src/share/vm/memory/referenceProcessor.hpp

Print this page
rev 2661 : [mq]: g1-reference-processing


  31 // ReferenceProcessor class encapsulates the per-"collector" processing
  32 // of java.lang.Reference objects for GC. The interface is useful for supporting
  33 // a generational abstraction, in particular when there are multiple
  34 // generations that are being independently collected -- possibly
  35 // concurrently and/or incrementally.  Note, however, that the
  36 // ReferenceProcessor class abstracts away from a generational setting
  37 // by using only a heap interval (called "span" below), thus allowing
  38 // its use in a straightforward manner in a general, non-generational
  39 // setting.
  40 //
  41 // The basic idea is that each ReferenceProcessor object concerns
  42 // itself with ("weak") reference processing in a specific "span"
  43 // of the heap of interest to a specific collector. Currently,
  44 // the span is a convex interval of the heap, but, efficiency
  45 // apart, there seems to be no reason it couldn't be extended
  46 // (with appropriate modifications) to any "non-convex interval".
  47 
  48 // forward references
  49 class ReferencePolicy;
  50 class AbstractRefProcTaskExecutor;
  51 class DiscoveredList;


























































































































































  52 
  53 class ReferenceProcessor : public CHeapObj {
  54  protected:
  55   // Compatibility with pre-4965777 JDK's
  56   static bool _pending_list_uses_discovered_field;

  57   MemRegion   _span; // (right-open) interval of heap
  58                      // subject to wkref discovery

  59   bool        _discovering_refs;      // true when discovery enabled
  60   bool        _discovery_is_atomic;   // if discovery is atomic wrt
  61                                       // other collectors in configuration
  62   bool        _discovery_is_mt;       // true if reference discovery is MT.

  63   // If true, setting "next" field of a discovered refs list requires
  64   // write barrier(s).  (Must be true if used in a collector in which
  65   // elements of a discovered list may be moved during discovery: for
  66   // example, a collector like Garbage-First that moves objects during a
  67   // long-term concurrent marking phase that does weak reference
  68   // discovery.)
  69   bool        _discovered_list_needs_barrier;

  70   BarrierSet* _bs;                    // Cached copy of BarrierSet.
  71   bool        _enqueuing_is_done;     // true if all weak references enqueued
  72   bool        _processing_is_mt;      // true during phases when
  73                                       // reference processing is MT.
  74   int         _next_id;               // round-robin mod _num_q counter in
  75                                       // support of work distribution
  76 
  77   // For collectors that do not keep GC marking information
  78   // in the object header, this field holds a closure that
  79   // helps the reference processor determine the reachability
  80   // of an oop (the field is currently initialized to NULL for
  81   // all collectors but the CMS collector).
  82   BoolObjectClosure* _is_alive_non_header;
  83 
  84   // Soft ref clearing policies
  85   // . the default policy
  86   static ReferencePolicy*   _default_soft_ref_policy;
  87   // . the "clear all" policy
  88   static ReferencePolicy*   _always_clear_soft_ref_policy;
  89   // . the current policy below is either one of the above
  90   ReferencePolicy*          _current_soft_ref_policy;
  91 
  92   // The discovered ref lists themselves
  93 
  94   // The active MT'ness degree of the queues below
  95   int             _num_q;
  96   // The maximum MT'ness degree of the queues below
  97   int             _max_num_q;
  98   // Arrays of lists of oops, one per thread
  99   DiscoveredList* _discoveredSoftRefs;
 100   DiscoveredList* _discoveredWeakRefs;
 101   DiscoveredList* _discoveredFinalRefs;
 102   DiscoveredList* _discoveredPhantomRefs;
 103 
 104  public:


 105   int num_q()                            { return _num_q; }
 106   int max_num_q()                        { return _max_num_q; }
 107   void set_active_mt_degree(int v)       { _num_q = v; }
 108   DiscoveredList* discovered_soft_refs() { return _discoveredSoftRefs; }
 109   ReferencePolicy* setup_policy(bool always_clear) {
 110     _current_soft_ref_policy = always_clear ?
 111       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 112     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 113     return _current_soft_ref_policy;
 114   }
 115 
 116   // Process references with a certain reachability level.
 117   void process_discovered_reflist(DiscoveredList               refs_lists[],
 118                                   ReferencePolicy*             policy,
 119                                   bool                         clear_referent,
 120                                   BoolObjectClosure*           is_alive,
 121                                   OopClosure*                  keep_alive,
 122                                   VoidClosure*                 complete_gc,
 123                                   AbstractRefProcTaskExecutor* task_executor);
 124 




  31 // ReferenceProcessor class encapsulates the per-"collector" processing
  32 // of java.lang.Reference objects for GC. The interface is useful for supporting
  33 // a generational abstraction, in particular when there are multiple
  34 // generations that are being independently collected -- possibly
  35 // concurrently and/or incrementally.  Note, however, that the
  36 // ReferenceProcessor class abstracts away from a generational setting
  37 // by using only a heap interval (called "span" below), thus allowing
  38 // its use in a straightforward manner in a general, non-generational
  39 // setting.
  40 //
  41 // The basic idea is that each ReferenceProcessor object concerns
  42 // itself with ("weak") reference processing in a specific "span"
  43 // of the heap of interest to a specific collector. Currently,
  44 // the span is a convex interval of the heap, but, efficiency
  45 // apart, there seems to be no reason it couldn't be extended
  46 // (with appropriate modifications) to any "non-convex interval".
  47 
  48 // forward references
  49 class ReferencePolicy;
  50 class AbstractRefProcTaskExecutor;
  51 
  52 // List of discovered references.
  53 class DiscoveredList {
  54 public:
  55   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  56   oop head() const     {
  57      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
  58                                 _oop_head;
  59   }
  60   HeapWord* adr_head() {
  61     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  62                                (HeapWord*)&_oop_head;
  63   }
  64   void set_head(oop o) {
  65     if (UseCompressedOops) {
  66       // Must compress the head ptr.
  67       _compressed_head = oopDesc::encode_heap_oop(o);
  68     } else {
  69       _oop_head = o;
  70     }
  71   }
  72   bool   is_empty() const       { return head() == NULL; }
  73   size_t length()               { return _len; }
  74   void   set_length(size_t len) { _len = len;  }
  75   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  76   void   dec_length(size_t dec) { _len -= dec; }
  77 private:
  78   // Set value depending on UseCompressedOops. This could be a template class
  79   // but then we have to fix all the instantiations and declarations that use this class.
  80   oop       _oop_head;
  81   narrowOop _compressed_head;
  82   size_t _len;
  83 };
  84 
  85 // Iterator for the list of discovered references.
  86 class DiscoveredListIterator {
  87 private:
  88   DiscoveredList&    _refs_list;
  89   HeapWord*          _prev_next;
  90   oop                _prev;
  91   oop                _ref;
  92   HeapWord*          _discovered_addr;
  93   oop                _next;
  94   HeapWord*          _referent_addr;
  95   oop                _referent;
  96   OopClosure*        _keep_alive;
  97   BoolObjectClosure* _is_alive;
  98 
  99   DEBUG_ONLY(
 100   oop                _first_seen; // cyclic linked list check
 101   )
 102 
 103   NOT_PRODUCT(
 104   size_t             _processed;
 105   size_t             _removed;
 106   )
 107 
 108 public:
 109   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 110                                 OopClosure*        keep_alive,
 111                                 BoolObjectClosure* is_alive):
 112     _refs_list(refs_list),
 113     _prev_next(refs_list.adr_head()),
 114     _prev(NULL),
 115     _ref(refs_list.head()),
 116 #ifdef ASSERT
 117     _first_seen(refs_list.head()),
 118 #endif
 119 #ifndef PRODUCT
 120     _processed(0),
 121     _removed(0),
 122 #endif
 123     _next(NULL),
 124     _keep_alive(keep_alive),
 125     _is_alive(is_alive)
 126 { }
 127 
 128   // End Of List.
 129   inline bool has_next() const { return _ref != NULL; }
 130 
 131   // Get oop to the Reference object.
 132   inline oop obj() const { return _ref; }
 133 
 134   // Get oop to the referent object.
 135   inline oop referent() const { return _referent; }
 136 
 137   // Returns true if referent is alive.
 138   inline bool is_referent_alive() const {
 139     return _is_alive->do_object_b(_referent);
 140   }
 141 
 142   // Loads data for the current reference.
 143   // The "allow_null_referent" argument tells us to allow for the possibility
 144   // of a NULL referent in the discovered Reference object. This typically
 145   // happens in the case of concurrent collectors that may have done the
 146   // discovery concurrently, or interleaved, with mutator execution.
 147   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 148 
 149   // Move to the next discovered reference.
 150   inline void next() {
 151     _prev_next = _discovered_addr;
 152     _prev = _ref;
 153     move_to_next();
 154   }
 155 
 156   // Remove the current reference from the list
 157   void remove();
 158 
 159   // Make the Reference object active again.
 160   void make_active();
 161 
 162   // Make the referent alive.
 163   inline void make_referent_alive() {
 164     if (UseCompressedOops) {
 165       _keep_alive->do_oop((narrowOop*)_referent_addr);
 166     } else {
 167       _keep_alive->do_oop((oop*)_referent_addr);
 168     }
 169   }
 170 
 171   // Update the discovered field.
 172   inline void update_discovered() {
 173     // First _prev_next ref actually points into DiscoveredList (gross).
 174     if (UseCompressedOops) {
 175       if (!oopDesc::is_null(*(narrowOop*)_prev_next)) {
 176         _keep_alive->do_oop((narrowOop*)_prev_next);
 177       }
 178     } else {
 179       if (!oopDesc::is_null(*(oop*)_prev_next)) {
 180         _keep_alive->do_oop((oop*)_prev_next);
 181       }
 182     }
 183   }
 184 
 185   // NULL out referent pointer.
 186   void clear_referent();
 187 
 188   // Statistics
 189   NOT_PRODUCT(
 190   inline size_t processed() const { return _processed; }
 191   inline size_t removed() const   { return _removed; }
 192   )
 193 
 194   inline void move_to_next() {
 195     if (_ref == _next) {
 196       // End of the list.
 197       _ref = NULL;
 198     } else {
 199       _ref = _next;
 200     }
 201     assert(_ref != _first_seen, "cyclic ref_list found");
 202     NOT_PRODUCT(_processed++);
 203   }
 204 
 205 };
 206 
 207 class ReferenceProcessor : public CHeapObj {
 208  protected:
 209   // Compatibility with pre-4965777 JDK's
 210   static bool _pending_list_uses_discovered_field;
 211 
 212   MemRegion   _span;                    // (right-open) interval of heap
 213                                         // subject to wkref discovery
 214 
 215   bool        _discovering_refs;        // true when discovery enabled
 216   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 217                                         // other collectors in configuration
 218   bool        _discovery_is_mt;         // true if reference discovery is MT.
 219 
 220   // If true, setting "next" field of a discovered refs list requires
 221   // write barrier(s).  (Must be true if used in a collector in which
 222   // elements of a discovered list may be moved during discovery: for
 223   // example, a collector like Garbage-First that moves objects during a
 224   // long-term concurrent marking phase that does weak reference
 225   // discovery.)
 226   bool        _discovered_list_needs_barrier;
 227 
 228   BarrierSet* _bs;                      // Cached copy of BarrierSet.
 229   bool        _enqueuing_is_done;       // true if all weak references enqueued
 230   bool        _processing_is_mt;        // true during phases when
 231                                         // reference processing is MT.
 232   int         _next_id;                 // round-robin mod _num_q counter in
 233                                         // support of work distribution
 234 
 235   // For collectors that do not keep GC liveness information
 236   // in the object header, this field holds a closure that
 237   // helps the reference processor determine the reachability
 238   // of an oop. It is currently initialized to NULL for all
 239   // collectors except for CMS and G1.
 240   BoolObjectClosure* _is_alive_non_header;
 241 
 242   // Soft ref clearing policies
 243   // . the default policy
 244   static ReferencePolicy*   _default_soft_ref_policy;
 245   // . the "clear all" policy
 246   static ReferencePolicy*   _always_clear_soft_ref_policy;
 247   // . the current policy below is either one of the above
 248   ReferencePolicy*          _current_soft_ref_policy;
 249 
 250   // The discovered ref lists themselves
 251 
 252   // The active MT'ness degree of the queues below
 253   int             _num_q;
 254   // The maximum MT'ness degree of the queues below
 255   int             _max_num_q;
 256   // Arrays of lists of oops, one per thread
 257   DiscoveredList* _discoveredSoftRefs;
 258   DiscoveredList* _discoveredWeakRefs;
 259   DiscoveredList* _discoveredFinalRefs;
 260   DiscoveredList* _discoveredPhantomRefs;
 261 
 262  public:
 263   static int subclasses_of_ref()         { return (REF_PHANTOM - REF_OTHER); }
 264 
 265   int num_q()                            { return _num_q; }
 266   int max_num_q()                        { return _max_num_q; }
 267   void set_active_mt_degree(int v)       { _num_q = v; }
 268   DiscoveredList* discovered_soft_refs() { return _discoveredSoftRefs; }
 269   ReferencePolicy* setup_policy(bool always_clear) {
 270     _current_soft_ref_policy = always_clear ?
 271       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 272     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 273     return _current_soft_ref_policy;
 274   }
 275 
 276   // Process references with a certain reachability level.
 277   void process_discovered_reflist(DiscoveredList               refs_lists[],
 278                                   ReferencePolicy*             policy,
 279                                   bool                         clear_referent,
 280                                   BoolObjectClosure*           is_alive,
 281                                   OopClosure*                  keep_alive,
 282                                   VoidClosure*                 complete_gc,
 283                                   AbstractRefProcTaskExecutor* task_executor);
 284