1 /*
   2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc_implementation/g1/collectionSetChooser.hpp"
  29 #include "gc_implementation/g1/g1MMUTracker.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 
  32 // A G1CollectorPolicy makes policy decisions that determine the
  33 // characteristics of the collector.  Examples include:
  34 //   * choice of collection set.
  35 //   * when to collect.
  36 
  37 class HeapRegion;
  38 class CollectionSetChooser;
  39 
  40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
  41 // over and over again and introducing subtle problems through small typos and
  42 // cutting and pasting mistakes. The macros below introduces a number
  43 // sequnce into the following two classes and the methods that access it.
  44 
  45 #define define_num_seq(name)                                                  \
  46 private:                                                                      \
  47   NumberSeq _all_##name##_times_ms;                                           \
  48 public:                                                                       \
  49   void record_##name##_time_ms(double ms) {                                   \
  50     _all_##name##_times_ms.add(ms);                                           \
  51   }                                                                           \
  52   NumberSeq* get_##name##_seq() {                                             \
  53     return &_all_##name##_times_ms;                                           \
  54   }
  55 
  56 class MainBodySummary;
  57 
  58 class PauseSummary: public CHeapObj {
  59   define_num_seq(total)
  60     define_num_seq(other)
  61 
  62 public:
  63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
  64 };
  65 
  66 class MainBodySummary: public CHeapObj {
  67   define_num_seq(satb_drain) // optional
  68   define_num_seq(parallel) // parallel only
  69     define_num_seq(ext_root_scan)
  70     define_num_seq(mark_stack_scan)
  71     define_num_seq(update_rs)
  72     define_num_seq(scan_rs)
  73     define_num_seq(obj_copy)
  74     define_num_seq(termination) // parallel only
  75     define_num_seq(parallel_other) // parallel only
  76   define_num_seq(mark_closure)
  77   define_num_seq(clear_ct)  // parallel only
  78 };
  79 
  80 class Summary: public PauseSummary,
  81                public MainBodySummary {
  82 public:
  83   virtual MainBodySummary*    main_body_summary()    { return this; }
  84 };
  85 
  86 class G1CollectorPolicy: public CollectorPolicy {
  87 protected:
  88   // The number of pauses during the execution.
  89   long _n_pauses;
  90 
  91   // either equal to the number of parallel threads, if ParallelGCThreads
  92   // has been set, or 1 otherwise
  93   int _parallel_gc_threads;
  94 
  95   enum SomePrivateConstants {
  96     NumPrevPausesForHeuristics = 10
  97   };
  98 
  99   G1MMUTracker* _mmu_tracker;
 100 
 101   void initialize_flags();
 102 
 103   void initialize_all() {
 104     initialize_flags();
 105     initialize_size_info();
 106     initialize_perm_generation(PermGen::MarkSweepCompact);
 107   }
 108 
 109   virtual size_t default_init_heap_size() {
 110     // Pick some reasonable default.
 111     return 8*M;
 112   }
 113 
 114   double _cur_collection_start_sec;
 115   size_t _cur_collection_pause_used_at_start_bytes;
 116   size_t _cur_collection_pause_used_regions_at_start;
 117   size_t _prev_collection_pause_used_at_end_bytes;
 118   double _cur_collection_par_time_ms;
 119   double _cur_satb_drain_time_ms;
 120   double _cur_clear_ct_time_ms;
 121   bool   _satb_drain_time_set;
 122   double _cur_ref_proc_time_ms;
 123   double _cur_ref_enq_time_ms;
 124 
 125 #ifndef PRODUCT
 126   // Card Table Count Cache stats
 127   double _min_clear_cc_time_ms;         // min
 128   double _max_clear_cc_time_ms;         // max
 129   double _cur_clear_cc_time_ms;         // clearing time during current pause
 130   double _cum_clear_cc_time_ms;         // cummulative clearing time
 131   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
 132 #endif
 133 
 134   // Statistics for recent GC pauses.  See below for how indexed.
 135   TruncatedSeq* _recent_rs_scan_times_ms;
 136 
 137   // These exclude marking times.
 138   TruncatedSeq* _recent_pause_times_ms;
 139   TruncatedSeq* _recent_gc_times_ms;
 140 
 141   TruncatedSeq* _recent_CS_bytes_used_before;
 142   TruncatedSeq* _recent_CS_bytes_surviving;
 143 
 144   TruncatedSeq* _recent_rs_sizes;
 145 
 146   TruncatedSeq* _concurrent_mark_remark_times_ms;
 147   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 148 
 149   Summary*           _summary;
 150 
 151   NumberSeq* _all_pause_times_ms;
 152   NumberSeq* _all_full_gc_times_ms;
 153   double _stop_world_start;
 154   NumberSeq* _all_stop_world_times_ms;
 155   NumberSeq* _all_yield_times_ms;
 156 
 157   size_t     _region_num_young;
 158   size_t     _region_num_tenured;
 159   size_t     _prev_region_num_young;
 160   size_t     _prev_region_num_tenured;
 161 
 162   NumberSeq* _all_mod_union_times_ms;
 163 
 164   int        _aux_num;
 165   NumberSeq* _all_aux_times_ms;
 166   double*    _cur_aux_start_times_ms;
 167   double*    _cur_aux_times_ms;
 168   bool*      _cur_aux_times_set;
 169 
 170   double* _par_last_gc_worker_start_times_ms;
 171   double* _par_last_ext_root_scan_times_ms;
 172   double* _par_last_mark_stack_scan_times_ms;
 173   double* _par_last_update_rs_times_ms;
 174   double* _par_last_update_rs_processed_buffers;
 175   double* _par_last_scan_rs_times_ms;
 176   double* _par_last_obj_copy_times_ms;
 177   double* _par_last_termination_times_ms;
 178   double* _par_last_termination_attempts;
 179   double* _par_last_gc_worker_end_times_ms;
 180   double* _par_last_gc_worker_times_ms;
 181 
 182   // indicates whether we are in full young or partially young GC mode
 183   bool _full_young_gcs;
 184 
 185   // if true, then it tries to dynamically adjust the length of the
 186   // young list
 187   bool _adaptive_young_list_length;
 188   size_t _young_list_target_length;
 189   size_t _young_list_fixed_length;
 190   size_t _prev_eden_capacity; // used for logging
 191 
 192   // The max number of regions we can extend the eden by while the GC
 193   // locker is active. This should be >= _young_list_target_length;
 194   size_t _young_list_max_length;
 195 
 196   size_t _young_cset_length;
 197   bool   _last_young_gc_full;
 198 
 199   unsigned              _full_young_pause_num;
 200   unsigned              _partial_young_pause_num;
 201 
 202   bool                  _during_marking;
 203   bool                  _in_marking_window;
 204   bool                  _in_marking_window_im;
 205 
 206   SurvRateGroup*        _short_lived_surv_rate_group;
 207   SurvRateGroup*        _survivor_surv_rate_group;
 208   // add here any more surv rate groups
 209 
 210   double                _gc_overhead_perc;
 211 
 212   double _reserve_factor;
 213   size_t _reserve_regions;
 214 
 215   bool during_marking() {
 216     return _during_marking;
 217   }
 218 
 219   // <NEW PREDICTION>
 220 
 221 private:
 222   enum PredictionConstants {
 223     TruncatedSeqLength = 10
 224   };
 225 
 226   TruncatedSeq* _alloc_rate_ms_seq;
 227   double        _prev_collection_pause_end_ms;
 228 
 229   TruncatedSeq* _pending_card_diff_seq;
 230   TruncatedSeq* _rs_length_diff_seq;
 231   TruncatedSeq* _cost_per_card_ms_seq;
 232   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
 233   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
 234   TruncatedSeq* _cost_per_entry_ms_seq;
 235   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
 236   TruncatedSeq* _cost_per_byte_ms_seq;
 237   TruncatedSeq* _constant_other_time_ms_seq;
 238   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 239   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 240 
 241   TruncatedSeq* _pending_cards_seq;
 242   TruncatedSeq* _scanned_cards_seq;
 243   TruncatedSeq* _rs_lengths_seq;
 244 
 245   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 246 
 247   TruncatedSeq* _young_gc_eff_seq;
 248 
 249   TruncatedSeq* _max_conc_overhead_seq;
 250 
 251   bool   _using_new_ratio_calculations;
 252   size_t _min_desired_young_length; // as set on the command line or default calculations
 253   size_t _max_desired_young_length; // as set on the command line or default calculations
 254 
 255   size_t _recorded_young_regions;
 256   size_t _recorded_non_young_regions;
 257   size_t _recorded_region_num;
 258 
 259   size_t _free_regions_at_end_of_collection;
 260 
 261   size_t _recorded_rs_lengths;
 262   size_t _max_rs_lengths;
 263 
 264   size_t _recorded_marked_bytes;
 265   size_t _recorded_young_bytes;
 266 
 267   size_t _predicted_pending_cards;
 268   size_t _predicted_cards_scanned;
 269   size_t _predicted_rs_lengths;
 270   size_t _predicted_bytes_to_copy;
 271 
 272   double _predicted_survival_ratio;
 273   double _predicted_rs_update_time_ms;
 274   double _predicted_rs_scan_time_ms;
 275   double _predicted_object_copy_time_ms;
 276   double _predicted_constant_other_time_ms;
 277   double _predicted_young_other_time_ms;
 278   double _predicted_non_young_other_time_ms;
 279   double _predicted_pause_time_ms;
 280 
 281   double _vtime_diff_ms;
 282 
 283   double _recorded_young_free_cset_time_ms;
 284   double _recorded_non_young_free_cset_time_ms;
 285 
 286   double _sigma;
 287   double _expensive_region_limit_ms;
 288 
 289   size_t _rs_lengths_prediction;
 290 
 291   size_t _known_garbage_bytes;
 292   double _known_garbage_ratio;
 293 
 294   double sigma() {
 295     return _sigma;
 296   }
 297 
 298   // A function that prevents us putting too much stock in small sample
 299   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 300   // of samples.  5 or more samples yields one; fewer scales linearly from
 301   // 2.0 at 1 sample to 1.0 at 5.
 302   double confidence_factor(int samples) {
 303     if (samples > 4) return 1.0;
 304     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 305   }
 306 
 307   double get_new_neg_prediction(TruncatedSeq* seq) {
 308     return seq->davg() - sigma() * seq->dsd();
 309   }
 310 
 311 #ifndef PRODUCT
 312   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 313 #endif // PRODUCT
 314 
 315   void adjust_concurrent_refinement(double update_rs_time,
 316                                     double update_rs_processed_buffers,
 317                                     double goal_ms);
 318 
 319 protected:
 320   double _pause_time_target_ms;
 321   double _recorded_young_cset_choice_time_ms;
 322   double _recorded_non_young_cset_choice_time_ms;
 323   bool   _within_target;
 324   size_t _pending_cards;
 325   size_t _max_pending_cards;
 326 
 327 public:
 328 
 329   void set_region_short_lived(HeapRegion* hr) {
 330     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 331   }
 332 
 333   void set_region_survivors(HeapRegion* hr) {
 334     hr->install_surv_rate_group(_survivor_surv_rate_group);
 335   }
 336 
 337 #ifndef PRODUCT
 338   bool verify_young_ages();
 339 #endif // PRODUCT
 340 
 341   double get_new_prediction(TruncatedSeq* seq) {
 342     return MAX2(seq->davg() + sigma() * seq->dsd(),
 343                 seq->davg() * confidence_factor(seq->num()));
 344   }
 345 
 346   size_t young_cset_length() {
 347     return _young_cset_length;
 348   }
 349 
 350   void record_max_rs_lengths(size_t rs_lengths) {
 351     _max_rs_lengths = rs_lengths;
 352   }
 353 
 354   size_t predict_pending_card_diff() {
 355     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
 356     if (prediction < 0.00001)
 357       return 0;
 358     else
 359       return (size_t) prediction;
 360   }
 361 
 362   size_t predict_pending_cards() {
 363     size_t max_pending_card_num = _g1->max_pending_card_num();
 364     size_t diff = predict_pending_card_diff();
 365     size_t prediction;
 366     if (diff > max_pending_card_num)
 367       prediction = max_pending_card_num;
 368     else
 369       prediction = max_pending_card_num - diff;
 370 
 371     return prediction;
 372   }
 373 
 374   size_t predict_rs_length_diff() {
 375     return (size_t) get_new_prediction(_rs_length_diff_seq);
 376   }
 377 
 378   double predict_alloc_rate_ms() {
 379     return get_new_prediction(_alloc_rate_ms_seq);
 380   }
 381 
 382   double predict_cost_per_card_ms() {
 383     return get_new_prediction(_cost_per_card_ms_seq);
 384   }
 385 
 386   double predict_rs_update_time_ms(size_t pending_cards) {
 387     return (double) pending_cards * predict_cost_per_card_ms();
 388   }
 389 
 390   double predict_fully_young_cards_per_entry_ratio() {
 391     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
 392   }
 393 
 394   double predict_partially_young_cards_per_entry_ratio() {
 395     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
 396       return predict_fully_young_cards_per_entry_ratio();
 397     else
 398       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
 399   }
 400 
 401   size_t predict_young_card_num(size_t rs_length) {
 402     return (size_t) ((double) rs_length *
 403                      predict_fully_young_cards_per_entry_ratio());
 404   }
 405 
 406   size_t predict_non_young_card_num(size_t rs_length) {
 407     return (size_t) ((double) rs_length *
 408                      predict_partially_young_cards_per_entry_ratio());
 409   }
 410 
 411   double predict_rs_scan_time_ms(size_t card_num) {
 412     if (full_young_gcs())
 413       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 414     else
 415       return predict_partially_young_rs_scan_time_ms(card_num);
 416   }
 417 
 418   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
 419     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
 420       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 421     else
 422       return (double) card_num *
 423         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
 424   }
 425 
 426   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 427     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
 428       return 1.1 * (double) bytes_to_copy *
 429         get_new_prediction(_cost_per_byte_ms_seq);
 430     else
 431       return (double) bytes_to_copy *
 432         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 433   }
 434 
 435   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 436     if (_in_marking_window && !_in_marking_window_im)
 437       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 438     else
 439       return (double) bytes_to_copy *
 440         get_new_prediction(_cost_per_byte_ms_seq);
 441   }
 442 
 443   double predict_constant_other_time_ms() {
 444     return get_new_prediction(_constant_other_time_ms_seq);
 445   }
 446 
 447   double predict_young_other_time_ms(size_t young_num) {
 448     return
 449       (double) young_num *
 450       get_new_prediction(_young_other_cost_per_region_ms_seq);
 451   }
 452 
 453   double predict_non_young_other_time_ms(size_t non_young_num) {
 454     return
 455       (double) non_young_num *
 456       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 457   }
 458 
 459   void check_if_region_is_too_expensive(double predicted_time_ms);
 460 
 461   double predict_young_collection_elapsed_time_ms(size_t adjustment);
 462   double predict_base_elapsed_time_ms(size_t pending_cards);
 463   double predict_base_elapsed_time_ms(size_t pending_cards,
 464                                       size_t scanned_cards);
 465   size_t predict_bytes_to_copy(HeapRegion* hr);
 466   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
 467 
 468   void start_recording_regions();
 469   void record_cset_region_info(HeapRegion* hr, bool young);
 470   void record_non_young_cset_region(HeapRegion* hr);
 471 
 472   void set_recorded_young_regions(size_t n_regions);
 473   void set_recorded_young_bytes(size_t bytes);
 474   void set_recorded_rs_lengths(size_t rs_lengths);
 475   void set_predicted_bytes_to_copy(size_t bytes);
 476 
 477   void end_recording_regions();
 478 
 479   void record_vtime_diff_ms(double vtime_diff_ms) {
 480     _vtime_diff_ms = vtime_diff_ms;
 481   }
 482 
 483   void record_young_free_cset_time_ms(double time_ms) {
 484     _recorded_young_free_cset_time_ms = time_ms;
 485   }
 486 
 487   void record_non_young_free_cset_time_ms(double time_ms) {
 488     _recorded_non_young_free_cset_time_ms = time_ms;
 489   }
 490 
 491   double predict_young_gc_eff() {
 492     return get_new_neg_prediction(_young_gc_eff_seq);
 493   }
 494 
 495   double predict_survivor_regions_evac_time();
 496 
 497   // </NEW PREDICTION>
 498 
 499   void cset_regions_freed() {
 500     bool propagate = _last_young_gc_full && !_in_marking_window;
 501     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 502     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 503     // also call it on any more surv rate groups
 504   }
 505 
 506   void set_known_garbage_bytes(size_t known_garbage_bytes) {
 507     _known_garbage_bytes = known_garbage_bytes;
 508     size_t heap_bytes = _g1->capacity();
 509     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 510   }
 511 
 512   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
 513     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
 514 
 515     _known_garbage_bytes -= known_garbage_bytes;
 516     size_t heap_bytes = _g1->capacity();
 517     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 518   }
 519 
 520   G1MMUTracker* mmu_tracker() {
 521     return _mmu_tracker;
 522   }
 523 
 524   double max_pause_time_ms() {
 525     return _mmu_tracker->max_gc_time() * 1000.0;
 526   }
 527 
 528   double predict_remark_time_ms() {
 529     return get_new_prediction(_concurrent_mark_remark_times_ms);
 530   }
 531 
 532   double predict_cleanup_time_ms() {
 533     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 534   }
 535 
 536   // Returns an estimate of the survival rate of the region at yg-age
 537   // "yg_age".
 538   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 539     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 540     if (seq->num() == 0)
 541       gclog_or_tty->print("BARF! age is %d", age);
 542     guarantee( seq->num() > 0, "invariant" );
 543     double pred = get_new_prediction(seq);
 544     if (pred > 1.0)
 545       pred = 1.0;
 546     return pred;
 547   }
 548 
 549   double predict_yg_surv_rate(int age) {
 550     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 551   }
 552 
 553   double accum_yg_surv_rate_pred(int age) {
 554     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 555   }
 556 
 557 protected:
 558   void print_stats(int level, const char* str, double value);
 559   void print_stats(int level, const char* str, int value);
 560 
 561   void print_par_stats(int level, const char* str, double* data);
 562   void print_par_sizes(int level, const char* str, double* data);
 563 
 564   void check_other_times(int level,
 565                          NumberSeq* other_times_ms,
 566                          NumberSeq* calc_other_times_ms) const;
 567 
 568   void print_summary (PauseSummary* stats) const;
 569 
 570   void print_summary (int level, const char* str, NumberSeq* seq) const;
 571   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
 572 
 573   double avg_value (double* data);
 574   double max_value (double* data);
 575   double sum_of_values (double* data);
 576   double max_sum (double* data1, double* data2);
 577 
 578   int _last_satb_drain_processed_buffers;
 579   int _last_update_rs_processed_buffers;
 580   double _last_pause_time_ms;
 581 
 582   size_t _bytes_in_collection_set_before_gc;
 583   size_t _bytes_copied_during_gc;
 584 
 585   // Used to count used bytes in CS.
 586   friend class CountCSClosure;
 587 
 588   // Statistics kept per GC stoppage, pause or full.
 589   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 590 
 591   // We track markings.
 592   int _num_markings;
 593   double _mark_thread_startup_sec;       // Time at startup of marking thread
 594 
 595   // Add a new GC of the given duration and end time to the record.
 596   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 597 
 598   // The head of the list (via "next_in_collection_set()") representing the
 599   // current collection set. Set from the incrementally built collection
 600   // set at the start of the pause.
 601   HeapRegion* _collection_set;
 602 
 603   // The number of regions in the collection set. Set from the incrementally
 604   // built collection set at the start of an evacuation pause.
 605   size_t _collection_set_size;
 606 
 607   // The number of bytes in the collection set before the pause. Set from
 608   // the incrementally built collection set at the start of an evacuation
 609   // pause.
 610   size_t _collection_set_bytes_used_before;
 611 
 612   // The associated information that is maintained while the incremental
 613   // collection set is being built with young regions. Used to populate
 614   // the recorded info for the evacuation pause.
 615 
 616   enum CSetBuildType {
 617     Active,             // We are actively building the collection set
 618     Inactive            // We are not actively building the collection set
 619   };
 620 
 621   CSetBuildType _inc_cset_build_state;
 622 
 623   // The head of the incrementally built collection set.
 624   HeapRegion* _inc_cset_head;
 625 
 626   // The tail of the incrementally built collection set.
 627   HeapRegion* _inc_cset_tail;
 628 
 629   // The number of regions in the incrementally built collection set.
 630   // Used to set _collection_set_size at the start of an evacuation
 631   // pause.
 632   size_t _inc_cset_size;
 633 
 634   // Used as the index in the surving young words structure
 635   // which tracks the amount of space, for each young region,
 636   // that survives the pause.
 637   size_t _inc_cset_young_index;
 638 
 639   // The number of bytes in the incrementally built collection set.
 640   // Used to set _collection_set_bytes_used_before at the start of
 641   // an evacuation pause.
 642   size_t _inc_cset_bytes_used_before;
 643 
 644   // Used to record the highest end of heap region in collection set
 645   HeapWord* _inc_cset_max_finger;
 646 
 647   // The number of recorded used bytes in the young regions
 648   // of the collection set. This is the sum of the used() bytes
 649   // of retired young regions in the collection set.
 650   size_t _inc_cset_recorded_young_bytes;
 651 
 652   // The RSet lengths recorded for regions in the collection set
 653   // (updated by the periodic sampling of the regions in the
 654   // young list/collection set).
 655   size_t _inc_cset_recorded_rs_lengths;
 656 
 657   // The predicted elapsed time it will take to collect the regions
 658   // in the collection set (updated by the periodic sampling of the
 659   // regions in the young list/collection set).
 660   double _inc_cset_predicted_elapsed_time_ms;
 661 
 662   // The predicted bytes to copy for the regions in the collection
 663   // set (updated by the periodic sampling of the regions in the
 664   // young list/collection set).
 665   size_t _inc_cset_predicted_bytes_to_copy;
 666 
 667   // Info about marking.
 668   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
 669 
 670   // The number of collection pauses at the end of the last mark.
 671   size_t _n_pauses_at_mark_end;
 672 
 673   // Stash a pointer to the g1 heap.
 674   G1CollectedHeap* _g1;
 675 
 676   // The average time in ms per collection pause, averaged over recent pauses.
 677   double recent_avg_time_for_pauses_ms();
 678 
 679   // The average time in ms for RS scanning, per pause, averaged
 680   // over recent pauses. (Note the RS scanning time for a pause
 681   // is itself an average of the RS scanning time for each worker
 682   // thread.)
 683   double recent_avg_time_for_rs_scan_ms();
 684 
 685   // The number of "recent" GCs recorded in the number sequences
 686   int number_of_recent_gcs();
 687 
 688   // The average survival ratio, computed by the total number of bytes
 689   // suriviving / total number of bytes before collection over the last
 690   // several recent pauses.
 691   double recent_avg_survival_fraction();
 692   // The survival fraction of the most recent pause; if there have been no
 693   // pauses, returns 1.0.
 694   double last_survival_fraction();
 695 
 696   // Returns a "conservative" estimate of the recent survival rate, i.e.,
 697   // one that may be higher than "recent_avg_survival_fraction".
 698   // This is conservative in several ways:
 699   //   If there have been few pauses, it will assume a potential high
 700   //     variance, and err on the side of caution.
 701   //   It puts a lower bound (currently 0.1) on the value it will return.
 702   //   To try to detect phase changes, if the most recent pause ("latest") has a
 703   //     higher-than average ("avg") survival rate, it returns that rate.
 704   // "work" version is a utility function; young is restricted to young regions.
 705   double conservative_avg_survival_fraction_work(double avg,
 706                                                  double latest);
 707 
 708   // The arguments are the two sequences that keep track of the number of bytes
 709   //   surviving and the total number of bytes before collection, resp.,
 710   //   over the last evereal recent pauses
 711   // Returns the survival rate for the category in the most recent pause.
 712   // If there have been no pauses, returns 1.0.
 713   double last_survival_fraction_work(TruncatedSeq* surviving,
 714                                      TruncatedSeq* before);
 715 
 716   // The arguments are the two sequences that keep track of the number of bytes
 717   //   surviving and the total number of bytes before collection, resp.,
 718   //   over the last several recent pauses
 719   // Returns the average survival ration over the last several recent pauses
 720   // If there have been no pauses, return 1.0
 721   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
 722                                            TruncatedSeq* before);
 723 
 724   double conservative_avg_survival_fraction() {
 725     double avg = recent_avg_survival_fraction();
 726     double latest = last_survival_fraction();
 727     return conservative_avg_survival_fraction_work(avg, latest);
 728   }
 729 
 730   // The ratio of gc time to elapsed time, computed over recent pauses.
 731   double _recent_avg_pause_time_ratio;
 732 
 733   double recent_avg_pause_time_ratio() {
 734     return _recent_avg_pause_time_ratio;
 735   }
 736 
 737   // Number of pauses between concurrent marking.
 738   size_t _pauses_btwn_concurrent_mark;
 739 
 740   size_t _n_marks_since_last_pause;
 741 
 742   // At the end of a pause we check the heap occupancy and we decide
 743   // whether we will start a marking cycle during the next pause. If
 744   // we decide that we want to do that, we will set this parameter to
 745   // true. So, this parameter will stay true between the end of a
 746   // pause and the beginning of a subsequent pause (not necessarily
 747   // the next one, see the comments on the next field) when we decide
 748   // that we will indeed start a marking cycle and do the initial-mark
 749   // work.
 750   volatile bool _initiate_conc_mark_if_possible;
 751 
 752   // If initiate_conc_mark_if_possible() is set at the beginning of a
 753   // pause, it is a suggestion that the pause should start a marking
 754   // cycle by doing the initial-mark work. However, it is possible
 755   // that the concurrent marking thread is still finishing up the
 756   // previous marking cycle (e.g., clearing the next marking
 757   // bitmap). If that is the case we cannot start a new cycle and
 758   // we'll have to wait for the concurrent marking thread to finish
 759   // what it is doing. In this case we will postpone the marking cycle
 760   // initiation decision for the next pause. When we eventually decide
 761   // to start a cycle, we will set _during_initial_mark_pause which
 762   // will stay true until the end of the initial-mark pause and it's
 763   // the condition that indicates that a pause is doing the
 764   // initial-mark work.
 765   volatile bool _during_initial_mark_pause;
 766 
 767   bool _should_revert_to_full_young_gcs;
 768   bool _last_full_young_gc;
 769 
 770   // This set of variables tracks the collector efficiency, in order to
 771   // determine whether we should initiate a new marking.
 772   double _cur_mark_stop_world_time_ms;
 773   double _mark_remark_start_sec;
 774   double _mark_cleanup_start_sec;
 775   double _mark_closure_time_ms;
 776 
 777   // Update the young list target length either by setting it to the
 778   // desired fixed value or by calculating it using G1's pause
 779   // prediction model. If no rs_lengths parameter is passed, predict
 780   // the RS lengths using the prediction model, otherwise use the
 781   // given rs_lengths as the prediction.
 782   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
 783 
 784   // Calculate and return the minimum desired young list target
 785   // length. This is the minimum desired young list length according
 786   // to the user's inputs.
 787   size_t calculate_young_list_desired_min_length(size_t base_min_length);
 788 
 789   // Calculate and return the maximum desired young list target
 790   // length. This is the maximum desired young list length according
 791   // to the user's inputs.
 792   size_t calculate_young_list_desired_max_length();
 793 
 794   // Calculate and return the maximum young list target length that
 795   // can fit into the pause time goal. The parameters are: rs_lengths
 796   // represent the prediction of how large the young RSet lengths will
 797   // be, base_min_length is the alreay existing number of regions in
 798   // the young list, min_length and max_length are the desired min and
 799   // max young list length according to the user's inputs.
 800   size_t calculate_young_list_target_length(size_t rs_lengths,
 801                                             size_t base_min_length,
 802                                             size_t desired_min_length,
 803                                             size_t desired_max_length);
 804 
 805   // Check whether a given young length (young_length) fits into the
 806   // given target pause time and whether the prediction for the amount
 807   // of objects to be copied for the given length will fit into the
 808   // given free space (expressed by base_free_regions).  It is used by
 809   // calculate_young_list_target_length().
 810   bool predict_will_fit(size_t young_length, double base_time_ms,
 811                         size_t base_free_regions, double target_pause_time_ms);
 812 
 813 public:
 814 
 815   G1CollectorPolicy();
 816 
 817   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 818 
 819   virtual CollectorPolicy::Name kind() {
 820     return CollectorPolicy::G1CollectorPolicyKind;
 821   }
 822 
 823   // Check the current value of the young list RSet lengths and
 824   // compare it against the last prediction. If the current value is
 825   // higher, recalculate the young list target length prediction.
 826   void revise_young_list_target_length_if_necessary();
 827 
 828   size_t bytes_in_collection_set() {
 829     return _bytes_in_collection_set_before_gc;
 830   }
 831 
 832   unsigned calc_gc_alloc_time_stamp() {
 833     return _all_pause_times_ms->num() + 1;
 834   }
 835 
 836   // This should be called after the heap is resized.
 837   void record_new_heap_size(size_t new_number_of_regions);
 838 
 839 protected:
 840 
 841   // Count the number of bytes used in the CS.
 842   void count_CS_bytes_used();
 843 
 844   // Together these do the base cleanup-recording work.  Subclasses might
 845   // want to put something between them.
 846   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
 847                                                 size_t max_live_bytes);
 848   void record_concurrent_mark_cleanup_end_work2();
 849 
 850   void update_young_list_size_using_newratio(size_t number_of_heap_regions);
 851 
 852 public:
 853 
 854   virtual void init();
 855 
 856   // Create jstat counters for the policy.
 857   virtual void initialize_gc_policy_counters();
 858 
 859   virtual HeapWord* mem_allocate_work(size_t size,
 860                                       bool is_tlab,
 861                                       bool* gc_overhead_limit_was_exceeded);
 862 
 863   // This method controls how a collector handles one or more
 864   // of its generations being fully allocated.
 865   virtual HeapWord* satisfy_failed_allocation(size_t size,
 866                                               bool is_tlab);
 867 
 868   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 869 
 870   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 871 
 872   // The number of collection pauses so far.
 873   long n_pauses() const { return _n_pauses; }
 874 
 875   // Update the heuristic info to record a collection pause of the given
 876   // start time, where the given number of bytes were used at the start.
 877   // This may involve changing the desired size of a collection set.
 878 
 879   virtual void record_stop_world_start();
 880 
 881   virtual void record_collection_pause_start(double start_time_sec,
 882                                              size_t start_used);
 883 
 884   // Must currently be called while the world is stopped.
 885   void record_concurrent_mark_init_end(double
 886                                            mark_init_elapsed_time_ms);
 887 
 888   void record_mark_closure_time(double mark_closure_time_ms);
 889 
 890   virtual void record_concurrent_mark_remark_start();
 891   virtual void record_concurrent_mark_remark_end();
 892 
 893   virtual void record_concurrent_mark_cleanup_start();
 894   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
 895                                                   size_t max_live_bytes);
 896   virtual void record_concurrent_mark_cleanup_completed();
 897 
 898   virtual void record_concurrent_pause();
 899   virtual void record_concurrent_pause_end();
 900 
 901   virtual void record_collection_pause_end();
 902   void print_heap_transition();
 903 
 904   // Record the fact that a full collection occurred.
 905   virtual void record_full_collection_start();
 906   virtual void record_full_collection_end();
 907 
 908   void record_gc_worker_start_time(int worker_i, double ms) {
 909     _par_last_gc_worker_start_times_ms[worker_i] = ms;
 910   }
 911 
 912   void record_ext_root_scan_time(int worker_i, double ms) {
 913     _par_last_ext_root_scan_times_ms[worker_i] = ms;
 914   }
 915 
 916   void record_mark_stack_scan_time(int worker_i, double ms) {
 917     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
 918   }
 919 
 920   void record_satb_drain_time(double ms) {
 921     _cur_satb_drain_time_ms = ms;
 922     _satb_drain_time_set    = true;
 923   }
 924 
 925   void record_satb_drain_processed_buffers (int processed_buffers) {
 926     _last_satb_drain_processed_buffers = processed_buffers;
 927   }
 928 
 929   void record_mod_union_time(double ms) {
 930     _all_mod_union_times_ms->add(ms);
 931   }
 932 
 933   void record_update_rs_time(int thread, double ms) {
 934     _par_last_update_rs_times_ms[thread] = ms;
 935   }
 936 
 937   void record_update_rs_processed_buffers (int thread,
 938                                            double processed_buffers) {
 939     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
 940   }
 941 
 942   void record_scan_rs_time(int thread, double ms) {
 943     _par_last_scan_rs_times_ms[thread] = ms;
 944   }
 945 
 946   void reset_obj_copy_time(int thread) {
 947     _par_last_obj_copy_times_ms[thread] = 0.0;
 948   }
 949 
 950   void reset_obj_copy_time() {
 951     reset_obj_copy_time(0);
 952   }
 953 
 954   void record_obj_copy_time(int thread, double ms) {
 955     _par_last_obj_copy_times_ms[thread] += ms;
 956   }
 957 
 958   void record_termination(int thread, double ms, size_t attempts) {
 959     _par_last_termination_times_ms[thread] = ms;
 960     _par_last_termination_attempts[thread] = (double) attempts;
 961   }
 962 
 963   void record_gc_worker_end_time(int worker_i, double ms) {
 964     _par_last_gc_worker_end_times_ms[worker_i] = ms;
 965   }
 966 
 967   void record_pause_time_ms(double ms) {
 968     _last_pause_time_ms = ms;
 969   }
 970 
 971   void record_clear_ct_time(double ms) {
 972     _cur_clear_ct_time_ms = ms;
 973   }
 974 
 975   void record_par_time(double ms) {
 976     _cur_collection_par_time_ms = ms;
 977   }
 978 
 979   void record_aux_start_time(int i) {
 980     guarantee(i < _aux_num, "should be within range");
 981     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
 982   }
 983 
 984   void record_aux_end_time(int i) {
 985     guarantee(i < _aux_num, "should be within range");
 986     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
 987     _cur_aux_times_set[i] = true;
 988     _cur_aux_times_ms[i] += ms;
 989   }
 990 
 991   void record_ref_proc_time(double ms) {
 992     _cur_ref_proc_time_ms = ms;
 993   }
 994 
 995   void record_ref_enq_time(double ms) {
 996     _cur_ref_enq_time_ms = ms;
 997   }
 998 
 999 #ifndef PRODUCT
1000   void record_cc_clear_time(double ms) {
1001     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
1002       _min_clear_cc_time_ms = ms;
1003     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
1004       _max_clear_cc_time_ms = ms;
1005     _cur_clear_cc_time_ms = ms;
1006     _cum_clear_cc_time_ms += ms;
1007     _num_cc_clears++;
1008   }
1009 #endif
1010 
1011   // Record how much space we copied during a GC. This is typically
1012   // called when a GC alloc region is being retired.
1013   void record_bytes_copied_during_gc(size_t bytes) {
1014     _bytes_copied_during_gc += bytes;
1015   }
1016 
1017   // The amount of space we copied during a GC.
1018   size_t bytes_copied_during_gc() {
1019     return _bytes_copied_during_gc;
1020   }
1021 
1022   // Choose a new collection set.  Marks the chosen regions as being
1023   // "in_collection_set", and links them together.  The head and number of
1024   // the collection set are available via access methods.
1025   virtual void choose_collection_set(double target_pause_time_ms) = 0;
1026 
1027   // The head of the list (via "next_in_collection_set()") representing the
1028   // current collection set.
1029   HeapRegion* collection_set() { return _collection_set; }
1030 
1031   void clear_collection_set() { _collection_set = NULL; }
1032 
1033   // The number of elements in the current collection set.
1034   size_t collection_set_size() { return _collection_set_size; }
1035 
1036   // Add "hr" to the CS.
1037   void add_to_collection_set(HeapRegion* hr);
1038 
1039   // Incremental CSet Support
1040 
1041   // The head of the incrementally built collection set.
1042   HeapRegion* inc_cset_head() { return _inc_cset_head; }
1043 
1044   // The tail of the incrementally built collection set.
1045   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
1046 
1047   // The number of elements in the incrementally built collection set.
1048   size_t inc_cset_size() { return _inc_cset_size; }
1049 
1050   // Initialize incremental collection set info.
1051   void start_incremental_cset_building();
1052 
1053   void clear_incremental_cset() {
1054     _inc_cset_head = NULL;
1055     _inc_cset_tail = NULL;
1056   }
1057 
1058   // Stop adding regions to the incremental collection set
1059   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
1060 
1061   // Add/remove information about hr to the aggregated information
1062   // for the incrementally built collection set.
1063   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
1064   void remove_from_incremental_cset_info(HeapRegion* hr);
1065 
1066   // Update information about hr in the aggregated information for
1067   // the incrementally built collection set.
1068   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
1069 
1070 private:
1071   // Update the incremental cset information when adding a region
1072   // (should not be called directly).
1073   void add_region_to_incremental_cset_common(HeapRegion* hr);
1074 
1075 public:
1076   // Add hr to the LHS of the incremental collection set.
1077   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
1078 
1079   // Add hr to the RHS of the incremental collection set.
1080   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
1081 
1082 #ifndef PRODUCT
1083   void print_collection_set(HeapRegion* list_head, outputStream* st);
1084 #endif // !PRODUCT
1085 
1086   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
1087   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
1088   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
1089 
1090   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
1091   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
1092   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
1093 
1094   // This sets the initiate_conc_mark_if_possible() flag to start a
1095   // new cycle, as long as we are not already in one. It's best if it
1096   // is called during a safepoint when the test whether a cycle is in
1097   // progress or not is stable.
1098   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
1099 
1100   // This is called at the very beginning of an evacuation pause (it
1101   // has to be the first thing that the pause does). If
1102   // initiate_conc_mark_if_possible() is true, and the concurrent
1103   // marking thread has completed its work during the previous cycle,
1104   // it will set during_initial_mark_pause() to so that the pause does
1105   // the initial-mark work and start a marking cycle.
1106   void decide_on_conc_mark_initiation();
1107 
1108   // If an expansion would be appropriate, because recent GC overhead had
1109   // exceeded the desired limit, return an amount to expand by.
1110   virtual size_t expansion_amount();
1111 
1112   // note start of mark thread
1113   void note_start_of_mark_thread();
1114 
1115   // The marked bytes of the "r" has changed; reclassify it's desirability
1116   // for marking.  Also asserts that "r" is eligible for a CS.
1117   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
1118 
1119 #ifndef PRODUCT
1120   // Check any appropriate marked bytes info, asserting false if
1121   // something's wrong, else returning "true".
1122   virtual bool assertMarkedBytesDataOK() = 0;
1123 #endif
1124 
1125   // Print tracing information.
1126   void print_tracing_info() const;
1127 
1128   // Print stats on young survival ratio
1129   void print_yg_surv_rate_info() const;
1130 
1131   void finished_recalculating_age_indexes(bool is_survivors) {
1132     if (is_survivors) {
1133       _survivor_surv_rate_group->finished_recalculating_age_indexes();
1134     } else {
1135       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
1136     }
1137     // do that for any other surv rate groups
1138   }
1139 
1140   bool is_young_list_full() {
1141     size_t young_list_length = _g1->young_list()->length();
1142     size_t young_list_target_length = _young_list_target_length;
1143     return young_list_length >= young_list_target_length;
1144   }
1145 
1146   bool can_expand_young_list() {
1147     size_t young_list_length = _g1->young_list()->length();
1148     size_t young_list_max_length = _young_list_max_length;
1149     return young_list_length < young_list_max_length;
1150   }
1151 
1152   void update_region_num(bool young);
1153 
1154   bool full_young_gcs() {
1155     return _full_young_gcs;
1156   }
1157   void set_full_young_gcs(bool full_young_gcs) {
1158     _full_young_gcs = full_young_gcs;
1159   }
1160 
1161   bool adaptive_young_list_length() {
1162     return _adaptive_young_list_length;
1163   }
1164   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
1165     _adaptive_young_list_length = adaptive_young_list_length;
1166   }
1167 
1168   inline double get_gc_eff_factor() {
1169     double ratio = _known_garbage_ratio;
1170 
1171     double square = ratio * ratio;
1172     // square = square * square;
1173     double ret = square * 9.0 + 1.0;
1174 #if 0
1175     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
1176 #endif // 0
1177     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
1178     return ret;
1179   }
1180 
1181   //
1182   // Survivor regions policy.
1183   //
1184 protected:
1185 
1186   // Current tenuring threshold, set to 0 if the collector reaches the
1187   // maximum amount of suvivors regions.
1188   int _tenuring_threshold;
1189 
1190   // The limit on the number of regions allocated for survivors.
1191   size_t _max_survivor_regions;
1192 
1193   // For reporting purposes.
1194   size_t _eden_bytes_before_gc;
1195   size_t _survivor_bytes_before_gc;
1196   size_t _capacity_before_gc;
1197 
1198   // The amount of survor regions after a collection.
1199   size_t _recorded_survivor_regions;
1200   // List of survivor regions.
1201   HeapRegion* _recorded_survivor_head;
1202   HeapRegion* _recorded_survivor_tail;
1203 
1204   ageTable _survivors_age_table;
1205 
1206 public:
1207 
1208   inline GCAllocPurpose
1209     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1210       if (age < _tenuring_threshold && src_region->is_young()) {
1211         return GCAllocForSurvived;
1212       } else {
1213         return GCAllocForTenured;
1214       }
1215   }
1216 
1217   inline bool track_object_age(GCAllocPurpose purpose) {
1218     return purpose == GCAllocForSurvived;
1219   }
1220 
1221   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
1222 
1223   size_t max_regions(int purpose);
1224 
1225   // The limit on regions for a particular purpose is reached.
1226   void note_alloc_region_limit_reached(int purpose) {
1227     if (purpose == GCAllocForSurvived) {
1228       _tenuring_threshold = 0;
1229     }
1230   }
1231 
1232   void note_start_adding_survivor_regions() {
1233     _survivor_surv_rate_group->start_adding_regions();
1234   }
1235 
1236   void note_stop_adding_survivor_regions() {
1237     _survivor_surv_rate_group->stop_adding_regions();
1238   }
1239 
1240   void record_survivor_regions(size_t      regions,
1241                                HeapRegion* head,
1242                                HeapRegion* tail) {
1243     _recorded_survivor_regions = regions;
1244     _recorded_survivor_head    = head;
1245     _recorded_survivor_tail    = tail;
1246   }
1247 
1248   size_t recorded_survivor_regions() {
1249     return _recorded_survivor_regions;
1250   }
1251 
1252   void record_thread_age_table(ageTable* age_table)
1253   {
1254     _survivors_age_table.merge_par(age_table);
1255   }
1256 
1257   void update_max_gc_locker_expansion();
1258 
1259   // Calculates survivor space parameters.
1260   void update_survivors_policy();
1261 
1262 };
1263 
1264 // This encapsulates a particular strategy for a g1 Collector.
1265 //
1266 //      Start a concurrent mark when our heap size is n bytes
1267 //            greater then our heap size was at the last concurrent
1268 //            mark.  Where n is a function of the CMSTriggerRatio
1269 //            and the MinHeapFreeRatio.
1270 //
1271 //      Start a g1 collection pause when we have allocated the
1272 //            average number of bytes currently being freed in
1273 //            a collection, but only if it is at least one region
1274 //            full
1275 //
1276 //      Resize Heap based on desired
1277 //      allocation space, where desired allocation space is
1278 //      a function of survival rate and desired future to size.
1279 //
1280 //      Choose collection set by first picking all older regions
1281 //      which have a survival rate which beats our projected young
1282 //      survival rate.  Then fill out the number of needed regions
1283 //      with young regions.
1284 
1285 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
1286   CollectionSetChooser* _collectionSetChooser;
1287 
1288   virtual void choose_collection_set(double target_pause_time_ms);
1289   virtual void record_collection_pause_start(double start_time_sec,
1290                                              size_t start_used);
1291   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
1292                                                   size_t max_live_bytes);
1293   virtual void record_full_collection_end();
1294 
1295 public:
1296   G1CollectorPolicy_BestRegionsFirst() {
1297     _collectionSetChooser = new CollectionSetChooser();
1298   }
1299   void record_collection_pause_end();
1300   // This is not needed any more, after the CSet choosing code was
1301   // changed to use the pause prediction work. But let's leave the
1302   // hook in just in case.
1303   void note_change_in_marked_bytes(HeapRegion* r) { }
1304 #ifndef PRODUCT
1305   bool assertMarkedBytesDataOK();
1306 #endif
1307 };
1308 
1309 // This should move to some place more general...
1310 
1311 // If we have "n" measurements, and we've kept track of their "sum" and the
1312 // "sum_of_squares" of the measurements, this returns the variance of the
1313 // sequence.
1314 inline double variance(int n, double sum_of_squares, double sum) {
1315   double n_d = (double)n;
1316   double avg = sum/n_d;
1317   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1318 }
1319 
1320 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP