
 556 
 557   double predict_yg_surv_rate(int age) {
 558     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 559   }
 560 
 561   double accum_yg_surv_rate_pred(int age) {
 562     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 563   }
 564 
 565 protected:
 566   void print_stats(int level, const char* str, double value);
 567   void print_stats(int level, const char* str, int value);
 568 
 569   void print_par_stats(int level, const char* str, double* data);
 570   void print_par_sizes(int level, const char* str, double* data);
 571 
 572   void check_other_times(int level,
 573                          NumberSeq* other_times_ms,
 574                          NumberSeq* calc_other_times_ms) const;
 575 
 576   void print_summary (PauseSummary* stats) const;
 577 
 578   void print_summary (int level, const char* str, NumberSeq* seq) const;
 579   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
 580 
 581   double avg_value (double* data);
 582   double max_value (double* data);
 583   double sum_of_values (double* data);
 584   double max_sum (double* data1, double* data2);
 585 
 586   int _last_satb_drain_processed_buffers;
 587   int _last_update_rs_processed_buffers;
 588   double _last_pause_time_ms;
 589 
 590   size_t _bytes_in_to_space_before_gc;
 591   size_t _bytes_in_to_space_after_gc;
 592   size_t bytes_in_to_space_during_gc() {
 593     return
 594       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
 595   }
 596   size_t _bytes_in_collection_set_before_gc;
 597   // Used to count used bytes in CS.
 598   friend class CountCSClosure;
 599 
 600   // Statistics kept per GC stoppage, pause or full.
 601   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 602 
 603   // We track markings.
 604   int _num_markings;
 605   double _mark_thread_startup_sec;       // Time at startup of marking thread
 606 
 607   // Add a new GC of the given duration and end time to the record.
 608   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 609 
 610   // The head of the list (via "next_in_collection_set()") representing the
 611   // current collection set. Set from the incrementally built collection
 612   // set at the start of the pause.
 613   HeapRegion* _collection_set;
 614 
 615   // The number of regions in the collection set. Set from the incrementally
 616   // built collection set at the start of an evacuation pause.
 617   size_t _collection_set_size;
 618 
 619   // The number of bytes in the collection set before the pause. Set from
 620   // the incrementally built collection set at the start of an evacuation
 621   // pause.
 622   size_t _collection_set_bytes_used_before;
 623 
 624   // The associated information that is maintained while the incremental
 625   // collection set is being built with young regions. Used to populate
 626   // the recorded info for the evacuation pause.
 627 
 628   enum CSetBuildType {
 629     Active,             // We are actively building the collection set
 630     Inactive            // We are not actively building the collection set
 631   };
 632 
 633   CSetBuildType _inc_cset_build_state;
 634 
 635   // The head of the incrementally built collection set.
 636   HeapRegion* _inc_cset_head;
 637 
 638   // The tail of the incrementally built collection set.
 639   HeapRegion* _inc_cset_tail;
 640 
 641   // The number of regions in the incrementally built collection set.
 642   // Used to set _collection_set_size at the start of an evacuation
 643   // pause.
 644   size_t _inc_cset_size;
 645 
 646   // Used as the index in the surving young words structure
 647   // which tracks the amount of space, for each young region,
 648   // that survives the pause.
 649   size_t _inc_cset_young_index;
 650 
 651   // The number of bytes in the incrementally built collection set.
 652   // Used to set _collection_set_bytes_used_before at the start of
 653   // an evacuation pause.
 654   size_t _inc_cset_bytes_used_before;
 655 
 656   // Used to record the highest end of heap region in collection set
 657   HeapWord* _inc_cset_max_finger;
 658 
 659   // The number of recorded used bytes in the young regions
 660   // of the collection set. This is the sum of the used() bytes
 661   // of retired young regions in the collection set.
 662   size_t _inc_cset_recorded_young_bytes;
 663 
 664   // The RSet lengths recorded for regions in the collection set
 665   // (updated by the periodic sampling of the regions in the
 666   // young list/collection set).
 667   size_t _inc_cset_recorded_rs_lengths;
 668 
 669   // The predicted elapsed time it will take to collect the regions
 670   // in the collection set (updated by the periodic sampling of the
 671   // regions in the young list/collection set).
 672   double _inc_cset_predicted_elapsed_time_ms;
 673 
 674   // The predicted bytes to copy for the regions in the collection
 675   // set (updated by the periodic sampling of the regions in the
 676   // young list/collection set).
 677   size_t _inc_cset_predicted_bytes_to_copy;
 678 
 679   // Info about marking.
 680   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
 681 
 682   // The number of collection pauses at the end of the last mark.
 683   size_t _n_pauses_at_mark_end;
 684 
 685   // Stash a pointer to the g1 heap.
 686   G1CollectedHeap* _g1;
 687 
 688   // The average time in ms per collection pause, averaged over recent pauses.
 689   double recent_avg_time_for_pauses_ms();
 690 
 691   // The average time in ms for RS scanning, per pause, averaged
 692   // over recent pauses. (Note the RS scanning time for a pause
 693   // is itself an average of the RS scanning time for each worker
 694   // thread.)
 695   double recent_avg_time_for_rs_scan_ms();
 696 
 697   // The number of "recent" GCs recorded in the number sequences
 698   int number_of_recent_gcs();
 699 
 700   // The average survival ratio, computed by the total number of bytes
 701   // suriviving / total number of bytes before collection over the last
 702   // several recent pauses.
 703   double recent_avg_survival_fraction();
 704   // The survival fraction of the most recent pause; if there have been no
 705   // pauses, returns 1.0.
 706   double last_survival_fraction();
 707 
 708   // Returns a "conservative" estimate of the recent survival rate, i.e.,
 709   // one that may be higher than "recent_avg_survival_fraction".
 710   // This is conservative in several ways:
 711   //   If there have been few pauses, it will assume a potential high
 712   //     variance, and err on the side of caution.
 713   //   It puts a lower bound (currently 0.1) on the value it will return.
 714   //   To try to detect phase changes, if the most recent pause ("latest") has a
 715   //     higher-than average ("avg") survival rate, it returns that rate.
 716   // "work" version is a utility function; young is restricted to young regions.
 717   double conservative_avg_survival_fraction_work(double avg,
 718                                                  double latest);
 719 
 720   // The arguments are the two sequences that keep track of the number of bytes
 721   //   surviving and the total number of bytes before collection, resp.,
 722   //   over the last evereal recent pauses
 723   // Returns the survival rate for the category in the most recent pause.
 724   // If there have been no pauses, returns 1.0.
 725   double last_survival_fraction_work(TruncatedSeq* surviving,
 726                                      TruncatedSeq* before);
 727 
 728   // The arguments are the two sequences that keep track of the number of bytes
 729   //   surviving and the total number of bytes before collection, resp.,
 730   //   over the last several recent pauses
 731   // Returns the average survival ration over the last several recent pauses
 732   // If there have been no pauses, return 1.0
 733   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
 734                                            TruncatedSeq* before);
 735 
 736   double conservative_avg_survival_fraction() {
 737     double avg = recent_avg_survival_fraction();
 738     double latest = last_survival_fraction();
 739     return conservative_avg_survival_fraction_work(avg, latest);
 740   }
 741 
 742   // The ratio of gc time to elapsed time, computed over recent pauses.
 743   double _recent_avg_pause_time_ratio;
 744 
 745   double recent_avg_pause_time_ratio() {
 746     return _recent_avg_pause_time_ratio;
 747   }
 748 
 749   // Number of pauses between concurrent marking.
 750   size_t _pauses_btwn_concurrent_mark;
 751 
 752   size_t _n_marks_since_last_pause;
 753 
 754   // At the end of a pause we check the heap occupancy and we decide
 755   // whether we will start a marking cycle during the next pause. If
 756   // we decide that we want to do that, we will set this parameter to
 757   // true. So, this parameter will stay true between the end of a
 758   // pause and the beginning of a subsequent pause (not necessarily
 759   // the next one, see the comments on the next field) when we decide
 760   // that we will indeed start a marking cycle and do the initial-mark
 761   // work.
 762   volatile bool _initiate_conc_mark_if_possible;
 763 
 764   // If initiate_conc_mark_if_possible() is set at the beginning of a
 765   // pause, it is a suggestion that the pause should start a marking
 766   // cycle by doing the initial-mark work. However, it is possible
 767   // that the concurrent marking thread is still finishing up the
 768   // previous marking cycle (e.g., clearing the next marking
 769   // bitmap). If that is the case we cannot start a new cycle and
 770   // we'll have to wait for the concurrent marking thread to finish
 771   // what it is doing. In this case we will postpone the marking cycle
 772   // initiation decision for the next pause. When we eventually decide
 773   // to start a cycle, we will set _during_initial_mark_pause which
 774   // will stay true until the end of the initial-mark pause and it's
 775   // the condition that indicates that a pause is doing the
 776   // initial-mark work.
 777   volatile bool _during_initial_mark_pause;
 778 
 779   bool _should_revert_to_full_young_gcs;
 780   bool _last_full_young_gc;
 781 
 782   // This set of variables tracks the collector efficiency, in order to
 783   // determine whether we should initiate a new marking.
 784   double _cur_mark_stop_world_time_ms;
 785   double _mark_init_start_sec;
 786   double _mark_remark_start_sec;
 787   double _mark_cleanup_start_sec;
 788   double _mark_closure_time_ms;
 789 
 790   void   calculate_young_list_min_length();
 791   void   calculate_young_list_target_length();
 792   void   calculate_young_list_target_length(size_t rs_lengths);
 793 
 794 public:
 795 
 796   G1CollectorPolicy();
 797 
 798   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 799 
 800   virtual CollectorPolicy::Name kind() {
 801     return CollectorPolicy::G1CollectorPolicyKind;
 802   }
 803 
 804   void check_prediction_validity();
 805 
 806   size_t bytes_in_collection_set() {
 807     return _bytes_in_collection_set_before_gc;
 808   }
 809 
 810   size_t bytes_in_to_space() {
 811     return bytes_in_to_space_during_gc();
 812   }
 813 
 814   unsigned calc_gc_alloc_time_stamp() {
 815     return _all_pause_times_ms->num() + 1;
 816   }
 817 
 818 protected:
 819 
 820   // Count the number of bytes used in the CS.
 821   void count_CS_bytes_used();
 822 
 823   // Together these do the base cleanup-recording work.  Subclasses might
 824   // want to put something between them.
 825   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
 826                                                 size_t max_live_bytes);
 827   void record_concurrent_mark_cleanup_end_work2();
 828 
 829 public:
 830 
 831   virtual void init();
 832 
 833   // Create jstat counters for the policy.
 834   virtual void initialize_gc_policy_counters();
 835 
 836   virtual HeapWord* mem_allocate_work(size_t size,
 837                                       bool is_tlab,
 838                                       bool* gc_overhead_limit_was_exceeded);
 839 
 840   // This method controls how a collector handles one or more
 841   // of its generations being fully allocated.
 842   virtual HeapWord* satisfy_failed_allocation(size_t size,
 843                                               bool is_tlab);
 844 
 845   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 846 
 847   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 848 
 849   // The number of collection pauses so far.
 850   long n_pauses() const { return _n_pauses; }
 851 
 852   // Update the heuristic info to record a collection pause of the given
 853   // start time, where the given number of bytes were used at the start.
 854   // This may involve changing the desired size of a collection set.
 855 
 856   virtual void record_stop_world_start();
 857 
 858   virtual void record_collection_pause_start(double start_time_sec,
 859                                              size_t start_used);
 860 
 861   // Must currently be called while the world is stopped.
 862   virtual void record_concurrent_mark_init_start();
 863   virtual void record_concurrent_mark_init_end();
 864   void record_concurrent_mark_init_end_pre(double
 865                                            mark_init_elapsed_time_ms);
 866 
 867   void record_mark_closure_time(double mark_closure_time_ms);
 868 
 869   virtual void record_concurrent_mark_remark_start();
 870   virtual void record_concurrent_mark_remark_end();
 871 
 872   virtual void record_concurrent_mark_cleanup_start();
 873   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
 874                                                   size_t max_live_bytes);
 875   virtual void record_concurrent_mark_cleanup_completed();
 876 
 877   virtual void record_concurrent_pause();
 878   virtual void record_concurrent_pause_end();
 879 
 880   virtual void record_collection_pause_end();
 881   void print_heap_transition();
 882 
 883   // Record the fact that a full collection occurred.
 884   virtual void record_full_collection_start();
 885   virtual void record_full_collection_end();
 886 
 887   void record_gc_worker_start_time(int worker_i, double ms) {
 888     _par_last_gc_worker_start_times_ms[worker_i] = ms;
 889   }
 890 
 891   void record_ext_root_scan_time(int worker_i, double ms) {
 892     _par_last_ext_root_scan_times_ms[worker_i] = ms;
 893   }
 894 
 895   void record_mark_stack_scan_time(int worker_i, double ms) {
 896     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
 897   }
 898 
 899   void record_satb_drain_time(double ms) {
 900     _cur_satb_drain_time_ms = ms;
 901     _satb_drain_time_set    = true;
 902   }
 903 
 904   void record_satb_drain_processed_buffers (int processed_buffers) {
 905     _last_satb_drain_processed_buffers = processed_buffers;
 906   }
 907 
 908   void record_mod_union_time(double ms) {
 909     _all_mod_union_times_ms->add(ms);
 910   }
 911 
 912   void record_update_rs_time(int thread, double ms) {
 913     _par_last_update_rs_times_ms[thread] = ms;
 914   }
 915 
 916   void record_update_rs_processed_buffers (int thread,
 917                                            double processed_buffers) {
 918     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
 919   }
 920 
 921   void record_scan_rs_time(int thread, double ms) {
 922     _par_last_scan_rs_times_ms[thread] = ms;
 923   }
 924 
 925   void reset_obj_copy_time(int thread) {
 926     _par_last_obj_copy_times_ms[thread] = 0.0;
 927   }
 928 
 929   void reset_obj_copy_time() {
 930     reset_obj_copy_time(0);
 931   }
 932 
 933   void record_obj_copy_time(int thread, double ms) {
 934     _par_last_obj_copy_times_ms[thread] += ms;
 935   }
 936 
 937   void record_termination(int thread, double ms, size_t attempts) {
 938     _par_last_termination_times_ms[thread] = ms;
 939     _par_last_termination_attempts[thread] = (double) attempts;
 940   }
 941 
 942   void record_gc_worker_end_time(int worker_i, double ms) {
 943     _par_last_gc_worker_end_times_ms[worker_i] = ms;
 944   }
 945 
 946   void record_pause_time_ms(double ms) {
 947     _last_pause_time_ms = ms;
 948   }
 949 
 950   void record_clear_ct_time(double ms) {
 951     _cur_clear_ct_time_ms = ms;
 952   }
 953 
 954   void record_par_time(double ms) {
 955     _cur_collection_par_time_ms = ms;
 956   }
 957 
 958   void record_aux_start_time(int i) {
 959     guarantee(i < _aux_num, "should be within range");
 960     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
 961   }
 962 
 963   void record_aux_end_time(int i) {
 964     guarantee(i < _aux_num, "should be within range");
 965     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
 966     _cur_aux_times_set[i] = true;
 967     _cur_aux_times_ms[i] += ms;
 968   }
 969 
 970   void record_ref_proc_time(double ms) {
 971     _cur_ref_proc_time_ms = ms;
 972   }
 973 
 974   void record_ref_enq_time(double ms) {
 975     _cur_ref_enq_time_ms = ms;
 976   }
 977 
 978 #ifndef PRODUCT
 979   void record_cc_clear_time(double ms) {
 980     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
 981       _min_clear_cc_time_ms = ms;
 982     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
 983       _max_clear_cc_time_ms = ms;
 984     _cur_clear_cc_time_ms = ms;
 985     _cum_clear_cc_time_ms += ms;
 986     _num_cc_clears++;
 987   }
 988 #endif
 989 
 990   // Record the fact that "bytes" bytes allocated in a region.
 991   void record_before_bytes(size_t bytes);
 992   void record_after_bytes(size_t bytes);
 993 
 994   // Choose a new collection set.  Marks the chosen regions as being
 995   // "in_collection_set", and links them together.  The head and number of
 996   // the collection set are available via access methods.
 997   virtual void choose_collection_set(double target_pause_time_ms) = 0;
 998 
 999   // The head of the list (via "next_in_collection_set()") representing the
1000   // current collection set.
1001   HeapRegion* collection_set() { return _collection_set; }
1002 
1003   void clear_collection_set() { _collection_set = NULL; }
1004 
1005   // The number of elements in the current collection set.
1006   size_t collection_set_size() { return _collection_set_size; }
1007 
1008   // Add "hr" to the CS.
1009   void add_to_collection_set(HeapRegion* hr);
1010 
1011   // Incremental CSet Support
1012 
1013   // The head of the incrementally built collection set.
1014   HeapRegion* inc_cset_head() { return _inc_cset_head; }
1015 
1016   // The tail of the incrementally built collection set.
1017   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
1018 
1019   // The number of elements in the incrementally built collection set.
1020   size_t inc_cset_size() { return _inc_cset_size; }
1021 
1022   // Initialize incremental collection set info.
1023   void start_incremental_cset_building();
1024 
1025   void clear_incremental_cset() {
1026     _inc_cset_head = NULL;
1027     _inc_cset_tail = NULL;
1028   }
1029 
1030   // Stop adding regions to the incremental collection set
1031   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
1032 
1033   // Add/remove information about hr to the aggregated information
1034   // for the incrementally built collection set.
1035   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
1036   void remove_from_incremental_cset_info(HeapRegion* hr);
1037 
1038   // Update information about hr in the aggregated information for
1039   // the incrementally built collection set.
1040   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
1041 
1042 private:
1043   // Update the incremental cset information when adding a region
1044   // (should not be called directly).
1045   void add_region_to_incremental_cset_common(HeapRegion* hr);
1046 
1047 public:
1048   // Add hr to the LHS of the incremental collection set.
1049   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
1050 
1051   // Add hr to the RHS of the incremental collection set.
1052   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
1053 
1054 #ifndef PRODUCT
1055   void print_collection_set(HeapRegion* list_head, outputStream* st);
1056 #endif // !PRODUCT
1057 
1058   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
1059   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
1060   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
1061 
1062   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
1063   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
1064   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
1065 
1066   // This sets the initiate_conc_mark_if_possible() flag to start a
1067   // new cycle, as long as we are not already in one. It's best if it
1068   // is called during a safepoint when the test whether a cycle is in
1069   // progress or not is stable.
1070   bool force_initial_mark_if_outside_cycle();
1071 
1072   // This is called at the very beginning of an evacuation pause (it
1073   // has to be the first thing that the pause does). If
1074   // initiate_conc_mark_if_possible() is true, and the concurrent
1075   // marking thread has completed its work during the previous cycle,
1076   // it will set during_initial_mark_pause() to so that the pause does
1077   // the initial-mark work and start a marking cycle.
1078   void decide_on_conc_mark_initiation();
1079 
1080   // If an expansion would be appropriate, because recent GC overhead had
1081   // exceeded the desired limit, return an amount to expand by.
1082   virtual size_t expansion_amount();
1083 
1084   // note start of mark thread
1085   void note_start_of_mark_thread();
1086 
1087   // The marked bytes of the "r" has changed; reclassify it's desirability
1088   // for marking.  Also asserts that "r" is eligible for a CS.
1089   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
1090 
1091 #ifndef PRODUCT
1092   // Check any appropriate marked bytes info, asserting false if
1093   // something's wrong, else returning "true".
1094   virtual bool assertMarkedBytesDataOK() = 0;
1095 #endif
1096 
1097   // Print tracing information.
1098   void print_tracing_info() const;
1099 
1100   // Print stats on young survival ratio
1101   void print_yg_surv_rate_info() const;
1102 
1103   void finished_recalculating_age_indexes(bool is_survivors) {
1104     if (is_survivors) {
1105       _survivor_surv_rate_group->finished_recalculating_age_indexes();
1106     } else {
1107       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
1108     }
1109     // do that for any other surv rate groups
1110   }
1111 
1112   bool is_young_list_full() {
1113     size_t young_list_length = _g1->young_list()->length();
1114     size_t young_list_target_length = _young_list_target_length;
1115     if (G1FixedEdenSize) {
1116       young_list_target_length -= _max_survivor_regions;
1117     }
1118     return young_list_length >= young_list_target_length;
1119   }
1120 
1121   bool can_expand_young_list() {
1122     size_t young_list_length = _g1->young_list()->length();
1123     size_t young_list_max_length = _young_list_max_length;
1124     if (G1FixedEdenSize) {
1125       young_list_max_length -= _max_survivor_regions;
1126     }
1127     return young_list_length < young_list_max_length;
1128   }
1129 
1130   void update_region_num(bool young);
1131 
1132   bool in_young_gc_mode() {
1133     return _in_young_gc_mode;
1134   }
1135   void set_in_young_gc_mode(bool in_young_gc_mode) {
1136     _in_young_gc_mode = in_young_gc_mode;
1137   }
1138 
1139   bool full_young_gcs() {
1140     return _full_young_gcs;
1141   }
1142   void set_full_young_gcs(bool full_young_gcs) {
1143     _full_young_gcs = full_young_gcs;
1144   }
1145 
1146   bool adaptive_young_list_length() {
1147     return _adaptive_young_list_length;
1148   }
1149   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
1150     _adaptive_young_list_length = adaptive_young_list_length;
1151   }
1152 
1153   inline double get_gc_eff_factor() {
1154     double ratio = _known_garbage_ratio;
1155 
1156     double square = ratio * ratio;
1157     // square = square * square;
1158     double ret = square * 9.0 + 1.0;
1159 #if 0
1160     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
1161 #endif // 0
1162     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
1163     return ret;
1164   }
1165 
1166   //
1167   // Survivor regions policy.
1168   //
1169 protected:
1170 
1171   // Current tenuring threshold, set to 0 if the collector reaches the
1172   // maximum amount of suvivors regions.
1173   int _tenuring_threshold;
1174 
1175   // The limit on the number of regions allocated for survivors.
1176   size_t _max_survivor_regions;
1177 
1178   // For reporting purposes.
1179   size_t _eden_bytes_before_gc;
1180   size_t _survivor_bytes_before_gc;
1181   size_t _capacity_before_gc;
1182 
1183   // The amount of survor regions after a collection.
1184   size_t _recorded_survivor_regions;
1185   // List of survivor regions.
1186   HeapRegion* _recorded_survivor_head;
1187   HeapRegion* _recorded_survivor_tail;
1188 
1189   ageTable _survivors_age_table;
1190 
1191 public:
1192 
1193   inline GCAllocPurpose
1194     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1195       if (age < _tenuring_threshold && src_region->is_young()) {
1196         return GCAllocForSurvived;
1197       } else {
1198         return GCAllocForTenured;
1199       }
1200   }
1201 
1202   inline bool track_object_age(GCAllocPurpose purpose) {
1203     return purpose == GCAllocForSurvived;
1204   }
1205 
1206   inline GCAllocPurpose alternative_purpose(int purpose) {
1207     return GCAllocForTenured;
1208   }
1209 
1210   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
1211 
1212   size_t max_regions(int purpose);
1213 
1214   // The limit on regions for a particular purpose is reached.
1215   void note_alloc_region_limit_reached(int purpose) {
1216     if (purpose == GCAllocForSurvived) {
1217       _tenuring_threshold = 0;
1218     }
1219   }
1220 
1221   void note_start_adding_survivor_regions() {
1222     _survivor_surv_rate_group->start_adding_regions();
1223   }
1224 
1225   void note_stop_adding_survivor_regions() {
1226     _survivor_surv_rate_group->stop_adding_regions();
1227   }
1228 
1229   void record_survivor_regions(size_t      regions,
1230                                HeapRegion* head,
1231                                HeapRegion* tail) {
1232     _recorded_survivor_regions = regions;
1233     _recorded_survivor_head    = head;
1234     _recorded_survivor_tail    = tail;
1235   }
1236 
1237   size_t recorded_survivor_regions() {
1238     return _recorded_survivor_regions;
1239   }
1240 
1241   void record_thread_age_table(ageTable* age_table)
1242   {
1243     _survivors_age_table.merge_par(age_table);
1244   }
1245 
1246   void calculate_max_gc_locker_expansion();
1247 
1248   // Calculates survivor space parameters.
1249   void calculate_survivors_policy();
1250 
1251 };
1252 
1253 // This encapsulates a particular strategy for a g1 Collector.
1254 //
1255 //      Start a concurrent mark when our heap size is n bytes
1256 //            greater then our heap size was at the last concurrent
1257 //            mark.  Where n is a function of the CMSTriggerRatio
1258 //            and the MinHeapFreeRatio.
1259 //
1260 //      Start a g1 collection pause when we have allocated the
1261 //            average number of bytes currently being freed in
1262 //            a collection, but only if it is at least one region
1263 //            full
1264 //
1265 //      Resize Heap based on desired
1266 //      allocation space, where desired allocation space is
1267 //      a function of survival rate and desired future to size.
1268 //
1269 //      Choose collection set by first picking all older regions
1270 //      which have a survival rate which beats our projected young
1271 //      survival rate.  Then fill out the number of needed regions
1272 //      with young regions.
1273 
1274 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
1275   CollectionSetChooser* _collectionSetChooser;
1276   // If the estimated is less then desirable, resize if possible.
1277   void expand_if_possible(size_t numRegions);
1278 
1279   virtual void choose_collection_set(double target_pause_time_ms);
1280   virtual void record_collection_pause_start(double start_time_sec,
1281                                              size_t start_used);
1282   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
1283                                                   size_t max_live_bytes);
1284   virtual void record_full_collection_end();
1285 
1286 public:
1287   G1CollectorPolicy_BestRegionsFirst() {
1288     _collectionSetChooser = new CollectionSetChooser();
1289   }
1290   void record_collection_pause_end();
1291   // This is not needed any more, after the CSet choosing code was
1292   // changed to use the pause prediction work. But let's leave the
1293   // hook in just in case.
1294   void note_change_in_marked_bytes(HeapRegion* r) { }
1295 #ifndef PRODUCT
1296   bool assertMarkedBytesDataOK();
1297 #endif
1298 };
1299 
1300 // This should move to some place more general...
1301 
1302 // If we have "n" measurements, and we've kept track of their "sum" and the
1303 // "sum_of_squares" of the measurements, this returns the variance of the
1304 // sequence.
1305 inline double variance(int n, double sum_of_squares, double sum) {
1306   double n_d = (double)n;
1307   double avg = sum/n_d;
1308   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1309 }
1310 
1311 // Local Variables: ***
1312 // c-indentation-style: gnu ***
1313 // End: ***
1314 
1315 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP