1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1AllocRegion.hpp"
  30 #include "gc_implementation/g1/g1HRPrinter.hpp"
  31 #include "gc_implementation/g1/g1RemSet.hpp"
  32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  33 #include "gc_implementation/g1/heapRegionSeq.hpp"
  34 #include "gc_implementation/g1/heapRegionSets.hpp"
  35 #include "gc_implementation/shared/hSpaceCounters.hpp"
  36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
  37 #include "memory/barrierSet.hpp"
  38 #include "memory/memRegion.hpp"
  39 #include "memory/sharedHeap.hpp"
  40 
  41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  42 // It uses the "Garbage First" heap organization and algorithm, which
  43 // may combine concurrent marking with parallel, incremental compaction of
  44 // heap subsets that will yield large amounts of garbage.
  45 
  46 class HeapRegion;
  47 class HRRSCleanupTask;
  48 class PermanentGenerationSpec;
  49 class GenerationSpec;
  50 class OopsInHeapRegionClosure;
  51 class G1ScanHeapEvacClosure;
  52 class ObjectClosure;
  53 class SpaceClosure;
  54 class CompactibleSpaceClosure;
  55 class Space;
  56 class G1CollectorPolicy;
  57 class GenRemSet;
  58 class G1RemSet;
  59 class HeapRegionRemSetIterator;
  60 class ConcurrentMark;
  61 class ConcurrentMarkThread;
  62 class ConcurrentG1Refine;
  63 class GenerationCounters;
  64 
  65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
  66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
  67 
  68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  70 
  71 enum GCAllocPurpose {
  72   GCAllocForTenured,
  73   GCAllocForSurvived,
  74   GCAllocPurposeCount
  75 };
  76 
  77 class YoungList : public CHeapObj {
  78 private:
  79   G1CollectedHeap* _g1h;
  80 
  81   HeapRegion* _head;
  82 
  83   HeapRegion* _survivor_head;
  84   HeapRegion* _survivor_tail;
  85 
  86   HeapRegion* _curr;
  87 
  88   size_t      _length;
  89   size_t      _survivor_length;
  90 
  91   size_t      _last_sampled_rs_lengths;
  92   size_t      _sampled_rs_lengths;
  93 
  94   void         empty_list(HeapRegion* list);
  95 
  96 public:
  97   YoungList(G1CollectedHeap* g1h);
  98 
  99   void         push_region(HeapRegion* hr);
 100   void         add_survivor_region(HeapRegion* hr);
 101 
 102   void         empty_list();
 103   bool         is_empty() { return _length == 0; }
 104   size_t       length() { return _length; }
 105   size_t       survivor_length() { return _survivor_length; }
 106 
 107   // Currently we do not keep track of the used byte sum for the
 108   // young list and the survivors and it'd be quite a lot of work to
 109   // do so. When we'll eventually replace the young list with
 110   // instances of HeapRegionLinkedList we'll get that for free. So,
 111   // we'll report the more accurate information then.
 112   size_t       eden_used_bytes() {
 113     assert(length() >= survivor_length(), "invariant");
 114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
 115   }
 116   size_t       survivor_used_bytes() {
 117     return survivor_length() * HeapRegion::GrainBytes;
 118   }
 119 
 120   void rs_length_sampling_init();
 121   bool rs_length_sampling_more();
 122   void rs_length_sampling_next();
 123 
 124   void reset_sampled_info() {
 125     _last_sampled_rs_lengths =   0;
 126   }
 127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 128 
 129   // for development purposes
 130   void reset_auxilary_lists();
 131   void clear() { _head = NULL; _length = 0; }
 132 
 133   void clear_survivors() {
 134     _survivor_head    = NULL;
 135     _survivor_tail    = NULL;
 136     _survivor_length  = 0;
 137   }
 138 
 139   HeapRegion* first_region() { return _head; }
 140   HeapRegion* first_survivor_region() { return _survivor_head; }
 141   HeapRegion* last_survivor_region() { return _survivor_tail; }
 142 
 143   // debugging
 144   bool          check_list_well_formed();
 145   bool          check_list_empty(bool check_sample = true);
 146   void          print();
 147 };
 148 
 149 class MutatorAllocRegion : public G1AllocRegion {
 150 protected:
 151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 153 public:
 154   MutatorAllocRegion()
 155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 156 };
 157 
 158 // The G1 STW is alive closure.
 159 // An instance is embedded into the G1CH and used as the
 160 // _is_alive_non_header closure in the STW reference
 161 // processor. It is also extensively used during refence
 162 // processing during STW evacuation pauses.
 163 class G1STWIsAliveClosure: public BoolObjectClosure {
 164   G1CollectedHeap* _g1;
 165 public:
 166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 167   void do_object(oop p) { assert(false, "Do not call."); }
 168   bool do_object_b(oop p);
 169 };
 170 
 171 class SurvivorGCAllocRegion : public G1AllocRegion {
 172 protected:
 173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 175 public:
 176   SurvivorGCAllocRegion()
 177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
 178 };
 179 
 180 class OldGCAllocRegion : public G1AllocRegion {
 181 protected:
 182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 184 public:
 185   OldGCAllocRegion()
 186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
 187 };
 188 
 189 class RefineCardTableEntryClosure;
 190 
 191 class G1CollectedHeap : public SharedHeap {
 192   friend class VM_G1CollectForAllocation;
 193   friend class VM_GenCollectForPermanentAllocation;
 194   friend class VM_G1CollectFull;
 195   friend class VM_G1IncCollectionPause;
 196   friend class VMStructs;
 197   friend class MutatorAllocRegion;
 198   friend class SurvivorGCAllocRegion;
 199   friend class OldGCAllocRegion;
 200 
 201   // Closures used in implementation.
 202   friend class G1ParCopyHelper;
 203   friend class G1IsAliveClosure;
 204   friend class G1EvacuateFollowersClosure;
 205   friend class G1ParScanThreadState;
 206   friend class G1ParScanClosureSuper;
 207   friend class G1ParEvacuateFollowersClosure;
 208   friend class G1ParTask;
 209   friend class G1FreeGarbageRegionClosure;
 210   friend class RefineCardTableEntryClosure;
 211   friend class G1PrepareCompactClosure;
 212   friend class RegionSorter;
 213   friend class RegionResetter;
 214   friend class CountRCClosure;
 215   friend class EvacPopObjClosure;
 216   friend class G1ParCleanupCTTask;
 217 
 218   // Other related classes.
 219   friend class G1MarkSweep;
 220 
 221 private:
 222   // The one and only G1CollectedHeap, so static functions can find it.
 223   static G1CollectedHeap* _g1h;
 224 
 225   static size_t _humongous_object_threshold_in_words;
 226 
 227   // Storage for the G1 heap (excludes the permanent generation).
 228   VirtualSpace _g1_storage;
 229   MemRegion    _g1_reserved;
 230 
 231   // The part of _g1_storage that is currently committed.
 232   MemRegion _g1_committed;
 233 
 234   // The master free list. It will satisfy all new region allocations.
 235   MasterFreeRegionList      _free_list;
 236 
 237   // The secondary free list which contains regions that have been
 238   // freed up during the cleanup process. This will be appended to the
 239   // master free list when appropriate.
 240   SecondaryFreeRegionList   _secondary_free_list;
 241 
 242   // It keeps track of the humongous regions.
 243   MasterHumongousRegionSet  _humongous_set;
 244 
 245   // The number of regions we could create by expansion.
 246   size_t _expansion_regions;
 247 
 248   // The block offset table for the G1 heap.
 249   G1BlockOffsetSharedArray* _bot_shared;
 250 
 251   // Move all of the regions off the free lists, then rebuild those free
 252   // lists, before and after full GC.
 253   void tear_down_region_lists();
 254   void rebuild_region_lists();
 255 
 256   // The sequence of all heap regions in the heap.
 257   HeapRegionSeq _hrs;
 258 
 259   // Alloc region used to satisfy mutator allocation requests.
 260   MutatorAllocRegion _mutator_alloc_region;
 261 
 262   // Alloc region used to satisfy allocation requests by the GC for
 263   // survivor objects.
 264   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 265 
 266   // Alloc region used to satisfy allocation requests by the GC for
 267   // old objects.
 268   OldGCAllocRegion _old_gc_alloc_region;
 269 
 270   // The last old region we allocated to during the last GC.
 271   // Typically, it is not full so we should re-use it during the next GC.
 272   HeapRegion* _retained_old_gc_alloc_region;
 273 
 274   // It resets the mutator alloc region before new allocations can take place.
 275   void init_mutator_alloc_region();
 276 
 277   // It releases the mutator alloc region.
 278   void release_mutator_alloc_region();
 279 
 280   // It initializes the GC alloc regions at the start of a GC.
 281   void init_gc_alloc_regions();
 282 
 283   // It releases the GC alloc regions at the end of a GC.
 284   void release_gc_alloc_regions();
 285 
 286   // It does any cleanup that needs to be done on the GC alloc regions
 287   // before a Full GC.
 288   void abandon_gc_alloc_regions();
 289 
 290   // Helper for monitoring and management support.
 291   G1MonitoringSupport* _g1mm;
 292 
 293   // Determines PLAB size for a particular allocation purpose.
 294   static size_t desired_plab_sz(GCAllocPurpose purpose);
 295 
 296   // Outside of GC pauses, the number of bytes used in all regions other
 297   // than the current allocation region.
 298   size_t _summary_bytes_used;
 299 
 300   // This is used for a quick test on whether a reference points into
 301   // the collection set or not. Basically, we have an array, with one
 302   // byte per region, and that byte denotes whether the corresponding
 303   // region is in the collection set or not. The entry corresponding
 304   // the bottom of the heap, i.e., region 0, is pointed to by
 305   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 306   // biased so that it actually points to address 0 of the address
 307   // space, to make the test as fast as possible (we can simply shift
 308   // the address to address into it, instead of having to subtract the
 309   // bottom of the heap from the address before shifting it; basically
 310   // it works in the same way the card table works).
 311   bool* _in_cset_fast_test;
 312 
 313   // The allocated array used for the fast test on whether a reference
 314   // points into the collection set or not. This field is also used to
 315   // free the array.
 316   bool* _in_cset_fast_test_base;
 317 
 318   // The length of the _in_cset_fast_test_base array.
 319   size_t _in_cset_fast_test_length;
 320 
 321   volatile unsigned _gc_time_stamp;
 322 
 323   size_t* _surviving_young_words;
 324 
 325   G1HRPrinter _hr_printer;
 326 
 327   void setup_surviving_young_words();
 328   void update_surviving_young_words(size_t* surv_young_words);
 329   void cleanup_surviving_young_words();
 330 
 331   // It decides whether an explicit GC should start a concurrent cycle
 332   // instead of doing a STW GC. Currently, a concurrent cycle is
 333   // explicitly started if:
 334   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 335   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 336   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 337 
 338   // Keeps track of how many "full collections" (i.e., Full GCs or
 339   // concurrent cycles) we have completed. The number of them we have
 340   // started is maintained in _total_full_collections in CollectedHeap.
 341   volatile unsigned int _full_collections_completed;
 342 
 343   // This is a non-product method that is helpful for testing. It is
 344   // called at the end of a GC and artificially expands the heap by
 345   // allocating a number of dead regions. This way we can induce very
 346   // frequent marking cycles and stress the cleanup / concurrent
 347   // cleanup code more (as all the regions that will be allocated by
 348   // this method will be found dead by the marking cycle).
 349   void allocate_dummy_regions() PRODUCT_RETURN;
 350 
 351   // These are macros so that, if the assert fires, we get the correct
 352   // line number, file, etc.
 353 
 354 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 355   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 356           (_extra_message_),                                                  \
 357           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 358           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 359           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 360 
 361 #define assert_heap_locked()                                                  \
 362   do {                                                                        \
 363     assert(Heap_lock->owned_by_self(),                                        \
 364            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 365   } while (0)
 366 
 367 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 368   do {                                                                        \
 369     assert(Heap_lock->owned_by_self() ||                                      \
 370            (SafepointSynchronize::is_at_safepoint() &&                        \
 371              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 372            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 373                                         "should be at a safepoint"));         \
 374   } while (0)
 375 
 376 #define assert_heap_locked_and_not_at_safepoint()                             \
 377   do {                                                                        \
 378     assert(Heap_lock->owned_by_self() &&                                      \
 379                                     !SafepointSynchronize::is_at_safepoint(), \
 380           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 381                                        "should not be at a safepoint"));      \
 382   } while (0)
 383 
 384 #define assert_heap_not_locked()                                              \
 385   do {                                                                        \
 386     assert(!Heap_lock->owned_by_self(),                                       \
 387         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 388   } while (0)
 389 
 390 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 391   do {                                                                        \
 392     assert(!Heap_lock->owned_by_self() &&                                     \
 393                                     !SafepointSynchronize::is_at_safepoint(), \
 394       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 395                                    "should not be at a safepoint"));          \
 396   } while (0)
 397 
 398 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 399   do {                                                                        \
 400     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 401               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 402            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 403   } while (0)
 404 
 405 #define assert_not_at_safepoint()                                             \
 406   do {                                                                        \
 407     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 408            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 409   } while (0)
 410 
 411 protected:
 412 
 413   // The young region list.
 414   YoungList*  _young_list;
 415 
 416   // The current policy object for the collector.
 417   G1CollectorPolicy* _g1_policy;
 418 
 419   // This is the second level of trying to allocate a new region. If
 420   // new_region() didn't find a region on the free_list, this call will
 421   // check whether there's anything available on the
 422   // secondary_free_list and/or wait for more regions to appear on
 423   // that list, if _free_regions_coming is set.
 424   HeapRegion* new_region_try_secondary_free_list();
 425 
 426   // Try to allocate a single non-humongous HeapRegion sufficient for
 427   // an allocation of the given word_size. If do_expand is true,
 428   // attempt to expand the heap if necessary to satisfy the allocation
 429   // request.
 430   HeapRegion* new_region(size_t word_size, bool do_expand);
 431 
 432   // Attempt to satisfy a humongous allocation request of the given
 433   // size by finding a contiguous set of free regions of num_regions
 434   // length and remove them from the master free list. Return the
 435   // index of the first region or G1_NULL_HRS_INDEX if the search
 436   // was unsuccessful.
 437   size_t humongous_obj_allocate_find_first(size_t num_regions,
 438                                            size_t word_size);
 439 
 440   // Initialize a contiguous set of free regions of length num_regions
 441   // and starting at index first so that they appear as a single
 442   // humongous region.
 443   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
 444                                                       size_t num_regions,
 445                                                       size_t word_size);
 446 
 447   // Attempt to allocate a humongous object of the given size. Return
 448   // NULL if unsuccessful.
 449   HeapWord* humongous_obj_allocate(size_t word_size);
 450 
 451   // The following two methods, allocate_new_tlab() and
 452   // mem_allocate(), are the two main entry points from the runtime
 453   // into the G1's allocation routines. They have the following
 454   // assumptions:
 455   //
 456   // * They should both be called outside safepoints.
 457   //
 458   // * They should both be called without holding the Heap_lock.
 459   //
 460   // * All allocation requests for new TLABs should go to
 461   //   allocate_new_tlab().
 462   //
 463   // * All non-TLAB allocation requests should go to mem_allocate().
 464   //
 465   // * If either call cannot satisfy the allocation request using the
 466   //   current allocating region, they will try to get a new one. If
 467   //   this fails, they will attempt to do an evacuation pause and
 468   //   retry the allocation.
 469   //
 470   // * If all allocation attempts fail, even after trying to schedule
 471   //   an evacuation pause, allocate_new_tlab() will return NULL,
 472   //   whereas mem_allocate() will attempt a heap expansion and/or
 473   //   schedule a Full GC.
 474   //
 475   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 476   //   should never be called with word_size being humongous. All
 477   //   humongous allocation requests should go to mem_allocate() which
 478   //   will satisfy them with a special path.
 479 
 480   virtual HeapWord* allocate_new_tlab(size_t word_size);
 481 
 482   virtual HeapWord* mem_allocate(size_t word_size,
 483                                  bool*  gc_overhead_limit_was_exceeded);
 484 
 485   // The following three methods take a gc_count_before_ret
 486   // parameter which is used to return the GC count if the method
 487   // returns NULL. Given that we are required to read the GC count
 488   // while holding the Heap_lock, and these paths will take the
 489   // Heap_lock at some point, it's easier to get them to read the GC
 490   // count while holding the Heap_lock before they return NULL instead
 491   // of the caller (namely: mem_allocate()) having to also take the
 492   // Heap_lock just to read the GC count.
 493 
 494   // First-level mutator allocation attempt: try to allocate out of
 495   // the mutator alloc region without taking the Heap_lock. This
 496   // should only be used for non-humongous allocations.
 497   inline HeapWord* attempt_allocation(size_t word_size,
 498                                       unsigned int* gc_count_before_ret);
 499 
 500   // Second-level mutator allocation attempt: take the Heap_lock and
 501   // retry the allocation attempt, potentially scheduling a GC
 502   // pause. This should only be used for non-humongous allocations.
 503   HeapWord* attempt_allocation_slow(size_t word_size,
 504                                     unsigned int* gc_count_before_ret);
 505 
 506   // Takes the Heap_lock and attempts a humongous allocation. It can
 507   // potentially schedule a GC pause.
 508   HeapWord* attempt_allocation_humongous(size_t word_size,
 509                                          unsigned int* gc_count_before_ret);
 510 
 511   // Allocation attempt that should be called during safepoints (e.g.,
 512   // at the end of a successful GC). expect_null_mutator_alloc_region
 513   // specifies whether the mutator alloc region is expected to be NULL
 514   // or not.
 515   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 516                                        bool expect_null_mutator_alloc_region);
 517 
 518   // It dirties the cards that cover the block so that so that the post
 519   // write barrier never queues anything when updating objects on this
 520   // block. It is assumed (and in fact we assert) that the block
 521   // belongs to a young region.
 522   inline void dirty_young_block(HeapWord* start, size_t word_size);
 523 
 524   // Allocate blocks during garbage collection. Will ensure an
 525   // allocation region, either by picking one or expanding the
 526   // heap, and then allocate a block of the given size. The block
 527   // may not be a humongous - it must fit into a single heap region.
 528   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 529 
 530   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
 531                                     HeapRegion*    alloc_region,
 532                                     bool           par,
 533                                     size_t         word_size);
 534 
 535   // Ensure that no further allocations can happen in "r", bearing in mind
 536   // that parallel threads might be attempting allocations.
 537   void par_allocate_remaining_space(HeapRegion* r);
 538 
 539   // Allocation attempt during GC for a survivor object / PLAB.
 540   inline HeapWord* survivor_attempt_allocation(size_t word_size);
 541 
 542   // Allocation attempt during GC for an old object / PLAB.
 543   inline HeapWord* old_attempt_allocation(size_t word_size);
 544 
 545   // These methods are the "callbacks" from the G1AllocRegion class.
 546 
 547   // For mutator alloc regions.
 548   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 549   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 550                                    size_t allocated_bytes);
 551 
 552   // For GC alloc regions.
 553   HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
 554                                   GCAllocPurpose ap);
 555   void retire_gc_alloc_region(HeapRegion* alloc_region,
 556                               size_t allocated_bytes, GCAllocPurpose ap);
 557 
 558   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 559   //   inspection request and should collect the entire heap
 560   // - if clear_all_soft_refs is true, all soft references should be
 561   //   cleared during the GC
 562   // - if explicit_gc is false, word_size describes the allocation that
 563   //   the GC should attempt (at least) to satisfy
 564   // - it returns false if it is unable to do the collection due to the
 565   //   GC locker being active, true otherwise
 566   bool do_collection(bool explicit_gc,
 567                      bool clear_all_soft_refs,
 568                      size_t word_size);
 569 
 570   // Callback from VM_G1CollectFull operation.
 571   // Perform a full collection.
 572   void do_full_collection(bool clear_all_soft_refs);
 573 
 574   // Resize the heap if necessary after a full collection.  If this is
 575   // after a collect-for allocation, "word_size" is the allocation size,
 576   // and will be considered part of the used portion of the heap.
 577   void resize_if_necessary_after_full_collection(size_t word_size);
 578 
 579   // Callback from VM_G1CollectForAllocation operation.
 580   // This function does everything necessary/possible to satisfy a
 581   // failed allocation request (including collection, expansion, etc.)
 582   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 583 
 584   // Attempting to expand the heap sufficiently
 585   // to support an allocation of the given "word_size".  If
 586   // successful, perform the allocation and return the address of the
 587   // allocated block, or else "NULL".
 588   HeapWord* expand_and_allocate(size_t word_size);
 589 
 590   // Process any reference objects discovered during
 591   // an incremental evacuation pause.
 592   void process_discovered_references();
 593 
 594   // Enqueue any remaining discovered references
 595   // after processing.
 596   void enqueue_discovered_references();
 597 
 598 public:
 599 
 600   G1MonitoringSupport* g1mm() { return _g1mm; }
 601 
 602   // Expand the garbage-first heap by at least the given size (in bytes!).
 603   // Returns true if the heap was expanded by the requested amount;
 604   // false otherwise.
 605   // (Rounds up to a HeapRegion boundary.)
 606   bool expand(size_t expand_bytes);
 607 
 608   // Do anything common to GC's.
 609   virtual void gc_prologue(bool full);
 610   virtual void gc_epilogue(bool full);
 611 
 612   // We register a region with the fast "in collection set" test. We
 613   // simply set to true the array slot corresponding to this region.
 614   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 615     assert(_in_cset_fast_test_base != NULL, "sanity");
 616     assert(r->in_collection_set(), "invariant");
 617     size_t index = r->hrs_index();
 618     assert(index < _in_cset_fast_test_length, "invariant");
 619     assert(!_in_cset_fast_test_base[index], "invariant");
 620     _in_cset_fast_test_base[index] = true;
 621   }
 622 
 623   // This is a fast test on whether a reference points into the
 624   // collection set or not. It does not assume that the reference
 625   // points into the heap; if it doesn't, it will return false.
 626   bool in_cset_fast_test(oop obj) {
 627     assert(_in_cset_fast_test != NULL, "sanity");
 628     if (_g1_committed.contains((HeapWord*) obj)) {
 629       // no need to subtract the bottom of the heap from obj,
 630       // _in_cset_fast_test is biased
 631       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
 632       bool ret = _in_cset_fast_test[index];
 633       // let's make sure the result is consistent with what the slower
 634       // test returns
 635       assert( ret || !obj_in_cs(obj), "sanity");
 636       assert(!ret ||  obj_in_cs(obj), "sanity");
 637       return ret;
 638     } else {
 639       return false;
 640     }
 641   }
 642 
 643   void clear_cset_fast_test() {
 644     assert(_in_cset_fast_test_base != NULL, "sanity");
 645     memset(_in_cset_fast_test_base, false,
 646         _in_cset_fast_test_length * sizeof(bool));
 647   }
 648 
 649   // This is called at the end of either a concurrent cycle or a Full
 650   // GC to update the number of full collections completed. Those two
 651   // can happen in a nested fashion, i.e., we start a concurrent
 652   // cycle, a Full GC happens half-way through it which ends first,
 653   // and then the cycle notices that a Full GC happened and ends
 654   // too. The concurrent parameter is a boolean to help us do a bit
 655   // tighter consistency checking in the method. If concurrent is
 656   // false, the caller is the inner caller in the nesting (i.e., the
 657   // Full GC). If concurrent is true, the caller is the outer caller
 658   // in this nesting (i.e., the concurrent cycle). Further nesting is
 659   // not currently supported. The end of the this call also notifies
 660   // the FullGCCount_lock in case a Java thread is waiting for a full
 661   // GC to happen (e.g., it called System.gc() with
 662   // +ExplicitGCInvokesConcurrent).
 663   void increment_full_collections_completed(bool concurrent);
 664 
 665   unsigned int full_collections_completed() {
 666     return _full_collections_completed;
 667   }
 668 
 669   G1HRPrinter* hr_printer() { return &_hr_printer; }
 670 
 671 protected:
 672 
 673   // Shrink the garbage-first heap by at most the given size (in bytes!).
 674   // (Rounds down to a HeapRegion boundary.)
 675   virtual void shrink(size_t expand_bytes);
 676   void shrink_helper(size_t expand_bytes);
 677 
 678   #if TASKQUEUE_STATS
 679   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 680   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 681   void reset_taskqueue_stats();
 682   #endif // TASKQUEUE_STATS
 683 
 684   // Schedule the VM operation that will do an evacuation pause to
 685   // satisfy an allocation request of word_size. *succeeded will
 686   // return whether the VM operation was successful (it did do an
 687   // evacuation pause) or not (another thread beat us to it or the GC
 688   // locker was active). Given that we should not be holding the
 689   // Heap_lock when we enter this method, we will pass the
 690   // gc_count_before (i.e., total_collections()) as a parameter since
 691   // it has to be read while holding the Heap_lock. Currently, both
 692   // methods that call do_collection_pause() release the Heap_lock
 693   // before the call, so it's easy to read gc_count_before just before.
 694   HeapWord* do_collection_pause(size_t       word_size,
 695                                 unsigned int gc_count_before,
 696                                 bool*        succeeded);
 697 
 698   // The guts of the incremental collection pause, executed by the vm
 699   // thread. It returns false if it is unable to do the collection due
 700   // to the GC locker being active, true otherwise
 701   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 702 
 703   // Actually do the work of evacuating the collection set.
 704   void evacuate_collection_set();
 705 
 706   // The g1 remembered set of the heap.
 707   G1RemSet* _g1_rem_set;
 708   // And it's mod ref barrier set, used to track updates for the above.
 709   ModRefBarrierSet* _mr_bs;
 710 
 711   // A set of cards that cover the objects for which the Rsets should be updated
 712   // concurrently after the collection.
 713   DirtyCardQueueSet _dirty_card_queue_set;
 714 
 715   // The Heap Region Rem Set Iterator.
 716   HeapRegionRemSetIterator** _rem_set_iterator;
 717 
 718   // The closure used to refine a single card.
 719   RefineCardTableEntryClosure* _refine_cte_cl;
 720 
 721   // A function to check the consistency of dirty card logs.
 722   void check_ct_logs_at_safepoint();
 723 
 724   // A DirtyCardQueueSet that is used to hold cards that contain
 725   // references into the current collection set. This is used to
 726   // update the remembered sets of the regions in the collection
 727   // set in the event of an evacuation failure.
 728   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 729 
 730   // After a collection pause, make the regions in the CS into free
 731   // regions.
 732   void free_collection_set(HeapRegion* cs_head);
 733 
 734   // Abandon the current collection set without recording policy
 735   // statistics or updating free lists.
 736   void abandon_collection_set(HeapRegion* cs_head);
 737 
 738   // Applies "scan_non_heap_roots" to roots outside the heap,
 739   // "scan_rs" to roots inside the heap (having done "set_region" to
 740   // indicate the region in which the root resides), and does "scan_perm"
 741   // (setting the generation to the perm generation.)  If "scan_rs" is
 742   // NULL, then this step is skipped.  The "worker_i"
 743   // param is for use with parallel roots processing, and should be
 744   // the "i" of the calling parallel worker thread's work(i) function.
 745   // In the sequential case this param will be ignored.
 746   void g1_process_strong_roots(bool collecting_perm_gen,
 747                                SharedHeap::ScanningOption so,
 748                                OopClosure* scan_non_heap_roots,
 749                                OopsInHeapRegionClosure* scan_rs,
 750                                OopsInGenClosure* scan_perm,
 751                                int worker_i);
 752 
 753   // Apply "blk" to all the weak roots of the system.  These include
 754   // JNI weak roots, the code cache, system dictionary, symbol table,
 755   // string table, and referents of reachable weak refs.
 756   void g1_process_weak_roots(OopClosure* root_closure,
 757                              OopClosure* non_root_closure);
 758 
 759   // Frees a non-humongous region by initializing its contents and
 760   // adding it to the free list that's passed as a parameter (this is
 761   // usually a local list which will be appended to the master free
 762   // list later). The used bytes of freed regions are accumulated in
 763   // pre_used. If par is true, the region's RSet will not be freed
 764   // up. The assumption is that this will be done later.
 765   void free_region(HeapRegion* hr,
 766                    size_t* pre_used,
 767                    FreeRegionList* free_list,
 768                    bool par);
 769 
 770   // Frees a humongous region by collapsing it into individual regions
 771   // and calling free_region() for each of them. The freed regions
 772   // will be added to the free list that's passed as a parameter (this
 773   // is usually a local list which will be appended to the master free
 774   // list later). The used bytes of freed regions are accumulated in
 775   // pre_used. If par is true, the region's RSet will not be freed
 776   // up. The assumption is that this will be done later.
 777   void free_humongous_region(HeapRegion* hr,
 778                              size_t* pre_used,
 779                              FreeRegionList* free_list,
 780                              HumongousRegionSet* humongous_proxy_set,
 781                              bool par);
 782 
 783   // Notifies all the necessary spaces that the committed space has
 784   // been updated (either expanded or shrunk). It should be called
 785   // after _g1_storage is updated.
 786   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 787 
 788   // The concurrent marker (and the thread it runs in.)
 789   ConcurrentMark* _cm;
 790   ConcurrentMarkThread* _cmThread;
 791   bool _mark_in_progress;
 792 
 793   // The concurrent refiner.
 794   ConcurrentG1Refine* _cg1r;
 795 
 796   // The parallel task queues
 797   RefToScanQueueSet *_task_queues;
 798 
 799   // True iff a evacuation has failed in the current collection.
 800   bool _evacuation_failed;
 801 
 802   // Set the attribute indicating whether evacuation has failed in the
 803   // current collection.
 804   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
 805 
 806   // Failed evacuations cause some logical from-space objects to have
 807   // forwarding pointers to themselves.  Reset them.
 808   void remove_self_forwarding_pointers();
 809 
 810   // When one is non-null, so is the other.  Together, they each pair is
 811   // an object with a preserved mark, and its mark value.
 812   GrowableArray<oop>*     _objs_with_preserved_marks;
 813   GrowableArray<markOop>* _preserved_marks_of_objs;
 814 
 815   // Preserve the mark of "obj", if necessary, in preparation for its mark
 816   // word being overwritten with a self-forwarding-pointer.
 817   void preserve_mark_if_necessary(oop obj, markOop m);
 818 
 819   // The stack of evac-failure objects left to be scanned.
 820   GrowableArray<oop>*    _evac_failure_scan_stack;
 821   // The closure to apply to evac-failure objects.
 822 
 823   OopsInHeapRegionClosure* _evac_failure_closure;
 824   // Set the field above.
 825   void
 826   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 827     _evac_failure_closure = evac_failure_closure;
 828   }
 829 
 830   // Push "obj" on the scan stack.
 831   void push_on_evac_failure_scan_stack(oop obj);
 832   // Process scan stack entries until the stack is empty.
 833   void drain_evac_failure_scan_stack();
 834   // True iff an invocation of "drain_scan_stack" is in progress; to
 835   // prevent unnecessary recursion.
 836   bool _drain_in_progress;
 837 
 838   // Do any necessary initialization for evacuation-failure handling.
 839   // "cl" is the closure that will be used to process evac-failure
 840   // objects.
 841   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 842   // Do any necessary cleanup for evacuation-failure handling data
 843   // structures.
 844   void finalize_for_evac_failure();
 845 
 846   // An attempt to evacuate "obj" has failed; take necessary steps.
 847   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
 848   void handle_evacuation_failure_common(oop obj, markOop m);
 849 
 850   // ("Weak") Reference processing support.
 851   //
 852   // G1 has 2 instances of the referece processor class. One
 853   // (_ref_processor_cm) handles reference object discovery
 854   // and subsequent processing during concurrent marking cycles.
 855   //
 856   // The other (_ref_processor_stw) handles reference object
 857   // discovery and processing during full GCs and incremental
 858   // evacuation pauses.
 859   //
 860   // During an incremental pause, reference discovery will be
 861   // temporarily disabled for _ref_processor_cm and will be
 862   // enabled for _ref_processor_stw. At the end of the evacuation
 863   // pause references discovered by _ref_processor_stw will be
 864   // processed and discovery will be disabled. The previous
 865   // setting for reference object discovery for _ref_processor_cm
 866   // will be re-instated.
 867   //
 868   // At the start of marking:
 869   //  * Discovery by the CM ref processor is verified to be inactive
 870   //    and it's discovered lists are empty.
 871   //  * Discovery by the CM ref processor is then enabled.
 872   //
 873   // At the end of marking:
 874   //  * Any references on the CM ref processor's discovered
 875   //    lists are processed (possibly MT).
 876   //
 877   // At the start of full GC we:
 878   //  * Disable discovery by the CM ref processor and
 879   //    empty CM ref processor's discovered lists
 880   //    (without processing any entries).
 881   //  * Verify that the STW ref processor is inactive and it's
 882   //    discovered lists are empty.
 883   //  * Temporarily set STW ref processor discovery as single threaded.
 884   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 885   //    field.
 886   //  * Finally enable discovery by the STW ref processor.
 887   //
 888   // The STW ref processor is used to record any discovered
 889   // references during the full GC.
 890   //
 891   // At the end of a full GC we:
 892   //  * Will enqueue any non-live discovered references on the
 893   //    STW ref processor's discovered lists. This makes the
 894   //    STW ref processor inactive by disabling discovery.
 895   //  * Verify that the CM ref processor is still inactive
 896   //    and no references have been placed on it's discovered
 897   //    lists (also checked as a precondition during initial marking).
 898 
 899   // The (stw) reference processor...
 900   ReferenceProcessor* _ref_processor_stw;
 901 
 902   // Instance of the is_alive closure for embedding into the
 903   // STW reference processor as the _is_alive_non_header field.
 904   // The _is_alive_non_header prevents unnecessary additions to
 905   // the discovered lists during reference discovery.
 906   G1STWIsAliveClosure _is_alive_closure_stw;
 907 
 908   // The (concurrent marking) reference processor...
 909   ReferenceProcessor* _ref_processor_cm;
 910 
 911   // Instance of the concurrent mark is_alive closure for embedding
 912   // into the Concurrent Marking reference processor as the 
 913   // _is_alive_non_header field. The _is_alive_non_header
 914   // prevents unnecessary additions to the discovered lists
 915   // during concurrent discovery.
 916   G1CMIsAliveClosure _is_alive_closure_cm;
 917 
 918   enum G1H_process_strong_roots_tasks {
 919     G1H_PS_mark_stack_oops_do,
 920     G1H_PS_refProcessor_oops_do,
 921     // Leave this one last.
 922     G1H_PS_NumElements
 923   };
 924 
 925   SubTasksDone* _process_strong_tasks;
 926 
 927   volatile bool _free_regions_coming;
 928 
 929 public:
 930 
 931   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
 932 
 933   void set_refine_cte_cl_concurrency(bool concurrent);
 934 
 935   RefToScanQueue *task_queue(int i) const;
 936 
 937   // A set of cards where updates happened during the GC
 938   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 939 
 940   // A DirtyCardQueueSet that is used to hold cards that contain
 941   // references into the current collection set. This is used to
 942   // update the remembered sets of the regions in the collection
 943   // set in the event of an evacuation failure.
 944   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
 945         { return _into_cset_dirty_card_queue_set; }
 946 
 947   // Create a G1CollectedHeap with the specified policy.
 948   // Must call the initialize method afterwards.
 949   // May not return if something goes wrong.
 950   G1CollectedHeap(G1CollectorPolicy* policy);
 951 
 952   // Initialize the G1CollectedHeap to have the initial and
 953   // maximum sizes, permanent generation, and remembered and barrier sets
 954   // specified by the policy object.
 955   jint initialize();
 956 
 957   // Initialize weak reference processing.
 958   virtual void ref_processing_init();
 959 
 960   void set_par_threads(int t) {
 961     SharedHeap::set_par_threads(t);
 962     _process_strong_tasks->set_n_threads(t);
 963   }
 964 
 965   virtual CollectedHeap::Name kind() const {
 966     return CollectedHeap::G1CollectedHeap;
 967   }
 968 
 969   // The current policy object for the collector.
 970   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
 971 
 972   // Adaptive size policy.  No such thing for g1.
 973   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
 974 
 975   // The rem set and barrier set.
 976   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 977   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
 978 
 979   // The rem set iterator.
 980   HeapRegionRemSetIterator* rem_set_iterator(int i) {
 981     return _rem_set_iterator[i];
 982   }
 983 
 984   HeapRegionRemSetIterator* rem_set_iterator() {
 985     return _rem_set_iterator[0];
 986   }
 987 
 988   unsigned get_gc_time_stamp() {
 989     return _gc_time_stamp;
 990   }
 991 
 992   void reset_gc_time_stamp() {
 993     _gc_time_stamp = 0;
 994     OrderAccess::fence();
 995   }
 996 
 997   void increment_gc_time_stamp() {
 998     ++_gc_time_stamp;
 999     OrderAccess::fence();
1000   }
1001 
1002   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1003                                   DirtyCardQueue* into_cset_dcq,
1004                                   bool concurrent, int worker_i);
1005 
1006   // The shared block offset table array.
1007   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1008 
1009   // Reference Processing accessors
1010 
1011   // The STW reference processor....
1012   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1013 
1014   // The Concurent Marking reference processor...
1015   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1016 
1017   virtual size_t capacity() const;
1018   virtual size_t used() const;
1019   // This should be called when we're not holding the heap lock. The
1020   // result might be a bit inaccurate.
1021   size_t used_unlocked() const;
1022   size_t recalculate_used() const;
1023 
1024   // These virtual functions do the actual allocation.
1025   // Some heaps may offer a contiguous region for shared non-blocking
1026   // allocation, via inlined code (by exporting the address of the top and
1027   // end fields defining the extent of the contiguous allocation region.)
1028   // But G1CollectedHeap doesn't yet support this.
1029 
1030   // Return an estimate of the maximum allocation that could be performed
1031   // without triggering any collection or expansion activity.  In a
1032   // generational collector, for example, this is probably the largest
1033   // allocation that could be supported (without expansion) in the youngest
1034   // generation.  It is "unsafe" because no locks are taken; the result
1035   // should be treated as an approximation, not a guarantee, for use in
1036   // heuristic resizing decisions.
1037   virtual size_t unsafe_max_alloc();
1038 
1039   virtual bool is_maximal_no_gc() const {
1040     return _g1_storage.uncommitted_size() == 0;
1041   }
1042 
1043   // The total number of regions in the heap.
1044   size_t n_regions() { return _hrs.length(); }
1045 
1046   // The max number of regions in the heap.
1047   size_t max_regions() { return _hrs.max_length(); }
1048 
1049   // The number of regions that are completely free.
1050   size_t free_regions() { return _free_list.length(); }
1051 
1052   // The number of regions that are not completely free.
1053   size_t used_regions() { return n_regions() - free_regions(); }
1054 
1055   // The number of regions available for "regular" expansion.
1056   size_t expansion_regions() { return _expansion_regions; }
1057 
1058   // Factory method for HeapRegion instances. It will return NULL if
1059   // the allocation fails.
1060   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
1061 
1062   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1063   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1064   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1065   void verify_dirty_young_regions() PRODUCT_RETURN;
1066 
1067   // verify_region_sets() performs verification over the region
1068   // lists. It will be compiled in the product code to be used when
1069   // necessary (i.e., during heap verification).
1070   void verify_region_sets();
1071 
1072   // verify_region_sets_optional() is planted in the code for
1073   // list verification in non-product builds (and it can be enabled in
1074   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
1075 #if HEAP_REGION_SET_FORCE_VERIFY
1076   void verify_region_sets_optional() {
1077     verify_region_sets();
1078   }
1079 #else // HEAP_REGION_SET_FORCE_VERIFY
1080   void verify_region_sets_optional() { }
1081 #endif // HEAP_REGION_SET_FORCE_VERIFY
1082 
1083 #ifdef ASSERT
1084   bool is_on_master_free_list(HeapRegion* hr) {
1085     return hr->containing_set() == &_free_list;
1086   }
1087 
1088   bool is_in_humongous_set(HeapRegion* hr) {
1089     return hr->containing_set() == &_humongous_set;
1090   }
1091 #endif // ASSERT
1092 
1093   // Wrapper for the region list operations that can be called from
1094   // methods outside this class.
1095 
1096   void secondary_free_list_add_as_tail(FreeRegionList* list) {
1097     _secondary_free_list.add_as_tail(list);
1098   }
1099 
1100   void append_secondary_free_list() {
1101     _free_list.add_as_head(&_secondary_free_list);
1102   }
1103 
1104   void append_secondary_free_list_if_not_empty_with_lock() {
1105     // If the secondary free list looks empty there's no reason to
1106     // take the lock and then try to append it.
1107     if (!_secondary_free_list.is_empty()) {
1108       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1109       append_secondary_free_list();
1110     }
1111   }
1112 
1113   void set_free_regions_coming();
1114   void reset_free_regions_coming();
1115   bool free_regions_coming() { return _free_regions_coming; }
1116   void wait_while_free_regions_coming();
1117 
1118   // Perform a collection of the heap; intended for use in implementing
1119   // "System.gc".  This probably implies as full a collection as the
1120   // "CollectedHeap" supports.
1121   virtual void collect(GCCause::Cause cause);
1122 
1123   // The same as above but assume that the caller holds the Heap_lock.
1124   void collect_locked(GCCause::Cause cause);
1125 
1126   // This interface assumes that it's being called by the
1127   // vm thread. It collects the heap assuming that the
1128   // heap lock is already held and that we are executing in
1129   // the context of the vm thread.
1130   virtual void collect_as_vm_thread(GCCause::Cause cause);
1131 
1132   // True iff a evacuation has failed in the most-recent collection.
1133   bool evacuation_failed() { return _evacuation_failed; }
1134 
1135   // It will free a region if it has allocated objects in it that are
1136   // all dead. It calls either free_region() or
1137   // free_humongous_region() depending on the type of the region that
1138   // is passed to it.
1139   void free_region_if_empty(HeapRegion* hr,
1140                             size_t* pre_used,
1141                             FreeRegionList* free_list,
1142                             HumongousRegionSet* humongous_proxy_set,
1143                             HRRSCleanupTask* hrrs_cleanup_task,
1144                             bool par);
1145 
1146   // It appends the free list to the master free list and updates the
1147   // master humongous list according to the contents of the proxy
1148   // list. It also adjusts the total used bytes according to pre_used
1149   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
1150   void update_sets_after_freeing_regions(size_t pre_used,
1151                                        FreeRegionList* free_list,
1152                                        HumongousRegionSet* humongous_proxy_set,
1153                                        bool par);
1154 
1155   // Returns "TRUE" iff "p" points into the allocated area of the heap.
1156   virtual bool is_in(const void* p) const;
1157 
1158   // Return "TRUE" iff the given object address is within the collection
1159   // set.
1160   inline bool obj_in_cs(oop obj);
1161 
1162   // Return "TRUE" iff the given object address is in the reserved
1163   // region of g1 (excluding the permanent generation).
1164   bool is_in_g1_reserved(const void* p) const {
1165     return _g1_reserved.contains(p);
1166   }
1167 
1168   // Returns a MemRegion that corresponds to the space that has been
1169   // reserved for the heap
1170   MemRegion g1_reserved() {
1171     return _g1_reserved;
1172   }
1173 
1174   // Returns a MemRegion that corresponds to the space that has been
1175   // committed in the heap
1176   MemRegion g1_committed() {
1177     return _g1_committed;
1178   }
1179 
1180   virtual bool is_in_closed_subset(const void* p) const;
1181 
1182   // This resets the card table to all zeros.  It is used after
1183   // a collection pause which used the card table to claim cards.
1184   void cleanUpCardTable();
1185 
1186   // Iteration functions.
1187 
1188   // Iterate over all the ref-containing fields of all objects, calling
1189   // "cl.do_oop" on each.
1190   virtual void oop_iterate(OopClosure* cl) {
1191     oop_iterate(cl, true);
1192   }
1193   void oop_iterate(OopClosure* cl, bool do_perm);
1194 
1195   // Same as above, restricted to a memory region.
1196   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
1197     oop_iterate(mr, cl, true);
1198   }
1199   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
1200 
1201   // Iterate over all objects, calling "cl.do_object" on each.
1202   virtual void object_iterate(ObjectClosure* cl) {
1203     object_iterate(cl, true);
1204   }
1205   virtual void safe_object_iterate(ObjectClosure* cl) {
1206     object_iterate(cl, true);
1207   }
1208   void object_iterate(ObjectClosure* cl, bool do_perm);
1209 
1210   // Iterate over all objects allocated since the last collection, calling
1211   // "cl.do_object" on each.  The heap must have been initialized properly
1212   // to support this function, or else this call will fail.
1213   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
1214 
1215   // Iterate over all spaces in use in the heap, in ascending address order.
1216   virtual void space_iterate(SpaceClosure* cl);
1217 
1218   // Iterate over heap regions, in address order, terminating the
1219   // iteration early if the "doHeapRegion" method returns "true".
1220   void heap_region_iterate(HeapRegionClosure* blk) const;
1221 
1222   // Iterate over heap regions starting with r (or the first region if "r"
1223   // is NULL), in address order, terminating early if the "doHeapRegion"
1224   // method returns "true".
1225   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
1226 
1227   // Return the region with the given index. It assumes the index is valid.
1228   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
1229 
1230   // Divide the heap region sequence into "chunks" of some size (the number
1231   // of regions divided by the number of parallel threads times some
1232   // overpartition factor, currently 4).  Assumes that this will be called
1233   // in parallel by ParallelGCThreads worker threads with discinct worker
1234   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1235   // calls will use the same "claim_value", and that that claim value is
1236   // different from the claim_value of any heap region before the start of
1237   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1238   // attempting to claim the first region in each chunk, and, if
1239   // successful, applying the closure to each region in the chunk (and
1240   // setting the claim value of the second and subsequent regions of the
1241   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1242   // i.e., that a closure never attempt to abort a traversal.
1243   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1244                                        int worker,
1245                                        jint claim_value);
1246 
1247   // It resets all the region claim values to the default.
1248   void reset_heap_region_claim_values();
1249 
1250 #ifdef ASSERT
1251   bool check_heap_region_claim_values(jint claim_value);
1252 #endif // ASSERT
1253 
1254   // Iterate over the regions (if any) in the current collection set.
1255   void collection_set_iterate(HeapRegionClosure* blk);
1256 
1257   // As above but starting from region r
1258   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1259 
1260   // Returns the first (lowest address) compactible space in the heap.
1261   virtual CompactibleSpace* first_compactible_space();
1262 
1263   // A CollectedHeap will contain some number of spaces.  This finds the
1264   // space containing a given address, or else returns NULL.
1265   virtual Space* space_containing(const void* addr) const;
1266 
1267   // A G1CollectedHeap will contain some number of heap regions.  This
1268   // finds the region containing a given address, or else returns NULL.
1269   template <class T>
1270   inline HeapRegion* heap_region_containing(const T addr) const;
1271 
1272   // Like the above, but requires "addr" to be in the heap (to avoid a
1273   // null-check), and unlike the above, may return an continuing humongous
1274   // region.
1275   template <class T>
1276   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1277 
1278   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1279   // each address in the (reserved) heap is a member of exactly
1280   // one block.  The defining characteristic of a block is that it is
1281   // possible to find its size, and thus to progress forward to the next
1282   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1283   // represent Java objects, or they might be free blocks in a
1284   // free-list-based heap (or subheap), as long as the two kinds are
1285   // distinguishable and the size of each is determinable.
1286 
1287   // Returns the address of the start of the "block" that contains the
1288   // address "addr".  We say "blocks" instead of "object" since some heaps
1289   // may not pack objects densely; a chunk may either be an object or a
1290   // non-object.
1291   virtual HeapWord* block_start(const void* addr) const;
1292 
1293   // Requires "addr" to be the start of a chunk, and returns its size.
1294   // "addr + size" is required to be the start of a new chunk, or the end
1295   // of the active area of the heap.
1296   virtual size_t block_size(const HeapWord* addr) const;
1297 
1298   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1299   // the block is an object.
1300   virtual bool block_is_obj(const HeapWord* addr) const;
1301 
1302   // Does this heap support heap inspection? (+PrintClassHistogram)
1303   virtual bool supports_heap_inspection() const { return true; }
1304 
1305   // Section on thread-local allocation buffers (TLABs)
1306   // See CollectedHeap for semantics.
1307 
1308   virtual bool supports_tlab_allocation() const;
1309   virtual size_t tlab_capacity(Thread* thr) const;
1310   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
1311 
1312   // Can a compiler initialize a new object without store barriers?
1313   // This permission only extends from the creation of a new object
1314   // via a TLAB up to the first subsequent safepoint. If such permission
1315   // is granted for this heap type, the compiler promises to call
1316   // defer_store_barrier() below on any slow path allocation of
1317   // a new object for which such initializing store barriers will
1318   // have been elided. G1, like CMS, allows this, but should be
1319   // ready to provide a compensating write barrier as necessary
1320   // if that storage came out of a non-young region. The efficiency
1321   // of this implementation depends crucially on being able to
1322   // answer very efficiently in constant time whether a piece of
1323   // storage in the heap comes from a young region or not.
1324   // See ReduceInitialCardMarks.
1325   virtual bool can_elide_tlab_store_barriers() const {
1326     // 6920090: Temporarily disabled, because of lingering
1327     // instabilities related to RICM with G1. In the
1328     // interim, the option ReduceInitialCardMarksForG1
1329     // below is left solely as a debugging device at least
1330     // until 6920109 fixes the instabilities.
1331     return ReduceInitialCardMarksForG1;
1332   }
1333 
1334   virtual bool card_mark_must_follow_store() const {
1335     return true;
1336   }
1337 
1338   bool is_in_young(const oop obj) {
1339     HeapRegion* hr = heap_region_containing(obj);
1340     return hr != NULL && hr->is_young();
1341   }
1342 
1343 #ifdef ASSERT
1344   virtual bool is_in_partial_collection(const void* p);
1345 #endif
1346 
1347   virtual bool is_scavengable(const void* addr);
1348 
1349   // We don't need barriers for initializing stores to objects
1350   // in the young gen: for the SATB pre-barrier, there is no
1351   // pre-value that needs to be remembered; for the remembered-set
1352   // update logging post-barrier, we don't maintain remembered set
1353   // information for young gen objects. Note that non-generational
1354   // G1 does not have any "young" objects, should not elide
1355   // the rs logging barrier and so should always answer false below.
1356   // However, non-generational G1 (-XX:-G1Gen) appears to have
1357   // bit-rotted so was not tested below.
1358   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1359     // Re 6920090, 6920109 above.
1360     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
1361     assert(G1Gen || !is_in_young(new_obj),
1362            "Non-generational G1 should never return true below");
1363     return is_in_young(new_obj);
1364   }
1365 
1366   // Can a compiler elide a store barrier when it writes
1367   // a permanent oop into the heap?  Applies when the compiler
1368   // is storing x to the heap, where x->is_perm() is true.
1369   virtual bool can_elide_permanent_oop_store_barriers() const {
1370     // At least until perm gen collection is also G1-ified, at
1371     // which point this should return false.
1372     return true;
1373   }
1374 
1375   // Returns "true" iff the given word_size is "very large".
1376   static bool isHumongous(size_t word_size) {
1377     // Note this has to be strictly greater-than as the TLABs
1378     // are capped at the humongous thresold and we want to
1379     // ensure that we don't try to allocate a TLAB as
1380     // humongous and that we don't allocate a humongous
1381     // object in a TLAB.
1382     return word_size > _humongous_object_threshold_in_words;
1383   }
1384 
1385   // Update mod union table with the set of dirty cards.
1386   void updateModUnion();
1387 
1388   // Set the mod union bits corresponding to the given memRegion.  Note
1389   // that this is always a safe operation, since it doesn't clear any
1390   // bits.
1391   void markModUnionRange(MemRegion mr);
1392 
1393   // Records the fact that a marking phase is no longer in progress.
1394   void set_marking_complete() {
1395     _mark_in_progress = false;
1396   }
1397   void set_marking_started() {
1398     _mark_in_progress = true;
1399   }
1400   bool mark_in_progress() {
1401     return _mark_in_progress;
1402   }
1403 
1404   // Print the maximum heap capacity.
1405   virtual size_t max_capacity() const;
1406 
1407   virtual jlong millis_since_last_gc();
1408 
1409   // Perform any cleanup actions necessary before allowing a verification.
1410   virtual void prepare_for_verify();
1411 
1412   // Perform verification.
1413 
1414   // vo == UsePrevMarking  -> use "prev" marking information,
1415   // vo == UseNextMarking -> use "next" marking information
1416   // vo == UseMarkWord    -> use the mark word in the object header
1417   //
1418   // NOTE: Only the "prev" marking information is guaranteed to be
1419   // consistent most of the time, so most calls to this should use
1420   // vo == UsePrevMarking.
1421   // Currently, there is only one case where this is called with
1422   // vo == UseNextMarking, which is to verify the "next" marking
1423   // information at the end of remark.
1424   // Currently there is only one place where this is called with
1425   // vo == UseMarkWord, which is to verify the marking during a
1426   // full GC.
1427   void verify(bool allow_dirty, bool silent, VerifyOption vo);
1428 
1429   // Override; it uses the "prev" marking information
1430   virtual void verify(bool allow_dirty, bool silent);
1431   // Default behavior by calling print(tty);
1432   virtual void print() const;
1433   // This calls print_on(st, PrintHeapAtGCExtended).
1434   virtual void print_on(outputStream* st) const;
1435   // If extended is true, it will print out information for all
1436   // regions in the heap by calling print_on_extended(st).
1437   virtual void print_on(outputStream* st, bool extended) const;
1438   virtual void print_on_extended(outputStream* st) const;
1439 
1440   virtual void print_gc_threads_on(outputStream* st) const;
1441   virtual void gc_threads_do(ThreadClosure* tc) const;
1442 
1443   // Override
1444   void print_tracing_info() const;
1445 
1446   // The following two methods are helpful for debugging RSet issues.
1447   void print_cset_rsets() PRODUCT_RETURN;
1448   void print_all_rsets() PRODUCT_RETURN;
1449 
1450   // Convenience function to be used in situations where the heap type can be
1451   // asserted to be this type.
1452   static G1CollectedHeap* heap();
1453 
1454   void empty_young_list();
1455 
1456   void set_region_short_lived_locked(HeapRegion* hr);
1457   // add appropriate methods for any other surv rate groups
1458 
1459   YoungList* young_list() { return _young_list; }
1460 
1461   // debugging
1462   bool check_young_list_well_formed() {
1463     return _young_list->check_list_well_formed();
1464   }
1465 
1466   bool check_young_list_empty(bool check_heap,
1467                               bool check_sample = true);
1468 
1469   // *** Stuff related to concurrent marking.  It's not clear to me that so
1470   // many of these need to be public.
1471 
1472   // The functions below are helper functions that a subclass of
1473   // "CollectedHeap" can use in the implementation of its virtual
1474   // functions.
1475   // This performs a concurrent marking of the live objects in a
1476   // bitmap off to the side.
1477   void doConcurrentMark();
1478 
1479   // Do a full concurrent marking, synchronously.
1480   void do_sync_mark();
1481 
1482   bool isMarkedPrev(oop obj) const;
1483   bool isMarkedNext(oop obj) const;
1484 
1485   // vo == UsePrevMarking -> use "prev" marking information,
1486   // vo == UseNextMarking -> use "next" marking information,
1487   // vo == UseMarkWord    -> use mark word from object header
1488   bool is_obj_dead_cond(const oop obj,
1489                         const HeapRegion* hr,
1490                         const VerifyOption vo) const {
1491 
1492     switch (vo) {
1493       case VerifyOption_G1UsePrevMarking:
1494         return is_obj_dead(obj, hr);
1495       case VerifyOption_G1UseNextMarking:
1496         return is_obj_ill(obj, hr);
1497       default:
1498         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1499         return !obj->is_gc_marked();
1500     }
1501   }
1502 
1503   // Determine if an object is dead, given the object and also
1504   // the region to which the object belongs. An object is dead
1505   // iff a) it was not allocated since the last mark and b) it
1506   // is not marked.
1507 
1508   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1509     return
1510       !hr->obj_allocated_since_prev_marking(obj) &&
1511       !isMarkedPrev(obj);
1512   }
1513 
1514   // This is used when copying an object to survivor space.
1515   // If the object is marked live, then we mark the copy live.
1516   // If the object is allocated since the start of this mark
1517   // cycle, then we mark the copy live.
1518   // If the object has been around since the previous mark
1519   // phase, and hasn't been marked yet during this phase,
1520   // then we don't mark it, we just wait for the
1521   // current marking cycle to get to it.
1522 
1523   // This function returns true when an object has been
1524   // around since the previous marking and hasn't yet
1525   // been marked during this marking.
1526 
1527   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1528     return
1529       !hr->obj_allocated_since_next_marking(obj) &&
1530       !isMarkedNext(obj);
1531   }
1532 
1533   // Determine if an object is dead, given only the object itself.
1534   // This will find the region to which the object belongs and
1535   // then call the region version of the same function.
1536 
1537   // Added if it is in permanent gen it isn't dead.
1538   // Added if it is NULL it isn't dead.
1539 
1540   // vo == UsePrevMarking -> use "prev" marking information,
1541   // vo == UseNextMarking -> use "next" marking information,
1542   // vo == UseMarkWord    -> use mark word from object header
1543   bool is_obj_dead_cond(const oop obj,
1544                         const VerifyOption vo) const {
1545 
1546     switch (vo) {
1547       case VerifyOption_G1UsePrevMarking:
1548         return is_obj_dead(obj);
1549       case VerifyOption_G1UseNextMarking:
1550         return is_obj_ill(obj);
1551       default:
1552         assert(vo == VerifyOption_G1UseMarkWord, "must be");
1553         return !obj->is_gc_marked();
1554     }
1555   }
1556 
1557   bool is_obj_dead(const oop obj) const {
1558     const HeapRegion* hr = heap_region_containing(obj);
1559     if (hr == NULL) {
1560       if (Universe::heap()->is_in_permanent(obj))
1561         return false;
1562       else if (obj == NULL) return false;
1563       else return true;
1564     }
1565     else return is_obj_dead(obj, hr);
1566   }
1567 
1568   bool is_obj_ill(const oop obj) const {
1569     const HeapRegion* hr = heap_region_containing(obj);
1570     if (hr == NULL) {
1571       if (Universe::heap()->is_in_permanent(obj))
1572         return false;
1573       else if (obj == NULL) return false;
1574       else return true;
1575     }
1576     else return is_obj_ill(obj, hr);
1577   }
1578 
1579   // The following is just to alert the verification code
1580   // that a full collection has occurred and that the
1581   // remembered sets are no longer up to date.
1582   bool _full_collection;
1583   void set_full_collection() { _full_collection = true;}
1584   void clear_full_collection() {_full_collection = false;}
1585   bool full_collection() {return _full_collection;}
1586 
1587   ConcurrentMark* concurrent_mark() const { return _cm; }
1588   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1589 
1590   // The dirty cards region list is used to record a subset of regions
1591   // whose cards need clearing. The list if populated during the
1592   // remembered set scanning and drained during the card table
1593   // cleanup. Although the methods are reentrant, population/draining
1594   // phases must not overlap. For synchronization purposes the last
1595   // element on the list points to itself.
1596   HeapRegion* _dirty_cards_region_list;
1597   void push_dirty_cards_region(HeapRegion* hr);
1598   HeapRegion* pop_dirty_cards_region();
1599 
1600 public:
1601   void stop_conc_gc_threads();
1602 
1603   // <NEW PREDICTION>
1604 
1605   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
1606   void check_if_region_is_too_expensive(double predicted_time_ms);
1607   size_t pending_card_num();
1608   size_t max_pending_card_num();
1609   size_t cards_scanned();
1610 
1611   // </NEW PREDICTION>
1612 
1613 protected:
1614   size_t _max_heap_capacity;
1615 };
1616 
1617 #define use_local_bitmaps         1
1618 #define verify_local_bitmaps      0
1619 #define oop_buffer_length       256
1620 
1621 #ifndef PRODUCT
1622 class GCLabBitMap;
1623 class GCLabBitMapClosure: public BitMapClosure {
1624 private:
1625   ConcurrentMark* _cm;
1626   GCLabBitMap*    _bitmap;
1627 
1628 public:
1629   GCLabBitMapClosure(ConcurrentMark* cm,
1630                      GCLabBitMap* bitmap) {
1631     _cm     = cm;
1632     _bitmap = bitmap;
1633   }
1634 
1635   virtual bool do_bit(size_t offset);
1636 };
1637 #endif // !PRODUCT
1638 
1639 class GCLabBitMap: public BitMap {
1640 private:
1641   ConcurrentMark* _cm;
1642 
1643   int       _shifter;
1644   size_t    _bitmap_word_covers_words;
1645 
1646   // beginning of the heap
1647   HeapWord* _heap_start;
1648 
1649   // this is the actual start of the GCLab
1650   HeapWord* _real_start_word;
1651 
1652   // this is the actual end of the GCLab
1653   HeapWord* _real_end_word;
1654 
1655   // this is the first word, possibly located before the actual start
1656   // of the GCLab, that corresponds to the first bit of the bitmap
1657   HeapWord* _start_word;
1658 
1659   // size of a GCLab in words
1660   size_t _gclab_word_size;
1661 
1662   static int shifter() {
1663     return MinObjAlignment - 1;
1664   }
1665 
1666   // how many heap words does a single bitmap word corresponds to?
1667   static size_t bitmap_word_covers_words() {
1668     return BitsPerWord << shifter();
1669   }
1670 
1671   size_t gclab_word_size() const {
1672     return _gclab_word_size;
1673   }
1674 
1675   // Calculates actual GCLab size in words
1676   size_t gclab_real_word_size() const {
1677     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
1678            / BitsPerWord;
1679   }
1680 
1681   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
1682     size_t bits_in_bitmap = gclab_word_size >> shifter();
1683     // We are going to ensure that the beginning of a word in this
1684     // bitmap also corresponds to the beginning of a word in the
1685     // global marking bitmap. To handle the case where a GCLab
1686     // starts from the middle of the bitmap, we need to add enough
1687     // space (i.e. up to a bitmap word) to ensure that we have
1688     // enough bits in the bitmap.
1689     return bits_in_bitmap + BitsPerWord - 1;
1690   }
1691 public:
1692   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
1693     : BitMap(bitmap_size_in_bits(gclab_word_size)),
1694       _cm(G1CollectedHeap::heap()->concurrent_mark()),
1695       _shifter(shifter()),
1696       _bitmap_word_covers_words(bitmap_word_covers_words()),
1697       _heap_start(heap_start),
1698       _gclab_word_size(gclab_word_size),
1699       _real_start_word(NULL),
1700       _real_end_word(NULL),
1701       _start_word(NULL)
1702   {
1703     guarantee( size_in_words() >= bitmap_size_in_words(),
1704                "just making sure");
1705   }
1706 
1707   inline unsigned heapWordToOffset(HeapWord* addr) {
1708     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
1709     assert(offset < size(), "offset should be within bounds");
1710     return offset;
1711   }
1712 
1713   inline HeapWord* offsetToHeapWord(size_t offset) {
1714     HeapWord* addr =  _start_word + (offset << _shifter);
1715     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
1716     return addr;
1717   }
1718 
1719   bool fields_well_formed() {
1720     bool ret1 = (_real_start_word == NULL) &&
1721                 (_real_end_word == NULL) &&
1722                 (_start_word == NULL);
1723     if (ret1)
1724       return true;
1725 
1726     bool ret2 = _real_start_word >= _start_word &&
1727       _start_word < _real_end_word &&
1728       (_real_start_word + _gclab_word_size) == _real_end_word &&
1729       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
1730                                                               > _real_end_word;
1731     return ret2;
1732   }
1733 
1734   inline bool mark(HeapWord* addr) {
1735     guarantee(use_local_bitmaps, "invariant");
1736     assert(fields_well_formed(), "invariant");
1737 
1738     if (addr >= _real_start_word && addr < _real_end_word) {
1739       assert(!isMarked(addr), "should not have already been marked");
1740 
1741       // first mark it on the bitmap
1742       at_put(heapWordToOffset(addr), true);
1743 
1744       return true;
1745     } else {
1746       return false;
1747     }
1748   }
1749 
1750   inline bool isMarked(HeapWord* addr) {
1751     guarantee(use_local_bitmaps, "invariant");
1752     assert(fields_well_formed(), "invariant");
1753 
1754     return at(heapWordToOffset(addr));
1755   }
1756 
1757   void set_buffer(HeapWord* start) {
1758     guarantee(use_local_bitmaps, "invariant");
1759     clear();
1760 
1761     assert(start != NULL, "invariant");
1762     _real_start_word = start;
1763     _real_end_word   = start + _gclab_word_size;
1764 
1765     size_t diff =
1766       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
1767     _start_word = start - diff;
1768 
1769     assert(fields_well_formed(), "invariant");
1770   }
1771 
1772 #ifndef PRODUCT
1773   void verify() {
1774     // verify that the marks have been propagated
1775     GCLabBitMapClosure cl(_cm, this);
1776     iterate(&cl);
1777   }
1778 #endif // PRODUCT
1779 
1780   void retire() {
1781     guarantee(use_local_bitmaps, "invariant");
1782     assert(fields_well_formed(), "invariant");
1783 
1784     if (_start_word != NULL) {
1785       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
1786 
1787       // this means that the bitmap was set up for the GCLab
1788       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
1789 
1790       mark_bitmap->mostly_disjoint_range_union(this,
1791                                 0, // always start from the start of the bitmap
1792                                 _start_word,
1793                                 gclab_real_word_size());
1794       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
1795 
1796 #ifndef PRODUCT
1797       if (use_local_bitmaps && verify_local_bitmaps)
1798         verify();
1799 #endif // PRODUCT
1800     } else {
1801       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
1802     }
1803   }
1804 
1805   size_t bitmap_size_in_words() const {
1806     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
1807   }
1808 
1809 };
1810 
1811 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1812 private:
1813   bool        _retired;
1814   bool        _during_marking;
1815   GCLabBitMap _bitmap;
1816 
1817 public:
1818   G1ParGCAllocBuffer(size_t gclab_word_size) :
1819     ParGCAllocBuffer(gclab_word_size),
1820     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
1821     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
1822     _retired(false)
1823   { }
1824 
1825   inline bool mark(HeapWord* addr) {
1826     guarantee(use_local_bitmaps, "invariant");
1827     assert(_during_marking, "invariant");
1828     return _bitmap.mark(addr);
1829   }
1830 
1831   inline void set_buf(HeapWord* buf) {
1832     if (use_local_bitmaps && _during_marking)
1833       _bitmap.set_buffer(buf);
1834     ParGCAllocBuffer::set_buf(buf);
1835     _retired = false;
1836   }
1837 
1838   inline void retire(bool end_of_gc, bool retain) {
1839     if (_retired)
1840       return;
1841     if (use_local_bitmaps && _during_marking) {
1842       _bitmap.retire();
1843     }
1844     ParGCAllocBuffer::retire(end_of_gc, retain);
1845     _retired = true;
1846   }
1847 };
1848 
1849 class G1ParScanThreadState : public StackObj {
1850 protected:
1851   G1CollectedHeap* _g1h;
1852   RefToScanQueue*  _refs;
1853   DirtyCardQueue   _dcq;
1854   CardTableModRefBS* _ct_bs;
1855   G1RemSet* _g1_rem;
1856 
1857   G1ParGCAllocBuffer  _surviving_alloc_buffer;
1858   G1ParGCAllocBuffer  _tenured_alloc_buffer;
1859   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
1860   ageTable            _age_table;
1861 
1862   size_t           _alloc_buffer_waste;
1863   size_t           _undo_waste;
1864 
1865   OopsInHeapRegionClosure*      _evac_failure_cl;
1866   G1ParScanHeapEvacClosure*     _evac_cl;
1867   G1ParScanPartialArrayClosure* _partial_scan_cl;
1868 
1869   int _hash_seed;
1870   int _queue_num;
1871 
1872   size_t _term_attempts;
1873 
1874   double _start;
1875   double _start_strong_roots;
1876   double _strong_roots_time;
1877   double _start_term;
1878   double _term_time;
1879 
1880   // Map from young-age-index (0 == not young, 1 is youngest) to
1881   // surviving words. base is what we get back from the malloc call
1882   size_t* _surviving_young_words_base;
1883   // this points into the array, as we use the first few entries for padding
1884   size_t* _surviving_young_words;
1885 
1886 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1887 
1888   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1889 
1890   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1891 
1892   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1893   CardTableModRefBS* ctbs()                      { return _ct_bs; }
1894 
1895   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1896     if (!from->is_survivor()) {
1897       _g1_rem->par_write_ref(from, p, tid);
1898     }
1899   }
1900 
1901   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1902     // If the new value of the field points to the same region or
1903     // is the to-space, we don't need to include it in the Rset updates.
1904     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1905       size_t card_index = ctbs()->index_for(p);
1906       // If the card hasn't been added to the buffer, do it.
1907       if (ctbs()->mark_card_deferred(card_index)) {
1908         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1909       }
1910     }
1911   }
1912 
1913 public:
1914   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
1915 
1916   ~G1ParScanThreadState() {
1917     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
1918   }
1919 
1920   RefToScanQueue*   refs()            { return _refs;             }
1921   ageTable*         age_table()       { return &_age_table;       }
1922 
1923   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1924     return _alloc_buffers[purpose];
1925   }
1926 
1927   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1928   size_t undo_waste() const                      { return _undo_waste; }
1929 
1930 #ifdef ASSERT
1931   bool verify_ref(narrowOop* ref) const;
1932   bool verify_ref(oop* ref) const;
1933   bool verify_task(StarTask ref) const;
1934 #endif // ASSERT
1935 
1936   template <class T> void push_on_queue(T* ref) {
1937     assert(verify_ref(ref), "sanity");
1938     refs()->push(ref);
1939   }
1940 
1941   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1942     if (G1DeferredRSUpdate) {
1943       deferred_rs_update(from, p, tid);
1944     } else {
1945       immediate_rs_update(from, p, tid);
1946     }
1947   }
1948 
1949   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1950 
1951     HeapWord* obj = NULL;
1952     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1953     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1954       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
1955       assert(gclab_word_size == alloc_buf->word_sz(),
1956              "dynamic resizing is not supported");
1957       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
1958       alloc_buf->retire(false, false);
1959 
1960       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1961       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1962       // Otherwise.
1963       alloc_buf->set_buf(buf);
1964 
1965       obj = alloc_buf->allocate(word_sz);
1966       assert(obj != NULL, "buffer was definitely big enough...");
1967     } else {
1968       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1969     }
1970     return obj;
1971   }
1972 
1973   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1974     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
1975     if (obj != NULL) return obj;
1976     return allocate_slow(purpose, word_sz);
1977   }
1978 
1979   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
1980     if (alloc_buffer(purpose)->contains(obj)) {
1981       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
1982              "should contain whole object");
1983       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
1984     } else {
1985       CollectedHeap::fill_with_object(obj, word_sz);
1986       add_to_undo_waste(word_sz);
1987     }
1988   }
1989 
1990   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
1991     _evac_failure_cl = evac_failure_cl;
1992   }
1993   OopsInHeapRegionClosure* evac_failure_closure() {
1994     return _evac_failure_cl;
1995   }
1996 
1997   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
1998     _evac_cl = evac_cl;
1999   }
2000 
2001   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
2002     _partial_scan_cl = partial_scan_cl;
2003   }
2004 
2005   int* hash_seed() { return &_hash_seed; }
2006   int  queue_num() { return _queue_num; }
2007 
2008   size_t term_attempts() const  { return _term_attempts; }
2009   void note_term_attempt() { _term_attempts++; }
2010 
2011   void start_strong_roots() {
2012     _start_strong_roots = os::elapsedTime();
2013   }
2014   void end_strong_roots() {
2015     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
2016   }
2017   double strong_roots_time() const { return _strong_roots_time; }
2018 
2019   void start_term_time() {
2020     note_term_attempt();
2021     _start_term = os::elapsedTime();
2022   }
2023   void end_term_time() {
2024     _term_time += (os::elapsedTime() - _start_term);
2025   }
2026   double term_time() const { return _term_time; }
2027 
2028   double elapsed_time() const {
2029     return os::elapsedTime() - _start;
2030   }
2031 
2032   static void
2033     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
2034   void
2035     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
2036 
2037   size_t* surviving_young_words() {
2038     // We add on to hide entry 0 which accumulates surviving words for
2039     // age -1 regions (i.e. non-young ones)
2040     return _surviving_young_words;
2041   }
2042 
2043   void retire_alloc_buffers() {
2044     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2045       size_t waste = _alloc_buffers[ap]->words_remaining();
2046       add_to_alloc_buffer_waste(waste);
2047       _alloc_buffers[ap]->retire(true, false);
2048     }
2049   }
2050 
2051   template <class T> void deal_with_reference(T* ref_to_scan) {
2052     if (has_partial_array_mask(ref_to_scan)) {
2053       _partial_scan_cl->do_oop_nv(ref_to_scan);
2054     } else {
2055       // Note: we can use "raw" versions of "region_containing" because
2056       // "obj_to_scan" is definitely in the heap, and is not in a
2057       // humongous region.
2058       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
2059       _evac_cl->set_region(r);
2060       _evac_cl->do_oop_nv(ref_to_scan);
2061     }
2062   }
2063 
2064   void deal_with_reference(StarTask ref) {
2065     assert(verify_task(ref), "sanity");
2066     if (ref.is_narrow()) {
2067       deal_with_reference((narrowOop*)ref);
2068     } else {
2069       deal_with_reference((oop*)ref);
2070     }
2071   }
2072 
2073 public:
2074   void trim_queue();
2075 };
2076 
2077 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP