1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 
  40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
  41 // over and over again and introducing subtle problems through small typos and
  42 // cutting and pasting mistakes. The macros below introduces a number
  43 // sequnce into the following two classes and the methods that access it.
  44 
  45 #define define_num_seq(name)                                                  \
  46 private:                                                                      \
  47   NumberSeq _all_##name##_times_ms;                                           \
  48 public:                                                                       \
  49   void record_##name##_time_ms(double ms) {                                   \
  50     _all_##name##_times_ms.add(ms);                                           \
  51   }                                                                           \
  52   NumberSeq* get_##name##_seq() {                                             \
  53     return &_all_##name##_times_ms;                                           \
  54   }
  55 
  56 class MainBodySummary;
  57 
  58 class PauseSummary: public CHeapObj {
  59   define_num_seq(total)
  60     define_num_seq(other)
  61 
  62 public:
  63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
  64 };
  65 
  66 class MainBodySummary: public CHeapObj {
  67   define_num_seq(satb_drain) // optional
  68   define_num_seq(parallel) // parallel only
  69     define_num_seq(ext_root_scan)
  70     define_num_seq(mark_stack_scan)
  71     define_num_seq(update_rs)
  72     define_num_seq(scan_rs)
  73     define_num_seq(obj_copy)
  74     define_num_seq(termination) // parallel only
  75     define_num_seq(parallel_other) // parallel only
  76   define_num_seq(mark_closure)
  77   define_num_seq(clear_ct)  // parallel only
  78 };
  79 
  80 class Summary: public PauseSummary,
  81                public MainBodySummary {
  82 public:
  83   virtual MainBodySummary*    main_body_summary()    { return this; }
  84 };
  85 
  86 class G1CollectorPolicy: public CollectorPolicy {
  87 protected:
  88   // The number of pauses during the execution.
  89   long _n_pauses;
  90 
  91   // either equal to the number of parallel threads, if ParallelGCThreads
  92   // has been set, or 1 otherwise
  93   int _parallel_gc_threads;
  94 
  95   enum SomePrivateConstants {
  96     NumPrevPausesForHeuristics = 10
  97   };
  98 
  99   G1MMUTracker* _mmu_tracker;
 100 
 101   void initialize_flags();
 102 
 103   void initialize_all() {
 104     initialize_flags();
 105     initialize_size_info();
 106     initialize_perm_generation(PermGen::MarkSweepCompact);
 107   }
 108 
 109   virtual size_t default_init_heap_size() {
 110     // Pick some reasonable default.
 111     return 8*M;
 112   }
 113 
 114   double _cur_collection_start_sec;
 115   size_t _cur_collection_pause_used_at_start_bytes;
 116   size_t _cur_collection_pause_used_regions_at_start;
 117   size_t _prev_collection_pause_used_at_end_bytes;
 118   double _cur_collection_par_time_ms;
 119   double _cur_satb_drain_time_ms;
 120   double _cur_clear_ct_time_ms;
 121   bool   _satb_drain_time_set;
 122 
 123 #ifndef PRODUCT
 124   // Card Table Count Cache stats
 125   double _min_clear_cc_time_ms;         // min
 126   double _max_clear_cc_time_ms;         // max
 127   double _cur_clear_cc_time_ms;         // clearing time during current pause
 128   double _cum_clear_cc_time_ms;         // cummulative clearing time
 129   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
 130 #endif
 131 
 132   // Statistics for recent GC pauses.  See below for how indexed.
 133   TruncatedSeq* _recent_rs_scan_times_ms;
 134 
 135   // These exclude marking times.
 136   TruncatedSeq* _recent_pause_times_ms;
 137   TruncatedSeq* _recent_gc_times_ms;
 138 
 139   TruncatedSeq* _recent_CS_bytes_used_before;
 140   TruncatedSeq* _recent_CS_bytes_surviving;
 141 
 142   TruncatedSeq* _recent_rs_sizes;
 143 
 144   TruncatedSeq* _concurrent_mark_init_times_ms;
 145   TruncatedSeq* _concurrent_mark_remark_times_ms;
 146   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 147 
 148   Summary*           _summary;
 149 
 150   NumberSeq* _all_pause_times_ms;
 151   NumberSeq* _all_full_gc_times_ms;
 152   double _stop_world_start;
 153   NumberSeq* _all_stop_world_times_ms;
 154   NumberSeq* _all_yield_times_ms;
 155 
 156   size_t     _region_num_young;
 157   size_t     _region_num_tenured;
 158   size_t     _prev_region_num_young;
 159   size_t     _prev_region_num_tenured;
 160 
 161   NumberSeq* _all_mod_union_times_ms;
 162 
 163   int        _aux_num;
 164   NumberSeq* _all_aux_times_ms;
 165   double*    _cur_aux_start_times_ms;
 166   double*    _cur_aux_times_ms;
 167   bool*      _cur_aux_times_set;
 168 
 169   double* _par_last_gc_worker_start_times_ms;
 170   double* _par_last_ext_root_scan_times_ms;
 171   double* _par_last_mark_stack_scan_times_ms;
 172   double* _par_last_update_rs_times_ms;
 173   double* _par_last_update_rs_processed_buffers;
 174   double* _par_last_scan_rs_times_ms;
 175   double* _par_last_obj_copy_times_ms;
 176   double* _par_last_termination_times_ms;
 177   double* _par_last_termination_attempts;
 178   double* _par_last_gc_worker_end_times_ms;
 179   double* _par_last_gc_worker_times_ms;
 180 
 181   // indicates that we are in young GC mode
 182   bool _in_young_gc_mode;
 183 
 184   // indicates whether we are in full young or partially young GC mode
 185   bool _full_young_gcs;
 186 
 187   // if true, then it tries to dynamically adjust the length of the
 188   // young list
 189   bool _adaptive_young_list_length;
 190   size_t _young_list_min_length;
 191   size_t _young_list_target_length;
 192   size_t _young_list_fixed_length;
 193 
 194   // The max number of regions we can extend the eden by while the GC
 195   // locker is active. This should be >= _young_list_target_length;
 196   size_t _young_list_max_length;
 197 
 198   size_t _young_cset_length;
 199   bool   _last_young_gc_full;
 200 
 201   unsigned              _full_young_pause_num;
 202   unsigned              _partial_young_pause_num;
 203 
 204   bool                  _during_marking;
 205   bool                  _in_marking_window;
 206   bool                  _in_marking_window_im;
 207 
 208   SurvRateGroup*        _short_lived_surv_rate_group;
 209   SurvRateGroup*        _survivor_surv_rate_group;
 210   // add here any more surv rate groups
 211 
 212   double                _gc_overhead_perc;
 213 
 214   bool during_marking() {
 215     return _during_marking;
 216   }
 217 
 218   // <NEW PREDICTION>
 219 
 220 private:
 221   enum PredictionConstants {
 222     TruncatedSeqLength = 10
 223   };
 224 
 225   TruncatedSeq* _alloc_rate_ms_seq;
 226   double        _prev_collection_pause_end_ms;
 227 
 228   TruncatedSeq* _pending_card_diff_seq;
 229   TruncatedSeq* _rs_length_diff_seq;
 230   TruncatedSeq* _cost_per_card_ms_seq;
 231   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
 232   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
 233   TruncatedSeq* _cost_per_entry_ms_seq;
 234   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
 235   TruncatedSeq* _cost_per_byte_ms_seq;
 236   TruncatedSeq* _constant_other_time_ms_seq;
 237   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 238   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 239 
 240   TruncatedSeq* _pending_cards_seq;
 241   TruncatedSeq* _scanned_cards_seq;
 242   TruncatedSeq* _rs_lengths_seq;
 243 
 244   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 245 
 246   TruncatedSeq* _young_gc_eff_seq;
 247 
 248   TruncatedSeq* _max_conc_overhead_seq;
 249 
 250   size_t _recorded_young_regions;
 251   size_t _recorded_non_young_regions;
 252   size_t _recorded_region_num;
 253 
 254   size_t _free_regions_at_end_of_collection;
 255 
 256   size_t _recorded_rs_lengths;
 257   size_t _max_rs_lengths;
 258 
 259   size_t _recorded_marked_bytes;
 260   size_t _recorded_young_bytes;
 261 
 262   size_t _predicted_pending_cards;
 263   size_t _predicted_cards_scanned;
 264   size_t _predicted_rs_lengths;
 265   size_t _predicted_bytes_to_copy;
 266 
 267   double _predicted_survival_ratio;
 268   double _predicted_rs_update_time_ms;
 269   double _predicted_rs_scan_time_ms;
 270   double _predicted_object_copy_time_ms;
 271   double _predicted_constant_other_time_ms;
 272   double _predicted_young_other_time_ms;
 273   double _predicted_non_young_other_time_ms;
 274   double _predicted_pause_time_ms;
 275 
 276   double _vtime_diff_ms;
 277 
 278   double _recorded_young_free_cset_time_ms;
 279   double _recorded_non_young_free_cset_time_ms;
 280 
 281   double _sigma;
 282   double _expensive_region_limit_ms;
 283 
 284   size_t _rs_lengths_prediction;
 285 
 286   size_t _known_garbage_bytes;
 287   double _known_garbage_ratio;
 288 
 289   double sigma() {
 290     return _sigma;
 291   }
 292 
 293   // A function that prevents us putting too much stock in small sample
 294   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 295   // of samples.  5 or more samples yields one; fewer scales linearly from
 296   // 2.0 at 1 sample to 1.0 at 5.
 297   double confidence_factor(int samples) {
 298     if (samples > 4) return 1.0;
 299     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 300   }
 301 
 302   double get_new_neg_prediction(TruncatedSeq* seq) {
 303     return seq->davg() - sigma() * seq->dsd();
 304   }
 305 
 306 #ifndef PRODUCT
 307   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 308 #endif // PRODUCT
 309 
 310   void adjust_concurrent_refinement(double update_rs_time,
 311                                     double update_rs_processed_buffers,
 312                                     double goal_ms);
 313 
 314 protected:
 315   double _pause_time_target_ms;
 316   double _recorded_young_cset_choice_time_ms;
 317   double _recorded_non_young_cset_choice_time_ms;
 318   bool   _within_target;
 319   size_t _pending_cards;
 320   size_t _max_pending_cards;
 321 
 322 public:
 323 
 324   void set_region_short_lived(HeapRegion* hr) {
 325     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 326   }
 327 
 328   void set_region_survivors(HeapRegion* hr) {
 329     hr->install_surv_rate_group(_survivor_surv_rate_group);
 330   }
 331 
 332 #ifndef PRODUCT
 333   bool verify_young_ages();
 334 #endif // PRODUCT
 335 
 336   double get_new_prediction(TruncatedSeq* seq) {
 337     return MAX2(seq->davg() + sigma() * seq->dsd(),
 338                 seq->davg() * confidence_factor(seq->num()));
 339   }
 340 
 341   size_t young_cset_length() {
 342     return _young_cset_length;
 343   }
 344 
 345   void record_max_rs_lengths(size_t rs_lengths) {
 346     _max_rs_lengths = rs_lengths;
 347   }
 348 
 349   size_t predict_pending_card_diff() {
 350     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
 351     if (prediction < 0.00001)
 352       return 0;
 353     else
 354       return (size_t) prediction;
 355   }
 356 
 357   size_t predict_pending_cards() {
 358     size_t max_pending_card_num = _g1->max_pending_card_num();
 359     size_t diff = predict_pending_card_diff();
 360     size_t prediction;
 361     if (diff > max_pending_card_num)
 362       prediction = max_pending_card_num;
 363     else
 364       prediction = max_pending_card_num - diff;
 365 
 366     return prediction;
 367   }
 368 
 369   size_t predict_rs_length_diff() {
 370     return (size_t) get_new_prediction(_rs_length_diff_seq);
 371   }
 372 
 373   double predict_alloc_rate_ms() {
 374     return get_new_prediction(_alloc_rate_ms_seq);
 375   }
 376 
 377   double predict_cost_per_card_ms() {
 378     return get_new_prediction(_cost_per_card_ms_seq);
 379   }
 380 
 381   double predict_rs_update_time_ms(size_t pending_cards) {
 382     return (double) pending_cards * predict_cost_per_card_ms();
 383   }
 384 
 385   double predict_fully_young_cards_per_entry_ratio() {
 386     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
 387   }
 388 
 389   double predict_partially_young_cards_per_entry_ratio() {
 390     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
 391       return predict_fully_young_cards_per_entry_ratio();
 392     else
 393       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
 394   }
 395 
 396   size_t predict_young_card_num(size_t rs_length) {
 397     return (size_t) ((double) rs_length *
 398                      predict_fully_young_cards_per_entry_ratio());
 399   }
 400 
 401   size_t predict_non_young_card_num(size_t rs_length) {
 402     return (size_t) ((double) rs_length *
 403                      predict_partially_young_cards_per_entry_ratio());
 404   }
 405 
 406   double predict_rs_scan_time_ms(size_t card_num) {
 407     if (full_young_gcs())
 408       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 409     else
 410       return predict_partially_young_rs_scan_time_ms(card_num);
 411   }
 412 
 413   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
 414     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
 415       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 416     else
 417       return (double) card_num *
 418         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
 419   }
 420 
 421   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 422     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
 423       return 1.1 * (double) bytes_to_copy *
 424         get_new_prediction(_cost_per_byte_ms_seq);
 425     else
 426       return (double) bytes_to_copy *
 427         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 428   }
 429 
 430   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 431     if (_in_marking_window && !_in_marking_window_im)
 432       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 433     else
 434       return (double) bytes_to_copy *
 435         get_new_prediction(_cost_per_byte_ms_seq);
 436   }
 437 
 438   double predict_constant_other_time_ms() {
 439     return get_new_prediction(_constant_other_time_ms_seq);
 440   }
 441 
 442   double predict_young_other_time_ms(size_t young_num) {
 443     return
 444       (double) young_num *
 445       get_new_prediction(_young_other_cost_per_region_ms_seq);
 446   }
 447 
 448   double predict_non_young_other_time_ms(size_t non_young_num) {
 449     return
 450       (double) non_young_num *
 451       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 452   }
 453 
 454   void check_if_region_is_too_expensive(double predicted_time_ms);
 455 
 456   double predict_young_collection_elapsed_time_ms(size_t adjustment);
 457   double predict_base_elapsed_time_ms(size_t pending_cards);
 458   double predict_base_elapsed_time_ms(size_t pending_cards,
 459                                       size_t scanned_cards);
 460   size_t predict_bytes_to_copy(HeapRegion* hr);
 461   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
 462 
 463     // for use by: calculate_young_list_target_length(rs_length)
 464   bool predict_will_fit(size_t young_region_num,
 465                         double base_time_ms,
 466                         size_t init_free_regions,
 467                         double target_pause_time_ms);
 468 
 469   void start_recording_regions();
 470   void record_cset_region_info(HeapRegion* hr, bool young);
 471   void record_non_young_cset_region(HeapRegion* hr);
 472 
 473   void set_recorded_young_regions(size_t n_regions);
 474   void set_recorded_young_bytes(size_t bytes);
 475   void set_recorded_rs_lengths(size_t rs_lengths);
 476   void set_predicted_bytes_to_copy(size_t bytes);
 477 
 478   void end_recording_regions();
 479 
 480   void record_vtime_diff_ms(double vtime_diff_ms) {
 481     _vtime_diff_ms = vtime_diff_ms;
 482   }
 483 
 484   void record_young_free_cset_time_ms(double time_ms) {
 485     _recorded_young_free_cset_time_ms = time_ms;
 486   }
 487 
 488   void record_non_young_free_cset_time_ms(double time_ms) {
 489     _recorded_non_young_free_cset_time_ms = time_ms;
 490   }
 491 
 492   double predict_young_gc_eff() {
 493     return get_new_neg_prediction(_young_gc_eff_seq);
 494   }
 495 
 496   double predict_survivor_regions_evac_time();
 497 
 498   // </NEW PREDICTION>
 499 
 500 public:
 501   void cset_regions_freed() {
 502     bool propagate = _last_young_gc_full && !_in_marking_window;
 503     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 504     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 505     // also call it on any more surv rate groups
 506   }
 507 
 508   void set_known_garbage_bytes(size_t known_garbage_bytes) {
 509     _known_garbage_bytes = known_garbage_bytes;
 510     size_t heap_bytes = _g1->capacity();
 511     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 512   }
 513 
 514   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
 515     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
 516 
 517     _known_garbage_bytes -= known_garbage_bytes;
 518     size_t heap_bytes = _g1->capacity();
 519     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 520   }
 521 
 522   G1MMUTracker* mmu_tracker() {
 523     return _mmu_tracker;
 524   }
 525 
 526   double max_pause_time_ms() {
 527     return _mmu_tracker->max_gc_time() * 1000.0;
 528   }
 529 
 530   double predict_init_time_ms() {
 531     return get_new_prediction(_concurrent_mark_init_times_ms);
 532   }
 533 
 534   double predict_remark_time_ms() {
 535     return get_new_prediction(_concurrent_mark_remark_times_ms);
 536   }
 537 
 538   double predict_cleanup_time_ms() {
 539     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 540   }
 541 
 542   // Returns an estimate of the survival rate of the region at yg-age
 543   // "yg_age".
 544   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 545     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 546     if (seq->num() == 0)
 547       gclog_or_tty->print("BARF! age is %d", age);
 548     guarantee( seq->num() > 0, "invariant" );
 549     double pred = get_new_prediction(seq);
 550     if (pred > 1.0)
 551       pred = 1.0;
 552     return pred;
 553   }
 554 
 555   double predict_yg_surv_rate(int age) {
 556     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 557   }
 558 
 559   double accum_yg_surv_rate_pred(int age) {
 560     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 561   }
 562 
 563 protected:
 564   void print_stats(int level, const char* str, double value);
 565   void print_stats(int level, const char* str, int value);
 566 
 567   void print_par_stats(int level, const char* str, double* data);
 568   void print_par_sizes(int level, const char* str, double* data);
 569 
 570   void check_other_times(int level,
 571                          NumberSeq* other_times_ms,
 572                          NumberSeq* calc_other_times_ms) const;
 573 
 574   void print_summary (PauseSummary* stats) const;
 575 
 576   void print_summary (int level, const char* str, NumberSeq* seq) const;
 577   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
 578 
 579   double avg_value (double* data);
 580   double max_value (double* data);
 581   double sum_of_values (double* data);
 582   double max_sum (double* data1, double* data2);
 583 
 584   int _last_satb_drain_processed_buffers;
 585   int _last_update_rs_processed_buffers;
 586   double _last_pause_time_ms;
 587 
 588   size_t _bytes_in_collection_set_before_gc;
 589   size_t _bytes_copied_during_gc;
 590 
 591   // Used to count used bytes in CS.
 592   friend class CountCSClosure;
 593 
 594   // Statistics kept per GC stoppage, pause or full.
 595   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 596 
 597   // We track markings.
 598   int _num_markings;
 599   double _mark_thread_startup_sec;       // Time at startup of marking thread
 600 
 601   // Add a new GC of the given duration and end time to the record.
 602   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 603 
 604   // The head of the list (via "next_in_collection_set()") representing the
 605   // current collection set. Set from the incrementally built collection
 606   // set at the start of the pause.
 607   HeapRegion* _collection_set;
 608 
 609   // The number of regions in the collection set. Set from the incrementally
 610   // built collection set at the start of an evacuation pause.
 611   size_t _collection_set_size;
 612 
 613   // The number of bytes in the collection set before the pause. Set from
 614   // the incrementally built collection set at the start of an evacuation
 615   // pause.
 616   size_t _collection_set_bytes_used_before;
 617 
 618   // The associated information that is maintained while the incremental
 619   // collection set is being built with young regions. Used to populate
 620   // the recorded info for the evacuation pause.
 621 
 622   enum CSetBuildType {
 623     Active,             // We are actively building the collection set
 624     Inactive            // We are not actively building the collection set
 625   };
 626 
 627   CSetBuildType _inc_cset_build_state;
 628 
 629   // The head of the incrementally built collection set.
 630   HeapRegion* _inc_cset_head;
 631 
 632   // The tail of the incrementally built collection set.
 633   HeapRegion* _inc_cset_tail;
 634 
 635   // The number of regions in the incrementally built collection set.
 636   // Used to set _collection_set_size at the start of an evacuation
 637   // pause.
 638   size_t _inc_cset_size;
 639 
 640   // Used as the index in the surving young words structure
 641   // which tracks the amount of space, for each young region,
 642   // that survives the pause.
 643   size_t _inc_cset_young_index;
 644 
 645   // The number of bytes in the incrementally built collection set.
 646   // Used to set _collection_set_bytes_used_before at the start of
 647   // an evacuation pause.
 648   size_t _inc_cset_bytes_used_before;
 649 
 650   // Used to record the highest end of heap region in collection set
 651   HeapWord* _inc_cset_max_finger;
 652 
 653   // The number of recorded used bytes in the young regions
 654   // of the collection set. This is the sum of the used() bytes
 655   // of retired young regions in the collection set.
 656   size_t _inc_cset_recorded_young_bytes;
 657 
 658   // The RSet lengths recorded for regions in the collection set
 659   // (updated by the periodic sampling of the regions in the
 660   // young list/collection set).
 661   size_t _inc_cset_recorded_rs_lengths;
 662 
 663   // The predicted elapsed time it will take to collect the regions
 664   // in the collection set (updated by the periodic sampling of the
 665   // regions in the young list/collection set).
 666   double _inc_cset_predicted_elapsed_time_ms;
 667 
 668   // The predicted bytes to copy for the regions in the collection
 669   // set (updated by the periodic sampling of the regions in the
 670   // young list/collection set).
 671   size_t _inc_cset_predicted_bytes_to_copy;
 672 
 673   // Info about marking.
 674   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
 675 
 676   // The number of collection pauses at the end of the last mark.
 677   size_t _n_pauses_at_mark_end;
 678 
 679   // Stash a pointer to the g1 heap.
 680   G1CollectedHeap* _g1;
 681 
 682   // The average time in ms per collection pause, averaged over recent pauses.
 683   double recent_avg_time_for_pauses_ms();
 684 
 685   // The average time in ms for RS scanning, per pause, averaged
 686   // over recent pauses. (Note the RS scanning time for a pause
 687   // is itself an average of the RS scanning time for each worker
 688   // thread.)
 689   double recent_avg_time_for_rs_scan_ms();
 690 
 691   // The number of "recent" GCs recorded in the number sequences
 692   int number_of_recent_gcs();
 693 
 694   // The average survival ratio, computed by the total number of bytes
 695   // suriviving / total number of bytes before collection over the last
 696   // several recent pauses.
 697   double recent_avg_survival_fraction();
 698   // The survival fraction of the most recent pause; if there have been no
 699   // pauses, returns 1.0.
 700   double last_survival_fraction();
 701 
 702   // Returns a "conservative" estimate of the recent survival rate, i.e.,
 703   // one that may be higher than "recent_avg_survival_fraction".
 704   // This is conservative in several ways:
 705   //   If there have been few pauses, it will assume a potential high
 706   //     variance, and err on the side of caution.
 707   //   It puts a lower bound (currently 0.1) on the value it will return.
 708   //   To try to detect phase changes, if the most recent pause ("latest") has a
 709   //     higher-than average ("avg") survival rate, it returns that rate.
 710   // "work" version is a utility function; young is restricted to young regions.
 711   double conservative_avg_survival_fraction_work(double avg,
 712                                                  double latest);
 713 
 714   // The arguments are the two sequences that keep track of the number of bytes
 715   //   surviving and the total number of bytes before collection, resp.,
 716   //   over the last evereal recent pauses
 717   // Returns the survival rate for the category in the most recent pause.
 718   // If there have been no pauses, returns 1.0.
 719   double last_survival_fraction_work(TruncatedSeq* surviving,
 720                                      TruncatedSeq* before);
 721 
 722   // The arguments are the two sequences that keep track of the number of bytes
 723   //   surviving and the total number of bytes before collection, resp.,
 724   //   over the last several recent pauses
 725   // Returns the average survival ration over the last several recent pauses
 726   // If there have been no pauses, return 1.0
 727   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
 728                                            TruncatedSeq* before);
 729 
 730   double conservative_avg_survival_fraction() {
 731     double avg = recent_avg_survival_fraction();
 732     double latest = last_survival_fraction();
 733     return conservative_avg_survival_fraction_work(avg, latest);
 734   }
 735 
 736   // The ratio of gc time to elapsed time, computed over recent pauses.
 737   double _recent_avg_pause_time_ratio;
 738 
 739   double recent_avg_pause_time_ratio() {
 740     return _recent_avg_pause_time_ratio;
 741   }
 742 
 743   // Number of pauses between concurrent marking.
 744   size_t _pauses_btwn_concurrent_mark;
 745 
 746   size_t _n_marks_since_last_pause;
 747 
 748   // At the end of a pause we check the heap occupancy and we decide
 749   // whether we will start a marking cycle during the next pause. If
 750   // we decide that we want to do that, we will set this parameter to
 751   // true. So, this parameter will stay true between the end of a
 752   // pause and the beginning of a subsequent pause (not necessarily
 753   // the next one, see the comments on the next field) when we decide
 754   // that we will indeed start a marking cycle and do the initial-mark
 755   // work.
 756   volatile bool _initiate_conc_mark_if_possible;
 757 
 758   // If initiate_conc_mark_if_possible() is set at the beginning of a
 759   // pause, it is a suggestion that the pause should start a marking
 760   // cycle by doing the initial-mark work. However, it is possible
 761   // that the concurrent marking thread is still finishing up the
 762   // previous marking cycle (e.g., clearing the next marking
 763   // bitmap). If that is the case we cannot start a new cycle and
 764   // we'll have to wait for the concurrent marking thread to finish
 765   // what it is doing. In this case we will postpone the marking cycle
 766   // initiation decision for the next pause. When we eventually decide
 767   // to start a cycle, we will set _during_initial_mark_pause which
 768   // will stay true until the end of the initial-mark pause and it's
 769   // the condition that indicates that a pause is doing the
 770   // initial-mark work.
 771   volatile bool _during_initial_mark_pause;
 772 
 773   bool _should_revert_to_full_young_gcs;
 774   bool _last_full_young_gc;
 775 
 776   // This set of variables tracks the collector efficiency, in order to
 777   // determine whether we should initiate a new marking.
 778   double _cur_mark_stop_world_time_ms;
 779   double _mark_init_start_sec;
 780   double _mark_remark_start_sec;
 781   double _mark_cleanup_start_sec;
 782   double _mark_closure_time_ms;
 783 
 784   void   calculate_young_list_min_length();
 785   void   calculate_young_list_target_length();
 786   void   calculate_young_list_target_length(size_t rs_lengths);
 787 
 788 public:
 789 
 790   G1CollectorPolicy();
 791 
 792   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 793 
 794   virtual CollectorPolicy::Name kind() {
 795     return CollectorPolicy::G1CollectorPolicyKind;
 796   }
 797 
 798   void check_prediction_validity();
 799 
 800   size_t bytes_in_collection_set() {
 801     return _bytes_in_collection_set_before_gc;
 802   }
 803 
 804   unsigned calc_gc_alloc_time_stamp() {
 805     return _all_pause_times_ms->num() + 1;
 806   }
 807 
 808 protected:
 809 
 810   // Count the number of bytes used in the CS.
 811   void count_CS_bytes_used();
 812 
 813   // Together these do the base cleanup-recording work.  Subclasses might
 814   // want to put something between them.
 815   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
 816                                                 size_t max_live_bytes);
 817   void record_concurrent_mark_cleanup_end_work2();
 818 
 819 public:
 820 
 821   virtual void init();
 822 
 823   // Create jstat counters for the policy.
 824   virtual void initialize_gc_policy_counters();
 825 
 826   virtual HeapWord* mem_allocate_work(size_t size,
 827                                       bool is_tlab,
 828                                       bool* gc_overhead_limit_was_exceeded);
 829 
 830   // This method controls how a collector handles one or more
 831   // of its generations being fully allocated.
 832   virtual HeapWord* satisfy_failed_allocation(size_t size,
 833                                               bool is_tlab);
 834 
 835   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 836 
 837   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 838 
 839   // The number of collection pauses so far.
 840   long n_pauses() const { return _n_pauses; }
 841 
 842   // Update the heuristic info to record a collection pause of the given
 843   // start time, where the given number of bytes were used at the start.
 844   // This may involve changing the desired size of a collection set.
 845 
 846   virtual void record_stop_world_start();
 847 
 848   virtual void record_collection_pause_start(double start_time_sec,
 849                                              size_t start_used);
 850 
 851   // Must currently be called while the world is stopped.
 852   virtual void record_concurrent_mark_init_start();
 853   virtual void record_concurrent_mark_init_end();
 854   void record_concurrent_mark_init_end_pre(double
 855                                            mark_init_elapsed_time_ms);
 856 
 857   void record_mark_closure_time(double mark_closure_time_ms);
 858 
 859   virtual void record_concurrent_mark_remark_start();
 860   virtual void record_concurrent_mark_remark_end();
 861 
 862   virtual void record_concurrent_mark_cleanup_start();
 863   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
 864                                                   size_t max_live_bytes);
 865   virtual void record_concurrent_mark_cleanup_completed();
 866 
 867   virtual void record_concurrent_pause();
 868   virtual void record_concurrent_pause_end();
 869 
 870   virtual void record_collection_pause_end();
 871   void print_heap_transition();
 872 
 873   // Record the fact that a full collection occurred.
 874   virtual void record_full_collection_start();
 875   virtual void record_full_collection_end();
 876 
 877   void record_gc_worker_start_time(int worker_i, double ms) {
 878     _par_last_gc_worker_start_times_ms[worker_i] = ms;
 879   }
 880 
 881   void record_ext_root_scan_time(int worker_i, double ms) {
 882     _par_last_ext_root_scan_times_ms[worker_i] = ms;
 883   }
 884 
 885   void record_mark_stack_scan_time(int worker_i, double ms) {
 886     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
 887   }
 888 
 889   void record_satb_drain_time(double ms) {
 890     _cur_satb_drain_time_ms = ms;
 891     _satb_drain_time_set    = true;
 892   }
 893 
 894   void record_satb_drain_processed_buffers (int processed_buffers) {
 895     _last_satb_drain_processed_buffers = processed_buffers;
 896   }
 897 
 898   void record_mod_union_time(double ms) {
 899     _all_mod_union_times_ms->add(ms);
 900   }
 901 
 902   void record_update_rs_time(int thread, double ms) {
 903     _par_last_update_rs_times_ms[thread] = ms;
 904   }
 905 
 906   void record_update_rs_processed_buffers (int thread,
 907                                            double processed_buffers) {
 908     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
 909   }
 910 
 911   void record_scan_rs_time(int thread, double ms) {
 912     _par_last_scan_rs_times_ms[thread] = ms;
 913   }
 914 
 915   void reset_obj_copy_time(int thread) {
 916     _par_last_obj_copy_times_ms[thread] = 0.0;
 917   }
 918 
 919   void reset_obj_copy_time() {
 920     reset_obj_copy_time(0);
 921   }
 922 
 923   void record_obj_copy_time(int thread, double ms) {
 924     _par_last_obj_copy_times_ms[thread] += ms;
 925   }
 926 
 927   void record_termination(int thread, double ms, size_t attempts) {
 928     _par_last_termination_times_ms[thread] = ms;
 929     _par_last_termination_attempts[thread] = (double) attempts;
 930   }
 931 
 932   void record_gc_worker_end_time(int worker_i, double ms) {
 933     _par_last_gc_worker_end_times_ms[worker_i] = ms;
 934   }
 935 
 936   void record_pause_time_ms(double ms) {
 937     _last_pause_time_ms = ms;
 938   }
 939 
 940   void record_clear_ct_time(double ms) {
 941     _cur_clear_ct_time_ms = ms;
 942   }
 943 
 944   void record_par_time(double ms) {
 945     _cur_collection_par_time_ms = ms;
 946   }
 947 
 948   void record_aux_start_time(int i) {
 949     guarantee(i < _aux_num, "should be within range");
 950     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
 951   }
 952 
 953   void record_aux_end_time(int i) {
 954     guarantee(i < _aux_num, "should be within range");
 955     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
 956     _cur_aux_times_set[i] = true;
 957     _cur_aux_times_ms[i] += ms;
 958   }
 959 
 960 #ifndef PRODUCT
 961   void record_cc_clear_time(double ms) {
 962     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
 963       _min_clear_cc_time_ms = ms;
 964     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
 965       _max_clear_cc_time_ms = ms;
 966     _cur_clear_cc_time_ms = ms;
 967     _cum_clear_cc_time_ms += ms;
 968     _num_cc_clears++;
 969   }
 970 #endif
 971 
 972   // Record how much space we copied during a GC. This is typically
 973   // called when a GC alloc region is being retired.
 974   void record_bytes_copied_during_gc(size_t bytes) {
 975     _bytes_copied_during_gc += bytes;
 976   }
 977 
 978   // The amount of space we copied during a GC.
 979   size_t bytes_copied_during_gc() {
 980     return _bytes_copied_during_gc;
 981   }
 982 
 983   // Choose a new collection set.  Marks the chosen regions as being
 984   // "in_collection_set", and links them together.  The head and number of
 985   // the collection set are available via access methods.
 986   virtual void choose_collection_set(double target_pause_time_ms) = 0;
 987 
 988   // The head of the list (via "next_in_collection_set()") representing the
 989   // current collection set.
 990   HeapRegion* collection_set() { return _collection_set; }
 991 
 992   void clear_collection_set() { _collection_set = NULL; }
 993 
 994   // The number of elements in the current collection set.
 995   size_t collection_set_size() { return _collection_set_size; }
 996 
 997   // Add "hr" to the CS.
 998   void add_to_collection_set(HeapRegion* hr);
 999 
1000   // Incremental CSet Support
1001 
1002   // The head of the incrementally built collection set.
1003   HeapRegion* inc_cset_head() { return _inc_cset_head; }
1004 
1005   // The tail of the incrementally built collection set.
1006   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
1007 
1008   // The number of elements in the incrementally built collection set.
1009   size_t inc_cset_size() { return _inc_cset_size; }
1010 
1011   // Initialize incremental collection set info.
1012   void start_incremental_cset_building();
1013 
1014   void clear_incremental_cset() {
1015     _inc_cset_head = NULL;
1016     _inc_cset_tail = NULL;
1017   }
1018 
1019   // Stop adding regions to the incremental collection set
1020   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
1021 
1022   // Add/remove information about hr to the aggregated information
1023   // for the incrementally built collection set.
1024   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
1025   void remove_from_incremental_cset_info(HeapRegion* hr);
1026 
1027   // Update information about hr in the aggregated information for
1028   // the incrementally built collection set.
1029   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
1030 
1031 private:
1032   // Update the incremental cset information when adding a region
1033   // (should not be called directly).
1034   void add_region_to_incremental_cset_common(HeapRegion* hr);
1035 
1036 public:
1037   // Add hr to the LHS of the incremental collection set.
1038   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
1039 
1040   // Add hr to the RHS of the incremental collection set.
1041   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
1042 
1043 #ifndef PRODUCT
1044   void print_collection_set(HeapRegion* list_head, outputStream* st);
1045 #endif // !PRODUCT
1046 
1047   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
1048   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
1049   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
1050 
1051   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
1052   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
1053   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
1054 
1055   // This sets the initiate_conc_mark_if_possible() flag to start a
1056   // new cycle, as long as we are not already in one. It's best if it
1057   // is called during a safepoint when the test whether a cycle is in
1058   // progress or not is stable.
1059   bool force_initial_mark_if_outside_cycle();
1060 
1061   // This is called at the very beginning of an evacuation pause (it
1062   // has to be the first thing that the pause does). If
1063   // initiate_conc_mark_if_possible() is true, and the concurrent
1064   // marking thread has completed its work during the previous cycle,
1065   // it will set during_initial_mark_pause() to so that the pause does
1066   // the initial-mark work and start a marking cycle.
1067   void decide_on_conc_mark_initiation();
1068 
1069   // If an expansion would be appropriate, because recent GC overhead had
1070   // exceeded the desired limit, return an amount to expand by.
1071   virtual size_t expansion_amount();
1072 
1073   // note start of mark thread
1074   void note_start_of_mark_thread();
1075 
1076   // The marked bytes of the "r" has changed; reclassify it's desirability
1077   // for marking.  Also asserts that "r" is eligible for a CS.
1078   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
1079 
1080 #ifndef PRODUCT
1081   // Check any appropriate marked bytes info, asserting false if
1082   // something's wrong, else returning "true".
1083   virtual bool assertMarkedBytesDataOK() = 0;
1084 #endif
1085 
1086   // Print tracing information.
1087   void print_tracing_info() const;
1088 
1089   // Print stats on young survival ratio
1090   void print_yg_surv_rate_info() const;
1091 
1092   void finished_recalculating_age_indexes(bool is_survivors) {
1093     if (is_survivors) {
1094       _survivor_surv_rate_group->finished_recalculating_age_indexes();
1095     } else {
1096       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
1097     }
1098     // do that for any other surv rate groups
1099   }
1100 
1101   bool is_young_list_full() {
1102     size_t young_list_length = _g1->young_list()->length();
1103     size_t young_list_target_length = _young_list_target_length;
1104     if (G1FixedEdenSize) {
1105       young_list_target_length -= _max_survivor_regions;
1106     }
1107     return young_list_length >= young_list_target_length;
1108   }
1109 
1110   bool can_expand_young_list() {
1111     size_t young_list_length = _g1->young_list()->length();
1112     size_t young_list_max_length = _young_list_max_length;
1113     if (G1FixedEdenSize) {
1114       young_list_max_length -= _max_survivor_regions;
1115     }
1116     return young_list_length < young_list_max_length;
1117   }
1118 
1119   void update_region_num(bool young);
1120 
1121   bool in_young_gc_mode() {
1122     return _in_young_gc_mode;
1123   }
1124   void set_in_young_gc_mode(bool in_young_gc_mode) {
1125     _in_young_gc_mode = in_young_gc_mode;
1126   }
1127 
1128   bool full_young_gcs() {
1129     return _full_young_gcs;
1130   }
1131   void set_full_young_gcs(bool full_young_gcs) {
1132     _full_young_gcs = full_young_gcs;
1133   }
1134 
1135   bool adaptive_young_list_length() {
1136     return _adaptive_young_list_length;
1137   }
1138   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
1139     _adaptive_young_list_length = adaptive_young_list_length;
1140   }
1141 
1142   inline double get_gc_eff_factor() {
1143     double ratio = _known_garbage_ratio;
1144 
1145     double square = ratio * ratio;
1146     // square = square * square;
1147     double ret = square * 9.0 + 1.0;
1148 #if 0
1149     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
1150 #endif // 0
1151     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
1152     return ret;
1153   }
1154 
1155   //
1156   // Survivor regions policy.
1157   //
1158 protected:
1159 
1160   // Current tenuring threshold, set to 0 if the collector reaches the
1161   // maximum amount of suvivors regions.
1162   int _tenuring_threshold;
1163 
1164   // The limit on the number of regions allocated for survivors.
1165   size_t _max_survivor_regions;
1166 
1167   // For reporting purposes.
1168   size_t _eden_bytes_before_gc;
1169   size_t _survivor_bytes_before_gc;
1170   size_t _capacity_before_gc;
1171 
1172   // The amount of survor regions after a collection.
1173   size_t _recorded_survivor_regions;
1174   // List of survivor regions.
1175   HeapRegion* _recorded_survivor_head;
1176   HeapRegion* _recorded_survivor_tail;
1177 
1178   ageTable _survivors_age_table;
1179 
1180 public:
1181 
1182   inline GCAllocPurpose
1183     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1184       if (age < _tenuring_threshold && src_region->is_young()) {
1185         return GCAllocForSurvived;
1186       } else {
1187         return GCAllocForTenured;
1188       }
1189   }
1190 
1191   inline bool track_object_age(GCAllocPurpose purpose) {
1192     return purpose == GCAllocForSurvived;
1193   }
1194 
1195   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
1196 
1197   size_t max_regions(int purpose);
1198 
1199   // The limit on regions for a particular purpose is reached.
1200   void note_alloc_region_limit_reached(int purpose) {
1201     if (purpose == GCAllocForSurvived) {
1202       _tenuring_threshold = 0;
1203     }
1204   }
1205 
1206   void note_start_adding_survivor_regions() {
1207     _survivor_surv_rate_group->start_adding_regions();
1208   }
1209 
1210   void note_stop_adding_survivor_regions() {
1211     _survivor_surv_rate_group->stop_adding_regions();
1212   }
1213 
1214   void record_survivor_regions(size_t      regions,
1215                                HeapRegion* head,
1216                                HeapRegion* tail) {
1217     _recorded_survivor_regions = regions;
1218     _recorded_survivor_head    = head;
1219     _recorded_survivor_tail    = tail;
1220   }
1221 
1222   size_t recorded_survivor_regions() {
1223     return _recorded_survivor_regions;
1224   }
1225 
1226   void record_thread_age_table(ageTable* age_table)
1227   {
1228     _survivors_age_table.merge_par(age_table);
1229   }
1230 
1231   void calculate_max_gc_locker_expansion();
1232 
1233   // Calculates survivor space parameters.
1234   void calculate_survivors_policy();
1235 
1236 };
1237 
1238 // This encapsulates a particular strategy for a g1 Collector.
1239 //
1240 //      Start a concurrent mark when our heap size is n bytes
1241 //            greater then our heap size was at the last concurrent
1242 //            mark.  Where n is a function of the CMSTriggerRatio
1243 //            and the MinHeapFreeRatio.
1244 //
1245 //      Start a g1 collection pause when we have allocated the
1246 //            average number of bytes currently being freed in
1247 //            a collection, but only if it is at least one region
1248 //            full
1249 //
1250 //      Resize Heap based on desired
1251 //      allocation space, where desired allocation space is
1252 //      a function of survival rate and desired future to size.
1253 //
1254 //      Choose collection set by first picking all older regions
1255 //      which have a survival rate which beats our projected young
1256 //      survival rate.  Then fill out the number of needed regions
1257 //      with young regions.
1258 
1259 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
1260   CollectionSetChooser* _collectionSetChooser;
1261   // If the estimated is less then desirable, resize if possible.
1262   void expand_if_possible(size_t numRegions);
1263 
1264   virtual void choose_collection_set(double target_pause_time_ms);
1265   virtual void record_collection_pause_start(double start_time_sec,
1266                                              size_t start_used);
1267   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
1268                                                   size_t max_live_bytes);
1269   virtual void record_full_collection_end();
1270 
1271 public:
1272   G1CollectorPolicy_BestRegionsFirst() {
1273     _collectionSetChooser = new CollectionSetChooser();
1274   }
1275   void record_collection_pause_end();
1276   // This is not needed any more, after the CSet choosing code was
1277   // changed to use the pause prediction work. But let's leave the
1278   // hook in just in case.
1279   void note_change_in_marked_bytes(HeapRegion* r) { }
1280 #ifndef PRODUCT
1281   bool assertMarkedBytesDataOK();
1282 #endif
1283 };
1284 
1285 // This should move to some place more general...
1286 
1287 // If we have "n" measurements, and we've kept track of their "sum" and the
1288 // "sum_of_squares" of the measurements, this returns the variance of the
1289 // sequence.
1290 inline double variance(int n, double sum_of_squares, double sum) {
1291   double n_d = (double)n;
1292   double avg = sum/n_d;
1293   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1294 }
1295 
1296 // Local Variables: ***
1297 // c-indentation-style: gnu ***
1298 // End: ***
1299 
1300 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP